ggml.c 723 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. .blck_size = QK_K,
  790. .type_size = sizeof(block_iq4_xs),
  791. .is_quantized = true,
  792. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  793. .from_float = quantize_row_iq4_xs,
  794. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  795. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  796. .vec_dot_type = GGML_TYPE_Q8_K,
  797. .nrows = 1,
  798. },
  799. [GGML_TYPE_Q8_K] = {
  800. .type_name = "q8_K",
  801. .blck_size = QK_K,
  802. .type_size = sizeof(block_q8_K),
  803. .is_quantized = true,
  804. .from_float = quantize_row_q8_K,
  805. },
  806. [GGML_TYPE_BF16] = {
  807. .type_name = "bf16",
  808. .blck_size = 1,
  809. .type_size = sizeof(ggml_bf16_t),
  810. .is_quantized = false,
  811. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  812. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  813. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  814. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  815. .vec_dot_type = GGML_TYPE_BF16,
  816. .nrows = 1,
  817. }
  818. };
  819. // For internal test use
  820. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  821. GGML_ASSERT(type < GGML_TYPE_COUNT);
  822. return type_traits[type];
  823. }
  824. //
  825. // simd mappings
  826. //
  827. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  828. // we then implement the fundamental computation operations below using only these macros
  829. // adding support for new architectures requires to define the corresponding SIMD macros
  830. //
  831. // GGML_F32_STEP / GGML_F16_STEP
  832. // number of elements to process in a single step
  833. //
  834. // GGML_F32_EPR / GGML_F16_EPR
  835. // number of elements to fit in a single register
  836. //
  837. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  838. #define GGML_SIMD
  839. // F32 NEON
  840. #define GGML_F32_STEP 16
  841. #define GGML_F32_EPR 4
  842. #define GGML_F32x4 float32x4_t
  843. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32x4_LOAD vld1q_f32
  846. #define GGML_F32x4_STORE vst1q_f32
  847. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32x4_ADD vaddq_f32
  849. #define GGML_F32x4_MUL vmulq_f32
  850. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  851. #define GGML_F32x4_REDUCE(res, x) \
  852. { \
  853. int offset = GGML_F32_ARR >> 1; \
  854. for (int i = 0; i < offset; ++i) { \
  855. x[i] = vaddq_f32(x[i], x[offset+i]); \
  856. } \
  857. offset >>= 1; \
  858. for (int i = 0; i < offset; ++i) { \
  859. x[i] = vaddq_f32(x[i], x[offset+i]); \
  860. } \
  861. offset >>= 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  866. }
  867. #define GGML_F32_VEC GGML_F32x4
  868. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  869. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  870. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  871. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  872. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  873. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  874. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  875. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  876. // F16 NEON
  877. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  878. #define GGML_F16_STEP 32
  879. #define GGML_F16_EPR 8
  880. #define GGML_F16x8 float16x8_t
  881. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  882. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  883. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  884. #define GGML_F16x8_STORE vst1q_f16
  885. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  886. #define GGML_F16x8_ADD vaddq_f16
  887. #define GGML_F16x8_MUL vmulq_f16
  888. #define GGML_F16x8_REDUCE(res, x) \
  889. do { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = vaddq_f16(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = vaddq_f16(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  903. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  904. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  905. } while (0)
  906. #define GGML_F16_VEC GGML_F16x8
  907. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  908. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  909. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  910. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  911. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  912. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  913. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  914. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  915. #else
  916. // if FP16 vector arithmetic is not supported, we use FP32 instead
  917. // and take advantage of the vcvt_ functions to convert to/from FP16
  918. #define GGML_F16_STEP 16
  919. #define GGML_F16_EPR 4
  920. #define GGML_F32Cx4 float32x4_t
  921. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  922. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  923. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  924. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  925. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  926. #define GGML_F32Cx4_ADD vaddq_f32
  927. #define GGML_F32Cx4_MUL vmulq_f32
  928. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  929. #define GGML_F16_VEC GGML_F32Cx4
  930. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  931. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  932. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  933. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  934. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  935. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  936. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  937. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  938. #endif
  939. #elif defined(__AVX512F__)
  940. #define GGML_SIMD
  941. // F32 AVX512
  942. #define GGML_F32_STEP 64
  943. #define GGML_F32_EPR 16
  944. #define GGML_F32x16 __m512
  945. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  946. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  947. #define GGML_F32x16_LOAD _mm512_loadu_ps
  948. #define GGML_F32x16_STORE _mm512_storeu_ps
  949. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  950. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  951. #define GGML_F32x16_ADD _mm512_add_ps
  952. #define GGML_F32x16_MUL _mm512_mul_ps
  953. #define GGML_F32x16_REDUCE(res, x) \
  954. do { \
  955. int offset = GGML_F32_ARR >> 1; \
  956. for (int i = 0; i < offset; ++i) { \
  957. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  958. } \
  959. offset >>= 1; \
  960. for (int i = 0; i < offset; ++i) { \
  961. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  962. } \
  963. offset >>= 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. res = _mm512_reduce_add_ps(x[0]); \
  968. } while (0)
  969. // TODO: is this optimal ?
  970. #define GGML_F32_VEC GGML_F32x16
  971. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  972. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  973. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  974. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  975. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  976. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  977. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  978. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  979. // F16 AVX512
  980. // F16 AVX
  981. #define GGML_F16_STEP 64
  982. #define GGML_F16_EPR 16
  983. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  984. #define GGML_F32Cx16 __m512
  985. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  986. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  987. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  988. // so F16C guard isn't required
  989. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  990. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  991. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  992. #define GGML_F32Cx16_ADD _mm512_add_ps
  993. #define GGML_F32Cx16_MUL _mm512_mul_ps
  994. #define GGML_F32Cx16_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. res = _mm512_reduce_add_ps(x[0]); \
  1009. } while (0)
  1010. #define GGML_F16_VEC GGML_F32Cx16
  1011. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1012. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1013. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1014. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1015. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1016. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1017. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1018. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1019. #elif defined(__AVX__)
  1020. #define GGML_SIMD
  1021. // F32 AVX
  1022. #define GGML_F32_STEP 32
  1023. #define GGML_F32_EPR 8
  1024. #define GGML_F32x8 __m256
  1025. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1026. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1027. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1028. #define GGML_F32x8_STORE _mm256_storeu_ps
  1029. #if defined(__FMA__)
  1030. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1031. #else
  1032. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1033. #endif
  1034. #define GGML_F32x8_ADD _mm256_add_ps
  1035. #define GGML_F32x8_MUL _mm256_mul_ps
  1036. #define GGML_F32x8_REDUCE(res, x) \
  1037. do { \
  1038. int offset = GGML_F32_ARR >> 1; \
  1039. for (int i = 0; i < offset; ++i) { \
  1040. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1041. } \
  1042. offset >>= 1; \
  1043. for (int i = 0; i < offset; ++i) { \
  1044. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1045. } \
  1046. offset >>= 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1051. _mm256_extractf128_ps(x[0], 1)); \
  1052. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1053. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1054. } while (0)
  1055. // TODO: is this optimal ?
  1056. #define GGML_F32_VEC GGML_F32x8
  1057. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1065. // F16 AVX
  1066. #define GGML_F16_STEP 32
  1067. #define GGML_F16_EPR 8
  1068. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1069. #define GGML_F32Cx8 __m256
  1070. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1071. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1072. #if defined(__F16C__)
  1073. // the _mm256_cvt intrinsics require F16C
  1074. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1075. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1076. #else
  1077. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1078. float tmp[8];
  1079. for (int i = 0; i < 8; i++) {
  1080. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1081. }
  1082. return _mm256_loadu_ps(tmp);
  1083. }
  1084. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1085. float arr[8];
  1086. _mm256_storeu_ps(arr, y);
  1087. for (int i = 0; i < 8; i++)
  1088. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1089. }
  1090. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1091. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1092. #endif
  1093. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1094. #define GGML_F32Cx8_ADD _mm256_add_ps
  1095. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1096. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1097. #define GGML_F16_VEC GGML_F32Cx8
  1098. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1099. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1100. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1101. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1102. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1103. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1104. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1105. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1106. #elif defined(__POWER9_VECTOR__)
  1107. #define GGML_SIMD
  1108. // F32 POWER9
  1109. #define GGML_F32_STEP 32
  1110. #define GGML_F32_EPR 4
  1111. #define GGML_F32x4 vector float
  1112. #define GGML_F32x4_ZERO 0.0f
  1113. #define GGML_F32x4_SET1 vec_splats
  1114. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1115. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1116. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1117. #define GGML_F32x4_ADD vec_add
  1118. #define GGML_F32x4_MUL vec_mul
  1119. #define GGML_F32x4_REDUCE(res, x) \
  1120. { \
  1121. int offset = GGML_F32_ARR >> 1; \
  1122. for (int i = 0; i < offset; ++i) { \
  1123. x[i] = vec_add(x[i], x[offset+i]); \
  1124. } \
  1125. offset >>= 1; \
  1126. for (int i = 0; i < offset; ++i) { \
  1127. x[i] = vec_add(x[i], x[offset+i]); \
  1128. } \
  1129. offset >>= 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. res = vec_extract(x[0], 0) + \
  1134. vec_extract(x[0], 1) + \
  1135. vec_extract(x[0], 2) + \
  1136. vec_extract(x[0], 3); \
  1137. }
  1138. #define GGML_F32_VEC GGML_F32x4
  1139. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1140. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1141. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1142. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1143. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1144. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1145. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1146. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1147. // F16 POWER9
  1148. #define GGML_F16_STEP GGML_F32_STEP
  1149. #define GGML_F16_EPR GGML_F32_EPR
  1150. #define GGML_F16_VEC GGML_F32x4
  1151. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1154. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1155. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1156. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1157. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1158. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1159. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1160. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1161. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1162. #define GGML_F16_VEC_STORE(p, r, i) \
  1163. if (i & 0x1) \
  1164. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1165. r[i - GGML_ENDIAN_BYTE(0)]), \
  1166. 0, p - GGML_F16_EPR)
  1167. #elif defined(__wasm_simd128__)
  1168. #define GGML_SIMD
  1169. // F32 WASM
  1170. #define GGML_F32_STEP 16
  1171. #define GGML_F32_EPR 4
  1172. #define GGML_F32x4 v128_t
  1173. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1174. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1175. #define GGML_F32x4_LOAD wasm_v128_load
  1176. #define GGML_F32x4_STORE wasm_v128_store
  1177. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1178. #define GGML_F32x4_ADD wasm_f32x4_add
  1179. #define GGML_F32x4_MUL wasm_f32x4_mul
  1180. #define GGML_F32x4_REDUCE(res, x) \
  1181. { \
  1182. int offset = GGML_F32_ARR >> 1; \
  1183. for (int i = 0; i < offset; ++i) { \
  1184. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1185. } \
  1186. offset >>= 1; \
  1187. for (int i = 0; i < offset; ++i) { \
  1188. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1189. } \
  1190. offset >>= 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1195. wasm_f32x4_extract_lane(x[0], 1) + \
  1196. wasm_f32x4_extract_lane(x[0], 2) + \
  1197. wasm_f32x4_extract_lane(x[0], 3); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 WASM
  1209. #define GGML_F16_STEP 16
  1210. #define GGML_F16_EPR 4
  1211. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1212. float tmp[4];
  1213. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1214. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1215. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1216. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1217. return wasm_v128_load(tmp);
  1218. }
  1219. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1220. float tmp[4];
  1221. wasm_v128_store(tmp, x);
  1222. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1223. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1224. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1225. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1226. }
  1227. #define GGML_F16x4 v128_t
  1228. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1229. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1230. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1231. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1232. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1233. #define GGML_F16x4_ADD wasm_f32x4_add
  1234. #define GGML_F16x4_MUL wasm_f32x4_mul
  1235. #define GGML_F16x4_REDUCE(res, x) \
  1236. { \
  1237. int offset = GGML_F16_ARR >> 1; \
  1238. for (int i = 0; i < offset; ++i) { \
  1239. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1240. } \
  1241. offset >>= 1; \
  1242. for (int i = 0; i < offset; ++i) { \
  1243. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1244. } \
  1245. offset >>= 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1250. wasm_f32x4_extract_lane(x[0], 1) + \
  1251. wasm_f32x4_extract_lane(x[0], 2) + \
  1252. wasm_f32x4_extract_lane(x[0], 3); \
  1253. }
  1254. #define GGML_F16_VEC GGML_F16x4
  1255. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1256. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1257. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1258. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1259. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1260. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1261. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1262. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1263. #elif defined(__SSE3__)
  1264. #define GGML_SIMD
  1265. // F32 SSE
  1266. #define GGML_F32_STEP 32
  1267. #define GGML_F32_EPR 4
  1268. #define GGML_F32x4 __m128
  1269. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1270. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1271. #define GGML_F32x4_LOAD _mm_loadu_ps
  1272. #define GGML_F32x4_STORE _mm_storeu_ps
  1273. #if defined(__FMA__)
  1274. // TODO: Does this work?
  1275. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1276. #else
  1277. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1278. #endif
  1279. #define GGML_F32x4_ADD _mm_add_ps
  1280. #define GGML_F32x4_MUL _mm_mul_ps
  1281. #define GGML_F32x4_REDUCE(res, x) \
  1282. { \
  1283. int offset = GGML_F32_ARR >> 1; \
  1284. for (int i = 0; i < offset; ++i) { \
  1285. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1286. } \
  1287. offset >>= 1; \
  1288. for (int i = 0; i < offset; ++i) { \
  1289. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1290. } \
  1291. offset >>= 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1296. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1297. }
  1298. // TODO: is this optimal ?
  1299. #define GGML_F32_VEC GGML_F32x4
  1300. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1301. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1302. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1303. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1304. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1305. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1306. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1307. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1308. // F16 SSE
  1309. #define GGML_F16_STEP 32
  1310. #define GGML_F16_EPR 4
  1311. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1312. float tmp[4];
  1313. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1314. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1315. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1316. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1317. return _mm_loadu_ps(tmp);
  1318. }
  1319. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1320. float arr[4];
  1321. _mm_storeu_ps(arr, y);
  1322. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1323. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1324. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1325. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1326. }
  1327. #define GGML_F32Cx4 __m128
  1328. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1329. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1330. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1331. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1332. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1333. #define GGML_F32Cx4_ADD _mm_add_ps
  1334. #define GGML_F32Cx4_MUL _mm_mul_ps
  1335. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1336. #define GGML_F16_VEC GGML_F32Cx4
  1337. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1338. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1339. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1340. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1341. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1342. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1343. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1344. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1345. #elif defined(__loongarch_asx)
  1346. #define GGML_SIMD
  1347. // F32 LASX
  1348. #define GGML_F32_STEP 32
  1349. #define GGML_F32_EPR 8
  1350. #define GGML_F32x8 __m256
  1351. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1352. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1353. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1354. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1355. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1356. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1357. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1358. #define GGML_F32x8_REDUCE(res, x) \
  1359. do { \
  1360. int offset = GGML_F32_ARR >> 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1363. } \
  1364. offset >>= 1; \
  1365. for (int i = 0; i < offset; ++i) { \
  1366. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1367. } \
  1368. offset >>= 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. float *tmp_p = (float *)&x[0]; \
  1373. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1374. } while (0)
  1375. // TODO: is this optimal ?
  1376. #define GGML_F32_VEC GGML_F32x8
  1377. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1378. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1379. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1380. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1381. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1382. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1383. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1384. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1385. // F16 LASX
  1386. #define GGML_F16_STEP 32
  1387. #define GGML_F16_EPR 8
  1388. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1389. #define GGML_F32Cx8 __m256
  1390. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1391. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1392. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1393. float tmp[8];
  1394. for (int i = 0; i < 8; i++) {
  1395. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1396. }
  1397. return (__m256)__lasx_xvld(tmp, 0);
  1398. }
  1399. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1400. float arr[8];
  1401. __lasx_xvst(y, arr, 0);
  1402. for (int i = 0; i < 8; i++) {
  1403. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1404. }
  1405. }
  1406. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1407. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1408. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1409. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1410. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1411. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1412. #define GGML_F16_VEC GGML_F32Cx8
  1413. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1414. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1415. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1416. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1417. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1418. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1419. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1420. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1421. #elif defined(__loongarch_sx)
  1422. #define GGML_SIMD
  1423. // F32 LSX
  1424. #define GGML_F32_STEP 32
  1425. #define GGML_F32_EPR 4
  1426. #define GGML_F32x4 __m128
  1427. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1428. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1429. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1430. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1431. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1432. #define GGML_F32x4_ADD __lsx_vfadd_s
  1433. #define GGML_F32x4_MUL __lsx_vfmul_s
  1434. #define GGML_F32x4_REDUCE(res, x) \
  1435. { \
  1436. int offset = GGML_F32_ARR >> 1; \
  1437. for (int i = 0; i < offset; ++i) { \
  1438. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1439. } \
  1440. offset >>= 1; \
  1441. for (int i = 0; i < offset; ++i) { \
  1442. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1443. } \
  1444. offset >>= 1; \
  1445. for (int i = 0; i < offset; ++i) { \
  1446. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1447. } \
  1448. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1449. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1450. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1451. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1452. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1453. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1454. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1455. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1456. }
  1457. #define GGML_F32_VEC GGML_F32x4
  1458. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1459. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1460. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1461. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1462. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1463. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1464. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1465. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1466. // F16 LSX
  1467. #define GGML_F16_STEP 32
  1468. #define GGML_F16_EPR 4
  1469. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1470. float tmp[4];
  1471. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1472. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1473. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1474. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1475. return __lsx_vld(tmp, 0);
  1476. }
  1477. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1478. float arr[4];
  1479. __lsx_vst(y, arr, 0);
  1480. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1481. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1482. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1483. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1484. }
  1485. #define GGML_F32Cx4 __m128
  1486. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1487. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1488. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1489. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1490. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1491. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1492. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1493. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1494. #define GGML_F16_VEC GGML_F32Cx4
  1495. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1496. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1497. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1498. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1499. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1500. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1501. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1502. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1503. #endif
  1504. // GGML_F32_ARR / GGML_F16_ARR
  1505. // number of registers to use per step
  1506. #ifdef GGML_SIMD
  1507. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1508. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1509. #endif
  1510. //
  1511. // ggml context
  1512. //
  1513. struct ggml_context {
  1514. size_t mem_size;
  1515. void* mem_buffer;
  1516. bool mem_buffer_owned;
  1517. bool no_alloc;
  1518. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1519. int n_objects;
  1520. struct ggml_object* objects_begin;
  1521. struct ggml_object* objects_end;
  1522. struct ggml_scratch scratch;
  1523. struct ggml_scratch scratch_save;
  1524. };
  1525. struct ggml_context_container {
  1526. bool used;
  1527. struct ggml_context context;
  1528. };
  1529. struct ggml_compute_state_shared {
  1530. const struct ggml_cgraph* cgraph;
  1531. const struct ggml_cplan* cplan;
  1532. int64_t perf_node_start_cycles;
  1533. int64_t perf_node_start_time_us;
  1534. int n_threads;
  1535. // synchronization primitives
  1536. atomic_int n_barrier;
  1537. atomic_int n_barrier_passed;
  1538. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1539. void* abort_callback_data;
  1540. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1541. };
  1542. struct ggml_compute_state {
  1543. ggml_thread_t thrd;
  1544. int ith;
  1545. struct ggml_compute_state_shared* shared;
  1546. enum ggml_status ec;
  1547. };
  1548. //
  1549. // fundamental operations
  1550. //
  1551. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1552. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1553. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1554. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1555. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1556. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1557. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1558. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1559. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1560. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1561. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1563. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1564. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1565. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1566. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1567. assert(nrc == 1);
  1568. UNUSED(nrc);
  1569. UNUSED(bx);
  1570. UNUSED(by);
  1571. UNUSED(bs);
  1572. #if defined(GGML_SIMD)
  1573. float sumf = 0.0f;
  1574. const int np = (n & ~(GGML_F32_STEP - 1));
  1575. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1576. GGML_F32_VEC ax[GGML_F32_ARR];
  1577. GGML_F32_VEC ay[GGML_F32_ARR];
  1578. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1579. for (int j = 0; j < GGML_F32_ARR; j++) {
  1580. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1581. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1582. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1583. }
  1584. }
  1585. // reduce sum0..sum3 to sum0
  1586. GGML_F32_VEC_REDUCE(sumf, sum);
  1587. // leftovers
  1588. for (int i = np; i < n; ++i) {
  1589. sumf += x[i]*y[i];
  1590. }
  1591. #else
  1592. // scalar
  1593. ggml_float sumf = 0.0;
  1594. for (int i = 0; i < n; ++i) {
  1595. sumf += (ggml_float)(x[i]*y[i]);
  1596. }
  1597. #endif
  1598. *s = sumf;
  1599. }
  1600. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1601. assert(nrc == 1);
  1602. UNUSED(nrc);
  1603. UNUSED(bx);
  1604. UNUSED(by);
  1605. UNUSED(bs);
  1606. int i = 0;
  1607. ggml_float sumf = 0;
  1608. #if defined(__AVX512BF16__)
  1609. __m512 c1 = _mm512_setzero_ps();
  1610. __m512 c2 = _mm512_setzero_ps();
  1611. for (; i + 64 <= n; i += 64) {
  1612. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1613. m512bh(_mm512_loadu_si512((y + i))));
  1614. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1615. m512bh(_mm512_loadu_si512((y + i + 32))));
  1616. }
  1617. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1618. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1619. #elif defined(__AVX512F__)
  1620. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1621. __m512 c1 = _mm512_setzero_ps();
  1622. __m512 c2 = _mm512_setzero_ps();
  1623. for (; i + 32 <= n; i += 32) {
  1624. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1625. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1626. }
  1627. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1628. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1629. #undef LOAD
  1630. #elif defined(__AVX2__)
  1631. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1632. __m256 c1 = _mm256_setzero_ps();
  1633. __m256 c2 = _mm256_setzero_ps();
  1634. __m256 c3 = _mm256_setzero_ps();
  1635. __m256 c4 = _mm256_setzero_ps();
  1636. for (; i + 32 <= n; i += 32) {
  1637. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1638. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1639. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1640. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1641. }
  1642. __m128 g;
  1643. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1644. _mm256_add_ps(c2, c4));
  1645. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1646. _mm256_castps256_ps128(c1));
  1647. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1648. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1649. sumf += (ggml_float)_mm_cvtss_f32(g);
  1650. #undef LOAD
  1651. #endif
  1652. for (; i < n; ++i) {
  1653. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1654. GGML_BF16_TO_FP32(y[i]));
  1655. }
  1656. *s = sumf;
  1657. }
  1658. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1659. assert(nrc == 1);
  1660. UNUSED(nrc);
  1661. UNUSED(bx);
  1662. UNUSED(by);
  1663. UNUSED(bs);
  1664. ggml_float sumf = 0.0;
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1668. GGML_F16_VEC ax[GGML_F16_ARR];
  1669. GGML_F16_VEC ay[GGML_F16_ARR];
  1670. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1671. for (int j = 0; j < GGML_F16_ARR; j++) {
  1672. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1673. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1674. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1675. }
  1676. }
  1677. // reduce sum0..sum3 to sum0
  1678. GGML_F16_VEC_REDUCE(sumf, sum);
  1679. // leftovers
  1680. for (int i = np; i < n; ++i) {
  1681. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1682. }
  1683. #else
  1684. for (int i = 0; i < n; ++i) {
  1685. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1686. }
  1687. #endif
  1688. *s = sumf;
  1689. }
  1690. // compute GGML_VEC_DOT_UNROLL dot products at once
  1691. // xs - x row stride in bytes
  1692. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1693. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1694. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1695. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1696. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1697. }
  1698. #if defined(GGML_SIMD)
  1699. const int np = (n & ~(GGML_F16_STEP - 1));
  1700. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1701. GGML_F16_VEC ax[GGML_F16_ARR];
  1702. GGML_F16_VEC ay[GGML_F16_ARR];
  1703. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1704. for (int j = 0; j < GGML_F16_ARR; j++) {
  1705. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1706. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1707. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1708. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1709. }
  1710. }
  1711. }
  1712. // reduce sum0..sum3 to sum0
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1715. }
  1716. // leftovers
  1717. for (int i = np; i < n; ++i) {
  1718. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1719. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. }
  1722. #else
  1723. for (int i = 0; i < n; ++i) {
  1724. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1725. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1726. }
  1727. }
  1728. #endif
  1729. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1730. s[i] = sumf[i];
  1731. }
  1732. }
  1733. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1734. #if defined(GGML_SIMD)
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1744. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1745. }
  1746. }
  1747. // leftovers
  1748. for (int i = np; i < n; ++i) {
  1749. y[i] += x[i]*v;
  1750. }
  1751. #else
  1752. // scalar
  1753. for (int i = 0; i < n; ++i) {
  1754. y[i] += x[i]*v;
  1755. }
  1756. #endif
  1757. }
  1758. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1759. #if defined(GGML_SIMD)
  1760. const int np = (n & ~(GGML_F16_STEP - 1));
  1761. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1762. GGML_F16_VEC ax[GGML_F16_ARR];
  1763. GGML_F16_VEC ay[GGML_F16_ARR];
  1764. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1765. for (int j = 0; j < GGML_F16_ARR; j++) {
  1766. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1767. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1768. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1769. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1770. }
  1771. }
  1772. // leftovers
  1773. for (int i = np; i < n; ++i) {
  1774. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1775. }
  1776. #else
  1777. // scalar
  1778. for (int i = 0; i < n; ++i) {
  1779. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1780. }
  1781. #endif
  1782. }
  1783. // xs and vs are byte strides of x and v
  1784. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1785. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1786. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1787. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1788. x[i] = (const float *) ((const char *) xv + i*xs);
  1789. v[i] = (const float *) ((const char *) vv + i*vs);
  1790. }
  1791. #if defined(GGML_SIMD)
  1792. const int np = (n & ~(GGML_F32_STEP - 1));
  1793. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1794. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1795. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1796. }
  1797. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1798. GGML_F32_VEC ay[GGML_F32_ARR];
  1799. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1800. for (int j = 0; j < GGML_F32_ARR; j++) {
  1801. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1804. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1805. }
  1806. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1807. }
  1808. }
  1809. // leftovers
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. for (int i = np; i < n; ++i) {
  1812. y[i] += x[k][i]*v[k][0];
  1813. }
  1814. }
  1815. #else
  1816. // scalar
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = 0; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #endif
  1823. }
  1824. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1825. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1826. #if defined(GGML_USE_ACCELERATE)
  1827. vDSP_vsmul(y, 1, &v, y, 1, n);
  1828. #elif defined(GGML_SIMD)
  1829. const int np = (n & ~(GGML_F32_STEP - 1));
  1830. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1831. GGML_F32_VEC ay[GGML_F32_ARR];
  1832. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1833. for (int j = 0; j < GGML_F32_ARR; j++) {
  1834. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1835. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1836. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1837. }
  1838. }
  1839. // leftovers
  1840. for (int i = np; i < n; ++i) {
  1841. y[i] *= v;
  1842. }
  1843. #else
  1844. // scalar
  1845. for (int i = 0; i < n; ++i) {
  1846. y[i] *= v;
  1847. }
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1851. #if defined(GGML_SIMD)
  1852. const int np = (n & ~(GGML_F16_STEP - 1));
  1853. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1854. GGML_F16_VEC ay[GGML_F16_ARR];
  1855. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1856. for (int j = 0; j < GGML_F16_ARR; j++) {
  1857. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1858. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1859. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1860. }
  1861. }
  1862. // leftovers
  1863. for (int i = np; i < n; ++i) {
  1864. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1865. }
  1866. #else
  1867. // scalar
  1868. for (int i = 0; i < n; ++i) {
  1869. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1870. }
  1871. #endif
  1872. }
  1873. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1874. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1875. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1876. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1877. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1878. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1879. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1880. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1881. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1882. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1883. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1884. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1885. // TODO: optimize performance
  1886. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1887. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1888. static const float GELU_COEF_A = 0.044715f;
  1889. static const float GELU_QUICK_COEF = -1.702f;
  1890. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1891. inline static float ggml_gelu_f32(float x) {
  1892. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1893. }
  1894. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1895. const uint16_t * i16 = (const uint16_t *) x;
  1896. for (int i = 0; i < n; ++i) {
  1897. y[i] = ggml_table_gelu_f16[i16[i]];
  1898. }
  1899. }
  1900. #ifdef GGML_GELU_FP16
  1901. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1902. uint16_t t;
  1903. for (int i = 0; i < n; ++i) {
  1904. if (x[i] <= -10.0f) {
  1905. y[i] = 0.0f;
  1906. } else if (x[i] >= 10.0f) {
  1907. y[i] = x[i];
  1908. } else {
  1909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1910. memcpy(&t, &fp16, sizeof(uint16_t));
  1911. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1912. }
  1913. }
  1914. }
  1915. #else
  1916. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1917. for (int i = 0; i < n; ++i) {
  1918. y[i] = ggml_gelu_f32(x[i]);
  1919. }
  1920. }
  1921. #endif
  1922. inline static float ggml_gelu_quick_f32(float x) {
  1923. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1924. }
  1925. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1926. // const uint16_t * i16 = (const uint16_t *) x;
  1927. // for (int i = 0; i < n; ++i) {
  1928. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1929. // }
  1930. //}
  1931. #ifdef GGML_GELU_QUICK_FP16
  1932. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1933. uint16_t t;
  1934. for (int i = 0; i < n; ++i) {
  1935. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1936. memcpy(&t, &fp16, sizeof(uint16_t));
  1937. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1938. }
  1939. }
  1940. #else
  1941. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1942. for (int i = 0; i < n; ++i) {
  1943. y[i] = ggml_gelu_quick_f32(x[i]);
  1944. }
  1945. }
  1946. #endif
  1947. // Sigmoid Linear Unit (SiLU) function
  1948. inline static float ggml_silu_f32(float x) {
  1949. return x/(1.0f + expf(-x));
  1950. }
  1951. #if __FINITE_MATH_ONLY__
  1952. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1953. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1954. #endif
  1955. #if defined(__ARM_NEON) && defined(__aarch64__)
  1956. // adapted from arm limited optimized routine
  1957. // the maximum error is 1.45358 plus 0.5 ulps
  1958. // numbers above 88.38 will flush to infinity
  1959. // numbers beneath -103.97 will flush to zero
  1960. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1961. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1962. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1963. const float32x4_t n = vsubq_f32(z, r);
  1964. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1965. vdupq_n_f32(0x1.7f7d1cp-20f));
  1966. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1967. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1968. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1969. const float32x4_t u = vmulq_f32(b, b);
  1970. const float32x4_t j = vfmaq_f32(
  1971. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1972. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1973. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1974. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1975. return vfmaq_f32(k, j, k);
  1976. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1977. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1978. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1979. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1980. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1981. }
  1982. // computes silu x/(1+exp(-x)) in single precision vector
  1983. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1984. const float32x4_t one = vdupq_n_f32(1.0f);
  1985. const float32x4_t zero = vdupq_n_f32(0.0f);
  1986. const float32x4_t neg_x = vsubq_f32(zero, x);
  1987. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1988. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1989. return vdivq_f32(x, one_plus_exp_neg_x);
  1990. }
  1991. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1992. // adapted from arm limited optimized routine
  1993. // the maximum error is 1.45358 plus 0.5 ulps
  1994. // numbers above 88.38 will flush to infinity
  1995. // numbers beneath -103.97 will flush to zero
  1996. inline static __m512 ggml_v_expf(__m512 x) {
  1997. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1998. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1999. const __m512 n = _mm512_sub_ps(z, r);
  2000. const __m512 b =
  2001. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2002. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2003. const __mmask16 d =
  2004. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2005. const __m512 u = _mm512_mul_ps(b, b);
  2006. const __m512 j = _mm512_fmadd_ps(
  2007. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2008. _mm512_set1_ps(0x1.573e2ep-5f)),
  2009. u,
  2010. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2011. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2012. u,
  2013. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2014. const __m512 res = _mm512_scalef_ps(j, n);
  2015. if (_mm512_kortestz(d, d))
  2016. return res;
  2017. const __m512 zero = _mm512_setzero_ps();
  2018. const __m512 alt = _mm512_mask_blend_ps(
  2019. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2020. return _mm512_mask_blend_ps(d, res, alt);
  2021. }
  2022. // computes silu x/(1+exp(-x)) in single precision vector
  2023. inline static __m512 ggml_v_silu(__m512 x) {
  2024. const __m512 one = _mm512_set1_ps(1);
  2025. const __m512 zero = _mm512_setzero_ps();
  2026. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2027. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2028. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2029. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2030. }
  2031. #elif defined(__AVX2__) && defined(__FMA__)
  2032. // adapted from arm limited optimized routine
  2033. // the maximum error is 1.45358 plus 0.5 ulps
  2034. // numbers above 88.38 will flush to infinity
  2035. // numbers beneath -103.97 will flush to zero
  2036. inline static __m256 ggml_v_expf(__m256 x) {
  2037. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2038. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2039. const __m256 n = _mm256_sub_ps(z, r);
  2040. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2041. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2042. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2043. const __m256 k = _mm256_castsi256_ps(
  2044. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2045. const __m256i c = _mm256_castps_si256(
  2046. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2047. _mm256_set1_ps(126), _CMP_GT_OQ));
  2048. const __m256 u = _mm256_mul_ps(b, b);
  2049. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2050. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2051. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2052. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2053. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2054. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2055. return _mm256_fmadd_ps(j, k, k);
  2056. const __m256i g = _mm256_and_si256(
  2057. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2058. _mm256_set1_epi32(0x82000000u));
  2059. const __m256 s1 =
  2060. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2061. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2062. const __m256i d = _mm256_castps_si256(
  2063. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2064. _mm256_set1_ps(192), _CMP_GT_OQ));
  2065. return _mm256_or_ps(
  2066. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2067. _mm256_andnot_ps(
  2068. _mm256_castsi256_ps(d),
  2069. _mm256_or_ps(
  2070. _mm256_and_ps(_mm256_castsi256_ps(c),
  2071. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2072. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2073. }
  2074. // computes silu x/(1+exp(-x)) in single precision vector
  2075. inline static __m256 ggml_v_silu(__m256 x) {
  2076. const __m256 one = _mm256_set1_ps(1);
  2077. const __m256 zero = _mm256_setzero_ps();
  2078. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2079. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2080. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2081. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2082. }
  2083. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2084. #if defined(__FMA__)
  2085. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2086. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2087. #else
  2088. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2089. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2090. #endif
  2091. // adapted from arm limited optimized routine
  2092. // the maximum error is 1.45358 plus 0.5 ulps
  2093. // numbers above 88.38 will flush to infinity
  2094. // numbers beneath -103.97 will flush to zero
  2095. inline static __m128 ggml_v_expf(__m128 x) {
  2096. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2097. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2098. const __m128 n = _mm_sub_ps(z, r);
  2099. const __m128 b =
  2100. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2101. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2102. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2103. const __m128i c =
  2104. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2105. const __m128 u = _mm_mul_ps(b, b);
  2106. const __m128 j =
  2107. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2108. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2109. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2110. if (!_mm_movemask_epi8(c))
  2111. return MADD128(j, k, k);
  2112. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2113. _mm_set1_epi32(0x82000000u));
  2114. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2115. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2116. const __m128i d =
  2117. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2118. return _mm_or_ps(
  2119. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2120. _mm_andnot_ps(_mm_castsi128_ps(d),
  2121. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2122. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2123. }
  2124. // computes silu x/(1+exp(-x)) in single precision vector
  2125. inline static __m128 ggml_v_silu(__m128 x) {
  2126. const __m128 one = _mm_set1_ps(1);
  2127. const __m128 zero = _mm_setzero_ps();
  2128. const __m128 neg_x = _mm_sub_ps(zero, x);
  2129. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2130. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2131. return _mm_div_ps(x, one_plus_exp_neg_x);
  2132. }
  2133. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2134. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2135. int i = 0;
  2136. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2137. for (; i + 15 < n; i += 16) {
  2138. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2139. }
  2140. #elif defined(__AVX2__) && defined(__FMA__)
  2141. for (; i + 7 < n; i += 8) {
  2142. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2143. }
  2144. #elif defined(__SSE2__)
  2145. for (; i + 3 < n; i += 4) {
  2146. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2147. }
  2148. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2149. for (; i + 3 < n; i += 4) {
  2150. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2151. }
  2152. #endif
  2153. for (; i < n; ++i) {
  2154. y[i] = ggml_silu_f32(x[i]);
  2155. }
  2156. }
  2157. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2158. int i = 0;
  2159. ggml_float sum = 0;
  2160. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2161. for (; i + 15 < n; i += 16) {
  2162. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2163. _mm512_set1_ps(max)));
  2164. _mm512_storeu_ps(y + i, val);
  2165. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2166. }
  2167. #elif defined(__AVX2__) && defined(__FMA__)
  2168. for (; i + 7 < n; i += 8) {
  2169. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2170. _mm256_set1_ps(max)));
  2171. _mm256_storeu_ps(y + i, val);
  2172. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2173. _mm256_castps256_ps128(val));
  2174. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2175. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2176. sum += (ggml_float)_mm_cvtss_f32(val2);
  2177. }
  2178. #elif defined(__SSE2__)
  2179. for (; i + 3 < n; i += 4) {
  2180. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2181. _mm_set1_ps(max)));
  2182. _mm_storeu_ps(y + i, val);
  2183. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2184. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2185. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2186. #else
  2187. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2188. val = _mm_add_ps(val, tmp);
  2189. tmp = _mm_movehl_ps(tmp, val);
  2190. val = _mm_add_ss(val, tmp);
  2191. #endif
  2192. sum += (ggml_float)_mm_cvtss_f32(val);
  2193. }
  2194. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2195. for (; i + 3 < n; i += 4) {
  2196. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2197. vdupq_n_f32(max)));
  2198. vst1q_f32(y + i, val);
  2199. sum += (ggml_float)vaddvq_f32(val);
  2200. }
  2201. #endif
  2202. for (; i < n; ++i) {
  2203. float val = expf(x[i] - max);
  2204. sum += (ggml_float)val;
  2205. y[i] = val;
  2206. }
  2207. return sum;
  2208. }
  2209. inline static float ggml_silu_backward_f32(float x, float dy) {
  2210. const float s = 1.0f/(1.0f + expf(-x));
  2211. return dy*s*(1.0f + x*(1.0f - s));
  2212. }
  2213. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2214. for (int i = 0; i < n; ++i) {
  2215. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2216. }
  2217. }
  2218. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2219. #ifndef GGML_USE_ACCELERATE
  2220. ggml_float sum = 0.0;
  2221. for (int i = 0; i < n; ++i) {
  2222. sum += (ggml_float)x[i];
  2223. }
  2224. *s = sum;
  2225. #else
  2226. vDSP_sve(x, 1, s, n);
  2227. #endif
  2228. }
  2229. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2230. ggml_float sum = 0.0;
  2231. for (int i = 0; i < n; ++i) {
  2232. sum += (ggml_float)x[i];
  2233. }
  2234. *s = sum;
  2235. }
  2236. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2237. float sum = 0.0f;
  2238. for (int i = 0; i < n; ++i) {
  2239. sum += GGML_FP16_TO_FP32(x[i]);
  2240. }
  2241. *s = sum;
  2242. }
  2243. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2244. float sum = 0.0f;
  2245. for (int i = 0; i < n; ++i) {
  2246. sum += GGML_BF16_TO_FP32(x[i]);
  2247. }
  2248. *s = sum;
  2249. }
  2250. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2251. #ifndef GGML_USE_ACCELERATE
  2252. float max = -INFINITY;
  2253. for (int i = 0; i < n; ++i) {
  2254. max = MAX(max, x[i]);
  2255. }
  2256. *s = max;
  2257. #else
  2258. vDSP_maxv(x, 1, s, n);
  2259. #endif
  2260. }
  2261. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2262. ggml_vec_norm_f32(n, s, x);
  2263. *s = 1.f/(*s);
  2264. }
  2265. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2266. float max = -INFINITY;
  2267. int idx = 0;
  2268. for (int i = 0; i < n; ++i) {
  2269. max = MAX(max, x[i]);
  2270. if (max == x[i]) { idx = i; }
  2271. }
  2272. *s = idx;
  2273. }
  2274. //
  2275. // data types
  2276. //
  2277. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2278. "NONE",
  2279. "DUP",
  2280. "ADD",
  2281. "ADD1",
  2282. "ACC",
  2283. "SUB",
  2284. "MUL",
  2285. "DIV",
  2286. "SQR",
  2287. "SQRT",
  2288. "LOG",
  2289. "SUM",
  2290. "SUM_ROWS",
  2291. "MEAN",
  2292. "ARGMAX",
  2293. "REPEAT",
  2294. "REPEAT_BACK",
  2295. "CONCAT",
  2296. "SILU_BACK",
  2297. "NORM",
  2298. "RMS_NORM",
  2299. "RMS_NORM_BACK",
  2300. "GROUP_NORM",
  2301. "MUL_MAT",
  2302. "MUL_MAT_ID",
  2303. "OUT_PROD",
  2304. "SCALE",
  2305. "SET",
  2306. "CPY",
  2307. "CONT",
  2308. "RESHAPE",
  2309. "VIEW",
  2310. "PERMUTE",
  2311. "TRANSPOSE",
  2312. "GET_ROWS",
  2313. "GET_ROWS_BACK",
  2314. "DIAG",
  2315. "DIAG_MASK_INF",
  2316. "DIAG_MASK_ZERO",
  2317. "SOFT_MAX",
  2318. "SOFT_MAX_BACK",
  2319. "ROPE",
  2320. "ROPE_BACK",
  2321. "CLAMP",
  2322. "CONV_TRANSPOSE_1D",
  2323. "IM2COL",
  2324. "CONV_TRANSPOSE_2D",
  2325. "POOL_1D",
  2326. "POOL_2D",
  2327. "UPSCALE",
  2328. "PAD",
  2329. "ARANGE",
  2330. "TIMESTEP_EMBEDDING",
  2331. "ARGSORT",
  2332. "LEAKY_RELU",
  2333. "FLASH_ATTN_EXT",
  2334. "FLASH_ATTN_BACK",
  2335. "SSM_CONV",
  2336. "SSM_SCAN",
  2337. "WIN_PART",
  2338. "WIN_UNPART",
  2339. "GET_REL_POS",
  2340. "ADD_REL_POS",
  2341. "UNARY",
  2342. "MAP_UNARY",
  2343. "MAP_BINARY",
  2344. "MAP_CUSTOM1_F32",
  2345. "MAP_CUSTOM2_F32",
  2346. "MAP_CUSTOM3_F32",
  2347. "MAP_CUSTOM1",
  2348. "MAP_CUSTOM2",
  2349. "MAP_CUSTOM3",
  2350. "CROSS_ENTROPY_LOSS",
  2351. "CROSS_ENTROPY_LOSS_BACK",
  2352. };
  2353. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2354. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2355. "none",
  2356. "x",
  2357. "x+y",
  2358. "x+y",
  2359. "view(x,nb,offset)+=y->x",
  2360. "x-y",
  2361. "x*y",
  2362. "x/y",
  2363. "x^2",
  2364. "√x",
  2365. "log(x)",
  2366. "Σx",
  2367. "Σx_k",
  2368. "Σx/n",
  2369. "argmax(x)",
  2370. "repeat(x)",
  2371. "repeat_back(x)",
  2372. "concat(x, y)",
  2373. "silu_back(x)",
  2374. "norm(x)",
  2375. "rms_norm(x)",
  2376. "rms_norm_back(x)",
  2377. "group_norm(x)",
  2378. "X*Y",
  2379. "X[i]*Y",
  2380. "X*Y",
  2381. "x*v",
  2382. "y-\\>view(x)",
  2383. "x-\\>y",
  2384. "cont(x)",
  2385. "reshape(x)",
  2386. "view(x)",
  2387. "permute(x)",
  2388. "transpose(x)",
  2389. "get_rows(x)",
  2390. "get_rows_back(x)",
  2391. "diag(x)",
  2392. "diag_mask_inf(x)",
  2393. "diag_mask_zero(x)",
  2394. "soft_max(x)",
  2395. "soft_max_back(x)",
  2396. "rope(x)",
  2397. "rope_back(x)",
  2398. "clamp(x)",
  2399. "conv_transpose_1d(x)",
  2400. "im2col(x)",
  2401. "conv_transpose_2d(x)",
  2402. "pool_1d(x)",
  2403. "pool_2d(x)",
  2404. "upscale(x)",
  2405. "pad(x)",
  2406. "arange(start, stop, step)",
  2407. "timestep_embedding(timesteps, dim, max_period)",
  2408. "argsort(x)",
  2409. "leaky_relu(x)",
  2410. "flash_attn_ext(x)",
  2411. "flash_attn_back(x)",
  2412. "ssm_conv(x)",
  2413. "ssm_scan(x)",
  2414. "win_part(x)",
  2415. "win_unpart(x)",
  2416. "get_rel_pos(x)",
  2417. "add_rel_pos(x)",
  2418. "unary(x)",
  2419. "f(x)",
  2420. "f(x,y)",
  2421. "custom_f32(x)",
  2422. "custom_f32(x,y)",
  2423. "custom_f32(x,y,z)",
  2424. "custom(x)",
  2425. "custom(x,y)",
  2426. "custom(x,y,z)",
  2427. "cross_entropy_loss(x,y)",
  2428. "cross_entropy_loss_back(x,y)",
  2429. };
  2430. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2431. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2432. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2433. "ABS",
  2434. "SGN",
  2435. "NEG",
  2436. "STEP",
  2437. "TANH",
  2438. "ELU",
  2439. "RELU",
  2440. "SIGMOID",
  2441. "GELU",
  2442. "GELU_QUICK",
  2443. "SILU",
  2444. "HARDSWISH",
  2445. "HARDSIGMOID",
  2446. };
  2447. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2448. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2449. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2450. // WARN:
  2451. // Mis-configuration can lead to problem that's hard to reason about:
  2452. // * At best it crash or talks nosense.
  2453. // * At worst it talks slightly difference but hard to perceive.
  2454. //
  2455. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2456. // Take care about compile options (e.g., GGML_USE_xxx).
