llama.cpp 720 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <future>
  72. #include <initializer_list>
  73. #include <locale>
  74. #include <map>
  75. #include <memory>
  76. #include <mutex>
  77. #include <numeric>
  78. #include <queue>
  79. #include <random>
  80. #include <regex>
  81. #include <set>
  82. #include <sstream>
  83. #include <thread>
  84. #include <type_traits>
  85. #include <unordered_map>
  86. #if defined(_MSC_VER)
  87. #pragma warning(disable: 4244 4267) // possible loss of data
  88. #endif
  89. #ifdef __GNUC__
  90. #ifdef __MINGW32__
  91. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  92. #else
  93. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  94. #endif
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...)
  97. #endif
  98. #define LLAMA_MAX_NODES 8192
  99. #define LLAMA_MAX_EXPERTS 60
  100. //
  101. // logging
  102. //
  103. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  104. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  105. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  106. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  107. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  108. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  109. //
  110. // helpers
  111. //
  112. static size_t utf8_len(char src) {
  113. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  114. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  115. return lookup[highbits];
  116. }
  117. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  118. std::string result;
  119. for (size_t pos = 0; ; pos += search.length()) {
  120. auto new_pos = s.find(search, pos);
  121. if (new_pos == std::string::npos) {
  122. result += s.substr(pos, s.size() - pos);
  123. break;
  124. }
  125. result += s.substr(pos, new_pos - pos) + replace;
  126. pos = new_pos;
  127. }
  128. s = std::move(result);
  129. }
  130. static bool is_float_close(float a, float b, float abs_tol) {
  131. // Check for non-negative tolerance
  132. if (abs_tol < 0.0) {
  133. throw std::invalid_argument("Tolerance must be non-negative");
  134. }
  135. // Exact equality check
  136. if (a == b) {
  137. return true;
  138. }
  139. // Check for infinities
  140. if (std::isinf(a) || std::isinf(b)) {
  141. return false;
  142. }
  143. // Regular comparison using the provided absolute tolerance
  144. return std::fabs(b - a) <= abs_tol;
  145. }
  146. static void zeros(std::ofstream & file, size_t n) {
  147. char zero = 0;
  148. for (size_t i = 0; i < n; ++i) {
  149. file.write(&zero, 1);
  150. }
  151. }
  152. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  153. static std::string format(const char * fmt, ...) {
  154. va_list ap;
  155. va_list ap2;
  156. va_start(ap, fmt);
  157. va_copy(ap2, ap);
  158. int size = vsnprintf(NULL, 0, fmt, ap);
  159. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  160. std::vector<char> buf(size + 1);
  161. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  162. GGML_ASSERT(size2 == size);
  163. va_end(ap2);
  164. va_end(ap);
  165. return std::string(buf.data(), size);
  166. }
  167. //
  168. // gguf constants (sync with gguf.py)
  169. //
  170. enum llm_arch {
  171. LLM_ARCH_LLAMA,
  172. LLM_ARCH_FALCON,
  173. LLM_ARCH_BAICHUAN,
  174. LLM_ARCH_GROK,
  175. LLM_ARCH_GPT2,
  176. LLM_ARCH_GPTJ,
  177. LLM_ARCH_GPTNEOX,
  178. LLM_ARCH_MPT,
  179. LLM_ARCH_STARCODER,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_JINA_BERT_V2,
  184. LLM_ARCH_BLOOM,
  185. LLM_ARCH_STABLELM,
  186. LLM_ARCH_QWEN,
  187. LLM_ARCH_QWEN2,
  188. LLM_ARCH_QWEN2MOE,
  189. LLM_ARCH_PHI2,
  190. LLM_ARCH_PHI3,
  191. LLM_ARCH_PLAMO,
  192. LLM_ARCH_CODESHELL,
  193. LLM_ARCH_ORION,
  194. LLM_ARCH_INTERNLM2,
  195. LLM_ARCH_MINICPM,
  196. LLM_ARCH_GEMMA,
  197. LLM_ARCH_STARCODER2,
  198. LLM_ARCH_MAMBA,
  199. LLM_ARCH_XVERSE,
  200. LLM_ARCH_COMMAND_R,
  201. LLM_ARCH_DBRX,
  202. LLM_ARCH_OLMO,
  203. LLM_ARCH_UNKNOWN,
  204. };
  205. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  206. { LLM_ARCH_LLAMA, "llama" },
  207. { LLM_ARCH_FALCON, "falcon" },
  208. { LLM_ARCH_GROK, "grok" },
  209. { LLM_ARCH_GPT2, "gpt2" },
  210. { LLM_ARCH_GPTJ, "gptj" },
  211. { LLM_ARCH_GPTNEOX, "gptneox" },
  212. { LLM_ARCH_MPT, "mpt" },
  213. { LLM_ARCH_BAICHUAN, "baichuan" },
  214. { LLM_ARCH_STARCODER, "starcoder" },
  215. { LLM_ARCH_REFACT, "refact" },
  216. { LLM_ARCH_BERT, "bert" },
  217. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  218. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  219. { LLM_ARCH_BLOOM, "bloom" },
  220. { LLM_ARCH_STABLELM, "stablelm" },
  221. { LLM_ARCH_QWEN, "qwen" },
  222. { LLM_ARCH_QWEN2, "qwen2" },
  223. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  224. { LLM_ARCH_PHI2, "phi2" },
  225. { LLM_ARCH_PHI3, "phi3" },
  226. { LLM_ARCH_PLAMO, "plamo" },
  227. { LLM_ARCH_CODESHELL, "codeshell" },
  228. { LLM_ARCH_ORION, "orion" },
  229. { LLM_ARCH_INTERNLM2, "internlm2" },
  230. { LLM_ARCH_MINICPM, "minicpm" },
  231. { LLM_ARCH_GEMMA, "gemma" },
  232. { LLM_ARCH_STARCODER2, "starcoder2" },
  233. { LLM_ARCH_MAMBA, "mamba" },
  234. { LLM_ARCH_XVERSE, "xverse" },
  235. { LLM_ARCH_COMMAND_R, "command-r" },
  236. { LLM_ARCH_DBRX, "dbrx" },
  237. { LLM_ARCH_OLMO, "olmo" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_USE_PARALLEL_RESIDUAL,
  258. LLM_KV_TENSOR_DATA_LAYOUT,
  259. LLM_KV_EXPERT_COUNT,
  260. LLM_KV_EXPERT_USED_COUNT,
  261. LLM_KV_POOLING_TYPE,
  262. LLM_KV_LOGIT_SCALE,
  263. LLM_KV_ATTENTION_HEAD_COUNT,
  264. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  265. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  266. LLM_KV_ATTENTION_CLAMP_KQV,
  267. LLM_KV_ATTENTION_KEY_LENGTH,
  268. LLM_KV_ATTENTION_VALUE_LENGTH,
  269. LLM_KV_ATTENTION_LAYERNORM_EPS,
  270. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  271. LLM_KV_ATTENTION_CAUSAL,
  272. LLM_KV_ROPE_DIMENSION_COUNT,
  273. LLM_KV_ROPE_FREQ_BASE,
  274. LLM_KV_ROPE_SCALE_LINEAR,
  275. LLM_KV_ROPE_SCALING_TYPE,
  276. LLM_KV_ROPE_SCALING_FACTOR,
  277. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  278. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  279. LLM_KV_ROPE_SCALING_FINETUNED,
  280. LLM_KV_SPLIT_NO,
  281. LLM_KV_SPLIT_COUNT,
  282. LLM_KV_SPLIT_TENSORS_COUNT,
  283. LLM_KV_SSM_INNER_SIZE,
  284. LLM_KV_SSM_CONV_KERNEL,
  285. LLM_KV_SSM_STATE_SIZE,
  286. LLM_KV_SSM_TIME_STEP_RANK,
  287. LLM_KV_TOKENIZER_MODEL,
  288. LLM_KV_TOKENIZER_PRE,
  289. LLM_KV_TOKENIZER_LIST,
  290. LLM_KV_TOKENIZER_TOKEN_TYPE,
  291. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  292. LLM_KV_TOKENIZER_SCORES,
  293. LLM_KV_TOKENIZER_MERGES,
  294. LLM_KV_TOKENIZER_BOS_ID,
  295. LLM_KV_TOKENIZER_EOS_ID,
  296. LLM_KV_TOKENIZER_UNK_ID,
  297. LLM_KV_TOKENIZER_SEP_ID,
  298. LLM_KV_TOKENIZER_PAD_ID,
  299. LLM_KV_TOKENIZER_CLS_ID,
  300. LLM_KV_TOKENIZER_MASK_ID,
  301. LLM_KV_TOKENIZER_ADD_BOS,
  302. LLM_KV_TOKENIZER_ADD_EOS,
  303. LLM_KV_TOKENIZER_ADD_PREFIX,
  304. LLM_KV_TOKENIZER_HF_JSON,
  305. LLM_KV_TOKENIZER_RWKV,
  306. LLM_KV_TOKENIZER_PREFIX_ID,
  307. LLM_KV_TOKENIZER_SUFFIX_ID,
  308. LLM_KV_TOKENIZER_MIDDLE_ID,
  309. LLM_KV_TOKENIZER_EOT_ID,
  310. };
  311. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  312. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  313. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  314. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  315. { LLM_KV_GENERAL_NAME, "general.name" },
  316. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  317. { LLM_KV_GENERAL_VERSION, "general.version" },
  318. { LLM_KV_GENERAL_URL, "general.url" },
  319. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  320. { LLM_KV_GENERAL_LICENSE, "general.license" },
  321. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  322. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  323. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  324. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  325. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  326. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  327. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  328. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  329. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  330. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  331. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  332. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  333. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  334. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  335. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  336. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  337. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  338. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  339. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  340. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  341. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  342. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  343. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  344. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  345. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  346. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  347. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  348. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  349. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  350. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  351. { LLM_KV_SPLIT_NO, "split.no" },
  352. { LLM_KV_SPLIT_COUNT, "split.count" },
  353. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  354. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  355. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  356. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  357. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  358. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  359. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  360. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  361. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  362. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  363. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  364. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  365. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  366. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  367. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  368. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  369. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  370. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  371. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  372. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  373. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  374. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  375. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  376. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  377. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  378. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  379. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  380. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  381. };
  382. struct LLM_KV {
  383. LLM_KV(llm_arch arch) : arch(arch) {}
  384. llm_arch arch;
  385. std::string operator()(llm_kv kv) const {
  386. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  387. }
  388. };
  389. enum llm_tensor {
  390. LLM_TENSOR_TOKEN_EMBD,
  391. LLM_TENSOR_TOKEN_EMBD_NORM,
  392. LLM_TENSOR_TOKEN_TYPES,
  393. LLM_TENSOR_POS_EMBD,
  394. LLM_TENSOR_OUTPUT,
  395. LLM_TENSOR_OUTPUT_NORM,
  396. LLM_TENSOR_ROPE_FREQS,
  397. LLM_TENSOR_ROPE_FACTORS_LONG,
  398. LLM_TENSOR_ROPE_FACTORS_SHORT,
  399. LLM_TENSOR_ATTN_Q,
  400. LLM_TENSOR_ATTN_K,
  401. LLM_TENSOR_ATTN_V,
  402. LLM_TENSOR_ATTN_QKV,
  403. LLM_TENSOR_ATTN_OUT,
  404. LLM_TENSOR_ATTN_NORM,
  405. LLM_TENSOR_ATTN_NORM_2,
  406. LLM_TENSOR_ATTN_OUT_NORM,
  407. LLM_TENSOR_ATTN_ROT_EMBD,
  408. LLM_TENSOR_FFN_GATE_INP,
  409. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  410. LLM_TENSOR_FFN_NORM,
  411. LLM_TENSOR_FFN_GATE,
  412. LLM_TENSOR_FFN_DOWN,
  413. LLM_TENSOR_FFN_UP,
  414. LLM_TENSOR_FFN_ACT,
  415. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  416. LLM_TENSOR_FFN_GATE_EXP,
  417. LLM_TENSOR_FFN_UP_EXP,
  418. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  419. LLM_TENSOR_FFN_GATE_EXPS,
  420. LLM_TENSOR_FFN_UP_EXPS,
  421. LLM_TENSOR_FFN_DOWN_SHEXP,
  422. LLM_TENSOR_FFN_GATE_SHEXP,
  423. LLM_TENSOR_FFN_UP_SHEXP,
  424. LLM_TENSOR_ATTN_Q_NORM,
  425. LLM_TENSOR_ATTN_K_NORM,
  426. LLM_TENSOR_LAYER_OUT_NORM,
  427. LLM_TENSOR_SSM_IN,
  428. LLM_TENSOR_SSM_CONV1D,
  429. LLM_TENSOR_SSM_X,
  430. LLM_TENSOR_SSM_DT,
  431. LLM_TENSOR_SSM_A,
  432. LLM_TENSOR_SSM_D,
  433. LLM_TENSOR_SSM_OUT,
  434. };
  435. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  436. {
  437. LLM_ARCH_LLAMA,
  438. {
  439. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  440. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  441. { LLM_TENSOR_OUTPUT, "output" },
  442. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  443. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  444. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  445. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  446. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  447. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  448. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  449. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  450. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  451. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  452. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  453. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  454. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  455. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  456. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  457. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  458. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  459. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  460. },
  461. },
  462. {
  463. LLM_ARCH_BAICHUAN,
  464. {
  465. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  466. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  467. { LLM_TENSOR_OUTPUT, "output" },
  468. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  469. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  470. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  471. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  472. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  473. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  474. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  475. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  476. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  477. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  478. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  479. },
  480. },
  481. {
  482. LLM_ARCH_FALCON,
  483. {
  484. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  485. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  486. { LLM_TENSOR_OUTPUT, "output" },
  487. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  488. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  489. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  490. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  491. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  492. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  493. },
  494. },
  495. {
  496. LLM_ARCH_GROK,
  497. {
  498. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  499. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  500. { LLM_TENSOR_OUTPUT, "output" },
  501. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  502. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  503. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  504. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  505. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  506. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  507. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  508. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  509. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  510. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  511. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  512. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  513. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  514. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  515. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  516. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  517. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  518. },
  519. },
  520. {
  521. LLM_ARCH_GPT2,
  522. {
  523. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  524. { LLM_TENSOR_POS_EMBD, "position_embd" },
  525. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  526. { LLM_TENSOR_OUTPUT, "output" },
  527. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  528. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  529. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  530. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  531. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  532. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  533. },
  534. },
  535. {
  536. LLM_ARCH_GPTJ,
  537. {
  538. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  539. },
  540. },
  541. {
  542. LLM_ARCH_GPTNEOX,
  543. {
  544. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  545. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  546. { LLM_TENSOR_OUTPUT, "output" },
  547. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  548. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  549. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  550. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  551. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  552. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  553. },
  554. },
  555. {
  556. LLM_ARCH_MPT,
  557. {
  558. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  559. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  560. { LLM_TENSOR_OUTPUT, "output"},
  561. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  562. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  563. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  564. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  565. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  566. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  567. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  568. { LLM_TENSOR_POS_EMBD, "position_embd" },
  569. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  570. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  571. },
  572. },
  573. {
  574. LLM_ARCH_STARCODER,
  575. {
  576. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  577. { LLM_TENSOR_POS_EMBD, "position_embd" },
  578. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  579. { LLM_TENSOR_OUTPUT, "output" },
  580. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  581. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  582. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  583. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  584. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  585. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  586. },
  587. },
  588. {
  589. LLM_ARCH_REFACT,
  590. {
  591. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  592. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  593. { LLM_TENSOR_OUTPUT, "output" },
  594. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  595. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  596. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  597. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  598. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  599. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  600. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  601. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  602. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  603. },
  604. },
  605. {
  606. LLM_ARCH_BERT,
  607. {
  608. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  609. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  610. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  611. { LLM_TENSOR_POS_EMBD, "position_embd" },
  612. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  613. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  614. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  615. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  616. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  617. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  618. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  619. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  620. },
  621. },
  622. {
  623. LLM_ARCH_NOMIC_BERT,
  624. {
  625. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  626. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  627. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  628. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  629. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  630. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  631. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  632. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  633. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  634. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  635. },
  636. },
  637. {
  638. LLM_ARCH_JINA_BERT_V2,
  639. {
  640. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  641. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  642. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  643. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  644. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  645. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  646. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  647. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  648. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  649. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  650. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  651. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  652. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  653. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  654. },
  655. },
  656. {
  657. LLM_ARCH_BLOOM,
  658. {
  659. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  660. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  661. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  662. { LLM_TENSOR_OUTPUT, "output" },
  663. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  664. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  665. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  666. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  667. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  668. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  669. },
  670. },
  671. {
  672. LLM_ARCH_STABLELM,
  673. {
  674. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  675. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  676. { LLM_TENSOR_OUTPUT, "output" },
  677. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  678. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  679. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  680. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  681. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  682. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  683. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  684. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  685. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  686. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  687. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  688. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  689. },
  690. },
  691. {
  692. LLM_ARCH_QWEN,
  693. {
  694. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  695. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  696. { LLM_TENSOR_OUTPUT, "output" },
  697. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  698. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  699. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  700. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  701. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  702. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  703. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  704. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  705. },
  706. },
  707. {
  708. LLM_ARCH_QWEN2,
  709. {
  710. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  711. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  712. { LLM_TENSOR_OUTPUT, "output" },
  713. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  714. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  715. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  716. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  717. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  718. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  719. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  720. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  721. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  722. },
  723. },
  724. {
  725. LLM_ARCH_QWEN2MOE,
  726. {
  727. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  728. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  729. { LLM_TENSOR_OUTPUT, "output" },
  730. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  731. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  732. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  733. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  734. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  735. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  736. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  737. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  738. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  739. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  740. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  741. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  742. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  743. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  744. },
  745. },
  746. {
  747. LLM_ARCH_PHI2,
  748. {
  749. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  750. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  751. { LLM_TENSOR_OUTPUT, "output" },
  752. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  753. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  754. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  755. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  756. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  757. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  758. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  759. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  760. },
  761. },
  762. {
  763. LLM_ARCH_PHI3,
  764. {
  765. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  766. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  767. { LLM_TENSOR_OUTPUT, "output" },
  768. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  769. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  770. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  771. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  772. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  773. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  774. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  775. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  776. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  777. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  778. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  779. },
  780. },
  781. {
  782. LLM_ARCH_PLAMO,
  783. {
  784. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  785. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  786. { LLM_TENSOR_OUTPUT, "output" },
  787. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  788. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  789. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  790. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  791. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  792. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  793. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  794. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  795. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  796. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  797. },
  798. },
  799. {
  800. LLM_ARCH_CODESHELL,
  801. {
  802. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  803. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  804. { LLM_TENSOR_OUTPUT, "output" },
  805. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  806. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  807. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  808. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  809. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  810. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  811. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  812. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  813. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  814. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  815. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  816. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  817. },
  818. },
  819. {
  820. LLM_ARCH_ORION,
  821. {
  822. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  823. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  824. { LLM_TENSOR_OUTPUT, "output" },
  825. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  826. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  827. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  828. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  829. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  830. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  831. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  832. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  833. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  834. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  835. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  836. },
  837. },
  838. {
  839. LLM_ARCH_INTERNLM2,
  840. {
  841. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  842. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  843. { LLM_TENSOR_OUTPUT, "output" },
  844. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  845. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  846. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  847. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  848. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  849. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  850. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  851. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  852. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  853. },
  854. },
  855. {
  856. LLM_ARCH_MINICPM,
  857. {
  858. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  859. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  860. { LLM_TENSOR_OUTPUT, "output" },
  861. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  862. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  863. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  864. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  865. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  866. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  867. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  868. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  869. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  870. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  871. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  872. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  873. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  874. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  875. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  876. },
  877. },
  878. {
  879. LLM_ARCH_GEMMA,
  880. {
  881. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  882. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  883. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  884. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  885. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  886. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  887. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  888. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  889. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  890. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  891. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  892. },
  893. },
  894. {
  895. LLM_ARCH_STARCODER2,
  896. {
  897. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  898. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  899. { LLM_TENSOR_OUTPUT, "output" },
  900. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  901. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  902. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  903. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  904. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  905. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  906. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  907. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  908. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  909. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  910. },
  911. },
  912. {
  913. LLM_ARCH_MAMBA,
  914. {
  915. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  916. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  917. { LLM_TENSOR_OUTPUT, "output" },
  918. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  919. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  920. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  921. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  922. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  923. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  924. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  925. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  926. },
  927. },
  928. {
  929. LLM_ARCH_XVERSE,
  930. {
  931. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  932. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  933. { LLM_TENSOR_OUTPUT, "output" },
  934. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  935. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  936. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  937. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  938. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  939. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  940. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  941. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  942. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  943. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  944. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  945. },
  946. },
  947. {
  948. LLM_ARCH_COMMAND_R,
  949. {
  950. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  951. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  952. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  953. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  954. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  955. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  956. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  957. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  958. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  959. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  960. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  961. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  962. },
  963. },
  964. {
  965. LLM_ARCH_DBRX,
  966. {
  967. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  968. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  969. { LLM_TENSOR_OUTPUT, "output" },
  970. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  971. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  972. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  973. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  974. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  975. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  976. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  977. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  978. },
  979. },
  980. {
  981. LLM_ARCH_OLMO,
  982. {
  983. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  984. { LLM_TENSOR_OUTPUT, "output" },
  985. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  986. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  987. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  988. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  989. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  990. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  991. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  992. },
  993. },
  994. {
  995. LLM_ARCH_UNKNOWN,
  996. {
  997. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  998. },
  999. },
  1000. };
  1001. static llm_arch llm_arch_from_string(const std::string & name) {
  1002. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1003. if (kv.second == name) {
  1004. return kv.first;
  1005. }
  1006. }
  1007. return LLM_ARCH_UNKNOWN;
  1008. }
  1009. // helper to handle gguf constants
  1010. // usage:
  1011. //
  1012. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1013. //
  1014. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1015. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1016. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1017. //
  1018. struct LLM_TN {
  1019. LLM_TN(llm_arch arch) : arch(arch) {}
  1020. llm_arch arch;
  1021. std::string operator()(llm_tensor tensor) const {
  1022. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1023. return "__missing__";
  1024. }
  1025. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1026. }
  1027. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1028. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1029. return "__missing__";
  1030. }
  1031. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1032. }
  1033. std::string operator()(llm_tensor tensor, int bid) const {
  1034. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1035. return "__missing__";
  1036. }
  1037. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1038. }
  1039. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1040. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1041. return "__missing__";
  1042. }
  1043. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1044. }
  1045. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1046. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1047. return "__missing__";
  1048. }
  1049. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1050. }
  1051. };
  1052. //
  1053. // gguf helpers
  1054. //
  1055. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1056. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1057. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1058. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1059. };
  1060. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1061. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1062. if (kv.second == name) {
  1063. return (llama_rope_scaling_type) kv.first;
  1064. }
  1065. }
  1066. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1067. }
  1068. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1069. switch (type) {
  1070. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1071. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1072. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1073. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1074. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1075. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1076. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1077. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1078. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1079. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1080. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1081. default: return format("unknown type %d", type);
  1082. }
  1083. }
  1084. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1085. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1086. switch (type) {
  1087. case GGUF_TYPE_STRING:
  1088. return gguf_get_val_str(ctx_gguf, i);
  1089. case GGUF_TYPE_ARRAY:
  1090. {
  1091. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1092. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1093. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1094. std::stringstream ss;
  1095. ss << "[";
  1096. for (int j = 0; j < arr_n; j++) {
  1097. if (arr_type == GGUF_TYPE_STRING) {
  1098. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1099. // escape quotes
  1100. replace_all(val, "\\", "\\\\");
  1101. replace_all(val, "\"", "\\\"");
  1102. ss << '"' << val << '"';
  1103. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1104. ss << "???";
  1105. } else {
  1106. ss << gguf_data_to_str(arr_type, data, j);
  1107. }
  1108. if (j < arr_n - 1) {
  1109. ss << ", ";
  1110. }
  1111. }
  1112. ss << "]";
  1113. return ss.str();
  1114. }
  1115. default:
  1116. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1117. }
  1118. }
  1119. //
  1120. // llama helpers
  1121. //
  1122. #if defined(_WIN32)
  1123. static std::string llama_format_win_err(DWORD err) {
  1124. LPSTR buf;
  1125. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1126. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1127. if (!size) {
  1128. return "FormatMessageA failed";
  1129. }
  1130. std::string ret(buf, size);
  1131. LocalFree(buf);
  1132. return ret;
  1133. }
  1134. #endif
  1135. template <typename T>
  1136. struct no_init {
  1137. T value;
  1138. no_init() { /* do nothing */ }
  1139. };
  1140. struct llama_file {
  1141. // use FILE * so we don't have to re-open the file to mmap
  1142. FILE * fp;
  1143. size_t size;
  1144. llama_file(const char * fname, const char * mode) {
  1145. fp = ggml_fopen(fname, mode);
  1146. if (fp == NULL) {
  1147. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1148. }
  1149. seek(0, SEEK_END);
  1150. size = tell();
  1151. seek(0, SEEK_SET);
  1152. }
  1153. size_t tell() const {
  1154. #ifdef _WIN32
  1155. __int64 ret = _ftelli64(fp);
  1156. #else
  1157. long ret = std::ftell(fp);
  1158. #endif
  1159. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1160. return (size_t) ret;
  1161. }
  1162. void seek(size_t offset, int whence) const {
  1163. #ifdef _WIN32
  1164. int ret = _fseeki64(fp, (__int64) offset, whence);
  1165. #else
  1166. int ret = std::fseek(fp, (long) offset, whence);
  1167. #endif
  1168. GGML_ASSERT(ret == 0); // same
  1169. }
  1170. void read_raw(void * ptr, size_t len) const {
  1171. if (len == 0) {
  1172. return;
  1173. }
  1174. errno = 0;
  1175. std::size_t ret = std::fread(ptr, len, 1, fp);
  1176. if (ferror(fp)) {
  1177. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1178. }
  1179. if (ret != 1) {
  1180. throw std::runtime_error("unexpectedly reached end of file");
  1181. }
  1182. }
  1183. uint32_t read_u32() const {
  1184. uint32_t ret;
  1185. read_raw(&ret, sizeof(ret));
  1186. return ret;
  1187. }
  1188. void write_raw(const void * ptr, size_t len) const {
  1189. if (len == 0) {
  1190. return;
  1191. }
  1192. errno = 0;
  1193. size_t ret = std::fwrite(ptr, len, 1, fp);
  1194. if (ret != 1) {
  1195. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1196. }
  1197. }
  1198. void write_u32(std::uint32_t val) const {
  1199. write_raw(&val, sizeof(val));
  1200. }
  1201. ~llama_file() {
  1202. if (fp) {
  1203. std::fclose(fp);
  1204. }
  1205. }
  1206. };
  1207. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1208. struct llama_mmap {
  1209. void * addr;
  1210. size_t size;
  1211. llama_mmap(const llama_mmap &) = delete;
  1212. #ifdef _POSIX_MAPPED_FILES
  1213. static constexpr bool SUPPORTED = true;
  1214. // list of mapped fragments (first_offset, last_offset)
  1215. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1216. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1217. size = file->size;
  1218. int fd = fileno(file->fp);
  1219. int flags = MAP_SHARED;
  1220. // prefetch/readahead impairs performance on NUMA systems
  1221. if (numa) { prefetch = 0; }
  1222. #ifdef __linux__
  1223. // advise the kernel to read the file sequentially (increases readahead)
  1224. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1225. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1226. strerror(errno));
  1227. }
  1228. if (prefetch) { flags |= MAP_POPULATE; }
  1229. #endif
  1230. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1231. if (addr == MAP_FAILED) { // NOLINT
  1232. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1233. }
  1234. if (prefetch > 0) {
  1235. // advise the kernel to preload the mapped memory
  1236. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1237. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1238. strerror(errno));
  1239. }
  1240. }
  1241. if (numa) {
  1242. // advise the kernel not to use readahead
  1243. // (because the next page might not belong on the same node)
  1244. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1245. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1246. strerror(errno));
  1247. }
  1248. }
  1249. // initialize list of mapped_fragments
  1250. mapped_fragments.emplace_back(0, file->size);
  1251. }
  1252. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1253. // align first to the next page
  1254. size_t offset_in_page = *first & (page_size - 1);
  1255. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1256. *first += offset_to_page;
  1257. // align last to the previous page
  1258. *last = *last & ~(page_size - 1);
  1259. if (*last <= *first) {
  1260. *last = *first;
  1261. }
  1262. }
  1263. // partially unmap the file in the range [first, last)
  1264. void unmap_fragment(size_t first, size_t last) {
  1265. // note: this function must not be called multiple times with overlapping ranges
  1266. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1267. int page_size = sysconf(_SC_PAGESIZE);
  1268. align_range(&first, &last, page_size);
  1269. size_t len = last - first;
  1270. if (len == 0) {
  1271. return;
  1272. }
  1273. GGML_ASSERT(first % page_size == 0);
  1274. GGML_ASSERT(last % page_size == 0);
  1275. GGML_ASSERT(last > first);
  1276. void * next_page_start = (uint8_t *) addr + first;
  1277. // unmap the range
  1278. if (munmap(next_page_start, len)) {
  1279. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1280. }
  1281. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1282. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1283. for (const auto & frag : mapped_fragments) {
  1284. if (frag.first < first && frag.second > last) {
  1285. // the range is in the middle of the fragment, split it
  1286. new_mapped_fragments.emplace_back(frag.first, first);
  1287. new_mapped_fragments.emplace_back(last, frag.second);
  1288. } else if (frag.first < first && frag.second > first) {
  1289. // the range starts in the middle of the fragment
  1290. new_mapped_fragments.emplace_back(frag.first, first);
  1291. } else if (frag.first < last && frag.second > last) {
  1292. // the range ends in the middle of the fragment
  1293. new_mapped_fragments.emplace_back(last, frag.second);
  1294. } else if (frag.first >= first && frag.second <= last) {
  1295. // the range covers the entire fragment
  1296. } else {
  1297. // the range is outside the fragment
  1298. new_mapped_fragments.push_back(frag);
  1299. }
  1300. }
  1301. mapped_fragments = std::move(new_mapped_fragments);
  1302. }
  1303. ~llama_mmap() {
  1304. for (const auto & frag : mapped_fragments) {
  1305. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1306. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1307. }
  1308. }
  1309. }
  1310. #elif defined(_WIN32)
  1311. static constexpr bool SUPPORTED = true;
  1312. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1313. GGML_UNUSED(numa);
  1314. size = file->size;
  1315. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1316. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1317. if (hMapping == NULL) {
  1318. DWORD error = GetLastError();
  1319. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1320. }
  1321. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1322. DWORD error = GetLastError();
  1323. CloseHandle(hMapping);
  1324. if (addr == NULL) {
  1325. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1326. }
  1327. if (prefetch > 0) {
  1328. #if _WIN32_WINNT >= 0x602
  1329. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1330. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1331. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1332. // may fail on pre-Windows 8 systems
  1333. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1334. if (pPrefetchVirtualMemory) {
  1335. // advise the kernel to preload the mapped memory
  1336. WIN32_MEMORY_RANGE_ENTRY range;
  1337. range.VirtualAddress = addr;
  1338. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1339. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1340. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1341. llama_format_win_err(GetLastError()).c_str());
  1342. }
  1343. }
  1344. #else
  1345. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1346. #endif
  1347. }
  1348. }
  1349. void unmap_fragment(size_t first, size_t last) {
  1350. // not supported
  1351. GGML_UNUSED(first);
  1352. GGML_UNUSED(last);
  1353. }
  1354. ~llama_mmap() {
  1355. if (!UnmapViewOfFile(addr)) {
  1356. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1357. llama_format_win_err(GetLastError()).c_str());
  1358. }
  1359. }
  1360. #else
  1361. static constexpr bool SUPPORTED = false;
  1362. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1363. GGML_UNUSED(file);
  1364. GGML_UNUSED(prefetch);
  1365. GGML_UNUSED(numa);
  1366. throw std::runtime_error("mmap not supported");
  1367. }
  1368. void unmap_fragment(size_t first, size_t last) {
  1369. GGML_UNUSED(first);
  1370. GGML_UNUSED(last);
  1371. throw std::runtime_error("mmap not supported");
  1372. }
  1373. #endif
  1374. };
  1375. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1376. // Represents some region of memory being locked using mlock or VirtualLock;
  1377. // will automatically unlock on destruction.
  1378. struct llama_mlock {
  1379. void * addr = NULL;
  1380. size_t size = 0;
  1381. bool failed_already = false;
  1382. llama_mlock() {}
  1383. llama_mlock(const llama_mlock &) = delete;
  1384. ~llama_mlock() {
  1385. if (size) {
  1386. raw_unlock(addr, size);
  1387. }
  1388. }
  1389. void init(void * ptr) {
  1390. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1391. addr = ptr;
  1392. }
  1393. void grow_to(size_t target_size) {
  1394. GGML_ASSERT(addr);
  1395. if (failed_already) {
  1396. return;
  1397. }
  1398. size_t granularity = lock_granularity();
  1399. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1400. if (target_size > size) {
  1401. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1402. size = target_size;
  1403. } else {
  1404. failed_already = true;
  1405. }
  1406. }
  1407. }
  1408. #ifdef _POSIX_MEMLOCK_RANGE
  1409. static constexpr bool SUPPORTED = true;
  1410. static size_t lock_granularity() {
  1411. return (size_t) sysconf(_SC_PAGESIZE);
  1412. }
  1413. #ifdef __APPLE__
  1414. #define MLOCK_SUGGESTION \
  1415. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1416. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1417. #else
  1418. #define MLOCK_SUGGESTION \
  1419. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1420. #endif
  1421. bool raw_lock(const void * addr, size_t size) const {
  1422. if (!mlock(addr, size)) {
  1423. return true;
  1424. }
  1425. char* errmsg = std::strerror(errno);
  1426. bool suggest = (errno == ENOMEM);
  1427. // Check if the resource limit is fine after all
  1428. struct rlimit lock_limit;
  1429. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1430. suggest = false;
  1431. }
  1432. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1433. suggest = false;
  1434. }
  1435. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1436. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1437. return false;
  1438. }
  1439. #undef MLOCK_SUGGESTION
  1440. static void raw_unlock(void * addr, size_t size) {
  1441. if (munlock(addr, size)) {
  1442. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1443. }
  1444. }
  1445. #elif defined(_WIN32)
  1446. static constexpr bool SUPPORTED = true;
  1447. static size_t lock_granularity() {
  1448. SYSTEM_INFO si;
  1449. GetSystemInfo(&si);
  1450. return (size_t) si.dwPageSize;
  1451. }
  1452. bool raw_lock(void * ptr, size_t len) const {
  1453. for (int tries = 1; ; tries++) {
  1454. if (VirtualLock(ptr, len)) {
  1455. return true;
  1456. }
  1457. if (tries == 2) {
  1458. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1459. len, size, llama_format_win_err(GetLastError()).c_str());
  1460. return false;
  1461. }
  1462. // It failed but this was only the first try; increase the working
  1463. // set size and try again.
  1464. SIZE_T min_ws_size, max_ws_size;
  1465. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1466. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1467. llama_format_win_err(GetLastError()).c_str());
  1468. return false;
  1469. }
  1470. // Per MSDN: "The maximum number of pages that a process can lock
  1471. // is equal to the number of pages in its minimum working set minus
  1472. // a small overhead."
  1473. // Hopefully a megabyte is enough overhead:
  1474. size_t increment = len + 1048576;
  1475. // The minimum must be <= the maximum, so we need to increase both:
  1476. min_ws_size += increment;
  1477. max_ws_size += increment;
  1478. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1479. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1480. llama_format_win_err(GetLastError()).c_str());
  1481. return false;
  1482. }
  1483. }
  1484. }
  1485. static void raw_unlock(void * ptr, size_t len) {
  1486. if (!VirtualUnlock(ptr, len)) {
  1487. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1488. llama_format_win_err(GetLastError()).c_str());
  1489. }
  1490. }
  1491. #else
  1492. static constexpr bool SUPPORTED = false;
  1493. static size_t lock_granularity() {
  1494. return (size_t) 65536;
  1495. }
  1496. bool raw_lock(const void * addr, size_t len) const {
  1497. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1498. return false;
  1499. }
  1500. static void raw_unlock(const void * addr, size_t len) {}
  1501. #endif
  1502. };
  1503. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1504. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1505. std::vector<char> result(8, 0);
  1506. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1507. if (n_tokens < 0) {
  1508. result.resize(-n_tokens);
  1509. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1510. GGML_ASSERT(check == -n_tokens);
  1511. }
  1512. else {
  1513. result.resize(n_tokens);
  1514. }
  1515. return std::string(result.data(), result.size());
  1516. }
  1517. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1518. ggml_backend_buffer_type_t buft = nullptr;
  1519. #if defined(GGML_USE_CUDA)
  1520. // host buffers should only be used when data is expected to be copied to/from the GPU
  1521. if (host_buffer) {
  1522. buft = ggml_backend_cuda_host_buffer_type();
  1523. }
  1524. #elif defined(GGML_USE_SYCL)
  1525. if (host_buffer) {
  1526. buft = ggml_backend_sycl_host_buffer_type();
  1527. }
  1528. #elif defined(GGML_USE_CPU_HBM)
  1529. buft = ggml_backend_cpu_hbm_buffer_type();
  1530. #elif defined(GGML_USE_VULKAN)
  1531. if (host_buffer) {
  1532. buft = ggml_backend_vk_host_buffer_type();
  1533. }
  1534. #endif
  1535. if (buft == nullptr) {
  1536. buft = ggml_backend_cpu_buffer_type();
  1537. }
  1538. return buft;
  1539. GGML_UNUSED(host_buffer);
  1540. }
  1541. //
  1542. // globals
  1543. //
  1544. struct llama_state {
  1545. llama_state() {
  1546. #ifdef GGML_USE_METAL
  1547. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1548. #elif defined(GGML_USE_CUDA)
  1549. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1550. #endif
  1551. }
  1552. // We save the log callback globally
  1553. ggml_log_callback log_callback = llama_log_callback_default;
  1554. void * log_callback_user_data = nullptr;
  1555. };
  1556. static llama_state g_state;
  1557. // available llama models
  1558. enum e_model {
  1559. MODEL_UNKNOWN,
  1560. MODEL_17M,
  1561. MODEL_22M,
  1562. MODEL_33M,
  1563. MODEL_109M,
  1564. MODEL_137M,
  1565. MODEL_335M,
  1566. MODEL_0_5B,
  1567. MODEL_1B,
  1568. MODEL_2B,
  1569. MODEL_3B,
  1570. MODEL_4B,
  1571. MODEL_7B,
  1572. MODEL_8B,
  1573. MODEL_12B,
  1574. MODEL_13B,
  1575. MODEL_14B,
  1576. MODEL_15B,
  1577. MODEL_20B,
  1578. MODEL_30B,
  1579. MODEL_34B,
  1580. MODEL_35B,
  1581. MODEL_40B,
  1582. MODEL_65B,
  1583. MODEL_70B,
  1584. MODEL_314B,
  1585. MODEL_SMALL,
  1586. MODEL_MEDIUM,
  1587. MODEL_LARGE,
  1588. MODEL_XL,
  1589. MODEL_A2_7B,
  1590. MODEL_8x7B,
  1591. MODEL_8x22B,
  1592. MODEL_16x12B,
  1593. };
  1594. static const size_t kiB = 1024;
  1595. static const size_t MiB = 1024*kiB;
  1596. static const size_t GiB = 1024*MiB;
  1597. struct llama_hparams {
  1598. bool vocab_only;
  1599. bool rope_finetuned;
  1600. uint32_t n_vocab;
  1601. uint32_t n_ctx_train; // context size the model was trained on
  1602. uint32_t n_embd;
  1603. uint32_t n_head;
  1604. uint32_t n_head_kv;
  1605. uint32_t n_layer;
  1606. uint32_t n_rot;
  1607. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1608. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1609. uint32_t n_ff;
  1610. uint32_t n_expert = 0;
  1611. uint32_t n_expert_used = 0;
  1612. uint32_t n_vocab_type = 0; // for BERT-style token types
  1613. float f_norm_eps;
  1614. float f_norm_rms_eps;
  1615. float rope_attn_factor = 1.0f;
  1616. float rope_freq_base_train;
  1617. float rope_freq_scale_train;
  1618. uint32_t n_yarn_orig_ctx;
  1619. // for State Space Models
  1620. uint32_t ssm_d_conv = 0;
  1621. uint32_t ssm_d_inner = 0;
  1622. uint32_t ssm_d_state = 0;
  1623. uint32_t ssm_dt_rank = 0;
  1624. float f_clamp_kqv = 0.0f;
  1625. float f_max_alibi_bias = 0.0f;
  1626. float f_logit_scale = 0.0f;
  1627. bool causal_attn = true;
  1628. bool use_alibi = false;
  1629. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1630. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1631. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1632. bool operator!=(const llama_hparams & other) const {
  1633. if (this->vocab_only != other.vocab_only) return true;
  1634. if (this->n_vocab != other.n_vocab) return true;
  1635. if (this->n_ctx_train != other.n_ctx_train) return true;
  1636. if (this->n_embd != other.n_embd) return true;
  1637. if (this->n_head != other.n_head) return true;
  1638. if (this->n_head_kv != other.n_head_kv) return true;
  1639. if (this->n_layer != other.n_layer) return true;
  1640. if (this->n_rot != other.n_rot) return true;
  1641. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1642. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1643. if (this->n_ff != other.n_ff) return true;
  1644. if (this->n_expert != other.n_expert) return true;
  1645. if (this->n_expert_used != other.n_expert_used) return true;
  1646. if (this->rope_finetuned != other.rope_finetuned) return true;
  1647. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1648. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1649. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1650. if (this->ssm_d_state != other.ssm_d_state) return true;
  1651. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1652. const float EPSILON = 1e-9f;
  1653. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1654. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1655. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1656. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1657. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1658. return false;
  1659. }
  1660. uint32_t n_gqa() const {
  1661. if (n_head_kv == 0) {
  1662. return 0;
  1663. }
  1664. return n_head/n_head_kv;
  1665. }
  1666. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1667. return n_embd_head_k * n_head_kv;
  1668. }
  1669. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1670. return n_embd_head_v * n_head_kv;
  1671. }
  1672. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1673. // corresponds to Mamba's conv_states size
  1674. // TODO: maybe support other convolution strides than 1
  1675. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1676. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1677. }
  1678. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1679. // corresponds to Mamba's ssm_states size
  1680. return ssm_d_state * ssm_d_inner;
  1681. }
  1682. };
  1683. struct llama_cparams {
  1684. uint32_t n_ctx; // context size used during inference
  1685. uint32_t n_batch;
  1686. uint32_t n_ubatch;
  1687. uint32_t n_seq_max;
  1688. uint32_t n_threads; // number of threads to use for generation
  1689. uint32_t n_threads_batch; // number of threads to use for batch processing
  1690. float rope_freq_base;
  1691. float rope_freq_scale;
  1692. uint32_t n_yarn_orig_ctx;
  1693. // These hyperparameters are not exposed in GGUF, because all
  1694. // existing YaRN models use the same values for them.
  1695. float yarn_ext_factor;
  1696. float yarn_attn_factor;
  1697. float yarn_beta_fast;
  1698. float yarn_beta_slow;
  1699. float defrag_thold;
  1700. bool embeddings;
  1701. bool causal_attn;
  1702. bool offload_kqv;
  1703. bool flash_attn;
  1704. enum llama_pooling_type pooling_type;
  1705. ggml_backend_sched_eval_callback cb_eval;
  1706. void * cb_eval_user_data;
  1707. };
  1708. struct llama_layer {
  1709. // normalization
  1710. struct ggml_tensor * attn_norm;
  1711. struct ggml_tensor * attn_norm_b;
  1712. struct ggml_tensor * attn_norm_2;
  1713. struct ggml_tensor * attn_norm_2_b;
  1714. struct ggml_tensor * attn_q_norm;
  1715. struct ggml_tensor * attn_q_norm_b;
  1716. struct ggml_tensor * attn_k_norm;
  1717. struct ggml_tensor * attn_k_norm_b;
  1718. struct ggml_tensor * attn_out_norm;
  1719. struct ggml_tensor * attn_out_norm_b;
  1720. // attention
  1721. struct ggml_tensor * wq;
  1722. struct ggml_tensor * wk;
  1723. struct ggml_tensor * wv;
  1724. struct ggml_tensor * wo;
  1725. struct ggml_tensor * wqkv;
  1726. // attention bias
  1727. struct ggml_tensor * bq;
  1728. struct ggml_tensor * bk;
  1729. struct ggml_tensor * bv;
  1730. struct ggml_tensor * bo;
  1731. struct ggml_tensor * bqkv;
  1732. // normalization
  1733. struct ggml_tensor * ffn_norm;
  1734. struct ggml_tensor * ffn_norm_b;
  1735. struct ggml_tensor * layer_out_norm;
  1736. struct ggml_tensor * layer_out_norm_b;
  1737. // ff
  1738. struct ggml_tensor * ffn_gate; // w1
  1739. struct ggml_tensor * ffn_down; // w2
  1740. struct ggml_tensor * ffn_up; // w3
  1741. // ff MoE
  1742. struct ggml_tensor * ffn_gate_inp;
  1743. struct ggml_tensor * ffn_gate_exps;
  1744. struct ggml_tensor * ffn_down_exps;
  1745. struct ggml_tensor * ffn_up_exps ;
  1746. // ff shared expert (shexp)
  1747. struct ggml_tensor * ffn_gate_inp_shexp;
  1748. struct ggml_tensor * ffn_gate_shexp;
  1749. struct ggml_tensor * ffn_down_shexp;
  1750. struct ggml_tensor * ffn_up_shexp;
  1751. // ff bias
  1752. struct ggml_tensor * ffn_down_b; // b2
  1753. struct ggml_tensor * ffn_up_b; // b3
  1754. struct ggml_tensor * ffn_act;
  1755. // mamba proj
  1756. struct ggml_tensor * ssm_in;
  1757. struct ggml_tensor * ssm_x;
  1758. struct ggml_tensor * ssm_dt;
  1759. struct ggml_tensor * ssm_out;
  1760. // mamba
  1761. struct ggml_tensor * ssm_conv1d;
  1762. struct ggml_tensor * ssm_a;
  1763. struct ggml_tensor * ssm_d;
  1764. // mamba bias
  1765. struct ggml_tensor * ssm_conv1d_b;
  1766. struct ggml_tensor * ssm_dt_b;
  1767. // long rope factors
  1768. struct ggml_tensor * rope_long = nullptr;
  1769. struct ggml_tensor * rope_short = nullptr;
  1770. };
  1771. struct llama_kv_cell {
  1772. llama_pos pos = -1;
  1773. llama_pos delta = 0;
  1774. int32_t src = 0; // used by recurrent state models to copy states
  1775. std::set<llama_seq_id> seq_id;
  1776. bool has_seq_id(const llama_seq_id & id) const {
  1777. return seq_id.find(id) != seq_id.end();
  1778. }
  1779. bool is_empty() const {
  1780. return seq_id.empty();
  1781. }
  1782. bool is_same_seq(const llama_kv_cell & other) const {
  1783. return seq_id == other.seq_id;
  1784. }
  1785. };
  1786. // ring-buffer of cached KV data
  1787. struct llama_kv_cache {
  1788. bool has_shift = false;
  1789. bool do_defrag = false;
  1790. bool do_copy = false;
  1791. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1792. bool v_trans = true; // the value tensor is transposed
  1793. // Note: The value of head isn't only used to optimize searching
  1794. // for a free KV slot. llama_decode_internal also uses it, so it
  1795. // cannot be freely changed after a slot has been allocated.
  1796. uint32_t head = 0;
  1797. uint32_t size = 0;
  1798. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1799. // computed before each graph build
  1800. uint32_t n = 0;
  1801. ggml_type type_k = GGML_TYPE_F16;
  1802. ggml_type type_v = GGML_TYPE_F16;
  1803. std::vector<llama_kv_cell> cells;
  1804. std::vector<struct ggml_tensor *> k_l; // per layer
  1805. std::vector<struct ggml_tensor *> v_l;
  1806. std::vector<struct ggml_context *> ctxs;
  1807. std::vector<ggml_backend_buffer_t> bufs;
  1808. size_t total_size() const {
  1809. size_t size = 0;
  1810. for (ggml_backend_buffer_t buf : bufs) {
  1811. size += ggml_backend_buffer_get_size(buf);
  1812. }
  1813. return size;
  1814. }
  1815. ~llama_kv_cache() {
  1816. for (struct ggml_context * ctx : ctxs) {
  1817. ggml_free(ctx);
  1818. }
  1819. for (ggml_backend_buffer_t buf : bufs) {
  1820. ggml_backend_buffer_free(buf);
  1821. }
  1822. }
  1823. };
  1824. struct llama_control_vector {
  1825. std::vector<struct ggml_tensor *> tensors; // per layer
  1826. std::vector<struct ggml_context *> ctxs;
  1827. std::vector<ggml_backend_buffer_t> bufs;
  1828. int32_t layer_start = -1;
  1829. int32_t layer_end = -1;
  1830. ggml_tensor * tensor_for(int il) const {
  1831. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1832. return nullptr;
  1833. }
  1834. return tensors[il];
  1835. }
  1836. ~llama_control_vector() {
  1837. for (struct ggml_context * ctx : ctxs) {
  1838. ggml_free(ctx);
  1839. }
  1840. for (ggml_backend_buffer_t buf : bufs) {
  1841. ggml_backend_buffer_free(buf);
  1842. }
  1843. }
  1844. };
  1845. struct llama_vocab {
  1846. using id = int32_t;
  1847. using token = std::string;
  1848. using ttype = llama_token_type;
  1849. struct token_data {
  1850. token text;
  1851. float score;
  1852. ttype type;
  1853. };
  1854. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1855. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1856. std::unordered_map<token, id> token_to_id;
  1857. std::vector<token_data> id_to_token;
  1858. std::unordered_map<token, id> special_tokens_cache;
  1859. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1860. // default LLaMA special tokens
  1861. id special_bos_id = 1;
  1862. id special_eos_id = 2;
  1863. id special_unk_id = 0;
  1864. id special_sep_id = -1;
  1865. id special_pad_id = -1;
  1866. id special_cls_id = -1;
  1867. id special_mask_id = -1;
  1868. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1869. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1870. id linefeed_id = 13;
  1871. id special_prefix_id = -1;
  1872. id special_suffix_id = -1;
  1873. id special_middle_id = -1;
  1874. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1875. bool add_space_prefix = true;
  1876. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1877. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1878. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1879. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1880. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1881. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1882. if (it == bpe_ranks.end()) {
  1883. return -1;
  1884. }
  1885. return it->second;
  1886. }
  1887. };
  1888. struct llama_model {
  1889. e_model type = MODEL_UNKNOWN;
  1890. llm_arch arch = LLM_ARCH_UNKNOWN;
  1891. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1892. std::string name = "n/a";
  1893. llama_hparams hparams = {};
  1894. llama_vocab vocab;
  1895. struct ggml_tensor * tok_embd;
  1896. struct ggml_tensor * type_embd;
  1897. struct ggml_tensor * pos_embd;
  1898. struct ggml_tensor * tok_norm;
  1899. struct ggml_tensor * tok_norm_b;
  1900. struct ggml_tensor * output_norm;
  1901. struct ggml_tensor * output_norm_b;
  1902. struct ggml_tensor * output;
  1903. struct ggml_tensor * output_b;
  1904. std::vector<llama_layer> layers;
  1905. llama_split_mode split_mode;
  1906. int main_gpu;
  1907. int n_gpu_layers;
  1908. std::vector<std::string> rpc_servers;
  1909. // gguf metadata
  1910. std::unordered_map<std::string, std::string> gguf_kv;
  1911. // layer -> buffer type mapping
  1912. struct layer_buft {
  1913. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1914. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1915. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1916. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1917. ggml_backend_buffer_type_t buft; // everything else
  1918. };
  1919. layer_buft buft_input;
  1920. layer_buft buft_output;
  1921. std::vector<layer_buft> buft_layer;
  1922. // contexts where the model tensors metadata is stored
  1923. std::vector<struct ggml_context *> ctxs;
  1924. // the model memory buffers for the tensor data
  1925. std::vector<ggml_backend_buffer_t> bufs;
  1926. // model memory mapped files
  1927. llama_mmaps mappings;
  1928. // objects representing data potentially being locked in memory
  1929. llama_mlocks mlock_bufs;
  1930. llama_mlocks mlock_mmaps;
  1931. // for quantize-stats only
  1932. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1933. int64_t t_load_us = 0;
  1934. int64_t t_start_us = 0;
  1935. ~llama_model() {
  1936. for (struct ggml_context * ctx : ctxs) {
  1937. ggml_free(ctx);
  1938. }
  1939. for (ggml_backend_buffer_t buf : bufs) {
  1940. #ifdef GGML_USE_CUDA
  1941. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1942. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1943. }
  1944. #endif
  1945. ggml_backend_buffer_free(buf);
  1946. }
  1947. }
  1948. };
  1949. struct llama_context {
  1950. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1951. ~llama_context() {
  1952. ggml_backend_sched_free(sched);
  1953. for (ggml_backend_t backend : backends) {
  1954. ggml_backend_free(backend);
  1955. }
  1956. ggml_backend_buffer_free(buf_output);
  1957. }
  1958. llama_cparams cparams;
  1959. std::vector<ggml_backend_t> backends;
  1960. #ifdef GGML_USE_METAL
  1961. ggml_backend_t backend_metal = nullptr;
  1962. #endif
  1963. ggml_backend_t backend_cpu = nullptr;
  1964. const llama_model & model;
  1965. // key + value cache for the self attention
  1966. struct llama_kv_cache kv_self;
  1967. std::mt19937 rng;
  1968. bool has_evaluated_once = false;
  1969. int64_t t_start_us;
  1970. int64_t t_load_us;
  1971. int64_t t_sample_us = 0;
  1972. int64_t t_p_eval_us = 0;
  1973. int64_t t_eval_us = 0;
  1974. int64_t t_compute_start_us = 0;
  1975. int64_t n_queued_tokens = 0;
  1976. int32_t n_sample = 0; // number of tokens sampled
  1977. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1978. int32_t n_eval = 0; // number of eval calls
  1979. // host buffer for the model output (logits and embeddings)
  1980. ggml_backend_buffer_t buf_output = nullptr;
  1981. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1982. size_t logits_size = 0; // capacity (of floats) for logits
  1983. float * logits = nullptr;
  1984. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1985. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1986. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  1987. bool logits_all = false;
  1988. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  1989. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1990. size_t embd_size = 0; // capacity (of floats) for embeddings
  1991. float * embd = nullptr;
  1992. // sequence embeddings output (map of [n_embd] vectors)
  1993. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  1994. std::map<llama_seq_id, std::vector<float>> embd_seq;
  1995. // memory buffers used to evaluate the model
  1996. std::vector<uint8_t> buf_compute_meta;
  1997. ggml_backend_sched_t sched = nullptr;
  1998. ggml_abort_callback abort_callback = nullptr;
  1999. void * abort_callback_data = nullptr;
  2000. // input tensors
  2001. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2002. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2003. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2004. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2005. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2006. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2007. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2008. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2009. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2010. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2011. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2012. // control vectors
  2013. struct llama_control_vector cvec;
  2014. };
  2015. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2016. ggml_backend_buffer_type_t buft = nullptr;
  2017. #ifdef GGML_USE_RPC
  2018. std::string endpoint = model.rpc_servers[gpu];
  2019. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2020. #elif defined(GGML_USE_METAL)
  2021. buft = ggml_backend_metal_buffer_type();
  2022. #elif defined(GGML_USE_CUDA)
  2023. buft = ggml_backend_cuda_buffer_type(gpu);
  2024. #elif defined(GGML_USE_VULKAN)
  2025. buft = ggml_backend_vk_buffer_type(gpu);
  2026. #elif defined(GGML_USE_SYCL)
  2027. buft = ggml_backend_sycl_buffer_type(gpu);
  2028. #elif defined(GGML_USE_CLBLAST)
  2029. buft = ggml_backend_opencl_buffer_type();
  2030. #elif defined(GGML_USE_KOMPUTE)
  2031. buft = ggml_backend_kompute_buffer_type(gpu);
  2032. if (buft == nullptr) {
  2033. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2034. }
  2035. #endif
  2036. if (buft == nullptr) {
  2037. buft = llama_default_buffer_type_cpu(true);
  2038. }
  2039. return buft;
  2040. GGML_UNUSED(model);
  2041. GGML_UNUSED(gpu);
  2042. }
  2043. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2044. ggml_backend_buffer_type_t buft = nullptr;
  2045. #ifdef GGML_USE_CUDA
  2046. if (ggml_backend_cuda_get_device_count() > 1) {
  2047. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2048. }
  2049. #endif
  2050. #ifdef GGML_USE_SYCL
  2051. if (ggml_backend_sycl_get_device_count() > 1) {
  2052. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2053. }
  2054. #endif
  2055. if (buft == nullptr) {
  2056. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2057. }
  2058. return buft;
  2059. GGML_UNUSED(tensor_split);
  2060. }
  2061. static size_t llama_get_device_count(const llama_model & model) {
  2062. #if defined(GGML_USE_RPC)
  2063. return model.rpc_servers.size();
  2064. #elif defined(GGML_USE_CUDA)
  2065. return ggml_backend_cuda_get_device_count();
  2066. #elif defined(GGML_USE_SYCL)
  2067. return ggml_backend_sycl_get_device_count();
  2068. #elif defined(GGML_USE_VULKAN)
  2069. return ggml_backend_vk_get_device_count();
  2070. #else
  2071. return 1;
  2072. #endif
  2073. GGML_UNUSED(model);
  2074. }
  2075. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2076. #if defined(GGML_USE_RPC)
  2077. size_t total;
  2078. size_t free;
  2079. std::string endpoint = model.rpc_servers[device];
  2080. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2081. return free;
  2082. #elif defined(GGML_USE_CUDA)
  2083. size_t total;
  2084. size_t free;
  2085. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2086. return free;
  2087. #elif defined(GGML_USE_SYCL)
  2088. size_t total;
  2089. size_t free;
  2090. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2091. return free;
  2092. #elif defined(GGML_USE_VULKAN)
  2093. size_t total;
  2094. size_t free;
  2095. ggml_backend_vk_get_device_memory(device, &free, &total);
  2096. return free;
  2097. #else
  2098. return 1;
  2099. #endif
  2100. GGML_UNUSED(model);
  2101. GGML_UNUSED(device);
  2102. }
  2103. //
  2104. // kv cache helpers
  2105. //
  2106. static bool llama_kv_cache_init(
  2107. struct llama_kv_cache & cache,
  2108. const llama_context * ctx,
  2109. ggml_type type_k,
  2110. ggml_type type_v,
  2111. uint32_t kv_size,
  2112. bool offload) {
  2113. const llama_model & model = ctx->model;
  2114. const llama_cparams & cparams = ctx->cparams;
  2115. const struct llama_hparams & hparams = model.hparams;
  2116. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2117. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2118. const int64_t n_layer = hparams.n_layer;
  2119. cache.has_shift = false;
  2120. // TODO: find a nicer way to add other recurrent model architectures
  2121. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2122. cache.v_trans = !cparams.flash_attn;
  2123. // TODO: support mixed recurrent Transformer architectures
  2124. // NOTE: (!a || b) is a logical implication (a -> b)
  2125. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2126. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2127. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2128. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2129. cache.head = 0;
  2130. cache.size = kv_size;
  2131. cache.used = 0;
  2132. cache.type_k = type_k;
  2133. cache.type_v = type_v;
  2134. cache.cells.clear();
  2135. cache.cells.resize(kv_size);
  2136. if (cache.recurrent) {
  2137. // init state copy sources
  2138. for (uint32_t i = 0; i < cache.size; ++i) {
  2139. cache.cells[i].src = i;
  2140. }
  2141. }
  2142. #ifdef GGML_USE_CLBLAST
  2143. offload = false;
  2144. #endif
  2145. // count used buffer types
  2146. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2147. if (offload) {
  2148. for (int64_t i = 0; i < n_layer; ++i) {
  2149. buft_layer_count[model.buft_layer[i].buft]++;
  2150. }
  2151. } else {
  2152. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2153. }
  2154. // create a context for each buffer type
  2155. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2156. for (auto & it : buft_layer_count) {
  2157. int n_layers = it.second;
  2158. struct ggml_init_params params = {
  2159. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2160. /*.mem_buffer =*/ NULL,
  2161. /*.no_alloc =*/ true,
  2162. };
  2163. ggml_context * ctx = ggml_init(params);
  2164. if (!ctx) {
  2165. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2166. return false;
  2167. }
  2168. ctx_map[it.first] = ctx;
  2169. cache.ctxs.push_back(ctx);
  2170. }
  2171. cache.k_l.reserve(n_layer);
  2172. cache.v_l.reserve(n_layer);
  2173. for (int i = 0; i < (int) n_layer; i++) {
  2174. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2175. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2176. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2177. ggml_format_name(k, "cache_k_l%d", i);
  2178. ggml_format_name(v, "cache_v_l%d", i);
  2179. cache.k_l.push_back(k);
  2180. cache.v_l.push_back(v);
  2181. }
  2182. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2183. for (auto it : ctx_map) {
  2184. ggml_backend_buffer_type_t buft = it.first;
  2185. ggml_context * ctx = it.second;
  2186. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2187. if (!buf) {
  2188. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2189. return false;
  2190. }
  2191. ggml_backend_buffer_clear(buf, 0);
  2192. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2193. cache.bufs.push_back(buf);
  2194. }
  2195. return true;
  2196. }
  2197. // find an empty slot of size "n_tokens" in the cache
  2198. // updates the cache head
  2199. // Note: On success, it's important that cache.head points
  2200. // to the first cell of the slot.