  2457. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2458. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2459. static void ggml_setup_op_has_task_pass(void) {
  2460. { // INIT
  2461. bool * p = GGML_OP_HAS_INIT;
  2462. p[GGML_OP_ACC ] = true;
  2463. p[GGML_OP_MUL_MAT ] = true;
  2464. p[GGML_OP_MUL_MAT_ID ] = true;
  2465. p[GGML_OP_OUT_PROD ] = true;
  2466. p[GGML_OP_SET ] = true;
  2467. p[GGML_OP_GET_ROWS_BACK ] = true;
  2468. p[GGML_OP_DIAG_MASK_INF ] = true;
  2469. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2470. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2471. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2472. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2473. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2474. p[GGML_OP_ADD_REL_POS ] = true;
  2475. }
  2476. { // FINALIZE
  2477. bool * p = GGML_OP_HAS_FINALIZE;
  2478. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2479. }
  2480. }
  2481. //
  2482. // NUMA support
  2483. //
  2484. #define GGML_NUMA_MAX_NODES 8
  2485. #define GGML_NUMA_MAX_CPUS 512
  2486. struct ggml_numa_node {
  2487. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2488. uint32_t n_cpus;
  2489. };
  2490. struct ggml_numa_nodes {
  2491. enum ggml_numa_strategy numa_strategy;
  2492. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2493. uint32_t n_nodes;
  2494. uint32_t total_cpus; // hardware threads on system
  2495. uint32_t current_node; // node on which main process is execting
  2496. #if defined(__gnu_linux__)
  2497. cpu_set_t cpuset; // cpuset from numactl
  2498. #else
  2499. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2500. #endif
  2501. };
  2502. //
  2503. // ggml state
  2504. //
  2505. struct ggml_state {
  2506. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2507. struct ggml_numa_nodes numa;
  2508. };
  2509. // global state
  2510. static struct ggml_state g_state;
  2511. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2512. // barrier via spin lock
  2513. inline static void ggml_critical_section_start(void) {
  2514. while (atomic_flag_test_and_set(&g_state_critical)) {
  2515. // spin
  2516. sched_yield();
  2517. }
  2518. }
  2519. // TODO: make this somehow automatically executed
  2520. // some sort of "sentry" mechanism
  2521. inline static void ggml_critical_section_end(void) {
  2522. atomic_flag_clear(&g_state_critical);
  2523. }
  2524. #if defined(__gnu_linux__)
  2525. static cpu_set_t ggml_get_numa_affinity(void) {
  2526. cpu_set_t cpuset;
  2527. pthread_t thread;
  2528. thread = pthread_self();
  2529. CPU_ZERO(&cpuset);
  2530. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2531. return cpuset;
  2532. }
  2533. #else
  2534. static uint32_t ggml_get_numa_affinity(void) {
  2535. return 0; // no NUMA support
  2536. }
  2537. #endif
  2538. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2539. if (g_state.numa.n_nodes > 0) {
  2540. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2541. return;
  2542. }
  2543. #if defined(__gnu_linux__)
  2544. struct stat st;
  2545. char path[256];
  2546. int rv;
  2547. // set numa scheme
  2548. g_state.numa.numa_strategy = numa_flag;
  2549. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2550. g_state.numa.cpuset = ggml_get_numa_affinity();
  2551. // enumerate nodes
  2552. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2553. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2554. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2555. if (stat(path, &st) != 0) { break; }
  2556. ++g_state.numa.n_nodes;
  2557. }
  2558. // enumerate CPUs
  2559. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2560. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2561. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2562. if (stat(path, &st) != 0) { break; }
  2563. ++g_state.numa.total_cpus;
  2564. }
  2565. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2566. // figure out which node we're on
  2567. uint current_cpu;
  2568. int getcpu_ret = 0;
  2569. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2570. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2571. #else
  2572. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2573. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2574. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2575. # endif
  2576. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2577. #endif
  2578. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2579. g_state.numa.n_nodes = 0;
  2580. return;
  2581. }
  2582. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2583. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2584. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2585. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2586. node->n_cpus = 0;
  2587. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2588. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2589. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2590. if (stat(path, &st) == 0) {
  2591. node->cpus[node->n_cpus++] = c;
  2592. GGML_PRINT_DEBUG(" %u", c);
  2593. }
  2594. }
  2595. GGML_PRINT_DEBUG("\n");
  2596. }
  2597. if (ggml_is_numa()) {
  2598. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2599. if (fptr != NULL) {
  2600. char buf[42];
  2601. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2602. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2603. }
  2604. fclose(fptr);
  2605. }
  2606. }
  2607. #else
  2608. GGML_UNUSED(numa_flag);
  2609. // TODO
  2610. #endif
  2611. }
  2612. bool ggml_is_numa(void) {
  2613. return g_state.numa.n_nodes > 1;
  2614. }
  2615. ////////////////////////////////////////////////////////////////////////////////
  2616. void ggml_print_object(const struct ggml_object * obj) {
  2617. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2618. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2619. }
  2620. void ggml_print_objects(const struct ggml_context * ctx) {
  2621. struct ggml_object * obj = ctx->objects_begin;
  2622. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2623. while (obj != NULL) {
  2624. ggml_print_object(obj);
  2625. obj = obj->next;
  2626. }
  2627. GGML_PRINT("%s: --- end ---\n", __func__);
  2628. }
  2629. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2630. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2631. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2632. }
  2633. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2634. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2635. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2636. }
  2637. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2638. size_t nbytes;
  2639. size_t blck_size = ggml_blck_size(tensor->type);
  2640. if (blck_size == 1) {
  2641. nbytes = ggml_type_size(tensor->type);
  2642. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2643. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2644. }
  2645. }
  2646. else {
  2647. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2648. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2649. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2650. }
  2651. }
  2652. return nbytes;
  2653. }
  2654. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2655. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2656. }
  2657. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2658. return type_traits[type].blck_size;
  2659. }
  2660. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2661. return type_traits[type].type_size;
  2662. }
  2663. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2664. assert(ne % ggml_blck_size(type) == 0);
  2665. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2666. }
  2667. double ggml_type_sizef(enum ggml_type type) {
  2668. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2669. }
  2670. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2671. return type_traits[type].type_name;
  2672. }
  2673. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2674. return type_traits[type].is_quantized;
  2675. }
  2676. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2677. return GGML_OP_NAME[op];
  2678. }
  2679. const char * ggml_op_symbol(enum ggml_op op) {
  2680. return GGML_OP_SYMBOL[op];
  2681. }
  2682. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2683. return GGML_UNARY_OP_NAME[op];
  2684. }
  2685. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2686. if (t->op == GGML_OP_UNARY) {
  2687. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2688. return ggml_unary_op_name(uop);
  2689. }
  2690. else {
  2691. return ggml_op_name(t->op);
  2692. }
  2693. }
  2694. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2695. return ggml_type_size(tensor->type);
  2696. }
  2697. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2698. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2699. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2700. }
  2701. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2702. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2703. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2704. }
  2705. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2708. }
  2709. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2710. return tensor->ne[3] == 1;
  2711. }
  2712. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2713. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2714. if (tensor->ne[i] > 1) {
  2715. return i + 1;
  2716. }
  2717. }
  2718. return 1;
  2719. }
  2720. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2721. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2722. return (t0->ne[0] == t1->ne[0]) &&
  2723. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2724. (t1->ne[3]%t0->ne[3] == 0);
  2725. }
  2726. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2727. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2728. return (t0->ne[1] == t1->ne[1]) &&
  2729. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2730. (t1->ne[3]%t0->ne[3] == 0);
  2731. }
  2732. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2733. enum ggml_type wtype = GGML_TYPE_COUNT;
  2734. switch (ftype) {
  2735. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2736. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2737. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2738. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2739. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2740. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2741. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2742. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2743. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2744. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2745. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2746. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2747. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2748. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2749. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2750. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2751. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2752. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2753. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2754. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2755. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2756. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2757. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2758. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2759. }
  2760. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2761. return wtype;
  2762. }
  2763. size_t ggml_tensor_overhead(void) {
  2764. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2765. }
  2766. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2767. return tensor->nb[0] > tensor->nb[1];
  2768. }
  2769. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2770. size_t next_nb = ggml_type_size(tensor->type);
  2771. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2772. return false;
  2773. }
  2774. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2775. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2776. if (tensor->ne[i] != 1) {
  2777. if (i > n) {
  2778. if (tensor->nb[i] != next_nb) {
  2779. return false;
  2780. }
  2781. next_nb *= tensor->ne[i];
  2782. } else {
  2783. // this dimension does not need to be contiguous
  2784. next_nb = tensor->ne[i]*tensor->nb[i];
  2785. }
  2786. }
  2787. }
  2788. return true;
  2789. }
  2790. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2791. return ggml_is_contiguous_0(tensor);
  2792. }
  2793. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2794. return ggml_is_contiguous_n(tensor, 0);
  2795. }
  2796. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2797. return ggml_is_contiguous_n(tensor, 1);
  2798. }
  2799. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2800. return ggml_is_contiguous_n(tensor, 2);
  2801. }
  2802. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2804. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2805. }
  2806. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2807. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2808. return
  2809. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2810. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2811. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2812. }
  2813. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2814. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2815. if (tensor->ne[i] == 0) {
  2816. // empty if any dimension has no elements
  2817. return true;
  2818. }
  2819. }
  2820. return false;
  2821. }
  2822. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2823. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2824. return
  2825. (t0->ne[0] == t1->ne[0]) &&
  2826. (t0->ne[1] == t1->ne[1]) &&
  2827. (t0->ne[2] == t1->ne[2]) &&
  2828. (t0->ne[3] == t1->ne[3]);
  2829. }
  2830. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2831. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2832. return
  2833. (t0->nb[0] == t1->nb[0]) &&
  2834. (t0->nb[1] == t1->nb[1]) &&
  2835. (t0->nb[2] == t1->nb[2]) &&
  2836. (t0->nb[3] == t1->nb[3]);
  2837. }
  2838. // check if t1 can be represented as a repeatition of t0
  2839. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2840. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2841. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2842. (t1->ne[0]%t0->ne[0] == 0) &&
  2843. (t1->ne[1]%t0->ne[1] == 0) &&
  2844. (t1->ne[2]%t0->ne[2] == 0) &&
  2845. (t1->ne[3]%t0->ne[3] == 0);
  2846. }
  2847. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2848. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2849. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2850. }
  2851. static inline int ggml_up32(int n) {
  2852. return (n + 31) & ~31;
  2853. }
  2854. //static inline int ggml_up64(int n) {
  2855. // return (n + 63) & ~63;
  2856. //}
  2857. static inline int ggml_up(int n, int m) {
  2858. // assert m is a power of 2
  2859. GGML_ASSERT((m & (m - 1)) == 0);
  2860. return (n + m - 1) & ~(m - 1);
  2861. }
  2862. // assert that pointer is aligned to GGML_MEM_ALIGN
  2863. #define ggml_assert_aligned(ptr) \
  2864. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2865. ////////////////////////////////////////////////////////////////////////////////
  2866. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2867. // make this function thread safe
  2868. ggml_critical_section_start();
  2869. static bool is_first_call = true;
  2870. if (is_first_call) {
  2871. // initialize time system (required on Windows)
  2872. ggml_time_init();
  2873. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2874. {
  2875. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2876. for (int i = 0; i < (1 << 16); ++i) {
  2877. union {
  2878. uint16_t u16;
  2879. ggml_fp16_t fp16;
  2880. } u = {i};
  2881. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2882. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2883. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2884. }
  2885. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2886. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2887. }
  2888. // initialize g_state
  2889. {
  2890. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2891. g_state = (struct ggml_state) {
  2892. /*.contexts =*/ { { 0 } },
  2893. /*.numa =*/ {
  2894. .n_nodes = 0,
  2895. .total_cpus = 0,
  2896. },
  2897. };
  2898. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2899. g_state.contexts[i].used = false;
  2900. }
  2901. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2902. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2903. }
  2904. ggml_setup_op_has_task_pass();
  2905. is_first_call = false;
  2906. }
  2907. // find non-used context in g_state
  2908. struct ggml_context * ctx = NULL;
  2909. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2910. if (!g_state.contexts[i].used) {
  2911. g_state.contexts[i].used = true;
  2912. ctx = &g_state.contexts[i].context;
  2913. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2914. break;
  2915. }
  2916. }
  2917. if (ctx == NULL) {
  2918. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2919. ggml_critical_section_end();
  2920. return NULL;
  2921. }
  2922. // allow to call ggml_init with 0 size
  2923. if (params.mem_size == 0) {
  2924. params.mem_size = GGML_MEM_ALIGN;
  2925. }
  2926. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2927. *ctx = (struct ggml_context) {
  2928. /*.mem_size =*/ mem_size,
  2929. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2930. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2931. /*.no_alloc =*/ params.no_alloc,
  2932. /*.no_alloc_save =*/ params.no_alloc,
  2933. /*.n_objects =*/ 0,
  2934. /*.objects_begin =*/ NULL,
  2935. /*.objects_end =*/ NULL,
  2936. /*.scratch =*/ { 0, 0, NULL, },
  2937. /*.scratch_save =*/ { 0, 0, NULL, },
  2938. };
  2939. GGML_ASSERT(ctx->mem_buffer != NULL);
  2940. ggml_assert_aligned(ctx->mem_buffer);
  2941. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2942. ggml_critical_section_end();
  2943. return ctx;
  2944. }
  2945. void ggml_free(struct ggml_context * ctx) {
  2946. if (ctx == NULL) {
  2947. return;
  2948. }
  2949. // make this function thread safe
  2950. ggml_critical_section_start();
  2951. bool found = false;
  2952. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2953. if (&g_state.contexts[i].context == ctx) {
  2954. g_state.contexts[i].used = false;
  2955. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2956. __func__, i, ggml_used_mem(ctx));
  2957. if (ctx->mem_buffer_owned) {
  2958. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2959. }
  2960. found = true;
  2961. break;
  2962. }
  2963. }
  2964. if (!found) {
  2965. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2966. }
  2967. ggml_critical_section_end();
  2968. }
  2969. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2970. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2971. }
  2972. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2973. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2974. ctx->scratch = scratch;
  2975. return result;
  2976. }
  2977. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2978. return ctx->no_alloc;
  2979. }
  2980. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2981. ctx->no_alloc = no_alloc;
  2982. }
  2983. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2984. return ctx->mem_buffer;
  2985. }
  2986. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2987. return ctx->mem_size;
  2988. }
  2989. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2990. size_t max_size = 0;
  2991. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2992. size_t bytes = ggml_nbytes(tensor);
  2993. max_size = MAX(max_size, bytes);
  2994. }
  2995. return max_size;
  2996. }
  2997. // IMPORTANT:
  2998. // when creating "opt" tensors, always save and load the scratch buffer
  2999. // this is an error prone process, but it is necessary to support inplace
  3000. // operators when using scratch buffers
  3001. // TODO: implement a better way
  3002. static void ggml_scratch_save(struct ggml_context * ctx) {
  3003. // this is needed to allow opt tensors to store their data
  3004. // TODO: again, need to find a better way
  3005. ctx->no_alloc_save = ctx->no_alloc;
  3006. ctx->no_alloc = false;
  3007. ctx->scratch_save = ctx->scratch;
  3008. ctx->scratch.data = NULL;
  3009. }
  3010. static void ggml_scratch_load(struct ggml_context * ctx) {
  3011. ctx->no_alloc = ctx->no_alloc_save;
  3012. ctx->scratch = ctx->scratch_save;
  3013. }
  3014. ////////////////////////////////////////////////////////////////////////////////
  3015. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3016. // always insert objects at the end of the context's memory pool
  3017. struct ggml_object * obj_cur = ctx->objects_end;
  3018. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3019. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3020. const size_t cur_end = cur_offs + cur_size;
  3021. // align to GGML_MEM_ALIGN
  3022. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3023. char * const mem_buffer = ctx->mem_buffer;
  3024. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3025. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3026. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3027. __func__, cur_end + size_needed, ctx->mem_size);
  3028. assert(false);
  3029. return NULL;
  3030. }
  3031. *obj_new = (struct ggml_object) {
  3032. .offs = cur_end + GGML_OBJECT_SIZE,
  3033. .size = size_needed,
  3034. .next = NULL,
  3035. .type = type,
  3036. };
  3037. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3038. if (obj_cur != NULL) {
  3039. obj_cur->next = obj_new;
  3040. } else {
  3041. // this is the first object in this context
  3042. ctx->objects_begin = obj_new;
  3043. }
  3044. ctx->objects_end = obj_new;
  3045. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3046. return obj_new;
  3047. }
  3048. static struct ggml_tensor * ggml_new_tensor_impl(
  3049. struct ggml_context * ctx,
  3050. enum ggml_type type,
  3051. int n_dims,
  3052. const int64_t * ne,
  3053. struct ggml_tensor * view_src,
  3054. size_t view_offs) {
  3055. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3056. // find the base tensor and absolute offset
  3057. if (view_src != NULL && view_src->view_src != NULL) {
  3058. view_offs += view_src->view_offs;
  3059. view_src = view_src->view_src;
  3060. }
  3061. size_t data_size = ggml_row_size(type, ne[0]);
  3062. for (int i = 1; i < n_dims; i++) {
  3063. data_size *= ne[i];
  3064. }
  3065. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3066. void * data = view_src != NULL ? view_src->data : NULL;
  3067. if (data != NULL) {
  3068. data = (char *) data + view_offs;
  3069. }
  3070. size_t obj_alloc_size = 0;
  3071. if (view_src == NULL && !ctx->no_alloc) {
  3072. if (ctx->scratch.data != NULL) {
  3073. // allocate tensor data in the scratch buffer
  3074. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3075. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3076. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3077. assert(false);
  3078. return NULL;
  3079. }
  3080. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3081. ctx->scratch.offs += data_size;
  3082. } else {
  3083. // allocate tensor data in the context's memory pool
  3084. obj_alloc_size = data_size;
  3085. }
  3086. }
  3087. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3088. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3089. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3090. #ifdef __clang__
  3091. // temporary until ggml_tensor::backend is removed
  3092. #pragma clang diagnostic push
  3093. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3094. #endif
  3095. *result = (struct ggml_tensor) {
  3096. /*.type =*/ type,
  3097. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3098. /*.buffer =*/ NULL,
  3099. /*.ne =*/ { 1, 1, 1, 1 },
  3100. /*.nb =*/ { 0, 0, 0, 0 },
  3101. /*.op =*/ GGML_OP_NONE,
  3102. /*.op_params =*/ { 0 },
  3103. /*.flags =*/ 0,
  3104. /*.grad =*/ NULL,
  3105. /*.src =*/ { NULL },
  3106. /*.perf_runs =*/ 0,
  3107. /*.perf_cycles =*/ 0,
  3108. /*.perf_time_us =*/ 0,
  3109. /*.view_src =*/ view_src,
  3110. /*.view_offs =*/ view_offs,
  3111. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3112. /*.name =*/ { 0 },
  3113. /*.extra =*/ NULL,
  3114. /*.padding =*/ { 0 },
  3115. };
  3116. #ifdef __clang__
  3117. #pragma clang diagnostic pop
  3118. #endif
  3119. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3120. //ggml_assert_aligned(result->data);
  3121. for (int i = 0; i < n_dims; i++) {
  3122. result->ne[i] = ne[i];
  3123. }
  3124. result->nb[0] = ggml_type_size(type);
  3125. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3126. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3127. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3128. }
  3129. ctx->n_objects++;
  3130. return result;
  3131. }
  3132. struct ggml_tensor * ggml_new_tensor(
  3133. struct ggml_context * ctx,
  3134. enum ggml_type type,
  3135. int n_dims,
  3136. const int64_t * ne) {
  3137. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3138. }
  3139. struct ggml_tensor * ggml_new_tensor_1d(
  3140. struct ggml_context * ctx,
  3141. enum ggml_type type,
  3142. int64_t ne0) {
  3143. return ggml_new_tensor(ctx, type, 1, &ne0);
  3144. }
  3145. struct ggml_tensor * ggml_new_tensor_2d(
  3146. struct ggml_context * ctx,
  3147. enum ggml_type type,
  3148. int64_t ne0,
  3149. int64_t ne1) {
  3150. const int64_t ne[2] = { ne0, ne1 };
  3151. return ggml_new_tensor(ctx, type, 2, ne);
  3152. }
  3153. struct ggml_tensor * ggml_new_tensor_3d(
  3154. struct ggml_context * ctx,
  3155. enum ggml_type type,
  3156. int64_t ne0,
  3157. int64_t ne1,
  3158. int64_t ne2) {
  3159. const int64_t ne[3] = { ne0, ne1, ne2 };
  3160. return ggml_new_tensor(ctx, type, 3, ne);
  3161. }
  3162. struct ggml_tensor * ggml_new_tensor_4d(
  3163. struct ggml_context * ctx,
  3164. enum ggml_type type,
  3165. int64_t ne0,
  3166. int64_t ne1,
  3167. int64_t ne2,
  3168. int64_t ne3) {
  3169. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3170. return ggml_new_tensor(ctx, type, 4, ne);
  3171. }
  3172. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3173. ggml_scratch_save(ctx);
  3174. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3175. ggml_scratch_load(ctx);
  3176. ggml_set_i32(result, value);
  3177. return result;
  3178. }
  3179. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3180. ggml_scratch_save(ctx);
  3181. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3182. ggml_scratch_load(ctx);
  3183. ggml_set_f32(result, value);
  3184. return result;
  3185. }
  3186. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3187. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3188. }
  3189. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3190. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3191. assert(params_size <= GGML_MAX_OP_PARAMS);
  3192. memcpy(tensor->op_params, params, params_size);
  3193. }
  3194. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3195. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3196. return ((const int32_t *)(tensor->op_params))[i];
  3197. }
  3198. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3199. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3200. return ((const float *)(tensor->op_params))[i];
  3201. }
  3202. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3203. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3204. ((int32_t *)(tensor->op_params))[i] = value;
  3205. }
  3206. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3207. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3208. ((float *)(tensor->op_params))[i] = value;
  3209. }
  3210. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3211. memset(tensor->data, 0, ggml_nbytes(tensor));
  3212. return tensor;
  3213. }
  3214. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3215. const int n = ggml_nrows(tensor);
  3216. const int nc = tensor->ne[0];
  3217. const size_t n1 = tensor->nb[1];
  3218. char * const data = tensor->data;
  3219. switch (tensor->type) {
  3220. case GGML_TYPE_I8:
  3221. {
  3222. assert(tensor->nb[0] == sizeof(int8_t));
  3223. for (int i = 0; i < n; i++) {
  3224. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3225. }
  3226. } break;
  3227. case GGML_TYPE_I16:
  3228. {
  3229. assert(tensor->nb[0] == sizeof(int16_t));
  3230. for (int i = 0; i < n; i++) {
  3231. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3232. }
  3233. } break;
  3234. case GGML_TYPE_I32:
  3235. {
  3236. assert(tensor->nb[0] == sizeof(int32_t));
  3237. for (int i = 0; i < n; i++) {
  3238. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3239. }
  3240. } break;
  3241. case GGML_TYPE_F16:
  3242. {
  3243. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3244. for (int i = 0; i < n; i++) {
  3245. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3246. }
  3247. } break;
  3248. case GGML_TYPE_BF16:
  3249. {
  3250. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3251. for (int i = 0; i < n; i++) {
  3252. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3253. }
  3254. } break;
  3255. case GGML_TYPE_F32:
  3256. {
  3257. assert(tensor->nb[0] == sizeof(float));
  3258. for (int i = 0; i < n; i++) {
  3259. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3260. }
  3261. } break;
  3262. default:
  3263. {
  3264. GGML_ASSERT(false);
  3265. } break;
  3266. }
  3267. return tensor;
  3268. }
  3269. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3270. const int n = ggml_nrows(tensor);
  3271. const int nc = tensor->ne[0];
  3272. const size_t n1 = tensor->nb[1];
  3273. char * const data = tensor->data;
  3274. switch (tensor->type) {
  3275. case GGML_TYPE_I8:
  3276. {
  3277. assert(tensor->nb[0] == sizeof(int8_t));
  3278. for (int i = 0; i < n; i++) {
  3279. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3280. }
  3281. } break;
  3282. case GGML_TYPE_I16:
  3283. {
  3284. assert(tensor->nb[0] == sizeof(int16_t));
  3285. for (int i = 0; i < n; i++) {
  3286. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3287. }
  3288. } break;
  3289. case GGML_TYPE_I32:
  3290. {
  3291. assert(tensor->nb[0] == sizeof(int32_t));
  3292. for (int i = 0; i < n; i++) {
  3293. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3294. }
  3295. } break;
  3296. case GGML_TYPE_F16:
  3297. {
  3298. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3299. for (int i = 0; i < n; i++) {
  3300. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3301. }
  3302. } break;
  3303. case GGML_TYPE_BF16:
  3304. {
  3305. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3306. for (int i = 0; i < n; i++) {
  3307. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3308. }
  3309. } break;
  3310. case GGML_TYPE_F32:
  3311. {
  3312. assert(tensor->nb[0] == sizeof(float));
  3313. for (int i = 0; i < n; i++) {
  3314. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3315. }
  3316. } break;
  3317. default:
  3318. {
  3319. GGML_ASSERT(false);
  3320. } break;
  3321. }
  3322. return tensor;
  3323. }
  3324. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3325. const int64_t ne2 = tensor->ne[2];
  3326. const int64_t ne1 = tensor->ne[1];
  3327. const int64_t ne0 = tensor->ne[0];
  3328. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3329. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3330. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3331. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3332. if (i0) {
  3333. * i0 = i0_;
  3334. }
  3335. if (i1) {
  3336. * i1 = i1_;
  3337. }
  3338. if (i2) {
  3339. * i2 = i2_;
  3340. }
  3341. if (i3) {
  3342. * i3 = i3_;
  3343. }
  3344. }
  3345. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3346. if (!ggml_is_contiguous(tensor)) {
  3347. int64_t id[4] = { 0, 0, 0, 0 };
  3348. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3349. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3350. }
  3351. switch (tensor->type) {
  3352. case GGML_TYPE_I8:
  3353. {
  3354. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3355. return ((int8_t *)(tensor->data))[i];
  3356. }
  3357. case GGML_TYPE_I16:
  3358. {
  3359. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3360. return ((int16_t *)(tensor->data))[i];
  3361. }
  3362. case GGML_TYPE_I32:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3365. return ((int32_t *)(tensor->data))[i];
  3366. }
  3367. case GGML_TYPE_F16:
  3368. {
  3369. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3370. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3371. }
  3372. case GGML_TYPE_BF16:
  3373. {
  3374. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3375. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3376. }
  3377. case GGML_TYPE_F32:
  3378. {
  3379. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3380. return ((float *)(tensor->data))[i];
  3381. }
  3382. default:
  3383. {
  3384. GGML_ASSERT(false);
  3385. }
  3386. }
  3387. return 0.0f;
  3388. }
  3389. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3390. if (!ggml_is_contiguous(tensor)) {
  3391. int64_t id[4] = { 0, 0, 0, 0 };
  3392. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3393. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3394. return;
  3395. }
  3396. switch (tensor->type) {
  3397. case GGML_TYPE_I8:
  3398. {
  3399. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3400. ((int8_t *)(tensor->data))[i] = value;
  3401. } break;
  3402. case GGML_TYPE_I16:
  3403. {
  3404. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3405. ((int16_t *)(tensor->data))[i] = value;
  3406. } break;
  3407. case GGML_TYPE_I32:
  3408. {
  3409. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3410. ((int32_t *)(tensor->data))[i] = value;
  3411. } break;
  3412. case GGML_TYPE_F16:
  3413. {
  3414. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3415. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3416. } break;
  3417. case GGML_TYPE_BF16:
  3418. {
  3419. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3420. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3421. } break;
  3422. case GGML_TYPE_F32:
  3423. {
  3424. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3425. ((float *)(tensor->data))[i] = value;
  3426. } break;
  3427. default:
  3428. {
  3429. GGML_ASSERT(false);
  3430. } break;
  3431. }
  3432. }
  3433. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3434. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3435. switch (tensor->type) {
  3436. case GGML_TYPE_I8:
  3437. return ((int8_t *) data)[0];
  3438. case GGML_TYPE_I16:
  3439. return ((int16_t *) data)[0];
  3440. case GGML_TYPE_I32:
  3441. return ((int32_t *) data)[0];
  3442. case GGML_TYPE_F16:
  3443. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3444. case GGML_TYPE_BF16:
  3445. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3446. case GGML_TYPE_F32:
  3447. return ((float *) data)[0];
  3448. default:
  3449. GGML_ASSERT(false);
  3450. }
  3451. return 0.0f;
  3452. }
  3453. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3454. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3455. switch (tensor->type) {
  3456. case GGML_TYPE_I8:
  3457. {
  3458. ((int8_t *)(data))[0] = value;
  3459. } break;
  3460. case GGML_TYPE_I16:
  3461. {
  3462. ((int16_t *)(data))[0] = value;
  3463. } break;
  3464. case GGML_TYPE_I32:
  3465. {
  3466. ((int32_t *)(data))[0] = value;
  3467. } break;
  3468. case GGML_TYPE_F16:
  3469. {
  3470. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3471. } break;
  3472. case GGML_TYPE_BF16:
  3473. {
  3474. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3475. } break;
  3476. case GGML_TYPE_F32:
  3477. {
  3478. ((float *)(data))[0] = value;
  3479. } break;
  3480. default:
  3481. {
  3482. GGML_ASSERT(false);
  3483. } break;
  3484. }
  3485. }
  3486. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3487. if (!ggml_is_contiguous(tensor)) {
  3488. int64_t id[4] = { 0, 0, 0, 0 };
  3489. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3490. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3491. }
  3492. switch (tensor->type) {
  3493. case GGML_TYPE_I8:
  3494. {
  3495. return ((int8_t *)(tensor->data))[i];
  3496. }
  3497. case GGML_TYPE_I16:
  3498. {
  3499. return ((int16_t *)(tensor->data))[i];
  3500. }
  3501. case GGML_TYPE_I32:
  3502. {
  3503. return ((int32_t *)(tensor->data))[i];
  3504. }
  3505. case GGML_TYPE_F16:
  3506. {
  3507. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3508. }
  3509. case GGML_TYPE_BF16:
  3510. {
  3511. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3512. }
  3513. case GGML_TYPE_F32:
  3514. {
  3515. return ((float *)(tensor->data))[i];
  3516. }
  3517. default:
  3518. {
  3519. GGML_ASSERT(false);
  3520. }
  3521. }
  3522. return 0.0f;
  3523. }
  3524. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3525. if (!ggml_is_contiguous(tensor)) {
  3526. int64_t id[4] = { 0, 0, 0, 0 };
  3527. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3528. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3529. return;
  3530. }
  3531. switch (tensor->type) {
  3532. case GGML_TYPE_I8:
  3533. {
  3534. ((int8_t *)(tensor->data))[i] = value;
  3535. } break;
  3536. case GGML_TYPE_I16:
  3537. {
  3538. ((int16_t *)(tensor->data))[i] = value;
  3539. } break;
  3540. case GGML_TYPE_I32:
  3541. {
  3542. ((int32_t *)(tensor->data))[i] = value;
  3543. } break;
  3544. case GGML_TYPE_F16:
  3545. {
  3546. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3547. } break;
  3548. case GGML_TYPE_BF16:
  3549. {
  3550. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3551. } break;
  3552. case GGML_TYPE_F32:
  3553. {
  3554. ((float *)(tensor->data))[i] = value;
  3555. } break;
  3556. default:
  3557. {
  3558. GGML_ASSERT(false);
  3559. } break;
  3560. }
  3561. }
  3562. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3563. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3564. switch (tensor->type) {
  3565. case GGML_TYPE_I8:
  3566. return ((int8_t *) data)[0];
  3567. case GGML_TYPE_I16:
  3568. return ((int16_t *) data)[0];
  3569. case GGML_TYPE_I32:
  3570. return ((int32_t *) data)[0];
  3571. case GGML_TYPE_F16:
  3572. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3573. case GGML_TYPE_BF16:
  3574. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3575. case GGML_TYPE_F32:
  3576. return ((float *) data)[0];
  3577. default:
  3578. GGML_ASSERT(false);
  3579. }
  3580. return 0.0f;
  3581. }
  3582. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3583. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3584. switch (tensor->type) {
  3585. case GGML_TYPE_I8:
  3586. {
  3587. ((int8_t *)(data))[0] = value;
  3588. } break;
  3589. case GGML_TYPE_I16:
  3590. {
  3591. ((int16_t *)(data))[0] = value;
  3592. } break;
  3593. case GGML_TYPE_I32:
  3594. {
  3595. ((int32_t *)(data))[0] = value;
  3596. } break;
  3597. case GGML_TYPE_F16:
  3598. {
  3599. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3600. } break;
  3601. case GGML_TYPE_BF16:
  3602. {
  3603. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3604. } break;
  3605. case GGML_TYPE_F32:
  3606. {
  3607. ((float *)(data))[0] = value;
  3608. } break;
  3609. default:
  3610. {
  3611. GGML_ASSERT(false);
  3612. } break;
  3613. }
  3614. }
  3615. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3616. return tensor->data;
  3617. }
  3618. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3619. assert(tensor->type == GGML_TYPE_F32);
  3620. return (float *)(tensor->data);
  3621. }
  3622. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3623. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3624. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3625. }
  3626. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3627. return tensor->name;
  3628. }
  3629. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3630. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3631. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3632. return tensor;
  3633. }
  3634. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3635. va_list args;
  3636. va_start(args, fmt);
  3637. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3638. va_end(args);
  3639. return tensor;
  3640. }
  3641. struct ggml_tensor * ggml_view_tensor(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * src) {
  3644. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3645. ggml_format_name(result, "%s (view)", src->name);
  3646. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3647. result->nb[i] = src->nb[i];
  3648. }
  3649. return result;
  3650. }
  3651. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3652. struct ggml_object * obj = ctx->objects_begin;
  3653. char * const mem_buffer = ctx->mem_buffer;
  3654. while (obj != NULL) {
  3655. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3656. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3657. }
  3658. obj = obj->next;
  3659. }
  3660. return NULL;
  3661. }
  3662. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3663. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3664. obj = obj->next;
  3665. char * const mem_buffer = ctx->mem_buffer;
  3666. while (obj != NULL) {
  3667. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3668. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3669. }
  3670. obj = obj->next;
  3671. }
  3672. return NULL;
  3673. }
  3674. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3675. struct ggml_object * obj = ctx->objects_begin;
  3676. char * const mem_buffer = ctx->mem_buffer;
  3677. while (obj != NULL) {
  3678. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3679. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3680. if (strcmp(cur->name, name) == 0) {
  3681. return cur;
  3682. }
  3683. }
  3684. obj = obj->next;
  3685. }
  3686. return NULL;
  3687. }
  3688. ////////////////////////////////////////////////////////////////////////////////
  3689. // ggml_dup
  3690. static struct ggml_tensor * ggml_dup_impl(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. bool inplace) {
  3694. bool is_node = false;
  3695. if (!inplace && (a->grad)) {
  3696. is_node = true;
  3697. }
  3698. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3699. result->op = GGML_OP_DUP;
  3700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3701. result->src[0] = a;
  3702. return result;
  3703. }
  3704. struct ggml_tensor * ggml_dup(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a) {
  3707. return ggml_dup_impl(ctx, a, false);
  3708. }
  3709. struct ggml_tensor * ggml_dup_inplace(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a) {
  3712. return ggml_dup_impl(ctx, a, true);
  3713. }
  3714. // ggml_add
  3715. static struct ggml_tensor * ggml_add_impl(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. struct ggml_tensor * b,
  3719. bool inplace) {
  3720. GGML_ASSERT(ggml_can_repeat(b, a));
  3721. bool is_node = false;
  3722. if (!inplace && (a->grad || b->grad)) {
  3723. // TODO: support backward pass for broadcasting
  3724. GGML_ASSERT(ggml_are_same_shape(a, b));
  3725. is_node = true;
  3726. }
  3727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3728. result->op = GGML_OP_ADD;
  3729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3730. result->src[0] = a;
  3731. result->src[1] = b;
  3732. return result;
  3733. }
  3734. struct ggml_tensor * ggml_add(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. struct ggml_tensor * b) {
  3738. return ggml_add_impl(ctx, a, b, false);
  3739. }
  3740. struct ggml_tensor * ggml_add_inplace(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. struct ggml_tensor * b) {
  3744. return ggml_add_impl(ctx, a, b, true);
  3745. }
  3746. // ggml_add_cast
  3747. static struct ggml_tensor * ggml_add_cast_impl(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. struct ggml_tensor * b,
  3751. enum ggml_type type) {
  3752. // TODO: support less-strict constraint
  3753. // GGML_ASSERT(ggml_can_repeat(b, a));
  3754. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3755. // currently only supported for quantized input and f16
  3756. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3757. a->type == GGML_TYPE_F16 ||
  3758. a->type == GGML_TYPE_BF16);
  3759. bool is_node = false;
  3760. if (a->grad || b->grad) {
  3761. // TODO: support backward pass for broadcasting
  3762. GGML_ASSERT(ggml_are_same_shape(a, b));
  3763. is_node = true;
  3764. }
  3765. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3766. result->op = GGML_OP_ADD;
  3767. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3768. result->src[0] = a;
  3769. result->src[1] = b;
  3770. return result;
  3771. }
  3772. struct ggml_tensor * ggml_add_cast(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. struct ggml_tensor * b,
  3776. enum ggml_type type) {
  3777. return ggml_add_cast_impl(ctx, a, b, type);
  3778. }
  3779. // ggml_add1
  3780. static struct ggml_tensor * ggml_add1_impl(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b,
  3784. bool inplace) {
  3785. GGML_ASSERT(ggml_is_scalar(b));
  3786. GGML_ASSERT(ggml_is_padded_1d(a));
  3787. bool is_node = false;
  3788. if (a->grad || b->grad) {
  3789. is_node = true;
  3790. }
  3791. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3792. result->op = GGML_OP_ADD1;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src[0] = a;
  3795. result->src[1] = b;
  3796. return result;
  3797. }
  3798. struct ggml_tensor * ggml_add1(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b) {
  3802. return ggml_add1_impl(ctx, a, b, false);
  3803. }
  3804. struct ggml_tensor * ggml_add1_inplace(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. struct ggml_tensor * b) {
  3808. return ggml_add1_impl(ctx, a, b, true);
  3809. }
  3810. // ggml_acc
  3811. static struct ggml_tensor * ggml_acc_impl(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b,
  3815. size_t nb1,
  3816. size_t nb2,
  3817. size_t nb3,
  3818. size_t offset,
  3819. bool inplace) {
  3820. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3821. GGML_ASSERT(ggml_is_contiguous(a));
  3822. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3823. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3824. bool is_node = false;
  3825. if (!inplace && (a->grad || b->grad)) {
  3826. is_node = true;
  3827. }
  3828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3829. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3830. ggml_set_op_params(result, params, sizeof(params));
  3831. result->op = GGML_OP_ACC;
  3832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3833. result->src[0] = a;
  3834. result->src[1] = b;
  3835. return result;
  3836. }
  3837. struct ggml_tensor * ggml_acc(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b,
  3841. size_t nb1,
  3842. size_t nb2,
  3843. size_t nb3,
  3844. size_t offset) {
  3845. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3846. }
  3847. struct ggml_tensor * ggml_acc_inplace(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. struct ggml_tensor * b,
  3851. size_t nb1,
  3852. size_t nb2,
  3853. size_t nb3,
  3854. size_t offset) {
  3855. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3856. }
  3857. // ggml_sub
  3858. static struct ggml_tensor * ggml_sub_impl(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. struct ggml_tensor * b,
  3862. bool inplace) {
  3863. GGML_ASSERT(ggml_are_same_shape(a, b));
  3864. bool is_node = false;
  3865. if (!inplace && (a->grad || b->grad)) {
  3866. is_node = true;
  3867. }
  3868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3869. result->op = GGML_OP_SUB;
  3870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3871. result->src[0] = a;
  3872. result->src[1] = b;
  3873. return result;
  3874. }
  3875. struct ggml_tensor * ggml_sub(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a,
  3878. struct ggml_tensor * b) {
  3879. return ggml_sub_impl(ctx, a, b, false);
  3880. }
  3881. struct ggml_tensor * ggml_sub_inplace(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a,
  3884. struct ggml_tensor * b) {
  3885. return ggml_sub_impl(ctx, a, b, true);
  3886. }
  3887. // ggml_mul
  3888. static struct ggml_tensor * ggml_mul_impl(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. struct ggml_tensor * b,
  3892. bool inplace) {
  3893. GGML_ASSERT(ggml_can_repeat(b, a));
  3894. bool is_node = false;
  3895. if (!inplace && (a->grad || b->grad)) {
  3896. // TODO: support backward pass for broadcasting
  3897. GGML_ASSERT(ggml_are_same_shape(a, b));
  3898. is_node = true;
  3899. }
  3900. if (inplace) {
  3901. GGML_ASSERT(!is_node);
  3902. }
  3903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3904. result->op = GGML_OP_MUL;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. result->src[1] = b;
  3908. return result;
  3909. }
  3910. struct ggml_tensor * ggml_mul(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b) {
  3914. return ggml_mul_impl(ctx, a, b, false);
  3915. }
  3916. struct ggml_tensor * ggml_mul_inplace(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a,
  3919. struct ggml_tensor * b) {
  3920. return ggml_mul_impl(ctx, a, b, true);
  3921. }
  3922. // ggml_div
  3923. static struct ggml_tensor * ggml_div_impl(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b,
  3927. bool inplace) {
  3928. GGML_ASSERT(ggml_can_repeat(b, a));
  3929. bool is_node = false;
  3930. if (!inplace && (a->grad || b->grad)) {
  3931. is_node = true;
  3932. }
  3933. if (inplace) {
  3934. GGML_ASSERT(!is_node);
  3935. }
  3936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3937. result->op = GGML_OP_DIV;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src[0] = a;
  3940. result->src[1] = b;
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_div(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. struct ggml_tensor * b) {
  3947. return ggml_div_impl(ctx, a, b, false);
  3948. }
  3949. struct ggml_tensor * ggml_div_inplace(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b) {
  3953. return ggml_div_impl(ctx, a, b, true);
  3954. }
  3955. // ggml_sqr
  3956. static struct ggml_tensor * ggml_sqr_impl(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. bool inplace) {
  3960. bool is_node = false;
  3961. if (!inplace && (a->grad)) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3965. result->op = GGML_OP_SQR;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src[0] = a;
  3968. return result;
  3969. }
  3970. struct ggml_tensor * ggml_sqr(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a) {
  3973. return ggml_sqr_impl(ctx, a, false);
  3974. }
  3975. struct ggml_tensor * ggml_sqr_inplace(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a) {
  3978. return ggml_sqr_impl(ctx, a, true);
  3979. }
  3980. // ggml_sqrt
  3981. static struct ggml_tensor * ggml_sqrt_impl(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. bool inplace) {
  3985. bool is_node = false;
  3986. if (!inplace && (a->grad)) {
  3987. is_node = true;
  3988. }
  3989. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3990. result->op = GGML_OP_SQRT;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. return result;
  3994. }
  3995. struct ggml_tensor * ggml_sqrt(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a) {
  3998. return ggml_sqrt_impl(ctx, a, false);
  3999. }
  4000. struct ggml_tensor * ggml_sqrt_inplace(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a) {
  4003. return ggml_sqrt_impl(ctx, a, true);
  4004. }
  4005. // ggml_log
  4006. static struct ggml_tensor * ggml_log_impl(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. bool inplace) {
  4010. bool is_node = false;
  4011. if (!inplace && (a->grad)) {
  4012. is_node = true;
  4013. }
  4014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4015. result->op = GGML_OP_LOG;
  4016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4017. result->src[0] = a;
  4018. return result;
  4019. }
  4020. struct ggml_tensor * ggml_log(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a) {
  4023. return ggml_log_impl(ctx, a, false);
  4024. }
  4025. struct ggml_tensor * ggml_log_inplace(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. return ggml_log_impl(ctx, a, true);
  4029. }
  4030. // ggml_sum
  4031. struct ggml_tensor * ggml_sum(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a) {
  4034. bool is_node = false;
  4035. if (a->grad) {
  4036. is_node = true;
  4037. }
  4038. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4039. result->op = GGML_OP_SUM;
  4040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4041. result->src[0] = a;
  4042. return result;
  4043. }
  4044. // ggml_sum_rows
  4045. struct ggml_tensor * ggml_sum_rows(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a) {
  4048. bool is_node = false;
  4049. if (a->grad) {
  4050. is_node = true;
  4051. }
  4052. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4053. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4054. ne[i] = a->ne[i];
  4055. }
  4056. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4057. result->op = GGML_OP_SUM_ROWS;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. return result;
  4061. }
  4062. // ggml_mean
  4063. struct ggml_tensor * ggml_mean(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. bool is_node = false;
  4067. if (a->grad) {
  4068. GGML_ASSERT(false); // TODO: implement
  4069. is_node = true;
  4070. }
  4071. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4072. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4073. result->op = GGML_OP_MEAN;
  4074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4075. result->src[0] = a;
  4076. return result;
  4077. }
  4078. // ggml_argmax
  4079. struct ggml_tensor * ggml_argmax(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a) {
  4082. GGML_ASSERT(ggml_is_matrix(a));
  4083. bool is_node = false;
  4084. if (a->grad) {
  4085. GGML_ASSERT(false);
  4086. is_node = true;
  4087. }
  4088. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4089. result->op = GGML_OP_ARGMAX;
  4090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4091. result->src[0] = a;
  4092. return result;
  4093. }
  4094. // ggml_repeat
  4095. struct ggml_tensor * ggml_repeat(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. struct ggml_tensor * b) {
  4099. GGML_ASSERT(ggml_can_repeat(a, b));
  4100. bool is_node = false;
  4101. if (a->grad) {
  4102. is_node = true;
  4103. }
  4104. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4105. result->op = GGML_OP_REPEAT;
  4106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4107. result->src[0] = a;
  4108. return result;
  4109. }
  4110. // ggml_repeat_back
  4111. struct ggml_tensor * ggml_repeat_back(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. struct ggml_tensor * b) {
  4115. GGML_ASSERT(ggml_can_repeat(b, a));
  4116. bool is_node = false;
  4117. if (a->grad) {
  4118. is_node = true;
  4119. }
  4120. if (ggml_are_same_shape(a, b) && !is_node) {
  4121. return a;
  4122. }
  4123. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4124. result->op = GGML_OP_REPEAT_BACK;
  4125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4126. result->src[0] = a;
  4127. return result;
  4128. }
  4129. // ggml_concat
  4130. struct ggml_tensor * ggml_concat(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. struct ggml_tensor * b,
  4134. int dim) {
  4135. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4136. int64_t ne[GGML_MAX_DIMS];
  4137. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4138. if (d == dim) {
  4139. ne[d] = a->ne[d] + b->ne[d];
  4140. continue;
  4141. }
  4142. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4143. ne[d] = a->ne[d];
  4144. }
  4145. bool is_node = false;
  4146. if (a->grad || b->grad) {
  4147. is_node = true;
  4148. }
  4149. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4150. ggml_set_op_params_i32(result, 0, dim);
  4151. result->op = GGML_OP_CONCAT;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. // ggml_abs
  4158. struct ggml_tensor * ggml_abs(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4162. }
  4163. struct ggml_tensor * ggml_abs_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4167. }
  4168. // ggml_sgn
  4169. struct ggml_tensor * ggml_sgn(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a) {
  4172. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4173. }
  4174. struct ggml_tensor * ggml_sgn_inplace(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4178. }
  4179. // ggml_neg
  4180. struct ggml_tensor * ggml_neg(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a) {
  4183. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4184. }
  4185. struct ggml_tensor * ggml_neg_inplace(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a) {
  4188. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4189. }
  4190. // ggml_step
  4191. struct ggml_tensor * ggml_step(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4195. }
  4196. struct ggml_tensor * ggml_step_inplace(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a) {
  4199. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4200. }
  4201. // ggml_tanh
  4202. struct ggml_tensor * ggml_tanh(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a) {
  4205. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4206. }
  4207. struct ggml_tensor * ggml_tanh_inplace(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4211. }
  4212. // ggml_elu
  4213. struct ggml_tensor * ggml_elu(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4217. }
  4218. struct ggml_tensor * ggml_elu_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4222. }
  4223. // ggml_relu
  4224. struct ggml_tensor * ggml_relu(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a) {
  4227. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4228. }
  4229. struct ggml_tensor * ggml_relu_inplace(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a) {
  4232. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4233. }
  4234. // ggml_leaky_relu
  4235. struct ggml_tensor * ggml_leaky_relu(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4238. bool is_node = false;
  4239. if (!inplace && (a->grad)) {
  4240. is_node = true;
  4241. }
  4242. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4243. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4244. result->op = GGML_OP_LEAKY_RELU;
  4245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4246. result->src[0] = a;
  4247. return result;
  4248. }
  4249. // ggml_sigmoid
  4250. struct ggml_tensor * ggml_sigmoid(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a) {
  4253. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4254. }
  4255. struct ggml_tensor * ggml_sigmoid_inplace(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a) {
  4258. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4259. }
  4260. // ggml_gelu
  4261. struct ggml_tensor * ggml_gelu(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a) {
  4264. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4265. }
  4266. struct ggml_tensor * ggml_gelu_inplace(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a) {
  4269. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4270. }
  4271. // ggml_gelu_quick
  4272. struct ggml_tensor * ggml_gelu_quick(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4276. }
  4277. struct ggml_tensor * ggml_gelu_quick_inplace(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4281. }
  4282. // ggml_silu
  4283. struct ggml_tensor * ggml_silu(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4287. }
  4288. struct ggml_tensor * ggml_silu_inplace(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a) {
  4291. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4292. }
  4293. // ggml_silu_back
  4294. struct ggml_tensor * ggml_silu_back(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. struct ggml_tensor * b) {
  4298. bool is_node = false;
  4299. if (a->grad || b->grad) {
  4300. // TODO: implement backward
  4301. is_node = true;
  4302. }
  4303. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4304. result->op = GGML_OP_SILU_BACK;
  4305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4306. result->src[0] = a;
  4307. result->src[1] = b;
  4308. return result;
  4309. }
  4310. // ggml hardswish
  4311. struct ggml_tensor * ggml_hardswish(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4315. }
  4316. // ggml hardsigmoid
  4317. struct ggml_tensor * ggml_hardsigmoid(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a) {
  4320. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4321. }
  4322. // ggml_norm
  4323. static struct ggml_tensor * ggml_norm_impl(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. float eps,
  4327. bool inplace) {
  4328. bool is_node = false;
  4329. if (!inplace && (a->grad)) {
  4330. GGML_ASSERT(false); // TODO: implement backward
  4331. is_node = true;
  4332. }
  4333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4334. ggml_set_op_params(result, &eps, sizeof(eps));
  4335. result->op = GGML_OP_NORM;
  4336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4337. result->src[0] = a;
  4338. return result;
  4339. }
  4340. struct ggml_tensor * ggml_norm(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. float eps) {
  4344. return ggml_norm_impl(ctx, a, eps, false);
  4345. }
  4346. struct ggml_tensor * ggml_norm_inplace(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. float eps) {
  4350. return ggml_norm_impl(ctx, a, eps, true);
  4351. }
  4352. // ggml_rms_norm
  4353. static struct ggml_tensor * ggml_rms_norm_impl(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a,
  4356. float eps,
  4357. bool inplace) {
  4358. bool is_node = false;
  4359. if (!inplace && (a->grad)) {
  4360. is_node = true;
  4361. }
  4362. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4363. ggml_set_op_params(result, &eps, sizeof(eps));
  4364. result->op = GGML_OP_RMS_NORM;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src[0] = a;
  4367. return result;
  4368. }
  4369. struct ggml_tensor * ggml_rms_norm(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. float eps) {
  4373. return ggml_rms_norm_impl(ctx, a, eps, false);
  4374. }
  4375. struct ggml_tensor * ggml_rms_norm_inplace(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. float eps) {
  4379. return ggml_rms_norm_impl(ctx, a, eps, true);
  4380. }
  4381. // ggml_rms_norm_back
  4382. struct ggml_tensor * ggml_rms_norm_back(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b,
  4386. float eps) {
  4387. bool is_node = false;
  4388. if (a->grad) {
  4389. // TODO: implement backward
  4390. is_node = true;
  4391. }
  4392. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4393. ggml_set_op_params(result, &eps, sizeof(eps));
  4394. result->op = GGML_OP_RMS_NORM_BACK;
  4395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4396. result->src[0] = a;
  4397. result->src[1] = b;
  4398. return result;
  4399. }
  4400. // ggml_group_norm
  4401. static struct ggml_tensor * ggml_group_norm_impl(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. int n_groups,
  4405. bool inplace) {
  4406. bool is_node = false;
  4407. if (!inplace && (a->grad)) {
  4408. GGML_ASSERT(false); // TODO: implement backward
  4409. is_node = true;
  4410. }
  4411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4412. result->op_params[0] = n_groups;
  4413. result->op = GGML_OP_GROUP_NORM;
  4414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4415. result->src[0] = a;
  4416. return result;
  4417. }
  4418. struct ggml_tensor * ggml_group_norm(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. int n_groups) {
  4422. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4423. }
  4424. struct ggml_tensor * ggml_group_norm_inplace(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. int n_groups) {
  4428. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4429. }
  4430. // ggml_mul_mat
  4431. struct ggml_tensor * ggml_mul_mat(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. struct ggml_tensor * b) {
  4435. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4436. GGML_ASSERT(!ggml_is_transposed(a));
  4437. bool is_node = false;
  4438. if (a->grad || b->grad) {
  4439. is_node = true;
  4440. }
  4441. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4442. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4443. result->op = GGML_OP_MUL_MAT;
  4444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4445. result->src[0] = a;
  4446. result->src[1] = b;
  4447. return result;
  4448. }
  4449. void ggml_mul_mat_set_prec(
  4450. struct ggml_tensor * a,
  4451. enum ggml_prec prec) {
  4452. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4453. const int32_t prec_i32 = (int32_t) prec;
  4454. ggml_set_op_params_i32(a, 0, prec_i32);
  4455. }
  4456. // ggml_mul_mat_id
  4457. /*
  4458. c = ggml_mul_mat_id(ctx, as, b, ids);
  4459. as -> [cols, rows, n_expert]
  4460. ids -> [n_experts_used, n_tokens] (i32)
  4461. b -> [cols, n_expert_used, n_tokens]
  4462. c -> [cols, n_expert_used, n_tokens]
  4463. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4464. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4465. */
  4466. struct ggml_tensor * ggml_mul_mat_id(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * as,
  4469. struct ggml_tensor * b,
  4470. struct ggml_tensor * ids) {
  4471. GGML_ASSERT(!ggml_is_transposed(as));
  4472. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4473. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4474. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4475. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4476. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4477. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4478. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4479. bool is_node = false;
  4480. if (as->grad || b->grad) {
  4481. is_node = true;
  4482. }
  4483. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4484. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4485. result->op = GGML_OP_MUL_MAT_ID;
  4486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4487. result->src[0] = as;
  4488. result->src[1] = b;
  4489. result->src[2] = ids;
  4490. return result;
  4491. }
  4492. // ggml_out_prod
  4493. struct ggml_tensor * ggml_out_prod(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. GGML_ASSERT(ggml_can_out_prod(a, b));
  4498. GGML_ASSERT(!ggml_is_transposed(a));
  4499. bool is_node = false;
  4500. if (a->grad || b->grad) {
  4501. is_node = true;
  4502. }
  4503. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4504. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4505. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4506. result->op = GGML_OP_OUT_PROD;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src[0] = a;
  4509. result->src[1] = b;
  4510. return result;
  4511. }
  4512. // ggml_scale
  4513. static struct ggml_tensor * ggml_scale_impl(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. float s,
  4517. bool inplace) {
  4518. GGML_ASSERT(ggml_is_padded_1d(a));
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. is_node = true;
  4522. }
  4523. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4524. ggml_set_op_params(result, &s, sizeof(s));
  4525. result->op = GGML_OP_SCALE;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. return result;
  4529. }
  4530. struct ggml_tensor * ggml_scale(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. float s) {
  4534. return ggml_scale_impl(ctx, a, s, false);
  4535. }
  4536. struct ggml_tensor * ggml_scale_inplace(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. float s) {
  4540. return ggml_scale_impl(ctx, a, s, true);
  4541. }
  4542. // ggml_set
  4543. static struct ggml_tensor * ggml_set_impl(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. struct ggml_tensor * b,
  4547. size_t nb1,
  4548. size_t nb2,
  4549. size_t nb3,
  4550. size_t offset,
  4551. bool inplace) {
  4552. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4553. bool is_node = false;
  4554. if (a->grad || b->grad) {
  4555. is_node = true;
  4556. }
  4557. // make a view of the destination
  4558. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4559. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4560. ggml_set_op_params(result, params, sizeof(params));
  4561. result->op = GGML_OP_SET;
  4562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4563. result->src[0] = a;
  4564. result->src[1] = b;
  4565. return result;
  4566. }
  4567. struct ggml_tensor * ggml_set(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a,
  4570. struct ggml_tensor * b,
  4571. size_t nb1,
  4572. size_t nb2,
  4573. size_t nb3,
  4574. size_t offset) {
  4575. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4576. }
  4577. struct ggml_tensor * ggml_set_inplace(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a,
  4580. struct ggml_tensor * b,
  4581. size_t nb1,
  4582. size_t nb2,
  4583. size_t nb3,
  4584. size_t offset) {
  4585. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4586. }
  4587. struct ggml_tensor * ggml_set_1d(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b,
  4591. size_t offset) {
  4592. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4593. }
  4594. struct ggml_tensor * ggml_set_1d_inplace(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b,
  4598. size_t offset) {
  4599. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4600. }
  4601. struct ggml_tensor * ggml_set_2d(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. struct ggml_tensor * b,
  4605. size_t nb1,
  4606. size_t offset) {
  4607. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4608. }
  4609. struct ggml_tensor * ggml_set_2d_inplace(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a,
  4612. struct ggml_tensor * b,
  4613. size_t nb1,
  4614. size_t offset) {
  4615. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4616. }
  4617. // ggml_cpy
  4618. static struct ggml_tensor * ggml_cpy_impl(
  4619. struct ggml_context * ctx,
  4620. struct ggml_tensor * a,
  4621. struct ggml_tensor * b) {
  4622. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4623. bool is_node = false;
  4624. if (a->grad || b->grad) {
  4625. // inplace is false and either one have a grad
  4626. is_node = true;
  4627. }
  4628. // make a view of the destination
  4629. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4630. if (strlen(b->name) > 0) {
  4631. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4632. } else {
  4633. ggml_format_name(result, "%s (copy)", a->name);
  4634. }
  4635. result->op = GGML_OP_CPY;
  4636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4637. result->src[0] = a;
  4638. result->src[1] = b;
  4639. return result;
  4640. }
  4641. struct ggml_tensor * ggml_cpy(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b) {
  4645. return ggml_cpy_impl(ctx, a, b);
  4646. }
  4647. struct ggml_tensor * ggml_cast(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a,
  4650. enum ggml_type type) {
  4651. bool is_node = false;
  4652. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4653. ggml_format_name(result, "%s (copy)", a->name);
  4654. result->op = GGML_OP_CPY;
  4655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4656. result->src[0] = a;
  4657. result->src[1] = result;
  4658. return result;
  4659. }
  4660. // ggml_cont
  4661. static struct ggml_tensor * ggml_cont_impl(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a) {
  4664. bool is_node = false;
  4665. if (a->grad) {
  4666. is_node = true;
  4667. }
  4668. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4669. ggml_format_name(result, "%s (cont)", a->name);
  4670. result->op = GGML_OP_CONT;
  4671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4672. result->src[0] = a;
  4673. return result;
  4674. }
  4675. struct ggml_tensor * ggml_cont(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a) {
  4678. return ggml_cont_impl(ctx, a);
  4679. }
  4680. // make contiguous, with new shape
  4681. GGML_API struct ggml_tensor * ggml_cont_1d(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int64_t ne0) {
  4685. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4686. }
  4687. GGML_API struct ggml_tensor * ggml_cont_2d(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. int64_t ne0,
  4691. int64_t ne1) {
  4692. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4693. }
  4694. GGML_API struct ggml_tensor * ggml_cont_3d(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a,
  4697. int64_t ne0,
  4698. int64_t ne1,
  4699. int64_t ne2) {
  4700. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4701. }
  4702. struct ggml_tensor * ggml_cont_4d(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. int64_t ne0,
  4706. int64_t ne1,
  4707. int64_t ne2,
  4708. int64_t ne3) {
  4709. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4710. bool is_node = false;
  4711. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4712. ggml_format_name(result, "%s (cont)", a->name);
  4713. result->op = GGML_OP_CONT;
  4714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4715. result->src[0] = a;
  4716. return result;
  4717. }
  4718. // ggml_reshape
  4719. struct ggml_tensor * ggml_reshape(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a,
  4722. struct ggml_tensor * b) {
  4723. GGML_ASSERT(ggml_is_contiguous(a));
  4724. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4725. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4726. bool is_node = false;
  4727. if (a->grad) {
  4728. is_node = true;
  4729. }
  4730. if (b->grad) {
  4731. // gradient propagation is not supported
  4732. //GGML_ASSERT(false);
  4733. }
  4734. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4735. ggml_format_name(result, "%s (reshaped)", a->name);
  4736. result->op = GGML_OP_RESHAPE;
  4737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4738. result->src[0] = a;
  4739. return result;
  4740. }
  4741. struct ggml_tensor * ggml_reshape_1d(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. int64_t ne0) {
  4745. GGML_ASSERT(ggml_is_contiguous(a));
  4746. GGML_ASSERT(ggml_nelements(a) == ne0);
  4747. bool is_node = false;
  4748. if (a->grad) {
  4749. is_node = true;
  4750. }
  4751. const int64_t ne[1] = { ne0 };
  4752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4753. ggml_format_name(result, "%s (reshaped)", a->name);
  4754. result->op = GGML_OP_RESHAPE;
  4755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4756. result->src[0] = a;
  4757. return result;
  4758. }
  4759. struct ggml_tensor * ggml_reshape_2d(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. int64_t ne0,
  4763. int64_t ne1) {
  4764. GGML_ASSERT(ggml_is_contiguous(a));
  4765. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4766. bool is_node = false;
  4767. if (a->grad) {
  4768. is_node = true;
  4769. }
  4770. const int64_t ne[2] = { ne0, ne1 };
  4771. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4772. ggml_format_name(result, "%s (reshaped)", a->name);
  4773. result->op = GGML_OP_RESHAPE;
  4774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4775. result->src[0] = a;
  4776. return result;
  4777. }
  4778. struct ggml_tensor * ggml_reshape_3d(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. int64_t ne0,
  4782. int64_t ne1,
  4783. int64_t ne2) {
  4784. GGML_ASSERT(ggml_is_contiguous(a));
  4785. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4786. bool is_node = false;
  4787. if (a->grad) {
  4788. is_node = true;
  4789. }
  4790. const int64_t ne[3] = { ne0, ne1, ne2 };
  4791. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4792. ggml_format_name(result, "%s (reshaped)", a->name);
  4793. result->op = GGML_OP_RESHAPE;
  4794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4795. result->src[0] = a;
  4796. return result;
  4797. }
  4798. struct ggml_tensor * ggml_reshape_4d(
  4799. struct ggml_context * ctx,
  4800. struct ggml_tensor * a,
  4801. int64_t ne0,
  4802. int64_t ne1,
  4803. int64_t ne2,
  4804. int64_t ne3) {
  4805. GGML_ASSERT(ggml_is_contiguous(a));
  4806. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4807. bool is_node = false;
  4808. if (a->grad) {
  4809. is_node = true;
  4810. }
  4811. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4812. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4813. ggml_format_name(result, "%s (reshaped)", a->name);
  4814. result->op = GGML_OP_RESHAPE;
  4815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4816. result->src[0] = a;
  4817. return result;
  4818. }
  4819. static struct ggml_tensor * ggml_view_impl(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. int n_dims,
  4823. const int64_t * ne,
  4824. size_t offset) {
  4825. bool is_node = false;
  4826. if (a->grad) {
  4827. is_node = true;
  4828. }
  4829. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4830. ggml_format_name(result, "%s (view)", a->name);
  4831. ggml_set_op_params(result, &offset, sizeof(offset));
  4832. result->op = GGML_OP_VIEW;
  4833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4834. result->src[0] = a;
  4835. return result;
  4836. }
  4837. // ggml_view_1d
  4838. struct ggml_tensor * ggml_view_1d(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. int64_t ne0,
  4842. size_t offset) {
  4843. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4844. return result;
  4845. }
  4846. // ggml_view_2d
  4847. struct ggml_tensor * ggml_view_2d(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. int64_t ne0,
  4851. int64_t ne1,
  4852. size_t nb1,
  4853. size_t offset) {
  4854. const int64_t ne[2] = { ne0, ne1 };
  4855. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4856. result->nb[1] = nb1;
  4857. result->nb[2] = result->nb[1]*ne1;
  4858. result->nb[3] = result->nb[2];
  4859. return result;
  4860. }
  4861. // ggml_view_3d
  4862. struct ggml_tensor * ggml_view_3d(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * a,
  4865. int64_t ne0,
  4866. int64_t ne1,
  4867. int64_t ne2,
  4868. size_t nb1,
  4869. size_t nb2,
  4870. size_t offset) {
  4871. const int64_t ne[3] = { ne0, ne1, ne2 };
  4872. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4873. result->nb[1] = nb1;
  4874. result->nb[2] = nb2;
  4875. result->nb[3] = result->nb[2]*ne2;
  4876. return result;
  4877. }
  4878. // ggml_view_4d
  4879. struct ggml_tensor * ggml_view_4d(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. int64_t ne0,
  4883. int64_t ne1,
  4884. int64_t ne2,
  4885. int64_t ne3,
  4886. size_t nb1,
  4887. size_t nb2,
  4888. size_t nb3,
  4889. size_t offset) {
  4890. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4891. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4892. result->nb[1] = nb1;
  4893. result->nb[2] = nb2;
  4894. result->nb[3] = nb3;
  4895. return result;
  4896. }
  4897. // ggml_permute
  4898. struct ggml_tensor * ggml_permute(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. int axis0,
  4902. int axis1,
  4903. int axis2,
  4904. int axis3) {
  4905. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4906. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4907. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4908. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4909. GGML_ASSERT(axis0 != axis1);
  4910. GGML_ASSERT(axis0 != axis2);
  4911. GGML_ASSERT(axis0 != axis3);
  4912. GGML_ASSERT(axis1 != axis2);
  4913. GGML_ASSERT(axis1 != axis3);
  4914. GGML_ASSERT(axis2 != axis3);
  4915. bool is_node = false;
  4916. if (a->grad) {
  4917. is_node = true;
  4918. }
  4919. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4920. ggml_format_name(result, "%s (permuted)", a->name);
  4921. int ne[GGML_MAX_DIMS];
  4922. int nb[GGML_MAX_DIMS];
  4923. ne[axis0] = a->ne[0];
  4924. ne[axis1] = a->ne[1];
  4925. ne[axis2] = a->ne[2];
  4926. ne[axis3] = a->ne[3];
  4927. nb[axis0] = a->nb[0];
  4928. nb[axis1] = a->nb[1];
  4929. nb[axis2] = a->nb[2];
  4930. nb[axis3] = a->nb[3];
  4931. result->ne[0] = ne[0];
  4932. result->ne[1] = ne[1];
  4933. result->ne[2] = ne[2];
  4934. result->ne[3] = ne[3];
  4935. result->nb[0] = nb[0];
  4936. result->nb[1] = nb[1];
  4937. result->nb[2] = nb[2];
  4938. result->nb[3] = nb[3];
  4939. result->op = GGML_OP_PERMUTE;
  4940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4941. result->src[0] = a;
  4942. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4943. ggml_set_op_params(result, params, sizeof(params));
  4944. return result;
  4945. }
  4946. // ggml_transpose
  4947. struct ggml_tensor * ggml_transpose(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a) {
  4950. bool is_node = false;
  4951. if (a->grad) {
  4952. is_node = true;
  4953. }
  4954. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4955. ggml_format_name(result, "%s (transposed)", a->name);
  4956. result->ne[0] = a->ne[1];
  4957. result->ne[1] = a->ne[0];
  4958. result->nb[0] = a->nb[1];
  4959. result->nb[1] = a->nb[0];
  4960. result->op = GGML_OP_TRANSPOSE;
  4961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4962. result->src[0] = a;
  4963. return result;
  4964. }
  4965. // ggml_get_rows
  4966. struct ggml_tensor * ggml_get_rows(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. struct ggml_tensor * b) {
  4970. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4971. GGML_ASSERT(b->ne[3] == 1);
  4972. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4973. bool is_node = false;
  4974. if (a->grad || b->grad) {
  4975. is_node = true;
  4976. }
  4977. // TODO: implement non F32 return
  4978. enum ggml_type type = GGML_TYPE_F32;
  4979. if (a->type == GGML_TYPE_I32) {
  4980. type = a->type;
  4981. }
  4982. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4983. result->op = GGML_OP_GET_ROWS;
  4984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4985. result->src[0] = a;
  4986. result->src[1] = b;
  4987. return result;
  4988. }
  4989. // ggml_get_rows_back
  4990. struct ggml_tensor * ggml_get_rows_back(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. struct ggml_tensor * b,
  4994. struct ggml_tensor * c) {
  4995. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4996. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4997. bool is_node = false;
  4998. if (a->grad || b->grad) {
  4999. is_node = true;
  5000. }
  5001. // TODO: implement non F32 return
  5002. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5003. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5004. result->op = GGML_OP_GET_ROWS_BACK;
  5005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5006. result->src[0] = a;
  5007. result->src[1] = b;
  5008. return result;
  5009. }
  5010. // ggml_diag
  5011. struct ggml_tensor * ggml_diag(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a) {
  5014. GGML_ASSERT(a->ne[1] == 1);
  5015. bool is_node = false;
  5016. if (a->grad) {
  5017. is_node = true;
  5018. }
  5019. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5020. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5021. result->op = GGML_OP_DIAG;
  5022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5023. result->src[0] = a;
  5024. return result;
  5025. }
  5026. // ggml_diag_mask_inf
  5027. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. int n_past,
  5031. bool inplace) {
  5032. bool is_node = false;
  5033. if (a->grad) {
  5034. is_node = true;
  5035. }
  5036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5037. int32_t params[] = { n_past };
  5038. ggml_set_op_params(result, params, sizeof(params));
  5039. result->op = GGML_OP_DIAG_MASK_INF;
  5040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5041. result->src[0] = a;
  5042. return result;
  5043. }
  5044. struct ggml_tensor * ggml_diag_mask_inf(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. int n_past) {
  5048. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5049. }
  5050. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. int n_past) {
  5054. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5055. }
  5056. // ggml_diag_mask_zero
  5057. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. int n_past,
  5061. bool inplace) {
  5062. bool is_node = false;
  5063. if (a->grad) {
  5064. is_node = true;
  5065. }
  5066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5067. int32_t params[] = { n_past };
  5068. ggml_set_op_params(result, params, sizeof(params));
  5069. result->op = GGML_OP_DIAG_MASK_ZERO;
  5070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5071. result->src[0] = a;
  5072. return result;
  5073. }
  5074. struct ggml_tensor * ggml_diag_mask_zero(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int n_past) {
  5078. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5079. }
  5080. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. int n_past) {
  5084. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5085. }
  5086. // ggml_soft_max
  5087. static struct ggml_tensor * ggml_soft_max_impl(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. struct ggml_tensor * mask,
  5091. float scale,
  5092. float max_bias,
  5093. bool inplace) {
  5094. GGML_ASSERT(ggml_is_contiguous(a));
  5095. if (mask) {
  5096. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5097. GGML_ASSERT(ggml_is_contiguous(mask));
  5098. GGML_ASSERT(ggml_is_matrix(mask));
  5099. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5100. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5101. }
  5102. if (max_bias > 0.0f) {
  5103. GGML_ASSERT(mask);
  5104. }
  5105. bool is_node = false;
  5106. if (a->grad) {
  5107. is_node = true;
  5108. }
  5109. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5110. float params[] = { scale, max_bias };
  5111. ggml_set_op_params(result, params, sizeof(params));
  5112. result->op = GGML_OP_SOFT_MAX;
  5113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5114. result->src[0] = a;
  5115. result->src[1] = mask;
  5116. return result;
  5117. }
  5118. struct ggml_tensor * ggml_soft_max(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a) {
  5121. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5122. }
  5123. struct ggml_tensor * ggml_soft_max_inplace(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a) {
  5126. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5127. }
  5128. struct ggml_tensor * ggml_soft_max_ext(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. struct ggml_tensor * mask,
  5132. float scale,
  5133. float max_bias) {
  5134. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5135. }
  5136. // ggml_soft_max_back
  5137. static struct ggml_tensor * ggml_soft_max_back_impl(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. struct ggml_tensor * b,
  5141. bool inplace) {
  5142. bool is_node = false;
  5143. if (a->grad || b->grad) {
  5144. is_node = true; // TODO : implement backward pass
  5145. }
  5146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5147. result->op = GGML_OP_SOFT_MAX_BACK;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src[0] = a;
  5150. result->src[1] = b;
  5151. return result;
  5152. }
  5153. struct ggml_tensor * ggml_soft_max_back(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b) {
  5157. return ggml_soft_max_back_impl(ctx, a, b, false);
  5158. }
  5159. struct ggml_tensor * ggml_soft_max_back_inplace(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. struct ggml_tensor * b) {
  5163. return ggml_soft_max_back_impl(ctx, a, b, true);
  5164. }
  5165. // ggml_rope
  5166. static struct ggml_tensor * ggml_rope_impl(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. struct ggml_tensor * b,
  5170. struct ggml_tensor * c,
  5171. int n_dims,
  5172. int mode,
  5173. int n_ctx_orig,
  5174. float freq_base,
  5175. float freq_scale,
  5176. float ext_factor,
  5177. float attn_factor,
  5178. float beta_fast,
  5179. float beta_slow,
  5180. bool inplace) {
  5181. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5182. GGML_ASSERT(ggml_is_vector(b));
  5183. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5184. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5185. if (c) {
  5186. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5187. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5188. }
  5189. bool is_node = false;
  5190. if (a->grad) {
  5191. is_node = true;
  5192. }
  5193. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5194. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5195. memcpy(params + 5, &freq_base, sizeof(float));
  5196. memcpy(params + 6, &freq_scale, sizeof(float));
  5197. memcpy(params + 7, &ext_factor, sizeof(float));
  5198. memcpy(params + 8, &attn_factor, sizeof(float));
  5199. memcpy(params + 9, &beta_fast, sizeof(float));
  5200. memcpy(params + 10, &beta_slow, sizeof(float));
  5201. ggml_set_op_params(result, params, sizeof(params));
  5202. result->op = GGML_OP_ROPE;
  5203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5204. result->src[0] = a;
  5205. result->src[1] = b;
  5206. result->src[2] = c;
  5207. return result;
  5208. }
  5209. struct ggml_tensor * ggml_rope(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. struct ggml_tensor * b,
  5213. int n_dims,
  5214. int mode) {
  5215. return ggml_rope_impl(
  5216. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5217. );
  5218. }
  5219. struct ggml_tensor * ggml_rope_inplace(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. struct ggml_tensor * b,
  5223. int n_dims,
  5224. int mode) {
  5225. return ggml_rope_impl(
  5226. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5227. );
  5228. }
  5229. struct ggml_tensor * ggml_rope_ext(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. struct ggml_tensor * b,
  5233. struct ggml_tensor * c,
  5234. int n_dims,
  5235. int mode,
  5236. int n_ctx_orig,
  5237. float freq_base,
  5238. float freq_scale,
  5239. float ext_factor,
  5240. float attn_factor,
  5241. float beta_fast,
  5242. float beta_slow) {
  5243. return ggml_rope_impl(
  5244. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5245. ext_factor, attn_factor, beta_fast, beta_slow, false
  5246. );
  5247. }
  5248. struct ggml_tensor * ggml_rope_ext_inplace(
  5249. struct ggml_context * ctx,
  5250. struct ggml_tensor * a,
  5251. struct ggml_tensor * b,
  5252. struct ggml_tensor * c,
  5253. int n_dims,
  5254. int mode,
  5255. int n_ctx_orig,
  5256. float freq_base,
  5257. float freq_scale,
  5258. float ext_factor,
  5259. float attn_factor,
  5260. float beta_fast,
  5261. float beta_slow) {
  5262. return ggml_rope_impl(
  5263. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5264. ext_factor, attn_factor, beta_fast, beta_slow, true
  5265. );
  5266. }
  5267. struct ggml_tensor * ggml_rope_custom(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b,
  5271. int n_dims,
  5272. int mode,
  5273. int n_ctx_orig,
  5274. float freq_base,
  5275. float freq_scale,
  5276. float ext_factor,
  5277. float attn_factor,
  5278. float beta_fast,
  5279. float beta_slow) {
  5280. return ggml_rope_impl(
  5281. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5282. ext_factor, attn_factor, beta_fast, beta_slow, false
  5283. );
  5284. }
  5285. struct ggml_tensor * ggml_rope_custom_inplace(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. struct ggml_tensor * b,
  5289. int n_dims,
  5290. int mode,
  5291. int n_ctx_orig,
  5292. float freq_base,
  5293. float freq_scale,
  5294. float ext_factor,
  5295. float attn_factor,
  5296. float beta_fast,
  5297. float beta_slow) {
  5298. return ggml_rope_impl(
  5299. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5300. ext_factor, attn_factor, beta_fast, beta_slow, true
  5301. );
  5302. }
  5303. // ggml_rope_back
  5304. struct ggml_tensor * ggml_rope_back(
  5305. struct ggml_context * ctx,
  5306. struct ggml_tensor * a,
  5307. struct ggml_tensor * b,
  5308. struct ggml_tensor * c,
  5309. int n_dims,
  5310. int mode,
  5311. int n_ctx_orig,
  5312. float freq_base,
  5313. float freq_scale,
  5314. float ext_factor,
  5315. float attn_factor,
  5316. float beta_fast,
  5317. float beta_slow) {
  5318. GGML_ASSERT(ggml_is_vector(b));
  5319. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5320. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5321. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5322. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5323. bool is_node = false;
  5324. if (a->grad) {
  5325. is_node = false; // TODO: implement backward
  5326. }
  5327. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5328. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5329. memcpy(params + 5, &freq_base, sizeof(float));
  5330. memcpy(params + 6, &freq_scale, sizeof(float));
  5331. memcpy(params + 7, &ext_factor, sizeof(float));
  5332. memcpy(params + 8, &attn_factor, sizeof(float));
  5333. memcpy(params + 9, &beta_fast, sizeof(float));
  5334. memcpy(params + 10, &beta_slow, sizeof(float));
  5335. ggml_set_op_params(result, params, sizeof(params));
  5336. result->op = GGML_OP_ROPE_BACK;
  5337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5338. result->src[0] = a;
  5339. result->src[1] = b;
  5340. return result;
  5341. }
  5342. // ggml_clamp
  5343. struct ggml_tensor * ggml_clamp(
  5344. struct ggml_context * ctx,
  5345. struct ggml_tensor * a,
  5346. float min,
  5347. float max) {
  5348. bool is_node = false;
  5349. if (a->grad) {
  5350. GGML_ASSERT(false); // TODO: implement backward
  5351. is_node = true;
  5352. }
  5353. // TODO: when implement backward, fix this:
  5354. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5355. float params[] = { min, max };
  5356. ggml_set_op_params(result, params, sizeof(params));
  5357. result->op = GGML_OP_CLAMP;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. return result;
  5361. }
  5362. // ggml_conv_1d
  5363. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5364. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5365. }
  5366. GGML_API struct ggml_tensor * ggml_conv_1d(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a,
  5369. struct ggml_tensor * b,
  5370. int s0,
  5371. int p0,
  5372. int d0) {
  5373. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5374. struct ggml_tensor * result =
  5375. ggml_mul_mat(ctx,
  5376. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5377. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5378. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5379. return result;
  5380. }
  5381. // ggml_conv_1d_ph
  5382. struct ggml_tensor* ggml_conv_1d_ph(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. struct ggml_tensor * b,
  5386. int s,
  5387. int d) {
  5388. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5389. }
  5390. // ggml_conv_transpose_1d
  5391. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5392. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5393. }
  5394. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5395. struct ggml_context * ctx,
  5396. struct ggml_tensor * a,
  5397. struct ggml_tensor * b,
  5398. int s0,
  5399. int p0,
  5400. int d0) {
  5401. GGML_ASSERT(ggml_is_matrix(b));
  5402. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5403. GGML_ASSERT(a->ne[3] == 1);
  5404. GGML_ASSERT(p0 == 0);
  5405. GGML_ASSERT(d0 == 1);
  5406. bool is_node = false;
  5407. if (a->grad || b->grad) {
  5408. GGML_ASSERT(false); // TODO: implement backward
  5409. is_node = true;
  5410. }
  5411. const int64_t ne[4] = {
  5412. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5413. a->ne[1], b->ne[2], 1,
  5414. };
  5415. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5416. int32_t params[] = { s0, p0, d0 };
  5417. ggml_set_op_params(result, params, sizeof(params));
  5418. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5420. result->src[0] = a;
  5421. result->src[1] = b;
  5422. return result;
  5423. }
  5424. // ggml_conv_depthwise
  5425. struct ggml_tensor * ggml_conv_depthwise_2d(
  5426. struct ggml_context * ctx,
  5427. struct ggml_tensor * a,
  5428. struct ggml_tensor * b,
  5429. int s0,
  5430. int s1,
  5431. int p0,
  5432. int p1,
  5433. int d0,
  5434. int d1) {
  5435. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5436. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5437. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5438. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5439. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5440. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5441. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5442. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5443. return result;
  5444. }
  5445. // ggml_conv_2d
  5446. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5447. // a: [OC,IC, KH, KW]
  5448. // b: [N, IC, IH, IW]
  5449. // result: [N, OH, OW, IC*KH*KW]
  5450. struct ggml_tensor * ggml_im2col(
  5451. struct ggml_context * ctx,
  5452. struct ggml_tensor * a,
  5453. struct ggml_tensor * b,
  5454. int s0,
  5455. int s1,
  5456. int p0,
  5457. int p1,
  5458. int d0,
  5459. int d1,
  5460. bool is_2D,
  5461. enum ggml_type dst_type) {
  5462. if(is_2D) {
  5463. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5464. } else {
  5465. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5466. }
  5467. bool is_node = false;
  5468. if (a->grad || b->grad) {
  5469. GGML_ASSERT(false); // TODO: implement backward
  5470. is_node = true;
  5471. }
  5472. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5473. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5474. const int64_t ne[4] = {
  5475. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5476. OW,
  5477. is_2D ? OH : b->ne[2],
  5478. is_2D ? b->ne[3] : 1,
  5479. };
  5480. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5481. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5482. ggml_set_op_params(result, params, sizeof(params));
  5483. result->op = GGML_OP_IM2COL;
  5484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5485. result->src[0] = a;
  5486. result->src[1] = b;
  5487. return result;
  5488. }
  5489. // a: [OC,IC, KH, KW]
  5490. // b: [N, IC, IH, IW]
  5491. // result: [N, OC, OH, OW]
  5492. struct ggml_tensor * ggml_conv_2d(
  5493. struct ggml_context * ctx,
  5494. struct ggml_tensor * a,
  5495. struct ggml_tensor * b,
  5496. int s0,
  5497. int s1,
  5498. int p0,
  5499. int p1,
  5500. int d0,
  5501. int d1) {
  5502. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5503. struct ggml_tensor * result =
  5504. ggml_mul_mat(ctx,
  5505. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5506. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5507. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5508. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5509. return result;
  5510. }
  5511. // ggml_conv_2d_sk_p0
  5512. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b) {
  5516. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5517. }
  5518. // ggml_conv_2d_s1_ph
  5519. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a,
  5522. struct ggml_tensor * b) {
  5523. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5524. }
  5525. // ggml_conv_transpose_2d_p0
  5526. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5527. return (ins - 1) * s - 2 * p + ks;
  5528. }
  5529. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. int stride) {
  5534. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5535. bool is_node = false;
  5536. if (a->grad || b->grad) {
  5537. GGML_ASSERT(false); // TODO: implement backward
  5538. is_node = true;
  5539. }
  5540. const int64_t ne[4] = {
  5541. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5542. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5543. a->ne[2], b->ne[3],
  5544. };
  5545. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5546. ggml_set_op_params_i32(result, 0, stride);
  5547. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5549. result->src[0] = a;
  5550. result->src[1] = b;
  5551. return result;
  5552. }
  5553. // ggml_pool_*
  5554. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5555. return (ins + 2 * p - ks) / s + 1;
  5556. }
  5557. // ggml_pool_1d
  5558. struct ggml_tensor * ggml_pool_1d(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. enum ggml_op_pool op,
  5562. int k0,
  5563. int s0,
  5564. int p0) {
  5565. bool is_node = false;
  5566. if (a->grad) {
  5567. GGML_ASSERT(false); // TODO: implement backward
  5568. is_node = true;
  5569. }
  5570. const int64_t ne[4] = {
  5571. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5572. a->ne[1],
  5573. a->ne[2],
  5574. a->ne[3],
  5575. };
  5576. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5577. int32_t params[] = { op, k0, s0, p0 };
  5578. ggml_set_op_params(result, params, sizeof(params));
  5579. result->op = GGML_OP_POOL_1D;
  5580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5581. result->src[0] = a;
  5582. return result;
  5583. }
  5584. // ggml_pool_2d
  5585. struct ggml_tensor * ggml_pool_2d(
  5586. struct ggml_context * ctx,
  5587. struct ggml_tensor * a,
  5588. enum ggml_op_pool op,
  5589. int k0,
  5590. int k1,
  5591. int s0,
  5592. int s1,
  5593. float p0,
  5594. float p1) {
  5595. bool is_node = false;
  5596. if (a->grad) {
  5597. GGML_ASSERT(false); // TODO: implement backward
  5598. is_node = true;
  5599. }
  5600. struct ggml_tensor * result;
  5601. const int64_t ne[3] = {
  5602. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5603. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5604. a->ne[2],
  5605. };
  5606. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5607. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5608. ggml_set_op_params(result, params, sizeof(params));
  5609. result->op = GGML_OP_POOL_2D;
  5610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5611. result->src[0] = a;
  5612. return result;
  5613. }
  5614. // ggml_upscale
  5615. static struct ggml_tensor * ggml_upscale_impl(
  5616. struct ggml_context * ctx,
  5617. struct ggml_tensor * a,
  5618. int ne0,
  5619. int ne1,
  5620. int ne2,
  5621. int ne3) {
  5622. bool is_node = false;
  5623. if (a->grad) {
  5624. GGML_ASSERT(false); // TODO: implement backward
  5625. is_node = true;
  5626. }
  5627. GGML_ASSERT(a->ne[0] <= ne0);
  5628. GGML_ASSERT(a->ne[1] <= ne1);
  5629. GGML_ASSERT(a->ne[2] <= ne2);
  5630. GGML_ASSERT(a->ne[3] <= ne3);
  5631. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5632. ne0,
  5633. ne1,
  5634. ne2,
  5635. ne3
  5636. );
  5637. result->op = GGML_OP_UPSCALE;
  5638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5639. result->src[0] = a;
  5640. return result;
  5641. }
  5642. struct ggml_tensor * ggml_upscale(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * a,
  5645. int scale_factor) {
  5646. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5647. }
  5648. struct ggml_tensor * ggml_upscale_ext(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. int ne0,
  5652. int ne1,
  5653. int ne2,
  5654. int ne3) {
  5655. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5656. }
  5657. // ggml_pad
  5658. struct ggml_tensor * ggml_pad(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. int p0, int p1, int p2, int p3) {
  5662. bool is_node = false;
  5663. if (a->grad) {
  5664. GGML_ASSERT(false); // TODO: implement backward
  5665. is_node = true;
  5666. }
  5667. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5668. a->ne[0] + p0,
  5669. a->ne[1] + p1,
  5670. a->ne[2] + p2,
  5671. a->ne[3] + p3);
  5672. result->op = GGML_OP_PAD;
  5673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5674. result->src[0] = a;
  5675. return result;
  5676. }
  5677. // ggml_arange
  5678. struct ggml_tensor * ggml_arange(
  5679. struct ggml_context * ctx,
  5680. float start,
  5681. float stop,
  5682. float step) {
  5683. GGML_ASSERT(stop > start);
  5684. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5685. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5686. result->op = GGML_OP_ARANGE;
  5687. ggml_set_op_params_f32(result, 0, start);
  5688. ggml_set_op_params_f32(result, 1, stop);
  5689. ggml_set_op_params_f32(result, 2, step);
  5690. return result;
  5691. }
  5692. // ggml_timestep_embedding
  5693. struct ggml_tensor * ggml_timestep_embedding(
  5694. struct ggml_context * ctx,
  5695. struct ggml_tensor * timesteps,
  5696. int dim,
  5697. int max_period) {
  5698. bool is_node = false;
  5699. if (timesteps->grad) {
  5700. GGML_ASSERT(false); // TODO: implement backward
  5701. is_node = true;
  5702. }
  5703. int actual_dim = dim;
  5704. if (dim % 2 != 0) {
  5705. actual_dim = dim + 1;
  5706. }
  5707. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5708. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5709. ggml_set_op_params_i32(result, 0, dim);
  5710. ggml_set_op_params_i32(result, 1, max_period);
  5711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5712. result->src[0] = timesteps;
  5713. return result;
  5714. }
  5715. // ggml_argsort
  5716. struct ggml_tensor * ggml_argsort(
  5717. struct ggml_context * ctx,
  5718. struct ggml_tensor * a,
  5719. enum ggml_sort_order order) {
  5720. bool is_node = false;
  5721. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5722. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5723. result->op = GGML_OP_ARGSORT;
  5724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5725. result->src[0] = a;
  5726. return result;
  5727. }
  5728. // ggml_top_k
  5729. struct ggml_tensor * ggml_top_k(
  5730. struct ggml_context * ctx,
  5731. struct ggml_tensor * a,
  5732. int k) {
  5733. GGML_ASSERT(a->ne[0] >= k);
  5734. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5735. result = ggml_view_4d(ctx, result,
  5736. k, result->ne[1], result->ne[2], result->ne[3],
  5737. result->nb[1], result->nb[2], result->nb[3],
  5738. 0);
  5739. return result;
  5740. }
  5741. // ggml_flash_attn_ext
  5742. struct ggml_tensor * ggml_flash_attn_ext(
  5743. struct ggml_context * ctx,
  5744. struct ggml_tensor * q,
  5745. struct ggml_tensor * k,
  5746. struct ggml_tensor * v,
  5747. struct ggml_tensor * mask,
  5748. float scale,
  5749. float max_bias) {
  5750. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5751. // TODO: check if vT can be multiplied by (k*qT)
  5752. if (mask) {
  5753. GGML_ASSERT(ggml_is_contiguous(mask));
  5754. GGML_ASSERT(mask->ne[2] == 1);
  5755. GGML_ASSERT(mask->ne[3] == 1);
  5756. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5757. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5758. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5759. }
  5760. if (max_bias > 0.0f) {
  5761. GGML_ASSERT(mask);
  5762. }
  5763. bool is_node = false;
  5764. if (q->grad || k->grad || v->grad) {
  5765. is_node = true;
  5766. }
  5767. // permute(0, 2, 1, 3)
  5768. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5769. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5770. float params[] = { scale, max_bias };
  5771. ggml_set_op_params(result, params, sizeof(params));
  5772. result->op = GGML_OP_FLASH_ATTN_EXT;
  5773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5774. result->src[0] = q;
  5775. result->src[1] = k;
  5776. result->src[2] = v;
  5777. result->src[3] = mask;
  5778. return result;
  5779. }
  5780. void ggml_flash_attn_ext_set_prec(
  5781. struct ggml_tensor * a,
  5782. enum ggml_prec prec) {
  5783. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5784. const int32_t prec_i32 = (int32_t) prec;
  5785. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5786. }
  5787. // ggml_flash_attn_back
  5788. struct ggml_tensor * ggml_flash_attn_back(
  5789. struct ggml_context * ctx,
  5790. struct ggml_tensor * q,
  5791. struct ggml_tensor * k,
  5792. struct ggml_tensor * v,
  5793. struct ggml_tensor * d,
  5794. bool masked) {
  5795. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5796. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5797. // TODO: check if vT can be multiplied by (k*qT)
  5798. // d shape [D,N,ne2,ne3]
  5799. // q shape [D,N,ne2,ne3]
  5800. // k shape [D,M,kvne2,ne3]
  5801. // v shape [M,D,kvne2,ne3]
  5802. const int64_t D = q->ne[0];
  5803. const int64_t N = q->ne[1];
  5804. const int64_t M = k->ne[1];
  5805. const int64_t ne2 = q->ne[2];
  5806. const int64_t ne3 = q->ne[3];
  5807. const int64_t kvne2 = k->ne[2];
  5808. GGML_ASSERT(k->ne[0] == D);
  5809. GGML_ASSERT(v->ne[0] == M);
  5810. GGML_ASSERT(v->ne[1] == D);
  5811. GGML_ASSERT(d->ne[0] == D);
  5812. GGML_ASSERT(d->ne[1] == N);
  5813. GGML_ASSERT(k->ne[2] == kvne2);
  5814. GGML_ASSERT(k->ne[3] == ne3);
  5815. GGML_ASSERT(v->ne[2] == kvne2);
  5816. GGML_ASSERT(v->ne[3] == ne3);
  5817. GGML_ASSERT(d->ne[2] == ne2);
  5818. GGML_ASSERT(d->ne[3] == ne3);
  5819. GGML_ASSERT(ne2 % kvne2 == 0);
  5820. bool is_node = false;
  5821. if (q->grad || k->grad || v->grad) {
  5822. // when using this operation (in backwards pass) these grads are set.