  2201. static bool llama_kv_cache_find_slot(
  2202. struct llama_kv_cache & cache,
  2203. const struct llama_batch & batch) {
  2204. const uint32_t n_ctx = cache.size;
  2205. const uint32_t n_tokens = batch.n_tokens;
  2206. if (cache.recurrent) {
  2207. // For recurrent state architectures (like Mamba),
  2208. // each KV cache cell can store the state for a whole sequence.
  2209. llama_seq_id min = cache.size - 1;
  2210. llama_seq_id max = 0;
  2211. for (uint32_t i = 0; i < n_tokens; ++i) {
  2212. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2213. llama_seq_id seq_id = batch.seq_id[i][j];
  2214. // make sure it's a valid seq_id
  2215. if ((uint32_t) seq_id < cache.size) {
  2216. if (seq_id > max) {
  2217. max = seq_id;
  2218. }
  2219. if (seq_id < min) {
  2220. min = seq_id;
  2221. }
  2222. // Assuming the tokens are in-order
  2223. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2224. // What should happen when the pos backtracks or skips a value?
  2225. // Clearing the state mid-batch would require special-casing which isn't done.
  2226. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2227. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2228. }
  2229. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2230. cache.used += 1;
  2231. }
  2232. cache.cells[seq_id].pos = batch.pos[i];
  2233. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2234. } else {
  2235. // too big seq_id
  2236. // TODO: would it be possible to resize the KV cache size instead?
  2237. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2238. return false;
  2239. }
  2240. }
  2241. }
  2242. // allow getting the range of used cells, from head to head + n
  2243. cache.head = min;
  2244. cache.n = max - min + 1;
  2245. // sanity check
  2246. return max >= min;
  2247. }
  2248. // otherwise, one cell per token.
  2249. if (n_tokens > n_ctx) {
  2250. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2251. return false;
  2252. }
  2253. uint32_t n_tested = 0;
  2254. while (true) {
  2255. if (cache.head + n_tokens > n_ctx) {
  2256. n_tested += n_ctx - cache.head;
  2257. cache.head = 0;
  2258. continue;
  2259. }
  2260. bool found = true;
  2261. for (uint32_t i = 0; i < n_tokens; i++) {
  2262. if (cache.cells[cache.head + i].pos >= 0) {
  2263. found = false;
  2264. cache.head += i + 1;
  2265. n_tested += i + 1;
  2266. break;
  2267. }
  2268. }
  2269. if (found) {
  2270. break;
  2271. }
  2272. if (n_tested >= n_ctx) {
  2273. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2274. return false;
  2275. }
  2276. }
  2277. for (uint32_t i = 0; i < n_tokens; i++) {
  2278. cache.cells[cache.head + i].pos = batch.pos[i];
  2279. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2280. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2281. }
  2282. }
  2283. cache.used += n_tokens;
  2284. return true;
  2285. }
  2286. // find how many cells are currently in use
  2287. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2288. for (uint32_t i = cache.size; i > 0; --i) {
  2289. const llama_kv_cell & cell = cache.cells[i - 1];
  2290. if (cell.pos >= 0 && !cell.is_empty()) {
  2291. return i;
  2292. }
  2293. }
  2294. return 0;
  2295. }
  2296. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2297. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2298. cache.cells[i].pos = -1;
  2299. cache.cells[i].seq_id.clear();
  2300. }
  2301. cache.head = 0;
  2302. cache.used = 0;
  2303. for (auto & buf : cache.bufs) {
  2304. ggml_backend_buffer_clear(buf, 0);
  2305. }
  2306. }
  2307. static bool llama_kv_cache_seq_rm(
  2308. struct llama_kv_cache & cache,
  2309. llama_seq_id seq_id,
  2310. llama_pos p0,
  2311. llama_pos p1) {
  2312. uint32_t new_head = cache.size;
  2313. if (p0 < 0) p0 = 0;
  2314. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2315. // models like Mamba can't have a state partially erased
  2316. if (cache.recurrent) {
  2317. if (seq_id >= (int64_t) cache.size) {
  2318. // could be fatal
  2319. return false;
  2320. }
  2321. if (0 <= seq_id) {
  2322. // partial intersection is invalid
  2323. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2324. return false;
  2325. }
  2326. } else {
  2327. // seq_id is negative, then the range should include everything or nothing
  2328. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2329. return false;
  2330. }
  2331. }
  2332. }
  2333. for (uint32_t i = 0; i < cache.size; ++i) {
  2334. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2335. if (seq_id < 0) {
  2336. cache.cells[i].seq_id.clear();
  2337. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2338. cache.cells[i].seq_id.erase(seq_id);
  2339. } else {
  2340. continue;
  2341. }
  2342. if (cache.cells[i].is_empty()) {
  2343. // keep count of the number of used cells
  2344. if (cache.cells[i].pos >= 0) cache.used--;
  2345. cache.cells[i].pos = -1;
  2346. if (new_head == cache.size) new_head = i;
  2347. }
  2348. }
  2349. }
  2350. // If we freed up a slot, set head to it so searching can start there.
  2351. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2352. return true;
  2353. }
  2354. static void llama_kv_cache_seq_cp(
  2355. struct llama_kv_cache & cache,
  2356. llama_seq_id seq_id_src,
  2357. llama_seq_id seq_id_dst,
  2358. llama_pos p0,
  2359. llama_pos p1) {
  2360. if (p0 < 0) p0 = 0;
  2361. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2362. if (cache.recurrent) {
  2363. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2364. seq_id_src = cache.cells[seq_id_src].src;
  2365. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2366. // intent to "copy from"
  2367. // supports copy chains thanks to taking the source of the source
  2368. cache.cells[seq_id_dst].src = seq_id_src;
  2369. // preserve the "keep or clear" status of the copied sequence
  2370. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2371. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2372. } else {
  2373. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2374. }
  2375. cache.do_copy = true;
  2376. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2377. }
  2378. return;
  2379. }
  2380. // otherwise, this is the KV cache of a Transformer-like model
  2381. cache.head = 0;
  2382. for (uint32_t i = 0; i < cache.size; ++i) {
  2383. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2384. cache.cells[i].seq_id.insert(seq_id_dst);
  2385. }
  2386. }
  2387. }
  2388. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2389. uint32_t new_head = cache.size;
  2390. for (uint32_t i = 0; i < cache.size; ++i) {
  2391. if (!cache.cells[i].has_seq_id(seq_id)) {
  2392. if (cache.cells[i].pos >= 0) cache.used--;
  2393. cache.cells[i].pos = -1;
  2394. cache.cells[i].seq_id.clear();
  2395. if (new_head == cache.size) new_head = i;
  2396. } else {
  2397. cache.cells[i].seq_id.clear();
  2398. cache.cells[i].seq_id.insert(seq_id);
  2399. }
  2400. }
  2401. // If we freed up a slot, set head to it so searching can start there.
  2402. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2403. }
  2404. static void llama_kv_cache_seq_add(
  2405. struct llama_kv_cache & cache,
  2406. llama_seq_id seq_id,
  2407. llama_pos p0,
  2408. llama_pos p1,
  2409. llama_pos delta) {
  2410. uint32_t new_head = cache.size;
  2411. if (p0 < 0) p0 = 0;
  2412. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2413. if (cache.recurrent) {
  2414. // for Mamba-like models, only the pos needs to be shifted
  2415. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2416. llama_kv_cell & cell = cache.cells[seq_id];
  2417. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2418. cell.pos += delta;
  2419. }
  2420. }
  2421. return;
  2422. }
  2423. for (uint32_t i = 0; i < cache.size; ++i) {
  2424. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2425. cache.has_shift = true;
  2426. cache.cells[i].pos += delta;
  2427. cache.cells[i].delta += delta;
  2428. if (cache.cells[i].pos < 0) {
  2429. if (!cache.cells[i].is_empty()) {
  2430. cache.used--;
  2431. }
  2432. cache.cells[i].pos = -1;
  2433. cache.cells[i].seq_id.clear();
  2434. if (new_head == cache.size) {
  2435. new_head = i;
  2436. }
  2437. }
  2438. }
  2439. }
  2440. // If we freed up a slot, set head to it so searching can start there.
  2441. // Otherwise we just start the next search from the beginning.
  2442. cache.head = new_head != cache.size ? new_head : 0;
  2443. }
  2444. static void llama_kv_cache_seq_div(
  2445. struct llama_kv_cache & cache,
  2446. llama_seq_id seq_id,
  2447. llama_pos p0,
  2448. llama_pos p1,
  2449. int d) {
  2450. if (p0 < 0) p0 = 0;
  2451. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2452. if (cache.recurrent) {
  2453. // for Mamba-like models, only the pos needs to be changed
  2454. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2455. llama_kv_cell & cell = cache.cells[seq_id];
  2456. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2457. cell.pos /= d;
  2458. }
  2459. }
  2460. return;
  2461. }
  2462. for (uint32_t i = 0; i < cache.size; ++i) {
  2463. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2464. cache.has_shift = true;
  2465. {
  2466. llama_pos p_old = cache.cells[i].pos;
  2467. cache.cells[i].pos /= d;
  2468. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2469. }
  2470. }
  2471. }
  2472. }
  2473. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2474. llama_pos result = 0;
  2475. for (uint32_t i = 0; i < cache.size; ++i) {
  2476. if (cache.cells[i].has_seq_id(seq_id)) {
  2477. result = std::max(result, cache.cells[i].pos);
  2478. }
  2479. }
  2480. return result;
  2481. }
  2482. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2483. cache.do_defrag = true;
  2484. }
  2485. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2486. // the FA kernels require padding to avoid extra runtime boundary checks
  2487. return cparams.flash_attn ? 256u : 32u;
  2488. }
  2489. //
  2490. // model loading and saving
  2491. //
  2492. enum llama_fver {
  2493. GGUF_FILE_VERSION_V1 = 1,
  2494. GGUF_FILE_VERSION_V2 = 2,
  2495. GGUF_FILE_VERSION_V3 = 3,
  2496. };
  2497. static const char * llama_file_version_name(llama_fver version) {
  2498. switch (version) {
  2499. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2500. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2501. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2502. }
  2503. return "unknown";
  2504. }
  2505. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2506. char buf[256];
  2507. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2508. for (size_t i = 1; i < ne.size(); i++) {
  2509. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2510. }
  2511. return buf;
  2512. }
  2513. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2514. char buf[256];
  2515. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2516. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2517. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2518. }
  2519. return buf;
  2520. }
  2521. namespace GGUFMeta {
  2522. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2523. struct GKV_Base_Type {
  2524. static constexpr gguf_type gt = gt_;
  2525. static T getter(const gguf_context * ctx, const int kid) {
  2526. return gfun(ctx, kid);
  2527. }
  2528. };
  2529. template<typename T> struct GKV_Base;
  2530. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2531. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2532. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2533. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2534. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2535. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2536. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2537. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2538. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2539. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2540. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2541. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2542. template<> struct GKV_Base<std::string> {
  2543. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2544. static std::string getter(const gguf_context * ctx, const int kid) {
  2545. return gguf_get_val_str(ctx, kid);
  2546. }
  2547. };
  2548. struct ArrayInfo {
  2549. const gguf_type gt;
  2550. const size_t length;
  2551. const void * data;
  2552. };
  2553. template<> struct GKV_Base<ArrayInfo> {
  2554. public:
  2555. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2556. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2557. return ArrayInfo {
  2558. gguf_get_arr_type(ctx, k),
  2559. size_t(gguf_get_arr_n(ctx, k)),
  2560. gguf_get_arr_data(ctx, k),
  2561. };
  2562. }
  2563. };
  2564. template<typename T>
  2565. class GKV : public GKV_Base<T> {
  2566. GKV() = delete;
  2567. public:
  2568. static T get_kv(const gguf_context * ctx, const int k) {
  2569. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2570. if (kt != GKV::gt) {
  2571. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2572. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2573. }
  2574. return GKV::getter(ctx, k);
  2575. }
  2576. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2577. switch (ty) {
  2578. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2579. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2580. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2581. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2582. }
  2583. return "unknown";
  2584. }
  2585. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2586. if (!ovrd) { return false; }
  2587. if (ovrd->tag == expected_type) {
  2588. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2589. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2590. switch (ovrd->tag) {
  2591. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2592. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2593. } break;
  2594. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2595. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2596. } break;
  2597. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2598. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2599. } break;
  2600. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2601. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2602. } break;
  2603. default:
  2604. // Shouldn't be possible to end up here, but just in case...
  2605. throw std::runtime_error(
  2606. format("Unsupported attempt to override %s type for metadata key %s\n",
  2607. override_type_to_str(ovrd->tag), ovrd->key));
  2608. }
  2609. return true;
  2610. }
  2611. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2612. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2613. return false;
  2614. }
  2615. template<typename OT>
  2616. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2617. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2618. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2619. target = ovrd->val_bool;
  2620. return true;
  2621. }
  2622. return false;
  2623. }
  2624. template<typename OT>
  2625. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2626. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2627. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2628. target = ovrd->val_i64;
  2629. return true;
  2630. }
  2631. return false;
  2632. }
  2633. template<typename OT>
  2634. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2635. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2636. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2637. target = ovrd->val_f64;
  2638. return true;
  2639. }
  2640. return false;
  2641. }
  2642. template<typename OT>
  2643. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2644. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2645. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2646. target = ovrd->val_str;
  2647. return true;
  2648. }
  2649. return false;
  2650. }
  2651. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2652. if (try_override<T>(target, ovrd)) {
  2653. return true;
  2654. }
  2655. if (k < 0) { return false; }
  2656. target = get_kv(ctx, k);
  2657. return true;
  2658. }
  2659. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2660. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2661. }
  2662. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2663. return set(ctx, key.c_str(), target, ovrd);
  2664. }
  2665. };
  2666. }
  2667. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2668. struct llama_model_loader {
  2669. int n_kv = 0;
  2670. int n_tensors = 0;
  2671. int n_created = 0;
  2672. int64_t n_elements = 0;
  2673. size_t n_bytes = 0;
  2674. bool use_mmap = false;
  2675. bool check_tensors;
  2676. llama_files files;
  2677. llama_ftype ftype;
  2678. llama_fver fver;
  2679. llama_mmaps mappings;
  2680. // Holds information on a model weight
  2681. struct llama_tensor_weight {
  2682. uint16_t idx; // source file index
  2683. size_t offs; // tensor data offset in the original file
  2684. ggml_tensor * tensor;
  2685. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2686. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2687. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2688. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2689. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2690. }
  2691. }
  2692. };
  2693. std::vector<llama_tensor_weight> weights;
  2694. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2695. struct gguf_context * meta = NULL;
  2696. std::vector<ggml_context *> contexts;
  2697. std::string arch_name;
  2698. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2699. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2700. int trace = 0;
  2701. if (getenv("LLAMA_TRACE")) {
  2702. trace = atoi(getenv("LLAMA_TRACE"));
  2703. }
  2704. if (param_overrides_p != nullptr) {
  2705. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2706. kv_overrides.insert({std::string(p->key), *p});
  2707. }
  2708. }
  2709. struct ggml_context * ctx = NULL;
  2710. struct gguf_init_params params = {
  2711. /*.no_alloc = */ true,
  2712. /*.ctx = */ &ctx,
  2713. };
  2714. meta = gguf_init_from_file(fname.c_str(), params);
  2715. if (!meta) {
  2716. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2717. }
  2718. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2719. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2720. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2721. contexts.emplace_back(ctx);
  2722. // Save tensors data offset of the main file.
  2723. // For subsidiary files, `meta` tensor data offset must not be used,
  2724. // so we build a unified tensors index for weights.
  2725. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2726. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2727. }
  2728. uint16_t n_split = 0;
  2729. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2730. // Load additional GGML contexts
  2731. if (n_split > 1) {
  2732. uint16_t idx = 0;
  2733. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2734. if (idx != 0) {
  2735. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2736. }
  2737. char split_prefix[PATH_MAX] = {0};
  2738. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2739. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2740. }
  2741. if (trace > 0) {
  2742. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2743. }
  2744. char split_path[PATH_MAX] = {0};
  2745. for (idx = 1; idx < n_split; idx++) {
  2746. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2747. struct gguf_init_params split_params = {
  2748. /*.no_alloc = */ true,
  2749. /*.ctx = */ &ctx,
  2750. };
  2751. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2752. if (!ctx_gguf) {
  2753. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2754. }
  2755. files.emplace_back(new llama_file(split_path, "rb"));
  2756. contexts.emplace_back(ctx);
  2757. // Save tensors data offset info of the shard.
  2758. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2759. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2760. }
  2761. gguf_free(ctx_gguf);
  2762. }
  2763. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2764. // sanity check
  2765. {
  2766. const int n_tensors_loaded = (int) weights.size();
  2767. if (n_tensors != n_tensors_loaded) {
  2768. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2769. }
  2770. }
  2771. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2772. }
  2773. n_kv = gguf_get_n_kv(meta);
  2774. n_tensors = weights.size();
  2775. fver = (enum llama_fver) gguf_get_version(meta);
  2776. std::set<std::string> tensor_names;
  2777. for (auto & w : weights) {
  2778. n_elements += ggml_nelements(w.tensor);
  2779. n_bytes += ggml_nbytes(w.tensor);
  2780. // make sure there is no duplicated tensor names
  2781. const std::string name(w.tensor->name);
  2782. auto found = tensor_names.find(name);
  2783. if (found != tensor_names.end()) {
  2784. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2785. }
  2786. tensor_names.insert(name);
  2787. }
  2788. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2789. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2790. // determine file type based on the number of tensors for each quantization and print meta data
  2791. // TODO: make optional
  2792. {
  2793. std::map<enum ggml_type, uint32_t> n_type;
  2794. uint32_t n_type_max = 0;
  2795. enum ggml_type type_max = GGML_TYPE_F32;
  2796. for (int i = 0; i < n_tensors; i++) {
  2797. const ggml_tensor * tensor = weights.at(i).tensor;
  2798. enum ggml_type type = tensor->type;
  2799. n_type[type]++;
  2800. if (n_type_max < n_type[type]) {
  2801. n_type_max = n_type[type];
  2802. type_max = type;
  2803. }
  2804. if (trace > 0) {
  2805. const uint16_t sid = weights.at(i).idx;
  2806. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2807. }
  2808. }
  2809. switch (type_max) {
  2810. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2811. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2812. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2813. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2814. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2815. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2816. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2817. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2818. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2819. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2820. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2821. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2822. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2823. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2824. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2825. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2826. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2827. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2828. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2829. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2830. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2831. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2832. default:
  2833. {
  2834. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2835. ftype = LLAMA_FTYPE_ALL_F32;
  2836. } break;
  2837. }
  2838. // this is a way to mark that we have "guessed" the file type
  2839. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2840. {
  2841. const int kid = gguf_find_key(meta, "general.file_type");
  2842. if (kid >= 0) {
  2843. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2844. }
  2845. }
  2846. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2847. for (int i = 0; i < n_kv; i++) {
  2848. const char * name = gguf_get_key(meta, i);
  2849. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2850. const std::string type_name =
  2851. type == GGUF_TYPE_ARRAY
  2852. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2853. : gguf_type_name(type);
  2854. std::string value = gguf_kv_to_str(meta, i);
  2855. const size_t MAX_VALUE_LEN = 40;
  2856. if (value.size() > MAX_VALUE_LEN) {
  2857. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2858. }
  2859. replace_all(value, "\n", "\\n");
  2860. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2861. }
  2862. // print type counts
  2863. for (auto & kv : n_type) {
  2864. if (kv.second == 0) {
  2865. continue;
  2866. }
  2867. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2868. }
  2869. }
  2870. if (!llama_mmap::SUPPORTED) {
  2871. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2872. use_mmap = false;
  2873. }
  2874. this->use_mmap = use_mmap;
  2875. this->check_tensors = check_tensors;
  2876. }
  2877. ~llama_model_loader() {
  2878. if (meta) {
  2879. gguf_free(meta);
  2880. }
  2881. for (auto * ctx : contexts) {
  2882. ggml_free(ctx);
  2883. }
  2884. }
  2885. template<typename T>
  2886. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2887. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2888. const int kid = gguf_find_key(meta, key.c_str());
  2889. if (kid < 0) {
  2890. if (required) {
  2891. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2892. }
  2893. return false;
  2894. }
  2895. struct GGUFMeta::ArrayInfo arr_info =
  2896. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2897. result = arr_info.length;
  2898. return true;
  2899. }
  2900. template<typename T>
  2901. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2902. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2903. return get_arr_n(llm_kv(kid), result, required);
  2904. }
  2905. template<typename T>
  2906. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  2907. const int kid = gguf_find_key(meta, key.c_str());
  2908. if (kid < 0) {
  2909. if (required) {
  2910. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2911. }
  2912. return false;
  2913. }
  2914. struct GGUFMeta::ArrayInfo arr_info =
  2915. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2916. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  2917. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  2918. }
  2919. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  2920. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  2921. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  2922. result.resize(arr_info.length);
  2923. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  2924. return true;
  2925. }
  2926. template<typename T>
  2927. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  2928. return get_arr(llm_kv(kid), result, required);
  2929. }
  2930. template<typename T>
  2931. bool get_key(const std::string & key, T & result, const bool required = true) {
  2932. auto it = kv_overrides.find(key);
  2933. const struct llama_model_kv_override * override =
  2934. it != kv_overrides.end() ? &it->second : nullptr;
  2935. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2936. if (required && !found) {
  2937. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2938. }
  2939. return found;
  2940. }
  2941. template<typename T>
  2942. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2943. return get_key(llm_kv(kid), result, required);
  2944. }
  2945. std::string get_arch_name() const {
  2946. return arch_name;
  2947. }
  2948. enum llm_arch get_arch() const {
  2949. return llm_kv.arch;
  2950. }
  2951. const char * get_tensor_name(int i) const {
  2952. return weights.at(i).tensor->name;
  2953. }
  2954. const llama_tensor_weight * get_weight(const char * name) const {
  2955. for (const auto & weight : weights) {
  2956. if (strcmp(name, weight.tensor->name) == 0) {
  2957. return &weight;
  2958. }
  2959. }
  2960. return nullptr;
  2961. }
  2962. const llama_tensor_weight * get_weight(int i) const {
  2963. return get_weight(get_tensor_name(i));
  2964. }
  2965. const llama_tensor_weight & require_weight(const char * name) const {
  2966. const llama_tensor_weight * weight = get_weight(name);
  2967. if (!weight) {
  2968. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2969. }
  2970. return *weight;
  2971. }
  2972. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2973. const auto * weight = get_weight(name);
  2974. if (!weight) {
  2975. return nullptr;
  2976. }
  2977. return weight->tensor;
  2978. }
  2979. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2980. struct ggml_tensor * tensor = get_tensor_meta(name);
  2981. if (!tensor) {
  2982. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2983. }
  2984. return tensor;
  2985. }
  2986. struct ggml_tensor * get_tensor_meta(int i) const {
  2987. return get_tensor_meta(get_tensor_name(i));
  2988. }
  2989. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  2990. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2991. ggml_set_name(tensor, ggml_get_name(cur));
  2992. if (duplicated) {
  2993. size_data += ggml_nbytes(cur);
  2994. } else {
  2995. n_created++;
  2996. }
  2997. return tensor;
  2998. }
  2999. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3000. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3001. if (cur == NULL) {
  3002. if (!required) {
  3003. return NULL;
  3004. }
  3005. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3006. }
  3007. {
  3008. bool is_ok = true;
  3009. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3010. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3011. is_ok = false;
  3012. break;
  3013. }
  3014. }
  3015. if (!is_ok) {
  3016. throw std::runtime_error(
  3017. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3018. __func__, name.c_str(),
  3019. llama_format_tensor_shape(ne).c_str(),
  3020. llama_format_tensor_shape(cur).c_str()));
  3021. }
  3022. }
  3023. return cur;
  3024. }
  3025. static const int TENSOR_NOT_REQUIRED = 1;
  3026. static const int TENSOR_DUPLICATED = 2;
  3027. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3028. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3029. if (cur == NULL) {
  3030. return NULL;
  3031. }
  3032. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3033. }
  3034. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3035. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3036. if (cur == NULL) {
  3037. return NULL;
  3038. }
  3039. if (cur->type != base->type) {
  3040. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3041. }
  3042. std::array<int64_t, GGML_MAX_DIMS> dims;
  3043. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3044. dims[i] = i < ne.size() ? ne[i] : 1;
  3045. }
  3046. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3047. dims[0], dims[1], dims[2], dims[3],
  3048. cur->nb[1], cur->nb[2], cur->nb[3],
  3049. offset);
  3050. ggml_set_name(tensor, name.c_str());
  3051. n_created++;
  3052. return tensor;
  3053. }
  3054. void done_getting_tensors() const {
  3055. if (n_created != n_tensors) {
  3056. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3057. }
  3058. }
  3059. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3060. if (use_mmap) {
  3061. mappings.reserve(files.size());
  3062. mmaps_used.reserve(files.size());
  3063. for (const auto & file : files) {
  3064. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3065. mmaps_used.emplace_back(mapping->size, 0);
  3066. if (mlock_mmaps) {
  3067. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3068. mlock_mmap->init(mapping->addr);
  3069. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3070. }
  3071. mappings.emplace_back(std::move(mapping));
  3072. }
  3073. }
  3074. // compute the total size of all tensors for progress reporting
  3075. for (auto & w : weights) {
  3076. size_data += ggml_nbytes(w.tensor);
  3077. }
  3078. }
  3079. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3080. GGML_ASSERT(!mappings.empty());
  3081. const auto & mapping = mappings.at(idx);
  3082. *first = mapping->size;
  3083. *last = 0;
  3084. *addr = mapping->addr;
  3085. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3086. try {
  3087. const auto * weight = get_weight(ggml_get_name(tensor));
  3088. if (!weight) {
  3089. continue;
  3090. }
  3091. if (weight->idx != idx) {
  3092. continue;
  3093. }
  3094. *first = std::min(*first, weight->offs);
  3095. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3096. } catch(...) {
  3097. // the tensor is not in the model
  3098. }
  3099. }
  3100. }
  3101. // for backwards compatibility, does not support ggml-backend
  3102. void load_data_for(struct ggml_tensor * cur) const {
  3103. const auto & w = require_weight(ggml_get_name(cur));
  3104. if (use_mmap) {
  3105. const auto & mapping = mappings.at(w.idx);
  3106. if (cur->data == nullptr) {
  3107. cur->data = (uint8_t *)mapping->addr + w.offs;
  3108. } else {
  3109. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3110. }
  3111. } else {
  3112. GGML_ASSERT(cur->data != nullptr);
  3113. GGML_ASSERT(w.idx < files.size());
  3114. const auto & file = files.at(w.idx);
  3115. file->seek(w.offs, SEEK_SET);
  3116. file->read_raw(cur->data, ggml_nbytes(cur));
  3117. }
  3118. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3119. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3120. }
  3121. }
  3122. size_t size_done = 0;
  3123. size_t size_data = 0;
  3124. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3125. // Returns false if cancelled by progress_callback
  3126. bool load_all_data(
  3127. struct ggml_context * ctx,
  3128. llama_buf_map & bufs_mmap,
  3129. llama_mlocks * lmlocks,
  3130. llama_progress_callback progress_callback,
  3131. void * progress_callback_user_data) {
  3132. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3133. std::vector<no_init<uint8_t>> read_buf;
  3134. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3135. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3136. const auto * weight = get_weight(ggml_get_name(cur));
  3137. if (weight == nullptr) {
  3138. // this can happen with split experts models
  3139. continue;
  3140. }
  3141. if (progress_callback) {
  3142. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3143. return false;
  3144. }
  3145. }
  3146. size_t n_size = ggml_nbytes(cur);
  3147. if (use_mmap) {
  3148. const auto & mapping = mappings.at(weight->idx);
  3149. ggml_backend_buffer_t buf_mmap = nullptr;
  3150. if (bufs_mmap.count(weight->idx)) {
  3151. buf_mmap = bufs_mmap.at(weight->idx);
  3152. }
  3153. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3154. if (check_tensors) {
  3155. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3156. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3157. }));
  3158. }
  3159. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3160. if (buf_mmap && cur->data == nullptr) {
  3161. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3162. if (lmlocks) {
  3163. const auto & lmlock = lmlocks->at(weight->idx);
  3164. lmlock->grow_to(weight->offs + n_size);
  3165. }
  3166. auto & mmap_used = mmaps_used[weight->idx];
  3167. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3168. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3169. } else {
  3170. ggml_backend_tensor_set(cur, data, 0, n_size);
  3171. }
  3172. } else {
  3173. GGML_ASSERT(weight->idx < files.size());
  3174. const auto & file = files.at(weight->idx);
  3175. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3176. file->seek(weight->offs, SEEK_SET);
  3177. file->read_raw(cur->data, n_size);
  3178. if (check_tensors) {
  3179. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3180. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3181. }));
  3182. }
  3183. } else {
  3184. read_buf.resize(n_size);
  3185. file->seek(weight->offs, SEEK_SET);
  3186. file->read_raw(read_buf.data(), n_size);
  3187. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3188. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3189. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3190. }
  3191. }
  3192. }
  3193. size_done += n_size;
  3194. }
  3195. // check validation results
  3196. bool validation_failed = false;
  3197. for (auto & future : validation_result) {
  3198. auto result = future.get();
  3199. if (!result.second) {
  3200. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3201. validation_failed = true;
  3202. }
  3203. }
  3204. if (validation_failed) {
  3205. throw std::runtime_error("found tensors with invalid data");
  3206. }
  3207. // check if this is the last call and do final cleanup
  3208. if (size_done >= size_data) {
  3209. // unmap offloaded tensors and metadata
  3210. if (use_mmap) {
  3211. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3212. const auto & mmap_used = mmaps_used.at(idx);
  3213. auto & mapping = mappings.at(idx);
  3214. mapping->unmap_fragment(0, mmap_used.first);
  3215. if (mmap_used.second != 0) {
  3216. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3217. }
  3218. }
  3219. }
  3220. if (progress_callback) {
  3221. // Even though the model is done loading, we still honor
  3222. // cancellation since we need to free allocations.
  3223. return progress_callback(1.0f, progress_callback_user_data);
  3224. }
  3225. }
  3226. return true;
  3227. }
  3228. };
  3229. template<>
  3230. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3231. uint32_t tmp;
  3232. const bool found = get_key(kid, tmp, required);
  3233. if (found) {
  3234. result = (enum llama_pooling_type) tmp;
  3235. } else {
  3236. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3237. }
  3238. return found;
  3239. }
  3240. //
  3241. // load LLaMA models
  3242. //
  3243. static const char * llama_model_arch_name(llm_arch arch) {
  3244. auto it = LLM_ARCH_NAMES.find(arch);
  3245. if (it == LLM_ARCH_NAMES.end()) {
  3246. return "unknown";
  3247. }
  3248. return it->second;
  3249. }
  3250. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3251. if (ftype & LLAMA_FTYPE_GUESSED) {
  3252. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3253. }
  3254. switch (ftype) {
  3255. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3256. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3257. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3258. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3259. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3260. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3261. return "Q4_1, some F16";
  3262. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3263. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3264. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3265. // K-quants
  3266. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3267. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3268. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3269. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3270. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3271. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3272. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3273. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3274. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3275. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3276. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3277. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3278. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3279. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3280. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3281. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3282. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3283. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3284. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3285. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3286. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3287. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3288. default: return "unknown, may not work";
  3289. }
  3290. }
  3291. static const char * llama_model_type_name(e_model type) {
  3292. switch (type) {
  3293. case MODEL_17M: return "17M";
  3294. case MODEL_22M: return "22M";
  3295. case MODEL_33M: return "33M";
  3296. case MODEL_109M: return "109M";
  3297. case MODEL_137M: return "137M";
  3298. case MODEL_335M: return "335M";
  3299. case MODEL_0_5B: return "0.5B";
  3300. case MODEL_1B: return "1B";
  3301. case MODEL_2B: return "2B";
  3302. case MODEL_3B: return "3B";
  3303. case MODEL_4B: return "4B";
  3304. case MODEL_7B: return "7B";
  3305. case MODEL_8B: return "8B";
  3306. case MODEL_12B: return "12B";
  3307. case MODEL_13B: return "13B";
  3308. case MODEL_14B: return "14B";
  3309. case MODEL_15B: return "15B";
  3310. case MODEL_20B: return "20B";
  3311. case MODEL_30B: return "30B";
  3312. case MODEL_34B: return "34B";
  3313. case MODEL_35B: return "35B";
  3314. case MODEL_40B: return "40B";
  3315. case MODEL_65B: return "65B";
  3316. case MODEL_70B: return "70B";
  3317. case MODEL_314B: return "314B";
  3318. case MODEL_SMALL: return "0.1B";
  3319. case MODEL_MEDIUM: return "0.4B";
  3320. case MODEL_LARGE: return "0.8B";
  3321. case MODEL_XL: return "1.5B";
  3322. case MODEL_A2_7B: return "A2.7B";
  3323. case MODEL_8x7B: return "8x7B";
  3324. case MODEL_8x22B: return "8x22B";
  3325. case MODEL_16x12B: return "16x12B";
  3326. default: return "?B";
  3327. }
  3328. }
  3329. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3330. switch (type) {
  3331. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3332. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3333. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3334. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3335. default: return "unknown";
  3336. }
  3337. }
  3338. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3339. model.arch = ml.get_arch();
  3340. if (model.arch == LLM_ARCH_UNKNOWN) {
  3341. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3342. }
  3343. }
  3344. static void llm_load_hparams(
  3345. llama_model_loader & ml,
  3346. llama_model & model) {
  3347. auto & hparams = model.hparams;
  3348. const gguf_context * ctx = ml.meta;
  3349. // get metadata as string
  3350. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3351. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3352. if (type == GGUF_TYPE_ARRAY) {
  3353. continue;
  3354. }
  3355. const char * name = gguf_get_key(ctx, i);
  3356. const std::string value = gguf_kv_to_str(ctx, i);
  3357. model.gguf_kv.emplace(name, value);
  3358. }
  3359. // get general kv
  3360. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3361. // get hparams kv
  3362. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3363. // everything past this point is not vocab-related
  3364. if (hparams.vocab_only) {
  3365. return;
  3366. }
  3367. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3368. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3369. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3370. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3371. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3372. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3373. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3374. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3375. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3376. if (hparams.n_expert > 0) {
  3377. GGML_ASSERT(hparams.n_expert_used > 0);
  3378. } else {
  3379. GGML_ASSERT(hparams.n_expert_used == 0);
  3380. }
  3381. // n_head_kv is optional, default to n_head
  3382. hparams.n_head_kv = hparams.n_head;
  3383. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3384. bool rope_finetuned = false;
  3385. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3386. hparams.rope_finetuned = rope_finetuned;
  3387. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3388. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3389. // rope_freq_base (optional)
  3390. hparams.rope_freq_base_train = 10000.0f;
  3391. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3392. std::string rope_scaling("linear");
  3393. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3394. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3395. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3396. // rope_freq_scale (inverse of the kv) is optional
  3397. float ropescale = 0.0f;
  3398. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3399. // try the old key name
  3400. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3401. }
  3402. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3403. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3404. // sanity check for n_rot (optional)
  3405. {
  3406. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3407. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3408. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3409. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3410. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3411. }
  3412. }
  3413. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3414. // gpt-j n_rot = rotary_dim
  3415. }
  3416. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3417. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3418. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3419. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3420. // arch-specific KVs
  3421. switch (model.arch) {
  3422. case LLM_ARCH_LLAMA:
  3423. {
  3424. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3425. if (hparams.n_expert == 8) {
  3426. switch (hparams.n_layer) {
  3427. case 32: model.type = e_model::MODEL_8x7B; break;
  3428. case 56: model.type = e_model::MODEL_8x22B; break;
  3429. default: model.type = e_model::MODEL_UNKNOWN;
  3430. }
  3431. } else {
  3432. switch (hparams.n_layer) {
  3433. case 22: model.type = e_model::MODEL_1B; break;
  3434. case 26: model.type = e_model::MODEL_3B; break;
  3435. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3436. case 40: model.type = e_model::MODEL_13B; break;
  3437. case 48: model.type = e_model::MODEL_34B; break;
  3438. case 60: model.type = e_model::MODEL_30B; break;
  3439. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3440. default: model.type = e_model::MODEL_UNKNOWN;
  3441. }
  3442. }
  3443. } break;
  3444. case LLM_ARCH_MINICPM:
  3445. {
  3446. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3447. switch (hparams.n_layer) {
  3448. case 40: model.type = e_model::MODEL_2B; break;
  3449. default: model.type = e_model::MODEL_UNKNOWN;
  3450. }
  3451. } break;
  3452. case LLM_ARCH_GROK:
  3453. {
  3454. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3455. switch (hparams.n_layer) {
  3456. case 64: model.type = e_model::MODEL_314B; break;
  3457. default: model.type = e_model::MODEL_UNKNOWN;
  3458. }
  3459. } break;
  3460. case LLM_ARCH_FALCON:
  3461. {
  3462. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3463. switch (hparams.n_layer) {
  3464. case 32: model.type = e_model::MODEL_7B; break;
  3465. case 60: model.type = e_model::MODEL_40B; break;
  3466. default: model.type = e_model::MODEL_UNKNOWN;
  3467. }
  3468. } break;
  3469. case LLM_ARCH_BAICHUAN:
  3470. {
  3471. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3472. switch (hparams.n_layer) {
  3473. case 32: model.type = e_model::MODEL_7B; break;
  3474. case 40: model.type = e_model::MODEL_13B; break;
  3475. default: model.type = e_model::MODEL_UNKNOWN;
  3476. }
  3477. if (model.type == e_model::MODEL_13B) {
  3478. // TODO: become GGUF KV parameter
  3479. hparams.f_max_alibi_bias = 8.0f;
  3480. }
  3481. } break;
  3482. case LLM_ARCH_STARCODER:
  3483. {
  3484. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3485. switch (hparams.n_layer) {
  3486. case 24: model.type = e_model::MODEL_1B; break;
  3487. case 36: model.type = e_model::MODEL_3B; break;
  3488. case 42: model.type = e_model::MODEL_7B; break;
  3489. case 40: model.type = e_model::MODEL_15B; break;
  3490. default: model.type = e_model::MODEL_UNKNOWN;
  3491. }
  3492. } break;
  3493. case LLM_ARCH_REFACT:
  3494. {
  3495. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3496. switch (hparams.n_layer) {
  3497. case 32: model.type = e_model::MODEL_1B; break;
  3498. default: model.type = e_model::MODEL_UNKNOWN;
  3499. }
  3500. // TODO: become GGUF KV parameter
  3501. hparams.f_max_alibi_bias = 8.0f;
  3502. } break;
  3503. case LLM_ARCH_BERT:
  3504. {
  3505. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3506. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3507. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3508. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3509. switch (hparams.n_layer) {
  3510. case 3:
  3511. model.type = e_model::MODEL_17M; break; // bge-micro
  3512. case 6:
  3513. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3514. case 12:
  3515. switch (hparams.n_embd) {
  3516. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3517. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3518. } break;
  3519. case 24:
  3520. model.type = e_model::MODEL_335M; break; // bge-large
  3521. }
  3522. } break;
  3523. case LLM_ARCH_JINA_BERT_V2:
  3524. {
  3525. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3526. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3527. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3528. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3529. hparams.f_max_alibi_bias = 8.0f;
  3530. switch (hparams.n_layer) {
  3531. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3532. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3533. }
  3534. } break;
  3535. case LLM_ARCH_NOMIC_BERT:
  3536. {
  3537. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3538. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3539. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3540. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3541. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3542. model.type = e_model::MODEL_137M;
  3543. }
  3544. } break;
  3545. case LLM_ARCH_BLOOM:
  3546. {
  3547. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3548. switch (hparams.n_layer) {
  3549. case 24: model.type = e_model::MODEL_1B; break;
  3550. case 30:
  3551. switch (hparams.n_embd) {
  3552. case 2560: model.type = e_model::MODEL_3B; break;
  3553. case 4096: model.type = e_model::MODEL_7B; break;
  3554. } break;
  3555. }
  3556. // TODO: become GGUF KV parameter
  3557. hparams.f_max_alibi_bias = 8.0f;
  3558. } break;
  3559. case LLM_ARCH_MPT:
  3560. {
  3561. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3562. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3563. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3564. switch (hparams.n_layer) {
  3565. case 32: model.type = e_model::MODEL_7B; break;
  3566. case 48: model.type = e_model::MODEL_30B; break;
  3567. default: model.type = e_model::MODEL_UNKNOWN;
  3568. }
  3569. } break;
  3570. case LLM_ARCH_STABLELM:
  3571. {
  3572. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3573. switch (hparams.n_layer) {
  3574. case 24: model.type = e_model::MODEL_1B; break;
  3575. case 32: model.type = e_model::MODEL_3B; break;
  3576. case 40: model.type = e_model::MODEL_12B; break;
  3577. default: model.type = e_model::MODEL_UNKNOWN;
  3578. }
  3579. } break;
  3580. case LLM_ARCH_QWEN:
  3581. {
  3582. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3583. switch (hparams.n_layer) {
  3584. case 32: model.type = e_model::MODEL_7B; break;
  3585. case 40: model.type = e_model::MODEL_13B; break;
  3586. default: model.type = e_model::MODEL_UNKNOWN;
  3587. }
  3588. } break;
  3589. case LLM_ARCH_QWEN2:
  3590. {
  3591. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3592. switch (hparams.n_layer) {
  3593. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3594. case 32: model.type = e_model::MODEL_7B; break;
  3595. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3596. case 80: model.type = e_model::MODEL_70B; break;
  3597. default: model.type = e_model::MODEL_UNKNOWN;
  3598. }
  3599. } break;
  3600. case LLM_ARCH_QWEN2MOE:
  3601. {
  3602. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3603. switch (hparams.n_layer) {
  3604. case 24: model.type = e_model::MODEL_A2_7B; break;
  3605. default: model.type = e_model::MODEL_UNKNOWN;
  3606. }
  3607. } break;
  3608. case LLM_ARCH_PHI2:
  3609. {
  3610. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3611. switch (hparams.n_layer) {
  3612. case 24: model.type = e_model::MODEL_1B; break;
  3613. case 32: model.type = e_model::MODEL_3B; break;
  3614. default: model.type = e_model::MODEL_UNKNOWN;
  3615. }
  3616. } break;
  3617. case LLM_ARCH_PHI3:
  3618. {
  3619. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3620. switch (hparams.n_layer) {
  3621. case 24: model.type = e_model::MODEL_1B; break;
  3622. case 32: model.type = e_model::MODEL_3B; break;
  3623. case 40: model.type = e_model::MODEL_14B; break;
  3624. default: model.type = e_model::MODEL_UNKNOWN;
  3625. }
  3626. } break;
  3627. case LLM_ARCH_PLAMO:
  3628. {
  3629. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3630. switch (hparams.n_layer) {
  3631. case 40: model.type = e_model::MODEL_13B; break;
  3632. default: model.type = e_model::MODEL_UNKNOWN;
  3633. }
  3634. } break;
  3635. case LLM_ARCH_GPT2:
  3636. {
  3637. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3638. switch (hparams.n_layer) {
  3639. case 12: model.type = e_model::MODEL_SMALL; break;
  3640. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3641. case 36: model.type = e_model::MODEL_LARGE; break;
  3642. case 48: model.type = e_model::MODEL_XL; break;
  3643. default: model.type = e_model::MODEL_UNKNOWN;
  3644. }
  3645. } break;
  3646. case LLM_ARCH_CODESHELL:
  3647. {
  3648. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3649. switch (hparams.n_layer) {
  3650. case 42: model.type = e_model::MODEL_SMALL; break;
  3651. default: model.type = e_model::MODEL_UNKNOWN;
  3652. }
  3653. } break;
  3654. case LLM_ARCH_ORION:
  3655. {
  3656. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3657. switch (hparams.n_layer) {
  3658. case 40: model.type = e_model::MODEL_14B; break;
  3659. default: model.type = e_model::MODEL_UNKNOWN;
  3660. }
  3661. } break;
  3662. case LLM_ARCH_INTERNLM2:
  3663. {
  3664. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3665. switch (hparams.n_layer) {
  3666. case 32: model.type = e_model::MODEL_7B; break;
  3667. case 48: model.type = e_model::MODEL_20B; break;
  3668. default: model.type = e_model::MODEL_UNKNOWN;
  3669. }
  3670. } break;
  3671. case LLM_ARCH_GEMMA:
  3672. {
  3673. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3674. switch (hparams.n_layer) {
  3675. case 18: model.type = e_model::MODEL_2B; break;
  3676. case 28: model.type = e_model::MODEL_7B; break;
  3677. default: model.type = e_model::MODEL_UNKNOWN;
  3678. }
  3679. } break;
  3680. case LLM_ARCH_STARCODER2:
  3681. {
  3682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3683. switch (hparams.n_layer) {
  3684. case 30: model.type = e_model::MODEL_3B; break;
  3685. case 32: model.type = e_model::MODEL_7B; break;
  3686. case 40: model.type = e_model::MODEL_15B; break;
  3687. default: model.type = e_model::MODEL_UNKNOWN;
  3688. }
  3689. } break;
  3690. case LLM_ARCH_MAMBA:
  3691. {
  3692. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3693. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3694. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3695. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3696. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3697. switch (hparams.n_layer) {
  3698. case 24:
  3699. switch (hparams.n_embd) {
  3700. case 768: model.type = e_model::MODEL_SMALL; break;
  3701. default: model.type = e_model::MODEL_UNKNOWN;
  3702. } break;
  3703. case 48:
  3704. switch (hparams.n_embd) {
  3705. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3706. case 1536: model.type = e_model::MODEL_LARGE; break;
  3707. case 2048: model.type = e_model::MODEL_XL; break;
  3708. default: model.type = e_model::MODEL_UNKNOWN;
  3709. } break;
  3710. case 64:
  3711. switch (hparams.n_embd) {
  3712. case 2560: model.type = e_model::MODEL_3B; break;
  3713. default: model.type = e_model::MODEL_UNKNOWN;
  3714. } break;
  3715. default: model.type = e_model::MODEL_UNKNOWN;
  3716. }
  3717. } break;
  3718. case LLM_ARCH_XVERSE:
  3719. {
  3720. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3721. switch (hparams.n_layer) {
  3722. case 32: model.type = e_model::MODEL_7B; break;
  3723. case 40: model.type = e_model::MODEL_13B; break;
  3724. case 80: model.type = e_model::MODEL_65B; break;
  3725. default: model.type = e_model::MODEL_UNKNOWN;
  3726. }
  3727. } break;
  3728. case LLM_ARCH_COMMAND_R:
  3729. {
  3730. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3731. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3732. switch (hparams.n_layer) {
  3733. case 40: model.type = e_model::MODEL_35B; break;
  3734. default: model.type = e_model::MODEL_UNKNOWN;
  3735. }
  3736. } break;
  3737. case LLM_ARCH_DBRX:
  3738. {
  3739. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3740. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3741. switch (hparams.n_layer) {
  3742. case 40: model.type = e_model::MODEL_16x12B; break;
  3743. default: model.type = e_model::MODEL_UNKNOWN;
  3744. }
  3745. } break;
  3746. case LLM_ARCH_OLMO:
  3747. {
  3748. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3749. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3750. switch (hparams.n_layer) {
  3751. case 22: model.type = e_model::MODEL_1B; break;
  3752. case 32: model.type = e_model::MODEL_7B; break;
  3753. case 80: model.type = e_model::MODEL_70B; break;
  3754. default: model.type = e_model::MODEL_UNKNOWN;
  3755. }
  3756. } break;
  3757. default: (void)0;
  3758. }
  3759. model.ftype = ml.ftype;
  3760. if (hparams.f_max_alibi_bias > 0.0f) {
  3761. hparams.use_alibi = true;
  3762. }
  3763. hparams.rope_type = llama_rope_type(&model);
  3764. }
  3765. // TODO: This should probably be in llama.h
  3766. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3767. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3768. );
  3769. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3770. static void llm_load_vocab(
  3771. llama_model_loader & ml,
  3772. llama_model & model) {
  3773. auto & vocab = model.vocab;
  3774. struct gguf_context * ctx = ml.meta;
  3775. const auto kv = LLM_KV(model.arch);
  3776. // determine vocab type
  3777. {
  3778. std::string tokenizer_model;
  3779. std::string tokenizer_pre;
  3780. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3781. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3782. if (tokenizer_model == "no_vocab") {
  3783. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3784. // default special tokens
  3785. vocab.special_bos_id = -1;
  3786. vocab.special_eos_id = -1;
  3787. vocab.special_unk_id = -1;
  3788. vocab.special_sep_id = -1;
  3789. vocab.special_pad_id = -1;
  3790. vocab.special_cls_id = -1;
  3791. vocab.special_mask_id = -1;
  3792. vocab.linefeed_id = -1;
  3793. return;
  3794. } else if (tokenizer_model == "llama") {
  3795. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3796. // default special tokens
  3797. vocab.special_bos_id = 1;
  3798. vocab.special_eos_id = 2;
  3799. vocab.special_unk_id = 0;
  3800. vocab.special_sep_id = -1;
  3801. vocab.special_pad_id = -1;
  3802. vocab.special_cls_id = -1;
  3803. vocab.special_mask_id = -1;
  3804. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3805. // prior to support of FIM special tokens in GGUF, the following
  3806. // will allow those models to continue to work. The general names
  3807. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3808. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3809. // new versions of these models have been published.
  3810. std::string gen_name;
  3811. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3812. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3813. [](unsigned char c){ return std::tolower(c); });
  3814. if (gen_name.find("code") != std::string::npos) {
  3815. if (model.arch == LLM_ARCH_LLAMA) {
  3816. vocab.special_prefix_id = 32007;
  3817. vocab.special_suffix_id = 32008;
  3818. vocab.special_middle_id = 32009;
  3819. vocab.special_eot_id = 32010;
  3820. } else if (model.arch == LLM_ARCH_GEMMA) {
  3821. vocab.special_prefix_id = 67;
  3822. vocab.special_suffix_id = 69;
  3823. vocab.special_middle_id = 68;
  3824. // TODO: this is not EOT, it is "file separator" token, needs fix
  3825. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3826. //vocab.special_eot_id = 70;
  3827. vocab.special_eot_id = 107;
  3828. }
  3829. }
  3830. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3831. if (add_space_prefix_keyidx != -1) {
  3832. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3833. } // The default value of add_space_prefix is true.
  3834. } else if (tokenizer_model == "bert") {
  3835. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3836. // default special tokens
  3837. vocab.special_bos_id = -1;
  3838. vocab.special_eos_id = -1;
  3839. vocab.special_unk_id = 100;
  3840. vocab.special_sep_id = 102;
  3841. vocab.special_pad_id = 0;
  3842. vocab.special_cls_id = 101;
  3843. vocab.special_mask_id = 103;
  3844. vocab.add_space_prefix = false;
  3845. } else {
  3846. if (tokenizer_model == "gpt2") {
  3847. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3848. } else {
  3849. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3850. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3851. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3852. return;
  3853. }
  3854. // read bpe merges and populate bpe ranks
  3855. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3856. if (merges_keyidx == -1) {
  3857. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3858. }
  3859. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3860. for (int i = 0; i < n_merges; i++) {
  3861. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3862. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3863. std::string first;
  3864. std::string second;
  3865. const size_t pos = word.find(' ', 1);
  3866. if (pos != std::string::npos) {
  3867. first = word.substr(0, pos);
  3868. second = word.substr(pos + 1);
  3869. }
  3870. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3871. }
  3872. // default special tokens
  3873. vocab.special_bos_id = 11;
  3874. vocab.special_eos_id = 11;
  3875. vocab.special_unk_id = -1;
  3876. vocab.special_sep_id = -1;
  3877. vocab.special_pad_id = -1;
  3878. vocab.special_cls_id = -1;
  3879. vocab.special_mask_id = -1;
  3880. }
  3881. // for now, only BPE models have pre-tokenizers
  3882. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3883. if (tokenizer_pre.empty()) {
  3884. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3885. LLAMA_LOG_WARN("%s: \n", __func__);
  3886. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3887. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3888. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3889. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3890. LLAMA_LOG_WARN("%s: \n", __func__);
  3891. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3892. } else if (
  3893. tokenizer_pre == "default") {
  3894. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3895. } else if (
  3896. tokenizer_pre == "llama3" ||
  3897. tokenizer_pre == "llama-v3" ||
  3898. tokenizer_pre == "llama-bpe") {
  3899. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3900. } else if (
  3901. tokenizer_pre == "deepseek-llm") {
  3902. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3903. } else if (
  3904. tokenizer_pre == "deepseek-coder") {
  3905. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3906. } else if (
  3907. tokenizer_pre == "falcon") {
  3908. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3909. } else if (
  3910. tokenizer_pre == "mpt") {
  3911. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3912. } else if (
  3913. tokenizer_pre == "starcoder") {
  3914. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3915. } else if (
  3916. tokenizer_pre == "gpt-2" ||
  3917. tokenizer_pre == "jina-es" ||
  3918. tokenizer_pre == "jina-de" ||
  3919. tokenizer_pre == "jina-v2-es" ||
  3920. tokenizer_pre == "jina-v2-de") {
  3921. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3922. } else if (
  3923. tokenizer_pre == "refact") {
  3924. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3925. } else if (
  3926. tokenizer_pre == "command-r") {
  3927. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3928. } else if (
  3929. tokenizer_pre == "qwen2") {
  3930. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3931. } else if (
  3932. tokenizer_pre == "stablelm2") {
  3933. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  3934. } else if (
  3935. tokenizer_pre == "olmo") {
  3936. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3937. } else if (
  3938. tokenizer_pre == "dbrx") {
  3939. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3940. } else {
  3941. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3942. }
  3943. } else {
  3944. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3945. }
  3946. }
  3947. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3948. if (token_idx == -1) {
  3949. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3950. }
  3951. const float * scores = nullptr;
  3952. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3953. if (score_idx != -1) {
  3954. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3955. }
  3956. const int * toktypes = nullptr;
  3957. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3958. if (toktype_idx != -1) {
  3959. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3960. }
  3961. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3962. vocab.id_to_token.resize(n_vocab);
  3963. for (uint32_t i = 0; i < n_vocab; i++) {
  3964. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3965. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3966. vocab.token_to_id[word] = i;
  3967. auto & token_data = vocab.id_to_token[i];
  3968. token_data.text = std::move(word);
  3969. token_data.score = scores ? scores[i] : 0.0f;
  3970. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3971. }
  3972. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3973. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3974. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3975. try {
  3976. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3977. } catch (const std::exception & e) {
  3978. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3979. vocab.linefeed_id = vocab.special_pad_id;
  3980. }
  3981. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3982. vocab.linefeed_id = vocab.special_pad_id;
  3983. } else {
  3984. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3985. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3986. vocab.linefeed_id = ids[0];
  3987. }
  3988. // special tokens
  3989. {
  3990. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3991. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3992. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3993. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3994. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3995. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3996. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3997. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3998. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3999. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4000. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4001. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4002. };
  4003. for (const auto & it : special_token_types) {
  4004. const std::string & key = kv(std::get<0>(it));
  4005. int32_t & id = std::get<1>(it);
  4006. uint32_t new_id;
  4007. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4008. continue;
  4009. }
  4010. if (new_id >= vocab.id_to_token.size()) {
  4011. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4012. __func__, key.c_str(), new_id, id);
  4013. } else {
  4014. id = new_id;
  4015. }
  4016. }
  4017. // Handle add_bos_token and add_eos_token
  4018. {
  4019. bool temp = true;
  4020. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4021. vocab.special_add_bos = int(temp);
  4022. }
  4023. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4024. vocab.special_add_eos = int(temp);
  4025. }
  4026. }
  4027. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4028. //
  4029. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4030. // for now, we apply this workaround to find the EOT token based on its text
  4031. if (vocab.special_eot_id == -1) {
  4032. for (const auto & t : vocab.token_to_id) {
  4033. if (
  4034. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4035. // need to fix convert script
  4036. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4037. (t.first == "<|eot_id|>" ||
  4038. t.first == "<|im_end|>" ||
  4039. t.first == "<|end|>" ||
  4040. t.first == "<end_of_turn>" ||
  4041. t.first == "<|endoftext|>"
  4042. )
  4043. ) {
  4044. vocab.special_eot_id = t.second;
  4045. break;
  4046. }
  4047. }
  4048. }
  4049. }
  4050. // build special tokens cache
  4051. {
  4052. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4053. // and will always be correctly labeled in 'added_tokens.json' etc.