  5823. // we don't want to create (big) grad of our result, so is_node is false.
  5824. is_node = false;
  5825. }
  5826. // store gradients of q, k and v as continuous tensors concatenated in result.
  5827. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5828. const int64_t elem_q = ggml_nelements(q);
  5829. const int64_t elem_k = ggml_nelements(k);
  5830. const int64_t elem_v = ggml_nelements(v);
  5831. enum ggml_type result_type = GGML_TYPE_F32;
  5832. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5833. const size_t tsize = ggml_type_size(result_type);
  5834. const size_t offs_q = 0;
  5835. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5836. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5837. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5838. const size_t nelements = (end + tsize - 1)/tsize;
  5839. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5840. int32_t masked_i = masked ? 1 : 0;
  5841. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5842. result->op = GGML_OP_FLASH_ATTN_BACK;
  5843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5844. result->src[0] = q;
  5845. result->src[1] = k;
  5846. result->src[2] = v;
  5847. result->src[3] = d;
  5848. return result;
  5849. }
  5850. // ggml_ssm_conv
  5851. struct ggml_tensor * ggml_ssm_conv(
  5852. struct ggml_context * ctx,
  5853. struct ggml_tensor * s,
  5854. struct ggml_tensor * x,
  5855. struct ggml_tensor * c,
  5856. struct ggml_tensor * sq) {
  5857. GGML_ASSERT(ggml_is_3d(s));
  5858. GGML_ASSERT(ggml_is_matrix(x));
  5859. GGML_ASSERT(ggml_is_matrix(c));
  5860. GGML_ASSERT(ggml_is_matrix(sq));
  5861. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5862. const int64_t d_conv = c->ne[0];
  5863. const int64_t d_inner = c->ne[1];
  5864. const int64_t n_tokens = x->ne[1];
  5865. const int64_t n_kv = s->ne[2];
  5866. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5867. GGML_ASSERT( s->ne[1] == d_inner);
  5868. GGML_ASSERT( x->ne[0] == d_inner);
  5869. GGML_ASSERT(sq->ne[0] == n_kv);
  5870. GGML_ASSERT(sq->ne[1] == n_tokens);
  5871. bool is_node = false;
  5872. if (s->grad || x->grad || c->grad || sq->grad) {
  5873. GGML_ASSERT(false); // TODO: implement
  5874. is_node = true;
  5875. }
  5876. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5877. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5878. result->op = GGML_OP_SSM_CONV;
  5879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5880. result->src[0] = s;
  5881. result->src[1] = x;
  5882. result->src[2] = c;
  5883. result->src[3] = sq;
  5884. return result;
  5885. }
  5886. // ggml_ssm_scan
  5887. struct ggml_tensor * ggml_ssm_scan(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * s,
  5890. struct ggml_tensor * x,
  5891. struct ggml_tensor * dt,
  5892. struct ggml_tensor * A,
  5893. struct ggml_tensor * B,
  5894. struct ggml_tensor * C,
  5895. struct ggml_tensor * sq) {
  5896. GGML_ASSERT(ggml_is_contiguous(s));
  5897. GGML_ASSERT(ggml_is_contiguous(x));
  5898. GGML_ASSERT(ggml_is_contiguous(dt));
  5899. GGML_ASSERT(ggml_is_contiguous(A));
  5900. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5901. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5902. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5903. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5904. {
  5905. const int64_t d_state = s->ne[0];
  5906. const int64_t d_inner = s->ne[1];
  5907. const int64_t n_tokens = x->ne[1];
  5908. GGML_ASSERT(x->ne[0] == d_inner);
  5909. GGML_ASSERT(A->ne[0] == d_state);
  5910. GGML_ASSERT(A->ne[1] == d_inner);
  5911. GGML_ASSERT(B->ne[0] == d_state);
  5912. GGML_ASSERT(B->ne[1] == n_tokens);
  5913. GGML_ASSERT(C->ne[0] == d_state);
  5914. GGML_ASSERT(C->ne[1] == n_tokens);
  5915. }
  5916. bool is_node = false;
  5917. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5918. GGML_ASSERT(false); // TODO: implement
  5919. is_node = true;
  5920. }
  5921. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5922. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5923. result->op = GGML_OP_SSM_SCAN;
  5924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5925. result->src[0] = s;
  5926. result->src[1] = x;
  5927. result->src[2] = dt;
  5928. result->src[3] = A;
  5929. result->src[4] = B;
  5930. result->src[5] = C;
  5931. result->src[6] = sq;
  5932. return result;
  5933. }
  5934. // ggml_win_part
  5935. struct ggml_tensor * ggml_win_part(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. int w) {
  5939. GGML_ASSERT(a->ne[3] == 1);
  5940. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5941. bool is_node = false;
  5942. if (a->grad) {
  5943. GGML_ASSERT(false); // TODO: implement backward
  5944. is_node = true;
  5945. }
  5946. // padding
  5947. const int px = (w - a->ne[1]%w)%w;
  5948. const int py = (w - a->ne[2]%w)%w;
  5949. const int npx = (px + a->ne[1])/w;
  5950. const int npy = (py + a->ne[2])/w;
  5951. const int np = npx*npy;
  5952. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5953. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5954. int32_t params[] = { npx, npy, w };
  5955. ggml_set_op_params(result, params, sizeof(params));
  5956. result->op = GGML_OP_WIN_PART;
  5957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5958. result->src[0] = a;
  5959. return result;
  5960. }
  5961. // ggml_win_unpart
  5962. struct ggml_tensor * ggml_win_unpart(
  5963. struct ggml_context * ctx,
  5964. struct ggml_tensor * a,
  5965. int w0,
  5966. int h0,
  5967. int w) {
  5968. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5969. bool is_node = false;
  5970. if (a->grad) {
  5971. GGML_ASSERT(false); // TODO: implement backward
  5972. is_node = true;
  5973. }
  5974. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5975. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5976. int32_t params[] = { w };
  5977. ggml_set_op_params(result, params, sizeof(params));
  5978. result->op = GGML_OP_WIN_UNPART;
  5979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5980. result->src[0] = a;
  5981. return result;
  5982. }
  5983. // ggml_get_rel_pos
  5984. struct ggml_tensor * ggml_get_rel_pos(
  5985. struct ggml_context * ctx,
  5986. struct ggml_tensor * a,
  5987. int qh,
  5988. int kh) {
  5989. GGML_ASSERT(qh == kh);
  5990. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5991. bool is_node = false;
  5992. if (a->grad) {
  5993. GGML_ASSERT(false); // TODO: implement backward
  5994. is_node = true;
  5995. }
  5996. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5997. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5998. result->op = GGML_OP_GET_REL_POS;
  5999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6000. result->src[0] = a;
  6001. return result;
  6002. }
  6003. // ggml_add_rel_pos
  6004. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6005. struct ggml_context * ctx,
  6006. struct ggml_tensor * a,
  6007. struct ggml_tensor * pw,
  6008. struct ggml_tensor * ph,
  6009. bool inplace) {
  6010. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6011. GGML_ASSERT(ggml_is_contiguous(a));
  6012. GGML_ASSERT(ggml_is_contiguous(pw));
  6013. GGML_ASSERT(ggml_is_contiguous(ph));
  6014. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6015. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6016. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6017. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6018. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6019. bool is_node = false;
  6020. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6021. is_node = true;
  6022. }
  6023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6024. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6025. result->op = GGML_OP_ADD_REL_POS;
  6026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6027. result->src[0] = a;
  6028. result->src[1] = pw;
  6029. result->src[2] = ph;
  6030. return result;
  6031. }
  6032. struct ggml_tensor * ggml_add_rel_pos(
  6033. struct ggml_context * ctx,
  6034. struct ggml_tensor * a,
  6035. struct ggml_tensor * pw,
  6036. struct ggml_tensor * ph) {
  6037. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6038. }
  6039. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6040. struct ggml_context * ctx,
  6041. struct ggml_tensor * a,
  6042. struct ggml_tensor * pw,
  6043. struct ggml_tensor * ph) {
  6044. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6045. }
  6046. // ggml_unary
  6047. static struct ggml_tensor * ggml_unary_impl(
  6048. struct ggml_context * ctx,
  6049. struct ggml_tensor * a,
  6050. enum ggml_unary_op op,
  6051. bool inplace) {
  6052. GGML_ASSERT(ggml_is_contiguous_1(a));
  6053. bool is_node = false;
  6054. if (!inplace && (a->grad)) {
  6055. is_node = true;
  6056. }
  6057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6058. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6059. result->op = GGML_OP_UNARY;
  6060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6061. result->src[0] = a;
  6062. return result;
  6063. }
  6064. struct ggml_tensor * ggml_unary(
  6065. struct ggml_context * ctx,
  6066. struct ggml_tensor * a,
  6067. enum ggml_unary_op op) {
  6068. return ggml_unary_impl(ctx, a, op, false);
  6069. }
  6070. struct ggml_tensor * ggml_unary_inplace(
  6071. struct ggml_context * ctx,
  6072. struct ggml_tensor * a,
  6073. enum ggml_unary_op op) {
  6074. return ggml_unary_impl(ctx, a, op, true);
  6075. }
  6076. // ggml_map_unary
  6077. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6078. struct ggml_context * ctx,
  6079. struct ggml_tensor * a,
  6080. const ggml_unary_op_f32_t fun,
  6081. bool inplace) {
  6082. bool is_node = false;
  6083. if (!inplace && a->grad) {
  6084. is_node = true;
  6085. }
  6086. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6087. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6088. result->op = GGML_OP_MAP_UNARY;
  6089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6090. result->src[0] = a;
  6091. return result;
  6092. }
  6093. struct ggml_tensor * ggml_map_unary_f32(
  6094. struct ggml_context * ctx,
  6095. struct ggml_tensor * a,
  6096. const ggml_unary_op_f32_t fun) {
  6097. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6098. }
  6099. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. const ggml_unary_op_f32_t fun) {
  6103. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6104. }
  6105. // ggml_map_binary
  6106. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6107. struct ggml_context * ctx,
  6108. struct ggml_tensor * a,
  6109. struct ggml_tensor * b,
  6110. const ggml_binary_op_f32_t fun,
  6111. bool inplace) {
  6112. GGML_ASSERT(ggml_are_same_shape(a, b));
  6113. bool is_node = false;
  6114. if (!inplace && (a->grad || b->grad)) {
  6115. is_node = true;
  6116. }
  6117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6118. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6119. result->op = GGML_OP_MAP_BINARY;
  6120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6121. result->src[0] = a;
  6122. result->src[1] = b;
  6123. return result;
  6124. }
  6125. struct ggml_tensor * ggml_map_binary_f32(
  6126. struct ggml_context * ctx,
  6127. struct ggml_tensor * a,
  6128. struct ggml_tensor * b,
  6129. const ggml_binary_op_f32_t fun) {
  6130. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6131. }
  6132. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6133. struct ggml_context * ctx,
  6134. struct ggml_tensor * a,
  6135. struct ggml_tensor * b,
  6136. const ggml_binary_op_f32_t fun) {
  6137. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6138. }
  6139. // ggml_map_custom1_f32
  6140. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6141. struct ggml_context * ctx,
  6142. struct ggml_tensor * a,
  6143. const ggml_custom1_op_f32_t fun,
  6144. bool inplace) {
  6145. bool is_node = false;
  6146. if (!inplace && a->grad) {
  6147. is_node = true;
  6148. }
  6149. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6150. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6151. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6153. result->src[0] = a;
  6154. return result;
  6155. }
  6156. struct ggml_tensor * ggml_map_custom1_f32(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. const ggml_custom1_op_f32_t fun) {
  6160. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6161. }
  6162. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6163. struct ggml_context * ctx,
  6164. struct ggml_tensor * a,
  6165. const ggml_custom1_op_f32_t fun) {
  6166. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6167. }
  6168. // ggml_map_custom2_f32
  6169. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6170. struct ggml_context * ctx,
  6171. struct ggml_tensor * a,
  6172. struct ggml_tensor * b,
  6173. const ggml_custom2_op_f32_t fun,
  6174. bool inplace) {
  6175. bool is_node = false;
  6176. if (!inplace && (a->grad || b->grad)) {
  6177. is_node = true;
  6178. }
  6179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6180. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6181. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6183. result->src[0] = a;
  6184. result->src[1] = b;
  6185. return result;
  6186. }
  6187. struct ggml_tensor * ggml_map_custom2_f32(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. struct ggml_tensor * b,
  6191. const ggml_custom2_op_f32_t fun) {
  6192. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6193. }
  6194. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * a,
  6197. struct ggml_tensor * b,
  6198. const ggml_custom2_op_f32_t fun) {
  6199. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6200. }
  6201. // ggml_map_custom3_f32
  6202. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6203. struct ggml_context * ctx,
  6204. struct ggml_tensor * a,
  6205. struct ggml_tensor * b,
  6206. struct ggml_tensor * c,
  6207. const ggml_custom3_op_f32_t fun,
  6208. bool inplace) {
  6209. bool is_node = false;
  6210. if (!inplace && (a->grad || b->grad || c->grad)) {
  6211. is_node = true;
  6212. }
  6213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6214. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6215. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6217. result->src[0] = a;
  6218. result->src[1] = b;
  6219. result->src[2] = c;
  6220. return result;
  6221. }
  6222. struct ggml_tensor * ggml_map_custom3_f32(
  6223. struct ggml_context * ctx,
  6224. struct ggml_tensor * a,
  6225. struct ggml_tensor * b,
  6226. struct ggml_tensor * c,
  6227. const ggml_custom3_op_f32_t fun) {
  6228. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6229. }
  6230. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6231. struct ggml_context * ctx,
  6232. struct ggml_tensor * a,
  6233. struct ggml_tensor * b,
  6234. struct ggml_tensor * c,
  6235. const ggml_custom3_op_f32_t fun) {
  6236. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6237. }
  6238. // ggml_map_custom1
  6239. struct ggml_map_custom1_op_params {
  6240. ggml_custom1_op_t fun;
  6241. int n_tasks;
  6242. void * userdata;
  6243. };
  6244. static struct ggml_tensor * ggml_map_custom1_impl(
  6245. struct ggml_context * ctx,
  6246. struct ggml_tensor * a,
  6247. const ggml_custom1_op_t fun,
  6248. int n_tasks,
  6249. void * userdata,
  6250. bool inplace) {
  6251. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6252. bool is_node = false;
  6253. if (!inplace && a->grad) {
  6254. is_node = true;
  6255. }
  6256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6257. struct ggml_map_custom1_op_params params = {
  6258. /*.fun =*/ fun,
  6259. /*.n_tasks =*/ n_tasks,
  6260. /*.userdata =*/ userdata
  6261. };
  6262. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6263. result->op = GGML_OP_MAP_CUSTOM1;
  6264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6265. result->src[0] = a;
  6266. return result;
  6267. }
  6268. struct ggml_tensor * ggml_map_custom1(
  6269. struct ggml_context * ctx,
  6270. struct ggml_tensor * a,
  6271. const ggml_custom1_op_t fun,
  6272. int n_tasks,
  6273. void * userdata) {
  6274. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6275. }
  6276. struct ggml_tensor * ggml_map_custom1_inplace(
  6277. struct ggml_context * ctx,
  6278. struct ggml_tensor * a,
  6279. const ggml_custom1_op_t fun,
  6280. int n_tasks,
  6281. void * userdata) {
  6282. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6283. }
  6284. // ggml_map_custom2
  6285. struct ggml_map_custom2_op_params {
  6286. ggml_custom2_op_t fun;
  6287. int n_tasks;
  6288. void * userdata;
  6289. };
  6290. static struct ggml_tensor * ggml_map_custom2_impl(
  6291. struct ggml_context * ctx,
  6292. struct ggml_tensor * a,
  6293. struct ggml_tensor * b,
  6294. const ggml_custom2_op_t fun,
  6295. int n_tasks,
  6296. void * userdata,
  6297. bool inplace) {
  6298. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6299. bool is_node = false;
  6300. if (!inplace && (a->grad || b->grad)) {
  6301. is_node = true;
  6302. }
  6303. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6304. struct ggml_map_custom2_op_params params = {
  6305. /*.fun =*/ fun,
  6306. /*.n_tasks =*/ n_tasks,
  6307. /*.userdata =*/ userdata
  6308. };
  6309. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6310. result->op = GGML_OP_MAP_CUSTOM2;
  6311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6312. result->src[0] = a;
  6313. result->src[1] = b;
  6314. return result;
  6315. }
  6316. struct ggml_tensor * ggml_map_custom2(
  6317. struct ggml_context * ctx,
  6318. struct ggml_tensor * a,
  6319. struct ggml_tensor * b,
  6320. const ggml_custom2_op_t fun,
  6321. int n_tasks,
  6322. void * userdata) {
  6323. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6324. }
  6325. struct ggml_tensor * ggml_map_custom2_inplace(
  6326. struct ggml_context * ctx,
  6327. struct ggml_tensor * a,
  6328. struct ggml_tensor * b,
  6329. const ggml_custom2_op_t fun,
  6330. int n_tasks,
  6331. void * userdata) {
  6332. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6333. }
  6334. // ggml_map_custom3
  6335. struct ggml_map_custom3_op_params {
  6336. ggml_custom3_op_t fun;
  6337. int n_tasks;
  6338. void * userdata;
  6339. };
  6340. static struct ggml_tensor * ggml_map_custom3_impl(
  6341. struct ggml_context * ctx,
  6342. struct ggml_tensor * a,
  6343. struct ggml_tensor * b,
  6344. struct ggml_tensor * c,
  6345. const ggml_custom3_op_t fun,
  6346. int n_tasks,
  6347. void * userdata,
  6348. bool inplace) {
  6349. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6350. bool is_node = false;
  6351. if (!inplace && (a->grad || b->grad || c->grad)) {
  6352. is_node = true;
  6353. }
  6354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6355. struct ggml_map_custom3_op_params params = {
  6356. /*.fun =*/ fun,
  6357. /*.n_tasks =*/ n_tasks,
  6358. /*.userdata =*/ userdata
  6359. };
  6360. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6361. result->op = GGML_OP_MAP_CUSTOM3;
  6362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6363. result->src[0] = a;
  6364. result->src[1] = b;
  6365. result->src[2] = c;
  6366. return result;
  6367. }
  6368. struct ggml_tensor * ggml_map_custom3(
  6369. struct ggml_context * ctx,
  6370. struct ggml_tensor * a,
  6371. struct ggml_tensor * b,
  6372. struct ggml_tensor * c,
  6373. const ggml_custom3_op_t fun,
  6374. int n_tasks,
  6375. void * userdata) {
  6376. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6377. }
  6378. struct ggml_tensor * ggml_map_custom3_inplace(
  6379. struct ggml_context * ctx,
  6380. struct ggml_tensor * a,
  6381. struct ggml_tensor * b,
  6382. struct ggml_tensor * c,
  6383. const ggml_custom3_op_t fun,
  6384. int n_tasks,
  6385. void * userdata) {
  6386. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6387. }
  6388. // ggml_cross_entropy_loss
  6389. struct ggml_tensor * ggml_cross_entropy_loss(
  6390. struct ggml_context * ctx,
  6391. struct ggml_tensor * a,
  6392. struct ggml_tensor * b) {
  6393. GGML_ASSERT(ggml_are_same_shape(a, b));
  6394. bool is_node = false;
  6395. if (a->grad || b->grad) {
  6396. is_node = true;
  6397. }
  6398. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6399. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6400. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6401. result->src[0] = a;
  6402. result->src[1] = b;
  6403. return result;
  6404. }
  6405. // ggml_cross_entropy_loss_back
  6406. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6407. struct ggml_context * ctx,
  6408. struct ggml_tensor * a,
  6409. struct ggml_tensor * b,
  6410. struct ggml_tensor * c) {
  6411. GGML_ASSERT(ggml_are_same_shape(a, b));
  6412. GGML_ASSERT(ggml_is_scalar(c));
  6413. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6414. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6415. result->grad = NULL;
  6416. result->src[0] = a;
  6417. result->src[1] = b;
  6418. result->src[2] = c;
  6419. return result;
  6420. }
  6421. ////////////////////////////////////////////////////////////////////////////////
  6422. void ggml_set_param(
  6423. struct ggml_context * ctx,
  6424. struct ggml_tensor * tensor) {
  6425. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6426. GGML_ASSERT(tensor->grad == NULL);
  6427. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6428. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6429. }
  6430. // ggml_compute_forward_dup
  6431. static void ggml_compute_forward_dup_same_cont(
  6432. const struct ggml_compute_params * params,
  6433. struct ggml_tensor * dst) {
  6434. const struct ggml_tensor * src0 = dst->src[0];
  6435. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6436. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6437. GGML_ASSERT(src0->type == dst->type);
  6438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6439. return;
  6440. }
  6441. const size_t nb00 = src0->nb[0];
  6442. const size_t nb0 = dst->nb[0];
  6443. const int ith = params->ith; // thread index
  6444. const int nth = params->nth; // number of threads
  6445. // parallelize by elements
  6446. const int ne = ggml_nelements(dst);
  6447. const int dr = (ne + nth - 1) / nth;
  6448. const int ie0 = dr * ith;
  6449. const int ie1 = MIN(ie0 + dr, ne);
  6450. if (ie0 < ie1) {
  6451. memcpy(
  6452. ((char *) dst->data + ie0*nb0),
  6453. ((char *) src0->data + ie0*nb00),
  6454. (ie1 - ie0) * ggml_type_size(src0->type));
  6455. }
  6456. }
  6457. static void ggml_compute_forward_dup_f16(
  6458. const struct ggml_compute_params * params,
  6459. struct ggml_tensor * dst) {
  6460. const struct ggml_tensor * src0 = dst->src[0];
  6461. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6462. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6463. return;
  6464. }
  6465. GGML_TENSOR_UNARY_OP_LOCALS
  6466. const int ith = params->ith; // thread index
  6467. const int nth = params->nth; // number of threads
  6468. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6469. ggml_compute_forward_dup_same_cont(params, dst);
  6470. return;
  6471. }
  6472. // parallelize by rows
  6473. const int nr = ne01;
  6474. // number of rows per thread
  6475. const int dr = (nr + nth - 1) / nth;
  6476. // row range for this thread
  6477. const int ir0 = dr * ith;
  6478. const int ir1 = MIN(ir0 + dr, nr);
  6479. if (src0->type == dst->type &&
  6480. ne00 == ne0 &&
  6481. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6482. // copy by rows
  6483. const size_t rs = ne00*nb00;
  6484. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6485. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6486. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6487. memcpy(
  6488. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6489. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6490. rs);
  6491. }
  6492. }
  6493. }
  6494. return;
  6495. }
  6496. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6497. if (ggml_is_contiguous(dst)) {
  6498. if (nb00 == sizeof(ggml_fp16_t)) {
  6499. if (dst->type == GGML_TYPE_F16) {
  6500. size_t id = 0;
  6501. const size_t rs = ne00 * nb00;
  6502. char * dst_ptr = (char *) dst->data;
  6503. for (int i03 = 0; i03 < ne03; i03++) {
  6504. for (int i02 = 0; i02 < ne02; i02++) {
  6505. id += rs * ir0;
  6506. for (int i01 = ir0; i01 < ir1; i01++) {
  6507. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6508. memcpy(dst_ptr + id, src0_ptr, rs);
  6509. id += rs;
  6510. }
  6511. id += rs * (ne01 - ir1);
  6512. }
  6513. }
  6514. } else if (dst->type == GGML_TYPE_F32) {
  6515. size_t id = 0;
  6516. float * dst_ptr = (float *) dst->data;
  6517. for (int i03 = 0; i03 < ne03; i03++) {
  6518. for (int i02 = 0; i02 < ne02; i02++) {
  6519. id += ne00 * ir0;
  6520. for (int i01 = ir0; i01 < ir1; i01++) {
  6521. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6522. for (int i00 = 0; i00 < ne00; i00++) {
  6523. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6524. id++;
  6525. }
  6526. }
  6527. id += ne00 * (ne01 - ir1);
  6528. }
  6529. }
  6530. } else if (type_traits[dst->type].from_float) {
  6531. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6532. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6533. size_t id = 0;
  6534. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6535. char * dst_ptr = (char *) dst->data;
  6536. for (int i03 = 0; i03 < ne03; i03++) {
  6537. for (int i02 = 0; i02 < ne02; i02++) {
  6538. id += rs * ir0;
  6539. for (int i01 = ir0; i01 < ir1; i01++) {
  6540. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6541. for (int i00 = 0; i00 < ne00; i00++) {
  6542. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6543. }
  6544. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6545. id += rs;
  6546. }
  6547. id += rs * (ne01 - ir1);
  6548. }
  6549. }
  6550. } else {
  6551. GGML_ASSERT(false); // TODO: implement
  6552. }
  6553. } else {
  6554. //printf("%s: this is not optimal - fix me\n", __func__);
  6555. if (dst->type == GGML_TYPE_F32) {
  6556. size_t id = 0;
  6557. float * dst_ptr = (float *) dst->data;
  6558. for (int i03 = 0; i03 < ne03; i03++) {
  6559. for (int i02 = 0; i02 < ne02; i02++) {
  6560. id += ne00 * ir0;
  6561. for (int i01 = ir0; i01 < ir1; i01++) {
  6562. for (int i00 = 0; i00 < ne00; i00++) {
  6563. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6564. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6565. id++;
  6566. }
  6567. }
  6568. id += ne00 * (ne01 - ir1);
  6569. }
  6570. }
  6571. } else if (dst->type == GGML_TYPE_F16) {
  6572. size_t id = 0;
  6573. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6574. for (int i03 = 0; i03 < ne03; i03++) {
  6575. for (int i02 = 0; i02 < ne02; i02++) {
  6576. id += ne00 * ir0;
  6577. for (int i01 = ir0; i01 < ir1; i01++) {
  6578. for (int i00 = 0; i00 < ne00; i00++) {
  6579. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6580. dst_ptr[id] = *src0_ptr;
  6581. id++;
  6582. }
  6583. }
  6584. id += ne00 * (ne01 - ir1);
  6585. }
  6586. }
  6587. } else {
  6588. GGML_ASSERT(false); // TODO: implement
  6589. }
  6590. }
  6591. return;
  6592. }
  6593. // dst counters
  6594. int64_t i10 = 0;
  6595. int64_t i11 = 0;
  6596. int64_t i12 = 0;
  6597. int64_t i13 = 0;
  6598. if (dst->type == GGML_TYPE_F16) {
  6599. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6600. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6601. i10 += ne00 * ir0;
  6602. while (i10 >= ne0) {
  6603. i10 -= ne0;
  6604. if (++i11 == ne1) {
  6605. i11 = 0;
  6606. if (++i12 == ne2) {
  6607. i12 = 0;
  6608. if (++i13 == ne3) {
  6609. i13 = 0;
  6610. }
  6611. }
  6612. }
  6613. }
  6614. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6615. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6616. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6617. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6618. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6619. if (++i10 == ne00) {
  6620. i10 = 0;
  6621. if (++i11 == ne01) {
  6622. i11 = 0;
  6623. if (++i12 == ne02) {
  6624. i12 = 0;
  6625. if (++i13 == ne03) {
  6626. i13 = 0;
  6627. }
  6628. }
  6629. }
  6630. }
  6631. }
  6632. }
  6633. i10 += ne00 * (ne01 - ir1);
  6634. while (i10 >= ne0) {
  6635. i10 -= ne0;
  6636. if (++i11 == ne1) {
  6637. i11 = 0;
  6638. if (++i12 == ne2) {
  6639. i12 = 0;
  6640. if (++i13 == ne3) {
  6641. i13 = 0;
  6642. }
  6643. }
  6644. }
  6645. }
  6646. }
  6647. }
  6648. } else if (dst->type == GGML_TYPE_F32) {
  6649. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6650. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6651. i10 += ne00 * ir0;
  6652. while (i10 >= ne0) {
  6653. i10 -= ne0;
  6654. if (++i11 == ne1) {
  6655. i11 = 0;
  6656. if (++i12 == ne2) {
  6657. i12 = 0;
  6658. if (++i13 == ne3) {
  6659. i13 = 0;
  6660. }
  6661. }
  6662. }
  6663. }
  6664. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6665. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6666. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6667. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6668. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6669. if (++i10 == ne0) {
  6670. i10 = 0;
  6671. if (++i11 == ne1) {
  6672. i11 = 0;
  6673. if (++i12 == ne2) {
  6674. i12 = 0;
  6675. if (++i13 == ne3) {
  6676. i13 = 0;
  6677. }
  6678. }
  6679. }
  6680. }
  6681. }
  6682. }
  6683. i10 += ne00 * (ne01 - ir1);
  6684. while (i10 >= ne0) {
  6685. i10 -= ne0;
  6686. if (++i11 == ne1) {
  6687. i11 = 0;
  6688. if (++i12 == ne2) {
  6689. i12 = 0;
  6690. if (++i13 == ne3) {
  6691. i13 = 0;
  6692. }
  6693. }
  6694. }
  6695. }
  6696. }
  6697. }
  6698. } else {
  6699. GGML_ASSERT(false); // TODO: implement
  6700. }
  6701. }
  6702. static void ggml_compute_forward_dup_bf16(
  6703. const struct ggml_compute_params * params,
  6704. struct ggml_tensor * dst) {
  6705. const struct ggml_tensor * src0 = dst->src[0];
  6706. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6707. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6708. return;
  6709. }
  6710. GGML_TENSOR_UNARY_OP_LOCALS
  6711. const int ith = params->ith; // thread index
  6712. const int nth = params->nth; // number of threads
  6713. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6714. ggml_compute_forward_dup_same_cont(params, dst);
  6715. return;
  6716. }
  6717. // parallelize by rows
  6718. const int nr = ne01;
  6719. // number of rows per thread
  6720. const int dr = (nr + nth - 1) / nth;
  6721. // row range for this thread
  6722. const int ir0 = dr * ith;
  6723. const int ir1 = MIN(ir0 + dr, nr);
  6724. if (src0->type == dst->type &&
  6725. ne00 == ne0 &&
  6726. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6727. // copy by rows
  6728. const size_t rs = ne00*nb00;
  6729. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6730. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6731. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6732. memcpy(
  6733. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6734. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6735. rs);
  6736. }
  6737. }
  6738. }
  6739. return;
  6740. }
  6741. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6742. if (ggml_is_contiguous(dst)) {
  6743. if (nb00 == sizeof(ggml_bf16_t)) {
  6744. if (dst->type == GGML_TYPE_BF16) {
  6745. size_t id = 0;
  6746. const size_t rs = ne00 * nb00;
  6747. char * dst_ptr = (char *) dst->data;
  6748. for (int i03 = 0; i03 < ne03; i03++) {
  6749. for (int i02 = 0; i02 < ne02; i02++) {
  6750. id += rs * ir0;
  6751. for (int i01 = ir0; i01 < ir1; i01++) {
  6752. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6753. memcpy(dst_ptr + id, src0_ptr, rs);
  6754. id += rs;
  6755. }
  6756. id += rs * (ne01 - ir1);
  6757. }
  6758. }
  6759. } else if (dst->type == GGML_TYPE_F16) {
  6760. size_t id = 0;
  6761. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6762. for (int i03 = 0; i03 < ne03; i03++) {
  6763. for (int i02 = 0; i02 < ne02; i02++) {
  6764. id += ne00 * ir0;
  6765. for (int i01 = ir0; i01 < ir1; i01++) {
  6766. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6767. for (int i00 = 0; i00 < ne00; i00++) {
  6768. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6769. id++;
  6770. }
  6771. }
  6772. id += ne00 * (ne01 - ir1);
  6773. }
  6774. }
  6775. } else if (dst->type == GGML_TYPE_F32) {
  6776. size_t id = 0;
  6777. float * dst_ptr = (float *) dst->data;
  6778. for (int i03 = 0; i03 < ne03; i03++) {
  6779. for (int i02 = 0; i02 < ne02; i02++) {
  6780. id += ne00 * ir0;
  6781. for (int i01 = ir0; i01 < ir1; i01++) {
  6782. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6783. for (int i00 = 0; i00 < ne00; i00++) {
  6784. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6785. id++;
  6786. }
  6787. }
  6788. id += ne00 * (ne01 - ir1);
  6789. }
  6790. }
  6791. } else if (type_traits[dst->type].from_float) {
  6792. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6793. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6794. size_t id = 0;
  6795. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6796. char * dst_ptr = (char *) dst->data;
  6797. for (int i03 = 0; i03 < ne03; i03++) {
  6798. for (int i02 = 0; i02 < ne02; i02++) {
  6799. id += rs * ir0;
  6800. for (int i01 = ir0; i01 < ir1; i01++) {
  6801. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6802. for (int i00 = 0; i00 < ne00; i00++) {
  6803. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6804. }
  6805. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6806. id += rs;
  6807. }
  6808. id += rs * (ne01 - ir1);
  6809. }
  6810. }
  6811. } else {
  6812. GGML_ASSERT(false); // TODO: implement
  6813. }
  6814. } else {
  6815. //printf("%s: this is not optimal - fix me\n", __func__);
  6816. if (dst->type == GGML_TYPE_F32) {
  6817. size_t id = 0;
  6818. float * dst_ptr = (float *) dst->data;
  6819. for (int i03 = 0; i03 < ne03; i03++) {
  6820. for (int i02 = 0; i02 < ne02; i02++) {
  6821. id += ne00 * ir0;
  6822. for (int i01 = ir0; i01 < ir1; i01++) {
  6823. for (int i00 = 0; i00 < ne00; i00++) {
  6824. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6825. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6826. id++;
  6827. }
  6828. }
  6829. id += ne00 * (ne01 - ir1);
  6830. }
  6831. }
  6832. } else if (dst->type == GGML_TYPE_BF16) {
  6833. size_t id = 0;
  6834. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6835. for (int i03 = 0; i03 < ne03; i03++) {
  6836. for (int i02 = 0; i02 < ne02; i02++) {
  6837. id += ne00 * ir0;
  6838. for (int i01 = ir0; i01 < ir1; i01++) {
  6839. for (int i00 = 0; i00 < ne00; i00++) {
  6840. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6841. dst_ptr[id] = *src0_ptr;
  6842. id++;
  6843. }
  6844. }
  6845. id += ne00 * (ne01 - ir1);
  6846. }
  6847. }
  6848. } else if (dst->type == GGML_TYPE_F16) {
  6849. size_t id = 0;
  6850. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6851. for (int i03 = 0; i03 < ne03; i03++) {
  6852. for (int i02 = 0; i02 < ne02; i02++) {
  6853. id += ne00 * ir0;
  6854. for (int i01 = ir0; i01 < ir1; i01++) {
  6855. for (int i00 = 0; i00 < ne00; i00++) {
  6856. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6857. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6858. id++;
  6859. }
  6860. }
  6861. id += ne00 * (ne01 - ir1);
  6862. }
  6863. }
  6864. } else {
  6865. GGML_ASSERT(false); // TODO: implement
  6866. }
  6867. }
  6868. return;
  6869. }
  6870. // dst counters
  6871. int64_t i10 = 0;
  6872. int64_t i11 = 0;
  6873. int64_t i12 = 0;
  6874. int64_t i13 = 0;
  6875. if (dst->type == GGML_TYPE_BF16) {
  6876. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6877. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6878. i10 += ne00 * ir0;
  6879. while (i10 >= ne0) {
  6880. i10 -= ne0;
  6881. if (++i11 == ne1) {
  6882. i11 = 0;
  6883. if (++i12 == ne2) {
  6884. i12 = 0;
  6885. if (++i13 == ne3) {
  6886. i13 = 0;
  6887. }
  6888. }
  6889. }
  6890. }
  6891. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6892. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6893. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6894. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6895. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6896. if (++i10 == ne00) {
  6897. i10 = 0;
  6898. if (++i11 == ne01) {
  6899. i11 = 0;
  6900. if (++i12 == ne02) {
  6901. i12 = 0;
  6902. if (++i13 == ne03) {
  6903. i13 = 0;
  6904. }
  6905. }
  6906. }
  6907. }
  6908. }
  6909. }
  6910. i10 += ne00 * (ne01 - ir1);
  6911. while (i10 >= ne0) {
  6912. i10 -= ne0;
  6913. if (++i11 == ne1) {
  6914. i11 = 0;
  6915. if (++i12 == ne2) {
  6916. i12 = 0;
  6917. if (++i13 == ne3) {
  6918. i13 = 0;
  6919. }
  6920. }
  6921. }
  6922. }
  6923. }
  6924. }
  6925. } else if (dst->type == GGML_TYPE_F16) {
  6926. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6927. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6928. i10 += ne00 * ir0;
  6929. while (i10 >= ne0) {
  6930. i10 -= ne0;
  6931. if (++i11 == ne1) {
  6932. i11 = 0;
  6933. if (++i12 == ne2) {
  6934. i12 = 0;
  6935. if (++i13 == ne3) {
  6936. i13 = 0;
  6937. }
  6938. }
  6939. }
  6940. }
  6941. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6942. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6943. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6944. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6945. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6946. if (++i10 == ne0) {
  6947. i10 = 0;
  6948. if (++i11 == ne1) {
  6949. i11 = 0;
  6950. if (++i12 == ne2) {
  6951. i12 = 0;
  6952. if (++i13 == ne3) {
  6953. i13 = 0;
  6954. }
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. i10 += ne00 * (ne01 - ir1);
  6961. while (i10 >= ne0) {
  6962. i10 -= ne0;
  6963. if (++i11 == ne1) {
  6964. i11 = 0;
  6965. if (++i12 == ne2) {
  6966. i12 = 0;
  6967. if (++i13 == ne3) {
  6968. i13 = 0;
  6969. }
  6970. }
  6971. }
  6972. }
  6973. }
  6974. }
  6975. } else if (dst->type == GGML_TYPE_F32) {
  6976. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6977. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6978. i10 += ne00 * ir0;
  6979. while (i10 >= ne0) {
  6980. i10 -= ne0;
  6981. if (++i11 == ne1) {
  6982. i11 = 0;
  6983. if (++i12 == ne2) {
  6984. i12 = 0;
  6985. if (++i13 == ne3) {
  6986. i13 = 0;
  6987. }
  6988. }
  6989. }
  6990. }
  6991. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6992. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6993. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6994. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6995. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6996. if (++i10 == ne0) {
  6997. i10 = 0;
  6998. if (++i11 == ne1) {
  6999. i11 = 0;
  7000. if (++i12 == ne2) {
  7001. i12 = 0;
  7002. if (++i13 == ne3) {
  7003. i13 = 0;
  7004. }
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. i10 += ne00 * (ne01 - ir1);
  7011. while (i10 >= ne0) {
  7012. i10 -= ne0;
  7013. if (++i11 == ne1) {
  7014. i11 = 0;
  7015. if (++i12 == ne2) {
  7016. i12 = 0;
  7017. if (++i13 == ne3) {
  7018. i13 = 0;
  7019. }
  7020. }
  7021. }
  7022. }
  7023. }
  7024. }
  7025. } else {
  7026. GGML_ASSERT(false); // TODO: implement
  7027. }
  7028. }
  7029. static void ggml_compute_forward_dup_f32(
  7030. const struct ggml_compute_params * params,
  7031. struct ggml_tensor * dst) {
  7032. const struct ggml_tensor * src0 = dst->src[0];
  7033. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7034. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7035. return;
  7036. }
  7037. GGML_TENSOR_UNARY_OP_LOCALS
  7038. const int ith = params->ith; // thread index
  7039. const int nth = params->nth; // number of threads
  7040. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7041. ggml_compute_forward_dup_same_cont(params, dst);
  7042. return;
  7043. }
  7044. // parallelize by rows
  7045. const int nr = ne01;
  7046. // number of rows per thread
  7047. const int dr = (nr + nth - 1) / nth;
  7048. // row range for this thread
  7049. const int ir0 = dr * ith;
  7050. const int ir1 = MIN(ir0 + dr, nr);
  7051. if (src0->type == dst->type &&
  7052. ne00 == ne0 &&
  7053. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7054. // copy by rows
  7055. const size_t rs = ne00*nb00;
  7056. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7057. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7058. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7059. memcpy(
  7060. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7061. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7062. rs);
  7063. }
  7064. }
  7065. }
  7066. return;
  7067. }
  7068. if (ggml_is_contiguous(dst)) {
  7069. // TODO: simplify
  7070. if (nb00 == sizeof(float)) {
  7071. if (dst->type == GGML_TYPE_F32) {
  7072. size_t id = 0;
  7073. const size_t rs = ne00 * nb00;
  7074. char * dst_ptr = (char *) dst->data;
  7075. for (int i03 = 0; i03 < ne03; i03++) {
  7076. for (int i02 = 0; i02 < ne02; i02++) {
  7077. id += rs * ir0;
  7078. for (int i01 = ir0; i01 < ir1; i01++) {
  7079. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7080. memcpy(dst_ptr + id, src0_ptr, rs);
  7081. id += rs;
  7082. }
  7083. id += rs * (ne01 - ir1);
  7084. }
  7085. }
  7086. } else if (type_traits[dst->type].from_float) {
  7087. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7088. size_t id = 0;
  7089. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7090. char * dst_ptr = (char *) dst->data;
  7091. for (int i03 = 0; i03 < ne03; i03++) {
  7092. for (int i02 = 0; i02 < ne02; i02++) {
  7093. id += rs * ir0;
  7094. for (int i01 = ir0; i01 < ir1; i01++) {
  7095. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7096. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7097. id += rs;
  7098. }
  7099. id += rs * (ne01 - ir1);
  7100. }
  7101. }
  7102. } else {
  7103. GGML_ASSERT(false); // TODO: implement
  7104. }
  7105. } else {
  7106. //printf("%s: this is not optimal - fix me\n", __func__);
  7107. if (dst->type == GGML_TYPE_F32) {
  7108. size_t id = 0;
  7109. float * dst_ptr = (float *) dst->data;
  7110. for (int i03 = 0; i03 < ne03; i03++) {
  7111. for (int i02 = 0; i02 < ne02; i02++) {
  7112. id += ne00 * ir0;
  7113. for (int i01 = ir0; i01 < ir1; i01++) {
  7114. for (int i00 = 0; i00 < ne00; i00++) {
  7115. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7116. dst_ptr[id] = *src0_ptr;
  7117. id++;
  7118. }
  7119. }
  7120. id += ne00 * (ne01 - ir1);
  7121. }
  7122. }
  7123. } else if (dst->type == GGML_TYPE_F16) {
  7124. size_t id = 0;
  7125. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7126. for (int i03 = 0; i03 < ne03; i03++) {
  7127. for (int i02 = 0; i02 < ne02; i02++) {
  7128. id += ne00 * ir0;
  7129. for (int i01 = ir0; i01 < ir1; i01++) {
  7130. for (int i00 = 0; i00 < ne00; i00++) {
  7131. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7132. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7133. id++;
  7134. }
  7135. }
  7136. id += ne00 * (ne01 - ir1);
  7137. }
  7138. }
  7139. } else if (dst->type == GGML_TYPE_BF16) {
  7140. size_t id = 0;
  7141. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7142. for (int i03 = 0; i03 < ne03; i03++) {
  7143. for (int i02 = 0; i02 < ne02; i02++) {
  7144. id += ne00 * ir0;
  7145. for (int i01 = ir0; i01 < ir1; i01++) {
  7146. for (int i00 = 0; i00 < ne00; i00++) {
  7147. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7148. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7149. id++;
  7150. }
  7151. }
  7152. id += ne00 * (ne01 - ir1);
  7153. }
  7154. }
  7155. } else {
  7156. GGML_ASSERT(false); // TODO: implement
  7157. }
  7158. }
  7159. return;
  7160. }
  7161. // dst counters
  7162. int64_t i10 = 0;
  7163. int64_t i11 = 0;
  7164. int64_t i12 = 0;
  7165. int64_t i13 = 0;
  7166. if (dst->type == GGML_TYPE_F32) {
  7167. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7168. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7169. i10 += ne00 * ir0;
  7170. while (i10 >= ne0) {
  7171. i10 -= ne0;
  7172. if (++i11 == ne1) {
  7173. i11 = 0;
  7174. if (++i12 == ne2) {
  7175. i12 = 0;
  7176. if (++i13 == ne3) {
  7177. i13 = 0;
  7178. }
  7179. }
  7180. }
  7181. }
  7182. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7183. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7184. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7185. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7186. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7187. if (++i10 == ne0) {
  7188. i10 = 0;
  7189. if (++i11 == ne1) {
  7190. i11 = 0;
  7191. if (++i12 == ne2) {
  7192. i12 = 0;
  7193. if (++i13 == ne3) {
  7194. i13 = 0;
  7195. }
  7196. }
  7197. }
  7198. }
  7199. }
  7200. }
  7201. i10 += ne00 * (ne01 - ir1);
  7202. while (i10 >= ne0) {
  7203. i10 -= ne0;
  7204. if (++i11 == ne1) {
  7205. i11 = 0;
  7206. if (++i12 == ne2) {
  7207. i12 = 0;
  7208. if (++i13 == ne3) {
  7209. i13 = 0;
  7210. }
  7211. }
  7212. }
  7213. }
  7214. }
  7215. }
  7216. } else if (dst->type == GGML_TYPE_F16) {
  7217. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7218. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7219. i10 += ne00 * ir0;
  7220. while (i10 >= ne0) {
  7221. i10 -= ne0;
  7222. if (++i11 == ne1) {
  7223. i11 = 0;
  7224. if (++i12 == ne2) {
  7225. i12 = 0;
  7226. if (++i13 == ne3) {
  7227. i13 = 0;
  7228. }
  7229. }
  7230. }
  7231. }
  7232. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7233. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7234. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7235. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7236. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7237. if (++i10 == ne0) {
  7238. i10 = 0;
  7239. if (++i11 == ne1) {
  7240. i11 = 0;
  7241. if (++i12 == ne2) {
  7242. i12 = 0;
  7243. if (++i13 == ne3) {
  7244. i13 = 0;
  7245. }
  7246. }
  7247. }
  7248. }
  7249. }
  7250. }
  7251. i10 += ne00 * (ne01 - ir1);
  7252. while (i10 >= ne0) {
  7253. i10 -= ne0;
  7254. if (++i11 == ne1) {
  7255. i11 = 0;
  7256. if (++i12 == ne2) {
  7257. i12 = 0;
  7258. if (++i13 == ne3) {
  7259. i13 = 0;
  7260. }
  7261. }
  7262. }
  7263. }
  7264. }
  7265. }
  7266. } else if (dst->type == GGML_TYPE_BF16) {
  7267. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7268. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7269. i10 += ne00 * ir0;
  7270. while (i10 >= ne0) {
  7271. i10 -= ne0;
  7272. if (++i11 == ne1) {
  7273. i11 = 0;
  7274. if (++i12 == ne2) {
  7275. i12 = 0;
  7276. if (++i13 == ne3) {
  7277. i13 = 0;
  7278. }
  7279. }
  7280. }
  7281. }
  7282. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7283. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7284. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7285. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7286. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7287. if (++i10 == ne0) {
  7288. i10 = 0;
  7289. if (++i11 == ne1) {
  7290. i11 = 0;
  7291. if (++i12 == ne2) {
  7292. i12 = 0;
  7293. if (++i13 == ne3) {
  7294. i13 = 0;
  7295. }
  7296. }
  7297. }
  7298. }
  7299. }
  7300. }
  7301. i10 += ne00 * (ne01 - ir1);
  7302. while (i10 >= ne0) {
  7303. i10 -= ne0;
  7304. if (++i11 == ne1) {
  7305. i11 = 0;
  7306. if (++i12 == ne2) {
  7307. i12 = 0;
  7308. if (++i13 == ne3) {
  7309. i13 = 0;
  7310. }
  7311. }
  7312. }
  7313. }
  7314. }
  7315. }
  7316. } else {
  7317. GGML_ASSERT(false); // TODO: implement
  7318. }
  7319. }
  7320. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7321. static void ggml_compute_forward_dup_bytes(
  7322. const struct ggml_compute_params * params,
  7323. struct ggml_tensor * dst) {
  7324. const struct ggml_tensor * src0 = dst->src[0];
  7325. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7326. GGML_ASSERT(src0->type == dst->type);
  7327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7328. return;
  7329. }
  7330. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7331. ggml_compute_forward_dup_same_cont(params, dst);
  7332. return;
  7333. }
  7334. GGML_TENSOR_UNARY_OP_LOCALS;
  7335. const size_t type_size = ggml_type_size(src0->type);
  7336. const int ith = params->ith; // thread index
  7337. const int nth = params->nth; // number of threads
  7338. // parallelize by rows
  7339. const int nr = ne01;
  7340. // number of rows per thread
  7341. const int dr = (nr + nth - 1) / nth;
  7342. // row range for this thread
  7343. const int ir0 = dr * ith;
  7344. const int ir1 = MIN(ir0 + dr, nr);
  7345. if (src0->type == dst->type &&
  7346. ne00 == ne0 &&
  7347. nb00 == type_size && nb0 == type_size) {
  7348. // copy by rows
  7349. const size_t rs = ne00 * type_size;
  7350. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7351. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7352. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7353. memcpy(
  7354. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7355. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7356. rs);
  7357. }
  7358. }
  7359. }
  7360. return;
  7361. }
  7362. if (ggml_is_contiguous(dst)) {
  7363. size_t id = 0;
  7364. char * dst_ptr = (char *) dst->data;
  7365. const size_t rs = ne00 * type_size;
  7366. if (nb00 == type_size) {
  7367. // src0 is contigous on first dimension, copy by rows
  7368. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7369. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7370. id += rs * ir0;
  7371. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7372. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7373. memcpy(dst_ptr + id, src0_ptr, rs);
  7374. id += rs;
  7375. }
  7376. id += rs * (ne01 - ir1);
  7377. }
  7378. }
  7379. } else {
  7380. //printf("%s: this is not optimal - fix me\n", __func__);
  7381. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7382. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7383. id += rs * ir0;
  7384. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7385. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7386. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7387. memcpy(dst_ptr + id, src0_ptr, type_size);
  7388. id += type_size;
  7389. }
  7390. }
  7391. id += rs * (ne01 - ir1);
  7392. }
  7393. }
  7394. }
  7395. return;
  7396. }
  7397. // dst counters
  7398. int64_t i10 = 0;
  7399. int64_t i11 = 0;
  7400. int64_t i12 = 0;
  7401. int64_t i13 = 0;
  7402. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7403. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7404. i10 += ne00 * ir0;
  7405. while (i10 >= ne0) {
  7406. i10 -= ne0;
  7407. if (++i11 == ne1) {
  7408. i11 = 0;
  7409. if (++i12 == ne2) {
  7410. i12 = 0;
  7411. if (++i13 == ne3) {
  7412. i13 = 0;
  7413. }
  7414. }
  7415. }
  7416. }
  7417. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7418. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7419. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7420. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7421. memcpy(dst_ptr, src0_ptr, type_size);
  7422. if (++i10 == ne0) {
  7423. i10 = 0;
  7424. if (++i11 == ne1) {
  7425. i11 = 0;
  7426. if (++i12 == ne2) {
  7427. i12 = 0;
  7428. if (++i13 == ne3) {
  7429. i13 = 0;
  7430. }
  7431. }
  7432. }
  7433. }
  7434. }
  7435. }
  7436. i10 += ne00 * (ne01 - ir1);
  7437. while (i10 >= ne0) {
  7438. i10 -= ne0;
  7439. if (++i11 == ne1) {
  7440. i11 = 0;
  7441. if (++i12 == ne2) {
  7442. i12 = 0;
  7443. if (++i13 == ne3) {
  7444. i13 = 0;
  7445. }
  7446. }
  7447. }
  7448. }
  7449. }
  7450. }
  7451. }
  7452. static void ggml_compute_forward_dup(
  7453. const struct ggml_compute_params * params,
  7454. struct ggml_tensor * dst) {
  7455. const struct ggml_tensor * src0 = dst->src[0];
  7456. if (src0->type == dst->type) {
  7457. ggml_compute_forward_dup_bytes(params, dst);
  7458. return;
  7459. }
  7460. switch (src0->type) {
  7461. case GGML_TYPE_F16:
  7462. {
  7463. ggml_compute_forward_dup_f16(params, dst);
  7464. } break;
  7465. case GGML_TYPE_BF16:
  7466. {
  7467. ggml_compute_forward_dup_bf16(params, dst);
  7468. } break;
  7469. case GGML_TYPE_F32:
  7470. {
  7471. ggml_compute_forward_dup_f32(params, dst);
  7472. } break;
  7473. default:
  7474. {
  7475. GGML_ASSERT(false);
  7476. } break;
  7477. }
  7478. }
  7479. // ggml_compute_forward_add
  7480. static void ggml_compute_forward_add_f32(
  7481. const struct ggml_compute_params * params,
  7482. struct ggml_tensor * dst) {
  7483. const struct ggml_tensor * src0 = dst->src[0];
  7484. const struct ggml_tensor * src1 = dst->src[1];
  7485. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7486. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7487. return;
  7488. }
  7489. const int ith = params->ith;
  7490. const int nth = params->nth;
  7491. const int nr = ggml_nrows(src0);
  7492. GGML_TENSOR_BINARY_OP_LOCALS
  7493. GGML_ASSERT( nb0 == sizeof(float));
  7494. GGML_ASSERT(nb00 == sizeof(float));
  7495. // rows per thread
  7496. const int dr = (nr + nth - 1)/nth;
  7497. // row range for this thread
  7498. const int ir0 = dr*ith;
  7499. const int ir1 = MIN(ir0 + dr, nr);
  7500. if (nb10 == sizeof(float)) {
  7501. for (int ir = ir0; ir < ir1; ++ir) {
  7502. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7503. const int64_t i03 = ir/(ne02*ne01);
  7504. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7505. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7506. const int64_t i13 = i03 % ne13;
  7507. const int64_t i12 = i02 % ne12;
  7508. const int64_t i11 = i01 % ne11;
  7509. const int64_t nr0 = ne00 / ne10;
  7510. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7511. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7512. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7513. for (int64_t r = 0; r < nr0; ++r) {
  7514. #ifdef GGML_USE_ACCELERATE
  7515. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7516. #else
  7517. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7518. #endif
  7519. }
  7520. }
  7521. } else {
  7522. // src1 is not contiguous
  7523. for (int ir = ir0; ir < ir1; ++ir) {
  7524. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7525. const int64_t i03 = ir/(ne02*ne01);
  7526. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7527. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7528. const int64_t i13 = i03 % ne13;
  7529. const int64_t i12 = i02 % ne12;
  7530. const int64_t i11 = i01 % ne11;
  7531. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7532. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7533. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7534. const int64_t i10 = i0 % ne10;
  7535. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7536. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7537. }
  7538. }
  7539. }
  7540. }
  7541. static void ggml_compute_forward_add_f16_f32(
  7542. const struct ggml_compute_params * params,
  7543. struct ggml_tensor * dst) {
  7544. const struct ggml_tensor * src0 = dst->src[0];
  7545. const struct ggml_tensor * src1 = dst->src[1];
  7546. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7548. return;
  7549. }
  7550. const int ith = params->ith;
  7551. const int nth = params->nth;
  7552. const int nr = ggml_nrows(src0);
  7553. GGML_TENSOR_BINARY_OP_LOCALS
  7554. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7555. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7556. if (dst->type == GGML_TYPE_F32) {
  7557. GGML_ASSERT( nb0 == sizeof(float));
  7558. }
  7559. else {
  7560. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7561. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7562. }
  7563. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7564. // rows per thread
  7565. const int dr = (nr + nth - 1)/nth;
  7566. // row range for this thread
  7567. const int ir0 = dr*ith;
  7568. const int ir1 = MIN(ir0 + dr, nr);
  7569. if (nb10 == sizeof(float)) {
  7570. if (dst->type == GGML_TYPE_F16) {
  7571. for (int ir = ir0; ir < ir1; ++ir) {
  7572. // src0, src1 and dst are same shape => same indices
  7573. const int i3 = ir/(ne2*ne1);
  7574. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7575. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7576. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7577. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7578. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7579. for (int i = 0; i < ne0; i++) {
  7580. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7581. }
  7582. }
  7583. } else {
  7584. for (int ir = ir0; ir < ir1; ++ir) {
  7585. // src0, src1 and dst are same shape => same indices
  7586. const int i3 = ir/(ne2*ne1);
  7587. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7588. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7589. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7590. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7591. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7592. for (int i = 0; i < ne0; i++) {
  7593. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7594. }
  7595. }
  7596. }
  7597. }
  7598. else {
  7599. // src1 is not contiguous
  7600. GGML_ASSERT(false);
  7601. }
  7602. }
  7603. static void ggml_compute_forward_add_bf16_f32(
  7604. const struct ggml_compute_params * params,
  7605. struct ggml_tensor * dst) {
  7606. const struct ggml_tensor * src0 = dst->src[0];
  7607. const struct ggml_tensor * src1 = dst->src[1];
  7608. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7609. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7610. return;
  7611. }
  7612. const int ith = params->ith;
  7613. const int nth = params->nth;
  7614. const int nr = ggml_nrows(src0);
  7615. GGML_TENSOR_BINARY_OP_LOCALS
  7616. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7617. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7618. if (dst->type == GGML_TYPE_F32) {
  7619. GGML_ASSERT( nb0 == sizeof(float));
  7620. }
  7621. else {
  7622. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7623. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7624. }
  7625. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7626. // rows per thread
  7627. const int dr = (nr + nth - 1)/nth;
  7628. // row range for this thread
  7629. const int ir0 = dr*ith;
  7630. const int ir1 = MIN(ir0 + dr, nr);
  7631. if (nb10 == sizeof(float)) {
  7632. if (dst->type == GGML_TYPE_BF16) {
  7633. for (int ir = ir0; ir < ir1; ++ir) {
  7634. // src0, src1 and dst are same shape => same indices
  7635. const int i3 = ir/(ne2*ne1);
  7636. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7637. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7638. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7639. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7640. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7641. for (int i = 0; i < ne0; i++) {
  7642. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7643. }
  7644. }
  7645. } else {
  7646. for (int ir = ir0; ir < ir1; ++ir) {
  7647. // src0, src1 and dst are same shape => same indices
  7648. const int i3 = ir/(ne2*ne1);
  7649. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7650. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7651. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7652. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7653. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7654. for (int i = 0; i < ne0; i++) {
  7655. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7656. }
  7657. }
  7658. }
  7659. }
  7660. else {
  7661. // src1 is not contiguous
  7662. GGML_ASSERT(false);
  7663. }
  7664. }
  7665. static void ggml_compute_forward_add_f16_f16(
  7666. const struct ggml_compute_params * params,
  7667. struct ggml_tensor * dst) {
  7668. const struct ggml_tensor * src0 = dst->src[0];
  7669. const struct ggml_tensor * src1 = dst->src[1];
  7670. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7671. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7672. return;
  7673. }
  7674. const int ith = params->ith;
  7675. const int nth = params->nth;
  7676. const int nr = ggml_nrows(src0);
  7677. GGML_TENSOR_BINARY_OP_LOCALS
  7678. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7679. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7680. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7681. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7682. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7683. // rows per thread
  7684. const int dr = (nr + nth - 1)/nth;
  7685. // row range for this thread
  7686. const int ir0 = dr*ith;
  7687. const int ir1 = MIN(ir0 + dr, nr);
  7688. if (nb10 == sizeof(ggml_fp16_t)) {
  7689. for (int ir = ir0; ir < ir1; ++ir) {
  7690. // src0, src1 and dst are same shape => same indices
  7691. const int i3 = ir/(ne2*ne1);
  7692. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7693. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7694. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7695. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7696. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7697. for (int i = 0; i < ne0; i++) {
  7698. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7699. }
  7700. }
  7701. }
  7702. else {
  7703. // src1 is not contiguous
  7704. GGML_ASSERT(false);
  7705. }
  7706. }
  7707. static void ggml_compute_forward_add_bf16_bf16(
  7708. const struct ggml_compute_params * params,
  7709. struct ggml_tensor * dst) {
  7710. const struct ggml_tensor * src0 = dst->src[0];
  7711. const struct ggml_tensor * src1 = dst->src[1];
  7712. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7714. return;
  7715. }
  7716. const int ith = params->ith;
  7717. const int nth = params->nth;
  7718. const int nr = ggml_nrows(src0);
  7719. GGML_TENSOR_BINARY_OP_LOCALS
  7720. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7721. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7722. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7723. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7724. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7725. // rows per thread
  7726. const int dr = (nr + nth - 1)/nth;
  7727. // row range for this thread
  7728. const int ir0 = dr*ith;
  7729. const int ir1 = MIN(ir0 + dr, nr);
  7730. if (nb10 == sizeof(ggml_bf16_t)) {
  7731. for (int ir = ir0; ir < ir1; ++ir) {
  7732. // src0, src1 and dst are same shape => same indices
  7733. const int i3 = ir/(ne2*ne1);
  7734. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7735. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7736. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7737. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7738. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7739. for (int i = 0; i < ne0; i++) {
  7740. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7741. }
  7742. }
  7743. }
  7744. else {
  7745. // src1 is not contiguous
  7746. GGML_ASSERT(false);
  7747. }
  7748. }
  7749. static void ggml_compute_forward_add_q_f32(
  7750. const struct ggml_compute_params * params,
  7751. struct ggml_tensor * dst) {
  7752. const struct ggml_tensor * src0 = dst->src[0];
  7753. const struct ggml_tensor * src1 = dst->src[1];
  7754. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7755. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7756. return;
  7757. }
  7758. const int nr = ggml_nrows(src0);
  7759. GGML_TENSOR_BINARY_OP_LOCALS
  7760. const int ith = params->ith;
  7761. const int nth = params->nth;
  7762. const enum ggml_type type = src0->type;
  7763. const enum ggml_type dtype = dst->type;
  7764. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7765. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7766. // we don't support permuted src0 or src1
  7767. GGML_ASSERT(nb00 == ggml_type_size(type));
  7768. GGML_ASSERT(nb10 == sizeof(float));
  7769. // dst cannot be transposed or permuted
  7770. GGML_ASSERT(nb0 <= nb1);
  7771. GGML_ASSERT(nb1 <= nb2);
  7772. GGML_ASSERT(nb2 <= nb3);
  7773. GGML_ASSERT(ggml_is_quantized(src0->type));
  7774. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7775. // rows per thread
  7776. const int dr = (nr + nth - 1)/nth;
  7777. // row range for this thread
  7778. const int ir0 = dr*ith;
  7779. const int ir1 = MIN(ir0 + dr, nr);
  7780. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7781. for (int ir = ir0; ir < ir1; ++ir) {
  7782. // src0 indices
  7783. const int i03 = ir/(ne02*ne01);
  7784. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7785. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7786. // src1 and dst are same shape as src0 => same indices
  7787. const int i13 = i03;
  7788. const int i12 = i02;
  7789. const int i11 = i01;
  7790. const int i3 = i03;
  7791. const int i2 = i02;
  7792. const int i1 = i01;
  7793. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7794. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7795. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7796. assert(ne00 % 32 == 0);
  7797. // unquantize row from src0 to temp buffer
  7798. dequantize_row_q(src0_row, wdata, ne00);
  7799. // add src1
  7800. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7801. // quantize row to dst
  7802. if (quantize_row_q != NULL) {
  7803. quantize_row_q(wdata, dst_row, ne00);
  7804. } else {
  7805. memcpy(dst_row, wdata, ne0*nb0);
  7806. }
  7807. }
  7808. }
  7809. static void ggml_compute_forward_add(
  7810. const struct ggml_compute_params * params,
  7811. struct ggml_tensor * dst) {
  7812. const struct ggml_tensor * src0 = dst->src[0];
  7813. const struct ggml_tensor * src1 = dst->src[1];
  7814. switch (src0->type) {
  7815. case GGML_TYPE_F32:
  7816. {
  7817. if (src1->type == GGML_TYPE_F32) {
  7818. ggml_compute_forward_add_f32(params, dst);
  7819. }
  7820. else {
  7821. GGML_ASSERT(false);
  7822. }
  7823. } break;
  7824. case GGML_TYPE_F16:
  7825. {
  7826. if (src1->type == GGML_TYPE_F16) {
  7827. ggml_compute_forward_add_f16_f16(params, dst);
  7828. }
  7829. else if (src1->type == GGML_TYPE_F32) {
  7830. ggml_compute_forward_add_f16_f32(params, dst);
  7831. }
  7832. else {
  7833. GGML_ASSERT(false);
  7834. }
  7835. } break;
  7836. case GGML_TYPE_BF16:
  7837. {
  7838. if (src1->type == GGML_TYPE_BF16) {
  7839. ggml_compute_forward_add_bf16_bf16(params, dst);
  7840. }
  7841. else if (src1->type == GGML_TYPE_F32) {
  7842. ggml_compute_forward_add_bf16_f32(params, dst);
  7843. }
  7844. else {
  7845. GGML_ASSERT(false);
  7846. }
  7847. } break;
  7848. case GGML_TYPE_Q4_0:
  7849. case GGML_TYPE_Q4_1:
  7850. case GGML_TYPE_Q5_0:
  7851. case GGML_TYPE_Q5_1:
  7852. case GGML_TYPE_Q8_0:
  7853. case GGML_TYPE_Q2_K:
  7854. case GGML_TYPE_Q3_K:
  7855. case GGML_TYPE_Q4_K:
  7856. case GGML_TYPE_Q5_K:
  7857. case GGML_TYPE_Q6_K:
  7858. case GGML_TYPE_IQ2_XXS:
  7859. case GGML_TYPE_IQ2_XS:
  7860. case GGML_TYPE_IQ3_XXS:
  7861. case GGML_TYPE_IQ1_S:
  7862. case GGML_TYPE_IQ1_M:
  7863. case GGML_TYPE_IQ4_NL:
  7864. case GGML_TYPE_IQ4_XS:
  7865. case GGML_TYPE_IQ3_S:
  7866. case GGML_TYPE_IQ2_S:
  7867. {
  7868. ggml_compute_forward_add_q_f32(params, dst);
  7869. } break;
  7870. default:
  7871. {
  7872. GGML_ASSERT(false);
  7873. } break;
  7874. }
  7875. }
  7876. // ggml_compute_forward_add1
  7877. static void ggml_compute_forward_add1_f32(
  7878. const struct ggml_compute_params * params,
  7879. struct ggml_tensor * dst) {
  7880. const struct ggml_tensor * src0 = dst->src[0];
  7881. const struct ggml_tensor * src1 = dst->src[1];
  7882. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7883. GGML_ASSERT(ggml_is_scalar(src1));
  7884. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7885. return;
  7886. }
  7887. const int ith = params->ith;
  7888. const int nth = params->nth;
  7889. const int nr = ggml_nrows(src0);
  7890. GGML_TENSOR_UNARY_OP_LOCALS
  7891. GGML_ASSERT( nb0 == sizeof(float));
  7892. GGML_ASSERT(nb00 == sizeof(float));
  7893. // rows per thread
  7894. const int dr = (nr + nth - 1)/nth;
  7895. // row range for this thread
  7896. const int ir0 = dr*ith;
  7897. const int ir1 = MIN(ir0 + dr, nr);
  7898. for (int ir = ir0; ir < ir1; ++ir) {
  7899. // src0 and dst are same shape => same indices
  7900. const int i3 = ir/(ne2*ne1);
  7901. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7902. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7903. #ifdef GGML_USE_ACCELERATE
  7904. UNUSED(ggml_vec_add1_f32);
  7905. vDSP_vadd(
  7906. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7907. (float *) ((char *) src1->data), 0,
  7908. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7909. ne0);
  7910. #else
  7911. ggml_vec_add1_f32(ne0,
  7912. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7913. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7914. *(float *) src1->data);
  7915. #endif
  7916. }
  7917. }
  7918. static void ggml_compute_forward_add1_f16_f32(
  7919. const struct ggml_compute_params * params,
  7920. struct ggml_tensor * dst) {
  7921. const struct ggml_tensor * src0 = dst->src[0];
  7922. const struct ggml_tensor * src1 = dst->src[1];
  7923. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7924. GGML_ASSERT(ggml_is_scalar(src1));
  7925. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7926. return;
  7927. }
  7928. // scalar to add
  7929. const float v = *(float *) src1->data;
  7930. const int ith = params->ith;
  7931. const int nth = params->nth;
  7932. const int nr = ggml_nrows(src0);
  7933. GGML_TENSOR_UNARY_OP_LOCALS
  7934. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7935. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7936. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7937. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7938. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7939. // rows per thread
  7940. const int dr = (nr + nth - 1)/nth;
  7941. // row range for this thread
  7942. const int ir0 = dr*ith;
  7943. const int ir1 = MIN(ir0 + dr, nr);
  7944. for (int ir = ir0; ir < ir1; ++ir) {
  7945. // src0 and dst are same shape => same indices
  7946. const int i3 = ir/(ne2*ne1);
  7947. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7948. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7949. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7950. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7951. for (int i = 0; i < ne0; i++) {
  7952. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7953. }
  7954. }
  7955. }
  7956. static void ggml_compute_forward_add1_f16_f16(
  7957. const struct ggml_compute_params * params,
  7958. struct ggml_tensor * dst) {
  7959. const struct ggml_tensor * src0 = dst->src[0];
  7960. const struct ggml_tensor * src1 = dst->src[1];
  7961. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7962. GGML_ASSERT(ggml_is_scalar(src1));
  7963. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7964. return;
  7965. }
  7966. // scalar to add
  7967. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7968. const int ith = params->ith;
  7969. const int nth = params->nth;
  7970. const int nr = ggml_nrows(src0);
  7971. GGML_TENSOR_UNARY_OP_LOCALS
  7972. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7973. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7974. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7975. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7976. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7977. // rows per thread
  7978. const int dr = (nr + nth - 1)/nth;
  7979. // row range for this thread
  7980. const int ir0 = dr*ith;
  7981. const int ir1 = MIN(ir0 + dr, nr);
  7982. for (int ir = ir0; ir < ir1; ++ir) {
  7983. // src0 and dst are same shape => same indices
  7984. const int i3 = ir/(ne2*ne1);
  7985. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7986. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7987. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7988. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7989. for (int i = 0; i < ne0; i++) {
  7990. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7991. }
  7992. }
  7993. }
  7994. static void ggml_compute_forward_add1_q_f32(
  7995. const struct ggml_compute_params * params,
  7996. struct ggml_tensor * dst) {
  7997. const struct ggml_tensor * src0 = dst->src[0];
  7998. const struct ggml_tensor * src1 = dst->src[1];
  7999. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8000. GGML_ASSERT(ggml_is_scalar(src1));
  8001. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8002. return;
  8003. }
  8004. // scalar to add
  8005. const float v = *(float *) src1->data;
  8006. const int ith = params->ith;
  8007. const int nth = params->nth;
  8008. const int nr = ggml_nrows(src0);
  8009. GGML_TENSOR_UNARY_OP_LOCALS
  8010. const enum ggml_type type = src0->type;
  8011. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8012. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8013. // we don't support permuted src0
  8014. GGML_ASSERT(nb00 == ggml_type_size(type));
  8015. // dst cannot be transposed or permuted
  8016. GGML_ASSERT(nb0 <= nb1);
  8017. GGML_ASSERT(nb1 <= nb2);
  8018. GGML_ASSERT(nb2 <= nb3);
  8019. GGML_ASSERT(ggml_is_quantized(src0->type));
  8020. GGML_ASSERT(dst->type == src0->type);
  8021. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8022. // rows per thread
  8023. const int dr = (nr + nth - 1)/nth;
  8024. // row range for this thread
  8025. const int ir0 = dr*ith;
  8026. const int ir1 = MIN(ir0 + dr, nr);
  8027. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8028. for (int ir = ir0; ir < ir1; ++ir) {
  8029. // src0 and dst are same shape => same indices
  8030. const int i3 = ir/(ne2*ne1);
  8031. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8032. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8033. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8034. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8035. assert(ne0 % 32 == 0);
  8036. // unquantize row from src0 to temp buffer
  8037. dequantize_row_q(src0_row, wdata, ne0);
  8038. // add src1
  8039. ggml_vec_acc1_f32(ne0, wdata, v);
  8040. // quantize row to dst
  8041. quantize_row_q(wdata, dst_row, ne0);
  8042. }
  8043. }
  8044. static void ggml_compute_forward_add1_bf16_f32(
  8045. const struct ggml_compute_params * params,
  8046. struct ggml_tensor * dst) {
  8047. const struct ggml_tensor * src0 = dst->src[0];
  8048. const struct ggml_tensor * src1 = dst->src[1];
  8049. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8050. GGML_ASSERT(ggml_is_scalar(src1));
  8051. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8052. return;
  8053. }
  8054. // scalar to add
  8055. const float v = *(float *) src1->data;
  8056. const int ith = params->ith;
  8057. const int nth = params->nth;
  8058. const int nr = ggml_nrows(src0);
  8059. GGML_TENSOR_UNARY_OP_LOCALS
  8060. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8061. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8062. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8063. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8064. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8065. // rows per thread
  8066. const int dr = (nr + nth - 1)/nth;
  8067. // row range for this thread
  8068. const int ir0 = dr*ith;
  8069. const int ir1 = MIN(ir0 + dr, nr);
  8070. for (int ir = ir0; ir < ir1; ++ir) {
  8071. // src0 and dst are same shape => same indices
  8072. const int i3 = ir/(ne2*ne1);
  8073. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8074. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8075. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8076. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8077. for (int i = 0; i < ne0; i++) {
  8078. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8079. }
  8080. }
  8081. }
  8082. static void ggml_compute_forward_add1_bf16_bf16(
  8083. const struct ggml_compute_params * params,
  8084. struct ggml_tensor * dst) {
  8085. const struct ggml_tensor * src0 = dst->src[0];
  8086. const struct ggml_tensor * src1 = dst->src[1];
  8087. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8088. GGML_ASSERT(ggml_is_scalar(src1));
  8089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8090. return;
  8091. }
  8092. // scalar to add
  8093. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8094. const int ith = params->ith;
  8095. const int nth = params->nth;
  8096. const int nr = ggml_nrows(src0);
  8097. GGML_TENSOR_UNARY_OP_LOCALS
  8098. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8099. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8100. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8101. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8102. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8103. // rows per thread
  8104. const int dr = (nr + nth - 1)/nth;
  8105. // row range for this thread
  8106. const int ir0 = dr*ith;
  8107. const int ir1 = MIN(ir0 + dr, nr);
  8108. for (int ir = ir0; ir < ir1; ++ir) {
  8109. // src0 and dst are same shape => same indices
  8110. const int i3 = ir/(ne2*ne1);
  8111. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8112. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8113. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8114. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8115. for (int i = 0; i < ne0; i++) {
  8116. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8117. }
  8118. }
  8119. }
  8120. static void ggml_compute_forward_add1(
  8121. const struct ggml_compute_params * params,
  8122. struct ggml_tensor * dst) {
  8123. const struct ggml_tensor * src0 = dst->src[0];
  8124. const struct ggml_tensor * src1 = dst->src[1];
  8125. switch (src0->type) {
  8126. case GGML_TYPE_F32:
  8127. {
  8128. ggml_compute_forward_add1_f32(params, dst);
  8129. } break;
  8130. case GGML_TYPE_F16:
  8131. {
  8132. if (src1->type == GGML_TYPE_F16) {
  8133. ggml_compute_forward_add1_f16_f16(params, dst);
  8134. }
  8135. else if (src1->type == GGML_TYPE_F32) {
  8136. ggml_compute_forward_add1_f16_f32(params, dst);
  8137. }
  8138. else {
  8139. GGML_ASSERT(false);
  8140. }
  8141. } break;
  8142. case GGML_TYPE_BF16:
  8143. {
  8144. if (src1->type == GGML_TYPE_BF16) {
  8145. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8146. }
  8147. else if (src1->type == GGML_TYPE_F32) {
  8148. ggml_compute_forward_add1_bf16_f32(params, dst);
  8149. }
  8150. else {
  8151. GGML_ASSERT(false);
  8152. }
  8153. } break;
  8154. case GGML_TYPE_Q4_0:
  8155. case GGML_TYPE_Q4_1:
  8156. case GGML_TYPE_Q5_0:
  8157. case GGML_TYPE_Q5_1:
  8158. case GGML_TYPE_Q8_0:
  8159. case GGML_TYPE_Q8_1:
  8160. case GGML_TYPE_Q2_K:
  8161. case GGML_TYPE_Q3_K:
  8162. case GGML_TYPE_Q4_K:
  8163. case GGML_TYPE_Q5_K:
  8164. case GGML_TYPE_Q6_K:
  8165. case GGML_TYPE_IQ2_XXS:
  8166. case GGML_TYPE_IQ2_XS:
  8167. case GGML_TYPE_IQ3_XXS:
  8168. case GGML_TYPE_IQ1_S:
  8169. case GGML_TYPE_IQ1_M:
  8170. case GGML_TYPE_IQ4_NL:
  8171. case GGML_TYPE_IQ4_XS:
  8172. case GGML_TYPE_IQ3_S:
  8173. case GGML_TYPE_IQ2_S:
  8174. {
  8175. ggml_compute_forward_add1_q_f32(params, dst);
  8176. } break;
  8177. default:
  8178. {
  8179. GGML_ASSERT(false);
  8180. } break;
  8181. }
  8182. }
  8183. // ggml_compute_forward_acc
  8184. static void ggml_compute_forward_acc_f32(
  8185. const struct ggml_compute_params * params,
  8186. struct ggml_tensor * dst) {
  8187. const struct ggml_tensor * src0 = dst->src[0];
  8188. const struct ggml_tensor * src1 = dst->src[1];
  8189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8190. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8191. // view src0 and dst with these strides and data offset inbytes during acc
  8192. // nb0 is implicitly element_size because src0 and dst are contiguous
  8193. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8194. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8195. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8196. size_t offset = ((int32_t *) dst->op_params)[3];
  8197. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8198. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8199. if (params->ith != 0) {
  8200. return;
  8201. }
  8202. // memcpy needs to be synchronized across threads to avoid race conditions.
  8203. // => do it in INIT phase
  8204. memcpy(
  8205. ((char *) dst->data),
  8206. ((char *) src0->data),
  8207. ggml_nbytes(dst));
  8208. }
  8209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8210. return;
  8211. }
  8212. const int ith = params->ith;
  8213. const int nth = params->nth;
  8214. const int nr = ggml_nrows(src1);
  8215. const int nc = src1->ne[0];
  8216. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8217. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8218. // src0 and dst as viewed during acc
  8219. const size_t nb0 = ggml_element_size(src0);
  8220. const size_t nb00 = nb0;
  8221. const size_t nb01 = nb1;
  8222. const size_t nb02 = nb2;
  8223. const size_t nb03 = nb3;
  8224. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8225. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8226. GGML_ASSERT(nb10 == sizeof(float));
  8227. // rows per thread
  8228. const int dr = (nr + nth - 1)/nth;
  8229. // row range for this thread
  8230. const int ir0 = dr*ith;
  8231. const int ir1 = MIN(ir0 + dr, nr);
  8232. for (int ir = ir0; ir < ir1; ++ir) {
  8233. // src0 and dst are viewed with shape of src1 and offset
  8234. // => same indices
  8235. const int i3 = ir/(ne12*ne11);
  8236. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8237. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8238. #ifdef GGML_USE_ACCELERATE
  8239. vDSP_vadd(
  8240. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8241. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8242. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8243. #else
  8244. ggml_vec_add_f32(nc,
  8245. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8246. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8247. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8248. #endif
  8249. }
  8250. }
  8251. static void ggml_compute_forward_acc(
  8252. const struct ggml_compute_params * params,
  8253. struct ggml_tensor * dst) {
  8254. const struct ggml_tensor * src0 = dst->src[0];
  8255. switch (src0->type) {
  8256. case GGML_TYPE_F32:
  8257. {
  8258. ggml_compute_forward_acc_f32(params, dst);
  8259. } break;
  8260. case GGML_TYPE_F16:
  8261. case GGML_TYPE_BF16:
  8262. case GGML_TYPE_Q4_0:
  8263. case GGML_TYPE_Q4_1:
  8264. case GGML_TYPE_Q5_0:
  8265. case GGML_TYPE_Q5_1:
  8266. case GGML_TYPE_Q8_0:
  8267. case GGML_TYPE_Q8_1:
  8268. case GGML_TYPE_Q2_K:
  8269. case GGML_TYPE_Q3_K:
  8270. case GGML_TYPE_Q4_K:
  8271. case GGML_TYPE_Q5_K:
  8272. case GGML_TYPE_Q6_K:
  8273. case GGML_TYPE_IQ2_XXS:
  8274. case GGML_TYPE_IQ2_XS:
  8275. case GGML_TYPE_IQ3_XXS:
  8276. case GGML_TYPE_IQ1_S:
  8277. case GGML_TYPE_IQ1_M:
  8278. case GGML_TYPE_IQ4_NL:
  8279. case GGML_TYPE_IQ4_XS:
  8280. case GGML_TYPE_IQ3_S:
  8281. case GGML_TYPE_IQ2_S:
  8282. default:
  8283. {
  8284. GGML_ASSERT(false);
  8285. } break;
  8286. }
  8287. }
  8288. // ggml_compute_forward_sub
  8289. static void ggml_compute_forward_sub_f32(
  8290. const struct ggml_compute_params * params,
  8291. struct ggml_tensor * dst) {
  8292. const struct ggml_tensor * src0 = dst->src[0];
  8293. const struct ggml_tensor * src1 = dst->src[1];
  8294. assert(params->ith == 0);
  8295. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8296. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8297. return;
  8298. }
  8299. const int nr = ggml_nrows(src0);
  8300. GGML_TENSOR_BINARY_OP_LOCALS
  8301. GGML_ASSERT( nb0 == sizeof(float));
  8302. GGML_ASSERT(nb00 == sizeof(float));
  8303. if (nb10 == sizeof(float)) {
  8304. for (int ir = 0; ir < nr; ++ir) {
  8305. // src0, src1 and dst are same shape => same indices
  8306. const int i3 = ir/(ne2*ne1);
  8307. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8308. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8309. #ifdef GGML_USE_ACCELERATE
  8310. vDSP_vsub(
  8311. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8312. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8313. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8314. ne0);
  8315. #else
  8316. ggml_vec_sub_f32(ne0,
  8317. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8318. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8319. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8320. #endif
  8321. // }
  8322. // }
  8323. }
  8324. } else {
  8325. // src1 is not contiguous
  8326. for (int ir = 0; ir < nr; ++ir) {
  8327. // src0, src1 and dst are same shape => same indices
  8328. const int i3 = ir/(ne2*ne1);
  8329. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8330. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8331. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8332. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8333. for (int i0 = 0; i0 < ne0; i0++) {
  8334. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8335. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8336. }
  8337. }
  8338. }
  8339. }
  8340. static void ggml_compute_forward_sub(
  8341. const struct ggml_compute_params * params,
  8342. struct ggml_tensor * dst) {
  8343. const struct ggml_tensor * src0 = dst->src[0];
  8344. switch (src0->type) {
  8345. case GGML_TYPE_F32:
  8346. {
  8347. ggml_compute_forward_sub_f32(params, dst);
  8348. } break;
  8349. default:
  8350. {
  8351. GGML_ASSERT(false);
  8352. } break;
  8353. }
  8354. }
  8355. // ggml_compute_forward_mul
  8356. static void ggml_compute_forward_mul_f32(
  8357. const struct ggml_compute_params * params,
  8358. struct ggml_tensor * dst) {
  8359. const struct ggml_tensor * src0 = dst->src[0];
  8360. const struct ggml_tensor * src1 = dst->src[1];
  8361. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8363. return;
  8364. }
  8365. const int ith = params->ith;
  8366. const int nth = params->nth;
  8367. const int64_t nr = ggml_nrows(src0);
  8368. GGML_TENSOR_BINARY_OP_LOCALS
  8369. GGML_ASSERT( nb0 == sizeof(float));
  8370. GGML_ASSERT(nb00 == sizeof(float));
  8371. if (nb10 == sizeof(float)) {
  8372. for (int64_t ir = ith; ir < nr; ir += nth) {
  8373. // src0 and dst are same shape => same indices
  8374. const int64_t i03 = ir/(ne02*ne01);
  8375. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8376. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8377. const int64_t i13 = i03 % ne13;
  8378. const int64_t i12 = i02 % ne12;
  8379. const int64_t i11 = i01 % ne11;
  8380. const int64_t nr0 = ne00 / ne10;
  8381. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8382. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8383. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8384. for (int64_t r = 0 ; r < nr0; ++r) {
  8385. #ifdef GGML_USE_ACCELERATE
  8386. UNUSED(ggml_vec_mul_f32);
  8387. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8388. #else
  8389. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8390. #endif
  8391. }
  8392. }
  8393. } else {
  8394. // src1 is not contiguous
  8395. for (int64_t ir = ith; ir < nr; ir += nth) {
  8396. // src0 and dst are same shape => same indices
  8397. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8398. const int64_t i03 = ir/(ne02*ne01);
  8399. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8400. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8401. const int64_t i13 = i03 % ne13;
  8402. const int64_t i12 = i02 % ne12;
  8403. const int64_t i11 = i01 % ne11;
  8404. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8405. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8406. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8407. const int64_t i10 = i0 % ne10;
  8408. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8409. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8410. }
  8411. }
  8412. }
  8413. }
  8414. static void ggml_compute_forward_mul(
  8415. const struct ggml_compute_params * params,
  8416. struct ggml_tensor * dst) {
  8417. const struct ggml_tensor * src0 = dst->src[0];
  8418. const struct ggml_tensor * src1 = dst->src[1];
  8419. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8420. switch (src0->type) {
  8421. case GGML_TYPE_F32:
  8422. {
  8423. ggml_compute_forward_mul_f32(params, dst);
  8424. } break;
  8425. default:
  8426. {
  8427. GGML_ASSERT(false);
  8428. } break;
  8429. }
  8430. }
  8431. // ggml_compute_forward_div
  8432. static void ggml_compute_forward_div_f32(
  8433. const struct ggml_compute_params * params,
  8434. struct ggml_tensor * dst) {
  8435. const struct ggml_tensor * src0 = dst->src[0];
  8436. const struct ggml_tensor * src1 = dst->src[1];
  8437. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8439. return;
  8440. }
  8441. const int ith = params->ith;
  8442. const int nth = params->nth;
  8443. const int64_t nr = ggml_nrows(src0);
  8444. GGML_TENSOR_BINARY_OP_LOCALS
  8445. GGML_ASSERT( nb0 == sizeof(float));
  8446. GGML_ASSERT(nb00 == sizeof(float));
  8447. if (nb10 == sizeof(float)) {
  8448. for (int64_t ir = ith; ir < nr; ir += nth) {
  8449. // src0 and dst are same shape => same indices
  8450. const int64_t i03 = ir/(ne02*ne01);
  8451. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8452. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8453. const int64_t i13 = i03 % ne13;
  8454. const int64_t i12 = i02 % ne12;
  8455. const int64_t i11 = i01 % ne11;
  8456. const int64_t nr0 = ne00 / ne10;
  8457. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8458. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8459. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8460. for (int64_t r = 0; r < nr0; ++r) {
  8461. #ifdef GGML_USE_ACCELERATE
  8462. UNUSED(ggml_vec_div_f32);
  8463. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8464. #else
  8465. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8466. #endif
  8467. }
  8468. }
  8469. } else {
  8470. // src1 is not contiguous
  8471. for (int64_t ir = ith; ir < nr; ir += nth) {
  8472. // src0 and dst are same shape => same indices
  8473. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8474. const int64_t i03 = ir/(ne02*ne01);
  8475. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8476. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8477. const int64_t i13 = i03 % ne13;
  8478. const int64_t i12 = i02 % ne12;
  8479. const int64_t i11 = i01 % ne11;
  8480. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8481. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8482. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8483. const int64_t i10 = i0 % ne10;
  8484. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8485. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8486. }
  8487. }
  8488. }
  8489. }
  8490. static void ggml_compute_forward_div(
  8491. const struct ggml_compute_params * params,
  8492. struct ggml_tensor * dst) {
  8493. const struct ggml_tensor * src0 = dst->src[0];
  8494. switch (src0->type) {
  8495. case GGML_TYPE_F32:
  8496. {
  8497. ggml_compute_forward_div_f32(params, dst);
  8498. } break;
  8499. default:
  8500. {
  8501. GGML_ASSERT(false);
  8502. } break;
  8503. }
  8504. }
  8505. // ggml_compute_forward_sqr
  8506. static void ggml_compute_forward_sqr_f32(
  8507. const struct ggml_compute_params * params,
  8508. struct ggml_tensor * dst) {
  8509. const struct ggml_tensor * src0 = dst->src[0];
  8510. assert(params->ith == 0);
  8511. assert(ggml_are_same_shape(src0, dst));
  8512. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8513. return;
  8514. }
  8515. const int n = ggml_nrows(src0);
  8516. const int nc = src0->ne[0];
  8517. assert( dst->nb[0] == sizeof(float));
  8518. assert(src0->nb[0] == sizeof(float));
  8519. for (int i = 0; i < n; i++) {
  8520. ggml_vec_sqr_f32(nc,
  8521. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8522. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8523. }
  8524. }
  8525. static void ggml_compute_forward_sqr(
  8526. const struct ggml_compute_params * params,
  8527. struct ggml_tensor * dst) {
  8528. const struct ggml_tensor * src0 = dst->src[0];
  8529. switch (src0->type) {
  8530. case GGML_TYPE_F32:
  8531. {
  8532. ggml_compute_forward_sqr_f32(params, dst);
  8533. } break;
  8534. default:
  8535. {
  8536. GGML_ASSERT(false);
  8537. } break;
  8538. }
  8539. }
  8540. // ggml_compute_forward_sqrt
  8541. static void ggml_compute_forward_sqrt_f32(
  8542. const struct ggml_compute_params * params,
  8543. struct ggml_tensor * dst) {
  8544. const struct ggml_tensor * src0 = dst->src[0];
  8545. assert(params->ith == 0);
  8546. assert(ggml_are_same_shape(src0, dst));
  8547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8548. return;
  8549. }
  8550. const int n = ggml_nrows(src0);
  8551. const int nc = src0->ne[0];
  8552. assert( dst->nb[0] == sizeof(float));
  8553. assert(src0->nb[0] == sizeof(float));
  8554. for (int i = 0; i < n; i++) {
  8555. ggml_vec_sqrt_f32(nc,
  8556. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8557. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8558. }
  8559. }
  8560. static void ggml_compute_forward_sqrt(
  8561. const struct ggml_compute_params * params,
  8562. struct ggml_tensor * dst) {
  8563. const struct ggml_tensor * src0 = dst->src[0];
  8564. switch (src0->type) {
  8565. case GGML_TYPE_F32:
  8566. {
  8567. ggml_compute_forward_sqrt_f32(params, dst);
  8568. } break;
  8569. default:
  8570. {
  8571. GGML_ASSERT(false);
  8572. } break;
  8573. }
  8574. }
  8575. // ggml_compute_forward_log
  8576. static void ggml_compute_forward_log_f32(
  8577. const struct ggml_compute_params * params,
  8578. struct ggml_tensor * dst) {
  8579. const struct ggml_tensor * src0 = dst->src[0];
  8580. GGML_ASSERT(params->ith == 0);
  8581. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8583. return;
  8584. }
  8585. const int n = ggml_nrows(src0);
  8586. const int nc = src0->ne[0];
  8587. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8588. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8589. for (int i = 0; i < n; i++) {
  8590. ggml_vec_log_f32(nc,
  8591. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8592. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8593. }
  8594. }
  8595. static void ggml_compute_forward_log(
  8596. const struct ggml_compute_params * params,
  8597. struct ggml_tensor * dst) {
  8598. const struct ggml_tensor * src0 = dst->src[0];
  8599. switch (src0->type) {
  8600. case GGML_TYPE_F32:
  8601. {
  8602. ggml_compute_forward_log_f32(params, dst);
  8603. } break;
  8604. default:
  8605. {
  8606. GGML_ASSERT(false);
  8607. } break;
  8608. }
  8609. }
  8610. // ggml_compute_forward_sum
  8611. static void ggml_compute_forward_sum_f32(
  8612. const struct ggml_compute_params * params,
  8613. struct ggml_tensor * dst) {
  8614. const struct ggml_tensor * src0 = dst->src[0];
  8615. assert(params->ith == 0);
  8616. assert(ggml_is_scalar(dst));
  8617. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8618. return;
  8619. }
  8620. assert(ggml_is_scalar(dst));
  8621. assert(src0->nb[0] == sizeof(float));
  8622. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8623. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8624. ggml_float sum = 0;
  8625. ggml_float row_sum = 0;
  8626. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8627. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8628. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8629. ggml_vec_sum_f32_ggf(ne00,
  8630. &row_sum,
  8631. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8632. sum += row_sum;
  8633. }
  8634. }
  8635. }
  8636. ((float *) dst->data)[0] = sum;
  8637. }
  8638. static void ggml_compute_forward_sum_f16(
  8639. const struct ggml_compute_params * params,
  8640. struct ggml_tensor * dst) {
  8641. const struct ggml_tensor * src0 = dst->src[0];
  8642. assert(params->ith == 0);
  8643. assert(ggml_is_scalar(dst));
  8644. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8645. return;
  8646. }
  8647. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8648. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8649. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8650. float sum = 0;
  8651. float row_sum = 0;
  8652. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8653. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8654. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8655. ggml_vec_sum_f16_ggf(ne00,
  8656. &row_sum,
  8657. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8658. sum += row_sum;
  8659. }
  8660. }
  8661. }
  8662. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8663. }
  8664. static void ggml_compute_forward_sum_bf16(
  8665. const struct ggml_compute_params * params,
  8666. struct ggml_tensor * dst) {
  8667. const struct ggml_tensor * src0 = dst->src[0];
  8668. assert(params->ith == 0);
  8669. assert(ggml_is_scalar(dst));
  8670. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8671. return;
  8672. }
  8673. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8674. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8675. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8676. float sum = 0;
  8677. float row_sum = 0;
  8678. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8679. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8680. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8681. ggml_vec_sum_bf16_ggf(ne00,
  8682. &row_sum,
  8683. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8684. sum += row_sum;
  8685. }
  8686. }
  8687. }
  8688. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8689. }
  8690. static void ggml_compute_forward_sum(
  8691. const struct ggml_compute_params * params,
  8692. struct ggml_tensor * dst) {
  8693. const struct ggml_tensor * src0 = dst->src[0];
  8694. switch (src0->type) {
  8695. case GGML_TYPE_F32:
  8696. {
  8697. ggml_compute_forward_sum_f32(params, dst);
  8698. } break;
  8699. case GGML_TYPE_F16:
  8700. {
  8701. ggml_compute_forward_sum_f16(params, dst);
  8702. } break;
  8703. case GGML_TYPE_BF16:
  8704. {
  8705. ggml_compute_forward_sum_bf16(params, dst);
  8706. } break;
  8707. default:
  8708. {
  8709. GGML_ASSERT(false);
  8710. } break;
  8711. }
  8712. }
  8713. // ggml_compute_forward_sum_rows
  8714. static void ggml_compute_forward_sum_rows_f32(
  8715. const struct ggml_compute_params * params,
  8716. struct ggml_tensor * dst) {
  8717. const struct ggml_tensor * src0 = dst->src[0];
  8718. GGML_ASSERT(params->ith == 0);
  8719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8720. return;
  8721. }
  8722. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8723. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8724. GGML_TENSOR_UNARY_OP_LOCALS
  8725. GGML_ASSERT(ne0 == 1);
  8726. GGML_ASSERT(ne1 == ne01);
  8727. GGML_ASSERT(ne2 == ne02);
  8728. GGML_ASSERT(ne3 == ne03);
  8729. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8730. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8731. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8732. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8733. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8734. float row_sum = 0;
  8735. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8736. dst_row[0] = row_sum;
  8737. }
  8738. }
  8739. }
  8740. }
  8741. static void ggml_compute_forward_sum_rows(
  8742. const struct ggml_compute_params * params,
  8743. struct ggml_tensor * dst) {
  8744. const struct ggml_tensor * src0 = dst->src[0];
  8745. switch (src0->type) {
  8746. case GGML_TYPE_F32:
  8747. {
  8748. ggml_compute_forward_sum_rows_f32(params, dst);
  8749. } break;
  8750. default:
  8751. {
  8752. GGML_ASSERT(false);
  8753. } break;
  8754. }
  8755. }
  8756. // ggml_compute_forward_mean
  8757. static void ggml_compute_forward_mean_f32(
  8758. const struct ggml_compute_params * params,
  8759. struct ggml_tensor * dst) {
  8760. const struct ggml_tensor * src0 = dst->src[0];
  8761. assert(params->ith == 0);
  8762. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8763. return;
  8764. }
  8765. assert(src0->nb[0] == sizeof(float));
  8766. GGML_TENSOR_UNARY_OP_LOCALS
  8767. assert(ne0 == 1);
  8768. assert(ne1 == ne01);
  8769. assert(ne2 == ne02);
  8770. assert(ne3 == ne03);
  8771. UNUSED(ne0);
  8772. UNUSED(ne1);
  8773. UNUSED(ne2);
  8774. UNUSED(ne3);
  8775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8777. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8778. ggml_vec_sum_f32(ne00,
  8779. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8780. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8781. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8782. }
  8783. }
  8784. }
  8785. }
  8786. static void ggml_compute_forward_mean(
  8787. const struct ggml_compute_params * params,
  8788. struct ggml_tensor * dst) {
  8789. const struct ggml_tensor * src0 = dst->src[0];
  8790. switch (src0->type) {
  8791. case GGML_TYPE_F32:
  8792. {
  8793. ggml_compute_forward_mean_f32(params, dst);
  8794. } break;
  8795. default:
  8796. {
  8797. GGML_ASSERT(false);
  8798. } break;
  8799. }
  8800. }
  8801. // ggml_compute_forward_argmax
  8802. static void ggml_compute_forward_argmax_f32(
  8803. const struct ggml_compute_params * params,
  8804. struct ggml_tensor * dst) {
  8805. const struct ggml_tensor * src0 = dst->src[0];
  8806. assert(params->ith == 0);
  8807. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8808. return;
  8809. }
  8810. assert(src0->nb[0] == sizeof(float));
  8811. assert(dst->nb[0] == sizeof(float));
  8812. const int64_t ne00 = src0->ne[0];
  8813. const int64_t ne01 = src0->ne[1];
  8814. const size_t nb01 = src0->nb[1];
  8815. const size_t nb0 = dst->nb[0];
  8816. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8817. float * src = (float *) ((char *) src0->data + i1*nb01);
  8818. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8819. int v = 0;
  8820. ggml_vec_argmax_f32(ne00, &v, src);
  8821. dst_[0] = v;
  8822. }
  8823. }
  8824. static void ggml_compute_forward_argmax(
  8825. const struct ggml_compute_params * params,
  8826. struct ggml_tensor * dst) {
  8827. const struct ggml_tensor * src0 = dst->src[0];
  8828. switch (src0->type) {
  8829. case GGML_TYPE_F32:
  8830. {
  8831. ggml_compute_forward_argmax_f32(params, dst);
  8832. } break;
  8833. default:
  8834. {
  8835. GGML_ASSERT(false);
  8836. } break;
  8837. }
  8838. }
  8839. // ggml_compute_forward_repeat
  8840. static void ggml_compute_forward_repeat_f32(
  8841. const struct ggml_compute_params * params,
  8842. struct ggml_tensor * dst) {
  8843. const struct ggml_tensor * src0 = dst->src[0];
  8844. GGML_ASSERT(params->ith == 0);
  8845. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8846. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8847. return;
  8848. }
  8849. GGML_TENSOR_UNARY_OP_LOCALS
  8850. // guaranteed to be an integer due to the check in ggml_can_repeat
  8851. const int nr0 = (int)(ne0/ne00);
  8852. const int nr1 = (int)(ne1/ne01);
  8853. const int nr2 = (int)(ne2/ne02);
  8854. const int nr3 = (int)(ne3/ne03);
  8855. // TODO: support for transposed / permuted tensors
  8856. GGML_ASSERT(nb0 == sizeof(float));
  8857. GGML_ASSERT(nb00 == sizeof(float));
  8858. // TODO: maybe this is not optimal?