  4054. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4055. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4056. // are special tokens.
  4057. // From testing, this appears to correlate 1:1 with special tokens.
  4058. //
  4059. // Counting special tokens and verifying in only one direction
  4060. // is sufficient to detect difference in those two sets.
  4061. //
  4062. uint32_t special_tokens_count_by_type = 0;
  4063. uint32_t special_tokens_count_from_verification = 0;
  4064. bool special_tokens_definition_mismatch = false;
  4065. for (const auto & t : vocab.token_to_id) {
  4066. const auto & token = t.first;
  4067. const auto & id = t.second;
  4068. // Count all non-normal tokens in the vocab while iterating
  4069. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4070. special_tokens_count_by_type++;
  4071. }
  4072. // Skip single character tokens
  4073. if (token.length() > 1) {
  4074. bool is_tokenizable = false;
  4075. // Split token string representation in two, in all possible ways
  4076. // and check if both halves can be matched to a valid token
  4077. for (unsigned i = 1; i < token.length();) {
  4078. const auto left = token.substr(0, i);
  4079. const auto right = token.substr(i);
  4080. // check if we didnt partition in the middle of a utf sequence
  4081. auto utf = utf8_len(left.at(left.length() - 1));
  4082. if (utf == 1) {
  4083. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4084. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4085. is_tokenizable = true;
  4086. break;
  4087. }
  4088. i++;
  4089. } else {
  4090. // skip over the rest of multibyte utf sequence
  4091. i += utf - 1;
  4092. }
  4093. }
  4094. if (!is_tokenizable) {
  4095. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4096. // it's faster to re-filter them here, since there are way less candidates now
  4097. // Calculate a total "utf" length of a token string representation
  4098. size_t utf8_str_len = 0;
  4099. for (unsigned i = 0; i < token.length();) {
  4100. utf8_str_len++;
  4101. i += utf8_len(token.at(i));
  4102. }
  4103. // And skip the ones which are one character
  4104. if (utf8_str_len > 1) {
  4105. // At this point what we have left are special tokens only
  4106. vocab.special_tokens_cache[token] = id;
  4107. // Count manually found special tokens
  4108. special_tokens_count_from_verification++;
  4109. // If this manually found special token is not marked as such, flag a mismatch
  4110. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4111. special_tokens_definition_mismatch = true;
  4112. }
  4113. }
  4114. }
  4115. }
  4116. }
  4117. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4118. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4119. __func__,
  4120. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4121. special_tokens_count_by_type, vocab.id_to_token.size()
  4122. );
  4123. } else {
  4124. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4125. __func__,
  4126. special_tokens_count_from_verification, vocab.id_to_token.size()
  4127. );
  4128. }
  4129. }
  4130. }
  4131. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4132. const auto & hparams = model.hparams;
  4133. const auto & vocab = model.vocab;
  4134. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4135. // hparams
  4136. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4137. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4138. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4139. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4140. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4141. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4142. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4143. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4144. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4145. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4146. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4147. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4148. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4149. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4150. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4151. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4152. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4153. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4154. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4155. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4156. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4157. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4158. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4159. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4160. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4161. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4162. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4163. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4164. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4165. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4166. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4167. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4168. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4169. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4170. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4171. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4172. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4173. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4174. if (ml.n_elements >= 1e12) {
  4175. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4176. } else if (ml.n_elements >= 1e9) {
  4177. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4178. } else if (ml.n_elements >= 1e6) {
  4179. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4180. } else {
  4181. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4182. }
  4183. if (ml.n_bytes < GiB) {
  4184. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4185. } else {
  4186. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4187. }
  4188. // general kv
  4189. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4190. // special tokens
  4191. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4192. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4193. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4194. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4195. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4196. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4197. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4198. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4199. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4200. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4201. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4202. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4203. }
  4204. // Returns false if cancelled by progress_callback
  4205. static bool llm_load_tensors(
  4206. llama_model_loader & ml,
  4207. llama_model & model,
  4208. int n_gpu_layers,
  4209. enum llama_split_mode split_mode,
  4210. int main_gpu,
  4211. const float * tensor_split,
  4212. bool use_mlock,
  4213. llama_progress_callback progress_callback,
  4214. void * progress_callback_user_data) {
  4215. model.t_start_us = ggml_time_us();
  4216. auto & hparams = model.hparams;
  4217. #ifdef GGML_USE_SYCL
  4218. // disable MoE with SYCL until mul_mat_id is updated
  4219. if (hparams.n_expert > 0) {
  4220. n_gpu_layers = 0;
  4221. }
  4222. #endif
  4223. model.split_mode = split_mode;
  4224. model.main_gpu = main_gpu;
  4225. model.n_gpu_layers = n_gpu_layers;
  4226. const int64_t n_layer = hparams.n_layer;
  4227. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4228. bool use_mmap_buffer = true;
  4229. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4230. model.buft_input = llama_default_buffer_type_cpu(true);
  4231. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4232. model.buft_layer.resize(n_layer);
  4233. // assign cpu layers
  4234. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4235. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4236. }
  4237. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4238. // calculate the split points
  4239. int device_count = llama_get_device_count(model);
  4240. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4241. std::vector<float> splits(device_count);
  4242. if (all_zero) {
  4243. // default split, by free memory
  4244. for (int i = 0; i < device_count; ++i) {
  4245. splits[i] = llama_get_device_memory(model, i);
  4246. }
  4247. } else {
  4248. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4249. }
  4250. // sum and normalize the splits to get the split points
  4251. float split_sum = 0.0f;
  4252. for (int i = 0; i < device_count; ++i) {
  4253. split_sum += splits[i];
  4254. splits[i] = split_sum;
  4255. }
  4256. for (int i = 0; i < device_count; ++i) {
  4257. splits[i] /= split_sum;
  4258. }
  4259. // assign the repeating layers to the devices according to the splits
  4260. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4261. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4262. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4263. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4264. }
  4265. // assign the output layer
  4266. if (n_gpu_layers > n_layer) {
  4267. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4268. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4269. } else {
  4270. model.buft_output = llama_default_buffer_type_cpu(true);
  4271. }
  4272. } else {
  4273. ggml_backend_buffer_type_t split_buft;
  4274. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4275. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4276. } else {
  4277. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4278. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4279. }
  4280. // assign the repeating layers
  4281. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4282. model.buft_layer[i] = {
  4283. split_buft,
  4284. llama_default_buffer_type_offload(model, main_gpu)
  4285. };
  4286. }
  4287. // assign the output layer
  4288. if (n_gpu_layers > n_layer) {
  4289. model.buft_output = {
  4290. split_buft,
  4291. llama_default_buffer_type_offload(model, main_gpu)
  4292. };
  4293. } else {
  4294. model.buft_output = llama_default_buffer_type_cpu(true);
  4295. }
  4296. }
  4297. // count used buffer types
  4298. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4299. buft_layer_count[model.buft_input.buft]++;
  4300. buft_layer_count[model.buft_input.buft_matrix]++;
  4301. buft_layer_count[model.buft_output.buft]++;
  4302. buft_layer_count[model.buft_output.buft_matrix]++;
  4303. for (int64_t i = 0; i < n_layer; ++i) {
  4304. buft_layer_count[model.buft_layer[i].buft]++;
  4305. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4306. }
  4307. // create one context per buffer type
  4308. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4309. // for moe merged tensors
  4310. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4311. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4312. for (auto & it : buft_layer_count) {
  4313. struct ggml_init_params params = {
  4314. /*.mem_size =*/ ctx_size,
  4315. /*.mem_buffer =*/ NULL,
  4316. /*.no_alloc =*/ true,
  4317. };
  4318. ggml_context * ctx = ggml_init(params);
  4319. if (!ctx) {
  4320. throw std::runtime_error(format("failed to create context"));
  4321. }
  4322. ctx_map[it.first] = ctx;
  4323. model.ctxs.push_back(ctx);
  4324. }
  4325. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4326. // create tensors for the weights
  4327. {
  4328. const int64_t n_embd = hparams.n_embd;
  4329. const int64_t n_embd_head = n_embd / hparams.n_head;
  4330. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4331. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4332. const int64_t n_embd_gqa = n_embd_v_gqa;
  4333. const int64_t n_vocab = hparams.n_vocab;
  4334. const int64_t n_vocab_type = hparams.n_vocab_type;
  4335. const int64_t n_ff = hparams.n_ff;
  4336. const int64_t n_expert = hparams.n_expert;
  4337. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4338. throw std::runtime_error("model has expert layers but no expert layers are used");
  4339. }
  4340. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4341. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4342. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4343. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4344. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4345. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4346. model.layers.resize(n_layer);
  4347. const auto tn = LLM_TN(model.arch);
  4348. switch (model.arch) {
  4349. case LLM_ARCH_LLAMA:
  4350. case LLM_ARCH_REFACT:
  4351. case LLM_ARCH_MINICPM:
  4352. {
  4353. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4354. // output
  4355. {
  4356. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4357. if (model.arch != LLM_ARCH_MINICPM){
  4358. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4359. // if output is NULL, init from the input tok embed
  4360. if (model.output == NULL) {
  4361. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4362. }
  4363. }
  4364. }
  4365. for (int i = 0; i < n_layer; ++i) {
  4366. ggml_context * ctx_layer = ctx_for_layer(i);
  4367. ggml_context * ctx_split = ctx_for_layer_split(i);
  4368. auto & layer = model.layers[i];
  4369. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4370. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4371. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4372. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4373. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4374. // optional bias tensors
  4375. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4376. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4377. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4378. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4379. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4380. if (n_expert == 0) {
  4381. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4382. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4383. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4384. } else {
  4385. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4386. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4387. if (layer.ffn_gate_exps) {
  4388. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4389. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4390. } else {
  4391. // merge split expert into a single tensor for compatibility with older models
  4392. // requires disabling mmap
  4393. use_mmap_buffer = false;
  4394. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4395. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4396. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4397. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4398. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4399. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4400. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4401. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4402. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4403. for (uint32_t x = 0; x < n_expert; ++x) {
  4404. // the individual experts are loaded into a view of the merged tensor
  4405. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4406. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4407. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4408. }
  4409. }
  4410. }
  4411. }
  4412. } break;
  4413. case LLM_ARCH_GROK:
  4414. {
  4415. if (n_expert == 0) {
  4416. throw std::runtime_error("Grok model cannot have zero experts");
  4417. }
  4418. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4419. // output
  4420. {
  4421. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4422. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4423. // if output is NULL, init from the input tok embed
  4424. if (model.output == NULL) {
  4425. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4426. }
  4427. }
  4428. for (int i = 0; i < n_layer; ++i) {
  4429. ggml_context * ctx_layer = ctx_for_layer(i);
  4430. ggml_context * ctx_split = ctx_for_layer_split(i);
  4431. auto & layer = model.layers[i];
  4432. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4433. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4434. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4435. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4436. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4437. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4438. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4439. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4440. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4441. if (layer.ffn_gate_exps) {
  4442. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4443. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4444. } else {
  4445. // merge split expert into a single tensor for compatibility with older models
  4446. // requires disabling mmap
  4447. use_mmap_buffer = false;
  4448. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4449. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4450. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4451. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4452. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4453. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4454. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4455. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4456. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4457. for (uint32_t x = 0; x < n_expert; ++x) {
  4458. // the individual experts are loaded into a view of the merged tensor
  4459. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4460. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4461. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4462. }
  4463. }
  4464. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4465. }
  4466. } break;
  4467. case LLM_ARCH_DBRX:
  4468. {
  4469. if (n_expert == 0) {
  4470. throw std::runtime_error("DBRX model cannot have zero experts");
  4471. }
  4472. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4473. // output
  4474. {
  4475. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4476. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4477. }
  4478. for (int i = 0; i < n_layer; ++i) {
  4479. ggml_context * ctx_layer = ctx_for_layer(i);
  4480. ggml_context * ctx_split = ctx_for_layer_split(i);
  4481. auto & layer = model.layers[i];
  4482. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4483. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4484. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4485. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4486. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4487. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4488. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4489. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4490. }
  4491. } break;
  4492. case LLM_ARCH_BAICHUAN:
  4493. {
  4494. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4495. {
  4496. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4497. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4498. }
  4499. for (int i = 0; i < n_layer; ++i) {
  4500. ggml_context * ctx_layer = ctx_for_layer(i);
  4501. ggml_context * ctx_split = ctx_for_layer_split(i);
  4502. auto & layer = model.layers[i];
  4503. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4504. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4505. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4506. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4507. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4508. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4509. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4510. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4511. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4512. }
  4513. } break;
  4514. case LLM_ARCH_FALCON:
  4515. {
  4516. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4517. // output
  4518. {
  4519. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4520. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4521. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4522. if (!model.output) {
  4523. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4524. }
  4525. }
  4526. for (int i = 0; i < n_layer; ++i) {
  4527. ggml_context * ctx_layer = ctx_for_layer(i);
  4528. ggml_context * ctx_split = ctx_for_layer_split(i);
  4529. auto & layer = model.layers[i];
  4530. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4531. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4532. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4533. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4534. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4535. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4536. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4537. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4538. }
  4539. } break;
  4540. case LLM_ARCH_STARCODER:
  4541. {
  4542. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4543. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4544. // output
  4545. {
  4546. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4547. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4548. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4549. if (!model.output) {
  4550. // needs to be on GPU
  4551. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4552. }
  4553. }
  4554. for (int i = 0; i < n_layer; ++i) {
  4555. ggml_context * ctx_layer = ctx_for_layer(i);
  4556. ggml_context * ctx_split = ctx_for_layer_split(i);
  4557. auto & layer = model.layers[i];
  4558. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4559. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4560. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4561. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4562. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4563. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4564. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4565. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4566. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4567. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4568. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4569. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4570. }
  4571. } break;
  4572. case LLM_ARCH_BERT:
  4573. case LLM_ARCH_NOMIC_BERT:
  4574. {
  4575. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4576. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4577. if (model.arch == LLM_ARCH_BERT) {
  4578. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4579. }
  4580. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4581. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4582. for (int i = 0; i < n_layer; ++i) {
  4583. ggml_context * ctx_layer = ctx_for_layer(i);
  4584. ggml_context * ctx_split = ctx_for_layer_split(i);
  4585. auto & layer = model.layers[i];
  4586. if (model.arch == LLM_ARCH_BERT) {
  4587. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4588. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4589. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4590. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4591. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4592. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4593. } else {
  4594. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4595. }
  4596. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4597. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4598. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4599. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4600. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4601. if (model.arch == LLM_ARCH_BERT) {
  4602. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4603. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4604. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4605. } else {
  4606. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4607. }
  4608. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4609. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4610. }
  4611. } break;
  4612. case LLM_ARCH_JINA_BERT_V2:
  4613. {
  4614. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4615. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4616. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4617. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4618. for (int i = 0; i < n_layer; ++i) {
  4619. ggml_context * ctx_layer = ctx_for_layer(i);
  4620. ggml_context * ctx_split = ctx_for_layer_split(i);
  4621. auto & layer = model.layers[i]; // JinaBertLayer
  4622. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4623. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4624. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4625. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4626. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4627. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4628. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4629. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4630. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4631. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4632. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4633. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4634. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4635. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4636. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4637. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4638. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4639. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4640. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4641. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4642. }
  4643. } break;
  4644. case LLM_ARCH_BLOOM:
  4645. {
  4646. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4647. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4648. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4649. // output
  4650. {
  4651. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4652. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4653. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4654. }
  4655. for (int i = 0; i < n_layer; ++i) {
  4656. ggml_context * ctx_layer = ctx_for_layer(i);
  4657. ggml_context * ctx_split = ctx_for_layer_split(i);
  4658. auto & layer = model.layers[i];
  4659. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4660. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4661. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4662. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4663. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4664. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4665. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4666. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4667. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4668. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4669. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4670. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4671. }
  4672. } break;
  4673. case LLM_ARCH_MPT:
  4674. {
  4675. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4676. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4677. // output
  4678. {
  4679. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4680. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4681. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4682. if (!model.output) {
  4683. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4684. }
  4685. }
  4686. for (int i = 0; i < n_layer; ++i) {
  4687. ggml_context * ctx_layer = ctx_for_layer(i);
  4688. ggml_context * ctx_split = ctx_for_layer_split(i);
  4689. auto & layer = model.layers[i];
  4690. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4691. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4692. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4693. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4694. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4695. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4696. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4697. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4698. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4699. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4700. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4701. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4702. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4703. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4704. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4705. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4706. // AWQ ScaleActivation layer
  4707. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4708. }
  4709. } break;
  4710. case LLM_ARCH_STABLELM:
  4711. {
  4712. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4713. // output
  4714. {
  4715. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4716. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4717. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4718. }
  4719. for (int i = 0; i < n_layer; ++i) {
  4720. ggml_context * ctx_layer = ctx_for_layer(i);
  4721. ggml_context * ctx_split = ctx_for_layer_split(i);
  4722. auto & layer = model.layers[i];
  4723. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4724. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4725. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4726. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4727. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4728. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4729. // optional bias tensors, present in Stable LM 2 1.6B
  4730. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4731. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4732. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4733. // optional q and k layernorms, present in StableLM 2 12B
  4734. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4735. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4736. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4737. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4738. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4739. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4740. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4741. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4742. }
  4743. } break;
  4744. case LLM_ARCH_QWEN:
  4745. {
  4746. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4747. // output
  4748. {
  4749. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4750. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4751. }
  4752. for (int i = 0; i < n_layer; ++i) {
  4753. ggml_context * ctx_layer = ctx_for_layer(i);
  4754. ggml_context * ctx_split = ctx_for_layer_split(i);
  4755. auto & layer = model.layers[i];
  4756. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4757. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4758. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4759. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4760. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4761. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4762. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4763. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4764. }
  4765. } break;
  4766. case LLM_ARCH_QWEN2:
  4767. {
  4768. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4769. // output
  4770. {
  4771. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4772. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4773. // if output is NULL, init from the input tok embed
  4774. if (model.output == NULL) {
  4775. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4776. }
  4777. }
  4778. for (int i = 0; i < n_layer; ++i) {
  4779. ggml_context * ctx_layer = ctx_for_layer(i);
  4780. ggml_context * ctx_split = ctx_for_layer_split(i);
  4781. auto & layer = model.layers[i];
  4782. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4783. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4784. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4785. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4786. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4787. // optional bias tensors
  4788. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4789. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4790. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4791. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4792. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4793. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4794. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4795. }
  4796. } break;
  4797. case LLM_ARCH_QWEN2MOE:
  4798. {
  4799. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4800. // output
  4801. {
  4802. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4803. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4804. }
  4805. for (int i = 0; i < n_layer; ++i) {
  4806. ggml_context * ctx_layer = ctx_for_layer(i);
  4807. ggml_context * ctx_split = ctx_for_layer_split(i);
  4808. auto & layer = model.layers[i];
  4809. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4810. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4811. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4812. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4813. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4814. // optional bias tensors
  4815. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4816. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4817. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4818. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4819. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4820. GGML_ASSERT(hparams.n_expert > 0);
  4821. GGML_ASSERT(hparams.n_expert_used > 0);
  4822. // MoE branch
  4823. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4824. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4825. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4826. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4827. // Shared expert branch
  4828. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4829. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4830. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4831. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4832. }
  4833. } break;
  4834. case LLM_ARCH_PHI2:
  4835. {
  4836. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4837. // output
  4838. {
  4839. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4840. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4841. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4842. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4843. }
  4844. for (int i = 0; i < n_layer; ++i) {
  4845. ggml_context * ctx_layer = ctx_for_layer(i);
  4846. ggml_context * ctx_split = ctx_for_layer_split(i);
  4847. auto & layer = model.layers[i];
  4848. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4849. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4850. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4851. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4852. if (layer.wqkv == nullptr) {
  4853. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4854. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4855. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4856. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4857. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4858. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4859. }
  4860. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4861. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4862. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4863. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4864. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4865. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4866. }
  4867. } break;
  4868. case LLM_ARCH_PHI3:
  4869. {
  4870. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4871. // output
  4872. {
  4873. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4874. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4875. }
  4876. for (int i = 0; i < n_layer; ++i) {
  4877. ggml_context* ctx_layer = ctx_for_layer(i);
  4878. ggml_context* ctx_split = ctx_for_layer_split(i);
  4879. auto & layer = model.layers[i];
  4880. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4881. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  4882. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4883. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4884. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4885. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4886. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  4887. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  4888. }
  4889. } break;
  4890. case LLM_ARCH_PLAMO:
  4891. {
  4892. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4893. // output
  4894. {
  4895. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4896. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4897. }
  4898. for (int i = 0; i < n_layer; ++i) {
  4899. ggml_context * ctx_layer = ctx_for_layer(i);
  4900. ggml_context * ctx_split = ctx_for_layer_split(i);
  4901. auto & layer = model.layers[i];
  4902. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4903. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4904. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4905. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4906. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4907. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4908. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4909. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4910. }
  4911. } break;
  4912. case LLM_ARCH_GPT2:
  4913. {
  4914. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4915. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4916. // output
  4917. {
  4918. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4919. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4920. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4921. }
  4922. for (int i = 0; i < n_layer; ++i) {
  4923. ggml_context * ctx_layer = ctx_for_layer(i);
  4924. ggml_context * ctx_split = ctx_for_layer_split(i);
  4925. auto & layer = model.layers[i];
  4926. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4927. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4928. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4929. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4930. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4931. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4932. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4933. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4934. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4935. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4936. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4937. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4938. }
  4939. } break;
  4940. case LLM_ARCH_CODESHELL:
  4941. {
  4942. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4943. // output
  4944. {
  4945. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4946. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4947. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4948. }
  4949. for (int i = 0; i < n_layer; ++i) {
  4950. ggml_context * ctx_layer = ctx_for_layer(i);
  4951. ggml_context * ctx_split = ctx_for_layer_split(i);
  4952. auto & layer = model.layers[i];
  4953. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4954. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4955. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4956. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4957. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4958. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4959. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4960. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4961. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4962. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4963. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4964. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4965. }
  4966. } break;
  4967. case LLM_ARCH_ORION:
  4968. {
  4969. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4970. {
  4971. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4972. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4973. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4974. }
  4975. for (int i = 0; i < n_layer; ++i) {
  4976. ggml_context * ctx_layer = ctx_for_layer(i);
  4977. ggml_context * ctx_split = ctx_for_layer_split(i);
  4978. auto & layer = model.layers[i];
  4979. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4980. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4981. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4982. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4983. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4984. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4985. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4986. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4987. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4988. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4989. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4990. }
  4991. } break;
  4992. case LLM_ARCH_INTERNLM2:
  4993. {
  4994. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4995. // output
  4996. {
  4997. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4998. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4999. }
  5000. for (int i = 0; i < n_layer; ++i) {
  5001. ggml_context * ctx_layer = ctx_for_layer(i);
  5002. ggml_context * ctx_split = ctx_for_layer_split(i);
  5003. auto & layer = model.layers[i];
  5004. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5005. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5006. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5007. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5008. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5009. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5010. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5011. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5012. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5013. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5014. }
  5015. } break;
  5016. case LLM_ARCH_GEMMA:
  5017. {
  5018. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5019. // output
  5020. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5021. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5022. const int64_t n_ff = hparams.n_ff;
  5023. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5024. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5025. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5026. for (uint32_t i = 0; i < n_layer; ++i) {
  5027. ggml_context * ctx_layer = ctx_for_layer(i);
  5028. ggml_context * ctx_split = ctx_for_layer_split(i);
  5029. auto & layer = model.layers[i];
  5030. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5031. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5032. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5033. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5034. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5035. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5036. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5037. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5038. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5039. }
  5040. } break;
  5041. case LLM_ARCH_STARCODER2:
  5042. {
  5043. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5044. // output
  5045. {
  5046. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5047. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5048. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5049. // if output is NULL, init from the input tok embed
  5050. if (model.output == NULL) {
  5051. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5052. }
  5053. }
  5054. for (int i = 0; i < n_layer; ++i) {
  5055. ggml_context * ctx_layer = ctx_for_layer(i);
  5056. ggml_context * ctx_split = ctx_for_layer_split(i);
  5057. auto & layer = model.layers[i];
  5058. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5059. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5060. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5061. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5062. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5063. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5064. // optional bias tensors
  5065. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5066. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5067. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5068. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5069. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5070. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5071. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5072. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5073. // optional bias tensors
  5074. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5075. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5076. }
  5077. } break;
  5078. case LLM_ARCH_MAMBA:
  5079. {
  5080. const int64_t d_conv = hparams.ssm_d_conv;
  5081. const int64_t d_inner = hparams.ssm_d_inner;
  5082. const int64_t d_state = hparams.ssm_d_state;
  5083. const int64_t dt_rank = hparams.ssm_dt_rank;
  5084. // only an expansion factor of 2 is supported for now
  5085. GGML_ASSERT(2 * n_embd == d_inner);
  5086. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5087. // output
  5088. {
  5089. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5090. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5091. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5092. if (model.output == NULL) {
  5093. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5094. }
  5095. }
  5096. for (int i = 0; i < n_layer; ++i) {
  5097. ggml_context * ctx_layer = ctx_for_layer(i);
  5098. ggml_context * ctx_split = ctx_for_layer_split(i);
  5099. auto & layer = model.layers[i];
  5100. // norm
  5101. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5102. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5103. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5104. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5105. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5106. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5107. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5108. // no "weight" suffix for these
  5109. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5110. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5111. // out_proj
  5112. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5113. }
  5114. } break;
  5115. case LLM_ARCH_XVERSE:
  5116. {
  5117. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5118. {
  5119. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5120. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5121. }
  5122. for (int i = 0; i < n_layer; ++i) {
  5123. ggml_context * ctx_layer = ctx_for_layer(i);
  5124. ggml_context * ctx_split = ctx_for_layer_split(i);
  5125. auto & layer = model.layers[i];
  5126. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5127. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5128. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5129. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5130. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5131. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5132. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5133. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5134. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5135. }
  5136. } break;
  5137. case LLM_ARCH_COMMAND_R:
  5138. {
  5139. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5140. // output
  5141. {
  5142. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5143. // init output from the input tok embed
  5144. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5145. }
  5146. for (int i = 0; i < n_layer; ++i) {
  5147. ggml_context * ctx_layer = ctx_for_layer(i);
  5148. ggml_context * ctx_split = ctx_for_layer_split(i);
  5149. auto & layer = model.layers[i];
  5150. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5151. if (n_layer >= 64){
  5152. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5153. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5154. }
  5155. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5156. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5157. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5158. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5159. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5160. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5161. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5162. }
  5163. } break;
  5164. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5165. {
  5166. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5167. // output
  5168. {
  5169. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5170. // if output is NULL, init from the input tok embed
  5171. if (model.output == NULL) {
  5172. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5173. }
  5174. }
  5175. for (int i = 0; i < n_layer; ++i) {
  5176. ggml_context * ctx_split = ctx_for_layer_split(i);
  5177. auto & layer = model.layers[i];
  5178. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5179. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5180. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5181. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5182. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5183. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5184. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5185. }
  5186. } break;
  5187. default:
  5188. throw std::runtime_error("unknown architecture");
  5189. }
  5190. }
  5191. ml.done_getting_tensors();
  5192. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5193. model.mappings.reserve(ml.mappings.size());
  5194. // create the backend buffers
  5195. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5196. ctx_bufs.reserve(ctx_map.size());
  5197. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5198. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5199. model.bufs.reserve(n_max_backend_buffer);
  5200. for (auto & it : ctx_map) {
  5201. ggml_backend_buffer_type_t buft = it.first;
  5202. ggml_context * ctx = it.second;
  5203. llama_buf_map bufs;
  5204. bufs.reserve(n_max_backend_buffer);
  5205. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5206. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5207. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5208. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5209. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5210. void * addr = nullptr;
  5211. size_t first, last;
  5212. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5213. if (first >= last) {
  5214. continue;
  5215. }
  5216. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5217. if (buf == nullptr) {
  5218. throw std::runtime_error("unable to allocate backend CPU buffer");
  5219. }
  5220. model.bufs.push_back(buf);
  5221. bufs.emplace(idx, buf);
  5222. #ifdef GGML_USE_CUDA
  5223. if (n_layer >= n_gpu_layers) {
  5224. ggml_backend_cuda_register_host_buffer(
  5225. ggml_backend_buffer_get_base(buf),
  5226. ggml_backend_buffer_get_size(buf));
  5227. }
  5228. #endif
  5229. }
  5230. }
  5231. #ifdef GGML_USE_METAL
  5232. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5233. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5234. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5235. void * addr = nullptr;
  5236. size_t first, last;
  5237. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5238. if (first >= last) {
  5239. continue;
  5240. }
  5241. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5242. if (buf == nullptr) {
  5243. throw std::runtime_error("unable to allocate backend metal buffer");
  5244. }
  5245. model.bufs.push_back(buf);
  5246. bufs.emplace(idx, buf);
  5247. }
  5248. }
  5249. #endif
  5250. else {
  5251. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5252. if (buf == nullptr) {
  5253. throw std::runtime_error("unable to allocate backend buffer");
  5254. }
  5255. model.bufs.push_back(buf);
  5256. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5257. model.mlock_bufs.emplace_back(new llama_mlock);
  5258. auto & mlock_buf = model.mlock_bufs.back();
  5259. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5260. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5261. }
  5262. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5263. bufs.emplace(idx, buf);
  5264. }
  5265. }
  5266. if (bufs.empty()) {
  5267. throw std::runtime_error("failed to allocate buffer");
  5268. }
  5269. for (auto & buf : bufs) {
  5270. // indicate that this buffer contains weights
  5271. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5272. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5273. }
  5274. ctx_bufs.emplace_back(ctx, bufs);
  5275. }
  5276. if (llama_supports_gpu_offload()) {
  5277. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5278. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5279. if (n_gpu_layers > (int) hparams.n_layer) {
  5280. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5281. }
  5282. const int max_backend_supported_layers = hparams.n_layer + 1;
  5283. const int max_offloadable_layers = hparams.n_layer + 1;
  5284. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5285. }
  5286. // print memory requirements
  5287. for (ggml_backend_buffer_t buf : model.bufs) {
  5288. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5289. }
  5290. // populate tensors_by_name
  5291. for (ggml_context * ctx : model.ctxs) {
  5292. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5293. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5294. }
  5295. }
  5296. // load tensor data
  5297. for (auto & it : ctx_bufs) {
  5298. ggml_context * ctx = it.first;
  5299. auto & bufs = it.second;
  5300. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5301. return false;
  5302. }
  5303. }
  5304. if (use_mmap_buffer) {
  5305. for (auto & mapping : ml.mappings) {
  5306. model.mappings.emplace_back(std::move(mapping));
  5307. }
  5308. }
  5309. // loading time will be recalculate after the first eval, so
  5310. // we take page faults deferred by mmap() into consideration
  5311. model.t_load_us = ggml_time_us() - model.t_start_us;
  5312. return true;
  5313. }
  5314. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5315. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5316. try {
  5317. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5318. model.hparams.vocab_only = params.vocab_only;
  5319. try {
  5320. llm_load_arch(ml, model);
  5321. } catch(const std::exception & e) {
  5322. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5323. }
  5324. try {
  5325. llm_load_hparams(ml, model);
  5326. } catch(const std::exception & e) {
  5327. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5328. }
  5329. try {
  5330. llm_load_vocab(ml, model);
  5331. } catch(const std::exception & e) {
  5332. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5333. }
  5334. llm_load_print_meta(ml, model);
  5335. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5336. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5337. throw std::runtime_error("vocab size mismatch");
  5338. }
  5339. if (params.vocab_only) {
  5340. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5341. return 0;
  5342. }
  5343. #ifdef GGML_USE_KOMPUTE
  5344. if (params.n_gpu_layers > 0 && (
  5345. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5346. || !(
  5347. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5348. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5349. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5350. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5351. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5352. )
  5353. )) {
  5354. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5355. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5356. params.n_gpu_layers = 0;
  5357. }
  5358. #endif
  5359. #ifdef GGML_USE_SYCL
  5360. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5361. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5362. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5363. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5364. } else {
  5365. ggml_backend_sycl_set_mul_device_mode();
  5366. }
  5367. #endif
  5368. if (!llm_load_tensors(
  5369. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5370. params.progress_callback, params.progress_callback_user_data
  5371. )) {
  5372. return -2;
  5373. }
  5374. } catch (const std::exception & err) {
  5375. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5376. return -1;
  5377. }
  5378. return 0;
  5379. }
  5380. //
  5381. // llm_build
  5382. //
  5383. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5384. enum llm_ffn_op_type {
  5385. LLM_FFN_SILU,
  5386. LLM_FFN_GELU,
  5387. LLM_FFN_RELU,
  5388. LLM_FFN_RELU_SQR,
  5389. };
  5390. enum llm_ffn_gate_type {
  5391. LLM_FFN_SEQ,
  5392. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5393. };
  5394. enum llm_norm_type {
  5395. LLM_NORM,
  5396. LLM_NORM_RMS,
  5397. };
  5398. static struct ggml_tensor * llm_build_inp_embd(
  5399. struct ggml_context * ctx,
  5400. struct llama_context & lctx,
  5401. const llama_hparams & hparams,
  5402. const llama_batch & batch,
  5403. struct ggml_tensor * tok_embd,
  5404. const llm_build_cb & cb) {
  5405. const int64_t n_embd = hparams.n_embd;
  5406. struct ggml_tensor * inpL;
  5407. if (batch.token) {
  5408. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5409. cb(lctx.inp_tokens, "inp_tokens", -1);
  5410. ggml_set_input(lctx.inp_tokens);
  5411. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5412. } else {
  5413. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5414. inpL = lctx.inp_embd;
  5415. ggml_set_input(lctx.inp_embd);
  5416. }
  5417. cb(inpL, "inp_embd", -1);
  5418. return inpL;
  5419. }
  5420. static void llm_build_kv_store(
  5421. struct ggml_context * ctx,
  5422. const llama_hparams & hparams,
  5423. const llama_cparams & cparams,
  5424. const llama_kv_cache & kv,
  5425. struct ggml_cgraph * graph,
  5426. struct ggml_tensor * k_cur,
  5427. struct ggml_tensor * v_cur,
  5428. int32_t n_tokens,
  5429. int32_t kv_head,
  5430. const llm_build_cb & cb,
  5431. int64_t il) {
  5432. const int64_t n_ctx = cparams.n_ctx;
  5433. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5434. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5435. GGML_ASSERT(kv.size == n_ctx);
  5436. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5437. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5438. cb(k_cache_view, "k_cache_view", il);
  5439. // note: storing RoPE-ed version of K in the KV cache
  5440. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5441. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5442. struct ggml_tensor * v_cache_view = nullptr;
  5443. if (cparams.flash_attn) {
  5444. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5445. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5446. } else {
  5447. // note: the V cache is transposed when not using flash attention
  5448. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5449. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5450. (kv_head)*ggml_element_size(kv.v_l[il]));
  5451. v_cur = ggml_transpose(ctx, v_cur);
  5452. }
  5453. cb(v_cache_view, "v_cache_view", il);
  5454. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5455. }
  5456. static struct ggml_tensor * llm_build_norm(
  5457. struct ggml_context * ctx,
  5458. struct ggml_tensor * cur,
  5459. const llama_hparams & hparams,
  5460. struct ggml_tensor * mw,
  5461. struct ggml_tensor * mb,
  5462. llm_norm_type type,
  5463. const llm_build_cb & cb,
  5464. int il) {
  5465. switch (type) {
  5466. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5467. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5468. }
  5469. if (mw || mb) {
  5470. cb(cur, "norm", il);
  5471. }
  5472. if (mw) {
  5473. cur = ggml_mul(ctx, cur, mw);
  5474. if (mb) {
  5475. cb(cur, "norm_w", il);
  5476. }
  5477. }
  5478. if (mb) {
  5479. cur = ggml_add(ctx, cur, mb);
  5480. }
  5481. return cur;
  5482. }
  5483. static struct ggml_tensor * llm_build_ffn(
  5484. struct ggml_context * ctx,
  5485. struct ggml_tensor * cur,
  5486. struct ggml_tensor * up,
  5487. struct ggml_tensor * up_b,
  5488. struct ggml_tensor * gate,
  5489. struct ggml_tensor * gate_b,
  5490. struct ggml_tensor * down,
  5491. struct ggml_tensor * down_b,
  5492. struct ggml_tensor * act_scales,
  5493. llm_ffn_op_type type_op,
  5494. llm_ffn_gate_type type_gate,
  5495. const llm_build_cb & cb,
  5496. int il) {
  5497. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5498. cb(tmp, "ffn_up", il);
  5499. if (up_b) {
  5500. tmp = ggml_add(ctx, tmp, up_b);
  5501. cb(tmp, "ffn_up_b", il);
  5502. }
  5503. if (gate) {
  5504. switch (type_gate) {
  5505. case LLM_FFN_SEQ:
  5506. {
  5507. cur = ggml_mul_mat(ctx, gate, tmp);
  5508. cb(cur, "ffn_gate", il);
  5509. } break;
  5510. case LLM_FFN_PAR:
  5511. {
  5512. cur = ggml_mul_mat(ctx, gate, cur);
  5513. cb(cur, "ffn_gate", il);
  5514. } break;
  5515. }
  5516. if (gate_b) {
  5517. cur = ggml_add(ctx, cur, gate_b);
  5518. cb(cur, "ffn_gate_b", il);
  5519. }
  5520. } else {
  5521. cur = tmp;
  5522. }
  5523. switch (type_op) {
  5524. case LLM_FFN_SILU:
  5525. {
  5526. cur = ggml_silu(ctx, cur);
  5527. cb(cur, "ffn_silu", il);
  5528. } break;
  5529. case LLM_FFN_GELU:
  5530. {
  5531. cur = ggml_gelu(ctx, cur);
  5532. cb(cur, "ffn_gelu", il);
  5533. if (act_scales != NULL) {
  5534. cur = ggml_div(ctx, cur, act_scales);
  5535. cb(cur, "ffn_act", il);
  5536. }
  5537. } break;
  5538. case LLM_FFN_RELU:
  5539. {
  5540. cur = ggml_relu(ctx, cur);
  5541. cb(cur, "ffn_relu", il);
  5542. } break;
  5543. case LLM_FFN_RELU_SQR:
  5544. {
  5545. cur = ggml_relu(ctx, cur);
  5546. cb(cur, "ffn_relu", il);
  5547. cur = ggml_sqr(ctx, cur);
  5548. cb(cur, "ffn_sqr(relu)", il);
  5549. } break;
  5550. }
  5551. if (type_gate == LLM_FFN_PAR) {
  5552. cur = ggml_mul(ctx, cur, tmp);
  5553. cb(cur, "ffn_gate_par", il);
  5554. }
  5555. cur = ggml_mul_mat(ctx, down, cur);
  5556. if (down_b) {
  5557. cb(cur, "ffn_down", il);
  5558. }
  5559. if (down_b) {
  5560. cur = ggml_add(ctx, cur, down_b);
  5561. }
  5562. return cur;
  5563. }
  5564. static struct ggml_tensor * llm_build_moe_ffn(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * cur,
  5567. struct ggml_tensor * gate_inp,
  5568. struct ggml_tensor * up_exps,
  5569. struct ggml_tensor * gate_exps,
  5570. struct ggml_tensor * down_exps,
  5571. int64_t n_expert,
  5572. int64_t n_expert_used,
  5573. llm_ffn_op_type type_op,
  5574. bool norm_w,
  5575. const llm_build_cb & cb,
  5576. int il) {
  5577. int64_t n_embd = cur->ne[0];
  5578. int64_t n_tokens = cur->ne[1];
  5579. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5580. cb(logits, "ffn_moe_logits", il);
  5581. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5582. cb(probs, "ffn_moe_probs", il);
  5583. // select experts
  5584. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5585. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5586. cb(selected_experts, "ffn_moe_topk", il);
  5587. ggml_tensor * weights = ggml_get_rows(ctx,
  5588. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5589. cb(weights, "ffn_moe_weights", il);
  5590. if (norm_w) {
  5591. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5592. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5593. cb(weights_sum, "ffn_moe_weights_sum", il);
  5594. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5595. cb(weights, "ffn_moe_weights_norm", il);
  5596. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5597. }
  5598. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5599. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5600. cb(up, "ffn_moe_up", il);
  5601. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5602. cb(gate, "ffn_moe_gate", il);
  5603. switch (type_op) {
  5604. case LLM_FFN_SILU:
  5605. {
  5606. gate = ggml_silu(ctx, gate);
  5607. cb(gate, "ffn_moe_silu", il);
  5608. } break;
  5609. case LLM_FFN_GELU:
  5610. {
  5611. gate = ggml_gelu(ctx, gate);
  5612. cb(gate, "ffn_moe_gelu", il);
  5613. } break;
  5614. default:
  5615. GGML_ASSERT(false);
  5616. }
  5617. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5618. cb(par, "ffn_moe_gate_par", il);
  5619. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5620. cb(experts, "ffn_moe_down", il);
  5621. experts = ggml_mul(ctx, experts, weights);
  5622. // aggregate experts
  5623. ggml_tensor * moe_out = nullptr;
  5624. for (int i = 0; i < n_expert_used; ++i) {
  5625. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5626. experts->nb[2], i*experts->nb[1]);
  5627. if (i == 0) {
  5628. moe_out = cur_expert;
  5629. } else {
  5630. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5631. }
  5632. }
  5633. if (n_expert_used == 1) {
  5634. // avoid returning a non-contiguous tensor
  5635. moe_out = ggml_cont(ctx, moe_out);
  5636. }
  5637. return moe_out;
  5638. }
  5639. static struct ggml_tensor * llm_build_kqv(
  5640. struct ggml_context * ctx,
  5641. const llama_model & model,
  5642. const llama_hparams & hparams,
  5643. const llama_cparams & cparams,
  5644. const llama_kv_cache & kv,
  5645. struct ggml_cgraph * graph,
  5646. struct ggml_tensor * wo,
  5647. struct ggml_tensor * wo_b,
  5648. struct ggml_tensor * q_cur,
  5649. struct ggml_tensor * kq_mask,
  5650. int32_t n_tokens,
  5651. int32_t n_kv,
  5652. float kq_scale,
  5653. const llm_build_cb & cb,
  5654. int il) {
  5655. const int64_t n_ctx = cparams.n_ctx;
  5656. const int64_t n_head = hparams.n_head;
  5657. const int64_t n_head_kv = hparams.n_head_kv;
  5658. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5659. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5660. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5661. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5662. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5663. cb(q, "q", il);
  5664. struct ggml_tensor * k =
  5665. ggml_view_3d(ctx, kv.k_l[il],
  5666. n_embd_head_k, n_kv, n_head_kv,
  5667. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5668. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5669. 0);
  5670. cb(k, "k", il);
  5671. struct ggml_tensor * cur;
  5672. if (cparams.flash_attn) {
  5673. GGML_UNUSED(model);
  5674. GGML_UNUSED(n_ctx);
  5675. // split cached v into n_head heads (not transposed)
  5676. struct ggml_tensor * v =
  5677. ggml_view_3d(ctx, kv.v_l[il],
  5678. n_embd_head_v, n_kv, n_head_kv,
  5679. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5680. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5681. 0);
  5682. cb(v, "v", il);
  5683. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5684. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5685. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5686. }
  5687. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5688. } else {
  5689. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5690. cb(kq, "kq", il);
  5691. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5692. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5693. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5694. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5695. }
  5696. if (model.arch == LLM_ARCH_GROK) {
  5697. // need to do the following:
  5698. // multiply by attn_output_multiplyer of 0.08838834764831845
  5699. // and then :
  5700. // kq = 30 * tanh(kq / 30)
  5701. // before the softmax below
  5702. //try from phi2
  5703. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5704. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5705. kq = ggml_scale(ctx, kq, 30);
  5706. }
  5707. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5708. cb(kq, "kq_soft_max_ext", il);
  5709. GGML_ASSERT(kv.size == n_ctx);
  5710. // split cached v into n_head heads
  5711. struct ggml_tensor * v =
  5712. ggml_view_3d(ctx, kv.v_l[il],
  5713. n_kv, n_embd_head_v, n_head_kv,
  5714. ggml_element_size(kv.v_l[il])*n_ctx,
  5715. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5716. 0);
  5717. cb(v, "v", il);
  5718. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5719. cb(kqv, "kqv", il);
  5720. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5721. cb(kqv_merged, "kqv_merged", il);
  5722. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5723. cb(cur, "kqv_merged_cont", il);
  5724. }
  5725. ggml_build_forward_expand(graph, cur);
  5726. cur = ggml_mul_mat(ctx, wo, cur);
  5727. if (wo_b) {
  5728. cb(cur, "kqv_wo", il);
  5729. }
  5730. if (wo_b) {
  5731. cur = ggml_add(ctx, cur, wo_b);
  5732. }
  5733. return cur;
  5734. }
  5735. static struct ggml_tensor * llm_build_kv(
  5736. struct ggml_context * ctx,
  5737. const llama_model & model,
  5738. const llama_hparams & hparams,
  5739. const llama_cparams & cparams,
  5740. const llama_kv_cache & kv,
  5741. struct ggml_cgraph * graph,
  5742. struct ggml_tensor * wo,
  5743. struct ggml_tensor * wo_b,
  5744. struct ggml_tensor * k_cur,
  5745. struct ggml_tensor * v_cur,
  5746. struct ggml_tensor * q_cur,
  5747. struct ggml_tensor * kq_mask,
  5748. int32_t n_tokens,
  5749. int32_t kv_head,
  5750. int32_t n_kv,
  5751. float kq_scale,
  5752. const llm_build_cb & cb,
  5753. int il) {
  5754. // these nodes are added to the graph together so that they are not reordered
  5755. // by doing so, the number of splits in the graph is reduced
  5756. ggml_build_forward_expand(graph, q_cur);
  5757. ggml_build_forward_expand(graph, k_cur);
  5758. ggml_build_forward_expand(graph, v_cur);
  5759. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5760. struct ggml_tensor * cur;
  5761. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5762. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5763. cb(cur, "kqv_out", il);
  5764. return cur;
  5765. }
  5766. struct llm_build_context {
  5767. const llama_model & model;
  5768. llama_context & lctx;
  5769. const llama_hparams & hparams;
  5770. const llama_cparams & cparams;
  5771. const llama_batch & batch;
  5772. const llama_kv_cache & kv_self;
  5773. const int64_t n_embd;
  5774. const int64_t n_layer;
  5775. const int64_t n_rot;
  5776. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5777. const int64_t n_head;
  5778. const int64_t n_head_kv;
  5779. const int64_t n_embd_head_k;
  5780. const int64_t n_embd_k_gqa;
  5781. const int64_t n_embd_head_v;
  5782. const int64_t n_embd_v_gqa;
  5783. const int64_t n_expert;
  5784. const int64_t n_expert_used;
  5785. const float freq_base;
  5786. const float freq_scale;
  5787. const float ext_factor;
  5788. const float attn_factor;
  5789. const float beta_fast;
  5790. const float beta_slow;
  5791. const float norm_eps;
  5792. const float norm_rms_eps;
  5793. const int32_t n_tokens;
  5794. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5795. const int32_t n_outputs;
  5796. const int32_t kv_head; // index of where we store new KV data in the cache
  5797. const int32_t n_orig_ctx;
  5798. const bool flash_attn;
  5799. const enum llama_pooling_type pooling_type;
  5800. const enum llama_rope_type rope_type;
  5801. const llm_build_cb & cb;
  5802. std::vector<uint8_t> & buf_compute_meta;
  5803. struct ggml_context * ctx0 = nullptr;
  5804. // TODO: consider making the entire interface noexcept
  5805. llm_build_context(
  5806. llama_context & lctx,
  5807. const llama_batch & batch,
  5808. const llm_build_cb & cb,
  5809. bool worst_case) :
  5810. model (lctx.model),
  5811. lctx (lctx),
  5812. hparams (model.hparams),
  5813. cparams (lctx.cparams),
  5814. batch (batch),
  5815. kv_self (lctx.kv_self),
  5816. n_embd (hparams.n_embd),
  5817. n_layer (hparams.n_layer),
  5818. n_rot (hparams.n_rot),
  5819. n_ctx (cparams.n_ctx),
  5820. n_head (hparams.n_head),
  5821. n_head_kv (hparams.n_head_kv),
  5822. n_embd_head_k (hparams.n_embd_head_k),
  5823. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5824. n_embd_head_v (hparams.n_embd_head_v),
  5825. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5826. n_expert (hparams.n_expert),
  5827. n_expert_used (hparams.n_expert_used),
  5828. freq_base (cparams.rope_freq_base),
  5829. freq_scale (cparams.rope_freq_scale),
  5830. ext_factor (cparams.yarn_ext_factor),
  5831. attn_factor (cparams.yarn_attn_factor),
  5832. beta_fast (cparams.yarn_beta_fast),
  5833. beta_slow (cparams.yarn_beta_slow),
  5834. norm_eps (hparams.f_norm_eps),
  5835. norm_rms_eps (hparams.f_norm_rms_eps),
  5836. n_tokens (batch.n_tokens),
  5837. n_kv (worst_case ? kv_self.size : kv_self.n),
  5838. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5839. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5840. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5841. flash_attn (cparams.flash_attn),
  5842. pooling_type (cparams.pooling_type),
  5843. rope_type (hparams.rope_type),
  5844. cb (cb),
  5845. buf_compute_meta (lctx.buf_compute_meta) {
  5846. // all initializations should be done in init()
  5847. }
  5848. void init() {
  5849. struct ggml_init_params params = {
  5850. /*.mem_size =*/ buf_compute_meta.size(),
  5851. /*.mem_buffer =*/ buf_compute_meta.data(),
  5852. /*.no_alloc =*/ true,
  5853. };
  5854. ctx0 = ggml_init(params);
  5855. lctx.inp_tokens = nullptr;
  5856. lctx.inp_embd = nullptr;
  5857. lctx.inp_pos = nullptr;
  5858. lctx.inp_out_ids = nullptr;
  5859. lctx.inp_KQ_mask = nullptr;
  5860. lctx.inp_K_shift = nullptr;
  5861. lctx.inp_mean = nullptr;
  5862. lctx.inp_cls = nullptr;
  5863. lctx.inp_s_copy = nullptr;
  5864. lctx.inp_s_mask = nullptr;
  5865. lctx.inp_s_seq = nullptr;
  5866. }
  5867. void free() {
  5868. if (ctx0) {
  5869. ggml_free(ctx0);
  5870. ctx0 = nullptr;
  5871. }
  5872. }
  5873. struct ggml_cgraph * build_k_shift() {
  5874. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5875. GGML_ASSERT(kv_self.size == n_ctx);
  5876. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5877. cb(lctx.inp_K_shift, "K_shift", -1);
  5878. ggml_set_input(lctx.inp_K_shift);
  5879. for (int il = 0; il < n_layer; ++il) {
  5880. struct ggml_tensor * rope_factors = build_rope_factors(il);
  5881. struct ggml_tensor * tmp =
  5882. // we rotate only the first n_rot dimensions
  5883. ggml_rope_ext_inplace(ctx0,
  5884. ggml_view_3d(ctx0, kv_self.k_l[il],
  5885. n_embd_head_k, n_head_kv, n_ctx,
  5886. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5887. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5888. 0),
  5889. lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5890. ext_factor, attn_factor, beta_fast, beta_slow);
  5891. cb(tmp, "K_shifted", il);
  5892. ggml_build_forward_expand(gf, tmp);
  5893. }
  5894. return gf;
  5895. }
  5896. struct ggml_cgraph * build_s_copy() {
  5897. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5898. GGML_ASSERT(kv_self.recurrent);
  5899. struct ggml_tensor * state_copy = build_inp_s_copy();
  5900. for (int il = 0; il < n_layer; ++il) {
  5901. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5902. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5903. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5904. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5905. // TODO: name the intermediate tensors with cb()
  5906. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5907. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5908. }
  5909. return gf;
  5910. }
  5911. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5912. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5913. for (uint32_t i = 0; i < ids.size(); ++i) {
  5914. const uint32_t id = ids[i];
  5915. if (i == id || id == ids.size()) {
  5916. continue;
  5917. }
  5918. uint32_t nm = 1;
  5919. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5920. nm++;
  5921. }
  5922. for (int il = 0; il < n_layer; ++il) {
  5923. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5924. n_embd_k_gqa, nm,
  5925. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5926. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5927. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5928. n_embd_k_gqa, nm,
  5929. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5930. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5931. ggml_tensor * view_v_src;
  5932. ggml_tensor * view_v_dst;
  5933. if (flash_attn) {
  5934. // NOTE: the V cache is not transposed when using flash attention
  5935. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5936. n_embd_v_gqa, nm,
  5937. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5938. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  5939. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5940. n_embd_v_gqa, nm,
  5941. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5942. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  5943. } else {
  5944. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5945. nm, n_embd_v_gqa,
  5946. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5947. ggml_row_size(kv_self.v_l[il]->type, i));
  5948. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5949. nm, n_embd_v_gqa,
  5950. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5951. ggml_row_size(kv_self.v_l[il]->type, id));
  5952. }
  5953. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5954. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5955. }
  5956. i += nm - 1;
  5957. }
  5958. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5959. return gf;
  5960. }
  5961. struct ggml_tensor * build_inp_pos() {
  5962. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5963. cb(lctx.inp_pos, "inp_pos", -1);
  5964. ggml_set_input(lctx.inp_pos);
  5965. return lctx.inp_pos;
  5966. }
  5967. struct ggml_tensor * build_rope_factors(int il) {
  5968. // choose long/short freq factors based on the context size
  5969. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  5970. if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
  5971. return model.layers[il].rope_long;
  5972. }
  5973. return model.layers[il].rope_short;
  5974. }
  5975. struct ggml_tensor * build_inp_out_ids() {
  5976. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5977. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5978. ggml_set_input(lctx.inp_out_ids);
  5979. return lctx.inp_out_ids;
  5980. }
  5981. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5982. if (causal) {
  5983. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  5984. } else {
  5985. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  5986. }
  5987. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5988. ggml_set_input(lctx.inp_KQ_mask);
  5989. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  5990. }
  5991. struct ggml_tensor * build_inp_mean() {
  5992. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5993. cb(lctx.inp_mean, "inp_mean", -1);
  5994. ggml_set_input(lctx.inp_mean);
  5995. return lctx.inp_mean;
  5996. }
  5997. struct ggml_tensor * build_inp_cls() {
  5998. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5999. cb(lctx.inp_cls, "inp_cls", -1);
  6000. ggml_set_input(lctx.inp_cls);
  6001. return lctx.inp_cls;
  6002. }
  6003. struct ggml_tensor * build_inp_s_copy() {
  6004. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6005. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6006. ggml_set_input(lctx.inp_s_copy);
  6007. return lctx.inp_s_copy;
  6008. }
  6009. struct ggml_tensor * build_inp_s_mask() {
  6010. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6011. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6012. ggml_set_input(lctx.inp_s_mask);
  6013. return lctx.inp_s_mask;
  6014. }
  6015. struct ggml_tensor * build_inp_s_seq() {
  6016. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6017. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6018. ggml_set_input(lctx.inp_s_seq);
  6019. return lctx.inp_s_seq;
  6020. }
  6021. struct ggml_cgraph * build_llama() {
  6022. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6023. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6024. int32_t n_tokens = this->n_tokens;
  6025. const int64_t n_embd_head = hparams.n_embd_head_v;
  6026. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6027. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6028. struct ggml_tensor * cur;
  6029. struct ggml_tensor * inpL;
  6030. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6031. // inp_pos - contains the positions
  6032. struct ggml_tensor * inp_pos = build_inp_pos();
  6033. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6034. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6035. for (int il = 0; il < n_layer; ++il) {
  6036. struct ggml_tensor * inpSA = inpL;
  6037. // norm
  6038. cur = llm_build_norm(ctx0, inpL, hparams,
  6039. model.layers[il].attn_norm, NULL,
  6040. LLM_NORM_RMS, cb, il);
  6041. cb(cur, "attn_norm", il);
  6042. // self-attention
  6043. {
  6044. // compute Q and K and RoPE them
  6045. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6046. cb(Qcur, "Qcur", il);
  6047. if (model.layers[il].bq) {
  6048. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6049. cb(Qcur, "Qcur", il);
  6050. }
  6051. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6052. cb(Kcur, "Kcur", il);
  6053. if (model.layers[il].bk) {
  6054. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6055. cb(Kcur, "Kcur", il);
  6056. }
  6057. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6058. cb(Vcur, "Vcur", il);
  6059. if (model.layers[il].bv) {
  6060. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6061. cb(Vcur, "Vcur", il);
  6062. }
  6063. Qcur = ggml_rope_ext(
  6064. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6065. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6066. ext_factor, attn_factor, beta_fast, beta_slow
  6067. );
  6068. cb(Qcur, "Qcur", il);
  6069. Kcur = ggml_rope_ext(
  6070. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6071. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6072. ext_factor, attn_factor, beta_fast, beta_slow
  6073. );
  6074. cb(Kcur, "Kcur", il);
  6075. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6076. model.layers[il].wo, model.layers[il].bo,
  6077. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6078. }
  6079. if (il == n_layer - 1) {
  6080. // skip computing output for unused tokens
  6081. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6082. n_tokens = n_outputs;
  6083. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6084. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6085. }
  6086. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6087. cb(ffn_inp, "ffn_inp", il);
  6088. // feed-forward network
  6089. if (model.layers[il].ffn_gate_inp == nullptr) {
  6090. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6091. model.layers[il].ffn_norm, NULL,
  6092. LLM_NORM_RMS, cb, il);
  6093. cb(cur, "ffn_norm", il);
  6094. cur = llm_build_ffn(ctx0, cur,
  6095. model.layers[il].ffn_up, NULL,
  6096. model.layers[il].ffn_gate, NULL,
  6097. model.layers[il].ffn_down, NULL,
  6098. NULL,
  6099. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6100. cb(cur, "ffn_out", il);
  6101. } else {
  6102. // MoE branch
  6103. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6104. model.layers[il].ffn_norm, NULL,
  6105. LLM_NORM_RMS, cb, il);
  6106. cb(cur, "ffn_norm", il);
  6107. cur = llm_build_moe_ffn(ctx0, cur,
  6108. model.layers[il].ffn_gate_inp,
  6109. model.layers[il].ffn_up_exps,
  6110. model.layers[il].ffn_gate_exps,
  6111. model.layers[il].ffn_down_exps,
  6112. n_expert, n_expert_used,
  6113. LLM_FFN_SILU, true,
  6114. cb, il);
  6115. cb(cur, "ffn_moe_out", il);
  6116. }
  6117. cur = ggml_add(ctx0, cur, ffn_inp);
  6118. cb(cur, "ffn_out", il);
  6119. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6120. if (layer_dir != nullptr) {
  6121. cur = ggml_add(ctx0, cur, layer_dir);
  6122. }
  6123. cb(cur, "l_out", il);
  6124. // input for next layer
  6125. inpL = cur;
  6126. }
  6127. cur = inpL;
  6128. cur = llm_build_norm(ctx0, cur, hparams,
  6129. model.output_norm, NULL,
  6130. LLM_NORM_RMS, cb, -1);
  6131. cb(cur, "result_norm", -1);
  6132. // lm_head
  6133. cur = ggml_mul_mat(ctx0, model.output, cur);
  6134. cb(cur, "result_output", -1);
  6135. ggml_build_forward_expand(gf, cur);
  6136. return gf;
  6137. }
  6138. struct ggml_cgraph * build_baichuan() {
  6139. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6140. const int64_t n_embd_head = hparams.n_embd_head_v;
  6141. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6142. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6143. struct ggml_tensor * cur;
  6144. struct ggml_tensor * inpL;
  6145. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6146. // inp_pos - contains the positions
  6147. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6148. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6149. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6150. for (int il = 0; il < n_layer; ++il) {
  6151. struct ggml_tensor * inpSA = inpL;
  6152. cur = llm_build_norm(ctx0, inpL, hparams,
  6153. model.layers[il].attn_norm, NULL,
  6154. LLM_NORM_RMS, cb, il);
  6155. cb(cur, "attn_norm", il);
  6156. // self-attention
  6157. {
  6158. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6159. cb(Qcur, "Qcur", il);
  6160. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6161. cb(Kcur, "Kcur", il);
  6162. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6163. cb(Vcur, "Vcur", il);
  6164. switch (model.type) {
  6165. case MODEL_7B:
  6166. Qcur = ggml_rope_ext(
  6167. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6168. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6169. ext_factor, attn_factor, beta_fast, beta_slow
  6170. );
  6171. Kcur = ggml_rope_ext(
  6172. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6173. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6174. ext_factor, attn_factor, beta_fast, beta_slow
  6175. );
  6176. break;
  6177. case MODEL_13B:
  6178. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6179. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6180. break;
  6181. default:
  6182. GGML_ASSERT(false);
  6183. }
  6184. cb(Qcur, "Qcur", il);
  6185. cb(Kcur, "Kcur", il);
  6186. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6187. model.layers[il].wo, NULL,
  6188. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6189. }
  6190. if (il == n_layer - 1) {
  6191. // skip computing output for unused tokens
  6192. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6193. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6194. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6195. }
  6196. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6197. cb(ffn_inp, "ffn_inp", il);
  6198. // feed-forward network
  6199. {
  6200. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6201. model.layers[il].ffn_norm, NULL,
  6202. LLM_NORM_RMS, cb, il);
  6203. cb(cur, "ffn_norm", il);
  6204. cur = llm_build_ffn(ctx0, cur,
  6205. model.layers[il].ffn_up, NULL,
  6206. model.layers[il].ffn_gate, NULL,
  6207. model.layers[il].ffn_down, NULL,
  6208. NULL,
  6209. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6210. cb(cur, "ffn_out", il);
  6211. }
  6212. cur = ggml_add(ctx0, cur, ffn_inp);
  6213. cb(cur, "l_out", il);
  6214. // input for next layer
  6215. inpL = cur;
  6216. }
  6217. cur = inpL;
  6218. cur = llm_build_norm(ctx0, cur, hparams,
  6219. model.output_norm, NULL,
  6220. LLM_NORM_RMS, cb, -1);
  6221. cb(cur, "result_norm", -1);
  6222. // lm_head
  6223. cur = ggml_mul_mat(ctx0, model.output, cur);
  6224. cb(cur, "result_output", -1);
  6225. ggml_build_forward_expand(gf, cur);
  6226. return gf;
  6227. }
  6228. struct ggml_cgraph * build_xverse() {
  6229. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6230. const int64_t n_embd_head = hparams.n_embd_head_v;
  6231. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6232. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6233. struct ggml_tensor * cur;
  6234. struct ggml_tensor * inpL;
  6235. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6236. // inp_pos - contains the positions
  6237. struct ggml_tensor * inp_pos = build_inp_pos();
  6238. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6239. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6240. for (int il = 0; il < n_layer; ++il) {
  6241. struct ggml_tensor * inpSA = inpL;
  6242. cur = llm_build_norm(ctx0, inpL, hparams,
  6243. model.layers[il].attn_norm, NULL,
  6244. LLM_NORM_RMS, cb, il);
  6245. cb(cur, "attn_norm", il);
  6246. // self-attention
  6247. {
  6248. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6249. cb(Qcur, "Qcur", il);
  6250. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6251. cb(Kcur, "Kcur", il);
  6252. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6253. cb(Vcur, "Vcur", il);
  6254. Qcur = ggml_rope_ext(
  6255. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6256. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6257. ext_factor, attn_factor, beta_fast, beta_slow
  6258. );
  6259. cb(Qcur, "Qcur", il);
  6260. Kcur = ggml_rope_ext(
  6261. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6262. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6263. ext_factor, attn_factor, beta_fast, beta_slow
  6264. );
  6265. cb(Kcur, "Kcur", il);
  6266. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6267. model.layers[il].wo, NULL,
  6268. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6269. }
  6270. if (il == n_layer - 1) {
  6271. // skip computing output for unused tokens
  6272. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6273. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6274. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6275. }
  6276. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6277. cb(ffn_inp, "ffn_inp", il);
  6278. // feed-forward network
  6279. {
  6280. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6281. model.layers[il].ffn_norm, NULL,
  6282. LLM_NORM_RMS, cb, il);
  6283. cb(cur, "ffn_norm", il);
  6284. cur = llm_build_ffn(ctx0, cur,
  6285. model.layers[il].ffn_up, NULL,
  6286. model.layers[il].ffn_gate, NULL,
  6287. model.layers[il].ffn_down, NULL,
  6288. NULL,
  6289. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6290. cb(cur, "ffn_out", il);
  6291. }
  6292. cur = ggml_add(ctx0, cur, ffn_inp);
  6293. cb(cur, "l_out", il);
  6294. // input for next layer
  6295. inpL = cur;
  6296. }
  6297. cur = inpL;
  6298. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6299. cb(cur, "result_norm", -1);
  6300. // lm_head
  6301. cur = ggml_mul_mat(ctx0, model.output, cur);
  6302. cb(cur, "result_output", -1);
  6303. ggml_build_forward_expand(gf, cur);
  6304. return gf;
  6305. }
  6306. struct ggml_cgraph * build_falcon() {
  6307. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6308. const int64_t n_embd_head = hparams.n_embd_head_v;
  6309. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6310. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6311. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6312. struct ggml_tensor * cur;
  6313. struct ggml_tensor * inpL;
  6314. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6315. // inp_pos - contains the positions
  6316. struct ggml_tensor * inp_pos = build_inp_pos();
  6317. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6318. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6319. for (int il = 0; il < n_layer; ++il) {
  6320. struct ggml_tensor * attn_norm;
  6321. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6322. model.layers[il].attn_norm,
  6323. model.layers[il].attn_norm_b,
  6324. LLM_NORM, cb, il);
  6325. cb(attn_norm, "attn_norm", il);
  6326. // self-attention
  6327. {
  6328. if (model.layers[il].attn_norm_2) {
  6329. // Falcon-40B
  6330. cur = llm_build_norm(ctx0, inpL, hparams,
  6331. model.layers[il].attn_norm_2,
  6332. model.layers[il].attn_norm_2_b,
  6333. LLM_NORM, cb, il);
  6334. cb(cur, "attn_norm_2", il);
  6335. } else {
  6336. cur = attn_norm;
  6337. }
  6338. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6339. cb(cur, "wqkv", il);
  6340. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6341. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6342. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6343. cb(Qcur, "Qcur", il);
  6344. cb(Kcur, "Kcur", il);
  6345. cb(Vcur, "Vcur", il);
  6346. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6347. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6348. // using mode = 2 for neox mode
  6349. Qcur = ggml_rope_ext(
  6350. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6351. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6352. );
  6353. cb(Qcur, "Qcur", il);
  6354. Kcur = ggml_rope_ext(
  6355. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6356. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6357. );
  6358. cb(Kcur, "Kcur", il);
  6359. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6360. model.layers[il].wo, NULL,
  6361. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6362. }
  6363. if (il == n_layer - 1) {
  6364. // skip computing output for unused tokens
  6365. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6366. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6367. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6368. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6369. }
  6370. struct ggml_tensor * ffn_inp = cur;
  6371. // feed forward
  6372. {
  6373. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6374. model.layers[il].ffn_up, NULL,
  6375. NULL, NULL,
  6376. model.layers[il].ffn_down, NULL,
  6377. NULL,
  6378. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6379. cb(cur, "ffn_out", il);
  6380. }
  6381. cur = ggml_add(ctx0, cur, ffn_inp);
  6382. cb(cur, "l_out", il);
  6383. cur = ggml_add(ctx0, cur, inpL);
  6384. cb(cur, "l_out", il);
  6385. // input for next layer
  6386. inpL = cur;
  6387. }
  6388. cur = inpL;
  6389. // norm
  6390. cur = llm_build_norm(ctx0, cur, hparams,
  6391. model.output_norm,
  6392. model.output_norm_b,
  6393. LLM_NORM, cb, -1);
  6394. cb(cur, "result_norm", -1);
  6395. cur = ggml_mul_mat(ctx0, model.output, cur);
  6396. cb(cur, "result_output", -1);
  6397. ggml_build_forward_expand(gf, cur);
  6398. return gf;
  6399. }
  6400. struct ggml_cgraph * build_grok() {
  6401. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6402. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6403. int32_t n_tokens = this->n_tokens;
  6404. const int64_t n_embd_head = hparams.n_embd_head_v;
  6405. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6406. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6407. struct ggml_tensor * cur;
  6408. struct ggml_tensor * inpL;
  6409. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6410. // multiply by embedding_multiplier_scale of 78.38367176906169
  6411. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6412. // inp_pos - contains the positions
  6413. struct ggml_tensor * inp_pos = build_inp_pos();
  6414. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6415. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6416. for (int il = 0; il < n_layer; ++il) {
  6417. struct ggml_tensor * inpSA = inpL;
  6418. // norm
  6419. cur = llm_build_norm(ctx0, inpL, hparams,
  6420. model.layers[il].attn_norm, NULL,
  6421. LLM_NORM_RMS, cb, il);
  6422. cb(cur, "attn_norm", il);
  6423. // self-attention
  6424. {
  6425. // compute Q and K and RoPE them
  6426. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6427. cb(Qcur, "Qcur", il);
  6428. if (model.layers[il].bq) {
  6429. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6430. cb(Qcur, "Qcur", il);
  6431. }
  6432. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6433. cb(Kcur, "Kcur", il);
  6434. if (model.layers[il].bk) {
  6435. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6436. cb(Kcur, "Kcur", il);
  6437. }
  6438. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6439. cb(Vcur, "Vcur", il);
  6440. if (model.layers[il].bv) {
  6441. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6442. cb(Vcur, "Vcur", il);
  6443. }
  6444. Qcur = ggml_rope_ext(
  6445. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6446. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6447. ext_factor, attn_factor, beta_fast, beta_slow
  6448. );
  6449. cb(Qcur, "Qcur", il);
  6450. Kcur = ggml_rope_ext(
  6451. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6452. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6453. ext_factor, attn_factor, beta_fast, beta_slow
  6454. );
  6455. cb(Kcur, "Kcur", il);
  6456. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6457. model.layers[il].wo, model.layers[il].bo,
  6458. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6459. }
  6460. if (il == n_layer - 1) {
  6461. // skip computing output for unused tokens
  6462. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6463. n_tokens = n_outputs;
  6464. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6465. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6466. }
  6467. // Grok
  6468. // if attn_out_norm is present then apply it before adding the input
  6469. if (model.layers[il].attn_out_norm) {
  6470. cur = llm_build_norm(ctx0, cur, hparams,
  6471. model.layers[il].attn_out_norm, NULL,
  6472. LLM_NORM_RMS, cb, il);
  6473. cb(cur, "attn_out_norm", il);
  6474. }
  6475. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6476. cb(ffn_inp, "ffn_inp", il);
  6477. // feed-forward network
  6478. // MoE branch
  6479. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6480. model.layers[il].ffn_norm, NULL,
  6481. LLM_NORM_RMS, cb, il);
  6482. cb(cur, "ffn_norm", il);
  6483. cur = llm_build_moe_ffn(ctx0, cur,
  6484. model.layers[il].ffn_gate_inp,
  6485. model.layers[il].ffn_up_exps,
  6486. model.layers[il].ffn_gate_exps,
  6487. model.layers[il].ffn_down_exps,
  6488. n_expert, n_expert_used,
  6489. LLM_FFN_GELU, true,
  6490. cb, il);
  6491. cb(cur, "ffn_moe_out", il);
  6492. // Grok
  6493. // if layer_out_norm is present then apply it before adding the input
  6494. // Idea: maybe ffn_out_norm is a better name
  6495. if (model.layers[il].layer_out_norm) {
  6496. cur = llm_build_norm(ctx0, cur, hparams,
  6497. model.layers[il].layer_out_norm, NULL,
  6498. LLM_NORM_RMS, cb, il);
  6499. cb(cur, "layer_out_norm", il);
  6500. }
  6501. cur = ggml_add(ctx0, cur, ffn_inp);
  6502. cb(cur, "ffn_out", il);
  6503. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6504. if (layer_dir != nullptr) {
  6505. cur = ggml_add(ctx0, cur, layer_dir);
  6506. }
  6507. cb(cur, "l_out", il);
  6508. // input for next layer
  6509. inpL = cur;
  6510. }
  6511. cur = inpL;
  6512. cur = llm_build_norm(ctx0, cur, hparams,
  6513. model.output_norm, NULL,
  6514. LLM_NORM_RMS, cb, -1);
  6515. cb(cur, "result_norm", -1);
  6516. // lm_head
  6517. cur = ggml_mul_mat(ctx0, model.output, cur);
  6518. // Grok
  6519. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6520. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6521. cb(cur, "result_output", -1);
  6522. ggml_build_forward_expand(gf, cur);
  6523. return gf;
  6524. }
  6525. struct ggml_cgraph * build_dbrx() {
  6526. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6527. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6528. int32_t n_tokens = this->n_tokens;
  6529. const int64_t n_embd_head = hparams.n_embd_head_v;
  6530. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6531. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6532. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6533. struct ggml_tensor * cur;
  6534. struct ggml_tensor * inpL;
  6535. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6536. // inp_pos - contains the positions
  6537. struct ggml_tensor * inp_pos = build_inp_pos();
  6538. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6539. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6540. for (int il = 0; il < n_layer; ++il) {
  6541. struct ggml_tensor * inpSA = inpL;
  6542. // norm
  6543. cur = llm_build_norm(ctx0, inpL, hparams,
  6544. model.layers[il].attn_norm, NULL,
  6545. LLM_NORM, cb, il);
  6546. cb(cur, "attn_norm", il);
  6547. // self-attention
  6548. {
  6549. struct ggml_tensor * Qcur = nullptr;
  6550. struct ggml_tensor * Kcur = nullptr;
  6551. struct ggml_tensor * Vcur = nullptr;
  6552. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6553. cb(cur, "wqkv", il);
  6554. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6555. cb(cur, "wqkv_clamped", il);
  6556. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6557. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6558. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6559. cb(Qcur, "Qcur", il);
  6560. cb(Kcur, "Kcur", il);
  6561. cb(Vcur, "Vcur", il);
  6562. Qcur = ggml_rope_ext(
  6563. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6564. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6565. ext_factor, attn_factor, beta_fast, beta_slow
  6566. );
  6567. cb(Qcur, "Qcur", il);
  6568. Kcur = ggml_rope_ext(
  6569. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6570. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6571. ext_factor, attn_factor, beta_fast, beta_slow
  6572. );
  6573. cb(Kcur, "Kcur", il);
  6574. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6575. model.layers[il].wo, NULL,
  6576. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6577. }
  6578. if (il == n_layer - 1) {
  6579. // skip computing output for unused tokens
  6580. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6581. n_tokens = n_outputs;
  6582. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6583. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6584. }
  6585. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6586. cb(ffn_inp, "ffn_inp", il);
  6587. // feed-forward network
  6588. // MoE branch
  6589. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6590. model.layers[il].attn_out_norm, NULL,
  6591. LLM_NORM, cb, il);
  6592. cb(cur, "attn_out_norm", il);
  6593. cur = llm_build_moe_ffn(ctx0, cur,
  6594. model.layers[il].ffn_gate_inp,
  6595. model.layers[il].ffn_up_exps,
  6596. model.layers[il].ffn_gate_exps,
  6597. model.layers[il].ffn_down_exps,
  6598. n_expert, n_expert_used,
  6599. LLM_FFN_SILU, true,
  6600. cb, il);
  6601. cb(cur, "ffn_moe_out", il);
  6602. cur = ggml_add(ctx0, cur, ffn_inp);
  6603. cb(cur, "ffn_out", il);
  6604. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6605. if (layer_dir != nullptr) {
  6606. cur = ggml_add(ctx0, cur, layer_dir);
  6607. }
  6608. cb(cur, "l_out", il);
  6609. // input for next layer
  6610. inpL = cur;
  6611. }
  6612. cur = inpL;
  6613. cur = llm_build_norm(ctx0, cur, hparams,
  6614. model.output_norm, NULL,
  6615. LLM_NORM, cb, -1);
  6616. cb(cur, "result_norm", -1);
  6617. // lm_head
  6618. cur = ggml_mul_mat(ctx0, model.output, cur);
  6619. cb(cur, "result_output", -1);
  6620. ggml_build_forward_expand(gf, cur);
  6621. return gf;
  6622. }
  6623. struct ggml_cgraph * build_starcoder() {
  6624. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6625. const int64_t n_embd_head = hparams.n_embd_head_v;
  6626. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6627. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6628. struct ggml_tensor * cur;
  6629. struct ggml_tensor * inpL;
  6630. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6631. // inp_pos - contains the positions
  6632. struct ggml_tensor * inp_pos = build_inp_pos();
  6633. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6634. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6635. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6636. cb(pos, "pos_embd", -1);
  6637. inpL = ggml_add(ctx0, inpL, pos);
  6638. cb(inpL, "inpL", -1);
  6639. for (int il = 0; il < n_layer; ++il) {
  6640. cur = llm_build_norm(ctx0, inpL, hparams,
  6641. model.layers[il].attn_norm,
  6642. model.layers[il].attn_norm_b,
  6643. LLM_NORM, cb, il);
  6644. cb(cur, "attn_norm", il);
  6645. // self-attention
  6646. {
  6647. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6648. cb(cur, "wqkv", il);
  6649. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6650. cb(cur, "bqkv", il);
  6651. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6652. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6653. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6654. cb(Qcur, "Qcur", il);
  6655. cb(Kcur, "Kcur", il);
  6656. cb(Vcur, "Vcur", il);
  6657. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6658. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6659. model.layers[il].wo, model.layers[il].bo,
  6660. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6661. }
  6662. if (il == n_layer - 1) {
  6663. // skip computing output for unused tokens
  6664. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6665. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6666. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6667. }
  6668. // add the input
  6669. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6670. cb(ffn_inp, "ffn_inp", il);
  6671. // FF
  6672. {
  6673. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6674. model.layers[il].ffn_norm,
  6675. model.layers[il].ffn_norm_b,
  6676. LLM_NORM, cb, il);
  6677. cb(cur, "ffn_norm", il);
  6678. cur = llm_build_ffn(ctx0, cur,
  6679. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6680. NULL, NULL,
  6681. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6682. NULL,
  6683. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6684. cb(cur, "ffn_out", il);
  6685. }
  6686. inpL = ggml_add(ctx0, cur, ffn_inp);
  6687. cb(inpL, "l_out", il);
  6688. }
  6689. cur = llm_build_norm(ctx0, inpL, hparams,
  6690. model.output_norm,
  6691. model.output_norm_b,
  6692. LLM_NORM, cb, -1);
  6693. cb(cur, "result_norm", -1);
  6694. cur = ggml_mul_mat(ctx0, model.output, cur);
  6695. cb(cur, "result_output", -1);
  6696. ggml_build_forward_expand(gf, cur);
  6697. return gf;
  6698. }
  6699. struct ggml_cgraph * build_refact() {
  6700. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6701. const int64_t n_embd_head = hparams.n_embd_head_v;
  6702. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6703. struct ggml_tensor * cur;
  6704. struct ggml_tensor * inpL;
  6705. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6706. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6707. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6708. for (int il = 0; il < n_layer; ++il) {
  6709. struct ggml_tensor * inpSA = inpL;
  6710. cur = llm_build_norm(ctx0, inpL, hparams,
  6711. model.layers[il].attn_norm, NULL,
  6712. LLM_NORM_RMS, cb, il);
  6713. cb(cur, "attn_norm", il);
  6714. // self-attention
  6715. {
  6716. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6717. cb(Qcur, "Qcur", il);
  6718. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6719. cb(Kcur, "Kcur", il);
  6720. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6721. cb(Vcur, "Vcur", il);
  6722. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6723. cb(Kcur, "Kcur", il);
  6724. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6725. cb(Qcur, "Qcur", il);
  6726. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6727. model.layers[il].wo, NULL,
  6728. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6729. }
  6730. if (il == n_layer - 1) {
  6731. // skip computing output for unused tokens
  6732. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6733. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6734. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6735. }
  6736. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6737. cb(ffn_inp, "ffn_inp", il);
  6738. // feed-forward network
  6739. {
  6740. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6741. model.layers[il].ffn_norm, NULL,
  6742. LLM_NORM_RMS, cb, il);
  6743. cb(cur, "ffn_norm", il);
  6744. cur = llm_build_ffn(ctx0, cur,
  6745. model.layers[il].ffn_up, NULL,
  6746. model.layers[il].ffn_gate, NULL,
  6747. model.layers[il].ffn_down, NULL,
  6748. NULL,
  6749. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6750. cb(cur, "ffn_out", il);
  6751. }
  6752. cur = ggml_add(ctx0, cur, ffn_inp);
  6753. cb(cur, "l_out", il);
  6754. // input for next layer
  6755. inpL = cur;
  6756. }
  6757. cur = inpL;
  6758. cur = llm_build_norm(ctx0, cur, hparams,
  6759. model.output_norm, NULL,
  6760. LLM_NORM_RMS, cb, -1);
  6761. cb(cur, "result_norm", -1);
  6762. // lm_head
  6763. cur = ggml_mul_mat(ctx0, model.output, cur);
  6764. cb(cur, "result_output", -1);
  6765. ggml_build_forward_expand(gf, cur);
  6766. return gf;
  6767. }
  6768. struct ggml_cgraph * build_bert() {
  6769. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6770. const int64_t n_embd_head = hparams.n_embd_head_v;
  6771. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6772. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6773. struct ggml_tensor * cur;
  6774. struct ggml_tensor * inpL;
  6775. struct ggml_tensor * inp_pos = nullptr;
  6776. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6777. inp_pos = build_inp_pos();
  6778. }
  6779. struct ggml_tensor * inp_mean = build_inp_mean();
  6780. struct ggml_tensor * inp_cls = build_inp_cls();
  6781. // construct input embeddings (token, type, position)
  6782. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6783. // token types are hardcoded to zero ("Sentence A")
  6784. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6785. inpL = ggml_add(ctx0, inpL, type_row0);
  6786. if (model.arch == LLM_ARCH_BERT) {
  6787. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6788. }
  6789. cb(inpL, "inp_embd", -1);
  6790. // embed layer norm
  6791. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6792. cb(inpL, "inp_norm", -1);
  6793. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6794. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6795. // iterate layers
  6796. for (int il = 0; il < n_layer; ++il) {
  6797. struct ggml_tensor * cur = inpL;
  6798. struct ggml_tensor * Qcur;
  6799. struct ggml_tensor * Kcur;
  6800. struct ggml_tensor * Vcur;
  6801. // self-attention
  6802. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  6803. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6804. cb(Qcur, "Qcur", il);
  6805. if (model.layers[il].attn_q_norm) {
  6806. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6807. model.layers[il].attn_q_norm,
  6808. model.layers[il].attn_q_norm_b,
  6809. LLM_NORM, cb, il);
  6810. }
  6811. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6812. cb(Kcur, "Kcur", il);
  6813. if (model.layers[il].attn_k_norm) {
  6814. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6815. model.layers[il].attn_k_norm,
  6816. model.layers[il].attn_k_norm_b,
  6817. LLM_NORM, cb, il);
  6818. }
  6819. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6820. cb(Vcur, "Vcur", il);
  6821. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6822. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6823. } else {
  6824. // compute Q and K and RoPE them
  6825. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6826. cb(cur, "wqkv", il);
  6827. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6828. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6829. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6830. cb(Qcur, "Qcur", il);
  6831. cb(Kcur, "Kcur", il);
  6832. cb(Vcur, "Vcur", il);
  6833. Qcur = ggml_rope_ext(
  6834. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6835. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6836. ext_factor, attn_factor, beta_fast, beta_slow
  6837. );
  6838. cb(Qcur, "Qcur", il);
  6839. Kcur = ggml_rope_ext(
  6840. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6841. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6842. ext_factor, attn_factor, beta_fast, beta_slow
  6843. );
  6844. cb(Kcur, "Kcur", il);
  6845. }
  6846. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6847. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6848. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6849. cb(kq, "kq", il);
  6850. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6851. cb(kq, "kq_soft_max_ext", il);
  6852. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6853. cb(v, "v", il);
  6854. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6855. cb(kqv, "kqv", il);
  6856. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6857. cb(kqv_merged, "kqv_merged", il);
  6858. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6859. cb(cur, "kqv_merged_cont", il);
  6860. ggml_build_forward_expand(gf, cur);
  6861. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6862. if (model.layers[il].bo) {
  6863. cb(cur, "kqv_wo", il);
  6864. }
  6865. if (model.layers[il].bo) {
  6866. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6867. }
  6868. cb(cur, "kqv_out", il);
  6869. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6870. // skip computing output for unused tokens
  6871. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6872. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6873. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6874. }
  6875. // re-add the layer input
  6876. cur = ggml_add(ctx0, cur, inpL);
  6877. // attention layer norm
  6878. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6879. struct ggml_tensor * ffn_inp = cur;
  6880. cb(ffn_inp, "ffn_inp", il);
  6881. // feed-forward network
  6882. if (model.arch == LLM_ARCH_BERT) {
  6883. cur = llm_build_ffn(ctx0, cur,
  6884. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6885. NULL, NULL,
  6886. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6887. NULL,
  6888. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6889. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  6890. cur = llm_build_ffn(ctx0, cur,
  6891. model.layers[il].ffn_up, NULL,
  6892. model.layers[il].ffn_gate, NULL,
  6893. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6894. NULL,
  6895. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  6896. } else {
  6897. cur = llm_build_ffn(ctx0, cur,
  6898. model.layers[il].ffn_up, NULL,
  6899. model.layers[il].ffn_gate, NULL,
  6900. model.layers[il].ffn_down, NULL,
  6901. NULL,
  6902. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6903. }
  6904. cb(cur, "ffn_out", il);
  6905. // attentions bypass the intermediate layer
  6906. cur = ggml_add(ctx0, cur, ffn_inp);
  6907. // output layer norm
  6908. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6909. // input for next layer
  6910. inpL = cur;
  6911. }
  6912. // final output
  6913. cur = inpL;
  6914. cb(cur, "result_embd", -1);
  6915. // pooling layer
  6916. switch (pooling_type) {
  6917. case LLAMA_POOLING_TYPE_NONE:
  6918. {
  6919. // nop
  6920. } break;
  6921. case LLAMA_POOLING_TYPE_MEAN:
  6922. {
  6923. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6924. cb(cur, "result_embd_pooled", -1);
  6925. } break;
  6926. case LLAMA_POOLING_TYPE_CLS:
  6927. {
  6928. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6929. cb(cur, "result_embd_pooled", -1);
  6930. } break;
  6931. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6932. {
  6933. GGML_ASSERT(false && "Invalid pooling type");
  6934. } break;
  6935. }
  6936. ggml_build_forward_expand(gf, cur);
  6937. return gf;
  6938. }
  6939. struct ggml_cgraph * build_bloom() {
  6940. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6941. const int64_t n_embd_head = hparams.n_embd_head_v;
  6942. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6943. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6944. struct ggml_tensor * cur;
  6945. struct ggml_tensor * inpL;
  6946. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6947. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6948. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6949. inpL = llm_build_norm(ctx0, inpL, hparams,
  6950. model.tok_norm,
  6951. model.tok_norm_b,
  6952. LLM_NORM, cb, -1);
  6953. cb(inpL, "inp_norm", -1);
  6954. for (int il = 0; il < n_layer; ++il) {
  6955. cur = llm_build_norm(ctx0, inpL, hparams,
  6956. model.layers[il].attn_norm,
  6957. model.layers[il].attn_norm_b,
  6958. LLM_NORM, cb, il);
  6959. cb(cur, "attn_norm", il);
  6960. // self-attention
  6961. {
  6962. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6963. cb(cur, "wqkv", il);
  6964. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6965. cb(cur, "bqkv", il);
  6966. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6967. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6968. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6969. cb(Qcur, "Qcur", il);
  6970. cb(Kcur, "Kcur", il);
  6971. cb(Vcur, "Vcur", il);
  6972. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6973. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6974. model.layers[il].wo, model.layers[il].bo,
  6975. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6976. }
  6977. if (il == n_layer - 1) {
  6978. // skip computing output for unused tokens
  6979. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6980. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6981. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6982. }
  6983. // Add the input
  6984. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6985. cb(ffn_inp, "ffn_inp", il);
  6986. // FF
  6987. {
  6988. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6989. model.layers[il].ffn_norm,
  6990. model.layers[il].ffn_norm_b,
  6991. LLM_NORM, cb, il);
  6992. cb(cur, "ffn_norm", il);
  6993. cur = llm_build_ffn(ctx0, cur,
  6994. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6995. NULL, NULL,
  6996. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6997. NULL,
  6998. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6999. cb(cur, "ffn_out", il);
  7000. }
  7001. inpL = ggml_add(ctx0, cur, ffn_inp);
  7002. cb(inpL, "l_out", il);
  7003. }
  7004. cur = llm_build_norm(ctx0, inpL, hparams,
  7005. model.output_norm,
  7006. model.output_norm_b,
  7007. LLM_NORM, cb, -1);
  7008. cb(cur, "result_norm", -1);
  7009. cur = ggml_mul_mat(ctx0, model.output, cur);
  7010. cb(cur, "result_output", -1);
  7011. ggml_build_forward_expand(gf, cur);
  7012. return gf;
  7013. }
  7014. struct ggml_cgraph * build_mpt() {
  7015. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7016. const int64_t n_embd_head = hparams.n_embd_head_v;
  7017. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7018. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7019. struct ggml_tensor * cur;
  7020. struct ggml_tensor * pos;
  7021. struct ggml_tensor * inpL;
  7022. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7023. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7024. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7025. if (model.pos_embd) {
  7026. // inp_pos - contains the positions
  7027. struct ggml_tensor * inp_pos = build_inp_pos();
  7028. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7029. cb(pos, "pos_embd", -1);
  7030. inpL = ggml_add(ctx0, inpL, pos);
  7031. cb(inpL, "inpL", -1);
  7032. }
  7033. for (int il = 0; il < n_layer; ++il) {
  7034. struct ggml_tensor * attn_norm;
  7035. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7036. model.layers[il].attn_norm,
  7037. model.layers[il].attn_norm_b,
  7038. LLM_NORM, cb, il);
  7039. cb(attn_norm, "attn_norm", il);
  7040. // self-attention
  7041. {
  7042. cur = attn_norm;
  7043. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7044. cb(cur, "wqkv", il);
  7045. if (model.layers[il].bqkv){
  7046. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7047. cb(cur, "bqkv", il);
  7048. }
  7049. if (hparams.f_clamp_kqv > 0.0f) {
  7050. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7051. cb(cur, "wqkv_clamped", il);
  7052. }
  7053. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7054. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7055. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7056. cb(Qcur, "Qcur", il);
  7057. cb(Kcur, "Kcur", il);
  7058. cb(Vcur, "Vcur", il);
  7059. // Q/K Layernorm
  7060. if (model.layers[il].attn_q_norm) {
  7061. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7062. model.layers[il].attn_q_norm,
  7063. model.layers[il].attn_q_norm_b,
  7064. LLM_NORM, cb, il);
  7065. cb(Qcur, "Qcur", il);
  7066. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7067. model.layers[il].attn_k_norm,
  7068. model.layers[il].attn_k_norm_b,
  7069. LLM_NORM, cb, il);
  7070. cb(Kcur, "Kcur", il);
  7071. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7072. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7073. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7074. model.layers[il].wo, model.layers[il].bo,
  7075. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7076. } else {
  7077. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7078. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7079. model.layers[il].wo, model.layers[il].bo,
  7080. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7081. }
  7082. }
  7083. if (il == n_layer - 1) {
  7084. // skip computing output for unused tokens
  7085. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7086. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7087. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7088. }
  7089. // Add the input
  7090. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7091. cb(ffn_inp, "ffn_inp", il);
  7092. // feed forward
  7093. {
  7094. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7095. model.layers[il].ffn_norm,
  7096. model.layers[il].ffn_norm_b,
  7097. LLM_NORM, cb, il);
  7098. cb(cur, "ffn_norm", il);
  7099. cur = llm_build_ffn(ctx0, cur,
  7100. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7101. NULL, NULL,
  7102. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7103. model.layers[il].ffn_act,
  7104. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7105. cb(cur, "ffn_out", il);
  7106. }
  7107. cur = ggml_add(ctx0, cur, ffn_inp);
  7108. cb(cur, "l_out", il);
  7109. // input for next layer
  7110. inpL = cur;
  7111. }
  7112. cur = inpL;
  7113. cur = llm_build_norm(ctx0, cur, hparams,
  7114. model.output_norm,
  7115. model.output_norm_b,
  7116. LLM_NORM, cb, -1);
  7117. cb(cur, "result_norm", -1);
  7118. cur = ggml_mul_mat(ctx0, model.output, cur);
  7119. cb(cur, "result_output", -1);
  7120. ggml_build_forward_expand(gf, cur);
  7121. return gf;
  7122. }
  7123. struct ggml_cgraph * build_stablelm() {
  7124. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7125. const int64_t n_embd_head = hparams.n_embd_head_v;
  7126. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7127. struct ggml_tensor * cur;
  7128. struct ggml_tensor * inpL;
  7129. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7130. // inp_pos - contains the positions
  7131. struct ggml_tensor * inp_pos = build_inp_pos();
  7132. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7133. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7134. for (int il = 0; il < n_layer; ++il) {
  7135. // norm
  7136. cur = llm_build_norm(ctx0, inpL, hparams,
  7137. model.layers[il].attn_norm,
  7138. model.layers[il].attn_norm_b,
  7139. LLM_NORM, cb, il);
  7140. cb(cur, "attn_norm", il);
  7141. struct ggml_tensor * inpSA = cur;
  7142. // self-attention
  7143. {
  7144. // compute Q and K and RoPE them
  7145. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7146. cb(Qcur, "Qcur", il);
  7147. if (model.layers[il].bq) {
  7148. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7149. cb(Qcur, "Qcur", il);
  7150. }
  7151. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7152. cb(Kcur, "Kcur", il);
  7153. if (model.layers[il].bk) {
  7154. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7155. cb(Kcur, "Kcur", il);
  7156. }
  7157. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7158. cb(Vcur, "Vcur", il);
  7159. if (model.layers[il].bv) {
  7160. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7161. cb(Vcur, "Vcur", il);
  7162. }
  7163. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7164. cb(Qcur, "Qcur", il);
  7165. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7166. cb(Kcur, "Kcur", il);
  7167. if (model.layers[il].attn_q_norm) {
  7168. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7169. model.layers[il].attn_q_norm,
  7170. NULL,
  7171. LLM_NORM, cb, il);
  7172. cb(Qcur, "Qcur", il);
  7173. }
  7174. if (model.layers[il].attn_k_norm) {
  7175. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7176. model.layers[il].attn_k_norm,
  7177. NULL,
  7178. LLM_NORM, cb, il);
  7179. cb(Kcur, "Kcur", il);
  7180. }
  7181. Qcur = ggml_rope_ext(
  7182. ctx0, Qcur, inp_pos, nullptr,
  7183. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7184. ext_factor, attn_factor, beta_fast, beta_slow
  7185. );
  7186. cb(Qcur, "Qcur", il);
  7187. Kcur = ggml_rope_ext(
  7188. ctx0, Kcur, inp_pos, nullptr,
  7189. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7190. ext_factor, attn_factor, beta_fast, beta_slow
  7191. );
  7192. cb(Kcur, "Kcur", il);
  7193. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7194. model.layers[il].wo, NULL,
  7195. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7196. }
  7197. if (il == n_layer - 1) {
  7198. // skip computing output for unused tokens
  7199. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7200. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7201. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7202. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7203. }
  7204. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7205. cb(ffn_inp, "ffn_inp", il);
  7206. // feed-forward network
  7207. {
  7208. if (model.layers[il].ffn_norm) {
  7209. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7210. model.layers[il].ffn_norm,
  7211. model.layers[il].ffn_norm_b,
  7212. LLM_NORM, cb, il);
  7213. cb(cur, "ffn_norm", il);
  7214. } else {
  7215. // parallel residual
  7216. cur = inpSA;
  7217. }
  7218. cur = llm_build_ffn(ctx0, cur,
  7219. model.layers[il].ffn_up, NULL,
  7220. model.layers[il].ffn_gate, NULL,
  7221. model.layers[il].ffn_down, NULL,
  7222. NULL,
  7223. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7224. cb(cur, "ffn_out", il);
  7225. }
  7226. cur = ggml_add(ctx0, cur, ffn_inp);
  7227. cb(cur, "l_out", il);
  7228. // input for next layer
  7229. inpL = cur;
  7230. }
  7231. cur = inpL;
  7232. cur = llm_build_norm(ctx0, cur, hparams,
  7233. model.output_norm,
  7234. model.output_norm_b,
  7235. LLM_NORM, cb, -1);
  7236. cb(cur, "result_norm", -1);
  7237. // lm_head
  7238. cur = ggml_mul_mat(ctx0, model.output, cur);
  7239. cb(cur, "result_output", -1);
  7240. ggml_build_forward_expand(gf, cur);
  7241. return gf;
  7242. }
  7243. struct ggml_cgraph * build_qwen() {
  7244. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7245. const int64_t n_embd_head = hparams.n_embd_head_v;
  7246. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7247. struct ggml_tensor * cur;
  7248. struct ggml_tensor * inpL;
  7249. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7250. // inp_pos - contains the positions
  7251. struct ggml_tensor * inp_pos = build_inp_pos();
  7252. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7253. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7254. for (int il = 0; il < n_layer; ++il) {
  7255. struct ggml_tensor * inpSA = inpL;
  7256. cur = llm_build_norm(ctx0, inpL, hparams,
  7257. model.layers[il].attn_norm, NULL,
  7258. LLM_NORM_RMS, cb, il);
  7259. cb(cur, "attn_norm", il);
  7260. // self-attention
  7261. {
  7262. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7263. cb(cur, "wqkv", il);
  7264. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7265. cb(cur, "bqkv", il);
  7266. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7267. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7268. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7269. cb(Qcur, "Qcur", il);
  7270. cb(Kcur, "Kcur", il);
  7271. cb(Vcur, "Vcur", il);
  7272. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7273. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7274. // using mode = 2 for neox mode
  7275. Qcur = ggml_rope_ext(
  7276. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7277. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7278. );
  7279. cb(Qcur, "Qcur", il);
  7280. Kcur = ggml_rope_ext(
  7281. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7282. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7283. );
  7284. cb(Kcur, "Kcur", il);
  7285. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7286. model.layers[il].wo, NULL,
  7287. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7288. }
  7289. if (il == n_layer - 1) {
  7290. // skip computing output for unused tokens
  7291. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7292. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7293. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7294. }
  7295. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7296. cb(ffn_inp, "ffn_inp", il);
  7297. // feed-forward forward
  7298. {
  7299. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7300. model.layers[il].ffn_norm, NULL,
  7301. LLM_NORM_RMS, cb, il);
  7302. cb(cur, "ffn_norm", il);
  7303. cur = llm_build_ffn(ctx0, cur,
  7304. model.layers[il].ffn_up, NULL,
  7305. model.layers[il].ffn_gate, NULL,
  7306. model.layers[il].ffn_down, NULL,
  7307. NULL,
  7308. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7309. cb(cur, "ffn_out", il);
  7310. }
  7311. cur = ggml_add(ctx0, cur, ffn_inp);
  7312. cb(cur, "l_out", il);
  7313. // input for next layer
  7314. inpL = cur;
  7315. }
  7316. cur = inpL;
  7317. cur = llm_build_norm(ctx0, cur, hparams,
  7318. model.output_norm, NULL,
  7319. LLM_NORM_RMS, cb, -1);
  7320. cb(cur, "result_norm", -1);
  7321. // lm_head
  7322. cur = ggml_mul_mat(ctx0, model.output, cur);
  7323. cb(cur, "result_output", -1);
  7324. ggml_build_forward_expand(gf, cur);
  7325. return gf;
  7326. }
  7327. struct ggml_cgraph * build_qwen2() {
  7328. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7329. const int64_t n_embd_head = hparams.n_embd_head_v;
  7330. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7331. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7332. struct ggml_tensor * cur;
  7333. struct ggml_tensor * inpL;
  7334. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7335. // inp_pos - contains the positions
  7336. struct ggml_tensor * inp_pos = build_inp_pos();
  7337. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7338. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7339. for (int il = 0; il < n_layer; ++il) {
  7340. struct ggml_tensor * inpSA = inpL;
  7341. // norm
  7342. cur = llm_build_norm(ctx0, inpL, hparams,
  7343. model.layers[il].attn_norm, NULL,
  7344. LLM_NORM_RMS, cb, il);
  7345. cb(cur, "attn_norm", il);
  7346. // self-attention
  7347. {
  7348. // compute Q and K and RoPE them
  7349. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7350. cb(Qcur, "Qcur", il);
  7351. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7352. cb(Qcur, "Qcur", il);
  7353. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7354. cb(Kcur, "Kcur", il);
  7355. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7356. cb(Kcur, "Kcur", il);
  7357. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7358. cb(Vcur, "Vcur", il);
  7359. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7360. cb(Vcur, "Vcur", il);
  7361. Qcur = ggml_rope_ext(
  7362. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7363. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7364. ext_factor, attn_factor, beta_fast, beta_slow
  7365. );
  7366. cb(Qcur, "Qcur", il);
  7367. Kcur = ggml_rope_ext(
  7368. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7369. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7370. ext_factor, attn_factor, beta_fast, beta_slow
  7371. );
  7372. cb(Kcur, "Kcur", il);
  7373. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7374. model.layers[il].wo, model.layers[il].bo,
  7375. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7376. }
  7377. if (il == n_layer - 1) {
  7378. // skip computing output for unused tokens
  7379. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7380. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7381. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7382. }
  7383. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7384. cb(ffn_inp, "ffn_inp", il);
  7385. // feed-forward network
  7386. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7387. model.layers[il].ffn_norm, NULL,
  7388. LLM_NORM_RMS, cb, il);
  7389. cb(cur, "ffn_norm", il);
  7390. cur = llm_build_ffn(ctx0, cur,
  7391. model.layers[il].ffn_up, NULL,
  7392. model.layers[il].ffn_gate, NULL,
  7393. model.layers[il].ffn_down, NULL,
  7394. NULL,
  7395. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7396. cb(cur, "ffn_out", il);
  7397. cur = ggml_add(ctx0, cur, ffn_inp);
  7398. cb(cur, "l_out", il);
  7399. // input for next layer
  7400. inpL = cur;
  7401. }
  7402. cur = inpL;
  7403. cur = llm_build_norm(ctx0, cur, hparams,
  7404. model.output_norm, NULL,
  7405. LLM_NORM_RMS, cb, -1);
  7406. cb(cur, "result_norm", -1);
  7407. // lm_head
  7408. cur = ggml_mul_mat(ctx0, model.output, cur);
  7409. cb(cur, "result_output", -1);
  7410. ggml_build_forward_expand(gf, cur);
  7411. return gf;
  7412. }
  7413. struct ggml_cgraph * build_qwen2moe() {
  7414. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7415. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7416. int32_t n_tokens = this->n_tokens;
  7417. const int64_t n_embd_head = hparams.n_embd_head_v;
  7418. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7419. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7420. struct ggml_tensor * cur;
  7421. struct ggml_tensor * inpL;
  7422. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7423. // inp_pos - contains the positions
  7424. struct ggml_tensor * inp_pos = build_inp_pos();
  7425. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7426. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7427. for (int il = 0; il < n_layer; ++il) {
  7428. struct ggml_tensor * inpSA = inpL;
  7429. // norm
  7430. cur = llm_build_norm(ctx0, inpL, hparams,
  7431. model.layers[il].attn_norm, NULL,
  7432. LLM_NORM_RMS, cb, il);
  7433. cb(cur, "attn_norm", il);
  7434. // self_attention
  7435. {
  7436. // compute Q and K and RoPE them
  7437. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7438. cb(Qcur, "Qcur", il);
  7439. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7440. cb(Qcur, "Qcur", il);
  7441. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7442. cb(Kcur, "Kcur", il);
  7443. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7444. cb(Kcur, "Kcur", il);
  7445. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7446. cb(Vcur, "Vcur", il);
  7447. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7448. cb(Vcur, "Vcur", il);
  7449. Qcur = ggml_rope_ext(
  7450. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7451. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7452. ext_factor, attn_factor, beta_fast, beta_slow
  7453. );
  7454. cb(Qcur, "Qcur", il);
  7455. Kcur = ggml_rope_ext(
  7456. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7457. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7458. ext_factor, attn_factor, beta_fast, beta_slow
  7459. );
  7460. cb(Kcur, "Kcur", il);
  7461. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7462. model.layers[il].wo, model.layers[il].bo,
  7463. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7464. }
  7465. if (il == n_layer - 1) {
  7466. // skip computing output for unused tokens
  7467. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7468. n_tokens = n_outputs;
  7469. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7470. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7471. }
  7472. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7473. cb(ffn_inp, "ffn_inp", il);
  7474. // MoE branch
  7475. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7476. model.layers[il].ffn_norm, NULL,
  7477. LLM_NORM_RMS, cb, il);
  7478. cb(cur, "ffn_norm", il);
  7479. ggml_tensor * moe_out =
  7480. llm_build_moe_ffn(ctx0, cur,
  7481. model.layers[il].ffn_gate_inp,
  7482. model.layers[il].ffn_up_exps,
  7483. model.layers[il].ffn_gate_exps,
  7484. model.layers[il].ffn_down_exps,
  7485. n_expert, n_expert_used,
  7486. LLM_FFN_SILU, false,
  7487. cb, il);
  7488. cb(cur, "ffn_moe_out", il);
  7489. // FFN shared expert
  7490. {
  7491. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7492. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7493. // sigmoid
  7494. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7495. cb(cur_gate, "ffn_shexp_gate", il);
  7496. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7497. model.layers[il].ffn_up_shexp, NULL,
  7498. model.layers[il].ffn_gate_shexp, NULL,
  7499. model.layers[il].ffn_down_shexp, NULL,
  7500. NULL,
  7501. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7502. cb(cur_ffn, "ffn_shexp", il);
  7503. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7504. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7505. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7506. cb(moe_out, "ffn_out", il);
  7507. cur = moe_out;
  7508. }
  7509. cur = ggml_add(ctx0, cur, ffn_inp);
  7510. cb(cur, "l_out", il);
  7511. // input for next layer
  7512. inpL = cur;
  7513. }
  7514. cur = inpL;
  7515. cur = llm_build_norm(ctx0, cur, hparams,
  7516. model.output_norm, NULL,
  7517. LLM_NORM_RMS, cb, -1);
  7518. cb(cur, "result_norm", -1);
  7519. // lm_head
  7520. cur = ggml_mul_mat(ctx0, model.output, cur);
  7521. cb(cur, "result_output", -1);
  7522. ggml_build_forward_expand(gf, cur);
  7523. return gf;
  7524. }
  7525. struct ggml_cgraph * build_phi2() {
  7526. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7527. const int64_t n_embd_head = hparams.n_embd_head_v;
  7528. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7529. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7530. struct ggml_tensor * cur;
  7531. struct ggml_tensor * attn_norm_output;
  7532. struct ggml_tensor * ffn_output;
  7533. struct ggml_tensor * inpL;
  7534. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7535. // inp_pos - contains the positions
  7536. struct ggml_tensor * inp_pos = build_inp_pos();
  7537. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7538. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7539. for (int il = 0; il < n_layer; ++il) {
  7540. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7541. model.layers[il].attn_norm,
  7542. model.layers[il].attn_norm_b,
  7543. LLM_NORM, cb, il);
  7544. cb(attn_norm_output, "attn_norm", il);
  7545. // self-attention
  7546. {
  7547. struct ggml_tensor * Qcur = nullptr;
  7548. struct ggml_tensor * Kcur = nullptr;
  7549. struct ggml_tensor * Vcur = nullptr;
  7550. if (model.layers[il].wqkv) {
  7551. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7552. cb(cur, "wqkv", il);
  7553. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7554. cb(cur, "bqkv", il);
  7555. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7556. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7557. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7558. } else {
  7559. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7560. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7561. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7562. }
  7563. cb(Qcur, "Qcur", il);
  7564. cb(Kcur, "Kcur", il);
  7565. cb(Vcur, "Vcur", il);
  7566. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7567. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7568. Qcur = ggml_rope_ext(
  7569. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7570. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7571. );
  7572. cb(Qcur, "Qcur", il);
  7573. // with phi2, we scale the Q to avoid precision issues
  7574. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7575. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7576. cb(Qcur, "Qcur", il);
  7577. Kcur = ggml_rope_ext(
  7578. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7579. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7580. );
  7581. cb(Kcur, "Kcur", il);
  7582. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7583. model.layers[il].wo, model.layers[il].bo,
  7584. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7585. }
  7586. if (il == n_layer - 1) {