  8859. for (int i3 = 0; i3 < nr3; i3++) {
  8860. for (int k3 = 0; k3 < ne03; k3++) {
  8861. for (int i2 = 0; i2 < nr2; i2++) {
  8862. for (int k2 = 0; k2 < ne02; k2++) {
  8863. for (int i1 = 0; i1 < nr1; i1++) {
  8864. for (int k1 = 0; k1 < ne01; k1++) {
  8865. for (int i0 = 0; i0 < nr0; i0++) {
  8866. ggml_vec_cpy_f32(ne00,
  8867. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8868. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8869. }
  8870. }
  8871. }
  8872. }
  8873. }
  8874. }
  8875. }
  8876. }
  8877. static void ggml_compute_forward_repeat_f16(
  8878. const struct ggml_compute_params * params,
  8879. struct ggml_tensor * dst) {
  8880. const struct ggml_tensor * src0 = dst->src[0];
  8881. GGML_ASSERT(params->ith == 0);
  8882. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8883. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8884. return;
  8885. }
  8886. GGML_TENSOR_UNARY_OP_LOCALS
  8887. // guaranteed to be an integer due to the check in ggml_can_repeat
  8888. const int nr0 = (int)(ne0/ne00);
  8889. const int nr1 = (int)(ne1/ne01);
  8890. const int nr2 = (int)(ne2/ne02);
  8891. const int nr3 = (int)(ne3/ne03);
  8892. // TODO: support for transposed / permuted tensors
  8893. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8894. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8895. // TODO: maybe this is not optimal?
  8896. for (int i3 = 0; i3 < nr3; i3++) {
  8897. for (int k3 = 0; k3 < ne03; k3++) {
  8898. for (int i2 = 0; i2 < nr2; i2++) {
  8899. for (int k2 = 0; k2 < ne02; k2++) {
  8900. for (int i1 = 0; i1 < nr1; i1++) {
  8901. for (int k1 = 0; k1 < ne01; k1++) {
  8902. for (int i0 = 0; i0 < nr0; i0++) {
  8903. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8904. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8905. // ggml_vec_cpy_f16(ne00, y, x)
  8906. for (int i = 0; i < ne00; ++i) {
  8907. y[i] = x[i];
  8908. }
  8909. }
  8910. }
  8911. }
  8912. }
  8913. }
  8914. }
  8915. }
  8916. }
  8917. static void ggml_compute_forward_repeat(
  8918. const struct ggml_compute_params * params,
  8919. struct ggml_tensor * dst) {
  8920. const struct ggml_tensor * src0 = dst->src[0];
  8921. switch (src0->type) {
  8922. case GGML_TYPE_F16:
  8923. case GGML_TYPE_BF16:
  8924. case GGML_TYPE_I16:
  8925. {
  8926. ggml_compute_forward_repeat_f16(params, dst);
  8927. } break;
  8928. case GGML_TYPE_F32:
  8929. case GGML_TYPE_I32:
  8930. {
  8931. ggml_compute_forward_repeat_f32(params, dst);
  8932. } break;
  8933. default:
  8934. {
  8935. GGML_ASSERT(false);
  8936. } break;
  8937. }
  8938. }
  8939. // ggml_compute_forward_repeat_back
  8940. static void ggml_compute_forward_repeat_back_f32(
  8941. const struct ggml_compute_params * params,
  8942. struct ggml_tensor * dst) {
  8943. const struct ggml_tensor * src0 = dst->src[0];
  8944. GGML_ASSERT(params->ith == 0);
  8945. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8946. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8947. return;
  8948. }
  8949. GGML_TENSOR_UNARY_OP_LOCALS
  8950. // guaranteed to be an integer due to the check in ggml_can_repeat
  8951. const int nr0 = (int)(ne00/ne0);
  8952. const int nr1 = (int)(ne01/ne1);
  8953. const int nr2 = (int)(ne02/ne2);
  8954. const int nr3 = (int)(ne03/ne3);
  8955. // TODO: support for transposed / permuted tensors
  8956. GGML_ASSERT(nb0 == sizeof(float));
  8957. GGML_ASSERT(nb00 == sizeof(float));
  8958. if (ggml_is_contiguous(dst)) {
  8959. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8960. } else {
  8961. for (int k3 = 0; k3 < ne3; k3++) {
  8962. for (int k2 = 0; k2 < ne2; k2++) {
  8963. for (int k1 = 0; k1 < ne1; k1++) {
  8964. ggml_vec_set_f32(ne0,
  8965. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8966. 0);
  8967. }
  8968. }
  8969. }
  8970. }
  8971. // TODO: maybe this is not optimal?
  8972. for (int i3 = 0; i3 < nr3; i3++) {
  8973. for (int k3 = 0; k3 < ne3; k3++) {
  8974. for (int i2 = 0; i2 < nr2; i2++) {
  8975. for (int k2 = 0; k2 < ne2; k2++) {
  8976. for (int i1 = 0; i1 < nr1; i1++) {
  8977. for (int k1 = 0; k1 < ne1; k1++) {
  8978. for (int i0 = 0; i0 < nr0; i0++) {
  8979. ggml_vec_acc_f32(ne0,
  8980. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8981. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8982. }
  8983. }
  8984. }
  8985. }
  8986. }
  8987. }
  8988. }
  8989. }
  8990. static void ggml_compute_forward_repeat_back(
  8991. const struct ggml_compute_params * params,
  8992. struct ggml_tensor * dst) {
  8993. const struct ggml_tensor * src0 = dst->src[0];
  8994. switch (src0->type) {
  8995. case GGML_TYPE_F32:
  8996. {
  8997. ggml_compute_forward_repeat_back_f32(params, dst);
  8998. } break;
  8999. default:
  9000. {
  9001. GGML_ASSERT(false);
  9002. } break;
  9003. }
  9004. }
  9005. // ggml_compute_forward_concat
  9006. static void ggml_compute_forward_concat_f32(
  9007. const struct ggml_compute_params * params,
  9008. struct ggml_tensor * dst) {
  9009. const struct ggml_tensor * src0 = dst->src[0];
  9010. const struct ggml_tensor * src1 = dst->src[1];
  9011. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9012. return;
  9013. }
  9014. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9015. const int ith = params->ith;
  9016. const int nth = params->nth;
  9017. GGML_TENSOR_BINARY_OP_LOCALS
  9018. // TODO: support for transposed / permuted tensors
  9019. GGML_ASSERT(nb0 == sizeof(float));
  9020. GGML_ASSERT(nb00 == sizeof(float));
  9021. GGML_ASSERT(nb10 == sizeof(float));
  9022. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9023. GGML_ASSERT(dim >= 0 && dim < 4);
  9024. int64_t o[4] = {0, 0, 0, 0};
  9025. o[dim] = src0->ne[dim];
  9026. const float * x;
  9027. // TODO: smarter multi-theading
  9028. for (int i3 = 0; i3 < ne3; i3++) {
  9029. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9030. for (int i1 = 0; i1 < ne1; i1++) {
  9031. for (int i0 = 0; i0 < ne0; i0++) {
  9032. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9033. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9034. } else {
  9035. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9036. }
  9037. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9038. *y = *x;
  9039. }
  9040. }
  9041. }
  9042. }
  9043. }
  9044. static void ggml_compute_forward_concat(
  9045. const struct ggml_compute_params * params,
  9046. struct ggml_tensor * dst) {
  9047. const struct ggml_tensor * src0 = dst->src[0];
  9048. switch (src0->type) {
  9049. case GGML_TYPE_F32:
  9050. case GGML_TYPE_I32:
  9051. {
  9052. ggml_compute_forward_concat_f32(params, dst);
  9053. } break;
  9054. default:
  9055. {
  9056. GGML_ASSERT(false);
  9057. } break;
  9058. }
  9059. }
  9060. // ggml_compute_forward_abs
  9061. static void ggml_compute_forward_abs_f32(
  9062. const struct ggml_compute_params * params,
  9063. struct ggml_tensor * dst) {
  9064. const struct ggml_tensor * src0 = dst->src[0];
  9065. assert(params->ith == 0);
  9066. assert(ggml_is_contiguous_1(src0));
  9067. assert(ggml_is_contiguous_1(dst));
  9068. assert(ggml_are_same_shape(src0, dst));
  9069. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9070. return;
  9071. }
  9072. const int n = ggml_nrows(src0);
  9073. const int nc = src0->ne[0];
  9074. for (int i = 0; i < n; i++) {
  9075. ggml_vec_abs_f32(nc,
  9076. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9077. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9078. }
  9079. }
  9080. static void ggml_compute_forward_abs(
  9081. const struct ggml_compute_params * params,
  9082. struct ggml_tensor * dst) {
  9083. const struct ggml_tensor * src0 = dst->src[0];
  9084. switch (src0->type) {
  9085. case GGML_TYPE_F32:
  9086. {
  9087. ggml_compute_forward_abs_f32(params, dst);
  9088. } break;
  9089. default:
  9090. {
  9091. GGML_ASSERT(false);
  9092. } break;
  9093. }
  9094. }
  9095. // ggml_compute_forward_sgn
  9096. static void ggml_compute_forward_sgn_f32(
  9097. const struct ggml_compute_params * params,
  9098. struct ggml_tensor * dst) {
  9099. const struct ggml_tensor * src0 = dst->src[0];
  9100. assert(params->ith == 0);
  9101. assert(ggml_is_contiguous_1(src0));
  9102. assert(ggml_is_contiguous_1(dst));
  9103. assert(ggml_are_same_shape(src0, dst));
  9104. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9105. return;
  9106. }
  9107. const int n = ggml_nrows(src0);
  9108. const int nc = src0->ne[0];
  9109. for (int i = 0; i < n; i++) {
  9110. ggml_vec_sgn_f32(nc,
  9111. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9112. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9113. }
  9114. }
  9115. static void ggml_compute_forward_sgn(
  9116. const struct ggml_compute_params * params,
  9117. struct ggml_tensor * dst) {
  9118. const struct ggml_tensor * src0 = dst->src[0];
  9119. switch (src0->type) {
  9120. case GGML_TYPE_F32:
  9121. {
  9122. ggml_compute_forward_sgn_f32(params, dst);
  9123. } break;
  9124. default:
  9125. {
  9126. GGML_ASSERT(false);
  9127. } break;
  9128. }
  9129. }
  9130. // ggml_compute_forward_neg
  9131. static void ggml_compute_forward_neg_f32(
  9132. const struct ggml_compute_params * params,
  9133. struct ggml_tensor * dst) {
  9134. const struct ggml_tensor * src0 = dst->src[0];
  9135. assert(params->ith == 0);
  9136. assert(ggml_is_contiguous_1(src0));
  9137. assert(ggml_is_contiguous_1(dst));
  9138. assert(ggml_are_same_shape(src0, dst));
  9139. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9140. return;
  9141. }
  9142. const int n = ggml_nrows(src0);
  9143. const int nc = src0->ne[0];
  9144. for (int i = 0; i < n; i++) {
  9145. ggml_vec_neg_f32(nc,
  9146. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9147. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9148. }
  9149. }
  9150. static void ggml_compute_forward_neg(
  9151. const struct ggml_compute_params * params,
  9152. struct ggml_tensor * dst) {
  9153. const struct ggml_tensor * src0 = dst->src[0];
  9154. switch (src0->type) {
  9155. case GGML_TYPE_F32:
  9156. {
  9157. ggml_compute_forward_neg_f32(params, dst);
  9158. } break;
  9159. default:
  9160. {
  9161. GGML_ASSERT(false);
  9162. } break;
  9163. }
  9164. }
  9165. // ggml_compute_forward_step
  9166. static void ggml_compute_forward_step_f32(
  9167. const struct ggml_compute_params * params,
  9168. struct ggml_tensor * dst) {
  9169. const struct ggml_tensor * src0 = dst->src[0];
  9170. assert(params->ith == 0);
  9171. assert(ggml_is_contiguous_1(src0));
  9172. assert(ggml_is_contiguous_1(dst));
  9173. assert(ggml_are_same_shape(src0, dst));
  9174. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9175. return;
  9176. }
  9177. const int n = ggml_nrows(src0);
  9178. const int nc = src0->ne[0];
  9179. for (int i = 0; i < n; i++) {
  9180. ggml_vec_step_f32(nc,
  9181. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9182. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9183. }
  9184. }
  9185. static void ggml_compute_forward_step(
  9186. const struct ggml_compute_params * params,
  9187. struct ggml_tensor * dst) {
  9188. const struct ggml_tensor * src0 = dst->src[0];
  9189. switch (src0->type) {
  9190. case GGML_TYPE_F32:
  9191. {
  9192. ggml_compute_forward_step_f32(params, dst);
  9193. } break;
  9194. default:
  9195. {
  9196. GGML_ASSERT(false);
  9197. } break;
  9198. }
  9199. }
  9200. // ggml_compute_forward_tanh
  9201. static void ggml_compute_forward_tanh_f32(
  9202. const struct ggml_compute_params * params,
  9203. struct ggml_tensor * dst) {
  9204. const struct ggml_tensor * src0 = dst->src[0];
  9205. assert(params->ith == 0);
  9206. assert(ggml_is_contiguous_1(src0));
  9207. assert(ggml_is_contiguous_1(dst));
  9208. assert(ggml_are_same_shape(src0, dst));
  9209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9210. return;
  9211. }
  9212. const int n = ggml_nrows(src0);
  9213. const int nc = src0->ne[0];
  9214. for (int i = 0; i < n; i++) {
  9215. ggml_vec_tanh_f32(nc,
  9216. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9217. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9218. }
  9219. }
  9220. static void ggml_compute_forward_tanh(
  9221. const struct ggml_compute_params * params,
  9222. struct ggml_tensor * dst) {
  9223. const struct ggml_tensor * src0 = dst->src[0];
  9224. switch (src0->type) {
  9225. case GGML_TYPE_F32:
  9226. {
  9227. ggml_compute_forward_tanh_f32(params, dst);
  9228. } break;
  9229. default:
  9230. {
  9231. GGML_ASSERT(false);
  9232. } break;
  9233. }
  9234. }
  9235. // ggml_compute_forward_elu
  9236. static void ggml_compute_forward_elu_f32(
  9237. const struct ggml_compute_params * params,
  9238. struct ggml_tensor * dst) {
  9239. const struct ggml_tensor * src0 = dst->src[0];
  9240. assert(params->ith == 0);
  9241. assert(ggml_is_contiguous_1(src0));
  9242. assert(ggml_is_contiguous_1(dst));
  9243. assert(ggml_are_same_shape(src0, dst));
  9244. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9245. return;
  9246. }
  9247. const int n = ggml_nrows(src0);
  9248. const int nc = src0->ne[0];
  9249. for (int i = 0; i < n; i++) {
  9250. ggml_vec_elu_f32(nc,
  9251. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9252. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9253. }
  9254. }
  9255. static void ggml_compute_forward_elu(
  9256. const struct ggml_compute_params * params,
  9257. struct ggml_tensor * dst) {
  9258. const struct ggml_tensor * src0 = dst->src[0];
  9259. switch (src0->type) {
  9260. case GGML_TYPE_F32:
  9261. {
  9262. ggml_compute_forward_elu_f32(params, dst);
  9263. } break;
  9264. default:
  9265. {
  9266. GGML_ASSERT(false);
  9267. } break;
  9268. }
  9269. }
  9270. // ggml_compute_forward_relu
  9271. static void ggml_compute_forward_relu_f32(
  9272. const struct ggml_compute_params * params,
  9273. struct ggml_tensor * dst) {
  9274. const struct ggml_tensor * src0 = dst->src[0];
  9275. assert(params->ith == 0);
  9276. assert(ggml_is_contiguous_1(src0));
  9277. assert(ggml_is_contiguous_1(dst));
  9278. assert(ggml_are_same_shape(src0, dst));
  9279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9280. return;
  9281. }
  9282. const int n = ggml_nrows(src0);
  9283. const int nc = src0->ne[0];
  9284. for (int i = 0; i < n; i++) {
  9285. ggml_vec_relu_f32(nc,
  9286. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9287. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9288. }
  9289. }
  9290. static void ggml_compute_forward_relu(
  9291. const struct ggml_compute_params * params,
  9292. struct ggml_tensor * dst) {
  9293. const struct ggml_tensor * src0 = dst->src[0];
  9294. switch (src0->type) {
  9295. case GGML_TYPE_F32:
  9296. {
  9297. ggml_compute_forward_relu_f32(params, dst);
  9298. } break;
  9299. default:
  9300. {
  9301. GGML_ASSERT(false);
  9302. } break;
  9303. }
  9304. }
  9305. // ggml_compute_forward_sigmoid
  9306. static void ggml_compute_forward_sigmoid_f32(
  9307. const struct ggml_compute_params * params,
  9308. struct ggml_tensor * dst) {
  9309. const struct ggml_tensor * src0 = dst->src[0];
  9310. assert(params->ith == 0);
  9311. assert(ggml_is_contiguous_1(src0));
  9312. assert(ggml_is_contiguous_1(dst));
  9313. assert(ggml_are_same_shape(src0, dst));
  9314. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9315. return;
  9316. }
  9317. const int n = ggml_nrows(src0);
  9318. const int nc = src0->ne[0];
  9319. for (int i = 0; i < n; i++) {
  9320. ggml_vec_sigmoid_f32(nc,
  9321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9322. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9323. }
  9324. }
  9325. static void ggml_compute_forward_sigmoid(
  9326. const struct ggml_compute_params * params,
  9327. struct ggml_tensor * dst) {
  9328. const struct ggml_tensor * src0 = dst->src[0];
  9329. switch (src0->type) {
  9330. case GGML_TYPE_F32:
  9331. {
  9332. ggml_compute_forward_sigmoid_f32(params, dst);
  9333. } break;
  9334. default:
  9335. {
  9336. GGML_ASSERT(false);
  9337. } break;
  9338. }
  9339. }
  9340. // ggml_compute_forward_gelu
  9341. static void ggml_compute_forward_gelu_f32(
  9342. const struct ggml_compute_params * params,
  9343. struct ggml_tensor * dst) {
  9344. const struct ggml_tensor * src0 = dst->src[0];
  9345. assert(ggml_is_contiguous_1(src0));
  9346. assert(ggml_is_contiguous_1(dst));
  9347. assert(ggml_are_same_shape(src0, dst));
  9348. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9349. return;
  9350. }
  9351. const int ith = params->ith;
  9352. const int nth = params->nth;
  9353. const int nc = src0->ne[0];
  9354. const int nr = ggml_nrows(src0);
  9355. // rows per thread
  9356. const int dr = (nr + nth - 1)/nth;
  9357. // row range for this thread
  9358. const int ir0 = dr*ith;
  9359. const int ir1 = MIN(ir0 + dr, nr);
  9360. for (int i1 = ir0; i1 < ir1; i1++) {
  9361. ggml_vec_gelu_f32(nc,
  9362. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9363. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9364. #ifndef NDEBUG
  9365. for (int k = 0; k < nc; k++) {
  9366. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9367. UNUSED(x);
  9368. assert(!isnan(x));
  9369. assert(!isinf(x));
  9370. }
  9371. #endif
  9372. }
  9373. }
  9374. static void ggml_compute_forward_gelu(
  9375. const struct ggml_compute_params * params,
  9376. struct ggml_tensor * dst) {
  9377. const struct ggml_tensor * src0 = dst->src[0];
  9378. switch (src0->type) {
  9379. case GGML_TYPE_F32:
  9380. {
  9381. ggml_compute_forward_gelu_f32(params, dst);
  9382. } break;
  9383. default:
  9384. {
  9385. GGML_ASSERT(false);
  9386. } break;
  9387. }
  9388. }
  9389. // ggml_compute_forward_gelu_quick
  9390. static void ggml_compute_forward_gelu_quick_f32(
  9391. const struct ggml_compute_params * params,
  9392. struct ggml_tensor * dst) {
  9393. const struct ggml_tensor * src0 = dst->src[0];
  9394. assert(ggml_is_contiguous_1(src0));
  9395. assert(ggml_is_contiguous_1(dst));
  9396. assert(ggml_are_same_shape(src0, dst));
  9397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9398. return;
  9399. }
  9400. const int ith = params->ith;
  9401. const int nth = params->nth;
  9402. const int nc = src0->ne[0];
  9403. const int nr = ggml_nrows(src0);
  9404. // rows per thread
  9405. const int dr = (nr + nth - 1)/nth;
  9406. // row range for this thread
  9407. const int ir0 = dr*ith;
  9408. const int ir1 = MIN(ir0 + dr, nr);
  9409. for (int i1 = ir0; i1 < ir1; i1++) {
  9410. ggml_vec_gelu_quick_f32(nc,
  9411. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9412. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9413. #ifndef NDEBUG
  9414. for (int k = 0; k < nc; k++) {
  9415. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9416. UNUSED(x);
  9417. assert(!isnan(x));
  9418. assert(!isinf(x));
  9419. }
  9420. #endif
  9421. }
  9422. }
  9423. static void ggml_compute_forward_gelu_quick(
  9424. const struct ggml_compute_params * params,
  9425. struct ggml_tensor * dst) {
  9426. const struct ggml_tensor * src0 = dst->src[0];
  9427. switch (src0->type) {
  9428. case GGML_TYPE_F32:
  9429. {
  9430. ggml_compute_forward_gelu_quick_f32(params, dst);
  9431. } break;
  9432. default:
  9433. {
  9434. GGML_ASSERT(false);
  9435. } break;
  9436. }
  9437. }
  9438. // ggml_compute_forward_silu
  9439. static void ggml_compute_forward_silu_f32(
  9440. const struct ggml_compute_params * params,
  9441. struct ggml_tensor * dst) {
  9442. const struct ggml_tensor * src0 = dst->src[0];
  9443. assert(ggml_is_contiguous_1(src0));
  9444. assert(ggml_is_contiguous_1(dst));
  9445. assert(ggml_are_same_shape(src0, dst));
  9446. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9447. return;
  9448. }
  9449. const int ith = params->ith;
  9450. const int nth = params->nth;
  9451. const int nc = src0->ne[0];
  9452. const int nr = ggml_nrows(src0);
  9453. // rows per thread
  9454. const int dr = (nr + nth - 1)/nth;
  9455. // row range for this thread
  9456. const int ir0 = dr*ith;
  9457. const int ir1 = MIN(ir0 + dr, nr);
  9458. for (int i1 = ir0; i1 < ir1; i1++) {
  9459. ggml_vec_silu_f32(nc,
  9460. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9461. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9462. #ifndef NDEBUG
  9463. for (int k = 0; k < nc; k++) {
  9464. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9465. UNUSED(x);
  9466. assert(!isnan(x));
  9467. assert(!isinf(x));
  9468. }
  9469. #endif
  9470. }
  9471. }
  9472. static void ggml_compute_forward_silu(
  9473. const struct ggml_compute_params * params,
  9474. struct ggml_tensor * dst) {
  9475. const struct ggml_tensor * src0 = dst->src[0];
  9476. switch (src0->type) {
  9477. case GGML_TYPE_F32:
  9478. {
  9479. ggml_compute_forward_silu_f32(params, dst);
  9480. } break;
  9481. default:
  9482. {
  9483. GGML_ASSERT(false);
  9484. } break;
  9485. }
  9486. }
  9487. // ggml_compute_forward_leaky_relu
  9488. static void ggml_compute_forward_leaky_relu_f32(
  9489. const struct ggml_compute_params * params,
  9490. struct ggml_tensor * dst) {
  9491. const struct ggml_tensor * src0 = dst->src[0];
  9492. assert(params->ith == 0);
  9493. assert(ggml_is_contiguous_1(src0));
  9494. assert(ggml_is_contiguous_1(dst));
  9495. assert(ggml_are_same_shape(src0, dst));
  9496. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9497. return;
  9498. }
  9499. const int n = ggml_nrows(src0);
  9500. const int nc = src0->ne[0];
  9501. float negative_slope;
  9502. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9503. assert(dst->nb[0] == sizeof(float));
  9504. assert(src0->nb[0] == sizeof(float));
  9505. for (int i = 0; i < n; i++) {
  9506. ggml_vec_leaky_relu_f32(nc,
  9507. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9508. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9509. }
  9510. }
  9511. static void ggml_compute_forward_leaky_relu(
  9512. const struct ggml_compute_params * params,
  9513. struct ggml_tensor * dst) {
  9514. const struct ggml_tensor * src0 = dst->src[0];
  9515. switch (src0->type) {
  9516. case GGML_TYPE_F32:
  9517. {
  9518. ggml_compute_forward_leaky_relu_f32(params, dst);
  9519. } break;
  9520. default:
  9521. {
  9522. GGML_ASSERT(false);
  9523. } break;
  9524. }
  9525. }
  9526. // ggml_compute_forward_silu_back
  9527. static void ggml_compute_forward_silu_back_f32(
  9528. const struct ggml_compute_params * params,
  9529. struct ggml_tensor * dst) {
  9530. const struct ggml_tensor * src0 = dst->src[0];
  9531. const struct ggml_tensor * grad = dst->src[1];
  9532. assert(ggml_is_contiguous_1(grad));
  9533. assert(ggml_is_contiguous_1(src0));
  9534. assert(ggml_is_contiguous_1(dst));
  9535. assert(ggml_are_same_shape(src0, dst));
  9536. assert(ggml_are_same_shape(src0, grad));
  9537. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9538. return;
  9539. }
  9540. const int ith = params->ith;
  9541. const int nth = params->nth;
  9542. const int nc = src0->ne[0];
  9543. const int nr = ggml_nrows(src0);
  9544. // rows per thread
  9545. const int dr = (nr + nth - 1)/nth;
  9546. // row range for this thread
  9547. const int ir0 = dr*ith;
  9548. const int ir1 = MIN(ir0 + dr, nr);
  9549. for (int i1 = ir0; i1 < ir1; i1++) {
  9550. ggml_vec_silu_backward_f32(nc,
  9551. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9552. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9553. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9554. #ifndef NDEBUG
  9555. for (int k = 0; k < nc; k++) {
  9556. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9557. UNUSED(x);
  9558. assert(!isnan(x));
  9559. assert(!isinf(x));
  9560. }
  9561. #endif
  9562. }
  9563. }
  9564. static void ggml_compute_forward_silu_back(
  9565. const struct ggml_compute_params * params,
  9566. struct ggml_tensor * dst) {
  9567. const struct ggml_tensor * src0 = dst->src[0];
  9568. switch (src0->type) {
  9569. case GGML_TYPE_F32:
  9570. {
  9571. ggml_compute_forward_silu_back_f32(params, dst);
  9572. } break;
  9573. default:
  9574. {
  9575. GGML_ASSERT(false);
  9576. } break;
  9577. }
  9578. }
  9579. static void ggml_compute_forward_hardswish_f32(
  9580. const struct ggml_compute_params * params,
  9581. struct ggml_tensor * dst) {
  9582. const struct ggml_tensor * src0 = dst->src[0];
  9583. assert(params->ith == 0);
  9584. assert(ggml_is_contiguous_1(src0));
  9585. assert(ggml_is_contiguous_1(dst));
  9586. assert(ggml_are_same_shape(src0, dst));
  9587. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9588. return;
  9589. }
  9590. const int n = ggml_nrows(src0);
  9591. const int nc = src0->ne[0];
  9592. for (int i = 0; i < n; i++) {
  9593. ggml_vec_hardswish_f32(nc,
  9594. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9595. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9596. }
  9597. }
  9598. static void ggml_compute_forward_hardswish(
  9599. const struct ggml_compute_params * params,
  9600. struct ggml_tensor * dst) {
  9601. const struct ggml_tensor * src0 = dst->src[0];
  9602. switch (src0->type) {
  9603. case GGML_TYPE_F32:
  9604. {
  9605. ggml_compute_forward_hardswish_f32(params, dst);
  9606. } break;
  9607. default:
  9608. {
  9609. GGML_ASSERT(false);
  9610. } break;
  9611. }
  9612. }
  9613. static void ggml_compute_forward_hardsigmoid_f32(
  9614. const struct ggml_compute_params * params,
  9615. struct ggml_tensor * dst) {
  9616. const struct ggml_tensor * src0 = dst->src[0];
  9617. assert(params->ith == 0);
  9618. assert(ggml_is_contiguous_1(src0));
  9619. assert(ggml_is_contiguous_1(dst));
  9620. assert(ggml_are_same_shape(src0, dst));
  9621. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9622. return;
  9623. }
  9624. const int n = ggml_nrows(src0);
  9625. const int nc = src0->ne[0];
  9626. for (int i = 0; i < n; i++) {
  9627. ggml_vec_hardsigmoid_f32(nc,
  9628. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9629. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9630. }
  9631. }
  9632. static void ggml_compute_forward_hardsigmoid(
  9633. const struct ggml_compute_params * params,
  9634. struct ggml_tensor * dst) {
  9635. const struct ggml_tensor * src0 = dst->src[0];
  9636. switch (src0->type) {
  9637. case GGML_TYPE_F32:
  9638. {
  9639. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9640. } break;
  9641. default:
  9642. {
  9643. GGML_ASSERT(false);
  9644. } break;
  9645. }
  9646. }
  9647. // ggml_compute_forward_norm
  9648. static void ggml_compute_forward_norm_f32(
  9649. const struct ggml_compute_params * params,
  9650. struct ggml_tensor * dst) {
  9651. const struct ggml_tensor * src0 = dst->src[0];
  9652. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9653. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9654. return;
  9655. }
  9656. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9657. const int ith = params->ith;
  9658. const int nth = params->nth;
  9659. GGML_TENSOR_UNARY_OP_LOCALS
  9660. float eps;
  9661. memcpy(&eps, dst->op_params, sizeof(float));
  9662. GGML_ASSERT(eps > 0.0f);
  9663. // TODO: optimize
  9664. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9665. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9666. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9667. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9668. ggml_float sum = 0.0;
  9669. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9670. sum += (ggml_float)x[i00];
  9671. }
  9672. float mean = sum/ne00;
  9673. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9674. ggml_float sum2 = 0.0;
  9675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9676. float v = x[i00] - mean;
  9677. y[i00] = v;
  9678. sum2 += (ggml_float)(v*v);
  9679. }
  9680. float variance = sum2/ne00;
  9681. const float scale = 1.0f/sqrtf(variance + eps);
  9682. ggml_vec_scale_f32(ne00, y, scale);
  9683. }
  9684. }
  9685. }
  9686. }
  9687. static void ggml_compute_forward_norm(
  9688. const struct ggml_compute_params * params,
  9689. struct ggml_tensor * dst) {
  9690. const struct ggml_tensor * src0 = dst->src[0];
  9691. switch (src0->type) {
  9692. case GGML_TYPE_F32:
  9693. {
  9694. ggml_compute_forward_norm_f32(params, dst);
  9695. } break;
  9696. default:
  9697. {
  9698. GGML_ASSERT(false);
  9699. } break;
  9700. }
  9701. }
  9702. // ggml_compute_forward_group_rms_norm
  9703. static void ggml_compute_forward_rms_norm_f32(
  9704. const struct ggml_compute_params * params,
  9705. struct ggml_tensor * dst) {
  9706. const struct ggml_tensor * src0 = dst->src[0];
  9707. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9708. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9709. return;
  9710. }
  9711. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9712. const int ith = params->ith;
  9713. const int nth = params->nth;
  9714. GGML_TENSOR_UNARY_OP_LOCALS
  9715. float eps;
  9716. memcpy(&eps, dst->op_params, sizeof(float));
  9717. GGML_ASSERT(eps > 0.0f);
  9718. // TODO: optimize
  9719. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9720. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9721. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9722. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9723. ggml_float sum = 0.0;
  9724. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9725. sum += (ggml_float)(x[i00] * x[i00]);
  9726. }
  9727. const float mean = sum/ne00;
  9728. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9729. memcpy(y, x, ne00 * sizeof(float));
  9730. // for (int i00 = 0; i00 < ne00; i00++) {
  9731. // y[i00] = x[i00];
  9732. // }
  9733. const float scale = 1.0f/sqrtf(mean + eps);
  9734. ggml_vec_scale_f32(ne00, y, scale);
  9735. }
  9736. }
  9737. }
  9738. }
  9739. static void ggml_compute_forward_rms_norm(
  9740. const struct ggml_compute_params * params,
  9741. struct ggml_tensor * dst) {
  9742. const struct ggml_tensor * src0 = dst->src[0];
  9743. switch (src0->type) {
  9744. case GGML_TYPE_F32:
  9745. {
  9746. ggml_compute_forward_rms_norm_f32(params, dst);
  9747. } break;
  9748. default:
  9749. {
  9750. GGML_ASSERT(false);
  9751. } break;
  9752. }
  9753. }
  9754. static void ggml_compute_forward_rms_norm_back_f32(
  9755. const struct ggml_compute_params * params,
  9756. struct ggml_tensor * dst) {
  9757. const struct ggml_tensor * src0 = dst->src[0];
  9758. const struct ggml_tensor * src1 = dst->src[1];
  9759. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9760. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9761. return;
  9762. }
  9763. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9764. const int ith = params->ith;
  9765. const int nth = params->nth;
  9766. GGML_TENSOR_BINARY_OP_LOCALS
  9767. float eps;
  9768. memcpy(&eps, dst->op_params, sizeof(float));
  9769. // TODO: optimize
  9770. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9771. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9772. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9773. // src1 is same shape as src0 => same indices
  9774. const int64_t i11 = i01;
  9775. const int64_t i12 = i02;
  9776. const int64_t i13 = i03;
  9777. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9778. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9779. ggml_float sum_xx = 0.0;
  9780. ggml_float sum_xdz = 0.0;
  9781. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9782. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9783. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9784. }
  9785. //const float mean = (float)(sum_xx)/ne00;
  9786. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9787. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9788. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9789. // we could cache rms from forward pass to improve performance.