  7587. // skip computing output for unused tokens
  7588. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7589. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7590. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7591. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7592. }
  7593. // FF
  7594. {
  7595. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7596. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7597. NULL, NULL,
  7598. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7599. NULL,
  7600. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7601. cb(ffn_output, "ffn_out", il);
  7602. }
  7603. cur = ggml_add(ctx0, cur, ffn_output);
  7604. cb(cur, "l_out", il);
  7605. cur = ggml_add(ctx0, cur, inpL);
  7606. cb(cur, "l_out", il);
  7607. inpL = cur;
  7608. }
  7609. cur = llm_build_norm(ctx0, inpL, hparams,
  7610. model.output_norm,
  7611. model.output_norm_b,
  7612. LLM_NORM, cb, -1);
  7613. cb(cur, "result_norm", -1);
  7614. cur = ggml_mul_mat(ctx0, model.output, cur);
  7615. cb(cur, "result_output_no_bias", -1);
  7616. cur = ggml_add(ctx0, cur, model.output_b);
  7617. cb(cur, "result_output", -1);
  7618. ggml_build_forward_expand(gf, cur);
  7619. return gf;
  7620. }
  7621. struct ggml_cgraph * build_phi3() {
  7622. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7623. const int64_t n_embd_head = hparams.n_embd_head_v;
  7624. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7625. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7626. struct ggml_tensor * cur;
  7627. struct ggml_tensor * inpL;
  7628. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7629. // inp_pos - contains the positions
  7630. struct ggml_tensor * inp_pos = build_inp_pos();
  7631. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7632. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7633. for (int il = 0; il < n_layer; ++il) {
  7634. auto residual = inpL;
  7635. // self-attention
  7636. {
  7637. // rope freq factors for 128k context
  7638. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7639. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7640. model.layers[il].attn_norm,
  7641. NULL,
  7642. LLM_NORM_RMS, cb, il);
  7643. cb(attn_norm_output, "attn_norm", il);
  7644. struct ggml_tensor * Qcur = nullptr;
  7645. struct ggml_tensor * Kcur = nullptr;
  7646. struct ggml_tensor * Vcur = nullptr;
  7647. if (model.layers[il].wqkv) {
  7648. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7649. cb(cur, "wqkv", il);
  7650. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7651. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7652. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7653. }
  7654. else {
  7655. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7656. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7657. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7658. }
  7659. cb(Qcur, "Qcur", il);
  7660. cb(Kcur, "Kcur", il);
  7661. cb(Vcur, "Vcur", il);
  7662. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7663. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7664. Qcur = ggml_rope_ext(
  7665. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7666. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7667. );
  7668. cb(Qcur, "Qcur", il);
  7669. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7670. cb(Qcur, "Qcur", il);
  7671. Kcur = ggml_rope_ext(
  7672. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7673. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7674. );
  7675. cb(Kcur, "Kcur", il);
  7676. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7677. model.layers[il].wo, model.layers[il].bo,
  7678. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7679. }
  7680. if (il == n_layer - 1) {
  7681. // skip computing output for unused tokens
  7682. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7683. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7684. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7685. }
  7686. cur = ggml_add(ctx0, cur, residual);
  7687. residual = cur;
  7688. cur = llm_build_norm(ctx0, cur, hparams,
  7689. model.layers[il].ffn_norm, NULL,
  7690. LLM_NORM_RMS, cb, il);
  7691. cb(cur, "ffn_norm", il);
  7692. // FF
  7693. // special-case: the up and gate tensors are merged into a single tensor
  7694. // TOOD: support into llm_build_ffn
  7695. {
  7696. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7697. cb(up, "ffn_up", il);
  7698. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7699. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7700. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7701. cb(y, "ffn_gate", il);
  7702. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7703. cb(down, "ffn_down", il);
  7704. cur = down;
  7705. cb(cur, "ffn_out", il);
  7706. }
  7707. cur = ggml_add(ctx0, residual, cur);
  7708. cb(cur, "l_out", il);
  7709. inpL = cur;
  7710. }
  7711. cur = llm_build_norm(ctx0, inpL, hparams,
  7712. model.output_norm,
  7713. NULL,
  7714. LLM_NORM_RMS, cb, -1);
  7715. cb(cur, "result_norm", -1);
  7716. cur = ggml_mul_mat(ctx0, model.output, cur);
  7717. cb(cur, "result_output", -1);
  7718. ggml_build_forward_expand(gf, cur);
  7719. return gf;
  7720. }
  7721. struct ggml_cgraph * build_plamo() {
  7722. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7723. const int64_t n_embd_head = hparams.n_embd_head_v;
  7724. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7725. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7726. struct ggml_tensor * cur;
  7727. struct ggml_tensor * inpL;
  7728. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7729. // inp_pos - contains the positions
  7730. struct ggml_tensor * inp_pos = build_inp_pos();
  7731. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7732. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7733. for (int il = 0; il < n_layer; ++il) {
  7734. // norm
  7735. cur = llm_build_norm(ctx0, inpL, hparams,
  7736. model.layers[il].attn_norm, NULL,
  7737. LLM_NORM_RMS, cb, il);
  7738. cb(cur, "attn_norm", il);
  7739. struct ggml_tensor * attention_norm = cur;
  7740. // self-attention
  7741. {
  7742. // compute Q and K and RoPE them
  7743. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7744. cb(Qcur, "Qcur", il);
  7745. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7746. cb(Kcur, "Kcur", il);
  7747. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7748. cb(Vcur, "Vcur", il);
  7749. Qcur = ggml_rope_ext(
  7750. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  7751. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7752. ext_factor, attn_factor, beta_fast, beta_slow);
  7753. cb(Qcur, "Qcur", il);
  7754. Kcur = ggml_rope_ext(
  7755. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  7756. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7757. ext_factor, attn_factor, beta_fast, beta_slow);
  7758. cb(Kcur, "Kcur", il);
  7759. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7760. model.layers[il].wo, NULL,
  7761. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7762. }
  7763. struct ggml_tensor * sa_out = cur;
  7764. cur = attention_norm;
  7765. if (il == n_layer - 1) {
  7766. // skip computing output for unused tokens
  7767. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7768. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7769. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7770. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7771. }
  7772. // feed-forward network
  7773. {
  7774. cur = llm_build_ffn(ctx0, cur,
  7775. model.layers[il].ffn_up, NULL,
  7776. model.layers[il].ffn_gate, NULL,
  7777. model.layers[il].ffn_down, NULL,
  7778. NULL,
  7779. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7780. cb(cur, "ffn_out", il);
  7781. }
  7782. cur = ggml_add(ctx0, cur, sa_out);
  7783. cb(cur, "l_out", il);
  7784. cur = ggml_add(ctx0, cur, inpL);
  7785. cb(cur, "l_out", il);
  7786. // input for next layer
  7787. inpL = cur;
  7788. }
  7789. cur = inpL;
  7790. cur = llm_build_norm(ctx0, cur, hparams,
  7791. model.output_norm, NULL,
  7792. LLM_NORM_RMS, cb, -1);
  7793. cb(cur, "result_norm", -1);
  7794. // lm_head
  7795. cur = ggml_mul_mat(ctx0, model.output, cur);
  7796. cb(cur, "result_output", -1);
  7797. ggml_build_forward_expand(gf, cur);
  7798. return gf;
  7799. }
  7800. struct ggml_cgraph * build_gpt2() {
  7801. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7802. const int64_t n_embd_head = hparams.n_embd_head_v;
  7803. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7804. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7805. struct ggml_tensor * cur;
  7806. struct ggml_tensor * pos;
  7807. struct ggml_tensor * inpL;
  7808. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7809. // inp_pos - contains the positions
  7810. struct ggml_tensor * inp_pos = build_inp_pos();
  7811. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7812. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7813. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7814. cb(pos, "pos_embd", -1);
  7815. inpL = ggml_add(ctx0, inpL, pos);
  7816. cb(inpL, "inpL", -1);
  7817. for (int il = 0; il < n_layer; ++il) {
  7818. cur = llm_build_norm(ctx0, inpL, hparams,
  7819. model.layers[il].attn_norm,
  7820. model.layers[il].attn_norm_b,
  7821. LLM_NORM, cb, il);
  7822. cb(cur, "attn_norm", il);
  7823. // self-attention
  7824. {
  7825. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7826. cb(cur, "wqkv", il);
  7827. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7828. cb(cur, "bqkv", il);
  7829. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7830. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7831. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7832. cb(Qcur, "Qcur", il);
  7833. cb(Kcur, "Kcur", il);
  7834. cb(Vcur, "Vcur", il);
  7835. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7836. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7837. model.layers[il].wo, model.layers[il].bo,
  7838. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7839. }
  7840. if (il == n_layer - 1) {
  7841. // skip computing output for unused tokens
  7842. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7843. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7844. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7845. }
  7846. // add the input
  7847. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7848. cb(ffn_inp, "ffn_inp", il);
  7849. // FF
  7850. {
  7851. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7852. model.layers[il].ffn_norm,
  7853. model.layers[il].ffn_norm_b,
  7854. LLM_NORM, cb, il);
  7855. cb(cur, "ffn_norm", il);
  7856. cur = llm_build_ffn(ctx0, cur,
  7857. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7858. NULL, NULL,
  7859. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7860. NULL,
  7861. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7862. cb(cur, "ffn_out", il);
  7863. }
  7864. inpL = ggml_add(ctx0, cur, ffn_inp);
  7865. cb(inpL, "l_out", il);
  7866. }
  7867. cur = llm_build_norm(ctx0, inpL, hparams,
  7868. model.output_norm,
  7869. model.output_norm_b,
  7870. LLM_NORM, cb, -1);
  7871. cb(cur, "result_norm", -1);
  7872. cur = ggml_mul_mat(ctx0, model.output, cur);
  7873. cb(cur, "result_output", -1);
  7874. ggml_build_forward_expand(gf, cur);
  7875. return gf;
  7876. }
  7877. struct ggml_cgraph * build_codeshell() {
  7878. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7879. const int64_t n_embd_head = hparams.n_embd_head_v;
  7880. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7881. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7882. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7883. struct ggml_tensor * cur;
  7884. struct ggml_tensor * inpL;
  7885. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7886. // inp_pos - contains the positions
  7887. struct ggml_tensor * inp_pos = build_inp_pos();
  7888. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7889. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7890. for (int il = 0; il < n_layer; ++il) {
  7891. cur = llm_build_norm(ctx0, inpL, hparams,
  7892. model.layers[il].attn_norm,
  7893. model.layers[il].attn_norm_b,
  7894. LLM_NORM, cb, il);
  7895. cb(cur, "attn_norm", il);
  7896. // self-attention
  7897. {
  7898. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7899. cb(cur, "wqkv", il);
  7900. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7901. cb(cur, "bqkv", il);
  7902. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7903. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7904. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7905. cb(tmpq, "tmpq", il);
  7906. cb(tmpk, "tmpk", il);
  7907. cb(Vcur, "Vcur", il);
  7908. struct ggml_tensor * Qcur = ggml_rope_ext(
  7909. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7910. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7911. ext_factor, attn_factor, beta_fast, beta_slow
  7912. );
  7913. cb(Qcur, "Qcur", il);
  7914. struct ggml_tensor * Kcur = ggml_rope_ext(
  7915. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7916. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7917. ext_factor, attn_factor, beta_fast, beta_slow
  7918. );
  7919. cb(Kcur, "Kcur", il);
  7920. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7921. model.layers[il].wo, model.layers[il].bo,
  7922. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7923. }
  7924. if (il == n_layer - 1) {
  7925. // skip computing output for unused tokens
  7926. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7927. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7928. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7929. }
  7930. // add the input
  7931. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7932. cb(ffn_inp, "ffn_inp", il);
  7933. // FF
  7934. {
  7935. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7936. model.layers[il].ffn_norm,
  7937. model.layers[il].ffn_norm_b,
  7938. LLM_NORM, cb, il);
  7939. cb(cur, "ffn_norm", il);
  7940. cur = llm_build_ffn(ctx0, cur,
  7941. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7942. NULL, NULL,
  7943. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7944. NULL,
  7945. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7946. cb(cur, "ffn_out", il);
  7947. }
  7948. inpL = ggml_add(ctx0, cur, ffn_inp);
  7949. cb(inpL, "l_out", il);
  7950. }
  7951. cur = llm_build_norm(ctx0, inpL, hparams,
  7952. model.output_norm,
  7953. model.output_norm_b,
  7954. LLM_NORM, cb, -1);
  7955. cb(cur, "result_norm", -1);
  7956. cur = ggml_mul_mat(ctx0, model.output, cur);
  7957. cb(cur, "result_output", -1);
  7958. ggml_build_forward_expand(gf, cur);
  7959. return gf;
  7960. }
  7961. struct ggml_cgraph * build_orion() {
  7962. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7963. const int64_t n_embd_head = hparams.n_embd_head_v;
  7964. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7965. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7966. struct ggml_tensor * cur;
  7967. struct ggml_tensor * inpL;
  7968. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7969. // inp_pos - contains the positions
  7970. struct ggml_tensor * inp_pos = build_inp_pos();
  7971. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7972. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7973. for (int il = 0; il < n_layer; ++il) {
  7974. struct ggml_tensor * inpSA = inpL;
  7975. // norm
  7976. cur = llm_build_norm(ctx0, inpL, hparams,
  7977. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7978. LLM_NORM, cb, il);
  7979. cb(cur, "attn_norm", il);
  7980. // self-attention
  7981. {
  7982. // compute Q and K and RoPE them
  7983. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7984. cb(Qcur, "Qcur", il);
  7985. // if (model.layers[il].bq) {
  7986. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7987. // cb(Qcur, "Qcur", il);
  7988. // }
  7989. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7990. cb(Kcur, "Kcur", il);
  7991. // if (model.layers[il].bk) {
  7992. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7993. // cb(Kcur, "Kcur", il);
  7994. // }
  7995. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7996. cb(Vcur, "Vcur", il);
  7997. // if (model.layers[il].bv) {
  7998. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7999. // cb(Vcur, "Vcur", il);
  8000. // }
  8001. Qcur = ggml_rope_ext(
  8002. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8003. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8004. ext_factor, attn_factor, beta_fast, beta_slow
  8005. );
  8006. cb(Qcur, "Qcur", il);
  8007. Kcur = ggml_rope_ext(
  8008. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8009. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8010. ext_factor, attn_factor, beta_fast, beta_slow
  8011. );
  8012. cb(Kcur, "Kcur", il);
  8013. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8014. model.layers[il].wo, NULL,
  8015. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8016. }
  8017. if (il == n_layer - 1) {
  8018. // skip computing output for unused tokens
  8019. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8020. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8021. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8022. }
  8023. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8024. cb(ffn_inp, "ffn_inp", il);
  8025. // feed-forward network
  8026. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8027. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8028. LLM_NORM, cb, il);
  8029. cb(cur, "ffn_norm", il);
  8030. cur = llm_build_ffn(ctx0, cur,
  8031. model.layers[il].ffn_up, NULL,
  8032. model.layers[il].ffn_gate, NULL,
  8033. model.layers[il].ffn_down, NULL,
  8034. NULL,
  8035. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8036. cb(cur, "ffn_out", il);
  8037. cur = ggml_add(ctx0, cur, ffn_inp);
  8038. cb(cur, "l_out", il);
  8039. // input for next layer
  8040. inpL = cur;
  8041. }
  8042. cur = inpL;
  8043. cur = llm_build_norm(ctx0, cur, hparams,
  8044. model.output_norm, model.output_norm_b,
  8045. LLM_NORM, cb, -1);
  8046. cb(cur, "result_norm", -1);
  8047. // lm_head
  8048. cur = ggml_mul_mat(ctx0, model.output, cur);
  8049. cb(cur, "result_output", -1);
  8050. ggml_build_forward_expand(gf, cur);
  8051. return gf;
  8052. }
  8053. struct ggml_cgraph * build_internlm2() {
  8054. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8055. const int64_t n_embd_head = hparams.n_embd_head_v;
  8056. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8057. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8058. struct ggml_tensor * cur;
  8059. struct ggml_tensor * inpL;
  8060. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8061. // inp_pos - contains the positions
  8062. struct ggml_tensor * inp_pos = build_inp_pos();
  8063. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8064. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8065. for (int il = 0; il < n_layer; ++il) {
  8066. struct ggml_tensor * inpSA = inpL;
  8067. // norm
  8068. cur = llm_build_norm(ctx0, inpL, hparams,
  8069. model.layers[il].attn_norm, NULL,
  8070. LLM_NORM_RMS, cb, il);
  8071. cb(cur, "attn_norm", il);
  8072. // self-attention
  8073. {
  8074. // compute Q and K and RoPE them
  8075. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8076. cb(Qcur, "Qcur", il);
  8077. if (model.layers[il].bq) {
  8078. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8079. cb(Qcur, "Qcur", il);
  8080. }
  8081. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8082. cb(Kcur, "Kcur", il);
  8083. if (model.layers[il].bk) {
  8084. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8085. cb(Kcur, "Kcur", il);
  8086. }
  8087. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8088. cb(Vcur, "Vcur", il);
  8089. if (model.layers[il].bv) {
  8090. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8091. cb(Vcur, "Vcur", il);
  8092. }
  8093. Qcur = ggml_rope_ext(
  8094. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8095. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8096. ext_factor, attn_factor, beta_fast, beta_slow
  8097. );
  8098. cb(Qcur, "Qcur", il);
  8099. Kcur = ggml_rope_ext(
  8100. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8101. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8102. ext_factor, attn_factor, beta_fast, beta_slow
  8103. );
  8104. cb(Kcur, "Kcur", il);
  8105. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8106. model.layers[il].wo, model.layers[il].bo,
  8107. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8108. }
  8109. if (il == n_layer - 1) {
  8110. // skip computing output for unused tokens
  8111. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8112. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8113. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8114. }
  8115. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8116. cb(ffn_inp, "ffn_inp", il);
  8117. // feed-forward network
  8118. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8119. model.layers[il].ffn_norm, NULL,
  8120. LLM_NORM_RMS, cb, il);
  8121. cb(cur, "ffn_norm", il);
  8122. cur = llm_build_ffn(ctx0, cur,
  8123. model.layers[il].ffn_up, NULL,
  8124. model.layers[il].ffn_gate, NULL,
  8125. model.layers[il].ffn_down, NULL,
  8126. NULL,
  8127. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8128. cb(cur, "ffn_out", il);
  8129. cur = ggml_add(ctx0, cur, ffn_inp);
  8130. cb(cur, "l_out", il);
  8131. // input for next layer
  8132. inpL = cur;
  8133. }
  8134. cur = inpL;
  8135. cur = llm_build_norm(ctx0, cur, hparams,
  8136. model.output_norm, NULL,
  8137. LLM_NORM_RMS, cb, -1);
  8138. cb(cur, "result_norm", -1);
  8139. // lm_head
  8140. cur = ggml_mul_mat(ctx0, model.output, cur);
  8141. cb(cur, "result_output", -1);
  8142. ggml_build_forward_expand(gf, cur);
  8143. return gf;
  8144. }
  8145. // ref: https://arxiv.org/abs/2203.03466
  8146. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8147. // based on the original build_llama() function
  8148. struct ggml_cgraph * build_minicpm() {
  8149. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8150. const int64_t n_embd_head = hparams.n_embd_head_v;
  8151. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8152. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8153. const int64_t n_embd = hparams.n_embd;
  8154. //TODO: if the model varies, these parameters need to be read from the model
  8155. const int64_t n_embd_base = 256;
  8156. const float scale_embd = 12.0f;
  8157. const float scale_depth = 1.4f;
  8158. struct ggml_tensor * cur;
  8159. struct ggml_tensor * inpL;
  8160. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8161. // scale the input embeddings
  8162. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8163. cb(inpL, "inp_scaled", -1);
  8164. // inp_pos - contains the positions
  8165. struct ggml_tensor * inp_pos = build_inp_pos();
  8166. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8167. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8168. for (int il = 0; il < n_layer; ++il) {
  8169. struct ggml_tensor * inpSA = inpL;
  8170. // norm
  8171. cur = llm_build_norm(ctx0, inpL, hparams,
  8172. model.layers[il].attn_norm, NULL,
  8173. LLM_NORM_RMS, cb, il);
  8174. cb(cur, "attn_norm", il);
  8175. // self-attention
  8176. {
  8177. // compute Q and K and RoPE them
  8178. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8179. cb(Qcur, "Qcur", il);
  8180. if (model.layers[il].bq) {
  8181. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8182. cb(Qcur, "Qcur", il);
  8183. }
  8184. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8185. cb(Kcur, "Kcur", il);
  8186. if (model.layers[il].bk) {
  8187. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8188. cb(Kcur, "Kcur", il);
  8189. }
  8190. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8191. cb(Vcur, "Vcur", il);
  8192. if (model.layers[il].bv) {
  8193. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8194. cb(Vcur, "Vcur", il);
  8195. }
  8196. Qcur = ggml_rope_ext(
  8197. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8198. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8199. ext_factor, attn_factor, beta_fast, beta_slow
  8200. );
  8201. cb(Qcur, "Qcur", il);
  8202. Kcur = ggml_rope_ext(
  8203. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8204. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8205. ext_factor, attn_factor, beta_fast, beta_slow
  8206. );
  8207. cb(Kcur, "Kcur", il);
  8208. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8209. model.layers[il].wo, model.layers[il].bo,
  8210. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8211. }
  8212. if (il == n_layer - 1) {
  8213. // skip computing output for unused tokens
  8214. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8215. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8216. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8217. }
  8218. // scale_res - scale the hidden states for residual connection
  8219. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8220. cur = ggml_scale(ctx0, cur, scale_res);
  8221. cb(cur, "hidden_scaled", -1);
  8222. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8223. cb(ffn_inp, "ffn_inp", il);
  8224. // feed-forward network
  8225. {
  8226. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8227. model.layers[il].ffn_norm, NULL,
  8228. LLM_NORM_RMS, cb, il);
  8229. cb(cur, "ffn_norm", il);
  8230. cur = llm_build_ffn(ctx0, cur,
  8231. model.layers[il].ffn_up, NULL,
  8232. model.layers[il].ffn_gate, NULL,
  8233. model.layers[il].ffn_down, NULL,
  8234. NULL,
  8235. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8236. cb(cur, "ffn_out", il);
  8237. }
  8238. // scale the hidden states for residual connection
  8239. cur = ggml_scale(ctx0, cur, scale_res);
  8240. cb(cur, "hidden_scaled_ffn", -1);
  8241. cur = ggml_add(ctx0, cur, ffn_inp);
  8242. cb(cur, "l_out", il);
  8243. // input for next layer
  8244. inpL = cur;
  8245. }
  8246. cur = inpL;
  8247. cur = llm_build_norm(ctx0, cur, hparams,
  8248. model.output_norm, NULL,
  8249. LLM_NORM_RMS, cb, -1);
  8250. cb(cur, "result_norm", -1);
  8251. // lm_head scaling
  8252. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8253. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8254. cb(cur, "lmhead_scaling", -1);
  8255. // lm_head
  8256. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8257. cb(cur, "result_output", -1);
  8258. ggml_build_forward_expand(gf, cur);
  8259. return gf;
  8260. }
  8261. struct ggml_cgraph * build_gemma() {
  8262. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8263. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8264. struct ggml_tensor * cur;
  8265. struct ggml_tensor * inpL;
  8266. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8267. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8268. cb(inpL, "inp_scaled", -1);
  8269. // inp_pos - contains the positions
  8270. struct ggml_tensor * inp_pos = build_inp_pos();
  8271. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8272. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8273. for (int il = 0; il < n_layer; ++il) {
  8274. // norm
  8275. cur = llm_build_norm(ctx0, inpL, hparams,
  8276. model.layers[il].attn_norm, NULL,
  8277. LLM_NORM_RMS, cb, il);
  8278. cb(cur, "attn_norm", il);
  8279. // self-attention
  8280. {
  8281. // compute Q and K and RoPE them
  8282. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8283. cb(Qcur, "Qcur", il);
  8284. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8285. cb(Kcur, "Kcur", il);
  8286. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8287. cb(Vcur, "Vcur", il);
  8288. Qcur = ggml_rope_ext(
  8289. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8290. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8291. ext_factor, attn_factor, beta_fast, beta_slow);
  8292. cb(Qcur, "Qcur", il);
  8293. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8294. cb(Qcur, "Qcur_scaled", il);
  8295. Kcur = ggml_rope_ext(
  8296. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8297. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8298. ext_factor, attn_factor, beta_fast, beta_slow);
  8299. cb(Kcur, "Kcur", il);
  8300. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8301. model.layers[il].wo, NULL,
  8302. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8303. }
  8304. if (il == n_layer - 1) {
  8305. // skip computing output for unused tokens
  8306. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8307. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8308. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8309. }
  8310. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8311. cb(sa_out, "sa_out", il);
  8312. cur = llm_build_norm(ctx0, sa_out, hparams,
  8313. model.layers[il].ffn_norm, NULL,
  8314. LLM_NORM_RMS, cb, il);
  8315. cb(cur, "ffn_norm", il);
  8316. // feed-forward network
  8317. {
  8318. cur = llm_build_ffn(ctx0, cur,
  8319. model.layers[il].ffn_up, NULL,
  8320. model.layers[il].ffn_gate, NULL,
  8321. model.layers[il].ffn_down, NULL,
  8322. NULL,
  8323. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8324. cb(cur, "ffn_out", il);
  8325. }
  8326. cur = ggml_add(ctx0, cur, sa_out);
  8327. cb(cur, "l_out", il);
  8328. // input for next layer
  8329. inpL = cur;
  8330. }
  8331. cur = inpL;
  8332. cur = llm_build_norm(ctx0, cur, hparams,
  8333. model.output_norm, NULL,
  8334. LLM_NORM_RMS, cb, -1);
  8335. cb(cur, "result_norm", -1);
  8336. // lm_head
  8337. cur = ggml_mul_mat(ctx0, model.output, cur);
  8338. cb(cur, "result_output", -1);
  8339. ggml_build_forward_expand(gf, cur);
  8340. return gf;
  8341. }
  8342. struct ggml_cgraph * build_starcoder2() {
  8343. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8344. const int64_t n_embd_head = hparams.n_embd_head_v;
  8345. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8346. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8347. struct ggml_tensor * cur;
  8348. struct ggml_tensor * inpL;
  8349. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8350. // inp_pos - contains the positions
  8351. struct ggml_tensor * inp_pos = build_inp_pos();
  8352. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8353. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8354. for (int il = 0; il < n_layer; ++il) {
  8355. struct ggml_tensor * inpSA = inpL;
  8356. // norm
  8357. cur = llm_build_norm(ctx0, inpL, hparams,
  8358. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8359. LLM_NORM, cb, il);
  8360. cb(cur, "attn_norm", il);
  8361. // self-attention
  8362. {
  8363. // compute Q and K and RoPE them
  8364. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8365. cb(Qcur, "Qcur", il);
  8366. if (model.layers[il].bq) {
  8367. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8368. cb(Qcur, "Qcur", il);
  8369. }
  8370. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8371. cb(Kcur, "Kcur", il);
  8372. if (model.layers[il].bk) {
  8373. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8374. cb(Kcur, "Kcur", il);
  8375. }
  8376. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8377. cb(Vcur, "Vcur", il);
  8378. if (model.layers[il].bv) {
  8379. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8380. cb(Vcur, "Vcur", il);
  8381. }
  8382. Qcur = ggml_rope_ext(
  8383. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8384. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8385. ext_factor, attn_factor, beta_fast, beta_slow
  8386. );
  8387. cb(Qcur, "Qcur", il);
  8388. Kcur = ggml_rope_ext(
  8389. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8390. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8391. ext_factor, attn_factor, beta_fast, beta_slow
  8392. );
  8393. cb(Kcur, "Kcur", il);
  8394. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8395. model.layers[il].wo, model.layers[il].bo,
  8396. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8397. }
  8398. if (il == n_layer - 1) {
  8399. // skip computing output for unused tokens
  8400. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8401. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8402. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8403. }
  8404. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8405. cb(ffn_inp, "ffn_inp", il);
  8406. // feed-forward network
  8407. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8408. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8409. LLM_NORM, cb, il);
  8410. cb(cur, "ffn_norm", il);
  8411. cur = llm_build_ffn(ctx0, cur,
  8412. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8413. NULL, NULL,
  8414. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8415. NULL,
  8416. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8417. cb(cur, "ffn_out", il);
  8418. cur = ggml_add(ctx0, cur, ffn_inp);
  8419. cb(cur, "l_out", il);
  8420. // input for next layer
  8421. inpL = cur;
  8422. }
  8423. cur = inpL;
  8424. cur = llm_build_norm(ctx0, cur, hparams,
  8425. model.output_norm, model.output_norm_b,
  8426. LLM_NORM, cb, -1);
  8427. cb(cur, "result_norm", -1);
  8428. // lm_head
  8429. cur = ggml_mul_mat(ctx0, model.output, cur);
  8430. cb(cur, "result_output", -1);
  8431. ggml_build_forward_expand(gf, cur);
  8432. return gf;
  8433. }
  8434. struct ggml_cgraph * build_mamba() {
  8435. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8436. const int64_t d_model = n_embd;
  8437. const int64_t d_conv = hparams.ssm_d_conv;
  8438. const int64_t d_inner = hparams.ssm_d_inner;
  8439. GGML_ASSERT(2 * d_model == d_inner);
  8440. const int64_t d_state = hparams.ssm_d_state;
  8441. const int64_t dt_rank = hparams.ssm_dt_rank;
  8442. struct ggml_tensor * cur;
  8443. struct ggml_tensor * inpL;
  8444. // {n_embd, n_tokens}
  8445. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8446. struct ggml_tensor * state_mask = build_inp_s_mask();
  8447. struct ggml_tensor * state_seq = build_inp_s_seq();
  8448. for (int il = 0; il < n_layer; ++il) {
  8449. // (ab)using the KV cache to store the states
  8450. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8451. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8452. // clear states of sequences which are starting at the beginning of this batch
  8453. {
  8454. conv_states = ggml_mul(ctx0,
  8455. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8456. state_mask);
  8457. ssm_states = ggml_mul(ctx0,
  8458. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8459. state_mask);
  8460. }
  8461. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8462. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8463. // norm
  8464. cur = llm_build_norm(ctx0, inpL, hparams,
  8465. model.layers[il].attn_norm, NULL,
  8466. LLM_NORM_RMS, cb, il);
  8467. cb(cur, "attn_norm", il);
  8468. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8469. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8470. // split the above in two
  8471. // => {d_inner, n_tokens}
  8472. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8473. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8474. // conv
  8475. {
  8476. // Custom operator which is needed only to ease simultaneous sequence processing.
  8477. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8478. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8479. // then element-wise multiply that with the conv1d weigth,
  8480. // then sum the elements of each row,
  8481. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8482. // then permute away the ne[0] dimension,
  8483. // and then you're left with the resulting x tensor.
  8484. // The new conv_states is the last (d_conv - 1) columns
  8485. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8486. // For simultaneous sequences, it's more complicated.
  8487. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8488. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8489. ggml_build_forward_expand(gf,
  8490. ggml_cpy(ctx0,
  8491. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8492. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8493. // extract x from x_conv
  8494. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8495. // bias
  8496. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8497. x = ggml_silu(ctx0, x);
  8498. }
  8499. // ssm
  8500. {
  8501. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8502. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8503. // split
  8504. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8505. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8506. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8507. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8508. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8509. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8510. // Custom operator to optimize the parallel associative scan
  8511. // as described in the Annex D of the Mamba paper.
  8512. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8513. // because only a single tensor can be returned.
  8514. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8515. // store last states (the second part of y_ssm_states)
  8516. ggml_build_forward_expand(gf,
  8517. ggml_cpy(ctx0,
  8518. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8519. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8520. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8521. if (il == n_layer - 1) {
  8522. // skip computing output for unused tokens
  8523. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8524. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8525. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8526. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8527. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8528. }
  8529. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8530. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8531. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8532. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8533. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8534. }
  8535. // residual
  8536. cur = ggml_add(ctx0, cur, inpL);
  8537. cb(cur, "l_out", il);
  8538. // input for next layer
  8539. inpL = cur;
  8540. }
  8541. // final rmsnorm
  8542. cur = llm_build_norm(ctx0, inpL, hparams,
  8543. model.output_norm, NULL,
  8544. LLM_NORM_RMS, cb, -1);
  8545. cb(cur, "result_norm", -1);
  8546. // lm_head
  8547. cur = ggml_mul_mat(ctx0, model.output, cur);
  8548. cb(cur, "result_output", -1);
  8549. ggml_build_forward_expand(gf, cur);
  8550. return gf;
  8551. }
  8552. struct ggml_cgraph * build_command_r() {
  8553. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8554. const int64_t n_embd_head = hparams.n_embd_head_v;
  8555. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8556. const float f_logit_scale = hparams.f_logit_scale;
  8557. struct ggml_tensor * cur;
  8558. struct ggml_tensor * inpL;
  8559. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8560. // inp_pos - contains the positions
  8561. struct ggml_tensor * inp_pos = build_inp_pos();
  8562. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8563. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8564. for (int il = 0; il < n_layer; ++il) {
  8565. // norm
  8566. cur = llm_build_norm(ctx0, inpL, hparams,
  8567. model.layers[il].attn_norm, NULL,
  8568. LLM_NORM, cb, il);
  8569. cb(cur, "attn_norm", il);
  8570. struct ggml_tensor * ffn_inp = cur;
  8571. // self-attention
  8572. {
  8573. // compute Q and K and RoPE them
  8574. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8575. cb(Qcur, "Qcur", il);
  8576. if (model.layers[il].bq) {
  8577. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8578. cb(Qcur, "Qcur", il);
  8579. }
  8580. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8581. cb(Kcur, "Kcur", il);
  8582. if (model.layers[il].bk) {
  8583. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8584. cb(Kcur, "Kcur", il);
  8585. }
  8586. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8587. cb(Vcur, "Vcur", il);
  8588. if (model.layers[il].bv) {
  8589. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8590. cb(Vcur, "Vcur", il);
  8591. }
  8592. if (model.layers[il].attn_q_norm) {
  8593. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8594. ggml_element_size(Qcur) * n_embd_head,
  8595. ggml_element_size(Qcur) * n_embd_head * n_head,
  8596. 0);
  8597. cb(Qcur, "Qcur", il);
  8598. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8599. ggml_element_size(Kcur) * n_embd_head,
  8600. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8601. 0);
  8602. cb(Kcur, "Kcur", il);
  8603. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8604. model.layers[il].attn_q_norm,
  8605. NULL,
  8606. LLM_NORM, cb, il);
  8607. cb(Qcur, "Qcur", il);
  8608. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8609. model.layers[il].attn_k_norm,
  8610. NULL,
  8611. LLM_NORM, cb, il);
  8612. cb(Kcur, "Kcur", il);
  8613. }
  8614. Qcur = ggml_rope_ext(
  8615. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8616. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8617. ext_factor, attn_factor, beta_fast, beta_slow
  8618. );
  8619. cb(Qcur, "Qcur", il);
  8620. Kcur = ggml_rope_ext(
  8621. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8622. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8623. ext_factor, attn_factor, beta_fast, beta_slow
  8624. );
  8625. cb(Kcur, "Kcur", il);
  8626. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8627. model.layers[il].wo, model.layers[il].bo,
  8628. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8629. }
  8630. if (il == n_layer - 1) {
  8631. // skip computing output for unused tokens
  8632. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8633. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8634. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8635. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8636. }
  8637. struct ggml_tensor * attn_out = cur;
  8638. // feed-forward network
  8639. {
  8640. cur = llm_build_ffn(ctx0, ffn_inp,
  8641. model.layers[il].ffn_up, NULL,
  8642. model.layers[il].ffn_gate, NULL,
  8643. model.layers[il].ffn_down, NULL,
  8644. NULL,
  8645. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8646. cb(cur, "ffn_out", il);
  8647. }
  8648. // add together residual + FFN + self-attention
  8649. cur = ggml_add(ctx0, cur, inpL);
  8650. cur = ggml_add(ctx0, cur, attn_out);
  8651. cb(cur, "l_out", il);
  8652. // input for next layer
  8653. inpL = cur;
  8654. }
  8655. cur = inpL;
  8656. cur = llm_build_norm(ctx0, cur, hparams,
  8657. model.output_norm, NULL,
  8658. LLM_NORM, cb, -1);
  8659. cb(cur, "result_norm", -1);
  8660. // lm_head
  8661. cur = ggml_mul_mat(ctx0, model.output, cur);
  8662. if (f_logit_scale) {
  8663. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8664. }
  8665. cb(cur, "result_output", -1);
  8666. ggml_build_forward_expand(gf, cur);
  8667. return gf;
  8668. }
  8669. // ref: https://allenai.org/olmo
  8670. // based on the original build_llama() function, changes:
  8671. // * non-parametric layer norm
  8672. // * clamp qkv
  8673. // * removed bias
  8674. // * removed MoE
  8675. struct ggml_cgraph * build_olmo() {
  8676. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8677. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8678. int32_t n_tokens = this->n_tokens;
  8679. const int64_t n_embd_head = hparams.n_embd_head_v;
  8680. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8681. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8682. struct ggml_tensor * cur;
  8683. struct ggml_tensor * inpL;
  8684. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8685. // inp_pos - contains the positions
  8686. struct ggml_tensor * inp_pos = build_inp_pos();
  8687. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8688. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8689. for (int il = 0; il < n_layer; ++il) {
  8690. struct ggml_tensor * inpSA = inpL;
  8691. // norm
  8692. cur = llm_build_norm(ctx0, inpL, hparams,
  8693. NULL, NULL,
  8694. LLM_NORM, cb, il);
  8695. cb(cur, "attn_norm", il);
  8696. // self-attention
  8697. {
  8698. // compute Q and K and RoPE them
  8699. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8700. cb(Qcur, "Qcur", il);
  8701. if (hparams.f_clamp_kqv > 0.0f) {
  8702. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8703. cb(Qcur, "Qcur", il);
  8704. }
  8705. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8706. cb(Kcur, "Kcur", il);
  8707. if (hparams.f_clamp_kqv > 0.0f) {
  8708. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8709. cb(Kcur, "Kcur", il);
  8710. }
  8711. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8712. cb(Vcur, "Vcur", il);
  8713. if (hparams.f_clamp_kqv > 0.0f) {
  8714. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8715. cb(Vcur, "Vcur", il);
  8716. }
  8717. Qcur = ggml_rope_ext(
  8718. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8719. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8720. ext_factor, attn_factor, beta_fast, beta_slow
  8721. );
  8722. cb(Qcur, "Qcur", il);
  8723. Kcur = ggml_rope_ext(
  8724. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8725. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8726. ext_factor, attn_factor, beta_fast, beta_slow
  8727. );
  8728. cb(Kcur, "Kcur", il);
  8729. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8730. model.layers[il].wo, nullptr,
  8731. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8732. }
  8733. if (il == n_layer - 1) {
  8734. // skip computing output for unused tokens
  8735. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8736. n_tokens = n_outputs;
  8737. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8738. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8739. }
  8740. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8741. cb(ffn_inp, "ffn_inp", il);
  8742. // feed-forward network
  8743. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8744. NULL, NULL,
  8745. LLM_NORM, cb, il);
  8746. cb(cur, "ffn_norm", il);
  8747. cur = llm_build_ffn(ctx0, cur,
  8748. model.layers[il].ffn_up, NULL,
  8749. model.layers[il].ffn_gate, NULL,
  8750. model.layers[il].ffn_down, NULL,
  8751. NULL,
  8752. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8753. cb(cur, "ffn_out", il);
  8754. cur = ggml_add(ctx0, cur, ffn_inp);
  8755. cb(cur, "ffn_out", il);
  8756. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8757. if (layer_dir != nullptr) {
  8758. cur = ggml_add(ctx0, cur, layer_dir);
  8759. }
  8760. cb(cur, "l_out", il);
  8761. // input for next layer
  8762. inpL = cur;
  8763. }
  8764. cur = inpL;
  8765. cur = llm_build_norm(ctx0, cur, hparams,
  8766. NULL, NULL,
  8767. LLM_NORM, cb, -1);
  8768. cb(cur, "result_norm", -1);
  8769. // lm_head
  8770. cur = ggml_mul_mat(ctx0, model.output, cur);
  8771. cb(cur, "result_output", -1);
  8772. ggml_build_forward_expand(gf, cur);
  8773. return gf;
  8774. }
  8775. };
  8776. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8777. llama_batch dummy;
  8778. dummy.n_tokens = 0;
  8779. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8780. struct llm_build_context llm(lctx, dummy, cb, false);
  8781. llm.init();
  8782. struct ggml_cgraph * result = llm.build_defrag(ids);
  8783. llm.free();
  8784. return result;
  8785. }
  8786. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8787. llama_batch dummy;
  8788. dummy.n_tokens = 0;
  8789. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8790. struct llm_build_context llm(lctx, dummy, cb, false);
  8791. llm.init();
  8792. struct ggml_cgraph * result = llm.build_k_shift();
  8793. llm.free();
  8794. return result;
  8795. }
  8796. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8797. llama_batch dummy;
  8798. dummy.n_tokens = 0;
  8799. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8800. struct llm_build_context llm(lctx, dummy, cb, false);
  8801. llm.init();
  8802. struct ggml_cgraph * result = llm.build_s_copy();
  8803. llm.free();
  8804. return result;
  8805. }
  8806. static struct ggml_cgraph * llama_build_graph(
  8807. llama_context & lctx,
  8808. const llama_batch & batch,
  8809. bool worst_case) {
  8810. const auto & model = lctx.model;
  8811. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8812. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8813. if (il >= 0) {
  8814. ggml_format_name(cur, "%s-%d", name, il);
  8815. } else {
  8816. ggml_set_name(cur, name);
  8817. }
  8818. if (!lctx.cparams.offload_kqv) {
  8819. if (strcmp(name, "kqv_merged_cont") == 0) {
  8820. // all nodes between the KV store and the attention output are run on the CPU
  8821. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8822. }
  8823. }
  8824. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8825. // FIXME: fix in ggml_backend_sched
  8826. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8827. if (batch.n_tokens < 32 || full_offload) {
  8828. if (il != -1 && strcmp(name, "norm") == 0) {
  8829. for (auto * backend : lctx.backends) {
  8830. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8831. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8832. break;
  8833. }
  8834. }
  8835. }
  8836. }
  8837. };
  8838. struct ggml_cgraph * result = NULL;
  8839. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8840. llm.init();
  8841. switch (model.arch) {
  8842. case LLM_ARCH_LLAMA:
  8843. {
  8844. result = llm.build_llama();
  8845. } break;
  8846. case LLM_ARCH_BAICHUAN:
  8847. {
  8848. result = llm.build_baichuan();
  8849. } break;
  8850. case LLM_ARCH_FALCON:
  8851. {
  8852. result = llm.build_falcon();
  8853. } break;
  8854. case LLM_ARCH_GROK:
  8855. {
  8856. result = llm.build_grok();
  8857. } break;
  8858. case LLM_ARCH_STARCODER:
  8859. {
  8860. result = llm.build_starcoder();
  8861. } break;
  8862. case LLM_ARCH_REFACT:
  8863. {
  8864. result = llm.build_refact();
  8865. } break;
  8866. case LLM_ARCH_BERT:
  8867. case LLM_ARCH_JINA_BERT_V2:
  8868. case LLM_ARCH_NOMIC_BERT:
  8869. {
  8870. result = llm.build_bert();
  8871. } break;
  8872. case LLM_ARCH_BLOOM:
  8873. {
  8874. result = llm.build_bloom();
  8875. } break;
  8876. case LLM_ARCH_MPT:
  8877. {
  8878. result = llm.build_mpt();
  8879. } break;
  8880. case LLM_ARCH_STABLELM:
  8881. {
  8882. result = llm.build_stablelm();
  8883. } break;
  8884. case LLM_ARCH_QWEN:
  8885. {
  8886. result = llm.build_qwen();
  8887. } break;
  8888. case LLM_ARCH_QWEN2:
  8889. {
  8890. result = llm.build_qwen2();
  8891. } break;
  8892. case LLM_ARCH_QWEN2MOE:
  8893. {
  8894. result = llm.build_qwen2moe();
  8895. } break;
  8896. case LLM_ARCH_PHI2:
  8897. {
  8898. result = llm.build_phi2();
  8899. } break;
  8900. case LLM_ARCH_PHI3:
  8901. {
  8902. result = llm.build_phi3();
  8903. } break;
  8904. case LLM_ARCH_PLAMO:
  8905. {
  8906. result = llm.build_plamo();
  8907. } break;
  8908. case LLM_ARCH_GPT2:
  8909. {
  8910. result = llm.build_gpt2();
  8911. } break;
  8912. case LLM_ARCH_CODESHELL:
  8913. {
  8914. result = llm.build_codeshell();
  8915. } break;
  8916. case LLM_ARCH_ORION:
  8917. {
  8918. result = llm.build_orion();
  8919. } break;
  8920. case LLM_ARCH_INTERNLM2:
  8921. {
  8922. result = llm.build_internlm2();
  8923. } break;
  8924. case LLM_ARCH_MINICPM:
  8925. {
  8926. result = llm.build_minicpm();
  8927. } break;
  8928. case LLM_ARCH_GEMMA:
  8929. {
  8930. result = llm.build_gemma();
  8931. } break;
  8932. case LLM_ARCH_STARCODER2:
  8933. {
  8934. result = llm.build_starcoder2();
  8935. } break;
  8936. case LLM_ARCH_MAMBA:
  8937. {
  8938. result = llm.build_mamba();
  8939. } break;
  8940. case LLM_ARCH_XVERSE:
  8941. {
  8942. result = llm.build_xverse();
  8943. } break;
  8944. case LLM_ARCH_COMMAND_R:
  8945. {
  8946. result = llm.build_command_r();
  8947. } break;
  8948. case LLM_ARCH_DBRX:
  8949. {
  8950. result = llm.build_dbrx();
  8951. } break;
  8952. case LLM_ARCH_OLMO:
  8953. {
  8954. result = llm.build_olmo();
  8955. } break;
  8956. default:
  8957. GGML_ASSERT(false);
  8958. }
  8959. llm.free();
  8960. return result;
  8961. }
  8962. static void llama_set_k_shift(llama_context & lctx) {
  8963. const int64_t kv_size = lctx.kv_self.size;
  8964. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8965. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8966. for (int i = 0; i < kv_size; ++i) {
  8967. data[i] = lctx.kv_self.cells[i].delta;
  8968. }
  8969. }
  8970. static void llama_set_s_copy(llama_context & lctx) {
  8971. const int64_t kv_size = lctx.kv_self.size;
  8972. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8973. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8974. for (int i = 0; i < kv_size; ++i) {
  8975. data[i] = lctx.kv_self.cells[i].src;
  8976. }
  8977. }
  8978. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8979. //
  8980. // set input data
  8981. //
  8982. const auto & hparams = lctx.model.hparams;
  8983. const auto & cparams = lctx.cparams;
  8984. const auto & kv_self = lctx.kv_self;
  8985. if (batch.token) {
  8986. const int64_t n_tokens = batch.n_tokens;
  8987. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8988. }
  8989. if (batch.embd) {
  8990. const int64_t n_embd = hparams.n_embd;
  8991. const int64_t n_tokens = batch.n_tokens;
  8992. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8993. }
  8994. if (batch.pos && lctx.inp_pos) {
  8995. const int64_t n_tokens = batch.n_tokens;
  8996. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8997. }
  8998. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8999. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9000. const int64_t n_tokens = batch.n_tokens;
  9001. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9002. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9003. if (lctx.n_outputs == n_tokens) {
  9004. for (int i = 0; i < n_tokens; ++i) {
  9005. data[i] = i;
  9006. }
  9007. } else if (batch.logits) {
  9008. int32_t n_outputs = 0;
  9009. for (int i = 0; i < n_tokens; ++i) {
  9010. if (batch.logits[i]) {
  9011. data[n_outputs++] = i;
  9012. }
  9013. }
  9014. // the graph needs to have been passed the correct number of outputs
  9015. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9016. } else if (lctx.n_outputs == 1) {
  9017. // only keep last output
  9018. data[0] = n_tokens - 1;
  9019. } else {
  9020. GGML_ASSERT(lctx.n_outputs == 0);
  9021. }
  9022. }
  9023. GGML_ASSERT(
  9024. // (!a || b) is a logical implication (a -> b)
  9025. // !hparams.causal_attn -> !cparams.causal_attn
  9026. (hparams.causal_attn || !cparams.causal_attn) &&
  9027. "causal attention with embedding models is not supported"
  9028. );
  9029. if (lctx.inp_KQ_mask) {
  9030. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9031. if (cparams.causal_attn) {
  9032. const int64_t n_kv = kv_self.n;
  9033. const int64_t n_tokens = batch.n_tokens;
  9034. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9035. float * data = (float *) lctx.inp_KQ_mask->data;
  9036. // For causal attention, use only the previous KV cells
  9037. // of the correct sequence for each token of the batch.
  9038. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9039. for (int h = 0; h < 1; ++h) {
  9040. for (int j = 0; j < n_tokens; ++j) {
  9041. const llama_pos pos = batch.pos[j];
  9042. const llama_seq_id seq_id = batch.seq_id[j][0];
  9043. for (int i = 0; i < n_kv; ++i) {
  9044. float f;
  9045. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9046. f = -INFINITY;
  9047. } else {
  9048. if (hparams.use_alibi) {
  9049. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9050. } else {
  9051. f = 0.0f;
  9052. }
  9053. }
  9054. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9055. }
  9056. }
  9057. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9058. for (int j = 0; j < n_kv; ++j) {
  9059. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9060. }
  9061. }
  9062. }
  9063. } else {
  9064. // when using kv cache, the mask needs to match the kv cache size
  9065. const int64_t n_tokens = batch.n_tokens;
  9066. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9067. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9068. float * data = (float *) lctx.inp_KQ_mask->data;
  9069. for (int h = 0; h < 1; ++h) {
  9070. for (int j = 0; j < n_tokens; ++j) {
  9071. const llama_seq_id seq_id = batch.seq_id[j][0];
  9072. for (int i = 0; i < n_tokens; ++i) {
  9073. float f = -INFINITY;
  9074. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9075. if (batch.seq_id[i][s] == seq_id) {
  9076. if (hparams.use_alibi) {
  9077. f = -fabs(batch.pos[i] - batch.pos[j]);
  9078. } else {
  9079. f = 0.0f;
  9080. }
  9081. break;
  9082. }
  9083. }
  9084. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9085. }
  9086. for (int i = n_tokens; i < n_stride; ++i) {
  9087. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9088. }
  9089. }
  9090. }
  9091. }
  9092. }
  9093. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9094. const int64_t n_tokens = batch.n_tokens;
  9095. GGML_ASSERT(lctx.inp_mean);
  9096. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9097. float * data = (float *) lctx.inp_mean->data;
  9098. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9099. std::vector<uint64_t> sum(n_tokens, 0);
  9100. for (int i = 0; i < n_tokens; ++i) {
  9101. const llama_seq_id seq_id = batch.seq_id[i][0];
  9102. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9103. sum[seq_id] += 1;
  9104. }
  9105. std::vector<float> div(n_tokens, 0.0f);
  9106. for (int i = 0; i < n_tokens; ++i) {
  9107. const uint64_t s = sum[i];
  9108. if (s > 0) {
  9109. div[i] = 1.0f/float(s);
  9110. }
  9111. }
  9112. for (int i = 0; i < n_tokens; ++i) {
  9113. const llama_seq_id seq_id = batch.seq_id[i][0];
  9114. data[seq_id*n_tokens + i] = div[seq_id];
  9115. }
  9116. }
  9117. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9118. const int64_t n_tokens = batch.n_tokens;
  9119. GGML_ASSERT(lctx.inp_cls);
  9120. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9121. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9122. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9123. for (int i = 0; i < n_tokens; ++i) {
  9124. const llama_seq_id seq_id = batch.seq_id[i][0];
  9125. const llama_pos pos = batch.pos[i];
  9126. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9127. if (pos == 0) {
  9128. data[seq_id] = i;
  9129. }
  9130. }
  9131. }
  9132. if (kv_self.recurrent) {
  9133. const int64_t n_kv = kv_self.n;
  9134. if (lctx.inp_s_mask) {
  9135. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9136. float * data = (float *) lctx.inp_s_mask->data;
  9137. // states which are not affected by the current batch are left untouched
  9138. for (int i = 0; i < n_kv; ++i) {
  9139. llama_seq_id seq_id = i + lctx.kv_self.head;
  9140. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9141. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9142. data[i] = (float) has_self_seq;
  9143. // ensure current sequences will be kept
  9144. if (!has_self_seq && kv_cell.pos >= 0) {
  9145. kv_cell.seq_id.insert(seq_id);
  9146. }
  9147. }
  9148. }
  9149. // For Mamba (and other recurrent architectures),
  9150. // update the correct state(s)/sequence(s) for each token of the batch.
  9151. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9152. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9153. if (lctx.inp_s_seq) {
  9154. const int64_t n_tokens = batch.n_tokens;
  9155. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9156. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9157. for (int j = 0; j < n_tokens; ++j) {
  9158. const int32_t n_seq = batch.n_seq_id[j];
  9159. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9160. for (int i = 0; i < n_kv; ++i) {
  9161. if (i < n_seq) {
  9162. // for this type of model, the head is the minimum seq_id of the batch
  9163. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9164. } else {
  9165. data[j*n_kv + i] = -1;
  9166. }
  9167. }
  9168. }
  9169. }
  9170. }
  9171. }
  9172. // Make sure enough space is available for outputs.
  9173. // Returns max number of outputs for which space was reserved.
  9174. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9175. const auto & cparams = lctx.cparams;
  9176. const auto & hparams = lctx.model.hparams;
  9177. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9178. const auto n_batch = cparams.n_batch;
  9179. const auto n_vocab = hparams.n_vocab;
  9180. const auto n_embd = hparams.n_embd;
  9181. // TODO: use a per-batch flag for logits presence instead
  9182. const bool has_logits = cparams.causal_attn;
  9183. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9184. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9185. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9186. if (lctx.output_ids.empty()) {
  9187. // init, never resized afterwards
  9188. lctx.output_ids.resize(n_batch);
  9189. }
  9190. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9191. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9192. // alloc only when more than the current capacity is required
  9193. // TODO: also consider shrinking the buffer
  9194. if (!lctx.buf_output || prev_size < new_size) {
  9195. if (lctx.buf_output) {
  9196. #ifndef NDEBUG
  9197. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9198. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9199. #endif
  9200. ggml_backend_buffer_free(lctx.buf_output);
  9201. lctx.buf_output = nullptr;
  9202. lctx.logits = nullptr;
  9203. lctx.embd = nullptr;
  9204. }
  9205. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9206. if (lctx.buf_output == nullptr) {
  9207. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9208. return 0;
  9209. }
  9210. }
  9211. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9212. lctx.logits = has_logits ? output_base : nullptr;
  9213. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9214. lctx.output_size = n_outputs_max;
  9215. lctx.logits_size = logits_size;
  9216. lctx.embd_size = embd_size;
  9217. // set all ids as invalid (negative)
  9218. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9219. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9220. lctx.n_outputs = 0;
  9221. return n_outputs_max;
  9222. }
  9223. static void llama_graph_compute(
  9224. llama_context & lctx,
  9225. ggml_cgraph * gf,
  9226. int n_threads) {
  9227. #ifdef GGML_USE_METAL
  9228. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9229. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9230. }
  9231. #endif
  9232. if (lctx.backend_cpu != nullptr) {
  9233. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9234. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9235. }
  9236. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9237. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9238. }
  9239. // decode a batch of tokens by evaluating the transformer
  9240. //
  9241. // - lctx: llama context
  9242. // - batch: batch to evaluate
  9243. //
  9244. // return 0 on success
  9245. // return positive int on warning
  9246. // return negative int on error
  9247. //
  9248. static int llama_decode_internal(
  9249. llama_context & lctx,
  9250. llama_batch batch_all) { // TODO: rename back to batch
  9251. const uint32_t n_tokens_all = batch_all.n_tokens;
  9252. if (n_tokens_all == 0) {
  9253. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9254. return -1;
  9255. }
  9256. const auto & model = lctx.model;
  9257. const auto & hparams = model.hparams;
  9258. const auto & cparams = lctx.cparams;
  9259. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9260. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9261. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9262. if (lctx.t_compute_start_us == 0) {
  9263. lctx.t_compute_start_us = ggml_time_us();
  9264. }
  9265. lctx.n_queued_tokens += n_tokens_all;
  9266. auto & kv_self = lctx.kv_self;
  9267. const int64_t n_embd = hparams.n_embd;
  9268. const int64_t n_vocab = hparams.n_vocab;
  9269. uint32_t n_outputs = 0;
  9270. uint32_t n_outputs_prev = 0;
  9271. const auto n_ubatch = cparams.n_ubatch;
  9272. std::vector<llama_pos> pos;
  9273. std::vector<int32_t> n_seq_id;
  9274. std::vector<llama_seq_id *> seq_id_arr;
  9275. std::vector<std::vector<llama_seq_id>> seq_id;
  9276. // count outputs
  9277. if (batch_all.logits) {
  9278. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9279. n_outputs += batch_all.logits[i] != 0;
  9280. }
  9281. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9282. n_outputs = n_tokens_all;
  9283. } else {
  9284. // keep last output only
  9285. n_outputs = 1;
  9286. }
  9287. // reserve output buffer
  9288. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9289. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9290. return -2;
  9291. };
  9292. // set output mappings
  9293. if (batch_all.logits) {
  9294. int32_t i_logits = 0;
  9295. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9296. if (batch_all.logits[i]) {
  9297. lctx.output_ids[i] = i_logits++;
  9298. }
  9299. }
  9300. } else {
  9301. for (uint32_t i = 0; i < n_outputs; ++i) {
  9302. lctx.output_ids[i] = i;
  9303. }
  9304. }
  9305. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9306. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9307. llama_batch u_batch = {
  9308. /* .n_tokens = */ (int32_t) n_tokens,
  9309. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9310. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9311. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9312. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9313. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9314. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9315. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9316. /* .all_pos_1 = */ batch_all.all_pos_1,
  9317. /* .all_seq_id = */ batch_all.all_seq_id,
  9318. };
  9319. // count the outputs in this u_batch
  9320. {
  9321. int32_t n_outputs_new = 0;
  9322. if (u_batch.logits) {
  9323. for (uint32_t i = 0; i < n_tokens; i++) {
  9324. n_outputs_new += u_batch.logits[i] != 0;
  9325. }
  9326. } else if (n_outputs == n_tokens_all) {
  9327. n_outputs_new = n_tokens;
  9328. } else {
  9329. // keep last output only
  9330. if (cur_token + n_tokens >= n_tokens_all) {
  9331. n_outputs_new = 1;
  9332. }
  9333. }
  9334. // needs to happen before the graph is built
  9335. lctx.n_outputs = n_outputs_new;
  9336. }
  9337. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9338. GGML_ASSERT(n_threads > 0);
  9339. // helpers for smoother batch API transition
  9340. // after deprecating the llama_eval calls, these will be removed
  9341. if (u_batch.pos == nullptr) {
  9342. pos.resize(n_tokens);
  9343. for (uint32_t i = 0; i < n_tokens; i++) {
  9344. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9345. }
  9346. u_batch.pos = pos.data();
  9347. }
  9348. if (u_batch.seq_id == nullptr) {
  9349. n_seq_id.resize(n_tokens);
  9350. seq_id.resize(n_tokens);
  9351. seq_id_arr.resize(n_tokens);
  9352. for (uint32_t i = 0; i < n_tokens; i++) {
  9353. n_seq_id[i] = 1;
  9354. seq_id[i].resize(1);
  9355. seq_id[i][0] = u_batch.all_seq_id;
  9356. seq_id_arr[i] = seq_id[i].data();
  9357. }
  9358. u_batch.n_seq_id = n_seq_id.data();
  9359. u_batch.seq_id = seq_id_arr.data();
  9360. }
  9361. // non-causal masks do not use the KV cache
  9362. if (hparams.causal_attn) {
  9363. llama_kv_cache_update(&lctx);
  9364. // if we have enough unused cells before the current head ->
  9365. // better to start searching from the beginning of the cache, hoping to fill it
  9366. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9367. kv_self.head = 0;
  9368. }
  9369. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9370. return 1;
  9371. }
  9372. if (!kv_self.recurrent) {
  9373. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9374. // after enough generations, the benefit from this heuristic disappears
  9375. // if we start defragmenting the cache, the benefit from this will be more important
  9376. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9377. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9378. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9379. }
  9380. }
  9381. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9382. ggml_backend_sched_reset(lctx.sched);
  9383. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9384. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9385. // the output is always the last tensor in the graph
  9386. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9387. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9388. if (lctx.n_outputs == 0) {
  9389. // no output
  9390. res = nullptr;
  9391. embd = nullptr;
  9392. } else if (!hparams.causal_attn) {
  9393. res = nullptr; // do not extract logits for embedding models such as BERT
  9394. // token or sequence embeddings
  9395. embd = gf->nodes[gf->n_nodes - 1];
  9396. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9397. } else if (cparams.embeddings) {
  9398. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9399. int i_embd = gf->n_nodes - 2;
  9400. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9401. i_embd = gf->n_nodes - i;
  9402. if (i_embd < 0) { break; }
  9403. embd = gf->nodes[i_embd];
  9404. }
  9405. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9406. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9407. if (!cparams.causal_attn) {
  9408. res = nullptr; // do not extract logits when not needed
  9409. // skip computing logits
  9410. // TODO: is this safe?
  9411. gf->n_nodes = i_embd + 1;
  9412. }
  9413. } else {
  9414. embd = nullptr; // do not extract embeddings when not needed
  9415. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9416. }
  9417. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9418. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9419. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9420. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9421. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9422. // with the BLAS calls. need a better solution
  9423. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9424. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9425. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9426. n_threads = std::min(4, n_threads);
  9427. }
  9428. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9429. llama_set_inputs(lctx, u_batch);
  9430. llama_graph_compute(lctx, gf, n_threads);
  9431. // update the kv ring buffer
  9432. {
  9433. kv_self.head += n_tokens;
  9434. // Ensure kv cache head points to a valid index.