  9790. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9791. //const float rms = sqrtf(mean_eps);
  9792. const float rrms = 1.0f / sqrtf(mean_eps);
  9793. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9794. {
  9795. // z = rms_norm(x)
  9796. //
  9797. // rms_norm(src0) =
  9798. // scale(
  9799. // src0,
  9800. // div(
  9801. // 1,
  9802. // sqrt(
  9803. // add(
  9804. // scale(
  9805. // sum(
  9806. // sqr(
  9807. // src0)),
  9808. // (1.0/N)),
  9809. // eps))));
  9810. // postorder:
  9811. // ## op args grad
  9812. // 00 param src0 grad[#00]
  9813. // 01 const 1
  9814. // 02 sqr (#00) grad[#02]
  9815. // 03 sum (#02) grad[#03]
  9816. // 04 const 1/N
  9817. // 05 scale (#03, #04) grad[#05]
  9818. // 06 const eps
  9819. // 07 add (#05, #06) grad[#07]
  9820. // 08 sqrt (#07) grad[#08]
  9821. // 09 div (#01,#08) grad[#09]
  9822. // 10 scale (#00,#09) grad[#10]
  9823. //
  9824. // backward pass, given grad[#10]
  9825. // #10: scale
  9826. // grad[#00] += scale(grad[#10],#09)
  9827. // grad[#09] += sum(mul(grad[#10],#00))
  9828. // #09: div
  9829. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9830. // #08: sqrt
  9831. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9832. // #07: add
  9833. // grad[#05] += grad[#07]
  9834. // #05: scale
  9835. // grad[#03] += scale(grad[#05],#04)
  9836. // #03: sum
  9837. // grad[#02] += repeat(grad[#03], #02)
  9838. // #02:
  9839. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9840. //
  9841. // substitute and simplify:
  9842. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9843. // grad[#02] = repeat(grad[#03], #02)
  9844. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9845. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9846. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9847. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9848. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9849. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9850. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9851. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9852. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9853. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9854. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9855. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9856. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9857. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9858. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9859. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9860. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9861. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9862. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9863. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9864. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9865. // a = b*c + d*e
  9866. // a = b*c*f/f + d*e*f/f
  9867. // a = (b*c*f + d*e*f)*(1/f)
  9868. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9869. // a = (b + d*e/c)*c
  9870. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9871. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9872. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9873. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9874. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9875. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9876. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9877. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9878. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9879. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9880. }
  9881. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9882. // post-order:
  9883. // dx := x
  9884. // dx := scale(dx,-mean_xdz/mean_eps)
  9885. // dx := add(dx, dz)
  9886. // dx := scale(dx, rrms)
  9887. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9888. ggml_vec_cpy_f32 (ne00, dx, x);
  9889. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9890. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9891. ggml_vec_acc_f32 (ne00, dx, dz);
  9892. ggml_vec_scale_f32(ne00, dx, rrms);
  9893. }
  9894. }
  9895. }
  9896. }
  9897. static void ggml_compute_forward_rms_norm_back(
  9898. const struct ggml_compute_params * params,
  9899. struct ggml_tensor * dst) {
  9900. const struct ggml_tensor * src0 = dst->src[0];
  9901. switch (src0->type) {
  9902. case GGML_TYPE_F32:
  9903. {
  9904. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9905. } break;
  9906. default:
  9907. {
  9908. GGML_ASSERT(false);
  9909. } break;
  9910. }
  9911. }
  9912. // ggml_compute_forward_group_norm
  9913. static void ggml_compute_forward_group_norm_f32(
  9914. const struct ggml_compute_params * params,
  9915. struct ggml_tensor * dst) {
  9916. const struct ggml_tensor * src0 = dst->src[0];
  9917. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9918. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9919. return;
  9920. }
  9921. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9922. const int ith = params->ith;
  9923. const int nth = params->nth;
  9924. GGML_TENSOR_UNARY_OP_LOCALS
  9925. const float eps = 1e-6f; // TODO: make this a parameter
  9926. // TODO: optimize
  9927. int n_channels = src0->ne[2];
  9928. int n_groups = dst->op_params[0];
  9929. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9930. for (int i = ith; i < n_groups; i += nth) {
  9931. int start = i * n_channels_per_group;
  9932. int end = start + n_channels_per_group;
  9933. if (end > n_channels) {
  9934. end = n_channels;
  9935. }
  9936. int step = end - start;
  9937. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9938. ggml_float sum = 0.0;
  9939. for (int64_t i02 = start; i02 < end; i02++) {
  9940. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9941. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9942. ggml_float sumr = 0.0;
  9943. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9944. sumr += (ggml_float)x[i00];
  9945. }
  9946. sum += sumr;
  9947. }
  9948. }
  9949. const float mean = sum / (ne00 * ne01 * step);
  9950. ggml_float sum2 = 0.0;
  9951. for (int64_t i02 = start; i02 < end; i02++) {
  9952. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9953. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9954. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9955. ggml_float sumr = 0.0;
  9956. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9957. float v = x[i00] - mean;
  9958. y[i00] = v;
  9959. sumr += (ggml_float)(v * v);
  9960. }
  9961. sum2 += sumr;
  9962. }
  9963. }
  9964. const float variance = sum2 / (ne00 * ne01 * step);
  9965. const float scale = 1.0f / sqrtf(variance + eps);
  9966. for (int64_t i02 = start; i02 < end; i02++) {
  9967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9968. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9969. ggml_vec_scale_f32(ne00, y, scale);
  9970. }
  9971. }
  9972. }
  9973. }
  9974. }
  9975. static void ggml_compute_forward_group_norm(
  9976. const struct ggml_compute_params * params,
  9977. struct ggml_tensor * dst) {
  9978. const struct ggml_tensor * src0 = dst->src[0];
  9979. switch (src0->type) {
  9980. case GGML_TYPE_F32:
  9981. {
  9982. ggml_compute_forward_group_norm_f32(params, dst);
  9983. } break;
  9984. default:
  9985. {
  9986. GGML_ASSERT(false);
  9987. } break;
  9988. }
  9989. }
  9990. // ggml_compute_forward_mul_mat
  9991. static void ggml_compute_forward_mul_mat_one_chunk(
  9992. const struct ggml_compute_params * params,
  9993. struct ggml_tensor * dst,
  9994. const int64_t num_rows_per_vec_dot,
  9995. const int64_t ir0_start,
  9996. const int64_t ir0_end,
  9997. const int64_t ir1_start,
  9998. const int64_t ir1_end) {
  9999. const struct ggml_tensor * src0 = dst->src[0];
  10000. const struct ggml_tensor * src1 = dst->src[1];
  10001. GGML_TENSOR_BINARY_OP_LOCALS
  10002. const enum ggml_type type = src0->type;
  10003. const bool src1_cont = ggml_is_contiguous(src1);
  10004. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10005. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10006. // broadcast factors
  10007. const int64_t r2 = ne12 / ne02;
  10008. const int64_t r3 = ne13 / ne03;
  10009. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10010. // threads with no work simply yield (not sure if it helps)
  10011. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10012. return;
  10013. }
  10014. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10015. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10016. assert(ne12 % ne02 == 0);
  10017. assert(ne13 % ne03 == 0);
  10018. // block-tiling attempt
  10019. const int64_t blck_0 = 16;
  10020. const int64_t blck_1 = 16;
  10021. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10022. // attempt to reduce false-sharing (does not seem to make a difference)
  10023. // 16 * 2, accounting for mmla kernels
  10024. float tmp[32];
  10025. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10026. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10027. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10028. const int64_t i13 = (ir1 / (ne12 * ne1));
  10029. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10030. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10031. // broadcast src0 into src1
  10032. const int64_t i03 = i13 / r3;
  10033. const int64_t i02 = i12 / r2;
  10034. const int64_t i1 = i11;
  10035. const int64_t i2 = i12;
  10036. const int64_t i3 = i13;
  10037. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10038. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10039. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10040. // the original src1 data pointer, so we should index using the indices directly
  10041. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10042. const char * src1_col = (const char*)wdata +
  10043. (src1_cont || src1->type != vec_dot_type
  10044. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10045. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10046. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10047. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10048. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10049. //}
  10050. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10051. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10052. }
  10053. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10054. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. static void ggml_compute_forward_mul_mat(
  10061. const struct ggml_compute_params * params,
  10062. struct ggml_tensor * dst,
  10063. struct ggml_compute_state * state) {
  10064. const struct ggml_tensor * src0 = dst->src[0];
  10065. const struct ggml_tensor * src1 = dst->src[1];
  10066. int64_t t0 = ggml_perf_time_us();
  10067. UNUSED(t0);
  10068. GGML_TENSOR_BINARY_OP_LOCALS
  10069. const int ith = params->ith;
  10070. const int nth = params->nth;
  10071. const enum ggml_type type = src0->type;
  10072. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10073. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10074. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10075. GGML_ASSERT(ne0 == ne01);
  10076. GGML_ASSERT(ne1 == ne11);
  10077. GGML_ASSERT(ne2 == ne12);
  10078. GGML_ASSERT(ne3 == ne13);
  10079. // we don't support permuted src0 or src1
  10080. GGML_ASSERT(nb00 == ggml_type_size(type));
  10081. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10082. // dst cannot be transposed or permuted
  10083. GGML_ASSERT(nb0 == sizeof(float));
  10084. GGML_ASSERT(nb0 <= nb1);
  10085. GGML_ASSERT(nb1 <= nb2);
  10086. GGML_ASSERT(nb2 <= nb3);
  10087. // broadcast factors
  10088. const int64_t r2 = ne12 / ne02;
  10089. const int64_t r3 = ne13 / ne03;
  10090. UNUSED(r2);
  10091. UNUSED(r3);
  10092. // nb01 >= nb00 - src0 is not transposed
  10093. // compute by src0 rows
  10094. #if GGML_USE_LLAMAFILE
  10095. const bool src1_cont = ggml_is_contiguous(src1);
  10096. if (src1_cont) {
  10097. for (int64_t i13 = 0; i13 < ne13; i13++)
  10098. for (int64_t i12 = 0; i12 < ne12; i12++)
  10099. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10100. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10101. nb01/ggml_type_size(src0->type),
  10102. (const char *)src1->data + i12*nb12 + i13*nb13,
  10103. nb11/ggml_type_size(src1->type),
  10104. (char *)dst->data + i12*nb2 + i13*nb3,
  10105. nb1/ggml_type_size(dst->type),
  10106. ith, nth,
  10107. params->type,
  10108. src0->type,
  10109. src1->type,
  10110. dst->type))
  10111. goto UseGgmlGemm1;
  10112. return;
  10113. }
  10114. UseGgmlGemm1:;
  10115. #endif
  10116. if (params->type == GGML_TASK_TYPE_INIT) {
  10117. if (ith != 0) {
  10118. return;
  10119. }
  10120. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10121. atomic_store(&state->shared->current_chunk, nth);
  10122. if (src1->type != vec_dot_type) {
  10123. char * wdata = params->wdata;
  10124. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10125. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10126. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10127. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10128. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10129. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10130. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10131. wdata += row_size;
  10132. }
  10133. }
  10134. }
  10135. }
  10136. return;
  10137. }
  10138. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10139. return;
  10140. }
  10141. #if GGML_USE_LLAMAFILE
  10142. if (src1->type != vec_dot_type) {
  10143. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10144. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10145. for (int64_t i13 = 0; i13 < ne13; i13++)
  10146. for (int64_t i12 = 0; i12 < ne12; i12++)
  10147. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10148. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10149. nb01/ggml_type_size(src0->type),
  10150. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10151. row_size/ggml_type_size(vec_dot_type),
  10152. (char *)dst->data + i12*nb2 + i13*nb3,
  10153. nb1/ggml_type_size(dst->type),
  10154. ith, nth,
  10155. params->type,
  10156. src0->type,
  10157. vec_dot_type,
  10158. dst->type))
  10159. goto UseGgmlGemm2;
  10160. return;
  10161. }
  10162. UseGgmlGemm2:;
  10163. #endif
  10164. #ifdef GGML_PERF
  10165. int chunks_executed = 0;
  10166. UNUSED(chunks_executed);
  10167. #endif
  10168. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10169. const int64_t nr0 = ne0;
  10170. // This is the size of the rest of the dimensions of the result
  10171. const int64_t nr1 = ne1 * ne2 * ne3;
  10172. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10173. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10174. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10175. // this check can be removed once they are extended to support odd numbered rows/cols too
  10176. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10177. num_rows_per_vec_dot = 1;
  10178. }
  10179. // Now select a reasonable chunk size.
  10180. int chunk_size = 16;
  10181. // We need to step up the size if it's small
  10182. if (nr0 == 1 || nr1 == 1) {
  10183. chunk_size = 64;
  10184. }
  10185. // distribute the work across the inner or outer loop based on which one is larger
  10186. // The number of chunks in the 0/1 dim.
  10187. // CEIL(nr0/chunk_size)
  10188. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10189. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10190. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10191. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10192. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10193. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10194. // distribute the thread work across the inner or outer loop based on which one is larger
  10195. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10196. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10197. }
  10198. // The number of elements in each chunk
  10199. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10200. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10201. //if (ith == 0)
  10202. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10203. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10204. int current_chunk = ith;
  10205. while (current_chunk < nchunk0 * nchunk1) {
  10206. const int64_t ith0 = current_chunk % nchunk0;
  10207. const int64_t ith1 = current_chunk / nchunk0;
  10208. const int64_t ir0_start = dr0 * ith0;
  10209. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10210. const int64_t ir1_start = dr1 * ith1;
  10211. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10212. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10213. #ifdef GGML_PERF
  10214. chunks_executed++;
  10215. #endif
  10216. if (nth >= nchunk0 * nchunk1) {
  10217. break;
  10218. }
  10219. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10220. }
  10221. #ifdef GGML_PERF
  10222. // These numbers are useful when trying to measure how well the threading scheduling works.
  10223. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10224. //float time = (ggml_perf_time_us() - t0);
  10225. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10226. #endif
  10227. }
  10228. // ggml_compute_forward_mul_mat_id
  10229. static void ggml_compute_forward_mul_mat_id(
  10230. const struct ggml_compute_params * params,
  10231. struct ggml_tensor * dst) {
  10232. const struct ggml_tensor * src0 = dst->src[0];
  10233. const struct ggml_tensor * src1 = dst->src[1];
  10234. const struct ggml_tensor * ids = dst->src[2];
  10235. GGML_TENSOR_BINARY_OP_LOCALS
  10236. const int ith = params->ith;
  10237. const int nth = params->nth;
  10238. const enum ggml_type type = src0->type;
  10239. const bool src1_cont = ggml_is_contiguous(src1);
  10240. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10241. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10242. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10243. // we don't support permuted src0 or src1
  10244. GGML_ASSERT(nb00 == ggml_type_size(type));
  10245. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10246. // dst cannot be transposed or permuted
  10247. GGML_ASSERT(nb0 == sizeof(float));
  10248. GGML_ASSERT(nb0 <= nb1);
  10249. GGML_ASSERT(nb1 <= nb2);
  10250. GGML_ASSERT(nb2 <= nb3);
  10251. // row groups
  10252. const int n_ids = ids->ne[0]; // n_expert_used
  10253. const int n_as = ne02; // n_expert
  10254. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10255. (char *) params->wdata :
  10256. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10257. struct mmid_row_mapping {
  10258. int32_t i1;
  10259. int32_t i2;
  10260. };
  10261. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10262. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10263. if (params->type == GGML_TASK_TYPE_INIT) {
  10264. if (ith != 0) {
  10265. return;
  10266. }
  10267. char * wdata = params->wdata;
  10268. if (src1->type != vec_dot_type) {
  10269. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10270. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10271. assert(src1->type == GGML_TYPE_F32);
  10272. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10273. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10274. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10275. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10276. wdata += row_size;
  10277. }
  10278. }
  10279. }
  10280. }
  10281. // initialize matrix_row_counts
  10282. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10283. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10284. // group rows by src0 matrix
  10285. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10286. for (int id = 0; id < n_ids; ++id) {
  10287. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10288. assert(i02 >= 0 && i02 < n_as);
  10289. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10290. matrix_row_counts[i02] += 1;
  10291. }
  10292. }
  10293. return;
  10294. }
  10295. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10296. return;
  10297. }
  10298. // compute each matrix multiplication in sequence
  10299. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10300. const int64_t cne1 = matrix_row_counts[cur_a];
  10301. if (cne1 == 0) {
  10302. continue;
  10303. }
  10304. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10305. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10306. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10307. const int64_t nr0 = ne01; // src0 rows
  10308. const int64_t nr1 = cne1; // src1 rows
  10309. // distribute the thread work across the inner or outer loop based on which one is larger
  10310. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10311. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10312. const int64_t ith0 = ith % nth0;
  10313. const int64_t ith1 = ith / nth0;
  10314. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10315. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10316. const int64_t ir010 = dr0*ith0;
  10317. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10318. const int64_t ir110 = dr1*ith1;
  10319. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10320. // threads with no work simply yield (not sure if it helps)
  10321. //if (ir010 >= ir011 || ir110 >= ir111) {
  10322. // sched_yield();
  10323. // continue;
  10324. //}
  10325. // block-tiling attempt
  10326. const int64_t blck_0 = 16;
  10327. const int64_t blck_1 = 16;
  10328. // attempt to reduce false-sharing (does not seem to make a difference)
  10329. float tmp[16];
  10330. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10331. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10332. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10333. const int64_t _i12 = ir1; // logical row index for this expert
  10334. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10335. const int id = row_mapping.i1; // selected expert index
  10336. const int64_t i11 = id % ne11;
  10337. const int64_t i12 = row_mapping.i2; // row index in src1
  10338. const int64_t i1 = id; // selected expert index
  10339. const int64_t i2 = i12; // row
  10340. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10341. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10342. // the original src1 data pointer, so we should index using the indices directly
  10343. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10344. const char * src1_col = (const char *) wdata +
  10345. (src1_cont || src1->type != vec_dot_type
  10346. ? (i11 + i12*ne11)*row_size
  10347. : (i11*nb11 + i12*nb12));
  10348. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10349. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10350. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10351. //}
  10352. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10353. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10354. }
  10355. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10356. }
  10357. }
  10358. }
  10359. }
  10360. #undef MMID_MATRIX_ROW
  10361. }
  10362. // ggml_compute_forward_out_prod
  10363. static void ggml_compute_forward_out_prod_f32(
  10364. const struct ggml_compute_params * params,
  10365. struct ggml_tensor * dst) {
  10366. const struct ggml_tensor * src0 = dst->src[0];
  10367. const struct ggml_tensor * src1 = dst->src[1];
  10368. // int64_t t0 = ggml_perf_time_us();
  10369. // UNUSED(t0);
  10370. GGML_TENSOR_BINARY_OP_LOCALS
  10371. const int ith = params->ith;
  10372. const int nth = params->nth;
  10373. GGML_ASSERT(ne0 == ne00);
  10374. GGML_ASSERT(ne1 == ne10);
  10375. GGML_ASSERT(ne2 == ne02);
  10376. GGML_ASSERT(ne02 == ne12);
  10377. GGML_ASSERT(ne3 == ne13);
  10378. GGML_ASSERT(ne03 == ne13);
  10379. // we don't support permuted src0 or src1
  10380. GGML_ASSERT(nb00 == sizeof(float));
  10381. // dst cannot be transposed or permuted
  10382. GGML_ASSERT(nb0 == sizeof(float));
  10383. // GGML_ASSERT(nb0 <= nb1);
  10384. // GGML_ASSERT(nb1 <= nb2);
  10385. // GGML_ASSERT(nb2 <= nb3);
  10386. // nb01 >= nb00 - src0 is not transposed
  10387. // compute by src0 rows
  10388. if (params->type == GGML_TASK_TYPE_INIT) {
  10389. if (ith != 0) {
  10390. return;
  10391. }
  10392. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10393. return;
  10394. }
  10395. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10396. return;
  10397. }
  10398. // dst[:,:,:,:] = 0
  10399. // for i2,i3:
  10400. // for i1:
  10401. // for i01:
  10402. // for i0:
  10403. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10404. // parallelize by last three dimensions
  10405. // total rows in dst
  10406. const int64_t nr = ne1*ne2*ne3;
  10407. // rows per thread
  10408. const int64_t dr = (nr + nth - 1)/nth;
  10409. // row range for this thread
  10410. const int64_t ir0 = dr*ith;
  10411. const int64_t ir1 = MIN(ir0 + dr, nr);
  10412. // block-tiling attempt
  10413. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10414. const int64_t blck_1 = 16;
  10415. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10416. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10417. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10418. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10419. for (int64_t ir = bir; ir < bir1; ++ir) {
  10420. // dst indices
  10421. const int64_t i3 = ir/(ne2*ne1);
  10422. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10423. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10424. const int64_t i02 = i2;
  10425. const int64_t i03 = i3;
  10426. //const int64_t i10 = i1;
  10427. const int64_t i12 = i2;
  10428. const int64_t i13 = i3;
  10429. #if GGML_VEC_MAD_UNROLL > 2
  10430. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10431. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10432. const int64_t i11 = i01;
  10433. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10434. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10435. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10436. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10437. }
  10438. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10439. const int64_t i11 = i01;
  10440. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10441. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10442. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10443. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10444. }
  10445. #else
  10446. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10447. const int64_t i11 = i01;
  10448. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10449. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10450. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10451. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10452. }
  10453. #endif
  10454. }
  10455. }
  10456. }
  10457. //int64_t t1 = ggml_perf_time_us();
  10458. //static int64_t acc = 0;
  10459. //acc += t1 - t0;
  10460. //if (t1 - t0 > 10) {
  10461. // printf("\n");
  10462. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10463. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10464. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10465. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10466. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10467. //}
  10468. }
  10469. static void ggml_compute_forward_out_prod_q_f32(
  10470. const struct ggml_compute_params * params,
  10471. struct ggml_tensor * dst) {
  10472. const struct ggml_tensor * src0 = dst->src[0];
  10473. const struct ggml_tensor * src1 = dst->src[1];
  10474. // int64_t t0 = ggml_perf_time_us();
  10475. // UNUSED(t0);
  10476. GGML_TENSOR_BINARY_OP_LOCALS;
  10477. const int ith = params->ith;
  10478. const int nth = params->nth;
  10479. const enum ggml_type type = src0->type;
  10480. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10481. GGML_ASSERT(ne02 == ne12);
  10482. GGML_ASSERT(ne03 == ne13);
  10483. GGML_ASSERT(ne2 == ne12);
  10484. GGML_ASSERT(ne3 == ne13);
  10485. // we don't support permuted src0 dim0
  10486. GGML_ASSERT(nb00 == ggml_type_size(type));
  10487. // dst dim0 cannot be transposed or permuted
  10488. GGML_ASSERT(nb0 == sizeof(float));
  10489. // GGML_ASSERT(nb0 <= nb1);
  10490. // GGML_ASSERT(nb1 <= nb2);
  10491. // GGML_ASSERT(nb2 <= nb3);
  10492. GGML_ASSERT(ne0 == ne00);
  10493. GGML_ASSERT(ne1 == ne10);
  10494. GGML_ASSERT(ne2 == ne02);
  10495. GGML_ASSERT(ne3 == ne03);
  10496. // nb01 >= nb00 - src0 is not transposed
  10497. // compute by src0 rows
  10498. if (params->type == GGML_TASK_TYPE_INIT) {
  10499. if (ith != 0) {
  10500. return;
  10501. }
  10502. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10503. return;
  10504. }
  10505. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10506. return;
  10507. }
  10508. // parallelize by last three dimensions
  10509. // total rows in dst
  10510. const int64_t nr = ne1*ne2*ne3;
  10511. // rows per thread
  10512. const int64_t dr = (nr + nth - 1)/nth;
  10513. // row range for this thread
  10514. const int64_t ir0 = dr*ith;
  10515. const int64_t ir1 = MIN(ir0 + dr, nr);
  10516. // dst[:,:,:,:] = 0
  10517. // for i2,i3:
  10518. // for i1:
  10519. // for i01:
  10520. // for i0:
  10521. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10522. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10523. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10524. // dst indices
  10525. const int64_t i3 = ir/(ne2*ne1);
  10526. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10527. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10528. const int64_t i02 = i2;
  10529. const int64_t i03 = i3;
  10530. //const int64_t i10 = i1;
  10531. const int64_t i12 = i2;
  10532. const int64_t i13 = i3;
  10533. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10534. const int64_t i11 = i01;
  10535. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10536. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10537. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10538. dequantize_row_q(s0, wdata, ne0);
  10539. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10540. }
  10541. }
  10542. //int64_t t1 = ggml_perf_time_us();
  10543. //static int64_t acc = 0;
  10544. //acc += t1 - t0;
  10545. //if (t1 - t0 > 10) {
  10546. // printf("\n");
  10547. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10548. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10549. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10550. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10551. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10552. //}
  10553. }
  10554. static void ggml_compute_forward_out_prod(
  10555. const struct ggml_compute_params * params,
  10556. struct ggml_tensor * dst) {
  10557. const struct ggml_tensor * src0 = dst->src[0];
  10558. switch (src0->type) {
  10559. case GGML_TYPE_Q4_0:
  10560. case GGML_TYPE_Q4_1:
  10561. case GGML_TYPE_Q5_0:
  10562. case GGML_TYPE_Q5_1:
  10563. case GGML_TYPE_Q8_0:
  10564. case GGML_TYPE_Q2_K:
  10565. case GGML_TYPE_Q3_K:
  10566. case GGML_TYPE_Q4_K:
  10567. case GGML_TYPE_Q5_K:
  10568. case GGML_TYPE_Q6_K:
  10569. case GGML_TYPE_IQ2_XXS:
  10570. case GGML_TYPE_IQ2_XS:
  10571. case GGML_TYPE_IQ3_XXS:
  10572. case GGML_TYPE_IQ1_S:
  10573. case GGML_TYPE_IQ1_M:
  10574. case GGML_TYPE_IQ4_NL:
  10575. case GGML_TYPE_IQ4_XS:
  10576. case GGML_TYPE_IQ3_S:
  10577. case GGML_TYPE_IQ2_S:
  10578. {
  10579. ggml_compute_forward_out_prod_q_f32(params, dst);
  10580. } break;
  10581. case GGML_TYPE_F16:
  10582. {
  10583. GGML_ASSERT(false); // todo
  10584. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10585. } break;
  10586. case GGML_TYPE_F32:
  10587. {
  10588. ggml_compute_forward_out_prod_f32(params, dst);
  10589. } break;
  10590. default:
  10591. {
  10592. GGML_ASSERT(false);
  10593. } break;
  10594. }
  10595. }
  10596. // ggml_compute_forward_scale
  10597. static void ggml_compute_forward_scale_f32(
  10598. const struct ggml_compute_params * params,
  10599. struct ggml_tensor * dst) {
  10600. const struct ggml_tensor * src0 = dst->src[0];
  10601. GGML_ASSERT(ggml_is_contiguous(src0));
  10602. GGML_ASSERT(ggml_is_contiguous(dst));
  10603. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10604. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10605. return;
  10606. }
  10607. // scale factor
  10608. float v;
  10609. memcpy(&v, dst->op_params, sizeof(float));
  10610. const int ith = params->ith;
  10611. const int nth = params->nth;
  10612. const int nc = src0->ne[0];
  10613. const int nr = ggml_nrows(src0);
  10614. // rows per thread
  10615. const int dr = (nr + nth - 1)/nth;
  10616. // row range for this thread
  10617. const int ir0 = dr*ith;
  10618. const int ir1 = MIN(ir0 + dr, nr);
  10619. const size_t nb01 = src0->nb[1];
  10620. const size_t nb1 = dst->nb[1];
  10621. for (int i1 = ir0; i1 < ir1; i1++) {
  10622. if (dst->data != src0->data) {
  10623. // src0 is same shape as dst => same indices
  10624. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10625. }
  10626. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10627. }
  10628. }
  10629. static void ggml_compute_forward_scale(
  10630. const struct ggml_compute_params * params,
  10631. struct ggml_tensor * dst) {
  10632. const struct ggml_tensor * src0 = dst->src[0];
  10633. switch (src0->type) {
  10634. case GGML_TYPE_F32:
  10635. {
  10636. ggml_compute_forward_scale_f32(params, dst);
  10637. } break;
  10638. default:
  10639. {
  10640. GGML_ASSERT(false);
  10641. } break;
  10642. }
  10643. }
  10644. // ggml_compute_forward_set
  10645. static void ggml_compute_forward_set_f32(
  10646. const struct ggml_compute_params * params,
  10647. struct ggml_tensor * dst) {
  10648. const struct ggml_tensor * src0 = dst->src[0];
  10649. const struct ggml_tensor * src1 = dst->src[1];
  10650. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10651. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10652. // view src0 and dst with these strides and data offset inbytes during set
  10653. // nb0 is implicitly element_size because src0 and dst are contiguous
  10654. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10655. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10656. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10657. size_t offset = ((int32_t *) dst->op_params)[3];
  10658. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10659. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10660. if (params->ith != 0) {
  10661. return;
  10662. }
  10663. // memcpy needs to be synchronized across threads to avoid race conditions.
  10664. // => do it in INIT phase
  10665. memcpy(
  10666. ((char *) dst->data),
  10667. ((char *) src0->data),
  10668. ggml_nbytes(dst));
  10669. }
  10670. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10671. return;
  10672. }
  10673. const int ith = params->ith;
  10674. const int nth = params->nth;
  10675. const int nr = ggml_nrows(src1);
  10676. const int nc = src1->ne[0];
  10677. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10678. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10679. // src0 and dst as viewed during set
  10680. const size_t nb0 = ggml_element_size(src0);
  10681. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10682. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10683. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10684. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10685. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10686. GGML_ASSERT(nb10 == sizeof(float));
  10687. // rows per thread
  10688. const int dr = (nr + nth - 1)/nth;
  10689. // row range for this thread
  10690. const int ir0 = dr*ith;
  10691. const int ir1 = MIN(ir0 + dr, nr);
  10692. for (int ir = ir0; ir < ir1; ++ir) {
  10693. // src0 and dst are viewed with shape of src1 and offset
  10694. // => same indices
  10695. const int i3 = ir/(ne12*ne11);
  10696. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10697. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10698. ggml_vec_cpy_f32(nc,
  10699. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10700. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10701. }
  10702. }
  10703. static void ggml_compute_forward_set(
  10704. const struct ggml_compute_params * params,
  10705. struct ggml_tensor * dst) {
  10706. const struct ggml_tensor * src0 = dst->src[0];
  10707. switch (src0->type) {
  10708. case GGML_TYPE_F32:
  10709. {
  10710. ggml_compute_forward_set_f32(params, dst);
  10711. } break;
  10712. case GGML_TYPE_F16:
  10713. case GGML_TYPE_BF16:
  10714. case GGML_TYPE_Q4_0:
  10715. case GGML_TYPE_Q4_1:
  10716. case GGML_TYPE_Q5_0:
  10717. case GGML_TYPE_Q5_1:
  10718. case GGML_TYPE_Q8_0:
  10719. case GGML_TYPE_Q8_1:
  10720. case GGML_TYPE_Q2_K:
  10721. case GGML_TYPE_Q3_K:
  10722. case GGML_TYPE_Q4_K:
  10723. case GGML_TYPE_Q5_K:
  10724. case GGML_TYPE_Q6_K:
  10725. case GGML_TYPE_IQ2_XXS:
  10726. case GGML_TYPE_IQ2_XS:
  10727. case GGML_TYPE_IQ3_XXS:
  10728. case GGML_TYPE_IQ1_S:
  10729. case GGML_TYPE_IQ1_M:
  10730. case GGML_TYPE_IQ4_NL:
  10731. case GGML_TYPE_IQ4_XS:
  10732. case GGML_TYPE_IQ3_S:
  10733. case GGML_TYPE_IQ2_S:
  10734. default:
  10735. {
  10736. GGML_ASSERT(false);
  10737. } break;
  10738. }
  10739. }
  10740. // ggml_compute_forward_cpy
  10741. static void ggml_compute_forward_cpy(
  10742. const struct ggml_compute_params * params,
  10743. struct ggml_tensor * dst) {
  10744. ggml_compute_forward_dup(params, dst);
  10745. }
  10746. // ggml_compute_forward_cont
  10747. static void ggml_compute_forward_cont(
  10748. const struct ggml_compute_params * params,
  10749. struct ggml_tensor * dst) {
  10750. ggml_compute_forward_dup(params, dst);
  10751. }
  10752. // ggml_compute_forward_reshape
  10753. static void ggml_compute_forward_reshape(
  10754. const struct ggml_compute_params * params,
  10755. struct ggml_tensor * dst) {
  10756. // NOP
  10757. UNUSED(params);
  10758. UNUSED(dst);
  10759. }
  10760. // ggml_compute_forward_view
  10761. static void ggml_compute_forward_view(
  10762. const struct ggml_compute_params * params,
  10763. const struct ggml_tensor * dst) {
  10764. // NOP
  10765. UNUSED(params);
  10766. UNUSED(dst);
  10767. }
  10768. // ggml_compute_forward_permute
  10769. static void ggml_compute_forward_permute(
  10770. const struct ggml_compute_params * params,
  10771. const struct ggml_tensor * dst) {
  10772. // NOP
  10773. UNUSED(params);
  10774. UNUSED(dst);
  10775. }
  10776. // ggml_compute_forward_transpose
  10777. static void ggml_compute_forward_transpose(
  10778. const struct ggml_compute_params * params,
  10779. const struct ggml_tensor * dst) {
  10780. // NOP
  10781. UNUSED(params);
  10782. UNUSED(dst);
  10783. }
  10784. // ggml_compute_forward_get_rows
  10785. static void ggml_compute_forward_get_rows_q(
  10786. const struct ggml_compute_params * params,
  10787. struct ggml_tensor * dst) {
  10788. const struct ggml_tensor * src0 = dst->src[0];
  10789. const struct ggml_tensor * src1 = dst->src[1];
  10790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10791. return;
  10792. }
  10793. GGML_TENSOR_BINARY_OP_LOCALS
  10794. const int64_t nc = ne00;
  10795. const int64_t nr = ggml_nelements(src1);
  10796. const enum ggml_type type = src0->type;
  10797. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10798. assert(ne0 == nc);
  10799. assert(ne02 == ne11);
  10800. assert(nb00 == ggml_type_size(type));
  10801. assert(ggml_nrows(dst) == nr);
  10802. const int ith = params->ith;
  10803. const int nth = params->nth;
  10804. // rows per thread
  10805. const int dr = (nr + nth - 1)/nth;
  10806. // row range for this thread
  10807. const int ir0 = dr*ith;
  10808. const int ir1 = MIN(ir0 + dr, nr);
  10809. for (int64_t i = ir0; i < ir1; ++i) {
  10810. const int64_t i12 = i/(ne11*ne10);
  10811. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10812. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10813. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10814. assert(i01 >= 0 && i01 < ne01);
  10815. dequantize_row_q(
  10816. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10817. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10818. }
  10819. }
  10820. static void ggml_compute_forward_get_rows_f16(
  10821. const struct ggml_compute_params * params,
  10822. struct ggml_tensor * dst) {
  10823. const struct ggml_tensor * src0 = dst->src[0];
  10824. const struct ggml_tensor * src1 = dst->src[1];
  10825. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10826. return;
  10827. }
  10828. GGML_TENSOR_BINARY_OP_LOCALS
  10829. const int64_t nc = ne00;
  10830. const int64_t nr = ggml_nelements(src1);
  10831. assert(ne0 == nc);
  10832. assert(ne02 == ne11);
  10833. assert(nb00 == sizeof(ggml_fp16_t));
  10834. assert(ggml_nrows(dst) == nr);
  10835. const int ith = params->ith;
  10836. const int nth = params->nth;
  10837. // rows per thread
  10838. const int dr = (nr + nth - 1)/nth;
  10839. // row range for this thread
  10840. const int ir0 = dr*ith;
  10841. const int ir1 = MIN(ir0 + dr, nr);
  10842. for (int64_t i = ir0; i < ir1; ++i) {
  10843. const int64_t i12 = i/(ne11*ne10);
  10844. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10845. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10846. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10847. assert(i01 >= 0 && i01 < ne01);
  10848. ggml_fp16_to_fp32_row(
  10849. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10850. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10851. }
  10852. }
  10853. static void ggml_compute_forward_get_rows_bf16(
  10854. const struct ggml_compute_params * params,
  10855. struct ggml_tensor * dst) {
  10856. const struct ggml_tensor * src0 = dst->src[0];
  10857. const struct ggml_tensor * src1 = dst->src[1];
  10858. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10859. return;
  10860. }
  10861. GGML_TENSOR_BINARY_OP_LOCALS
  10862. const int64_t nc = ne00;
  10863. const int64_t nr = ggml_nelements(src1);
  10864. assert(ne0 == nc);
  10865. assert(ne02 == ne11);
  10866. assert(nb00 == sizeof(ggml_bf16_t));
  10867. assert(ggml_nrows(dst) == nr);
  10868. const int ith = params->ith;
  10869. const int nth = params->nth;
  10870. // rows per thread
  10871. const int dr = (nr + nth - 1)/nth;
  10872. // row range for this thread
  10873. const int ir0 = dr*ith;
  10874. const int ir1 = MIN(ir0 + dr, nr);
  10875. for (int64_t i = ir0; i < ir1; ++i) {
  10876. const int64_t i12 = i/(ne11*ne10);
  10877. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10878. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10879. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10880. assert(i01 >= 0 && i01 < ne01);
  10881. ggml_bf16_to_fp32_row(
  10882. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10883. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10884. }
  10885. }
  10886. static void ggml_compute_forward_get_rows_f32(
  10887. const struct ggml_compute_params * params,
  10888. struct ggml_tensor * dst) {
  10889. const struct ggml_tensor * src0 = dst->src[0];
  10890. const struct ggml_tensor * src1 = dst->src[1];
  10891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10892. return;
  10893. }
  10894. GGML_TENSOR_BINARY_OP_LOCALS
  10895. const int64_t nc = ne00;
  10896. const int64_t nr = ggml_nelements(src1);
  10897. assert(ne0 == nc);
  10898. assert(ne02 == ne11);
  10899. assert(nb00 == sizeof(float));
  10900. assert(ggml_nrows(dst) == nr);
  10901. const int ith = params->ith;
  10902. const int nth = params->nth;
  10903. // rows per thread
  10904. const int dr = (nr + nth - 1)/nth;
  10905. // row range for this thread
  10906. const int ir0 = dr*ith;
  10907. const int ir1 = MIN(ir0 + dr, nr);
  10908. for (int64_t i = ir0; i < ir1; ++i) {
  10909. const int64_t i12 = i/(ne11*ne10);
  10910. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10911. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10912. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10913. assert(i01 >= 0 && i01 < ne01);
  10914. ggml_vec_cpy_f32(nc,
  10915. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10916. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10917. }
  10918. }
  10919. static void ggml_compute_forward_get_rows(
  10920. const struct ggml_compute_params * params,
  10921. struct ggml_tensor * dst) {
  10922. const struct ggml_tensor * src0 = dst->src[0];
  10923. switch (src0->type) {
  10924. case GGML_TYPE_Q4_0:
  10925. case GGML_TYPE_Q4_1:
  10926. case GGML_TYPE_Q5_0:
  10927. case GGML_TYPE_Q5_1:
  10928. case GGML_TYPE_Q8_0:
  10929. case GGML_TYPE_Q8_1:
  10930. case GGML_TYPE_Q2_K:
  10931. case GGML_TYPE_Q3_K:
  10932. case GGML_TYPE_Q4_K:
  10933. case GGML_TYPE_Q5_K:
  10934. case GGML_TYPE_Q6_K:
  10935. case GGML_TYPE_IQ2_XXS:
  10936. case GGML_TYPE_IQ2_XS:
  10937. case GGML_TYPE_IQ3_XXS:
  10938. case GGML_TYPE_IQ1_S:
  10939. case GGML_TYPE_IQ1_M:
  10940. case GGML_TYPE_IQ4_NL:
  10941. case GGML_TYPE_IQ4_XS:
  10942. case GGML_TYPE_IQ3_S:
  10943. case GGML_TYPE_IQ2_S:
  10944. {
  10945. ggml_compute_forward_get_rows_q(params, dst);
  10946. } break;
  10947. case GGML_TYPE_F16:
  10948. {
  10949. ggml_compute_forward_get_rows_f16(params, dst);
  10950. } break;
  10951. case GGML_TYPE_BF16:
  10952. {
  10953. ggml_compute_forward_get_rows_bf16(params, dst);
  10954. } break;
  10955. case GGML_TYPE_F32:
  10956. case GGML_TYPE_I32:
  10957. {
  10958. ggml_compute_forward_get_rows_f32(params, dst);
  10959. } break;
  10960. default:
  10961. {
  10962. GGML_ASSERT(false);
  10963. } break;
  10964. }
  10965. //static bool first = true;
  10966. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10967. //if (first) {
  10968. // first = false;
  10969. //} else {
  10970. // for (int k = 0; k < dst->ne[1]; ++k) {
  10971. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10972. // for (int i = 0; i < 16; ++i) {
  10973. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10974. // }
  10975. // printf("\n");
  10976. // }
  10977. // printf("\n");
  10978. // }
  10979. // printf("\n");
  10980. // exit(0);
  10981. //}
  10982. }
  10983. // ggml_compute_forward_get_rows_back
  10984. static void ggml_compute_forward_get_rows_back_f32_f16(
  10985. const struct ggml_compute_params * params,
  10986. struct ggml_tensor * dst) {
  10987. const struct ggml_tensor * src0 = dst->src[0];
  10988. const struct ggml_tensor * src1 = dst->src[1];
  10989. GGML_ASSERT(params->ith == 0);
  10990. GGML_ASSERT(ggml_is_contiguous(dst));
  10991. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10992. if (params->type == GGML_TASK_TYPE_INIT) {
  10993. if (params->ith != 0) {
  10994. return;
  10995. }
  10996. memset(dst->data, 0, ggml_nbytes(dst));
  10997. }
  10998. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10999. return;
  11000. }
  11001. const int nc = src0->ne[0];
  11002. const int nr = ggml_nelements(src1);
  11003. GGML_ASSERT( dst->ne[0] == nc);
  11004. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11005. for (int i = 0; i < nr; ++i) {
  11006. const int r = ((int32_t *) src1->data)[i];
  11007. for (int j = 0; j < nc; ++j) {
  11008. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11009. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11010. }
  11011. }
  11012. }
  11013. static void ggml_compute_forward_get_rows_back_f32(
  11014. const struct ggml_compute_params * params,
  11015. struct ggml_tensor * dst) {
  11016. const struct ggml_tensor * src0 = dst->src[0];
  11017. const struct ggml_tensor * src1 = dst->src[1];
  11018. GGML_ASSERT(params->ith == 0);
  11019. GGML_ASSERT(ggml_is_contiguous(dst));
  11020. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11021. if (params->type == GGML_TASK_TYPE_INIT) {
  11022. if (params->ith != 0) {
  11023. return;
  11024. }
  11025. memset(dst->data, 0, ggml_nbytes(dst));
  11026. }
  11027. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11028. return;
  11029. }
  11030. const int nc = src0->ne[0];
  11031. const int nr = ggml_nelements(src1);
  11032. GGML_ASSERT( dst->ne[0] == nc);
  11033. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11034. for (int i = 0; i < nr; ++i) {
  11035. const int r = ((int32_t *) src1->data)[i];
  11036. ggml_vec_add_f32(nc,
  11037. (float *) ((char *) dst->data + r*dst->nb[1]),
  11038. (float *) ((char *) dst->data + r*dst->nb[1]),
  11039. (float *) ((char *) src0->data + i*src0->nb[1]));
  11040. }
  11041. }
  11042. static void ggml_compute_forward_get_rows_back(
  11043. const struct ggml_compute_params * params,
  11044. struct ggml_tensor * dst) {
  11045. const struct ggml_tensor * src0 = dst->src[0];
  11046. switch (src0->type) {
  11047. case GGML_TYPE_F16:
  11048. {
  11049. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11050. } break;
  11051. case GGML_TYPE_F32:
  11052. {
  11053. ggml_compute_forward_get_rows_back_f32(params, dst);
  11054. } break;
  11055. default:
  11056. {
  11057. GGML_ASSERT(false);
  11058. } break;
  11059. }
  11060. //static bool first = true;
  11061. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11062. //if (first) {
  11063. // first = false;
  11064. //} else {
  11065. // for (int k = 0; k < dst->ne[1]; ++k) {
  11066. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11067. // for (int i = 0; i < 16; ++i) {
  11068. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11069. // }
  11070. // printf("\n");
  11071. // }
  11072. // printf("\n");
  11073. // }
  11074. // printf("\n");
  11075. // exit(0);
  11076. //}
  11077. }
  11078. // ggml_compute_forward_diag
  11079. static void ggml_compute_forward_diag_f32(
  11080. const struct ggml_compute_params * params,
  11081. struct ggml_tensor * dst) {
  11082. const struct ggml_tensor * src0 = dst->src[0];
  11083. GGML_ASSERT(params->ith == 0);
  11084. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11085. return;
  11086. }
  11087. // TODO: handle transposed/permuted matrices
  11088. GGML_TENSOR_UNARY_OP_LOCALS
  11089. GGML_ASSERT(ne00 == ne0);
  11090. GGML_ASSERT(ne00 == ne1);
  11091. GGML_ASSERT(ne01 == 1);
  11092. GGML_ASSERT(ne02 == ne2);
  11093. GGML_ASSERT(ne03 == ne3);
  11094. GGML_ASSERT(nb00 == sizeof(float));
  11095. GGML_ASSERT(nb0 == sizeof(float));
  11096. for (int i3 = 0; i3 < ne3; i3++) {
  11097. for (int i2 = 0; i2 < ne2; i2++) {
  11098. for (int i1 = 0; i1 < ne1; i1++) {
  11099. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11100. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11101. for (int i0 = 0; i0 < i1; i0++) {
  11102. d[i0] = 0;
  11103. }
  11104. d[i1] = s[i1];
  11105. for (int i0 = i1+1; i0 < ne0; i0++) {
  11106. d[i0] = 0;
  11107. }
  11108. }
  11109. }
  11110. }
  11111. }
  11112. static void ggml_compute_forward_diag(
  11113. const struct ggml_compute_params * params,
  11114. struct ggml_tensor * dst) {
  11115. const struct ggml_tensor * src0 = dst->src[0];
  11116. switch (src0->type) {
  11117. case GGML_TYPE_F32:
  11118. {
  11119. ggml_compute_forward_diag_f32(params, dst);
  11120. } break;
  11121. default:
  11122. {
  11123. GGML_ASSERT(false);
  11124. } break;
  11125. }
  11126. }
  11127. // ggml_compute_forward_diag_mask_inf
  11128. static void ggml_compute_forward_diag_mask_f32(
  11129. const struct ggml_compute_params * params,
  11130. struct ggml_tensor * dst,
  11131. const float value) {
  11132. const struct ggml_tensor * src0 = dst->src[0];
  11133. const int ith = params->ith;
  11134. const int nth = params->nth;
  11135. const int n_past = ((int32_t *) dst->op_params)[0];
  11136. const bool inplace = src0->data == dst->data;
  11137. GGML_ASSERT(n_past >= 0);
  11138. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11139. if (ith != 0) {
  11140. return;
  11141. }
  11142. // memcpy needs to be synchronized across threads to avoid race conditions.
  11143. // => do it in INIT phase
  11144. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11145. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11146. memcpy(
  11147. ((char *) dst->data),
  11148. ((char *) src0->data),
  11149. ggml_nbytes(dst));
  11150. }
  11151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11152. return;
  11153. }
  11154. // TODO: handle transposed/permuted matrices
  11155. const int n = ggml_nrows(src0);
  11156. const int nc = src0->ne[0];
  11157. const int nr = src0->ne[1];
  11158. const int nz = n/nr;
  11159. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11160. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11161. for (int k = 0; k < nz; k++) {
  11162. for (int j = ith; j < nr; j += nth) {
  11163. for (int i = n_past; i < nc; i++) {
  11164. if (i > n_past + j) {
  11165. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11166. }
  11167. }
  11168. }
  11169. }
  11170. }
  11171. static void ggml_compute_forward_diag_mask_inf(
  11172. const struct ggml_compute_params * params,
  11173. struct ggml_tensor * dst) {
  11174. const struct ggml_tensor * src0 = dst->src[0];
  11175. switch (src0->type) {
  11176. case GGML_TYPE_F32:
  11177. {
  11178. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11179. } break;
  11180. default:
  11181. {
  11182. GGML_ASSERT(false);
  11183. } break;
  11184. }
  11185. }
  11186. static void ggml_compute_forward_diag_mask_zero(
  11187. const struct ggml_compute_params * params,
  11188. struct ggml_tensor * dst) {
  11189. const struct ggml_tensor * src0 = dst->src[0];
  11190. switch (src0->type) {
  11191. case GGML_TYPE_F32:
  11192. {
  11193. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11194. } break;
  11195. default:
  11196. {
  11197. GGML_ASSERT(false);
  11198. } break;
  11199. }
  11200. }
  11201. // ggml_compute_forward_soft_max
  11202. static void ggml_compute_forward_soft_max_f32(
  11203. const struct ggml_compute_params * params,
  11204. struct ggml_tensor * dst) {
  11205. const struct ggml_tensor * src0 = dst->src[0];
  11206. const struct ggml_tensor * src1 = dst->src[1];
  11207. assert(ggml_is_contiguous(dst));
  11208. assert(ggml_are_same_shape(src0, dst));
  11209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11210. return;
  11211. }
  11212. float scale = 1.0f;
  11213. float max_bias = 0.0f;
  11214. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11215. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11216. // TODO: handle transposed/permuted matrices
  11217. const int ith = params->ith;
  11218. const int nth = params->nth;
  11219. GGML_TENSOR_UNARY_OP_LOCALS
  11220. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11221. // TODO: is this supposed to be ceil instead of floor?