  9435. if (kv_self.head >= kv_self.size) {
  9436. kv_self.head = 0;
  9437. }
  9438. }
  9439. #ifdef GGML_PERF
  9440. // print timing information per ggml operation (for debugging purposes)
  9441. // requires GGML_PERF to be defined
  9442. ggml_graph_print(gf);
  9443. #endif
  9444. // plot the computation graph in dot format (for debugging purposes)
  9445. //if (n_past%100 == 0) {
  9446. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9447. //}
  9448. // extract logits
  9449. if (res) {
  9450. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9451. GGML_ASSERT(backend_res != nullptr);
  9452. GGML_ASSERT(lctx.logits != nullptr);
  9453. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9454. const int32_t n_outputs_new = lctx.n_outputs;
  9455. if (n_outputs_new) {
  9456. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9457. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9458. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9459. }
  9460. }
  9461. // extract embeddings
  9462. if (embd) {
  9463. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9464. GGML_ASSERT(backend_embd != nullptr);
  9465. switch (cparams.pooling_type) {
  9466. case LLAMA_POOLING_TYPE_NONE:
  9467. {
  9468. // extract token embeddings
  9469. GGML_ASSERT(lctx.embd != nullptr);
  9470. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9471. const int32_t n_outputs_new = lctx.n_outputs;
  9472. if (n_outputs_new) {
  9473. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9474. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9475. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9476. }
  9477. } break;
  9478. case LLAMA_POOLING_TYPE_CLS:
  9479. case LLAMA_POOLING_TYPE_MEAN:
  9480. {
  9481. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9482. // extract sequence embeddings
  9483. auto & embd_seq_out = lctx.embd_seq;
  9484. embd_seq_out.clear();
  9485. for (uint32_t i = 0; i < n_tokens; i++) {
  9486. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9487. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9488. continue;
  9489. }
  9490. embd_seq_out[seq_id].resize(n_embd);
  9491. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9492. }
  9493. } break;
  9494. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9495. {
  9496. GGML_ASSERT(false && "unknown pooling type");
  9497. } break;
  9498. }
  9499. }
  9500. n_outputs_prev += lctx.n_outputs;
  9501. }
  9502. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9503. lctx.n_outputs = n_outputs;
  9504. // wait for the computation to finish (automatically done when obtaining the model output)
  9505. //llama_synchronize(&lctx);
  9506. // decide if we need to defrag the kv cache
  9507. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9508. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9509. // queue defragmentation for next llama_kv_cache_update
  9510. if (fragmentation > cparams.defrag_thold) {
  9511. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9512. llama_kv_cache_defrag(kv_self);
  9513. }
  9514. }
  9515. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9516. // overlap with device computation.
  9517. ggml_backend_sched_reset(lctx.sched);
  9518. return 0;
  9519. }
  9520. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9521. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9522. auto & kv_self = lctx.kv_self;
  9523. const auto & hparams = lctx.model.hparams;
  9524. const uint32_t n_layer = hparams.n_layer;
  9525. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9526. const uint32_t n_used = kv_self.used;
  9527. assert(n_used <= n_kv);
  9528. //const int64_t t_start = ggml_time_us();
  9529. // number of cells moved
  9530. uint32_t n_moves = 0;
  9531. // each move requires 6*n_layer tensors (see build_defrag)
  9532. // - source view, destination view, copy operation
  9533. // - x2 for keys and values
  9534. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9535. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9536. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9537. // determine which KV cells to move where
  9538. //
  9539. // cell i moves to ids[i]
  9540. //
  9541. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9542. //
  9543. std::vector<uint32_t> ids(n_kv, n_kv);
  9544. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9545. const auto & cell0 = kv_self.cells[i0];
  9546. if (!cell0.is_empty()) {
  9547. ids[i0] = i0;
  9548. continue;
  9549. }
  9550. // found a hole - fill it with data from the end of the cache
  9551. uint32_t nh = 1;
  9552. // determine the size of the hole
  9553. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9554. nh++;
  9555. }
  9556. uint32_t nf = 0;
  9557. uint32_t is = n_kv - 1;
  9558. // starting from the end, find nh non-empty cells
  9559. for (; is > i0; --is) {
  9560. const auto & cell1 = kv_self.cells[is];
  9561. if (cell1.is_empty() || ids[is] != n_kv) {
  9562. continue;
  9563. }
  9564. // non-empty cell which is not yet moved
  9565. nf++;
  9566. if (nf == nh) {
  9567. break;
  9568. }
  9569. }
  9570. // this can only happen if `n_used` is not accurate, which would be a bug
  9571. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9572. nf = 0;
  9573. uint32_t i1 = is;
  9574. // are we moving a continuous block of memory?
  9575. bool cont = false;
  9576. // should we stop searching for the next move?
  9577. bool stop = false;
  9578. // go back and move the nf cells to the hole
  9579. for (; i1 < n_kv; ++i1) {
  9580. auto & cell1 = kv_self.cells[i1];
  9581. if (cell1.is_empty() || ids[i1] != n_kv) {
  9582. if (n_moves == max_moves) {
  9583. stop = true;
  9584. break;
  9585. }
  9586. cont = false;
  9587. continue;
  9588. }
  9589. // this cell goes to (i0 + nf)
  9590. ids[i1] = i0 + nf;
  9591. // move the cell meta data
  9592. kv_self.cells[i0 + nf] = cell1;
  9593. // clear the old cell and move the head there
  9594. cell1 = llama_kv_cell();
  9595. kv_self.head = n_used;
  9596. if (!cont) {
  9597. n_moves++;
  9598. cont = true;
  9599. }
  9600. nf++;
  9601. if (nf == nh) {
  9602. break;
  9603. }
  9604. }
  9605. if (stop || n_moves == max_moves) {
  9606. break;
  9607. }
  9608. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9609. i0 += nh - 1;
  9610. }
  9611. if (n_moves == 0) {
  9612. return;
  9613. }
  9614. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9615. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9616. #if 0
  9617. // CPU defrag
  9618. //
  9619. // TODO: optimizations are possible:
  9620. // - multiple threads
  9621. // - avoid copying to the host memory when already there
  9622. //
  9623. // likely not worth the effort, as we have ggml_graph based defrag
  9624. //
  9625. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9626. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9627. const uint32_t kv_size = kv_self.size;
  9628. std::vector<uint8_t> buf_k;
  9629. std::vector<uint8_t> buf_v;
  9630. for (uint32_t il = 0; il < n_layer; ++il) {
  9631. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9632. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9633. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9634. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9635. buf_k.resize(k_size);
  9636. buf_v.resize(v_size);
  9637. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9638. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9639. // batch move [i, i+nm) to [id, id+nm)
  9640. // note: cells can move only to a lower index
  9641. for (uint32_t i = 0; i < n_kv; ++i) {
  9642. const uint32_t id = ids[i];
  9643. if (i == id || id == n_kv) {
  9644. continue;
  9645. }
  9646. uint32_t nm = 1;
  9647. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9648. nm++;
  9649. }
  9650. // move keys
  9651. {
  9652. const int64_t os = i*k_size_row;
  9653. const int64_t od = id*k_size_row;
  9654. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9655. }
  9656. // move values (note: they are transposed)
  9657. {
  9658. const int64_t os = i;
  9659. const int64_t od = id;
  9660. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9661. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9662. }
  9663. }
  9664. i += nm - 1;
  9665. }
  9666. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9667. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9668. }
  9669. #else
  9670. // ggml_graph defrag
  9671. ggml_backend_sched_reset(lctx.sched);
  9672. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9673. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9674. #endif
  9675. //const int64_t t_end = ggml_time_us();
  9676. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9677. }
  9678. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9679. bool need_reserve = false;
  9680. // apply K-shift if needed
  9681. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9682. {
  9683. ggml_backend_sched_reset(lctx.sched);
  9684. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9685. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9686. llama_set_k_shift(lctx);
  9687. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9688. need_reserve = true;
  9689. }
  9690. {
  9691. auto & kv_self = lctx.kv_self;
  9692. kv_self.has_shift = false;
  9693. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9694. kv_self.cells[i].delta = 0;
  9695. }
  9696. }
  9697. }
  9698. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9699. {
  9700. ggml_backend_sched_reset(lctx.sched);
  9701. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9702. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9703. llama_set_s_copy(lctx);
  9704. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9705. need_reserve = true;
  9706. }
  9707. {
  9708. auto & kv_self = lctx.kv_self;
  9709. kv_self.do_copy = false;
  9710. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9711. kv_self.cells[i].src = i;
  9712. }
  9713. }
  9714. }
  9715. // defragment the KV cache if needed
  9716. if (lctx.kv_self.do_defrag) {
  9717. llama_kv_cache_defrag_internal(lctx);
  9718. need_reserve = true;
  9719. lctx.kv_self.do_defrag = false;
  9720. }
  9721. // reserve a worst case graph again
  9722. if (need_reserve) {
  9723. // TODO: extract to a function
  9724. // build worst-case graph
  9725. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9726. int n_past = lctx.cparams.n_ctx - n_tokens;
  9727. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9728. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9729. // initialize scheduler with the worst-case graph
  9730. ggml_backend_sched_reset(lctx.sched);
  9731. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9732. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9733. }
  9734. }
  9735. }
  9736. //
  9737. // tokenizer
  9738. //
  9739. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9740. return vocab.type;
  9741. }
  9742. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9743. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9744. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9745. }
  9746. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9747. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9748. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9749. }
  9750. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9751. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9752. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9753. }
  9754. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9755. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9756. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9757. }
  9758. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9759. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9760. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9761. }
  9762. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9763. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9764. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9765. const auto & token_data = vocab.id_to_token.at(id);
  9766. switch (llama_vocab_get_type(vocab)) {
  9767. case LLAMA_VOCAB_TYPE_SPM: {
  9768. auto buf = token_data.text.substr(3, 2);
  9769. return strtol(buf.c_str(), NULL, 16);
  9770. }
  9771. case LLAMA_VOCAB_TYPE_BPE: {
  9772. GGML_ASSERT(false);
  9773. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9774. }
  9775. case LLAMA_VOCAB_TYPE_WPM: {
  9776. GGML_ASSERT(false);
  9777. }
  9778. default:
  9779. GGML_ASSERT(false);
  9780. }
  9781. }
  9782. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9783. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9784. static const char * hex = "0123456789ABCDEF";
  9785. switch (llama_vocab_get_type(vocab)) {
  9786. case LLAMA_VOCAB_TYPE_SPM: {
  9787. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9788. auto token = vocab.token_to_id.find(buf);
  9789. if (token != vocab.token_to_id.end()) {
  9790. return (*token).second;
  9791. }
  9792. // Try to fall back to just the byte as a string
  9793. const char buf2[2] = { (char)ch, 0 };
  9794. return vocab.token_to_id.at(buf2);
  9795. }
  9796. case LLAMA_VOCAB_TYPE_WPM:
  9797. case LLAMA_VOCAB_TYPE_BPE: {
  9798. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9799. }
  9800. default:
  9801. GGML_ASSERT(false);
  9802. }
  9803. }
  9804. static void llama_escape_whitespace(std::string & text) {
  9805. replace_all(text, " ", "\xe2\x96\x81");
  9806. }
  9807. static void llama_unescape_whitespace(std::string & word) {
  9808. replace_all(word, "\xe2\x96\x81", " ");
  9809. }
  9810. struct llm_symbol {
  9811. using index = int;
  9812. index prev;
  9813. index next;
  9814. const char * text;
  9815. size_t n;
  9816. };
  9817. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9818. // SPM tokenizer
  9819. // original implementation:
  9820. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9821. struct llm_bigram_spm {
  9822. struct comparator {
  9823. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9824. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9825. }
  9826. };
  9827. using queue_storage = std::vector<llm_bigram_spm>;
  9828. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9829. llm_symbol::index left;
  9830. llm_symbol::index right;
  9831. float score;
  9832. size_t size;
  9833. };
  9834. struct llm_tokenizer_spm {
  9835. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9836. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9837. // split string into utf8 chars
  9838. int index = 0;
  9839. size_t offs = 0;
  9840. while (offs < text.size()) {
  9841. llm_symbol sym;
  9842. size_t len = utf8_len(text[offs]);
  9843. sym.text = text.c_str() + offs;
  9844. sym.n = std::min(len, text.size() - offs);
  9845. offs += sym.n;
  9846. sym.prev = index - 1;
  9847. sym.next = offs == text.size() ? -1 : index + 1;
  9848. index++;
  9849. symbols.emplace_back(sym);
  9850. }
  9851. // seed the work queue with all possible 2-character tokens.
  9852. for (size_t i = 1; i < symbols.size(); ++i) {
  9853. try_add_bigram(i - 1, i);
  9854. }
  9855. // keep substituting the highest frequency pairs for as long as we can.
  9856. while (!work_queue.empty()) {
  9857. auto bigram = work_queue.top();
  9858. work_queue.pop();
  9859. auto & left_sym = symbols[bigram.left];
  9860. auto & right_sym = symbols[bigram.right];
  9861. // if one of the symbols already got merged, skip it.
  9862. if (left_sym.n == 0 || right_sym.n == 0 ||
  9863. left_sym.n + right_sym.n != bigram.size) {
  9864. continue;
  9865. }
  9866. // merge the right sym into the left one
  9867. left_sym.n += right_sym.n;
  9868. right_sym.n = 0;
  9869. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9870. // remove the right sym from the chain
  9871. left_sym.next = right_sym.next;
  9872. if (right_sym.next >= 0) {
  9873. symbols[right_sym.next].prev = bigram.left;
  9874. }
  9875. // find more substitutions
  9876. try_add_bigram(left_sym.prev, bigram.left);
  9877. try_add_bigram(bigram.left, left_sym.next);
  9878. }
  9879. for (int i = 0; i != -1; i = symbols[i].next) {
  9880. auto & symbol = symbols[i];
  9881. resegment(symbol, output);
  9882. }
  9883. }
  9884. private:
  9885. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9886. auto text = std::string(symbol.text, symbol.n);
  9887. auto token = vocab.token_to_id.find(text);
  9888. // Do we need to support is_unused?
  9889. if (token != vocab.token_to_id.end()) {
  9890. output.push_back((*token).second);
  9891. return;
  9892. }
  9893. const auto p = rev_merge.find(text);
  9894. if (p == rev_merge.end()) {
  9895. // output any symbols that did not form tokens as bytes.
  9896. output.reserve(output.size() + symbol.n);
  9897. for (int j = 0; j < (int)symbol.n; ++j) {
  9898. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9899. output.push_back(token_id);
  9900. }
  9901. return;
  9902. }
  9903. resegment(symbols[p->second.first], output);
  9904. resegment(symbols[p->second.second], output);
  9905. }
  9906. void try_add_bigram(int left, int right) {
  9907. if (left == -1 || right == -1) {
  9908. return;
  9909. }
  9910. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9911. auto token = vocab.token_to_id.find(text);
  9912. if (token == vocab.token_to_id.end()) {
  9913. return;
  9914. }
  9915. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9916. return;
  9917. }
  9918. const auto & tok_data = vocab.id_to_token[(*token).second];
  9919. llm_bigram_spm bigram;
  9920. bigram.left = left;
  9921. bigram.right = right;
  9922. bigram.score = tok_data.score;
  9923. bigram.size = text.size();
  9924. work_queue.push(bigram);
  9925. // Do we need to support is_unused?
  9926. rev_merge[text] = std::make_pair(left, right);
  9927. }
  9928. const llama_vocab & vocab;
  9929. std::vector<llm_symbol> symbols;
  9930. llm_bigram_spm::queue work_queue;
  9931. std::map<std::string, std::pair<int, int>> rev_merge;
  9932. };
  9933. // BPE tokenizer
  9934. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9935. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9936. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9937. struct llm_bigram_bpe {
  9938. struct comparator {
  9939. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9940. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9941. }
  9942. };
  9943. using queue_storage = std::vector<llm_bigram_bpe>;
  9944. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9945. llm_symbol::index left;
  9946. llm_symbol::index right;
  9947. std::string text;
  9948. int rank;
  9949. size_t size;
  9950. };
  9951. struct llm_tokenizer_bpe {
  9952. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9953. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9954. int final_prev_index = -1;
  9955. bool ignore_merges = false;
  9956. std::vector<std::string> word_collection;
  9957. switch (vocab.type) {
  9958. case LLAMA_VOCAB_TYPE_BPE:
  9959. switch (vocab.type_pre) {
  9960. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  9961. ignore_merges = true;
  9962. word_collection = unicode_regex_split(text, {
  9963. // original regex from tokenizer.json
  9964. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  9965. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  9966. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  9967. });
  9968. break;
  9969. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  9970. word_collection = unicode_regex_split(text, {
  9971. // same as llama3
  9972. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  9973. });
  9974. break;
  9975. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  9976. word_collection = unicode_regex_split(text, {
  9977. "[\r\n]",
  9978. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  9979. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  9980. "\\s+$",
  9981. "[一-龥ࠀ-一가-퟿]+",
  9982. "\\p{N}+",
  9983. });
  9984. break;
  9985. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  9986. word_collection = unicode_regex_split(text, {
  9987. "[\r\n]",
  9988. "\\s?\\p{L}+",
  9989. "\\s?\\p{P}+",
  9990. "[一-龥ࠀ-一가-퟿]+",
  9991. "\\p{N}",
  9992. });
  9993. break;
  9994. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  9995. word_collection = unicode_regex_split(text, {
  9996. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  9997. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  9998. "[0-9][0-9][0-9]",
  9999. });
  10000. break;
  10001. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10002. // TODO: MPT pre-tokenization regexes are unknown
  10003. // the following are close, but not exact. run the following:
  10004. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10005. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10006. word_collection = unicode_regex_split(text, {
  10007. "\\s?\\p{L}+",
  10008. "\\s?\\p{P}+",
  10009. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10010. });
  10011. break;
  10012. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10013. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10014. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10015. word_collection = unicode_regex_split(text, {
  10016. "\\p{N}",
  10017. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10018. });
  10019. break;
  10020. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10021. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10022. word_collection = unicode_regex_split(text, {
  10023. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10024. });
  10025. break;
  10026. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10027. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10028. word_collection = unicode_regex_split(text, {
  10029. // original regex from tokenizer.json
  10030. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10031. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10032. });
  10033. break;
  10034. default:
  10035. // default regex for BPE tokenization pre-processing
  10036. word_collection = unicode_regex_split(text, {
  10037. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10038. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10039. "\\p{N}+",
  10040. "[0-9][0-9][0-9]",
  10041. });
  10042. break;
  10043. }
  10044. break;
  10045. default:
  10046. GGML_ASSERT(false);
  10047. break;
  10048. }
  10049. symbols_final.clear();
  10050. for (auto & word : word_collection) {
  10051. work_queue = llm_bigram_bpe::queue();
  10052. symbols.clear();
  10053. int index = 0;
  10054. size_t offset = 0;
  10055. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10056. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10057. offset = word.size();
  10058. }
  10059. while (offset < word.size()) {
  10060. llm_symbol sym;
  10061. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10062. sym.text = word.c_str() + offset;
  10063. sym.n = char_len;
  10064. offset += sym.n;
  10065. sym.prev = index - 1;
  10066. sym.next = offset == word.size() ? -1 : index + 1;
  10067. index++;
  10068. symbols.emplace_back(sym);
  10069. }
  10070. for (size_t i = 1; i < symbols.size(); ++i) {
  10071. add_new_bigram(i - 1, i);
  10072. }
  10073. // build token(s)
  10074. while (!work_queue.empty()) {
  10075. auto bigram = work_queue.top();
  10076. work_queue.pop();
  10077. auto & left_symbol = symbols[bigram.left];
  10078. auto & right_symbol = symbols[bigram.right];
  10079. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10080. continue;
  10081. }
  10082. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10083. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10084. if (left_token + right_token != bigram.text) {
  10085. continue; // Skip this bigram if it's outdated
  10086. }
  10087. // merge the right sym into the left one
  10088. left_symbol.n += right_symbol.n;
  10089. right_symbol.n = 0;
  10090. // remove the right sym from the chain
  10091. left_symbol.next = right_symbol.next;
  10092. if (right_symbol.next >= 0) {
  10093. symbols[right_symbol.next].prev = bigram.left;
  10094. }
  10095. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10096. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10097. }
  10098. // add the finished tokens to the final list keeping correct order for next and prev
  10099. for (auto & sym : symbols) {
  10100. if (sym.n > 0) {
  10101. sym.prev = final_prev_index;
  10102. sym.next = -1;
  10103. if (final_prev_index != -1) {
  10104. symbols_final[final_prev_index].next = symbols_final.size();
  10105. }
  10106. symbols_final.emplace_back(sym);
  10107. final_prev_index = symbols_final.size() - 1;
  10108. }
  10109. }
  10110. }
  10111. symbols = symbols_final;
  10112. if (!symbols.empty()) {
  10113. for (int i = 0; i != -1; i = symbols[i].next) {
  10114. auto & symbol = symbols[i];
  10115. if (symbol.n == 0) {
  10116. continue;
  10117. }
  10118. const std::string str = std::string(symbol.text, symbol.n);
  10119. const auto token = vocab.token_to_id.find(str);
  10120. if (token == vocab.token_to_id.end()) {
  10121. for (auto j = str.begin(); j != str.end(); ++j) {
  10122. std::string byte_str(1, *j);
  10123. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10124. if (token_multibyte == vocab.token_to_id.end()) {
  10125. throw std::runtime_error("ERROR: byte not found in vocab");
  10126. }
  10127. output.push_back((*token_multibyte).second);
  10128. }
  10129. } else {
  10130. output.push_back((*token).second);
  10131. }
  10132. }
  10133. }
  10134. }
  10135. private:
  10136. void add_new_bigram(int left, int right) {
  10137. if (left == -1 || right == -1) {
  10138. return;
  10139. }
  10140. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10141. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10142. int rank_found = -1;
  10143. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10144. if (rank_found < 0) {
  10145. return;
  10146. }
  10147. llm_bigram_bpe bigram;
  10148. bigram.left = left;
  10149. bigram.right = right;
  10150. bigram.text = left_token + right_token;
  10151. bigram.size = left_token.size() + right_token.size();
  10152. bigram.rank = rank_found;
  10153. work_queue.push(bigram);
  10154. }
  10155. const llama_vocab & vocab;
  10156. std::vector<llm_symbol> symbols;
  10157. std::vector<llm_symbol> symbols_final;
  10158. llm_bigram_bpe::queue work_queue;
  10159. };
  10160. struct llm_tokenizer_wpm {
  10161. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10162. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10163. auto * token_map = &vocab.token_to_id;
  10164. // normalize and split by whitespace
  10165. std::vector<std::string> words = preprocess(text);
  10166. // bos token prepended already
  10167. // find the longest tokens that form the words
  10168. for (const std::string &word : words) {
  10169. // skip empty words
  10170. if (word.size() == 0) {
  10171. continue;
  10172. }
  10173. // prepend phantom space
  10174. std::string word1 = "\xe2\x96\x81" + word;
  10175. int n = word1.size();
  10176. // we're at the start of a new word
  10177. int i = 0;
  10178. bool match_any = false;
  10179. // move through character position in word
  10180. while (i < n) {
  10181. // loop through possible match length
  10182. bool match = false;
  10183. for (int j = n; j > i; j--) {
  10184. auto it = token_map->find(word1.substr(i, j - i));
  10185. if (it != token_map->end()) {
  10186. output.push_back(it->second);
  10187. match = true;
  10188. match_any = true;
  10189. i = j;
  10190. break;
  10191. }
  10192. }
  10193. // must be an unknown character
  10194. if (!match) {
  10195. i++;
  10196. }
  10197. }
  10198. // we didn't find any matches for this word
  10199. if (!match_any) {
  10200. output.push_back(vocab.special_unk_id);
  10201. }
  10202. }
  10203. }
  10204. std::vector<std::string> preprocess(const std::string & text) {
  10205. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10206. // strip accents, strip control, uniformize whitespace,
  10207. // to lowercase, pad chinese characters, pad punctuation
  10208. std::string new_str = "";
  10209. for (uint32_t code : cpts_nfd) {
  10210. const codepoint_flags flags = unicode_cpt_flags(code);
  10211. if (flags.is_accent_mark || flags.is_control) {
  10212. continue;
  10213. }
  10214. code = unicode_tolower(code);
  10215. if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
  10216. code = ' ';
  10217. }
  10218. std::string s = unicode_cpt_to_utf8(code);
  10219. if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
  10220. new_str += " ";
  10221. new_str += s;
  10222. new_str += " ";
  10223. } else {
  10224. new_str += s;
  10225. }
  10226. }
  10227. // split by whitespace
  10228. uint64_t l = 0;
  10229. uint64_t r = 0;
  10230. std::vector<std::string> words;
  10231. while (r < new_str.size()) {
  10232. // if is whitespace
  10233. if (isspace(new_str[r], std::locale::classic())) {
  10234. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10235. l = r + 1;
  10236. r = l;
  10237. } else {
  10238. r += 1;
  10239. }
  10240. }
  10241. if (r > l) {
  10242. words.push_back(new_str.substr(l, (r - l)));
  10243. }
  10244. return words;
  10245. }
  10246. bool is_ascii_punct(uint32_t code) {
  10247. if (code > 0xFF) {
  10248. return false;
  10249. }
  10250. auto c = char(static_cast<unsigned char>(code));
  10251. return ispunct(c, std::locale::classic());
  10252. }
  10253. bool is_chinese_char(uint32_t cpt) {
  10254. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10255. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10256. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10257. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10258. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10259. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10260. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10261. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10262. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10263. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10264. return true; // NOLINT
  10265. }
  10266. return false;
  10267. }
  10268. const llama_vocab & vocab;
  10269. };
  10270. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10271. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10272. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10273. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10274. struct fragment_buffer_variant {
  10275. fragment_buffer_variant(llama_vocab::id _token)
  10276. :
  10277. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10278. token(_token),
  10279. raw_text(_dummy),
  10280. offset(0),
  10281. length(0) {}
  10282. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10283. :
  10284. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10285. token((llama_vocab::id) - 1),
  10286. raw_text(_raw_text),
  10287. offset(_offset),
  10288. length(_length){
  10289. GGML_ASSERT(_offset >= 0);
  10290. GGML_ASSERT(_length >= 1);
  10291. GGML_ASSERT(offset + length <= raw_text.length());
  10292. }
  10293. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10294. const llama_vocab::id token;
  10295. const std::string _dummy;
  10296. const std::string & raw_text;
  10297. const uint64_t offset;
  10298. const uint64_t length;
  10299. };
  10300. // #define PRETOKENIZERDEBUG
  10301. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10302. // for each special token
  10303. for (const auto & st: vocab.special_tokens_cache) {
  10304. const auto & special_token = st.first;
  10305. const auto & special_id = st.second;
  10306. // for each text fragment
  10307. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10308. while (it != buffer.end()) {
  10309. auto & fragment = (*it);
  10310. // if a fragment is text ( not yet processed )
  10311. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10312. auto * raw_text = &(fragment.raw_text);
  10313. auto raw_text_base_offset = fragment.offset;
  10314. auto raw_text_base_length = fragment.length;
  10315. // loop over the text
  10316. while (true) {
  10317. // find the first occurrence of a given special token in this fragment
  10318. // passing offset argument only limit the "search area" but match coordinates
  10319. // are still relative to the source full raw_text
  10320. auto match = raw_text->find(special_token, raw_text_base_offset);
  10321. // no occurrences found, stop processing this fragment for a given special token
  10322. if (match == std::string::npos) break;
  10323. // check if match is within bounds of offset <-> length
  10324. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10325. #ifdef PRETOKENIZERDEBUG
  10326. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10327. #endif
  10328. auto source = std::distance(buffer.begin(), it);
  10329. // if match is further than base offset
  10330. // then we have some text to the left of it
  10331. if (match > raw_text_base_offset) {
  10332. // left
  10333. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10334. const int64_t left_reminder_length = match - raw_text_base_offset;
  10335. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10336. #ifdef PRETOKENIZERDEBUG
  10337. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10338. #endif
  10339. it++;
  10340. }
  10341. // special token
  10342. buffer.emplace_after(it, special_id);
  10343. it++;
  10344. // right
  10345. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10346. const int64_t right_reminder_offset = match + special_token.length();
  10347. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10348. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10349. #ifdef PRETOKENIZERDEBUG
  10350. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10351. #endif
  10352. it++;
  10353. if (source == 0) {
  10354. buffer.erase_after(buffer.before_begin());
  10355. } else {
  10356. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10357. }
  10358. // repeat for the right side
  10359. raw_text_base_offset = right_reminder_offset;
  10360. raw_text_base_length = right_reminder_length;
  10361. #ifdef PRETOKENIZERDEBUG
  10362. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10363. #endif
  10364. } else {
  10365. if (source == 0) {
  10366. buffer.erase_after(buffer.before_begin());
  10367. } else {
  10368. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10369. }
  10370. break;
  10371. }
  10372. }
  10373. }
  10374. it++;
  10375. }
  10376. }
  10377. }
  10378. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10379. std::vector<llama_vocab::id> output;
  10380. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10381. if (!raw_text.empty()) {
  10382. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10383. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10384. }
  10385. switch (vocab.type) {
  10386. case LLAMA_VOCAB_TYPE_SPM:
  10387. {
  10388. // OG tokenizer behavior:
  10389. //
  10390. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10391. // tokenizer.encode('', add_special_tokens=False) returns []
  10392. static const bool rtrim = true; //TODO: as param
  10393. bool is_prev_special = false;
  10394. bool special_token_rtrim = false;
  10395. if (add_special && vocab.special_add_bos != 0) {
  10396. GGML_ASSERT(vocab.special_bos_id != -1);
  10397. output.push_back(vocab.special_bos_id);
  10398. is_prev_special = true;
  10399. }
  10400. for (const auto & fragment : fragment_buffer) {
  10401. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10402. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10403. // TODO: It's likely possible to get rid of this string copy entirely
  10404. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10405. // and passing 'add space prefix' as bool argument
  10406. //
  10407. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10408. if (special_token_rtrim) {
  10409. size_t num_whitespaces = 0;
  10410. while (isspace(raw_text[num_whitespaces])) {
  10411. num_whitespaces++;
  10412. }
  10413. if (num_whitespaces == raw_text.size()) {
  10414. continue; // skip if all whitespaces
  10415. }
  10416. raw_text = raw_text.substr(num_whitespaces);
  10417. }
  10418. if (vocab.add_space_prefix) {
  10419. if (!output.size() || is_prev_special) { // prefix with space if first token
  10420. raw_text = " " + raw_text;
  10421. }
  10422. }
  10423. #ifdef PRETOKENIZERDEBUG
  10424. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10425. #endif
  10426. llm_tokenizer_spm tokenizer(vocab);
  10427. llama_escape_whitespace(raw_text);
  10428. tokenizer.tokenize(raw_text, output);
  10429. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10430. output.push_back(fragment.token);
  10431. is_prev_special = true;
  10432. // phi-3 special tokens without rtrim, works fine for llama-spm too
  10433. special_token_rtrim = rtrim
  10434. && fragment.token != vocab.special_bos_id
  10435. && fragment.token != vocab.special_unk_id
  10436. && fragment.token != vocab.special_eos_id;
  10437. }
  10438. }
  10439. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10440. LLAMA_LOG_WARN(
  10441. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10442. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10443. "Are you sure this is what you want?\n", __FUNCTION__);
  10444. }
  10445. if (add_special && vocab.special_add_eos == 1) {
  10446. GGML_ASSERT(vocab.special_eos_id != -1);
  10447. output.push_back(vocab.special_eos_id);
  10448. }
  10449. } break;
  10450. case LLAMA_VOCAB_TYPE_BPE:
  10451. {
  10452. if (add_special && vocab.special_add_bos != 0) {
  10453. GGML_ASSERT(vocab.special_bos_id != -1);
  10454. output.push_back(vocab.special_bos_id);
  10455. }
  10456. for (const auto & fragment : fragment_buffer) {
  10457. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10458. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10459. #ifdef PRETOKENIZERDEBUG
  10460. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10461. #endif
  10462. llm_tokenizer_bpe tokenizer(vocab);
  10463. tokenizer.tokenize(raw_text, output);
  10464. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10465. output.push_back(fragment.token);
  10466. }
  10467. }
  10468. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10469. LLAMA_LOG_WARN(
  10470. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10471. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10472. "Are you sure this is what you want?\n", __FUNCTION__);
  10473. }
  10474. if (add_special && vocab.special_add_eos == 1) {
  10475. GGML_ASSERT(vocab.special_add_eos != -1);
  10476. output.push_back(vocab.special_eos_id);
  10477. }
  10478. } break;
  10479. case LLAMA_VOCAB_TYPE_WPM:
  10480. {
  10481. if (add_special) {
  10482. GGML_ASSERT(vocab.special_cls_id != -1);
  10483. output.push_back(vocab.special_cls_id);
  10484. }
  10485. for (const auto & fragment : fragment_buffer) {
  10486. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10487. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10488. #ifdef PRETOKENIZERDEBUG
  10489. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10490. #endif
  10491. llm_tokenizer_wpm tokenizer(vocab);
  10492. tokenizer.tokenize(raw_text, output);
  10493. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10494. output.push_back(fragment.token);
  10495. }
  10496. }
  10497. if (add_special) {
  10498. GGML_ASSERT(vocab.special_sep_id != -1);
  10499. output.push_back(vocab.special_sep_id);
  10500. }
  10501. } break;
  10502. case LLAMA_VOCAB_TYPE_NONE:
  10503. GGML_ASSERT(false);
  10504. }
  10505. return output;
  10506. }
  10507. //
  10508. // grammar - internal
  10509. //
  10510. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10511. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10512. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10513. const std::string & src,
  10514. llama_partial_utf8 partial_start) {
  10515. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10516. const char * pos = src.c_str();
  10517. std::vector<uint32_t> code_points;
  10518. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10519. code_points.reserve(src.size() + 1);
  10520. uint32_t value = partial_start.value;
  10521. int n_remain = partial_start.n_remain;
  10522. // continue previous decode, if applicable
  10523. while (*pos != 0 && n_remain > 0) {
  10524. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10525. if ((next_byte >> 6) != 2) {
  10526. // invalid sequence, abort
  10527. code_points.push_back(0);
  10528. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10529. }
  10530. value = (value << 6) + (next_byte & 0x3F);
  10531. ++pos;
  10532. --n_remain;
  10533. }
  10534. if (partial_start.n_remain > 0 && n_remain == 0) {
  10535. code_points.push_back(value);
  10536. }
  10537. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10538. while (*pos != 0) {
  10539. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10540. uint8_t highbits = first_byte >> 4;
  10541. n_remain = lookup[highbits] - 1;
  10542. if (n_remain < 0) {
  10543. // invalid sequence, abort
  10544. code_points.clear();
  10545. code_points.push_back(0);
  10546. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10547. }
  10548. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10549. value = first_byte & mask;
  10550. ++pos;
  10551. while (*pos != 0 && n_remain > 0) {
  10552. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10553. ++pos;
  10554. --n_remain;
  10555. }
  10556. if (n_remain == 0) {
  10557. code_points.push_back(value);
  10558. }
  10559. }
  10560. code_points.push_back(0);
  10561. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10562. }
  10563. // returns true iff pos points to the end of one of the definitions of a rule
  10564. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10565. switch (pos->type) {
  10566. case LLAMA_GRETYPE_END: return true; // NOLINT
  10567. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10568. default: return false;
  10569. }
  10570. }
  10571. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10572. // asserts that pos is pointing to a char range element
  10573. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10574. const llama_grammar_element * pos,
  10575. const uint32_t chr) {
  10576. bool found = false;
  10577. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10578. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10579. do {
  10580. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10581. // inclusive range, e.g. [a-z]
  10582. found = found || (pos->value <= chr && chr <= pos[1].value);
  10583. pos += 2;
  10584. } else {
  10585. // exact char match, e.g. [a] or "a"
  10586. found = found || pos->value == chr;
  10587. pos += 1;
  10588. }
  10589. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10590. return std::make_pair(found == is_positive_char, pos);
  10591. }
  10592. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10593. // range at pos (regular or inverse range)
  10594. // asserts that pos is pointing to a char range element
  10595. static bool llama_grammar_match_partial_char(
  10596. const llama_grammar_element * pos,
  10597. const llama_partial_utf8 partial_utf8) {
  10598. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10599. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10600. uint32_t partial_value = partial_utf8.value;
  10601. int n_remain = partial_utf8.n_remain;
  10602. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10603. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10604. return false;
  10605. }
  10606. // range of possible code points this partial UTF-8 sequence could complete to
  10607. uint32_t low = partial_value << (n_remain * 6);
  10608. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10609. if (low == 0) {
  10610. if (n_remain == 2) {
  10611. low = 1 << 11;
  10612. } else if (n_remain == 3) {
  10613. low = 1 << 16;
  10614. }
  10615. }
  10616. do {
  10617. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10618. // inclusive range, e.g. [a-z]
  10619. if (pos->value <= high && low <= pos[1].value) {
  10620. return is_positive_char;
  10621. }
  10622. pos += 2;
  10623. } else {
  10624. // exact char match, e.g. [a] or "a"
  10625. if (low <= pos->value && pos->value <= high) {
  10626. return is_positive_char;
  10627. }
  10628. pos += 1;
  10629. }
  10630. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10631. return !is_positive_char;
  10632. }
  10633. // transforms a grammar pushdown stack into N possible stacks, all ending
  10634. // at a character range (terminal element)
  10635. static void llama_grammar_advance_stack(
  10636. const std::vector<std::vector<llama_grammar_element>> & rules,
  10637. const std::vector<const llama_grammar_element *> & stack,
  10638. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10639. if (stack.empty()) {
  10640. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10641. new_stacks.emplace_back(stack);
  10642. }
  10643. return;
  10644. }
  10645. const llama_grammar_element * pos = stack.back();
  10646. switch (pos->type) {
  10647. case LLAMA_GRETYPE_RULE_REF: {
  10648. const size_t rule_id = static_cast<size_t>(pos->value);
  10649. const llama_grammar_element * subpos = rules[rule_id].data();
  10650. do {
  10651. // init new stack without the top (pos)
  10652. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10653. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10654. // if this rule ref is followed by another element, add that to stack
  10655. new_stack.push_back(pos + 1);
  10656. }
  10657. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10658. // if alternate is nonempty, add to stack
  10659. new_stack.push_back(subpos);
  10660. }
  10661. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10662. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10663. // scan to end of alternate def
  10664. subpos++;
  10665. }
  10666. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10667. // there's another alternate def of this rule to process
  10668. subpos++;
  10669. } else {
  10670. break;
  10671. }
  10672. } while (true);
  10673. break;
  10674. }
  10675. case LLAMA_GRETYPE_CHAR:
  10676. case LLAMA_GRETYPE_CHAR_NOT:
  10677. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10678. // only add the stack if it's not a duplicate of one we already have
  10679. new_stacks.emplace_back(stack);
  10680. }
  10681. break;
  10682. default:
  10683. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10684. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10685. // those
  10686. GGML_ASSERT(false);
  10687. }
  10688. }
  10689. // takes a set of possible pushdown stacks on a grammar, which are required to
  10690. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10691. // produces the N possible stacks if the given char is accepted at those
  10692. // positions
  10693. void llama_grammar_accept(
  10694. const std::vector<std::vector<llama_grammar_element>> & rules,
  10695. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10696. const uint32_t chr,
  10697. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10698. new_stacks.clear();
  10699. for (const auto & stack : stacks) {
  10700. if (stack.empty()) {
  10701. continue;
  10702. }
  10703. auto match = llama_grammar_match_char(stack.back(), chr);
  10704. if (match.first) {
  10705. const llama_grammar_element * pos = match.second;
  10706. // update top of stack to next element, if any
  10707. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10708. if (!llama_grammar_is_end_of_sequence(pos)) {
  10709. new_stack.push_back(pos);
  10710. }
  10711. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10712. }
  10713. }
  10714. }
  10715. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10716. const std::vector<std::vector<llama_grammar_element>> & rules,
  10717. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10718. const std::vector<llama_grammar_candidate> & candidates);
  10719. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10720. const std::vector<std::vector<llama_grammar_element>> & rules,
  10721. const std::vector<const llama_grammar_element *> & stack,
  10722. const std::vector<llama_grammar_candidate> & candidates) {
  10723. std::vector<llama_grammar_candidate> rejects;
  10724. rejects.reserve(candidates.size());
  10725. if (stack.empty()) {
  10726. for (const auto & tok : candidates) {
  10727. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10728. rejects.push_back(tok);
  10729. }
  10730. }
  10731. return rejects;
  10732. }
  10733. const llama_grammar_element * stack_pos = stack.back();
  10734. std::vector<llama_grammar_candidate> next_candidates;
  10735. next_candidates.reserve(candidates.size());
  10736. for (const auto & tok : candidates) {
  10737. if (*tok.code_points == 0) {
  10738. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10739. // that cannot satisfy this position in grammar
  10740. if (tok.partial_utf8.n_remain != 0 &&
  10741. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10742. rejects.push_back(tok);
  10743. }
  10744. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10745. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10746. } else {
  10747. rejects.push_back(tok);
  10748. }
  10749. }
  10750. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10751. // update top of stack to next element, if any
  10752. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10753. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10754. stack_after.push_back(stack_pos_after);
  10755. }
  10756. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10757. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10758. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10759. for (const auto & tok : next_rejects) {
  10760. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10761. }
  10762. return rejects;
  10763. }
  10764. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10765. const std::vector<std::vector<llama_grammar_element>> & rules,
  10766. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10767. const std::vector<llama_grammar_candidate> & candidates) {
  10768. GGML_ASSERT(!stacks.empty()); // REVIEW
  10769. if (candidates.empty()) {
  10770. return std::vector<llama_grammar_candidate>();
  10771. }
  10772. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10773. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10774. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10775. }
  10776. return rejects;
  10777. }
  10778. static bool llama_grammar_detect_left_recursion(
  10779. const std::vector<std::vector<llama_grammar_element>> & rules,
  10780. size_t rule_index,
  10781. std::vector<bool> * rules_visited,
  10782. std::vector<bool> * rules_in_progress,
  10783. std::vector<bool> * rules_may_be_empty) {
  10784. if ((*rules_in_progress)[rule_index]) {
  10785. return true;
  10786. }
  10787. (*rules_in_progress)[rule_index] = true;
  10788. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  10789. // First check if the rule might produce the empty string. This could be done combined with the second
  10790. // step but it's more readable as two steps.
  10791. bool at_rule_start = true;
  10792. for (size_t i = 0; i < rule.size(); i++) {
  10793. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10794. if (at_rule_start) {
  10795. (*rules_may_be_empty)[rule_index] = true;
  10796. break;
  10797. }
  10798. at_rule_start = true;
  10799. } else {
  10800. at_rule_start = false;
  10801. }
  10802. }
  10803. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  10804. // be empty)
  10805. bool recurse_into_nonterminal = true;
  10806. for (size_t i = 0; i < rule.size(); i++) {
  10807. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  10808. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  10809. return true;
  10810. }
  10811. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  10812. recurse_into_nonterminal = false;
  10813. }
  10814. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10815. recurse_into_nonterminal = true;
  10816. } else {
  10817. recurse_into_nonterminal = false;
  10818. }
  10819. }
  10820. (*rules_in_progress)[rule_index] = false;
  10821. (*rules_visited)[rule_index] = true;
  10822. return false;
  10823. }
  10824. //
  10825. // grammar - external
  10826. //
  10827. struct llama_grammar * llama_grammar_init(
  10828. const llama_grammar_element ** rules,
  10829. size_t n_rules,
  10830. size_t start_rule_index) {
  10831. const llama_grammar_element * pos;
  10832. // copy rule definitions into vectors
  10833. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10834. for (size_t i = 0; i < n_rules; i++) {
  10835. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10836. vec_rules[i].push_back(*pos);
  10837. }
  10838. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10839. }
  10840. // Check for left recursion
  10841. std::vector<bool> rules_visited(n_rules);
  10842. std::vector<bool> rules_in_progress(n_rules);
  10843. std::vector<bool> rules_may_be_empty(n_rules);
  10844. for (size_t i = 0; i < n_rules; i++) {
  10845. if (rules_visited[i]) {
  10846. continue;
  10847. }
  10848. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  10849. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  10850. }
  10851. }
  10852. // loop over alternates of start rule to build initial stacks
  10853. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10854. pos = vec_rules[start_rule_index].data();
  10855. do {
  10856. std::vector<const llama_grammar_element *> stack;
  10857. if (!llama_grammar_is_end_of_sequence(pos)) {
  10858. // if alternate is nonempty, add to stack
  10859. stack.push_back(pos);
  10860. }
  10861. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10862. while (!llama_grammar_is_end_of_sequence(pos)) {
  10863. // scan to end of alternate def
  10864. pos++;
  10865. }
  10866. if (pos->type == LLAMA_GRETYPE_ALT) {
  10867. // there's another alternate def of this rule to process
  10868. pos++;
  10869. } else {
  10870. break;
  10871. }
  10872. } while (true);
  10873. // Important: vec_rules has to be moved here, not copied, because stacks contains
  10874. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  10875. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  10876. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10877. }
  10878. void llama_grammar_free(struct llama_grammar * grammar) {
  10879. delete grammar;
  10880. }
  10881. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10882. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10883. // redirect elements in stacks to point to new rules
  10884. for (size_t is = 0; is < result->stacks.size(); is++) {
  10885. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10886. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10887. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10888. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10889. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10890. }
  10891. }
  10892. }
  10893. }
  10894. }
  10895. return result;
  10896. }
  10897. //
  10898. // sampling
  10899. //
  10900. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10901. if (seed == LLAMA_DEFAULT_SEED) {
  10902. seed = time(NULL);
  10903. }
  10904. ctx->rng.seed(seed);
  10905. }
  10906. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10907. GGML_ASSERT(candidates->size > 0);
  10908. const int64_t t_start_sample_us = ggml_time_us();
  10909. // Sort the logits in descending order
  10910. if (!candidates->sorted) {
  10911. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10912. return a.logit > b.logit;
  10913. });
  10914. candidates->sorted = true;
  10915. }
  10916. float max_l = candidates->data[0].logit;
  10917. float cum_sum = 0.0f;
  10918. for (size_t i = 0; i < candidates->size; ++i) {
  10919. float p = expf(candidates->data[i].logit - max_l);
  10920. candidates->data[i].p = p;
  10921. cum_sum += p;
  10922. }
  10923. for (size_t i = 0; i < candidates->size; ++i) {
  10924. candidates->data[i].p /= cum_sum;
  10925. }
  10926. if (ctx) {
  10927. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10928. }
  10929. }
  10930. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10931. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10932. // if (k >= (int32_t)candidates->size) {
  10933. // return;
  10934. // }
  10935. const int64_t t_start_sample_us = ggml_time_us();
  10936. if (k <= 0) {
  10937. k = candidates->size;
  10938. }
  10939. k = std::max(k, (int) min_keep);
  10940. k = std::min(k, (int) candidates->size);
  10941. // Sort scores in descending order
  10942. if (!candidates->sorted) {
  10943. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10944. return a.logit > b.logit;
  10945. };
  10946. if (k <= 128) {
  10947. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10948. } else {
  10949. constexpr int nbuckets = 128;
  10950. constexpr float bucket_low = -10.0f;
  10951. constexpr float bucket_high = 10.0f;
  10952. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10953. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10954. std::vector<int> bucket_idx(candidates->size);
  10955. std::vector<int> histo(nbuckets, 0);
  10956. for (int i = 0; i < (int)candidates->size; ++i) {
  10957. const float val = candidates->data[i].logit;
  10958. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10959. ib = std::max(0, std::min(nbuckets-1, ib));
  10960. bucket_idx[i] = ib;
  10961. ++histo[ib];
  10962. }
  10963. int nhave = 0;
  10964. int ib = nbuckets - 1;
  10965. for ( ; ib >= 0; --ib) {
  10966. nhave += histo[ib];
  10967. if (nhave >= k) break;
  10968. }
  10969. std::vector<llama_token_data> tmp_tokens(nhave);
  10970. auto ptr = tmp_tokens.data();
  10971. std::vector<llama_token_data*> bucket_ptrs;
  10972. bucket_ptrs.reserve(nbuckets - ib);
  10973. for (int j = nbuckets - 1; j >= ib; --j) {
  10974. bucket_ptrs.push_back(ptr);
  10975. ptr += histo[j];
  10976. }
  10977. for (int i = 0; i < (int)candidates->size; ++i) {
  10978. int j = bucket_idx[i];
  10979. if (j >= ib) {
  10980. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10981. }
  10982. }
  10983. ptr = tmp_tokens.data();
  10984. int ndone = 0;
  10985. for (int j = nbuckets-1; j > ib; --j) {
  10986. std::sort(ptr, ptr + histo[j], comp);
  10987. ptr += histo[j];
  10988. ndone += histo[j];
  10989. }
  10990. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10991. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10992. }
  10993. candidates->sorted = true;
  10994. }
  10995. candidates->size = k;
  10996. if (ctx) {
  10997. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10998. }
  10999. }
  11000. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11001. if (p >= 1.0f) {
  11002. return;
  11003. }
  11004. llama_sample_softmax(ctx, candidates);
  11005. const int64_t t_start_sample_us = ggml_time_us();
  11006. // Compute the cumulative probabilities
  11007. float cum_sum = 0.0f;
  11008. size_t last_idx = candidates->size;
  11009. for (size_t i = 0; i < candidates->size; ++i) {
  11010. cum_sum += candidates->data[i].p;
  11011. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11012. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11013. if (cum_sum >= p && i + 1 >= min_keep) {
  11014. last_idx = i + 1;
  11015. break;
  11016. }
  11017. }
  11018. // Resize the output vector to keep only the top-p tokens
  11019. candidates->size = last_idx;
  11020. if (ctx) {
  11021. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11022. }
  11023. }
  11024. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11025. if (p <= 0.0f || !candidates->size) {
  11026. return;
  11027. }
  11028. const int64_t t_start_sample_us = ggml_time_us();
  11029. bool min_p_applied = false;
  11030. // if the candidates aren't sorted, try the unsorted implementation first
  11031. if (!candidates->sorted) {
  11032. std::vector<llama_token_data> filtered_tokens;
  11033. float max_logit = -FLT_MAX;
  11034. for (size_t i = 0; i < candidates->size; ++i) {
  11035. max_logit = std::max(max_logit, candidates->data[i].logit);
  11036. }
  11037. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11038. for (size_t i = 0; i < candidates->size; ++i) {
  11039. if (candidates->data[i].logit >= min_logit) {
  11040. filtered_tokens.push_back(candidates->data[i]);
  11041. }
  11042. }
  11043. // if we have enough values the operation was a success
  11044. if (filtered_tokens.size() >= min_keep) {
  11045. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11046. candidates->size = filtered_tokens.size();
  11047. min_p_applied = true;
  11048. }
  11049. }
  11050. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11051. if (!min_p_applied) {
  11052. // Sort the logits in descending order
  11053. if (!candidates->sorted) {
  11054. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11055. return a.logit > b.logit;
  11056. });
  11057. candidates->sorted = true;
  11058. }
  11059. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11060. size_t i = 1; // first token always matches
  11061. for (; i < candidates->size; ++i) {
  11062. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11063. break; // prob too small
  11064. }
  11065. }
  11066. // Resize the output vector to keep only the matching tokens
  11067. candidates->size = i;
  11068. }
  11069. if (ctx) {
  11070. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11071. }
  11072. }
  11073. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11074. if (z >= 1.0f || candidates->size <= 2) {
  11075. return;
  11076. }
  11077. llama_sample_softmax(nullptr, candidates);
  11078. const int64_t t_start_sample_us = ggml_time_us();
  11079. // Compute the first and second derivatives
  11080. std::vector<float> first_derivatives(candidates->size - 1);
  11081. std::vector<float> second_derivatives(candidates->size - 2);
  11082. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11083. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11084. }
  11085. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11086. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11087. }
  11088. // Calculate absolute value of second derivatives
  11089. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11090. second_derivatives[i] = std::abs(second_derivatives[i]);
  11091. }
  11092. // Normalize the second derivatives
  11093. {
  11094. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11095. if (second_derivatives_sum > 1e-6f) {
  11096. for (float & value : second_derivatives) {
  11097. value /= second_derivatives_sum;
  11098. }
  11099. } else {
  11100. for (float & value : second_derivatives) {
  11101. value = 1.0f / second_derivatives.size();
  11102. }
  11103. }
  11104. }
  11105. float cum_sum = 0.0f;
  11106. size_t last_idx = candidates->size;
  11107. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11108. cum_sum += second_derivatives[i];
  11109. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11110. if (cum_sum > z && i >= min_keep) {
  11111. last_idx = i;
  11112. break;
  11113. }
  11114. }
  11115. // Resize the output vector to keep only the tokens above the tail location
  11116. candidates->size = last_idx;
  11117. if (ctx) {
  11118. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11119. }
  11120. }
  11121. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11122. // Reference implementation:
  11123. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11124. if (p >= 1.0f) {
  11125. return;
  11126. }
  11127. // Compute the softmax of logits and calculate entropy
  11128. llama_sample_softmax(nullptr, candidates);
  11129. const int64_t t_start_sample_us = ggml_time_us();
  11130. float entropy = 0.0f;
  11131. for (size_t i = 0; i < candidates->size; ++i) {
  11132. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11133. }
  11134. // Compute the absolute difference between negative log probability and entropy for each candidate
  11135. std::vector<float> shifted_scores;
  11136. for (size_t i = 0; i < candidates->size; ++i) {
  11137. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11138. shifted_scores.push_back(shifted_score);
  11139. }
  11140. // Sort tokens based on the shifted_scores and their corresponding indices
  11141. std::vector<size_t> indices(candidates->size);
  11142. std::iota(indices.begin(), indices.end(), 0);
  11143. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11144. return shifted_scores[a] < shifted_scores[b];
  11145. });
  11146. // Compute the cumulative probabilities
  11147. float cum_sum = 0.0f;
  11148. size_t last_idx = indices.size();
  11149. for (size_t i = 0; i < indices.size(); ++i) {
  11150. size_t idx = indices[i];
  11151. cum_sum += candidates->data[idx].p;
  11152. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11153. if (cum_sum > p && i >= min_keep - 1) {
  11154. last_idx = i + 1;
  11155. break;
  11156. }
  11157. }
  11158. // Resize the output vector to keep only the locally typical tokens
  11159. std::vector<llama_token_data> new_candidates;
  11160. for (size_t i = 0; i < last_idx; ++i) {
  11161. size_t idx = indices[i];
  11162. new_candidates.push_back(candidates->data[idx]);
  11163. }
  11164. // Replace the data in candidates with the new_candidates data
  11165. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11166. candidates->size = new_candidates.size();
  11167. candidates->sorted = false;
  11168. if (ctx) {
  11169. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11170. }
  11171. }
  11172. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11173. const int64_t t_start_sample_us = ggml_time_us();
  11174. // no need to do anything if there is only one (or zero) candidates
  11175. if(candidates_p->size <= 1) {
  11176. return;
  11177. }
  11178. // Calculate maximum possible entropy
  11179. float max_entropy = -logf(1.0f / candidates_p->size);
  11180. llama_sample_softmax(nullptr, candidates_p);
  11181. // Calculate entropy of the softmax probabilities
  11182. float entropy = 0.0f;
  11183. for (size_t i = 0; i < candidates_p->size; ++i) {
  11184. float prob = candidates_p->data[i].p;
  11185. if (prob > 0.0f) { // Ensure no log(0)
  11186. entropy -= prob * logf(prob);
  11187. }
  11188. }
  11189. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11190. float normalized_entropy = entropy / max_entropy;
  11191. // Map the normalized entropy to the desired temperature range using the power function
  11192. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11193. #ifdef DEBUG
  11194. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11195. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11196. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11197. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11198. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11199. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11200. #endif
  11201. // Apply the dynamically calculated temperature scaling
  11202. for (size_t i = 0; i < candidates_p->size; ++i) {
  11203. candidates_p->data[i].logit /= dyn_temp;
  11204. }
  11205. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11206. double max_l_double = candidates_p->data[0].logit;
  11207. double cum_sum_double = 0.0;
  11208. for (size_t i = 0; i < candidates_p->size; ++i) {
  11209. double p = exp(candidates_p->data[i].logit - max_l_double);
  11210. candidates_p->data[i].p = p; // Store the scaled probability
  11211. cum_sum_double += p;
  11212. }
  11213. for (size_t i = 0; i < candidates_p->size; ++i) {
  11214. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11215. }
  11216. #ifdef DEBUG
  11217. // Print the updated top 25 probabilities after temperature scaling
  11218. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11219. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11220. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11221. }
  11222. #endif
  11223. if (ctx) {
  11224. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11225. }
  11226. }
  11227. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11228. const int64_t t_start_sample_us = ggml_time_us();
  11229. for (size_t i = 0; i < candidates_p->size; ++i) {
  11230. candidates_p->data[i].logit /= temp;
  11231. }
  11232. if (ctx) {
  11233. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11234. }
  11235. }
  11236. void llama_sample_repetition_penalties(
  11237. struct llama_context * ctx,
  11238. llama_token_data_array * candidates,
  11239. const llama_token * last_tokens,
  11240. size_t penalty_last_n,
  11241. float penalty_repeat,
  11242. float penalty_freq,
  11243. float penalty_present) {
  11244. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11245. return;
  11246. }
  11247. const int64_t t_start_sample_us = ggml_time_us();
  11248. // Create a frequency map to count occurrences of each token in last_tokens
  11249. std::unordered_map<llama_token, int> token_count;
  11250. for (size_t i = 0; i < penalty_last_n; ++i) {
  11251. token_count[last_tokens[i]]++;
  11252. }
  11253. // Apply frequency and presence penalties to the candidates
  11254. for (size_t i = 0; i < candidates->size; ++i) {
  11255. const auto token_iter = token_count.find(candidates->data[i].id);
  11256. if (token_iter == token_count.end()) {
  11257. continue;
  11258. }
  11259. const int count = token_iter->second;
  11260. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11261. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11262. if (candidates->data[i].logit <= 0) {
  11263. candidates->data[i].logit *= penalty_repeat;
  11264. } else {
  11265. candidates->data[i].logit /= penalty_repeat;
  11266. }
  11267. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11268. }
  11269. candidates->sorted = false;
  11270. if (ctx) {
  11271. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11272. }
  11273. }
  11274. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11275. GGML_ASSERT(ctx);
  11276. const int64_t t_start_sample_us = ggml_time_us();
  11277. bool allow_eog = false;
  11278. for (const auto & stack : grammar->stacks) {
  11279. if (stack.empty()) {
  11280. allow_eog = true;
  11281. break;
  11282. }
  11283. }
  11284. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11285. candidates_decoded.reserve(candidates->size);
  11286. std::vector<llama_grammar_candidate> candidates_grammar;
  11287. candidates_grammar.reserve(candidates->size);
  11288. for (size_t i = 0; i < candidates->size; ++i) {
  11289. const llama_token id = candidates->data[i].id;
  11290. const std::string piece = llama_token_to_piece(ctx, id, false);
  11291. if (llama_token_is_eog(&ctx->model, id)) {
  11292. if (!allow_eog) {
  11293. candidates->data[i].logit = -INFINITY;
  11294. }
  11295. } else if (piece.empty() || piece[0] == 0) {
  11296. candidates->data[i].logit = -INFINITY;
  11297. } else {
  11298. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11299. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11300. }
  11301. }
  11302. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11303. for (const auto & reject : rejects) {
  11304. candidates->data[reject.index].logit = -INFINITY;
  11305. }
  11306. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11307. }
  11308. static void llama_log_softmax(float * array, size_t size) {
  11309. float max_l = *std::max_element(array, array + size);
  11310. float sum = 0.f;
  11311. for (size_t i = 0; i < size; ++i) {
  11312. float p = expf(array[i] - max_l);
  11313. sum += p;
  11314. array[i] = p;
  11315. }
  11316. for (size_t i = 0; i < size; ++i) {
  11317. array[i] = logf(array[i] / sum);
  11318. }
  11319. }
  11320. void llama_sample_apply_guidance(
  11321. struct llama_context * ctx,
  11322. float * logits,
  11323. float * logits_guidance,
  11324. float scale) {
  11325. GGML_ASSERT(ctx);
  11326. const auto t_start_sample_us = ggml_time_us();
  11327. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11328. llama_log_softmax(logits, n_vocab);
  11329. llama_log_softmax(logits_guidance, n_vocab);
  11330. for (int i = 0; i < n_vocab; ++i) {
  11331. auto & l = logits[i];
  11332. const auto & g = logits_guidance[i];
  11333. l = scale * (l - g) + g;
  11334. }
  11335. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11336. }
  11337. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11338. GGML_ASSERT(ctx);
  11339. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11340. int64_t t_start_sample_us;
  11341. t_start_sample_us = ggml_time_us();
  11342. llama_sample_softmax(nullptr, candidates);
  11343. // Estimate s_hat using the most probable m tokens
  11344. float s_hat = 0.0;
  11345. float sum_ti_bi = 0.0;
  11346. float sum_ti_sq = 0.0;
  11347. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11348. float t_i = logf(float(i + 2) / float(i + 1));
  11349. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11350. sum_ti_bi += t_i * b_i;
  11351. sum_ti_sq += t_i * t_i;
  11352. }
  11353. s_hat = sum_ti_bi / sum_ti_sq;
  11354. // Compute k from the estimated s_hat and target surprise value
  11355. float epsilon_hat = s_hat - 1;
  11356. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11357. // Sample the next word X using top-k sampling
  11358. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11359. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11360. llama_token X = llama_sample_token(ctx, candidates);
  11361. t_start_sample_us = ggml_time_us();
  11362. // Compute error as the difference between observed surprise and target surprise value
  11363. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11364. return candidate.id == X;
  11365. }));
  11366. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11367. float e = observed_surprise - tau;
  11368. // Update mu using the learning rate and error
  11369. *mu = *mu - eta * e;
  11370. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11371. return X;
  11372. }
  11373. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11374. int64_t t_start_sample_us;
  11375. t_start_sample_us = ggml_time_us();
  11376. llama_sample_softmax(ctx, candidates);
  11377. // Truncate the words with surprise values greater than mu
  11378. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11379. return -log2f(candidate.p) > *mu;
  11380. }));
  11381. if (candidates->size == 0) {
  11382. candidates->size = 1;
  11383. }
  11384. if (ctx) {
  11385. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11386. }
  11387. // Normalize the probabilities of the remaining words
  11388. llama_sample_softmax(ctx, candidates);
  11389. // Sample the next word X from the remaining words
  11390. llama_token X = llama_sample_token(ctx, candidates);
  11391. t_start_sample_us = ggml_time_us();
  11392. // Compute error as the difference between observed surprise and target surprise value
  11393. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11394. return candidate.id == X;
  11395. }));
  11396. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11397. float e = observed_surprise - tau;
  11398. // Update mu using the learning rate and error
  11399. *mu = *mu - eta * e;
  11400. if (ctx) {
  11401. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11402. }
  11403. return X;
  11404. }
  11405. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11406. const int64_t t_start_sample_us = ggml_time_us();
  11407. // Find max element
  11408. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11409. return a.logit < b.logit;
  11410. });
  11411. llama_token result = max_iter->id;
  11412. if (ctx) {
  11413. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11414. ctx->n_sample++;
  11415. }
  11416. return result;
  11417. }
  11418. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11419. GGML_ASSERT(ctx);
  11420. const int64_t t_start_sample_us = ggml_time_us();
  11421. llama_sample_softmax(nullptr, candidates);
  11422. std::vector<float> probs;
  11423. probs.reserve(candidates->size);
  11424. for (size_t i = 0; i < candidates->size; ++i) {
  11425. probs.push_back(candidates->data[i].p);
  11426. }
  11427. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11428. int idx = dist(rng);
  11429. llama_token result = candidates->data[idx].id;
  11430. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11431. ctx->n_sample++;
  11432. return result;
  11433. }
  11434. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11435. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11436. }
  11437. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11438. const int64_t t_start_sample_us = ggml_time_us();
  11439. if (llama_token_is_eog(&ctx->model, token)) {
  11440. for (const auto & stack : grammar->stacks) {
  11441. if (stack.empty()) {
  11442. return;
  11443. }
  11444. }
  11445. GGML_ASSERT(false);
  11446. }
  11447. const std::string piece = llama_token_to_piece(ctx, token, false);
  11448. // Note terminating 0 in decoded string
  11449. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11450. const auto & code_points = decoded.first;
  11451. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11452. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11453. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11454. grammar->stacks = tmp_new_stacks;
  11455. }
  11456. grammar->partial_utf8 = decoded.second;
  11457. GGML_ASSERT(!grammar->stacks.empty());
  11458. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11459. }
  11460. //
  11461. // Beam search
  11462. //
  11463. struct llama_beam {
  11464. std::vector<llama_token> tokens;
  11465. float p; // Cumulative beam probability (renormalized relative to all beams)
  11466. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11467. // Sort beams by probability. In case of ties, prefer beams at eob.
  11468. bool operator<(const llama_beam & rhs) const {
  11469. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11470. }
  11471. // Shift off first n tokens and discard them.
  11472. void shift_tokens(const size_t n) {
  11473. if (n) {
  11474. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11475. tokens.resize(tokens.size() - n);
  11476. }
  11477. }
  11478. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11479. };
  11480. // A struct for calculating logit-related info.
  11481. struct llama_logit_info {
  11482. const float * const logits;
  11483. const int n_vocab;
  11484. const float max_l;
  11485. const float normalizer;
  11486. struct sum_exp {
  11487. float max_l;
  11488. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11489. };
  11490. llama_logit_info(llama_context * ctx)
  11491. : logits(llama_get_logits(ctx))
  11492. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11493. , max_l(*std::max_element(logits, logits + n_vocab))
  11494. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11495. { }
  11496. llama_token_data get_token_data(const llama_token token_id) const {
  11497. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11498. return {token_id, logits[token_id], p};
  11499. }
  11500. // Return top k token_data by logit.
  11501. std::vector<llama_token_data> top_k(size_t k) {
  11502. std::vector<llama_token_data> min_heap; // min-heap by logit
  11503. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11504. min_heap.reserve(k_min);
  11505. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11506. min_heap.push_back(get_token_data(token_id));
  11507. }
  11508. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11509. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11510. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11511. if (min_heap.front().logit < logits[token_id]) {
  11512. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11513. min_heap.back().id = token_id;
  11514. min_heap.back().logit = logits[token_id];
  11515. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11516. }
  11517. }
  11518. return min_heap;
  11519. }
  11520. float probability_from_logit(float logit) const {
  11521. return normalizer * std::exp(logit - max_l);
  11522. }
  11523. };
  11524. struct llama_beam_search_data {
  11525. llama_context * ctx;
  11526. size_t n_beams;
  11527. int n_past;
  11528. int n_predict;
  11529. std::vector<llama_beam> beams;
  11530. std::vector<llama_beam> next_beams;
  11531. // Re-calculated on each loop iteration
  11532. size_t common_prefix_length;
  11533. // Used to communicate to/from callback on beams state.
  11534. std::vector<llama_beam_view> beam_views;
  11535. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11536. : ctx(ctx)
  11537. , n_beams(n_beams)
  11538. , n_past(n_past)
  11539. , n_predict(n_predict)
  11540. , beam_views(n_beams) {
  11541. beams.reserve(n_beams);
  11542. next_beams.reserve(n_beams);
  11543. }
  11544. // Collapse beams to a single beam given by index.
  11545. void collapse_beams(const size_t beam_idx) {
  11546. if (0u < beam_idx) {
  11547. std::swap(beams[0], beams[beam_idx]);
  11548. }
  11549. beams.resize(1);
  11550. }
  11551. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11552. // The repetitive patterns below reflect the 2 stages of heaps:
  11553. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11554. // * If the heap is full and a new element is found that should be included, pop the
  11555. // least element to the back(), replace it with the new, then push it into the heap.
  11556. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11557. // Min-heaps use a greater-than comparator.
  11558. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11559. if (beam.eob) {
  11560. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11561. if (next_beams.size() < n_beams) {
  11562. next_beams.push_back(std::move(beam));
  11563. if (next_beams.size() == n_beams) {
  11564. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11565. }
  11566. } else if (next_beams.front().p < beam.p) {
  11567. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11568. next_beams.back() = std::move(beam);
  11569. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11570. }
  11571. } else {
  11572. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11573. if (!beam.tokens.empty()) {
  11574. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11575. }
  11576. llama_logit_info logit_info(ctx);
  11577. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11578. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11579. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11580. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11581. size_t i=0;
  11582. if (next_beams.size() < n_beams) {
  11583. for (; next_beams.size() < n_beams ; ++i) {
  11584. llama_beam next_beam = beam;
  11585. next_beam.tokens.push_back(next_tokens[i].id);
  11586. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11587. next_beams.push_back(std::move(next_beam));
  11588. }
  11589. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11590. } else {
  11591. for (; next_beams.front().p == 0.0f ; ++i) {
  11592. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11593. next_beams.back() = beam;
  11594. next_beams.back().tokens.push_back(next_tokens[i].id);
  11595. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11596. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11597. }
  11598. }
  11599. for (; i < n_beams ; ++i) {
  11600. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11601. if (next_beams.front().p < next_p) {
  11602. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11603. next_beams.back() = beam;
  11604. next_beams.back().tokens.push_back(next_tokens[i].id);
  11605. next_beams.back().p = next_p;
  11606. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11607. }
  11608. }
  11609. }
  11610. }
  11611. // Find common_prefix_length based on beams.
  11612. // Requires beams is not empty.
  11613. size_t find_common_prefix_length() {
  11614. size_t common_prefix_length = beams[0].tokens.size();
  11615. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11616. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11617. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11618. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11619. common_prefix_length = j;
  11620. break;
  11621. }
  11622. }
  11623. }
  11624. return common_prefix_length;
  11625. }
  11626. // Construct beams_state to send back to caller via the callback function.
  11627. // Side effect: set common_prefix_length = find_common_prefix_length();
  11628. llama_beams_state get_beams_state(const bool last_call) {
  11629. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11630. beam_views[i] = beams[i].view();
  11631. }
  11632. common_prefix_length = find_common_prefix_length();
  11633. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11634. }
  11635. // Loop:
  11636. // * while i < n_predict, AND
  11637. // * any of the beams have not yet reached end-of-beam (eob), AND
  11638. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11639. // (since all other beam probabilities can only decrease)
  11640. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11641. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11642. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11643. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11644. !beams[top_beam_index()].eob ; ++i) {
  11645. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11646. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11647. if (common_prefix_length) {
  11648. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11649. n_past += common_prefix_length;
  11650. }
  11651. // Zero-out next_beam probabilities to place them last in following min-heap.
  11652. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11653. for (llama_beam & beam : beams) {
  11654. beam.shift_tokens(common_prefix_length);
  11655. fill_next_beams_by_top_probabilities(beam);
  11656. }
  11657. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11658. beams.swap(next_beams);
  11659. renormalize_beam_probabilities(beams);
  11660. }
  11661. collapse_beams(top_beam_index());
  11662. callback(callback_data, get_beams_state(true));
  11663. }
  11664. // As beams grow, the cumulative probabilities decrease.
  11665. // Renormalize them to avoid floating point underflow.
  11666. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11667. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11668. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11669. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11670. }
  11671. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11672. size_t top_beam_index() {
  11673. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11674. }
  11675. // Copy (p,eob) for each beam which may have been changed by the callback.
  11676. void update_beams_from_beam_views() {
  11677. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11678. beams[i].p = beam_views[i].p;
  11679. beams[i].eob = beam_views[i].eob;
  11680. }
  11681. }
  11682. };
  11683. void llama_beam_search(llama_context * ctx,
  11684. llama_beam_search_callback_fn_t callback, void * callback_data,
  11685. size_t n_beams, int n_past, int n_predict) {
  11686. assert(ctx);
  11687. const int64_t t_start_sample_us = ggml_time_us();
  11688. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11689. beam_search_data.loop(callback, callback_data);
  11690. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11691. ctx->n_sample++;
  11692. }
  11693. //
  11694. // quantization
  11695. //
  11696. struct quantize_state_internal {
  11697. const llama_model & model;
  11698. const llama_model_quantize_params * params;
  11699. int n_attention_wv = 0;
  11700. int n_ffn_down = 0;
  11701. int n_ffn_gate = 0;
  11702. int n_ffn_up = 0;
  11703. int i_attention_wv = 0;
  11704. int i_ffn_down = 0;
  11705. int i_ffn_gate = 0;
  11706. int i_ffn_up = 0;
  11707. int n_k_quantized = 0;
  11708. int n_fallback = 0;
  11709. bool has_imatrix = false;
  11710. // used to figure out if a model shares tok_embd with the output weight
  11711. bool has_output = false;
  11712. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11713. : model(model)
  11714. , params(params)
  11715. {}
  11716. };
  11717. static void llama_tensor_dequantize_internal(
  11718. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11719. const size_t nelements, const int nthread
  11720. ) {
  11721. if (output.size() < nelements) {
  11722. output.resize(nelements);
  11723. }
  11724. float * f32_output = (float *) output.data();
  11725. ggml_type_traits_t qtype;
  11726. if (ggml_is_quantized(tensor->type)) {
  11727. qtype = ggml_internal_get_type_traits(tensor->type);
  11728. if (qtype.to_float == NULL) {
  11729. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11730. }
  11731. } else if (tensor->type != GGML_TYPE_F16 &&
  11732. tensor->type != GGML_TYPE_BF16) {
  11733. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11734. }
  11735. if (nthread < 2) {
  11736. if (tensor->type == GGML_TYPE_F16) {
  11737. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11738. } else if (tensor->type == GGML_TYPE_BF16) {
  11739. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11740. } else if (ggml_is_quantized(tensor->type)) {
  11741. qtype.to_float(tensor->data, f32_output, nelements);
  11742. } else {
  11743. GGML_ASSERT(false); // unreachable
  11744. }
  11745. return;
  11746. }
  11747. size_t block_size;
  11748. if (tensor->type == GGML_TYPE_F16 ||
  11749. tensor->type == GGML_TYPE_BF16) {
  11750. block_size = 1;
  11751. } else {
  11752. block_size = (size_t)ggml_blck_size(tensor->type);
  11753. }
  11754. size_t block_size_bytes = ggml_type_size(tensor->type);
  11755. GGML_ASSERT(nelements % block_size == 0);
  11756. size_t nblocks = nelements / block_size;
  11757. size_t blocks_per_thread = nblocks / nthread;
  11758. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11759. size_t in_buff_offs = 0;
  11760. size_t out_buff_offs = 0;
  11761. for (int tnum = 0; tnum < nthread; tnum++) {
  11762. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11763. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11764. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11765. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11766. if (typ == GGML_TYPE_F16) {
  11767. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11768. } else if (typ == GGML_TYPE_BF16) {
  11769. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11770. } else {
  11771. qtype.to_float(inbuf, outbuf, nels);
  11772. }
  11773. };
  11774. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11775. in_buff_offs += thr_block_bytes;
  11776. out_buff_offs += thr_elems;
  11777. }
  11778. for (auto & w : workers) { w.join(); }
  11779. workers.clear();
  11780. }
  11781. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11782. const std::string name = ggml_get_name(tensor);
  11783. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11784. const llm_arch arch = qs.model.arch;
  11785. const auto tn = LLM_TN(arch);
  11786. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11787. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11788. };
  11789. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11790. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11791. if (n_expert > 1) {
  11792. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11793. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11794. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11795. // tensor name.
  11796. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11797. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11798. }
  11799. if (i_layer < 0 || i_layer >= n_layer) {
  11800. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11801. }
  11802. }
  11803. return std::make_pair(i_layer, n_layer);
  11804. };
  11805. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11806. // with the quantization of the output tensor
  11807. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11808. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11809. new_type = qs.params->output_tensor_type;
  11810. } else {
  11811. int nx = tensor->ne[0];
  11812. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11813. new_type = GGML_TYPE_Q8_0;
  11814. }
  11815. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11816. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11817. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11818. new_type = GGML_TYPE_Q5_K;
  11819. }
  11820. else if (new_type != GGML_TYPE_Q8_0) {
  11821. new_type = GGML_TYPE_Q6_K;
  11822. }
  11823. }
  11824. } else if (name == "token_embd.weight") {
  11825. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11826. new_type = qs.params->token_embedding_type;
  11827. } else {
  11828. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11829. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11830. new_type = GGML_TYPE_Q2_K;
  11831. }
  11832. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11833. new_type = GGML_TYPE_IQ3_S;
  11834. }
  11835. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11836. new_type = GGML_TYPE_IQ3_S;
  11837. }
  11838. }
  11839. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11840. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11841. if (name.find("attn_v.weight") != std::string::npos) {
  11842. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11843. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11844. ++qs.i_attention_wv;
  11845. }
  11846. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11847. new_type = GGML_TYPE_Q4_K;
  11848. }
  11849. else if (name.find("ffn_down") != std::string::npos) {
  11850. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11851. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11852. }
  11853. ++qs.i_ffn_down;
  11854. }
  11855. else if (name.find("attn_output.weight") != std::string::npos) {
  11856. if (qs.model.hparams.n_expert == 8) {
  11857. new_type = GGML_TYPE_Q5_K;
  11858. } else {
  11859. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11860. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11861. }
  11862. }
  11863. } else if (name.find("attn_v.weight") != std::string::npos) {
  11864. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11865. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11866. }
  11867. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11868. new_type = GGML_TYPE_Q4_K;
  11869. }
  11870. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11871. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11872. }
  11873. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11874. new_type = GGML_TYPE_Q4_K;
  11875. }
  11876. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11877. new_type = GGML_TYPE_Q4_K;
  11878. }
  11879. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11880. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11881. }
  11882. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11883. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11884. new_type = GGML_TYPE_Q5_K;
  11885. }
  11886. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11887. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11888. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11889. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11890. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11891. if (qs.model.type == MODEL_70B) {
  11892. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11893. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11894. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11895. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11896. }
  11897. if (qs.model.hparams.n_expert == 8) {
  11898. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11899. // TODO: explore better strategies
  11900. new_type = GGML_TYPE_Q8_0;
  11901. }
  11902. ++qs.i_attention_wv;
  11903. } else if (name.find("attn_k.weight") != std::string::npos) {
  11904. if (qs.model.hparams.n_expert == 8) {
  11905. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11906. // TODO: explore better strategies
  11907. new_type = GGML_TYPE_Q8_0;
  11908. }
  11909. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11910. new_type = GGML_TYPE_IQ3_XXS;
  11911. }
  11912. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11913. new_type = GGML_TYPE_IQ2_S;
  11914. }
  11915. } else if (name.find("attn_q.weight") != std::string::npos) {
  11916. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11917. new_type = GGML_TYPE_IQ3_XXS;
  11918. }
  11919. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11920. new_type = GGML_TYPE_IQ2_S;
  11921. }
  11922. } else if (name.find("ffn_down") != std::string::npos) {
  11923. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11924. int i_layer = info.first, n_layer = info.second;
  11925. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11926. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11927. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11928. }
  11929. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11930. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11931. }
  11932. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11933. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11934. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11935. : GGML_TYPE_Q3_K;
  11936. }
  11937. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11938. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11939. new_type = GGML_TYPE_Q4_K;
  11940. }
  11941. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11942. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11943. }
  11944. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11945. if (arch == LLM_ARCH_FALCON) {
  11946. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11947. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11948. } else {
  11949. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11950. }
  11951. }
  11952. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11953. new_type = GGML_TYPE_Q5_K;
  11954. }
  11955. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11956. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11957. new_type = GGML_TYPE_Q5_K;
  11958. }
  11959. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11960. && qs.has_imatrix && i_layer < n_layer/8) {
  11961. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11962. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11963. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11964. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11965. }
  11966. ++qs.i_ffn_down;
  11967. } else if (name.find("attn_output.weight") != std::string::npos) {
  11968. if (arch != LLM_ARCH_FALCON) {
  11969. if (qs.model.hparams.n_expert == 8) {
  11970. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11971. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11972. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11973. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11974. new_type = GGML_TYPE_Q5_K;
  11975. }
  11976. } else {
  11977. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11978. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11979. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11980. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11981. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11982. }
  11983. } else {
  11984. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11985. }
  11986. }
  11987. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11988. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11989. new_type = GGML_TYPE_Q4_K;
  11990. }
  11991. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11992. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11993. }
  11994. else if (name.find("ffn_gate") != std::string::npos) {
  11995. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11996. int i_layer = info.first, n_layer = info.second;
  11997. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11998. new_type = GGML_TYPE_IQ3_XXS;
  11999. }
  12000. ++qs.i_ffn_gate;
  12001. }
  12002. else if (name.find("ffn_up") != std::string::npos) {
  12003. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12004. int i_layer = info.first, n_layer = info.second;
  12005. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12006. new_type = GGML_TYPE_IQ3_XXS;
  12007. }
  12008. ++qs.i_ffn_up;
  12009. }
  12010. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12011. //}
  12012. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12013. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12014. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12015. //}
  12016. // This can be used to reduce the size of the Q5_K_S model.
  12017. // The associated PPL increase is fully in line with the size reduction
  12018. //else {
  12019. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12020. //}
  12021. bool convert_incompatible_tensor = false;
  12022. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12023. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12024. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12025. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12026. new_type == GGML_TYPE_IQ1_M) {
  12027. int nx = tensor->ne[0];
  12028. int ny = tensor->ne[1];
  12029. if (nx % QK_K != 0) {
  12030. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12031. convert_incompatible_tensor = true;
  12032. } else {
  12033. ++qs.n_k_quantized;
  12034. }
  12035. }
  12036. if (convert_incompatible_tensor) {
  12037. switch (new_type) {
  12038. case GGML_TYPE_IQ2_XXS:
  12039. case GGML_TYPE_IQ2_XS:
  12040. case GGML_TYPE_IQ2_S:
  12041. case GGML_TYPE_IQ3_XXS:
  12042. case GGML_TYPE_IQ3_S:
  12043. case GGML_TYPE_IQ1_S:
  12044. case GGML_TYPE_IQ1_M:
  12045. case GGML_TYPE_Q2_K:
  12046. case GGML_TYPE_Q3_K:
  12047. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12048. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12049. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12050. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12051. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12052. }
  12053. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12054. ++qs.n_fallback;
  12055. }
  12056. return new_type;
  12057. }
  12058. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12059. if (nthread < 2) {
  12060. // single-thread
  12061. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12062. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12063. throw std::runtime_error("quantized data validation failed");
  12064. }
  12065. return new_size;
  12066. }
  12067. std::mutex mutex;
  12068. int64_t counter = 0;
  12069. size_t new_size = 0;
  12070. bool valid = true;
  12071. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12072. nrows, n_per_row, imatrix]() {
  12073. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12074. size_t local_size = 0;
  12075. while (true) {
  12076. std::unique_lock<std::mutex> lock(mutex);
  12077. int64_t first_row = counter; counter += nrows_per_chunk;
  12078. if (first_row >= nrows) {
  12079. if (local_size > 0) {
  12080. new_size += local_size;
  12081. }
  12082. break;
  12083. }
  12084. lock.unlock();
  12085. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12086. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12087. local_size += this_size;
  12088. // validate the quantized data
  12089. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12090. void * this_data = (char *) new_data + first_row * row_size;
  12091. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12092. std::unique_lock<std::mutex> lock(mutex);
  12093. valid = false;
  12094. break;
  12095. }
  12096. }
  12097. };
  12098. for (int it = 0; it < nthread - 1; ++it) {
  12099. workers.emplace_back(compute);
  12100. }
  12101. compute();
  12102. for (auto & w : workers) { w.join(); }
  12103. workers.clear();
  12104. if (!valid) {
  12105. throw std::runtime_error("quantized data validation failed");
  12106. }
  12107. return new_size;
  12108. }
  12109. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12110. ggml_type default_type;
  12111. llama_ftype ftype = params->ftype;
  12112. switch (params->ftype) {
  12113. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12114. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12115. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12116. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12117. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12118. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12119. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12120. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12121. // K-quants
  12122. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12123. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12124. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12125. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12126. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12127. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12128. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12129. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12130. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12131. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12132. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12133. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12134. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12135. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12136. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12137. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12138. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12139. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12140. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12141. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12142. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12143. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12144. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12145. }
  12146. int nthread = params->nthread;
  12147. if (nthread <= 0) {
  12148. nthread = std::thread::hardware_concurrency();
  12149. }
  12150. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12151. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12152. #if defined(__linux__) || defined(_WIN32)
  12153. constexpr bool use_mmap = true;
  12154. #else
  12155. constexpr bool use_mmap = false;
  12156. #endif
  12157. llama_model_kv_override * kv_overrides = nullptr;
  12158. if (params->kv_overrides) {
  12159. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12160. kv_overrides = v->data();
  12161. }
  12162. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12163. ml.init_mappings(false); // no prefetching
  12164. llama_model model;
  12165. llm_load_arch(ml, model);
  12166. llm_load_hparams(ml, model);
  12167. struct quantize_state_internal qs(model, params);
  12168. if (params->only_copy) {
  12169. ftype = model.ftype;
  12170. }
  12171. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12172. if (params->imatrix) {
  12173. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12174. if (imatrix_data) {
  12175. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12176. qs.has_imatrix = true;
  12177. }
  12178. }
  12179. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12180. struct gguf_context * ctx_out = gguf_init_empty();
  12181. // copy the KV pairs from the input file
  12182. gguf_set_kv (ctx_out, ml.meta);
  12183. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12184. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12185. // Remove split metadata
  12186. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12187. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12188. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12189. if (params->kv_overrides) {
  12190. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12191. for (auto & o : overrides) {
  12192. if (o.key[0] == 0) break;
  12193. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12194. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12195. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12196. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12197. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12198. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12199. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12200. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12201. } else {
  12202. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12203. }
  12204. }
  12205. }
  12206. for (int i = 0; i < ml.n_tensors; ++i) {
  12207. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12208. const std::string name = ggml_get_name(meta);
  12209. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12210. if (name.find("attn_v.weight") != std::string::npos ||
  12211. name.find("attn_qkv.weight") != std::string::npos) {
  12212. ++qs.n_attention_wv;
  12213. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12214. qs.has_output = true;
  12215. }
  12216. }
  12217. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12218. // sanity checks
  12219. //
  12220. // - qs.n_attention_wv == 0 for Mamba models
  12221. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12222. //
  12223. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12224. size_t total_size_org = 0;
  12225. size_t total_size_new = 0;
  12226. std::vector<std::thread> workers;
  12227. workers.reserve(nthread);
  12228. int idx = 0;
  12229. std::vector<no_init<uint8_t>> read_data;
  12230. std::vector<no_init<uint8_t>> work;
  12231. std::vector<no_init<float>> f32_conv_buf;
  12232. uint16_t n_split = 1;
  12233. // Assume split index is continuous
  12234. if (params->keep_split) {
  12235. for (int i = 0; i < ml.n_tensors; ++i) {
  12236. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12237. }
  12238. }
  12239. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12240. ctx_outs[0] = ctx_out;
  12241. // populate the original tensors so we get an initial meta data
  12242. for (int i = 0; i < ml.n_tensors; ++i) {
  12243. auto weight = ml.get_weight(i);
  12244. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12245. struct ggml_tensor * tensor = weight->tensor;
  12246. if (ctx_outs[i_split] == NULL) {
  12247. ctx_outs[i_split] = gguf_init_empty();
  12248. }
  12249. gguf_add_tensor(ctx_outs[i_split], tensor);
  12250. }
  12251. // Set split info if needed
  12252. if (n_split > 1) {
  12253. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12254. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12255. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12256. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12257. }
  12258. }
  12259. int cur_split = -1;
  12260. std::ofstream fout;
  12261. auto close_ofstream = [&]() {
  12262. // Write metadata and close file handler
  12263. if (fout.is_open()) {
  12264. fout.seekp(0);
  12265. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12266. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12267. fout.write((const char *) data.data(), data.size());
  12268. fout.close();
  12269. }
  12270. };
  12271. auto new_ofstream = [&](int index) {
  12272. cur_split = index;
  12273. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12274. std::string fname = fname_out;
  12275. if (params->keep_split) {
  12276. char split_path[PATH_MAX] = {0};
  12277. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12278. fname = std::string(split_path);
  12279. }
  12280. fout = std::ofstream(fname, std::ios::binary);
  12281. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12282. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12283. // placeholder for the meta data
  12284. ::zeros(fout, meta_size);
  12285. };
  12286. const auto tn = LLM_TN(model.arch);
  12287. new_ofstream(0);
  12288. for (int i = 0; i < ml.n_tensors; ++i) {
  12289. auto weight = ml.get_weight(i);
  12290. struct ggml_tensor * tensor = weight->tensor;
  12291. if (weight->idx != cur_split && params->keep_split) {
  12292. close_ofstream();
  12293. new_ofstream(weight->idx);
  12294. }
  12295. const std::string name = ggml_get_name(tensor);
  12296. if (!ml.use_mmap) {
  12297. if (read_data.size() < ggml_nbytes(tensor)) {
  12298. read_data.resize(ggml_nbytes(tensor));
  12299. }
  12300. tensor->data = read_data.data();
  12301. }
  12302. ml.load_data_for(tensor);
  12303. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12304. ++idx, ml.n_tensors,
  12305. ggml_get_name(tensor),
  12306. llama_format_tensor_shape(tensor).c_str(),
  12307. ggml_type_name(tensor->type));
  12308. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12309. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12310. // quantize only 2D and 3D tensors (experts)
  12311. quantize &= (ggml_n_dims(tensor) >= 2);
  12312. // do not quantize norm tensors
  12313. quantize &= name.find("_norm.weight") == std::string::npos;
  12314. quantize &= params->quantize_output_tensor || name != "output.weight";
  12315. quantize &= !params->only_copy;
  12316. // do not quantize expert gating tensors
  12317. // NOTE: can't use LLM_TN here because the layer number is not known
  12318. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12319. // do not quantize positional embeddings and token types (BERT)
  12320. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12321. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12322. // do not quantize Mamba's small yet 2D weights
  12323. // NOTE: can't use LLM_TN here because the layer number is not known
  12324. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12325. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12326. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12327. enum ggml_type new_type;
  12328. void * new_data;
  12329. size_t new_size;
  12330. if (quantize) {
  12331. new_type = default_type;
  12332. // get more optimal quantization type based on the tensor shape, layer, etc.
  12333. if (!params->pure && ggml_is_quantized(default_type)) {
  12334. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12335. }
  12336. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12337. new_type = params->token_embedding_type;
  12338. }
  12339. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12340. new_type = params->output_tensor_type;
  12341. }
  12342. // If we've decided to quantize to the same type the tensor is already
  12343. // in then there's nothing to do.
  12344. quantize = tensor->type != new_type;
  12345. }
  12346. if (!quantize) {
  12347. new_type = tensor->type;
  12348. new_data = tensor->data;
  12349. new_size = ggml_nbytes(tensor);
  12350. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12351. } else {
  12352. const int64_t nelements = ggml_nelements(tensor);
  12353. const float * imatrix = nullptr;
  12354. if (imatrix_data) {
  12355. auto it = imatrix_data->find(tensor->name);
  12356. if (it == imatrix_data->end()) {
  12357. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12358. } else {
  12359. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12360. imatrix = it->second.data();
  12361. } else {
  12362. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12363. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12364. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12365. // this is a significant error and it may be good idea to abort the process if this happens,
  12366. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12367. // tok_embd should be ignored in this case, since it always causes this warning
  12368. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12369. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12370. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12371. }
  12372. }
  12373. }
  12374. }
  12375. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12376. new_type == GGML_TYPE_IQ2_XS ||
  12377. new_type == GGML_TYPE_IQ2_S ||
  12378. new_type == GGML_TYPE_IQ1_S ||
  12379. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12380. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12381. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12382. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12383. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12384. LLAMA_LOG_ERROR("============================================================\n\n");
  12385. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12386. }
  12387. float * f32_data;
  12388. if (tensor->type == GGML_TYPE_F32) {
  12389. f32_data = (float *) tensor->data;
  12390. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12391. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12392. } else {
  12393. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12394. f32_data = (float *) f32_conv_buf.data();
  12395. }
  12396. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12397. fflush(stdout);
  12398. if (work.size() < (size_t)nelements * 4) {
  12399. work.resize(nelements * 4); // upper bound on size
  12400. }
  12401. new_data = work.data();
  12402. const int64_t n_per_row = tensor->ne[0];
  12403. const int64_t nrows = tensor->ne[1];
  12404. static const int64_t min_chunk_size = 32 * 512;
  12405. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12406. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12407. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12408. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12409. // quantize each expert separately since they have different importance matrices
  12410. new_size = 0;
  12411. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12412. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12413. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12414. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12415. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12416. }
  12417. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12418. }
  12419. total_size_org += ggml_nbytes(tensor);
  12420. total_size_new += new_size;
  12421. // update the gguf meta data as we go
  12422. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12423. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12424. // write tensor data + padding
  12425. fout.write((const char *) new_data, new_size);
  12426. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12427. }
  12428. close_ofstream();
  12429. for (auto & c:ctx_outs) {
  12430. gguf_free(c);
  12431. }
  12432. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12433. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12434. if (qs.n_fallback > 0) {
  12435. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12436. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12437. }
  12438. }
  12439. static int llama_apply_lora_from_file_internal(
  12440. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12441. ) {
  12442. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12443. const int64_t t_start_lora_us = ggml_time_us();
  12444. llama_file fin(path_lora, "rb");
  12445. // verify magic and version
  12446. {
  12447. uint32_t magic = fin.read_u32();
  12448. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12449. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12450. return 1;
  12451. }
  12452. uint32_t format_version = fin.read_u32();
  12453. if (format_version != 1) {
  12454. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12455. return 1;
  12456. }
  12457. }
  12458. int32_t lora_r = fin.read_u32();
  12459. int32_t lora_alpha = fin.read_u32();
  12460. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12461. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12462. // load base model
  12463. std::unique_ptr<llama_model_loader> ml;
  12464. if (path_base_model) {
  12465. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12466. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12467. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12468. }
  12469. struct tensor_meta {
  12470. std::string name;
  12471. ggml_type type;
  12472. int32_t ne[2];
  12473. size_t offset;
  12474. };
  12475. std::map<std::string, tensor_meta> tensor_meta_map;
  12476. // load all tensor meta
  12477. while (true) {
  12478. if (fin.tell() == fin.size) {
  12479. // eof
  12480. break;
  12481. }
  12482. int32_t n_dims;
  12483. int32_t name_len;
  12484. int32_t ftype;
  12485. fin.read_raw(&n_dims, sizeof(n_dims));
  12486. fin.read_raw(&name_len, sizeof(name_len));
  12487. fin.read_raw(&ftype, sizeof(ftype));
  12488. if (n_dims != 1 && n_dims != 2) {
  12489. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12490. return 1;
  12491. }
  12492. int32_t ne[2] = { 1, 1 };
  12493. for (int i = 0; i < n_dims; ++i) {
  12494. fin.read_raw(&ne[i], sizeof(ne[i]));
  12495. }
  12496. std::string name;
  12497. {
  12498. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12499. char buf[GGML_MAX_NAME];
  12500. fin.read_raw(buf, name_len);
  12501. name = std::string(buf, name_len);
  12502. }
  12503. // check for lora suffix
  12504. std::string lora_suffix;
  12505. if (name.length() > 6) {
  12506. lora_suffix = name.substr(name.length() - 6);
  12507. }
  12508. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12509. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12510. return 1;
  12511. }
  12512. // tensor type
  12513. ggml_type wtype;
  12514. switch (ftype) {
  12515. case 0: wtype = GGML_TYPE_F32; break;
  12516. case 1: wtype = GGML_TYPE_F16; break;
  12517. default:
  12518. {
  12519. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12520. __func__, ftype);
  12521. return 1;
  12522. }
  12523. }
  12524. // data offset
  12525. size_t offset = fin.tell();
  12526. offset = (offset + 31) & -32;
  12527. // skip tensor data
  12528. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12529. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12530. }
  12531. bool warned = false;
  12532. int n_tensors = 0;
  12533. // apply
  12534. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12535. if (backend_cpu == nullptr) {
  12536. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12537. return 1;
  12538. }
  12539. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12540. std::vector<no_init<uint8_t>> read_buf;
  12541. for (const auto & it : model.tensors_by_name) {
  12542. const std::string & base_name = it.first;
  12543. ggml_tensor * model_t = it.second;
  12544. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12545. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12546. continue;
  12547. }
  12548. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12549. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12550. ggml_init_params lora_init_params = {
  12551. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12552. /* .mem_buffer */ nullptr,
  12553. /* .no_alloc */ true,
  12554. };
  12555. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12556. if (lora_ctx == nullptr) {
  12557. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12558. ggml_backend_free(backend_cpu);
  12559. return 1;
  12560. }
  12561. // create tensors
  12562. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12563. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12564. ggml_set_name(loraA, metaA.name.c_str());
  12565. ggml_set_name(loraB, metaB.name.c_str());
  12566. ggml_tensor * base_t;
  12567. if (ml) {
  12568. if (!ml->get_tensor_meta(base_name.c_str())) {
  12569. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12570. return 1;
  12571. }
  12572. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12573. } else {
  12574. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12575. }
  12576. ggml_set_name(base_t, base_name.c_str());
  12577. // allocate in backend buffer
  12578. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12579. if (lora_buf == nullptr) {
  12580. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12581. return 1;
  12582. }
  12583. // load tensor data
  12584. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12585. read_buf.resize(ggml_nbytes(tensor));
  12586. fin.seek(tensor_meta.offset, SEEK_SET);
  12587. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12588. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12589. };
  12590. load_tensor(metaA, loraA);
  12591. load_tensor(metaB, loraB);
  12592. // load base model tensor data
  12593. if (ml) {
  12594. ml->load_data_for(base_t);
  12595. } else {
  12596. ggml_backend_tensor_copy(model_t, base_t);
  12597. }
  12598. if (ggml_is_quantized(base_t->type) && !warned) {
  12599. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12600. "use a f16 or f32 base model with --lora-base\n", __func__);
  12601. warned = true;
  12602. }
  12603. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12604. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12605. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12606. ggml_free(lora_ctx);
  12607. ggml_backend_buffer_free(lora_buf);
  12608. ggml_backend_free(backend_cpu);
  12609. return 1;
  12610. }
  12611. auto build_lora_graph = [&]() {
  12612. // w = w + BA*s
  12613. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12614. ggml_set_name(BA, "BA");
  12615. if (scaling != 1.0f) {
  12616. BA = ggml_scale(lora_ctx, BA, scaling);
  12617. ggml_set_name(BA, "BA_scaled");
  12618. }
  12619. ggml_tensor * r;
  12620. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12621. ggml_set_name(r, "r_add");
  12622. if (base_t->type != model_t->type) {
  12623. // convert the result to the model type
  12624. r = ggml_cast(lora_ctx, r, model_t->type);
  12625. ggml_set_name(r, "r_cast");
  12626. }
  12627. return r;
  12628. };
  12629. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12630. ggml_tensor * r = build_lora_graph();
  12631. ggml_build_forward_expand(gf, r);
  12632. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12633. if (graph_buf == nullptr) {
  12634. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12635. ggml_free(lora_ctx);
  12636. ggml_backend_buffer_free(lora_buf);
  12637. ggml_backend_free(backend_cpu);
  12638. return 1;
  12639. }
  12640. ggml_backend_graph_compute(backend_cpu, gf);
  12641. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12642. #if 0
  12643. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12644. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12645. // sched compute
  12646. ggml_build_forward_expand(gf, build_graph());
  12647. ggml_backend_sched_init_measure(sched, gf);
  12648. // create the graph again, since the previous one was destroyed by the measure
  12649. ggml_graph_clear(gf);
  12650. ggml_build_forward_expand(gf, build_graph());
  12651. ggml_backend_sched_graph_compute(sched, gf);
  12652. ggml_backend_sched_free(sched);
  12653. #endif
  12654. ggml_backend_buffer_free(lora_buf);
  12655. ggml_backend_buffer_free(graph_buf);
  12656. ggml_free(lora_ctx);
  12657. n_tensors++;
  12658. if (n_tensors % 4 == 0) {
  12659. LLAMA_LOG_INFO(".");
  12660. }
  12661. }
  12662. ggml_backend_free(backend_cpu);
  12663. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12664. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12665. return 0;
  12666. }
  12667. //
  12668. // interface implementation
  12669. //
  12670. struct llama_model_params llama_model_default_params() {
  12671. struct llama_model_params result = {
  12672. /*.n_gpu_layers =*/ 0,
  12673. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12674. /*.main_gpu =*/ 0,
  12675. /*.tensor_split =*/ nullptr,
  12676. /*.rpc_servers =*/ nullptr,
  12677. /*.progress_callback =*/ nullptr,
  12678. /*.progress_callback_user_data =*/ nullptr,
  12679. /*.kv_overrides =*/ nullptr,
  12680. /*.vocab_only =*/ false,
  12681. /*.use_mmap =*/ true,
  12682. /*.use_mlock =*/ false,
  12683. /*.check_tensors =*/ false,
  12684. };
  12685. #ifdef GGML_USE_METAL
  12686. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12687. result.n_gpu_layers = 999;
  12688. #endif
  12689. return result;
  12690. }
  12691. struct llama_context_params llama_context_default_params() {
  12692. struct llama_context_params result = {
  12693. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12694. /*.n_ctx =*/ 512,
  12695. /*.n_batch =*/ 2048,
  12696. /*.n_ubatch =*/ 512,
  12697. /*.n_seq_max =*/ 1,
  12698. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12699. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12700. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12701. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12702. /*.rope_freq_base =*/ 0.0f,
  12703. /*.rope_freq_scale =*/ 0.0f,
  12704. /*.yarn_ext_factor =*/ -1.0f,
  12705. /*.yarn_attn_factor =*/ 1.0f,
  12706. /*.yarn_beta_fast =*/ 32.0f,
  12707. /*.yarn_beta_slow =*/ 1.0f,
  12708. /*.yarn_orig_ctx =*/ 0,
  12709. /*.defrag_thold =*/ -1.0f,
  12710. /*.cb_eval =*/ nullptr,
  12711. /*.cb_eval_user_data =*/ nullptr,
  12712. /*.type_k =*/ GGML_TYPE_F16,
  12713. /*.type_v =*/ GGML_TYPE_F16,
  12714. /*.logits_all =*/ false,
  12715. /*.embeddings =*/ false,
  12716. /*.offload_kqv =*/ true,
  12717. /*.flash_attn =*/ false,
  12718. /*.abort_callback =*/ nullptr,
  12719. /*.abort_callback_data =*/ nullptr,
  12720. };
  12721. return result;
  12722. }
  12723. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12724. struct llama_model_quantize_params result = {
  12725. /*.nthread =*/ 0,
  12726. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12727. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12728. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12729. /*.allow_requantize =*/ false,
  12730. /*.quantize_output_tensor =*/ true,
  12731. /*.only_copy =*/ false,
  12732. /*.pure =*/ false,
  12733. /*.keep_split =*/ false,
  12734. /*.imatrix =*/ nullptr,
  12735. /*.kv_overrides =*/ nullptr,
  12736. };
  12737. return result;
  12738. }
  12739. size_t llama_max_devices(void) {
  12740. #if defined(GGML_USE_RPC)
  12741. return GGML_RPC_MAX_SERVERS;
  12742. #elif defined(GGML_USE_METAL)
  12743. return 1;
  12744. #elif defined(GGML_USE_CUDA)
  12745. return GGML_CUDA_MAX_DEVICES;
  12746. #elif defined(GGML_USE_SYCL)
  12747. return GGML_SYCL_MAX_DEVICES;
  12748. #elif defined(GGML_USE_VULKAN)
  12749. return GGML_VK_MAX_DEVICES;
  12750. #else
  12751. return 1;
  12752. #endif
  12753. }
  12754. bool llama_supports_mmap(void) {
  12755. return llama_mmap::SUPPORTED;
  12756. }
  12757. bool llama_supports_mlock(void) {
  12758. return llama_mlock::SUPPORTED;
  12759. }
  12760. bool llama_supports_gpu_offload(void) {
  12761. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12762. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  12763. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12764. return true;
  12765. #else
  12766. return false;
  12767. #endif
  12768. }
  12769. void llama_backend_init(void) {
  12770. ggml_time_init();
  12771. // needed to initialize f16 tables
  12772. {
  12773. struct ggml_init_params params = { 0, NULL, false };
  12774. struct ggml_context * ctx = ggml_init(params);
  12775. ggml_free(ctx);
  12776. }
  12777. }
  12778. void llama_numa_init(enum ggml_numa_strategy numa) {
  12779. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12780. ggml_numa_init(numa);
  12781. }
  12782. }
  12783. void llama_backend_free(void) {
  12784. ggml_quantize_free();
  12785. }
  12786. int64_t llama_time_us(void) {
  12787. return ggml_time_us();
  12788. }
  12789. struct llama_model * llama_load_model_from_file(
  12790. const char * path_model,
  12791. struct llama_model_params params) {
  12792. ggml_time_init();
  12793. llama_model * model = new llama_model;
  12794. unsigned cur_percentage = 0;
  12795. if (params.progress_callback == NULL) {
  12796. params.progress_callback_user_data = &cur_percentage;
  12797. params.progress_callback = [](float progress, void * ctx) {
  12798. unsigned * cur_percentage_p = (unsigned *) ctx;
  12799. unsigned percentage = (unsigned) (100 * progress);
  12800. while (percentage > *cur_percentage_p) {
  12801. *cur_percentage_p = percentage;
  12802. LLAMA_LOG_INFO(".");
  12803. if (percentage >= 100) {
  12804. LLAMA_LOG_INFO("\n");
  12805. }
  12806. }
  12807. return true;
  12808. };
  12809. }
  12810. if (params.rpc_servers != nullptr) {
  12811. // split the servers set them into model->rpc_servers
  12812. std::string servers(params.rpc_servers);
  12813. size_t pos = 0;
  12814. while ((pos = servers.find(",")) != std::string::npos) {
  12815. std::string server = servers.substr(0, pos);
  12816. model->rpc_servers.push_back(server);
  12817. servers.erase(0, pos + 1);
  12818. }
  12819. model->rpc_servers.push_back(servers);
  12820. }
  12821. int status = llama_model_load(path_model, *model, params);
  12822. GGML_ASSERT(status <= 0);
  12823. if (status < 0) {
  12824. if (status == -1) {
  12825. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12826. } else if (status == -2) {
  12827. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12828. }
  12829. delete model;
  12830. return nullptr;
  12831. }
  12832. return model;
  12833. }
  12834. void llama_free_model(struct llama_model * model) {
  12835. delete model;
  12836. }
  12837. struct llama_context * llama_new_context_with_model(
  12838. struct llama_model * model,
  12839. struct llama_context_params params) {
  12840. if (!model) {
  12841. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12842. return nullptr;
  12843. }
  12844. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12845. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12846. return nullptr;
  12847. }
  12848. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12849. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12850. return nullptr;
  12851. }
  12852. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  12853. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  12854. params.flash_attn = false;
  12855. }
  12856. llama_context * ctx = new llama_context(*model);
  12857. const auto & hparams = model->hparams;
  12858. auto & cparams = ctx->cparams;
  12859. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12860. cparams.n_threads = params.n_threads;
  12861. cparams.n_threads_batch = params.n_threads_batch;
  12862. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12863. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12864. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12865. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12866. cparams.defrag_thold = params.defrag_thold;
  12867. cparams.embeddings = params.embeddings;
  12868. cparams.offload_kqv = params.offload_kqv;
  12869. cparams.flash_attn = params.flash_attn;
  12870. cparams.pooling_type = params.pooling_type;
  12871. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12872. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12873. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12874. // this is necessary due to kv_self.n being padded later during inference
  12875. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  12876. // with causal attention, the batch size is limited by the context size
  12877. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12878. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  12879. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  12880. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  12881. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  12882. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  12883. cparams.n_batch = GGML_KQ_MASK_PAD;
  12884. }
  12885. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12886. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12887. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12888. hparams.n_ctx_train;
  12889. cparams.cb_eval = params.cb_eval;
  12890. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12891. auto rope_scaling_type = params.rope_scaling_type;
  12892. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12893. rope_scaling_type = hparams.rope_scaling_type_train;
  12894. }
  12895. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12896. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12897. }
  12898. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12899. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12900. }
  12901. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  12902. cparams.causal_attn = hparams.causal_attn;
  12903. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12904. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12905. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12906. } else {
  12907. cparams.pooling_type = hparams.pooling_type;
  12908. }
  12909. }
  12910. if (params.seed == LLAMA_DEFAULT_SEED) {
  12911. params.seed = time(NULL);
  12912. }
  12913. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12914. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12915. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12916. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  12917. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12918. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12919. ctx->abort_callback = params.abort_callback;
  12920. ctx->abort_callback_data = params.abort_callback_data;
  12921. ctx->rng = std::mt19937(params.seed);
  12922. ctx->logits_all = params.logits_all;
  12923. uint32_t kv_size = cparams.n_ctx;
  12924. ggml_type type_k = params.type_k;
  12925. ggml_type type_v = params.type_v;
  12926. // Mamba only needs a constant number of KV cache cells per sequence
  12927. if (model->arch == LLM_ARCH_MAMBA) {
  12928. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12929. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12930. // it's probably best to keep as much precision as possible for the states
  12931. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12932. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12933. }
  12934. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12935. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12936. if (!hparams.vocab_only) {
  12937. // initialize backends
  12938. #if defined(GGML_USE_RPC)
  12939. for (auto & server : model->rpc_servers) {
  12940. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  12941. if (backend == nullptr) {
  12942. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  12943. llama_free(ctx);
  12944. return nullptr;
  12945. }
  12946. ctx->backends.push_back(backend);
  12947. }
  12948. #elif defined(GGML_USE_METAL)
  12949. if (model->n_gpu_layers > 0) {
  12950. ctx->backend_metal = ggml_backend_metal_init();
  12951. if (ctx->backend_metal == nullptr) {
  12952. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12953. llama_free(ctx);
  12954. return nullptr;
  12955. }
  12956. ctx->backends.push_back(ctx->backend_metal);
  12957. }
  12958. #elif defined(GGML_USE_CUDA)
  12959. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12960. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12961. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12962. if (backend == nullptr) {
  12963. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12964. llama_free(ctx);
  12965. return nullptr;
  12966. }
  12967. ctx->backends.push_back(backend);
  12968. } else {
  12969. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12970. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12971. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12972. if (backend == nullptr) {
  12973. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12974. llama_free(ctx);
  12975. return nullptr;
  12976. }
  12977. ctx->backends.push_back(backend);
  12978. }
  12979. }
  12980. #elif defined(GGML_USE_VULKAN)
  12981. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12982. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12983. llama_free(ctx);
  12984. return nullptr;
  12985. }
  12986. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12987. ggml_backend_t backend = ggml_backend_vk_init(0);
  12988. if (backend == nullptr) {
  12989. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12990. llama_free(ctx);
  12991. return nullptr;
  12992. }
  12993. ctx->backends.push_back(backend);
  12994. } else {
  12995. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12996. ggml_backend_t backend = ggml_backend_vk_init(device);
  12997. if (backend == nullptr) {
  12998. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12999. llama_free(ctx);
  13000. return nullptr;
  13001. }
  13002. ctx->backends.push_back(backend);
  13003. }
  13004. }
  13005. #elif defined(GGML_USE_SYCL)
  13006. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13007. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13008. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13009. if (backend == nullptr) {
  13010. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13011. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13012. llama_free(ctx);
  13013. return nullptr;
  13014. }
  13015. ctx->backends.push_back(backend);
  13016. } else {
  13017. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13018. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13019. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13020. if (backend == nullptr) {
  13021. int id_list[GGML_SYCL_MAX_DEVICES];
  13022. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13023. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13024. llama_free(ctx);
  13025. return nullptr;
  13026. }
  13027. ctx->backends.push_back(backend);
  13028. }
  13029. }
  13030. #elif defined(GGML_USE_KOMPUTE)
  13031. if (model->n_gpu_layers > 0) {
  13032. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13033. if (backend == nullptr) {
  13034. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13035. llama_free(ctx);
  13036. return nullptr;
  13037. }
  13038. ctx->backends.push_back(backend);
  13039. }
  13040. #endif
  13041. ctx->backend_cpu = ggml_backend_cpu_init();
  13042. if (ctx->backend_cpu == nullptr) {
  13043. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13044. llama_free(ctx);
  13045. return nullptr;
  13046. }
  13047. ctx->backends.push_back(ctx->backend_cpu);
  13048. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13049. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13050. llama_free(ctx);
  13051. return nullptr;
  13052. }
  13053. {
  13054. size_t memory_size_k = 0;
  13055. size_t memory_size_v = 0;
  13056. for (auto & k : ctx->kv_self.k_l) {
  13057. memory_size_k += ggml_nbytes(k);
  13058. }
  13059. for (auto & v : ctx->kv_self.v_l) {
  13060. memory_size_v += ggml_nbytes(v);
  13061. }
  13062. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13063. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13064. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13065. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13066. }
  13067. // graph outputs buffer
  13068. {
  13069. // resized during inference when a batch uses more outputs
  13070. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13071. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13072. llama_free(ctx);
  13073. return nullptr;
  13074. }
  13075. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13076. ggml_backend_buffer_name(ctx->buf_output),
  13077. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13078. }
  13079. // scheduler and compute buffers
  13080. {
  13081. // buffer types used for the compute buffer of each backend
  13082. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13083. for (auto * backend : ctx->backends) {
  13084. if (ggml_backend_is_cpu(backend)) {
  13085. // use host buffers for the CPU backend compute buffer
  13086. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13087. } else {
  13088. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13089. }
  13090. }
  13091. // buffer used to store the computation graph and the tensor meta data
  13092. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13093. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13094. bool pipeline_parallel =
  13095. llama_get_device_count(*model) > 1 &&
  13096. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13097. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13098. params.offload_kqv;
  13099. #ifndef GGML_USE_CUDA
  13100. // pipeline parallelism requires support for async compute and events
  13101. // currently this is only implemented in the CUDA backend
  13102. pipeline_parallel = false;
  13103. #endif
  13104. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13105. if (pipeline_parallel) {
  13106. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13107. }
  13108. // build worst-case graph
  13109. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13110. int n_past = cparams.n_ctx - n_tokens;
  13111. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13112. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13113. // initialize scheduler with the worst-case graph
  13114. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13115. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13116. llama_free(ctx);
  13117. return nullptr;
  13118. }
  13119. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13120. ggml_backend_t backend = ctx->backends[i];
  13121. ggml_backend_buffer_type_t buft = backend_buft[i];
  13122. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13123. if (size > 1) {
  13124. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13125. ggml_backend_buft_name(buft),
  13126. size / 1024.0 / 1024.0);
  13127. }
  13128. }
  13129. // note: the number of splits during measure is higher than during inference due to the kv shift
  13130. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13131. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13132. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13133. }
  13134. }
  13135. return ctx;
  13136. }
  13137. void llama_free(struct llama_context * ctx) {
  13138. delete ctx;
  13139. }
  13140. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13141. return &ctx->model;
  13142. }
  13143. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13144. return ctx->cparams.n_ctx;
  13145. }
  13146. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13147. return ctx->cparams.n_batch;
  13148. }
  13149. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13150. return ctx->cparams.n_ubatch;
  13151. }
  13152. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13153. return ctx->kv_self.size;
  13154. }
  13155. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13156. return model->vocab.type;
  13157. }
  13158. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13159. switch (model->arch) {
  13160. // these models do not use RoPE
  13161. case LLM_ARCH_GPT2:
  13162. case LLM_ARCH_GPTJ:
  13163. case LLM_ARCH_GPTNEOX:
  13164. case LLM_ARCH_MPT:
  13165. case LLM_ARCH_REFACT:
  13166. case LLM_ARCH_BLOOM:
  13167. case LLM_ARCH_MAMBA:
  13168. case LLM_ARCH_JINA_BERT_V2:
  13169. return LLAMA_ROPE_TYPE_NONE;
  13170. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13171. case LLM_ARCH_LLAMA:
  13172. case LLM_ARCH_BAICHUAN:
  13173. case LLM_ARCH_STARCODER:
  13174. case LLM_ARCH_PLAMO:
  13175. case LLM_ARCH_CODESHELL:
  13176. case LLM_ARCH_ORION:
  13177. case LLM_ARCH_INTERNLM2:
  13178. case LLM_ARCH_MINICPM:
  13179. case LLM_ARCH_XVERSE:
  13180. case LLM_ARCH_COMMAND_R:
  13181. case LLM_ARCH_OLMO:
  13182. return LLAMA_ROPE_TYPE_NORM;
  13183. // the pairs of head values are offset by n_rot/2
  13184. case LLM_ARCH_FALCON:
  13185. case LLM_ARCH_GROK:
  13186. case LLM_ARCH_DBRX:
  13187. case LLM_ARCH_BERT:
  13188. case LLM_ARCH_NOMIC_BERT:
  13189. case LLM_ARCH_STABLELM:
  13190. case LLM_ARCH_QWEN:
  13191. case LLM_ARCH_QWEN2:
  13192. case LLM_ARCH_QWEN2MOE:
  13193. case LLM_ARCH_PHI2:
  13194. case LLM_ARCH_PHI3:
  13195. case LLM_ARCH_GEMMA:
  13196. case LLM_ARCH_STARCODER2:
  13197. return LLAMA_ROPE_TYPE_NEOX;
  13198. // all model arches should be listed explicitly here
  13199. case LLM_ARCH_UNKNOWN:
  13200. GGML_ASSERT(false && "unknown architecture");
  13201. break;
  13202. }
  13203. return LLAMA_ROPE_TYPE_NONE;
  13204. }
  13205. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13206. return ctx->cparams.pooling_type;
  13207. }
  13208. int32_t llama_n_vocab(const struct llama_model * model) {
  13209. return model->hparams.n_vocab;
  13210. }
  13211. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13212. return model->hparams.n_ctx_train;
  13213. }
  13214. int32_t llama_n_embd(const struct llama_model * model) {
  13215. return model->hparams.n_embd;
  13216. }
  13217. int32_t llama_n_layer(const struct llama_model * model) {
  13218. return model->hparams.n_layer;
  13219. }
  13220. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13221. return model->hparams.rope_freq_scale_train;
  13222. }
  13223. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13224. const auto & it = model->gguf_kv.find(key);
  13225. if (it == model->gguf_kv.end()) {
  13226. if (buf_size > 0) {
  13227. buf[0] = '\0';
  13228. }
  13229. return -1;
  13230. }
  13231. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13232. }
  13233. int32_t llama_model_meta_count(const struct llama_model * model) {
  13234. return (int)model->gguf_kv.size();
  13235. }
  13236. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13237. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13238. if (buf_size > 0) {
  13239. buf[0] = '\0';
  13240. }
  13241. return -1;
  13242. }
  13243. auto it = model->gguf_kv.begin();
  13244. std::advance(it, i);
  13245. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13246. }
  13247. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13248. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13249. if (buf_size > 0) {
  13250. buf[0] = '\0';
  13251. }
  13252. return -1;
  13253. }
  13254. auto it = model->gguf_kv.begin();
  13255. std::advance(it, i);
  13256. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13257. }
  13258. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13259. return snprintf(buf, buf_size, "%s %s %s",
  13260. llama_model_arch_name(model->arch),
  13261. llama_model_type_name(model->type),
  13262. llama_model_ftype_name(model->ftype).c_str());
  13263. }
  13264. uint64_t llama_model_size(const struct llama_model * model) {
  13265. uint64_t size = 0;
  13266. for (const auto & it : model->tensors_by_name) {
  13267. size += ggml_nbytes(it.second);
  13268. }
  13269. return size;
  13270. }
  13271. uint64_t llama_model_n_params(const struct llama_model * model) {
  13272. uint64_t nparams = 0;
  13273. for (const auto & it : model->tensors_by_name) {
  13274. nparams += ggml_nelements(it.second);
  13275. }
  13276. return nparams;
  13277. }
  13278. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13279. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13280. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13281. return it.first == name;
  13282. });
  13283. if (it == model->tensors_by_name.end()) {
  13284. return nullptr;
  13285. }
  13286. return it->second;
  13287. }
  13288. uint32_t llama_model_quantize(
  13289. const char * fname_inp,
  13290. const char * fname_out,
  13291. const llama_model_quantize_params * params) {
  13292. try {
  13293. llama_model_quantize_internal(fname_inp, fname_out, params);
  13294. return 0;
  13295. } catch (const std::exception & err) {
  13296. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13297. return 1;
  13298. }
  13299. }
  13300. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13301. try {
  13302. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13303. } catch (const std::exception & err) {
  13304. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13305. return 1;
  13306. }
  13307. }
  13308. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13309. GGML_ASSERT(cvec.tensors.empty());
  13310. GGML_ASSERT(cvec.ctxs.empty());
  13311. GGML_ASSERT(cvec.bufs.empty());
  13312. // count layer buffer types
  13313. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13314. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13315. buft_layer_count[model.buft_layer[i].buft]++;
  13316. }
  13317. // allocate contexts
  13318. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13319. for (auto & it : buft_layer_count) {
  13320. int n_layers = it.second;
  13321. struct ggml_init_params params = {
  13322. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13323. /*.mem_buffer =*/ NULL,
  13324. /*.no_alloc =*/ true,
  13325. };
  13326. ggml_context * ctx = ggml_init(params);
  13327. if (!ctx) {
  13328. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13329. return 1;
  13330. }
  13331. ctx_map[it.first] = ctx;
  13332. }
  13333. // make tensors
  13334. cvec.tensors.reserve(model.hparams.n_layer);
  13335. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13336. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13337. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13338. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13339. cvec.tensors.push_back(tensor);
  13340. }
  13341. // allocate tensors / buffers and zero
  13342. cvec.ctxs.reserve(ctx_map.size());
  13343. cvec.bufs.reserve(ctx_map.size());
  13344. for (auto it : ctx_map) {
  13345. ggml_backend_buffer_type_t buft = it.first;
  13346. ggml_context * ctx = it.second;
  13347. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13348. if (!buf) {
  13349. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13350. return false;
  13351. }
  13352. ggml_backend_buffer_clear(buf, 0);
  13353. cvec.ctxs.push_back(ctx);
  13354. cvec.bufs.push_back(buf);
  13355. }
  13356. return true;
  13357. }
  13358. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13359. const llama_model & model = lctx->model;
  13360. llama_control_vector & cvec = lctx->cvec;
  13361. if (data == nullptr) {
  13362. // disable the current control vector (but leave allocated for later)
  13363. cvec.layer_start = -1;
  13364. cvec.layer_end = -1;
  13365. return 0;
  13366. }
  13367. if (n_embd != (int) model.hparams.n_embd) {
  13368. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13369. return 1;
  13370. }
  13371. if (cvec.tensors.empty()) {
  13372. if (!llama_control_vector_init(cvec, model)) {
  13373. return 1;
  13374. }
  13375. }
  13376. cvec.layer_start = il_start;
  13377. cvec.layer_end = il_end;
  13378. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13379. assert(cvec.tensors[il] != nullptr);
  13380. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13381. if (off + n_embd <= len) {
  13382. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13383. }
  13384. }
  13385. return 0;
  13386. }
  13387. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13388. struct llama_kv_cache_view result = {
  13389. /*.n_cells = */ 0,
  13390. /*.n_seq_max = */ n_seq_max,
  13391. /*.token_count = */ 0,
  13392. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13393. /*.max_contiguous = */ 0,
  13394. /*.max_contiguous_idx = */ -1,
  13395. /*.cells = */ nullptr,
  13396. /*.cells_sequences = */ nullptr,
  13397. };
  13398. return result;
  13399. }
  13400. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13401. if (view->cells != nullptr) {
  13402. free(view->cells);
  13403. view->cells = nullptr;
  13404. }
  13405. if (view->cells_sequences != nullptr) {
  13406. free(view->cells_sequences);
  13407. view->cells_sequences = nullptr;
  13408. }
  13409. }
  13410. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13411. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13412. view->n_cells = int32_t(ctx->kv_self.size);
  13413. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13414. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13415. view->cells = (struct llama_kv_cache_view_cell *)p;
  13416. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13417. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13418. view->cells_sequences = (llama_seq_id *)p;
  13419. }
  13420. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13421. llama_kv_cache_view_cell * c_curr = view->cells;
  13422. llama_seq_id * cs_curr = view->cells_sequences;
  13423. int32_t used_cells = 0;
  13424. int32_t token_count = 0;
  13425. int32_t curr_contig_idx = -1;
  13426. uint32_t max_contig = 0;
  13427. int32_t max_contig_idx = -1;
  13428. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13429. const size_t curr_size = kv_cells[i].seq_id.size();
  13430. token_count += curr_size;
  13431. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13432. if (curr_size > 0) {
  13433. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13434. max_contig = i - curr_contig_idx;
  13435. max_contig_idx = curr_contig_idx;
  13436. }
  13437. curr_contig_idx = -1;
  13438. } else if (curr_contig_idx < 0) {
  13439. curr_contig_idx = i;
  13440. }
  13441. int seq_idx = 0;
  13442. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13443. if (seq_idx >= view->n_seq_max) {
  13444. break;
  13445. }
  13446. cs_curr[seq_idx] = it;
  13447. seq_idx++;
  13448. }
  13449. if (seq_idx != 0) {
  13450. used_cells++;
  13451. }
  13452. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13453. cs_curr[seq_idx] = -1;
  13454. }
  13455. }
  13456. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13457. max_contig_idx = curr_contig_idx;
  13458. max_contig = kv_cells.size() - curr_contig_idx;
  13459. }
  13460. view->max_contiguous = max_contig;
  13461. view->max_contiguous_idx = max_contig_idx;
  13462. view->token_count = token_count;
  13463. view->used_cells = used_cells;
  13464. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13465. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13466. __func__, ctx->kv_self.used, used_cells);
  13467. }
  13468. }
  13469. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13470. int result = 0;
  13471. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13472. result += ctx->kv_self.cells[i].seq_id.size();
  13473. }
  13474. return result;
  13475. }
  13476. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13477. return ctx->kv_self.used;
  13478. }
  13479. void llama_kv_cache_clear(struct llama_context * ctx) {
  13480. llama_kv_cache_clear(ctx->kv_self);
  13481. }
  13482. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13483. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13484. }
  13485. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13486. if (seq_id_src == seq_id_dst) {
  13487. return;
  13488. }
  13489. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13490. }
  13491. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13492. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13493. }
  13494. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13495. if (delta == 0) {
  13496. return;
  13497. }
  13498. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13499. }
  13500. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13501. if (d == 1) {
  13502. return;
  13503. }
  13504. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13505. }
  13506. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13507. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13508. }
  13509. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13510. llama_kv_cache_defrag(ctx->kv_self);
  13511. }
  13512. void llama_kv_cache_update(struct llama_context * ctx) {
  13513. llama_kv_cache_update_internal(*ctx);
  13514. }
  13515. // deprecated
  13516. size_t llama_get_state_size(const struct llama_context * ctx) {
  13517. return llama_state_get_size(ctx);
  13518. }
  13519. // deprecated
  13520. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13521. return llama_state_get_data(ctx, dst);
  13522. }
  13523. // deprecated
  13524. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13525. return llama_state_set_data(ctx, src);
  13526. }
  13527. // deprecated
  13528. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13529. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13530. }
  13531. // deprecated
  13532. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13533. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13534. }
  13535. // Returns the *maximum* size of the state
  13536. size_t llama_state_get_size(const struct llama_context * ctx) {
  13537. const auto & cparams = ctx->cparams;
  13538. const auto & hparams = ctx->model.hparams;
  13539. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13540. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13541. const size_t s_rng_size = sizeof(size_t);
  13542. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13543. const size_t s_n_outputs = sizeof(size_t);
  13544. // assume worst case for outputs although only currently set ones are serialized
  13545. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13546. const size_t s_logits_size = sizeof(size_t);
  13547. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13548. const size_t s_embedding_size = sizeof(size_t);
  13549. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13550. const size_t s_kv_buf_size = sizeof(size_t);
  13551. const size_t s_kv_head = sizeof(uint32_t);
  13552. const size_t s_kv_size = sizeof(uint32_t);
  13553. const size_t s_kv_used = sizeof(uint32_t);
  13554. const size_t s_v_trans = sizeof(uint32_t);
  13555. const size_t s_kv = ctx->kv_self.total_size();
  13556. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13557. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13558. const size_t s_total = (
  13559. + s_rng_size
  13560. + s_rng
  13561. + s_n_outputs
  13562. + s_output_pos
  13563. + s_logits_size
  13564. + s_logits
  13565. + s_embedding_size
  13566. + s_embedding
  13567. + s_kv_buf_size
  13568. + s_kv_head
  13569. + s_kv_size
  13570. + s_kv_used
  13571. + s_v_trans
  13572. + s_kv
  13573. + s_kv_cells
  13574. );
  13575. // on session change it is very likely that the state size has changed - so we need to update this function
  13576. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13577. return s_total;
  13578. }
  13579. // llama_context_data
  13580. struct llama_data_context {
  13581. virtual void write(const void * src, size_t size) = 0;
  13582. virtual size_t get_size_written() = 0;
  13583. virtual ~llama_data_context() = default;
  13584. };
  13585. struct llama_data_buffer_context : llama_data_context {
  13586. uint8_t * ptr;
  13587. size_t size_written = 0;
  13588. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13589. void write(const void * src, size_t size) override {
  13590. memcpy(ptr, src, size);
  13591. ptr += size;
  13592. size_written += size;
  13593. }
  13594. size_t get_size_written() override {
  13595. return size_written;
  13596. }
  13597. };
  13598. struct llama_data_file_context : llama_data_context {
  13599. llama_file * file;
  13600. size_t size_written = 0;
  13601. llama_data_file_context(llama_file * f) : file(f) {}
  13602. void write(const void * src, size_t size) override {
  13603. file->write_raw(src, size);
  13604. size_written += size;
  13605. }
  13606. size_t get_size_written() override {
  13607. return size_written;
  13608. }
  13609. };
  13610. /** copy state data into either a buffer or file depending on the passed in context
  13611. *
  13612. * file context:
  13613. * llama_file file("/path", "wb");
  13614. * llama_data_file_context data_ctx(&file);
  13615. * llama_state_get_data(ctx, &data_ctx);
  13616. *
  13617. * buffer context:
  13618. * std::vector<uint8_t> buf(max_size, 0);
  13619. * llama_data_buffer_context data_ctx(&buf.data());
  13620. * llama_state_get_data(ctx, &data_ctx);
  13621. *
  13622. */
  13623. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13624. llama_synchronize(ctx);
  13625. // copy rng
  13626. {
  13627. std::ostringstream rng_ss;
  13628. rng_ss << ctx->rng;
  13629. const std::string & rng_str = rng_ss.str();
  13630. const size_t rng_size = rng_str.size();
  13631. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13632. data_ctx->write(&rng_size, sizeof(rng_size));
  13633. data_ctx->write(rng_str.data(), rng_size);
  13634. }
  13635. // copy outputs
  13636. {
  13637. // Can't use ctx->n_outputs because it's not for the
  13638. // entire last batch when n_ubatch is smaller than n_batch
  13639. size_t n_outputs = 0;
  13640. // copy output ids
  13641. {
  13642. std::vector<int32_t> output_pos;
  13643. const size_t n_batch = ctx->cparams.n_batch;
  13644. const auto & output_ids = ctx->output_ids;
  13645. output_pos.resize(ctx->output_size);
  13646. // build a more compact representation of the output ids
  13647. for (size_t i = 0; i < n_batch; ++i) {
  13648. // map an output id to a position in the batch
  13649. int32_t pos = output_ids[i];
  13650. if (pos >= 0) {
  13651. if ((size_t) pos >= n_outputs) {
  13652. n_outputs = pos + 1;
  13653. }
  13654. GGML_ASSERT((size_t) pos < ctx->output_size);
  13655. output_pos[pos] = i;
  13656. }
  13657. }
  13658. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13659. if (n_outputs) {
  13660. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13661. }
  13662. }
  13663. // copy logits
  13664. {
  13665. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13666. data_ctx->write(&logits_size, sizeof(logits_size));
  13667. if (logits_size) {
  13668. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13669. }
  13670. }
  13671. // copy embeddings
  13672. {
  13673. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13674. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13675. if (embeddings_size) {
  13676. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13677. }
  13678. }
  13679. }
  13680. // copy kv cache
  13681. {
  13682. const auto & kv_self = ctx->kv_self;
  13683. const auto & hparams = ctx->model.hparams;
  13684. const uint32_t n_layer = hparams.n_layer;
  13685. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13686. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13687. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13688. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13689. const uint32_t kv_size = kv_self.size;
  13690. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13691. const uint32_t kv_used = kv_self.used;
  13692. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13693. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13694. data_ctx->write(&kv_head, sizeof(kv_head));
  13695. data_ctx->write(&kv_size, sizeof(kv_size));
  13696. data_ctx->write(&kv_used, sizeof(kv_used));
  13697. data_ctx->write(&v_trans, sizeof(v_trans));
  13698. if (kv_buf_size) {
  13699. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13700. std::vector<uint8_t> tmp_buf;
  13701. for (int il = 0; il < (int) n_layer; ++il) {
  13702. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13703. tmp_buf.resize(k_size);
  13704. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13705. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13706. if (kv_self.recurrent || !kv_self.v_trans) {
  13707. // v is contiguous for recurrent models
  13708. // TODO: use other tensors for state models than k and v
  13709. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13710. tmp_buf.resize(v_size);
  13711. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13712. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13713. continue;
  13714. }
  13715. // v is not contiguous, copy row by row
  13716. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13717. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13718. tmp_buf.resize(v_row_size);
  13719. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13720. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13721. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13722. }
  13723. }
  13724. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13725. }
  13726. for (uint32_t i = 0; i < kv_head; ++i) {
  13727. const auto & cell = kv_self.cells[i];
  13728. const llama_pos pos = cell.pos;
  13729. const size_t seq_id_size = cell.seq_id.size();
  13730. data_ctx->write(&pos, sizeof(pos));
  13731. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13732. for (auto seq_id : cell.seq_id) {
  13733. data_ctx->write(&seq_id, sizeof(seq_id));
  13734. }
  13735. }
  13736. }
  13737. }
  13738. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13739. llama_data_buffer_context data_ctx(dst);
  13740. llama_state_get_data_internal(ctx, &data_ctx);
  13741. return data_ctx.get_size_written();
  13742. }
  13743. // Sets the state reading from the specified source address
  13744. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13745. llama_synchronize(ctx);
  13746. const uint8_t * inp = src;
  13747. // set rng
  13748. {
  13749. size_t rng_size;
  13750. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13751. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13752. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13753. std::istringstream rng_ss(rng_str);
  13754. rng_ss >> ctx->rng;
  13755. GGML_ASSERT(!rng_ss.fail());
  13756. }
  13757. // set output ids
  13758. {
  13759. size_t n_outputs;
  13760. std::vector<int32_t> output_pos;
  13761. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13762. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13763. if (n_outputs) {
  13764. output_pos.resize(n_outputs);
  13765. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13766. inp += n_outputs * sizeof(int32_t);
  13767. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13768. int32_t id = output_pos[i];
  13769. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13770. ctx->output_ids[id] = i;
  13771. }
  13772. ctx->n_outputs = n_outputs;
  13773. }
  13774. }
  13775. // set logits
  13776. {
  13777. size_t logits_size;
  13778. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13779. GGML_ASSERT(ctx->logits_size >= logits_size);
  13780. if (logits_size) {
  13781. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13782. inp += logits_size * sizeof(float);
  13783. }
  13784. }
  13785. // set embeddings
  13786. {
  13787. size_t embeddings_size;
  13788. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13789. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13790. if (embeddings_size) {
  13791. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13792. inp += embeddings_size * sizeof(float);
  13793. }
  13794. }
  13795. // set kv cache
  13796. {
  13797. const auto & kv_self = ctx->kv_self;
  13798. const auto & hparams = ctx->model.hparams;
  13799. const uint32_t n_layer = hparams.n_layer;
  13800. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13801. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13802. size_t kv_buf_size;
  13803. uint32_t kv_head;
  13804. uint32_t kv_size;
  13805. uint32_t kv_used;
  13806. uint32_t v_trans;
  13807. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13808. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13809. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13810. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13811. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  13812. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  13813. if (kv_self.size != kv_size) {
  13814. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13815. GGML_ASSERT(kv_self.size >= kv_head);
  13816. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13817. __func__, kv_head, kv_size, kv_self.size);
  13818. }
  13819. llama_kv_cache_clear(ctx);
  13820. if (kv_buf_size) {
  13821. const size_t pre_kv_buf_size = inp - src;
  13822. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13823. for (int il = 0; il < (int) n_layer; ++il) {
  13824. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13825. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13826. inp += k_size;
  13827. if (kv_self.recurrent || !kv_self.v_trans) {
  13828. // v is contiguous for recurrent models
  13829. // TODO: use other tensors for state models than k and v
  13830. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13831. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13832. inp += v_size;
  13833. continue;
  13834. }
  13835. // v is not contiguous, copy row by row
  13836. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13837. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13838. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13839. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13840. inp += v_row_size;
  13841. }
  13842. }
  13843. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13844. }
  13845. ctx->kv_self.head = kv_head;
  13846. ctx->kv_self.used = kv_used;
  13847. for (uint32_t i = 0; i < kv_head; ++i) {
  13848. llama_pos pos;
  13849. size_t seq_id_size;
  13850. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13851. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13852. ctx->kv_self.cells[i].pos = pos;
  13853. llama_seq_id seq_id;
  13854. for (size_t j = 0; j < seq_id_size; ++j) {
  13855. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13856. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13857. }
  13858. }
  13859. }
  13860. const size_t nread = inp - src;
  13861. const size_t max_size = llama_state_get_size(ctx);
  13862. GGML_ASSERT(nread <= max_size);
  13863. return nread;
  13864. }
  13865. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13866. llama_file file(path_session, "rb");
  13867. // sanity checks
  13868. {
  13869. const uint32_t magic = file.read_u32();
  13870. const uint32_t version = file.read_u32();
  13871. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13872. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13873. return false;
  13874. }
  13875. llama_hparams session_hparams;
  13876. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13877. if (session_hparams != ctx->model.hparams) {
  13878. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13879. return false;
  13880. }
  13881. }
  13882. // load the prompt
  13883. {
  13884. const uint32_t n_token_count = file.read_u32();
  13885. if (n_token_count > n_token_capacity) {
  13886. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13887. return false;
  13888. }
  13889. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13890. *n_token_count_out = n_token_count;
  13891. }
  13892. // restore the context state
  13893. {
  13894. const size_t n_state_size_cur = file.size - file.tell();
  13895. const size_t n_state_size_max = llama_state_get_size(ctx);
  13896. if (n_state_size_cur > n_state_size_max) {
  13897. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13898. return false;
  13899. }
  13900. std::vector<uint8_t> state_data(n_state_size_max);
  13901. file.read_raw(state_data.data(), n_state_size_cur);
  13902. llama_state_set_data(ctx, state_data.data());
  13903. }
  13904. return true;
  13905. }
  13906. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13907. try {
  13908. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13909. } catch (const std::exception & err) {
  13910. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13911. return false;
  13912. }
  13913. }
  13914. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13915. llama_file file(path_session, "wb");
  13916. file.write_u32(LLAMA_SESSION_MAGIC);
  13917. file.write_u32(LLAMA_SESSION_VERSION);
  13918. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13919. // save the prompt
  13920. file.write_u32((uint32_t) n_token_count);
  13921. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13922. // save the context state using stream saving
  13923. llama_data_file_context data_ctx(&file);
  13924. llama_state_get_data_internal(ctx, &data_ctx);
  13925. return true;
  13926. }
  13927. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13928. try {
  13929. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13930. } catch (const std::exception & err) {
  13931. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13932. return false;
  13933. }
  13934. }
  13935. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13936. // save the size of size_t as a uint32_t for safety check
  13937. const size_t size_t_size_size = sizeof(uint32_t);
  13938. // other values
  13939. const size_t s_cell_count_size = sizeof(uint32_t);
  13940. const size_t s_layer_count_size = sizeof(uint32_t);
  13941. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13942. size_t s_cell_count = 0;
  13943. size_t s_cell_data_size = 0;
  13944. const auto & kv_self = ctx->kv_self;
  13945. const auto & hparams = ctx->model.hparams;
  13946. const uint32_t n_layer = hparams.n_layer;
  13947. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13948. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13949. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13950. const auto & cell = kv_self.cells[i];
  13951. if (cell.seq_id.count(seq_id) > 0) {
  13952. ++s_cell_count;
  13953. s_cell_data_size += sizeof(llama_pos);
  13954. }
  13955. }
  13956. for (int il = 0; il < (int)n_layer; ++il) {
  13957. // types of keys and values
  13958. s_cell_data_size += sizeof(int32_t) * 2;
  13959. // k_size_row and v_size_el values of layer
  13960. s_cell_data_size += sizeof(size_t) * 2;
  13961. // keys
  13962. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13963. s_cell_data_size += k_size_row * s_cell_count;
  13964. // values (transposed)
  13965. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13966. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13967. }
  13968. const size_t s_total = (
  13969. size_t_size_size +
  13970. s_cell_count_size +
  13971. s_layer_count_size +
  13972. n_embd_v_gqa_size +
  13973. s_cell_data_size
  13974. );
  13975. return s_total;
  13976. }
  13977. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13978. llama_synchronize(ctx);
  13979. const auto & kv_self = ctx->kv_self;
  13980. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13981. // Save the size of size_t as a uint32_t for safety check
  13982. const uint32_t size_t_size = sizeof(size_t);
  13983. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13984. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13985. uint32_t cell_count = 0;
  13986. // Count the number of cells with the specified seq_id
  13987. // Find all the ranges of cells with this seq id
  13988. {
  13989. uint32_t cell_range_begin = kv_self.size;
  13990. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13991. const auto & cell = kv_self.cells[i];
  13992. if (cell.has_seq_id(seq_id)) {
  13993. ++cell_count;
  13994. if (cell_range_begin == kv_self.size) {
  13995. cell_range_begin = i;
  13996. }
  13997. }
  13998. else {
  13999. if (cell_range_begin != kv_self.size) {
  14000. cell_ranges.emplace_back(cell_range_begin, i);
  14001. cell_range_begin = kv_self.size;
  14002. }
  14003. }
  14004. }
  14005. if (cell_range_begin != kv_self.size) {
  14006. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14007. }
  14008. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14009. uint32_t cell_count_check = 0;
  14010. for (const auto & range : cell_ranges) {
  14011. cell_count_check += range.second - range.first;
  14012. }
  14013. GGML_ASSERT(cell_count == cell_count_check);
  14014. }
  14015. // Write the cell count
  14016. data_ctx.write(&cell_count, sizeof(cell_count));
  14017. const auto & hparams = ctx->model.hparams;
  14018. const uint32_t n_layer = hparams.n_layer;
  14019. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14020. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14021. // Write the layer count
  14022. data_ctx.write(&n_layer, sizeof(n_layer));
  14023. // Write n_embd_v_gqa
  14024. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14025. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14026. for (const auto & range : cell_ranges) {
  14027. for (uint32_t i = range.first; i < range.second; ++i) {
  14028. const auto & cell = kv_self.cells[i];
  14029. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14030. }
  14031. }
  14032. // Iterate and write all the keys first, each row is a cell
  14033. // Get whole range at a time
  14034. std::vector<uint8_t> tmp_buf;
  14035. for (int il = 0; il < (int)n_layer; ++il) {
  14036. // Write key type
  14037. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14038. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14039. // Write row size of key
  14040. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14041. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14042. // Read each range of cells of k_size length each into tmp_buf and write out
  14043. for (const auto & range : cell_ranges) {
  14044. const size_t range_size = range.second - range.first;
  14045. tmp_buf.resize(range_size * k_size_row);
  14046. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14047. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14048. }
  14049. }
  14050. // TODO: simplify, reduce copy-paste
  14051. if (!kv_self.v_trans) {
  14052. for (int il = 0; il < (int)n_layer; ++il) {
  14053. // Write value type
  14054. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14055. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14056. // Write row size of value
  14057. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14058. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14059. // Read each range of cells of v_size length each into tmp_buf and write out
  14060. for (const auto & range : cell_ranges) {
  14061. const size_t range_size = range.second - range.first;
  14062. tmp_buf.resize(range_size * v_size_row);
  14063. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14064. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14065. }
  14066. }
  14067. } else {
  14068. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14069. const uint32_t kv_size = kv_self.size;
  14070. for (int il = 0; il < (int)n_layer; ++il) {
  14071. // Write value type
  14072. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14073. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14074. // Write element size
  14075. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14076. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14077. // For each row, we get the element values of each cell
  14078. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14079. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14080. for (const auto & range : cell_ranges) {
  14081. const size_t range_size = range.second - range.first;
  14082. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14083. tmp_buf.resize(range_size * v_size_el);
  14084. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14085. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14086. }
  14087. }
  14088. }
  14089. }
  14090. return data_ctx.get_size_written();
  14091. }
  14092. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14093. llama_data_buffer_context data_ctx(dst);
  14094. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14095. }
  14096. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14097. llama_synchronize(ctx);
  14098. auto & kv_self = ctx->kv_self;
  14099. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14100. // Wipe the slot
  14101. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14102. const uint8_t * inp = src;
  14103. // Read size of size_t
  14104. uint32_t size_t_size;
  14105. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14106. inp += sizeof(size_t_size);
  14107. if (size_t_size != sizeof(size_t)) {
  14108. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14109. return 0;
  14110. }
  14111. // Read the cell count
  14112. uint32_t cell_count;
  14113. memcpy(&cell_count, inp, sizeof(cell_count));
  14114. inp += sizeof(cell_count);
  14115. // Read the layer count
  14116. uint32_t n_layer_ref;
  14117. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14118. inp += sizeof(n_layer_ref);
  14119. // Read n_embd_v_gqa
  14120. uint32_t n_embd_v_gqa_ref;
  14121. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14122. inp += sizeof(n_embd_v_gqa_ref);
  14123. // Sanity check model compatibility
  14124. const auto & hparams = ctx->model.hparams;
  14125. const uint32_t n_layer = hparams.n_layer;
  14126. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14127. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14128. if (n_layer != n_layer_ref) {
  14129. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14130. return 0;
  14131. }
  14132. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14133. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14134. return 0;
  14135. }
  14136. // Allocate the new cells for the slot
  14137. if (cell_count) {
  14138. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14139. batch.n_tokens = cell_count;
  14140. for (uint32_t i = 0; i < cell_count; ++i) {
  14141. llama_pos pos;
  14142. memcpy(&pos, inp, sizeof(pos));
  14143. inp += sizeof(pos);
  14144. batch.pos[i] = pos;
  14145. batch.n_seq_id[i] = 1;
  14146. batch.seq_id[i][0] = dest_seq_id;
  14147. }
  14148. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14149. llama_batch_free(batch);
  14150. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14151. return 0;
  14152. }
  14153. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14154. // Assume that this is one contiguous block of cells
  14155. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14156. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14157. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14158. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14159. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14160. // Cleanup
  14161. llama_batch_free(batch);
  14162. }
  14163. const uint32_t kv_size = kv_self.size;
  14164. const uint32_t kv_head = kv_self.head;
  14165. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14166. for (int il = 0; il < (int)n_layer; ++il) {
  14167. // Read type of key
  14168. int32_t k_type_i_ref;
  14169. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14170. inp += sizeof(k_type_i_ref);
  14171. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14172. if (k_type_i != k_type_i_ref) {
  14173. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14174. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14175. return 0;
  14176. }
  14177. // Read row size of key
  14178. size_t k_size_row_ref;
  14179. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14180. inp += sizeof(k_size_row_ref);
  14181. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14182. if (k_size_row != k_size_row_ref) {
  14183. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14184. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14185. return 0;
  14186. }
  14187. if (cell_count) {
  14188. // Read and set the keys for the whole cell range
  14189. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14190. inp += cell_count * k_size_row;
  14191. }
  14192. }
  14193. // TODO: simplify, reduce copy-paste
  14194. if (!kv_self.v_trans) {
  14195. for (int il = 0; il < (int)n_layer; ++il) {
  14196. // Read type of value
  14197. int32_t v_type_i_ref;
  14198. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14199. inp += sizeof(v_type_i_ref);
  14200. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14201. if (v_type_i != v_type_i_ref) {
  14202. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14203. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14204. return 0;
  14205. }
  14206. // Read row size of value
  14207. size_t v_size_row_ref;
  14208. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14209. inp += sizeof(v_size_row_ref);
  14210. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14211. if (v_size_row != v_size_row_ref) {
  14212. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14213. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14214. return 0;
  14215. }
  14216. if (cell_count) {
  14217. // Read and set the values for the whole cell range
  14218. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14219. inp += cell_count * v_size_row;
  14220. }
  14221. }
  14222. } else {
  14223. // For each layer, read the values for each cell (transposed)
  14224. for (int il = 0; il < (int)n_layer; ++il) {
  14225. // Read type of value
  14226. int32_t v_type_i_ref;
  14227. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14228. inp += sizeof(v_type_i_ref);
  14229. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14230. if (v_type_i != v_type_i_ref) {
  14231. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14232. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14233. return 0;
  14234. }
  14235. // Read element size of value
  14236. size_t v_size_el_ref;
  14237. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14238. inp += sizeof(v_size_el_ref);
  14239. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14240. if (v_size_el != v_size_el_ref) {
  14241. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14242. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14243. return 0;
  14244. }
  14245. if (cell_count) {
  14246. // For each row in the transposed matrix, read the values for the whole cell range
  14247. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14248. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14249. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14250. inp += cell_count * v_size_el;
  14251. }
  14252. }
  14253. }
  14254. }
  14255. const size_t nread = inp - src;
  14256. return nread;
  14257. }
  14258. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14259. llama_file file(filepath, "wb");
  14260. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14261. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14262. // save the prompt
  14263. file.write_u32((uint32_t)n_token_count);
  14264. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14265. // save the context state using stream saving
  14266. llama_data_file_context data_ctx(&file);
  14267. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14268. const size_t res = file.tell();
  14269. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14270. return res;
  14271. }
  14272. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14273. llama_file file(filepath, "rb");
  14274. // version checks
  14275. {
  14276. const uint32_t magic = file.read_u32();
  14277. const uint32_t version = file.read_u32();
  14278. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14279. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14280. return 0;
  14281. }
  14282. }
  14283. // load the prompt
  14284. {
  14285. const uint32_t n_token_count = file.read_u32();
  14286. if (n_token_count > n_token_capacity) {
  14287. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14288. return 0;
  14289. }
  14290. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14291. *n_token_count_out = n_token_count;
  14292. }
  14293. // restore the context state
  14294. {
  14295. const size_t state_size = file.size - file.tell();
  14296. std::vector<uint8_t> state_data(state_size);
  14297. file.read_raw(state_data.data(), state_size);
  14298. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14299. if (!nread) {
  14300. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14301. return 0;
  14302. }
  14303. GGML_ASSERT(nread <= state_size);
  14304. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14305. }
  14306. return file.tell();
  14307. }
  14308. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14309. try {
  14310. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14311. } catch (const std::exception & err) {
  14312. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14313. return 0;
  14314. }
  14315. }
  14316. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14317. try {
  14318. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14319. } catch (const std::exception & err) {
  14320. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14321. return 0;
  14322. }
  14323. }
  14324. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14325. ctx->cparams.n_threads = n_threads;
  14326. ctx->cparams.n_threads_batch = n_threads_batch;
  14327. }
  14328. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14329. ctx->abort_callback = abort_callback;
  14330. ctx->abort_callback_data = abort_callback_data;
  14331. }
  14332. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14333. ctx->cparams.causal_attn = causal_attn;
  14334. }
  14335. struct llama_batch llama_batch_get_one(
  14336. llama_token * tokens,
  14337. int32_t n_tokens,
  14338. llama_pos pos_0,
  14339. llama_seq_id seq_id) {
  14340. return {
  14341. /*n_tokens =*/ n_tokens,
  14342. /*tokens =*/ tokens,
  14343. /*embd =*/ nullptr,
  14344. /*pos =*/ nullptr,
  14345. /*n_seq_id =*/ nullptr,
  14346. /*seq_id =*/ nullptr,
  14347. /*logits =*/ nullptr,
  14348. /*all_pos_0 =*/ pos_0,
  14349. /*all_pos_1 =*/ 1,
  14350. /*all_seq_id =*/ seq_id,
  14351. };
  14352. }
  14353. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14354. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14355. if (embd) {
  14356. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14357. } else {
  14358. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14359. }
  14360. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14361. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14362. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14363. for (int i = 0; i < n_tokens_alloc; ++i) {
  14364. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14365. }
  14366. batch.seq_id[n_tokens_alloc] = nullptr;
  14367. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14368. return batch;
  14369. }
  14370. void llama_batch_free(struct llama_batch batch) {
  14371. if (batch.token) free(batch.token);
  14372. if (batch.embd) free(batch.embd);
  14373. if (batch.pos) free(batch.pos);
  14374. if (batch.n_seq_id) free(batch.n_seq_id);
  14375. if (batch.seq_id) {
  14376. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14377. free(batch.seq_id[i]);
  14378. }
  14379. free(batch.seq_id);
  14380. }
  14381. if (batch.logits) free(batch.logits);
  14382. }
  14383. int32_t llama_decode(
  14384. struct llama_context * ctx,
  14385. struct llama_batch batch) {
  14386. const int ret = llama_decode_internal(*ctx, batch);
  14387. if (ret < 0) {
  14388. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14389. }
  14390. return ret;
  14391. }
  14392. void llama_synchronize(struct llama_context * ctx) {
  14393. ggml_backend_sched_synchronize(ctx->sched);
  14394. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14395. // the stats will be added to the prompt evaluation stats
  14396. // this should only happen when using batch size 1 to evaluate a batch
  14397. // add the evaluation to the stats
  14398. if (ctx->n_queued_tokens == 1) {
  14399. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14400. ctx->n_eval++;
  14401. } else if (ctx->n_queued_tokens > 1) {
  14402. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14403. ctx->n_p_eval += ctx->n_queued_tokens;
  14404. }
  14405. // get a more accurate load time, upon first eval
  14406. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14407. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14408. ctx->has_evaluated_once = true;
  14409. }
  14410. ctx->n_queued_tokens = 0;
  14411. ctx->t_compute_start_us = 0;
  14412. }
  14413. float * llama_get_logits(struct llama_context * ctx) {
  14414. llama_synchronize(ctx);
  14415. return ctx->logits;
  14416. }
  14417. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14418. int32_t j = -1;
  14419. llama_synchronize(ctx);
  14420. try {
  14421. if (ctx->logits == nullptr) {
  14422. throw std::runtime_error("no logits");
  14423. }
  14424. if (i < 0) {
  14425. j = ctx->n_outputs + i;
  14426. if (j < 0) {
  14427. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14428. }
  14429. } else if ((size_t) i >= ctx->output_ids.size()) {
  14430. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14431. } else {
  14432. j = ctx->output_ids[i];
  14433. }
  14434. if (j < 0) {
  14435. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14436. }
  14437. if (j >= ctx->n_outputs) {
  14438. // This should not happen
  14439. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14440. }
  14441. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14442. } catch (const std::exception & err) {
  14443. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14444. #ifndef NDEBUG
  14445. GGML_ASSERT(false);
  14446. #endif
  14447. return nullptr;
  14448. }
  14449. }
  14450. float * llama_get_embeddings(struct llama_context * ctx) {
  14451. llama_synchronize(ctx);
  14452. return ctx->embd;
  14453. }
  14454. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14455. int32_t j = -1;
  14456. llama_synchronize(ctx);
  14457. try {
  14458. if (ctx->embd == nullptr) {
  14459. throw std::runtime_error("no embeddings");
  14460. }
  14461. if (i < 0) {
  14462. j = ctx->n_outputs + i;
  14463. if (j < 0) {
  14464. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14465. }
  14466. } else if ((size_t) i >= ctx->output_ids.size()) {
  14467. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14468. } else {
  14469. j = ctx->output_ids[i];
  14470. }
  14471. if (j < 0) {
  14472. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14473. }
  14474. if (j >= ctx->n_outputs) {
  14475. // This should not happen
  14476. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14477. }
  14478. return ctx->embd + j*ctx->model.hparams.n_embd;
  14479. } catch (const std::exception & err) {
  14480. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14481. #ifndef NDEBUG
  14482. GGML_ASSERT(false);
  14483. #endif
  14484. return nullptr;
  14485. }
  14486. }
  14487. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14488. llama_synchronize(ctx);
  14489. auto it = ctx->embd_seq.find(seq_id);
  14490. if (it == ctx->embd_seq.end()) {
  14491. return nullptr;
  14492. }
  14493. return it->second.data();
  14494. }
  14495. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14496. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14497. return model->vocab.id_to_token[token].text.c_str();
  14498. }
  14499. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14500. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14501. return model->vocab.id_to_token[token].score;
  14502. }
  14503. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14504. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14505. return model->vocab.id_to_token[token].type;
  14506. }
  14507. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14508. return token != -1 && (
  14509. token == llama_token_eos(model) ||
  14510. token == llama_token_eot(model)
  14511. );
  14512. }
  14513. llama_token llama_token_bos(const struct llama_model * model) {
  14514. return model->vocab.special_bos_id;
  14515. }
  14516. llama_token llama_token_eos(const struct llama_model * model) {
  14517. return model->vocab.special_eos_id;
  14518. }
  14519. llama_token llama_token_cls(const struct llama_model * model) {
  14520. return model->vocab.special_cls_id;
  14521. }
  14522. llama_token llama_token_sep(const struct llama_model * model) {
  14523. return model->vocab.special_sep_id;
  14524. }
  14525. llama_token llama_token_nl(const struct llama_model * model) {
  14526. return model->vocab.linefeed_id;
  14527. }
  14528. int32_t llama_add_bos_token(const struct llama_model * model) {
  14529. return model->vocab.special_add_bos;
  14530. }
  14531. int32_t llama_add_eos_token(const struct llama_model * model) {
  14532. return model->vocab.special_add_eos;
  14533. }
  14534. llama_token llama_token_prefix(const struct llama_model * model) {
  14535. return model->vocab.special_prefix_id;
  14536. }
  14537. llama_token llama_token_middle(const struct llama_model * model) {
  14538. return model->vocab.special_middle_id;
  14539. }
  14540. llama_token llama_token_suffix(const struct llama_model * model) {
  14541. return model->vocab.special_suffix_id;
  14542. }
  14543. llama_token llama_token_eot(const struct llama_model * model) {
  14544. return model->vocab.special_eot_id;
  14545. }
  14546. int32_t llama_tokenize(
  14547. const struct llama_model * model,
  14548. const char * text,
  14549. int32_t text_len,
  14550. llama_token * tokens,
  14551. int32_t n_tokens_max,
  14552. bool add_special,
  14553. bool parse_special) {
  14554. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14555. if (n_tokens_max < (int) res.size()) {
  14556. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14557. return -((int) res.size());
  14558. }
  14559. for (size_t i = 0; i < res.size(); i++) {
  14560. tokens[i] = res[i];
  14561. }
  14562. return res.size();
  14563. }
  14564. static std::string llama_decode_text(const std::string & text) {
  14565. std::string decoded_text;
  14566. const auto cpts = unicode_cpts_from_utf8(text);
  14567. for (const auto cpt : cpts) {
  14568. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14569. }
  14570. return decoded_text;
  14571. }
  14572. // does not write null-terminator to buf
  14573. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14574. if (0 <= token && token < llama_n_vocab(model)) {
  14575. switch (llama_vocab_get_type(model->vocab)) {
  14576. case LLAMA_VOCAB_TYPE_WPM:
  14577. case LLAMA_VOCAB_TYPE_SPM: {
  14578. // NOTE: we accept all unsupported token types,
  14579. // suppressing them like CONTROL tokens.
  14580. if (llama_is_normal_token(model->vocab, token)) {
  14581. std::string result = model->vocab.id_to_token[token].text;
  14582. llama_unescape_whitespace(result);
  14583. if (length < (int) result.length()) {
  14584. return -(int) result.length();
  14585. }
  14586. memcpy(buf, result.c_str(), result.length());
  14587. return result.length();
  14588. } else if (
  14589. (llama_is_user_defined_token(model->vocab, token)) ||
  14590. (llama_is_control_token (model->vocab, token) && special)) {
  14591. std::string result = model->vocab.id_to_token[token].text;
  14592. if (length < (int) result.length()) {
  14593. return -(int) result.length();
  14594. }
  14595. memcpy(buf, result.c_str(), result.length());
  14596. return result.length();
  14597. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14598. if (length < 3) {
  14599. return -3;
  14600. }
  14601. memcpy(buf, "\xe2\x96\x85", 3);
  14602. return 3;
  14603. } else if (llama_is_byte_token(model->vocab, token)) {
  14604. if (length < 1) {
  14605. return -1;
  14606. }
  14607. buf[0] = llama_token_to_byte(model->vocab, token);
  14608. return 1;
  14609. }
  14610. break;
  14611. }
  14612. case LLAMA_VOCAB_TYPE_BPE: {
  14613. // NOTE: we accept all unsupported token types,
  14614. // suppressing them like CONTROL tokens.
  14615. if (llama_is_normal_token(model->vocab, token)) {
  14616. std::string result = model->vocab.id_to_token[token].text;
  14617. result = llama_decode_text(result);
  14618. if (length < (int) result.length()) {
  14619. return -(int) result.length();
  14620. }
  14621. memcpy(buf, result.c_str(), result.length());
  14622. return result.length();
  14623. } else if (
  14624. (llama_is_user_defined_token(model->vocab, token)) ||
  14625. (llama_is_control_token (model->vocab, token) && special)) {
  14626. std::string result = model->vocab.id_to_token[token].text;
  14627. if (length < (int) result.length()) {
  14628. return -(int) result.length();
  14629. }
  14630. memcpy(buf, result.c_str(), result.length());
  14631. return result.length();
  14632. }
  14633. break;
  14634. }
  14635. default:
  14636. GGML_ASSERT(false);
  14637. }
  14638. }
  14639. return 0;
  14640. }
  14641. // trim whitespace from the beginning and end of a string
  14642. static std::string trim(const std::string & str) {
  14643. size_t start = 0;
  14644. size_t end = str.size();
  14645. while (start < end && isspace(str[start])) {
  14646. start += 1;
  14647. }
  14648. while (end > start && isspace(str[end - 1])) {
  14649. end -= 1;
  14650. }
  14651. return str.substr(start, end - start);
  14652. }
  14653. // Simple version of "llama_apply_chat_template" that only works with strings
  14654. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14655. static int32_t llama_chat_apply_template_internal(
  14656. const std::string & tmpl,
  14657. const std::vector<const llama_chat_message *> & chat,
  14658. std::string & dest, bool add_ass) {
  14659. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14660. std::stringstream ss;
  14661. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14662. // chatml template
  14663. for (auto message : chat) {
  14664. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14665. }
  14666. if (add_ass) {
  14667. ss << "<|im_start|>assistant\n";
  14668. }
  14669. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14670. // llama2 template and its variants
  14671. // [variant] support system message
  14672. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14673. // [variant] space before + after response
  14674. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14675. // [variant] add BOS inside history
  14676. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14677. // [variant] trim spaces from the input message
  14678. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14679. // construct the prompt
  14680. bool is_inside_turn = true; // skip BOS at the beginning
  14681. ss << "[INST] ";
  14682. for (auto message : chat) {
  14683. std::string content = strip_message ? trim(message->content) : message->content;
  14684. std::string role(message->role);
  14685. if (!is_inside_turn) {
  14686. is_inside_turn = true;
  14687. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14688. }
  14689. if (role == "system") {
  14690. if (support_system_message) {
  14691. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14692. } else {
  14693. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14694. ss << content << "\n";
  14695. }
  14696. } else if (role == "user") {
  14697. ss << content << " [/INST]";
  14698. } else {
  14699. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14700. is_inside_turn = false;
  14701. }
  14702. }
  14703. // llama2 templates seem to not care about "add_generation_prompt"
  14704. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14705. // zephyr template
  14706. for (auto message : chat) {
  14707. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14708. }
  14709. if (add_ass) {
  14710. ss << "<|assistant|>\n";
  14711. }
  14712. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14713. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14714. for (auto message : chat) {
  14715. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14716. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14717. }
  14718. if (add_ass) {
  14719. ss << "<s>assistant\n";
  14720. }
  14721. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14722. // google/gemma-7b-it
  14723. std::string system_prompt = "";
  14724. for (auto message : chat) {
  14725. std::string role(message->role);
  14726. if (role == "system") {
  14727. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14728. system_prompt = trim(message->content);
  14729. continue;
  14730. }
  14731. // in gemma, "assistant" is "model"
  14732. role = role == "assistant" ? "model" : message->role;
  14733. ss << "<start_of_turn>" << role << "\n";
  14734. if (!system_prompt.empty() && role != "model") {
  14735. ss << system_prompt << "\n\n";
  14736. system_prompt = "";
  14737. }
  14738. ss << trim(message->content) << "<end_of_turn>\n";
  14739. }
  14740. if (add_ass) {
  14741. ss << "<start_of_turn>model\n";
  14742. }
  14743. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14744. // OrionStarAI/Orion-14B-Chat
  14745. std::string system_prompt = "";
  14746. for (auto message : chat) {
  14747. std::string role(message->role);
  14748. if (role == "system") {
  14749. // there is no system message support, we will merge it with user prompt
  14750. system_prompt = message->content;
  14751. continue;
  14752. } else if (role == "user") {
  14753. ss << "Human: ";
  14754. if (!system_prompt.empty()) {
  14755. ss << system_prompt << "\n\n";
  14756. system_prompt = "";
  14757. }
  14758. ss << message->content << "\n\nAssistant: </s>";
  14759. } else {
  14760. ss << message->content << "</s>";
  14761. }
  14762. }
  14763. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14764. // openchat/openchat-3.5-0106,
  14765. for (auto message : chat) {
  14766. std::string role(message->role);
  14767. if (role == "system") {
  14768. ss << message->content << "<|end_of_turn|>";
  14769. } else {
  14770. role[0] = toupper(role[0]);
  14771. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14772. }
  14773. }
  14774. if (add_ass) {
  14775. ss << "GPT4 Correct Assistant:";
  14776. }
  14777. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14778. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14779. for (auto message : chat) {
  14780. std::string role(message->role);
  14781. if (role == "system") {
  14782. // Orca-Vicuna variant uses a system prefix
  14783. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14784. ss << "SYSTEM: " << message->content << "\n";
  14785. } else {
  14786. ss << message->content << "\n\n";
  14787. }
  14788. } else if (role == "user") {
  14789. ss << "USER: " << message->content << "\n";
  14790. } else if (role == "assistant") {
  14791. ss << "ASSISTANT: " << message->content << "</s>\n";
  14792. }
  14793. }
  14794. if (add_ass) {
  14795. ss << "ASSISTANT:";
  14796. }
  14797. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14798. // deepseek-ai/deepseek-coder-33b-instruct
  14799. for (auto message : chat) {
  14800. std::string role(message->role);
  14801. if (role == "system") {
  14802. ss << message->content;
  14803. } else if (role == "user") {
  14804. ss << "### Instruction:\n" << message->content << "\n";
  14805. } else if (role == "assistant") {
  14806. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14807. }
  14808. }
  14809. if (add_ass) {
  14810. ss << "### Response:\n";
  14811. }
  14812. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14813. // CohereForAI/c4ai-command-r-plus
  14814. for (auto message : chat) {
  14815. std::string role(message->role);
  14816. if (role == "system") {
  14817. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14818. } else if (role == "user") {
  14819. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14820. } else if (role == "assistant") {
  14821. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14822. }
  14823. }
  14824. if (add_ass) {
  14825. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14826. }
  14827. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14828. // Llama 3
  14829. for (auto message : chat) {
  14830. std::string role(message->role);
  14831. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14832. }
  14833. if (add_ass) {
  14834. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14835. }
  14836. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14837. // Phi 3
  14838. for (auto message : chat) {
  14839. std::string role(message->role);
  14840. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14841. }
  14842. if (add_ass) {
  14843. ss << "<|assistant|>\n";
  14844. }
  14845. } else {
  14846. // template not supported
  14847. return -1;
  14848. }
  14849. dest = ss.str();
  14850. return dest.size();
  14851. }
  14852. LLAMA_API int32_t llama_chat_apply_template(
  14853. const struct llama_model * model,
  14854. const char * tmpl,
  14855. const struct llama_chat_message * chat,
  14856. size_t n_msg,
  14857. bool add_ass,
  14858. char * buf,
  14859. int32_t length) {
  14860. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14861. if (tmpl == nullptr) {
  14862. GGML_ASSERT(model != nullptr);
  14863. // load template from model
  14864. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14865. std::string template_key = "tokenizer.chat_template";
  14866. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14867. if (res < 0) {
  14868. // worst case: there is no information about template, we will use chatml by default
  14869. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14870. } else {
  14871. curr_tmpl = std::string(model_template.data(), model_template.size());
  14872. }
  14873. }
  14874. // format the chat to string
  14875. std::vector<const llama_chat_message *> chat_vec;
  14876. chat_vec.resize(n_msg);
  14877. for (size_t i = 0; i < n_msg; i++) {
  14878. chat_vec[i] = &chat[i];
  14879. }
  14880. std::string formatted_chat;
  14881. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14882. if (res < 0) {
  14883. return res;
  14884. }
  14885. if (buf && length > 0) {
  14886. strncpy(buf, formatted_chat.c_str(), length);
  14887. }
  14888. return res;
  14889. }
  14890. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14891. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14892. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14893. return strlen(split_path);
  14894. }
  14895. return 0;
  14896. }
  14897. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14898. std::string str_split_path(split_path);
  14899. char postfix[32];
  14900. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14901. std::string str_postfix(postfix);
  14902. // check if dest ends with postfix
  14903. int size_prefix = str_split_path.size() - str_postfix.size();
  14904. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14905. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14906. return size_prefix;
  14907. }
  14908. return 0;
  14909. }
  14910. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14911. struct llama_timings result = {
  14912. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14913. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14914. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14915. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14916. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14917. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14918. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14919. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  14920. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14921. };
  14922. return result;
  14923. }
  14924. void llama_print_timings(struct llama_context * ctx) {
  14925. const llama_timings timings = llama_get_timings(ctx);
  14926. LLAMA_LOG_INFO("\n");
  14927. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14928. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14929. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14930. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14931. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14932. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14933. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14934. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14935. }
  14936. void llama_reset_timings(struct llama_context * ctx) {
  14937. ctx->t_start_us = ggml_time_us();
  14938. ctx->t_sample_us = ctx->n_sample = 0;
  14939. ctx->t_eval_us = ctx->n_eval = 0;
  14940. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14941. }
  14942. const char * llama_print_system_info(void) {
  14943. static std::string s;
  14944. s = "";
  14945. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14946. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14947. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14948. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14949. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14950. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14951. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  14952. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14953. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14954. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14955. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14956. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14957. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14958. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14959. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14960. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14961. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14962. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14963. #ifdef GGML_USE_LLAMAFILE
  14964. s += "LLAMAFILE = 1 | ";
  14965. #else
  14966. s += "LLAMAFILE = 0 | ";
  14967. #endif
  14968. return s.c_str();
  14969. }
  14970. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14971. fprintf(stream, "\n");
  14972. fprintf(stream, "###########\n");
  14973. fprintf(stream, "# Timings #\n");
  14974. fprintf(stream, "###########\n");
  14975. fprintf(stream, "\n");
  14976. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14977. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14978. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14979. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14980. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14981. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14982. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14983. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14984. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14985. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14986. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14987. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14988. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14989. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14990. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14991. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14992. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14993. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14994. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14995. }
  14996. // For internal test use
  14997. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14998. struct llama_context * ctx
  14999. ) {
  15000. return ctx->model.tensors_by_name;
  15001. }
  15002. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15003. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15004. g_state.log_callback_user_data = user_data;
  15005. #ifdef GGML_USE_METAL
  15006. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15007. #elif defined(GGML_USE_CUDA)
  15008. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15009. #endif
  15010. }
  15011. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15012. va_list args_copy;
  15013. va_copy(args_copy, args);
  15014. char buffer[128];
  15015. int len = vsnprintf(buffer, 128, format, args);
  15016. if (len < 128) {
  15017. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15018. } else {
  15019. char* buffer2 = new char[len+1];
  15020. vsnprintf(buffer2, len+1, format, args_copy);
  15021. buffer2[len] = 0;
  15022. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15023. delete[] buffer2;
  15024. }
  15025. va_end(args_copy);
  15026. }
  15027. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15028. va_list args;
  15029. va_start(args, format);
  15030. llama_log_internal_v(level, format, args);
  15031. va_end(args);
  15032. }
  15033. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15034. (void) level;
  15035. (void) user_data;
  15036. fputs(text, stderr);
  15037. fflush(stderr);
  15038. }