  11222. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11223. const uint32_t n_head = ne02;
  11224. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11225. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11226. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11227. const int nc = src0->ne[0];
  11228. const int nr = ggml_nrows(src0);
  11229. // rows per thread
  11230. const int dr = (nr + nth - 1)/nth;
  11231. // row range for this thread
  11232. const int ir0 = dr*ith;
  11233. const int ir1 = MIN(ir0 + dr, nr);
  11234. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11235. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11236. for (int i1 = ir0; i1 < ir1; i1++) {
  11237. // ALiBi
  11238. const uint32_t h = (i1/ne01)%ne02; // head
  11239. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11240. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11241. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11242. // broadcast the mask across rows
  11243. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11244. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11245. ggml_vec_cpy_f32 (nc, wp, sp);
  11246. ggml_vec_scale_f32(nc, wp, scale);
  11247. if (mp_f32) {
  11248. if (use_f16) {
  11249. for (int i = 0; i < nc; ++i) {
  11250. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11251. }
  11252. } else {
  11253. for (int i = 0; i < nc; ++i) {
  11254. wp[i] += slope*mp_f32[i];
  11255. }
  11256. }
  11257. }
  11258. #ifndef NDEBUG
  11259. for (int i = 0; i < nc; ++i) {
  11260. //printf("p[%d] = %f\n", i, p[i]);
  11261. assert(!isnan(wp[i]));
  11262. }
  11263. #endif
  11264. float max = -INFINITY;
  11265. ggml_vec_max_f32(nc, &max, wp);
  11266. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11267. assert(sum > 0.0);
  11268. sum = 1.0/sum;
  11269. ggml_vec_scale_f32(nc, dp, sum);
  11270. #ifndef NDEBUG
  11271. for (int i = 0; i < nc; ++i) {
  11272. assert(!isnan(dp[i]));
  11273. assert(!isinf(dp[i]));
  11274. }
  11275. #endif
  11276. }
  11277. }
  11278. static void ggml_compute_forward_soft_max(
  11279. const struct ggml_compute_params * params,
  11280. struct ggml_tensor * dst) {
  11281. const struct ggml_tensor * src0 = dst->src[0];
  11282. switch (src0->type) {
  11283. case GGML_TYPE_F32:
  11284. {
  11285. ggml_compute_forward_soft_max_f32(params, dst);
  11286. } break;
  11287. default:
  11288. {
  11289. GGML_ASSERT(false);
  11290. } break;
  11291. }
  11292. }
  11293. // ggml_compute_forward_soft_max_back
  11294. static void ggml_compute_forward_soft_max_back_f32(
  11295. const struct ggml_compute_params * params,
  11296. struct ggml_tensor * dst) {
  11297. const struct ggml_tensor * src0 = dst->src[0];
  11298. const struct ggml_tensor * src1 = dst->src[1];
  11299. GGML_ASSERT(ggml_is_contiguous(src0));
  11300. GGML_ASSERT(ggml_is_contiguous(src1));
  11301. GGML_ASSERT(ggml_is_contiguous(dst));
  11302. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11303. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11305. return;
  11306. }
  11307. // TODO: handle transposed/permuted matrices
  11308. const int ith = params->ith;
  11309. const int nth = params->nth;
  11310. const int nc = src0->ne[0];
  11311. const int nr = ggml_nrows(src0);
  11312. // rows per thread
  11313. const int dr = (nr + nth - 1)/nth;
  11314. // row range for this thread
  11315. const int ir0 = dr*ith;
  11316. const int ir1 = MIN(ir0 + dr, nr);
  11317. for (int i1 = ir0; i1 < ir1; i1++) {
  11318. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11319. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11320. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11321. #ifndef NDEBUG
  11322. for (int i = 0; i < nc; ++i) {
  11323. //printf("p[%d] = %f\n", i, p[i]);
  11324. assert(!isnan(dy[i]));
  11325. assert(!isnan(y[i]));
  11326. }
  11327. #endif
  11328. // Jii = yi - yi*yi
  11329. // Jij = -yi*yj
  11330. // J = diag(y)-y.T*y
  11331. // dx = J * dy
  11332. // dxk = sum_i(Jki * dyi)
  11333. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11334. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11335. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11336. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11337. // dxk = -yk * dot(y, dy) + yk*dyk
  11338. // dxk = yk * (- dot(y, dy) + dyk)
  11339. // dxk = yk * (dyk - dot(y, dy))
  11340. //
  11341. // post-order:
  11342. // dot_y_dy := dot(y, dy)
  11343. // dx := dy
  11344. // dx := dx - dot_y_dy
  11345. // dx := dx * y
  11346. // linear runtime, no additional memory
  11347. float dot_y_dy = 0;
  11348. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11349. ggml_vec_cpy_f32 (nc, dx, dy);
  11350. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11351. ggml_vec_mul_f32 (nc, dx, dx, y);
  11352. #ifndef NDEBUG
  11353. for (int i = 0; i < nc; ++i) {
  11354. assert(!isnan(dx[i]));
  11355. assert(!isinf(dx[i]));
  11356. }
  11357. #endif
  11358. }
  11359. }
  11360. static void ggml_compute_forward_soft_max_back(
  11361. const struct ggml_compute_params * params,
  11362. struct ggml_tensor * dst) {
  11363. const struct ggml_tensor * src0 = dst->src[0];
  11364. switch (src0->type) {
  11365. case GGML_TYPE_F32:
  11366. {
  11367. ggml_compute_forward_soft_max_back_f32(params, dst);
  11368. } break;
  11369. default:
  11370. {
  11371. GGML_ASSERT(false);
  11372. } break;
  11373. }
  11374. }
  11375. // ggml_compute_forward_clamp
  11376. static void ggml_compute_forward_clamp_f32(
  11377. const struct ggml_compute_params * params,
  11378. struct ggml_tensor * dst) {
  11379. const struct ggml_tensor * src0 = dst->src[0];
  11380. assert(params->ith == 0);
  11381. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11382. return;
  11383. }
  11384. float min;
  11385. float max;
  11386. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11387. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11388. const int ith = params->ith;
  11389. const int nth = params->nth;
  11390. const int n = ggml_nrows(src0);
  11391. const int nc = src0->ne[0];
  11392. const size_t nb00 = src0->nb[0];
  11393. const size_t nb01 = src0->nb[1];
  11394. const size_t nb0 = dst->nb[0];
  11395. const size_t nb1 = dst->nb[1];
  11396. GGML_ASSERT( nb0 == sizeof(float));
  11397. GGML_ASSERT(nb00 == sizeof(float));
  11398. for (int j = ith; j < n; j += nth) {
  11399. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11400. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11401. for (int i = 0; i < nc; i++) {
  11402. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11403. }
  11404. }
  11405. }
  11406. static void ggml_compute_forward_clamp(
  11407. const struct ggml_compute_params * params,
  11408. struct ggml_tensor * dst) {
  11409. const struct ggml_tensor * src0 = dst->src[0];
  11410. switch (src0->type) {
  11411. case GGML_TYPE_F32:
  11412. {
  11413. ggml_compute_forward_clamp_f32(params, dst);
  11414. } break;
  11415. case GGML_TYPE_F16:
  11416. case GGML_TYPE_BF16:
  11417. case GGML_TYPE_Q4_0:
  11418. case GGML_TYPE_Q4_1:
  11419. case GGML_TYPE_Q5_0:
  11420. case GGML_TYPE_Q5_1:
  11421. case GGML_TYPE_Q8_0:
  11422. case GGML_TYPE_Q8_1:
  11423. case GGML_TYPE_Q2_K:
  11424. case GGML_TYPE_Q3_K:
  11425. case GGML_TYPE_Q4_K:
  11426. case GGML_TYPE_Q5_K:
  11427. case GGML_TYPE_Q6_K:
  11428. case GGML_TYPE_IQ2_XXS:
  11429. case GGML_TYPE_IQ2_XS:
  11430. case GGML_TYPE_IQ3_XXS:
  11431. case GGML_TYPE_IQ1_S:
  11432. case GGML_TYPE_IQ1_M:
  11433. case GGML_TYPE_IQ4_NL:
  11434. case GGML_TYPE_IQ4_XS:
  11435. case GGML_TYPE_IQ3_S:
  11436. case GGML_TYPE_IQ2_S:
  11437. case GGML_TYPE_Q8_K:
  11438. case GGML_TYPE_I8:
  11439. case GGML_TYPE_I16:
  11440. case GGML_TYPE_I32:
  11441. case GGML_TYPE_I64:
  11442. case GGML_TYPE_F64:
  11443. case GGML_TYPE_COUNT:
  11444. {
  11445. GGML_ASSERT(false);
  11446. } break;
  11447. }
  11448. }
  11449. // ggml_compute_forward_rope
  11450. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11451. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11452. return 1 - MIN(1, MAX(0, y));
  11453. }
  11454. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11455. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11456. static void rope_yarn(
  11457. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11458. float * cos_theta, float * sin_theta) {
  11459. // Get n-d rotational scaling corrected for extrapolation
  11460. float theta_interp = freq_scale * theta_extrap;
  11461. float theta = theta_interp;
  11462. if (ext_factor != 0.0f) {
  11463. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11464. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11465. // Get n-d magnitude scaling corrected for interpolation
  11466. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11467. }
  11468. *cos_theta = cosf(theta) * mscale;
  11469. *sin_theta = sinf(theta) * mscale;
  11470. }
  11471. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11472. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11473. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11474. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11475. }
  11476. static void ggml_rope_cache_init(
  11477. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11478. float * cache, float sin_sign, float theta_scale) {
  11479. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11480. float theta = theta_base;
  11481. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11482. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11483. rope_yarn(
  11484. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11485. );
  11486. cache[i0 + 1] *= sin_sign;
  11487. theta *= theta_scale;
  11488. }
  11489. }
  11490. GGML_CALL void ggml_rope_yarn_corr_dims(
  11491. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11492. ) {
  11493. // start and end correction dims
  11494. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11495. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11496. dims[0] = MAX(0, start);
  11497. dims[1] = MIN(n_dims - 1, end);
  11498. }
  11499. static void ggml_compute_forward_rope_f32(
  11500. const struct ggml_compute_params * params,
  11501. struct ggml_tensor * dst,
  11502. const bool forward) {
  11503. const struct ggml_tensor * src0 = dst->src[0];
  11504. const struct ggml_tensor * src1 = dst->src[1];
  11505. const struct ggml_tensor * src2 = dst->src[2];
  11506. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11507. return;
  11508. }
  11509. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11510. //const int n_past = ((int32_t *) dst->op_params)[0];
  11511. const int n_dims = ((int32_t *) dst->op_params)[1];
  11512. const int mode = ((int32_t *) dst->op_params)[2];
  11513. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11514. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11515. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11516. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11517. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11518. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11519. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11520. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11521. GGML_TENSOR_UNARY_OP_LOCALS
  11522. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11523. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11524. GGML_ASSERT(nb00 == sizeof(float));
  11525. const int ith = params->ith;
  11526. const int nth = params->nth;
  11527. const int nr = ggml_nrows(dst);
  11528. GGML_ASSERT(n_dims <= ne0);
  11529. GGML_ASSERT(n_dims % 2 == 0);
  11530. // rows per thread
  11531. const int dr = (nr + nth - 1)/nth;
  11532. // row range for this thread
  11533. const int ir0 = dr*ith;
  11534. const int ir1 = MIN(ir0 + dr, nr);
  11535. // row index used to determine which thread to use
  11536. int ir = 0;
  11537. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11538. float corr_dims[2];
  11539. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11540. const bool is_neox = mode & 2;
  11541. const float * freq_factors = NULL;
  11542. if (src2 != NULL) {
  11543. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11544. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11545. freq_factors = (const float *) src2->data;
  11546. }
  11547. // backward process uses inverse rotation by cos and sin.
  11548. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11549. // this essentially just switches the sign of sin.
  11550. const float sin_sign = forward ? 1.0f : -1.0f;
  11551. const int32_t * pos = (const int32_t *) src1->data;
  11552. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11553. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11554. const int64_t p = pos[i2];
  11555. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11556. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11557. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11558. if (ir++ < ir0) continue;
  11559. if (ir > ir1) break;
  11560. if (!is_neox) {
  11561. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11562. const float cos_theta = cache[i0 + 0];
  11563. const float sin_theta = cache[i0 + 1];
  11564. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11565. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11566. const float x0 = src[0];
  11567. const float x1 = src[1];
  11568. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11569. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11570. }
  11571. } else {
  11572. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11573. const int64_t ic = i0/2;
  11574. const float cos_theta = cache[i0 + 0];
  11575. const float sin_theta = cache[i0 + 1];
  11576. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11577. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11578. const float x0 = src[0];
  11579. const float x1 = src[n_dims/2];
  11580. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11581. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11582. }
  11583. }
  11584. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11585. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11586. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11587. dst_data[0] = src[0];
  11588. dst_data[1] = src[1];
  11589. }
  11590. }
  11591. }
  11592. }
  11593. }
  11594. // TODO: deduplicate f16/f32 code
  11595. static void ggml_compute_forward_rope_f16(
  11596. const struct ggml_compute_params * params,
  11597. struct ggml_tensor * dst,
  11598. const bool forward) {
  11599. const struct ggml_tensor * src0 = dst->src[0];
  11600. const struct ggml_tensor * src1 = dst->src[1];
  11601. const struct ggml_tensor * src2 = dst->src[2];
  11602. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11603. return;
  11604. }
  11605. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11606. //const int n_past = ((int32_t *) dst->op_params)[0];
  11607. const int n_dims = ((int32_t *) dst->op_params)[1];
  11608. const int mode = ((int32_t *) dst->op_params)[2];
  11609. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11610. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11611. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11612. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11613. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11614. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11615. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11616. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11617. GGML_TENSOR_UNARY_OP_LOCALS
  11618. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11619. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11620. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11621. const int ith = params->ith;
  11622. const int nth = params->nth;
  11623. const int nr = ggml_nrows(dst);
  11624. GGML_ASSERT(n_dims <= ne0);
  11625. GGML_ASSERT(n_dims % 2 == 0);
  11626. // rows per thread
  11627. const int dr = (nr + nth - 1)/nth;
  11628. // row range for this thread
  11629. const int ir0 = dr*ith;
  11630. const int ir1 = MIN(ir0 + dr, nr);
  11631. // row index used to determine which thread to use
  11632. int ir = 0;
  11633. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11634. float corr_dims[2];
  11635. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11636. const bool is_neox = mode & 2;
  11637. const float * freq_factors = NULL;
  11638. if (src2 != NULL) {
  11639. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11640. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11641. freq_factors = (const float *) src2->data;
  11642. }
  11643. // backward process uses inverse rotation by cos and sin.
  11644. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11645. // this essentially just switches the sign of sin.
  11646. const float sin_sign = forward ? 1.0f : -1.0f;
  11647. const int32_t * pos = (const int32_t *) src1->data;
  11648. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11649. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11650. const int64_t p = pos[i2];
  11651. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11652. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11653. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11654. if (ir++ < ir0) continue;
  11655. if (ir > ir1) break;
  11656. if (!is_neox) {
  11657. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11658. const float cos_theta = cache[i0 + 0];
  11659. const float sin_theta = cache[i0 + 1];
  11660. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11661. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11662. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11663. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11664. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11665. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11666. }
  11667. } else {
  11668. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11669. const int64_t ic = i0/2;
  11670. const float cos_theta = cache[i0 + 0];
  11671. const float sin_theta = cache[i0 + 1];
  11672. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11673. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11674. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11675. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11676. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11677. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11678. }
  11679. }
  11680. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11681. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11682. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11683. dst_data[0] = src[0];
  11684. dst_data[1] = src[1];
  11685. }
  11686. }
  11687. }
  11688. }
  11689. }
  11690. static void ggml_compute_forward_rope(
  11691. const struct ggml_compute_params * params,
  11692. struct ggml_tensor * dst) {
  11693. const struct ggml_tensor * src0 = dst->src[0];
  11694. switch (src0->type) {
  11695. case GGML_TYPE_F16:
  11696. {
  11697. ggml_compute_forward_rope_f16(params, dst, true);
  11698. } break;
  11699. case GGML_TYPE_F32:
  11700. {
  11701. ggml_compute_forward_rope_f32(params, dst, true);
  11702. } break;
  11703. default:
  11704. {
  11705. GGML_ASSERT(false);
  11706. } break;
  11707. }
  11708. }
  11709. // ggml_compute_forward_rope_back
  11710. static void ggml_compute_forward_rope_back(
  11711. const struct ggml_compute_params * params,
  11712. struct ggml_tensor * dst) {
  11713. const struct ggml_tensor * src0 = dst->src[0];
  11714. switch (src0->type) {
  11715. case GGML_TYPE_F16:
  11716. {
  11717. ggml_compute_forward_rope_f16(params, dst, false);
  11718. } break;
  11719. case GGML_TYPE_F32:
  11720. {
  11721. ggml_compute_forward_rope_f32(params, dst, false);
  11722. } break;
  11723. default:
  11724. {
  11725. GGML_ASSERT(false);
  11726. } break;
  11727. }
  11728. }
  11729. // ggml_compute_forward_conv_transpose_1d
  11730. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11731. const struct ggml_compute_params * params,
  11732. struct ggml_tensor * dst) {
  11733. const struct ggml_tensor * src0 = dst->src[0];
  11734. const struct ggml_tensor * src1 = dst->src[1];
  11735. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11736. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11737. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11738. int64_t t0 = ggml_perf_time_us();
  11739. UNUSED(t0);
  11740. GGML_TENSOR_BINARY_OP_LOCALS
  11741. const int ith = params->ith;
  11742. const int nth = params->nth;
  11743. const int nk = ne00*ne01*ne02;
  11744. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11745. GGML_ASSERT(nb10 == sizeof(float));
  11746. if (params->type == GGML_TASK_TYPE_INIT) {
  11747. if (ith != 0) {
  11748. return;
  11749. }
  11750. memset(params->wdata, 0, params->wsize);
  11751. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11752. {
  11753. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11754. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11755. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11756. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11757. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11758. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11759. dst_data[i00*ne02 + i02] = src[i00];
  11760. }
  11761. }
  11762. }
  11763. }
  11764. // permute source data (src1) from (L x Cin) to (Cin x L)
  11765. {
  11766. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11767. ggml_fp16_t * dst_data = wdata;
  11768. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11769. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11770. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11771. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11772. }
  11773. }
  11774. }
  11775. // need to zero dst since we are accumulating into it
  11776. memset(dst->data, 0, ggml_nbytes(dst));
  11777. return;
  11778. }
  11779. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11780. return;
  11781. }
  11782. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11783. // total rows in dst
  11784. const int nr = ne1;
  11785. // rows per thread
  11786. const int dr = (nr + nth - 1)/nth;
  11787. // row range for this thread
  11788. const int ir0 = dr*ith;
  11789. const int ir1 = MIN(ir0 + dr, nr);
  11790. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11791. ggml_fp16_t * const wdata_src = wdata + nk;
  11792. for (int i1 = ir0; i1 < ir1; i1++) {
  11793. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11794. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11795. for (int i10 = 0; i10 < ne10; i10++) {
  11796. const int i1n = i10*ne11;
  11797. for (int i00 = 0; i00 < ne00; i00++) {
  11798. float v = 0;
  11799. ggml_vec_dot_f16(ne02, &v, 0,
  11800. (ggml_fp16_t *) wdata_src + i1n, 0,
  11801. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11802. dst_data[i10*s0 + i00] += v;
  11803. }
  11804. }
  11805. }
  11806. }
  11807. static void ggml_compute_forward_conv_transpose_1d_f32(
  11808. const struct ggml_compute_params * params,
  11809. struct ggml_tensor * dst) {
  11810. const struct ggml_tensor * src0 = dst->src[0];
  11811. const struct ggml_tensor * src1 = dst->src[1];
  11812. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11813. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11814. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11815. int64_t t0 = ggml_perf_time_us();
  11816. UNUSED(t0);
  11817. GGML_TENSOR_BINARY_OP_LOCALS
  11818. const int ith = params->ith;
  11819. const int nth = params->nth;
  11820. const int nk = ne00*ne01*ne02;
  11821. GGML_ASSERT(nb00 == sizeof(float));
  11822. GGML_ASSERT(nb10 == sizeof(float));
  11823. if (params->type == GGML_TASK_TYPE_INIT) {
  11824. if (ith != 0) {
  11825. return;
  11826. }
  11827. memset(params->wdata, 0, params->wsize);
  11828. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11829. {
  11830. float * const wdata = (float *) params->wdata + 0;
  11831. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11832. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11833. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11834. float * dst_data = wdata + i01*ne00*ne02;
  11835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11836. dst_data[i00*ne02 + i02] = src[i00];
  11837. }
  11838. }
  11839. }
  11840. }
  11841. // prepare source data (src1)
  11842. {
  11843. float * const wdata = (float *) params->wdata + nk;
  11844. float * dst_data = wdata;
  11845. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11846. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11847. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11848. dst_data[i10*ne11 + i11] = src[i10];
  11849. }
  11850. }
  11851. }
  11852. // need to zero dst since we are accumulating into it
  11853. memset(dst->data, 0, ggml_nbytes(dst));
  11854. return;
  11855. }
  11856. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11857. return;
  11858. }
  11859. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11860. // total rows in dst
  11861. const int nr = ne1;
  11862. // rows per thread
  11863. const int dr = (nr + nth - 1)/nth;
  11864. // row range for this thread
  11865. const int ir0 = dr*ith;
  11866. const int ir1 = MIN(ir0 + dr, nr);
  11867. float * const wdata = (float *) params->wdata + 0;
  11868. float * const wdata_src = wdata + nk;
  11869. for (int i1 = ir0; i1 < ir1; i1++) {
  11870. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11871. float * wdata_kernel = wdata + i1*ne02*ne00;
  11872. for (int i10 = 0; i10 < ne10; i10++) {
  11873. const int i1n = i10*ne11;
  11874. for (int i00 = 0; i00 < ne00; i00++) {
  11875. float v = 0;
  11876. ggml_vec_dot_f32(ne02, &v, 0,
  11877. wdata_src + i1n, 0,
  11878. wdata_kernel + i00*ne02, 0, 1);
  11879. dst_data[i10*s0 + i00] += v;
  11880. }
  11881. }
  11882. }
  11883. }
  11884. static void ggml_compute_forward_conv_transpose_1d(
  11885. const struct ggml_compute_params * params,
  11886. struct ggml_tensor * dst) {
  11887. const struct ggml_tensor * src0 = dst->src[0];
  11888. switch (src0->type) {
  11889. case GGML_TYPE_F16:
  11890. {
  11891. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11892. } break;
  11893. case GGML_TYPE_F32:
  11894. {
  11895. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11896. } break;
  11897. default:
  11898. {
  11899. GGML_ASSERT(false);
  11900. } break;
  11901. }
  11902. }
  11903. // src0: kernel [OC, IC, KH, KW]
  11904. // src1: image [N, IC, IH, IW]
  11905. // dst: result [N, OH, OW, IC*KH*KW]
  11906. static void ggml_compute_forward_im2col_f32(
  11907. const struct ggml_compute_params * params,
  11908. struct ggml_tensor * dst) {
  11909. const struct ggml_tensor * src0 = dst->src[0];
  11910. const struct ggml_tensor * src1 = dst->src[1];
  11911. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11912. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11913. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11914. int64_t t0 = ggml_perf_time_us();
  11915. UNUSED(t0);
  11916. GGML_TENSOR_BINARY_OP_LOCALS;
  11917. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11918. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11919. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11920. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11921. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11922. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11923. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11924. const int ith = params->ith;
  11925. const int nth = params->nth;
  11926. const int64_t N = is_2D ? ne13 : ne12;
  11927. const int64_t IC = is_2D ? ne12 : ne11;
  11928. const int64_t IH = is_2D ? ne11 : 1;
  11929. const int64_t IW = ne10;
  11930. const int64_t KH = is_2D ? ne01 : 1;
  11931. const int64_t KW = ne00;
  11932. const int64_t OH = is_2D ? ne2 : 1;
  11933. const int64_t OW = ne1;
  11934. int ofs0 = is_2D ? nb13 : nb12;
  11935. int ofs1 = is_2D ? nb12 : nb11;
  11936. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11937. GGML_ASSERT(nb10 == sizeof(float));
  11938. if (params->type == GGML_TASK_TYPE_INIT) {
  11939. return;
  11940. }
  11941. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11942. return;
  11943. }
  11944. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11945. {
  11946. float * const wdata = (float *) dst->data;
  11947. for (int64_t in = 0; in < N; in++) {
  11948. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11949. for (int64_t iow = 0; iow < OW; iow++) {
  11950. for (int64_t iic = ith; iic < IC; iic += nth) {
  11951. // micro kernel
  11952. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11953. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11954. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11955. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11956. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11957. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11958. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11959. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11960. } else {
  11961. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11962. }
  11963. }
  11964. }
  11965. }
  11966. }
  11967. }
  11968. }
  11969. }
  11970. }
  11971. // src0: kernel [OC, IC, KH, KW]
  11972. // src1: image [N, IC, IH, IW]
  11973. // dst: result [N, OH, OW, IC*KH*KW]
  11974. static void ggml_compute_forward_im2col_f16(
  11975. const struct ggml_compute_params * params,
  11976. struct ggml_tensor * dst) {
  11977. const struct ggml_tensor * src0 = dst->src[0];
  11978. const struct ggml_tensor * src1 = dst->src[1];
  11979. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11980. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11981. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11982. int64_t t0 = ggml_perf_time_us();
  11983. UNUSED(t0);
  11984. GGML_TENSOR_BINARY_OP_LOCALS;
  11985. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11986. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11987. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11988. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11989. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11990. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11991. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11992. const int ith = params->ith;
  11993. const int nth = params->nth;
  11994. const int64_t N = is_2D ? ne13 : ne12;
  11995. const int64_t IC = is_2D ? ne12 : ne11;
  11996. const int64_t IH = is_2D ? ne11 : 1;
  11997. const int64_t IW = ne10;
  11998. const int64_t KH = is_2D ? ne01 : 1;
  11999. const int64_t KW = ne00;
  12000. const int64_t OH = is_2D ? ne2 : 1;
  12001. const int64_t OW = ne1;
  12002. int ofs0 = is_2D ? nb13 : nb12;
  12003. int ofs1 = is_2D ? nb12 : nb11;
  12004. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12005. GGML_ASSERT(nb10 == sizeof(float));
  12006. if (params->type == GGML_TASK_TYPE_INIT) {
  12007. return;
  12008. }
  12009. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12010. return;
  12011. }
  12012. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12013. {
  12014. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12015. for (int64_t in = 0; in < N; in++) {
  12016. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12017. for (int64_t iow = 0; iow < OW; iow++) {
  12018. for (int64_t iic = ith; iic < IC; iic += nth) {
  12019. // micro kernel
  12020. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12021. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12022. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12023. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12024. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12025. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12026. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12027. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12028. } else {
  12029. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12030. }
  12031. }
  12032. }
  12033. }
  12034. }
  12035. }
  12036. }
  12037. }
  12038. }
  12039. static void ggml_compute_forward_im2col(
  12040. const struct ggml_compute_params * params,
  12041. struct ggml_tensor * dst) {
  12042. switch (dst->type) {
  12043. case GGML_TYPE_F16:
  12044. {
  12045. ggml_compute_forward_im2col_f16(params, dst);
  12046. } break;
  12047. case GGML_TYPE_F32:
  12048. {
  12049. ggml_compute_forward_im2col_f32(params, dst);
  12050. } break;
  12051. default:
  12052. {
  12053. GGML_ASSERT(false);
  12054. } break;
  12055. }
  12056. }
  12057. // ggml_compute_forward_conv_transpose_2d
  12058. static void ggml_compute_forward_conv_transpose_2d(
  12059. const struct ggml_compute_params * params,
  12060. struct ggml_tensor * dst) {
  12061. const struct ggml_tensor * src0 = dst->src[0];
  12062. const struct ggml_tensor * src1 = dst->src[1];
  12063. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12064. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12065. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12066. int64_t t0 = ggml_perf_time_us();
  12067. UNUSED(t0);
  12068. GGML_TENSOR_BINARY_OP_LOCALS
  12069. const int ith = params->ith;
  12070. const int nth = params->nth;
  12071. const int nk = ne00*ne01*ne02*ne03;
  12072. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12073. GGML_ASSERT(nb10 == sizeof(float));
  12074. if (params->type == GGML_TASK_TYPE_INIT) {
  12075. if (ith != 0) {
  12076. return;
  12077. }
  12078. memset(params->wdata, 0, params->wsize);
  12079. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12080. {
  12081. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12082. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12083. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12084. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12085. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12086. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12087. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12088. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12089. }
  12090. }
  12091. }
  12092. }
  12093. }
  12094. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12095. {
  12096. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12097. for (int i12 = 0; i12 < ne12; i12++) {
  12098. for (int i11 = 0; i11 < ne11; i11++) {
  12099. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12100. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12101. for (int i10 = 0; i10 < ne10; i10++) {
  12102. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12103. }
  12104. }
  12105. }
  12106. }
  12107. memset(dst->data, 0, ggml_nbytes(dst));
  12108. return;
  12109. }
  12110. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12111. return;
  12112. }
  12113. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12114. // total patches in dst
  12115. const int np = ne2;
  12116. // patches per thread
  12117. const int dp = (np + nth - 1)/nth;
  12118. // patch range for this thread
  12119. const int ip0 = dp*ith;
  12120. const int ip1 = MIN(ip0 + dp, np);
  12121. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12122. ggml_fp16_t * const wdata_src = wdata + nk;
  12123. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12124. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12125. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12126. for (int i11 = 0; i11 < ne11; i11++) {
  12127. for (int i10 = 0; i10 < ne10; i10++) {
  12128. const int i1n = i11*ne10*ne12 + i10*ne12;
  12129. for (int i01 = 0; i01 < ne01; i01++) {
  12130. for (int i00 = 0; i00 < ne00; i00++) {
  12131. float v = 0;
  12132. ggml_vec_dot_f16(ne03, &v, 0,
  12133. wdata_src + i1n, 0,
  12134. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12135. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12136. }
  12137. }
  12138. }
  12139. }
  12140. }
  12141. }
  12142. // ggml_compute_forward_pool_1d_sk_p0
  12143. static void ggml_compute_forward_pool_1d_sk_p0(
  12144. const struct ggml_compute_params * params,
  12145. const enum ggml_op_pool op,
  12146. const int k,
  12147. struct ggml_tensor * dst) {
  12148. const struct ggml_tensor * src = dst->src[0];
  12149. assert(src->type == GGML_TYPE_F32);
  12150. assert(params->ith == 0);
  12151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12152. return;
  12153. }
  12154. const char * cdata = (const char *)src->data;
  12155. const char * const data_end = cdata + ggml_nbytes(src);
  12156. float * drow = (float *)dst->data;
  12157. const int64_t rs = dst->ne[0];
  12158. while (cdata < data_end) {
  12159. const float * const srow = (const float *)cdata;
  12160. int j = 0;
  12161. for (int64_t i = 0; i < rs; ++i) {
  12162. switch (op) {
  12163. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12164. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12165. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12166. }
  12167. for (int ki = 0; ki < k; ++ki) {
  12168. switch (op) {
  12169. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12170. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12171. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12172. }
  12173. ++j;
  12174. }
  12175. switch (op) {
  12176. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12177. case GGML_OP_POOL_MAX: break;
  12178. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12179. }
  12180. }
  12181. cdata += src->nb[1];
  12182. drow += rs;
  12183. }
  12184. }
  12185. // ggml_compute_forward_pool_1d
  12186. static void ggml_compute_forward_pool_1d(
  12187. const struct ggml_compute_params * params,
  12188. struct ggml_tensor * dst) {
  12189. const int32_t * opts = (const int32_t *)dst->op_params;
  12190. enum ggml_op_pool op = opts[0];
  12191. const int k0 = opts[1];
  12192. const int s0 = opts[2];
  12193. const int p0 = opts[3];
  12194. GGML_ASSERT(p0 == 0); // padding not supported
  12195. GGML_ASSERT(k0 == s0); // only s = k supported
  12196. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12197. }
  12198. // ggml_compute_forward_pool_2d
  12199. static void ggml_compute_forward_pool_2d(
  12200. const struct ggml_compute_params * params,
  12201. struct ggml_tensor * dst) {
  12202. const struct ggml_tensor * src = dst->src[0];
  12203. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12204. GGML_ASSERT(params->ith == 0);
  12205. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12206. return;
  12207. }
  12208. const int32_t * opts = (const int32_t *)dst->op_params;
  12209. enum ggml_op_pool op = opts[0];
  12210. const int k0 = opts[1];
  12211. const int k1 = opts[2];
  12212. const int s0 = opts[3];
  12213. const int s1 = opts[4];
  12214. const int p0 = opts[5];
  12215. const int p1 = opts[6];
  12216. const char * cdata = (const char*)src->data;
  12217. const char * const data_end = cdata + ggml_nbytes(src);
  12218. const int64_t px = dst->ne[0];
  12219. const int64_t py = dst->ne[1];
  12220. const int64_t pa = px * py;
  12221. float * dplane = (float *)dst->data;
  12222. const int ka = k0 * k1;
  12223. const int offset0 = -p0;
  12224. const int offset1 = -p1;
  12225. while (cdata < data_end) {
  12226. for (int oy = 0; oy < py; ++oy) {
  12227. float * const drow = dplane + oy * px;
  12228. for (int ox = 0; ox < px; ++ox) {
  12229. float * const out = drow + ox;
  12230. switch (op) {
  12231. case GGML_OP_POOL_AVG: *out = 0; break;
  12232. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12233. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12234. }
  12235. const int ix = offset0 + ox * s0;
  12236. const int iy = offset1 + oy * s1;
  12237. for (int ky = 0; ky < k1; ++ky) {
  12238. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12239. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12240. for (int kx = 0; kx < k0; ++kx) {
  12241. int j = ix + kx;
  12242. if (j < 0 || j >= src->ne[0]) continue;
  12243. switch (op) {
  12244. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12245. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12246. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12247. }
  12248. }
  12249. }
  12250. switch (op) {
  12251. case GGML_OP_POOL_AVG: *out /= ka; break;
  12252. case GGML_OP_POOL_MAX: break;
  12253. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12254. }
  12255. }
  12256. }
  12257. cdata += src->nb[2];
  12258. dplane += pa;
  12259. }
  12260. }
  12261. // ggml_compute_forward_upscale
  12262. static void ggml_compute_forward_upscale_f32(
  12263. const struct ggml_compute_params * params,
  12264. struct ggml_tensor * dst) {
  12265. const struct ggml_tensor * src0 = dst->src[0];
  12266. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12267. return;
  12268. }
  12269. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12270. const int ith = params->ith;
  12271. const int nth = params->nth;
  12272. GGML_TENSOR_UNARY_OP_LOCALS
  12273. const float sf0 = (float)ne0/src0->ne[0];
  12274. const float sf1 = (float)ne1/src0->ne[1];
  12275. const float sf2 = (float)ne2/src0->ne[2];
  12276. const float sf3 = (float)ne3/src0->ne[3];
  12277. // TODO: optimize
  12278. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12279. const int64_t i03 = i3 / sf3;
  12280. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12281. const int64_t i02 = i2 / sf2;
  12282. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12283. const int64_t i01 = i1 / sf1;
  12284. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12285. const int64_t i00 = i0 / sf0;
  12286. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12287. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12288. *y = *x;
  12289. }
  12290. }
  12291. }
  12292. }
  12293. }
  12294. static void ggml_compute_forward_upscale(
  12295. const struct ggml_compute_params * params,
  12296. struct ggml_tensor * dst) {
  12297. const struct ggml_tensor * src0 = dst->src[0];
  12298. switch (src0->type) {
  12299. case GGML_TYPE_F32:
  12300. {
  12301. ggml_compute_forward_upscale_f32(params, dst);
  12302. } break;
  12303. default:
  12304. {
  12305. GGML_ASSERT(false);
  12306. } break;
  12307. }
  12308. }
  12309. // ggml_compute_forward_pad
  12310. static void ggml_compute_forward_pad_f32(
  12311. const struct ggml_compute_params * params,
  12312. struct ggml_tensor * dst) {
  12313. const struct ggml_tensor * src0 = dst->src[0];
  12314. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12315. return;
  12316. }
  12317. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12318. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12319. const int ith = params->ith;
  12320. const int nth = params->nth;
  12321. GGML_TENSOR_UNARY_OP_LOCALS
  12322. float * dst_ptr = (float *) dst->data;
  12323. // TODO: optimize
  12324. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12325. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12326. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12327. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12328. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12329. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12330. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12331. dst_ptr[dst_idx] = *src_ptr;
  12332. } else {
  12333. dst_ptr[dst_idx] = 0;
  12334. }
  12335. }
  12336. }
  12337. }
  12338. }
  12339. }
  12340. static void ggml_compute_forward_pad(
  12341. const struct ggml_compute_params * params,
  12342. struct ggml_tensor * dst) {
  12343. const struct ggml_tensor * src0 = dst->src[0];
  12344. switch (src0->type) {
  12345. case GGML_TYPE_F32:
  12346. {
  12347. ggml_compute_forward_pad_f32(params, dst);
  12348. } break;
  12349. default:
  12350. {
  12351. GGML_ASSERT(false);
  12352. } break;
  12353. }
  12354. }
  12355. // ggml_compute_forward_arange
  12356. static void ggml_compute_forward_arange_f32(
  12357. const struct ggml_compute_params * params,
  12358. struct ggml_tensor * dst) {
  12359. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12360. return;
  12361. }
  12362. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12363. const int ith = params->ith;
  12364. const int nth = params->nth;
  12365. const float start = ggml_get_op_params_f32(dst, 0);
  12366. const float stop = ggml_get_op_params_f32(dst, 1);
  12367. const float step = ggml_get_op_params_f32(dst, 2);
  12368. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12369. GGML_ASSERT(ggml_nelements(dst) == steps);
  12370. for (int64_t i = ith; i < steps; i+= nth) {
  12371. float value = start + step * i;
  12372. ((float *)dst->data)[i] = value;
  12373. }
  12374. }
  12375. static void ggml_compute_forward_arange(
  12376. const struct ggml_compute_params * params,
  12377. struct ggml_tensor * dst) {
  12378. switch (dst->type) {
  12379. case GGML_TYPE_F32:
  12380. {
  12381. ggml_compute_forward_arange_f32(params, dst);
  12382. } break;
  12383. default:
  12384. {
  12385. GGML_ASSERT(false);
  12386. } break;
  12387. }
  12388. }
  12389. static void ggml_compute_forward_timestep_embedding_f32(
  12390. const struct ggml_compute_params * params,
  12391. struct ggml_tensor * dst) {
  12392. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12393. return;
  12394. }
  12395. const struct ggml_tensor * src0 = dst->src[0];
  12396. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12397. const int ith = params->ith;
  12398. const int nth = params->nth;
  12399. GGML_TENSOR_UNARY_OP_LOCALS
  12400. const int dim = ggml_get_op_params_i32(dst, 0);
  12401. const int max_period = ggml_get_op_params_i32(dst, 1);
  12402. int half = dim / 2;
  12403. for (int64_t i = 0; i < ne00; i++) {
  12404. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12405. for (int64_t j = ith; j < half; j += nth) {
  12406. float timestep = ((float *)src0->data)[i];
  12407. float freq = (float)expf(-logf(max_period) * j / half);
  12408. float arg = timestep * freq;
  12409. embed_data[j] = cosf(arg);
  12410. embed_data[j + half] = sinf(arg);
  12411. }
  12412. if (dim % 2 != 0 && ith == 0) {
  12413. embed_data[dim] = 0.f;
  12414. }
  12415. }
  12416. }
  12417. static void ggml_compute_forward_timestep_embedding(
  12418. const struct ggml_compute_params * params,
  12419. struct ggml_tensor * dst) {
  12420. const struct ggml_tensor * src0 = dst->src[0];
  12421. switch (src0->type) {
  12422. case GGML_TYPE_F32:
  12423. {
  12424. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12425. } break;
  12426. default:
  12427. {
  12428. GGML_ASSERT(false);
  12429. } break;
  12430. }
  12431. }
  12432. // ggml_compute_forward_argsort
  12433. static void ggml_compute_forward_argsort_f32(
  12434. const struct ggml_compute_params * params,
  12435. struct ggml_tensor * dst) {
  12436. const struct ggml_tensor * src0 = dst->src[0];
  12437. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12438. return;
  12439. }
  12440. GGML_TENSOR_UNARY_OP_LOCALS
  12441. GGML_ASSERT(nb0 == sizeof(float));
  12442. const int ith = params->ith;
  12443. const int nth = params->nth;
  12444. const int64_t nr = ggml_nrows(src0);
  12445. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12446. for (int64_t i = ith; i < nr; i += nth) {
  12447. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12448. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12449. for (int64_t j = 0; j < ne0; j++) {
  12450. dst_data[j] = j;
  12451. }
  12452. // C doesn't have a functional sort, so we do a bubble sort instead
  12453. for (int64_t j = 0; j < ne0; j++) {
  12454. for (int64_t k = j + 1; k < ne0; k++) {
  12455. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12456. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12457. int32_t tmp = dst_data[j];
  12458. dst_data[j] = dst_data[k];
  12459. dst_data[k] = tmp;
  12460. }
  12461. }
  12462. }
  12463. }
  12464. }
  12465. static void ggml_compute_forward_argsort(
  12466. const struct ggml_compute_params * params,
  12467. struct ggml_tensor * dst) {
  12468. const struct ggml_tensor * src0 = dst->src[0];
  12469. switch (src0->type) {
  12470. case GGML_TYPE_F32:
  12471. {
  12472. ggml_compute_forward_argsort_f32(params, dst);
  12473. } break;
  12474. default:
  12475. {
  12476. GGML_ASSERT(false);
  12477. } break;
  12478. }
  12479. }
  12480. // ggml_compute_forward_flash_attn_ext
  12481. static void ggml_compute_forward_flash_attn_ext_f16(
  12482. const struct ggml_compute_params * params,
  12483. const struct ggml_tensor * q,
  12484. const struct ggml_tensor * k,
  12485. const struct ggml_tensor * v,
  12486. const struct ggml_tensor * mask,
  12487. struct ggml_tensor * dst) {
  12488. int64_t t0 = ggml_perf_time_us();
  12489. UNUSED(t0);
  12490. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12491. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12492. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12493. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12494. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12495. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12496. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12497. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12498. const int ith = params->ith;
  12499. const int nth = params->nth;
  12500. const int64_t D = neq0;
  12501. const int64_t N = neq1;
  12502. GGML_ASSERT(ne0 == D);
  12503. GGML_ASSERT(ne2 == N);
  12504. // input tensor rows must be contiguous
  12505. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12506. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12507. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12508. GGML_ASSERT(neq0 == D);
  12509. GGML_ASSERT(nek0 == D);
  12510. GGML_ASSERT(nev0 == D);
  12511. GGML_ASSERT(neq1 == N);
  12512. GGML_ASSERT(nev0 == D);
  12513. // dst cannot be transposed or permuted
  12514. GGML_ASSERT(nb0 == sizeof(float));
  12515. GGML_ASSERT(nb0 <= nb1);
  12516. GGML_ASSERT(nb1 <= nb2);
  12517. GGML_ASSERT(nb2 <= nb3);
  12518. // broadcast factors
  12519. const int64_t rk2 = neq2/nek2;
  12520. const int64_t rk3 = neq3/nek3;
  12521. const int64_t rv2 = neq2/nev2;
  12522. const int64_t rv3 = neq3/nev3;
  12523. if (params->type == GGML_TASK_TYPE_INIT) {
  12524. return;
  12525. }
  12526. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12527. return;
  12528. }
  12529. // parallelize by q rows using ggml_vec_dot_f32
  12530. // total rows in q
  12531. const int nr = neq1*neq2*neq3;
  12532. // rows per thread
  12533. const int dr = (nr + nth - 1)/nth;
  12534. // row range for this thread
  12535. const int ir0 = dr*ith;
  12536. const int ir1 = MIN(ir0 + dr, nr);
  12537. float scale = 1.0f;
  12538. float max_bias = 0.0f;
  12539. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12540. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12541. const uint32_t n_head = neq2;
  12542. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12543. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12544. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12545. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12546. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12547. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12548. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12549. // loop over n_batch and n_head
  12550. for (int ir = ir0; ir < ir1; ++ir) {
  12551. // q indices
  12552. const int iq3 = ir/(neq2*neq1);
  12553. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12554. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12555. const uint32_t h = iq2; // head index
  12556. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12557. float S = 0.0f; // sum
  12558. float M = -INFINITY; // maximum KQ value
  12559. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12560. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12561. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12562. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12563. if (v->type == GGML_TYPE_F16) {
  12564. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12565. } else {
  12566. memset(VKQ32, 0, D*sizeof(float));
  12567. }
  12568. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12569. // k indices
  12570. const int ik3 = iq3 / rk3;
  12571. const int ik2 = iq2 / rk2;
  12572. // v indices
  12573. const int iv3 = iq3 / rv3;
  12574. const int iv2 = iq2 / rv2;
  12575. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12576. q_to_vec_dot(pq, Q_q, D);
  12577. // online softmax / attention
  12578. // loop over n_kv and n_head_kv
  12579. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12580. for (int64_t ic = 0; ic < nek1; ++ic) {
  12581. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12582. if (mv == -INFINITY) {
  12583. continue;
  12584. }
  12585. float s; // KQ value
  12586. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12587. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12588. s = s*scale + mv; // scale KQ value and apply mask
  12589. const float Mold = M;
  12590. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12591. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12592. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12593. if (v->type== GGML_TYPE_F16) {
  12594. if (s > M) {
  12595. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12596. M = s;
  12597. ms = expf(Mold - M);
  12598. // V = V*expf(Mold - M)
  12599. ggml_vec_scale_f16(D, VKQ16, ms);
  12600. } else {
  12601. // no new maximum, ms == 1.0f, vs != 1.0f
  12602. vs = expf(s - M);
  12603. }
  12604. // V += v*expf(s - M)
  12605. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12606. } else {
  12607. if (s > M) {
  12608. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12609. M = s;
  12610. ms = expf(Mold - M);
  12611. // V = V*expf(Mold - M)
  12612. ggml_vec_scale_f32(D, VKQ32, ms);
  12613. } else {
  12614. // no new maximum, ms == 1.0f, vs != 1.0f
  12615. vs = expf(s - M);
  12616. }
  12617. v_to_float(v_data, V32, D);
  12618. // V += v*expf(s - M)
  12619. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12620. }
  12621. S = S*ms + vs; // scale and increment sum with partial sum
  12622. }
  12623. if (v->type == GGML_TYPE_F16) {
  12624. for (int64_t d = 0; d < D; ++d) {
  12625. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12626. }
  12627. }
  12628. // V /= S
  12629. const float S_inv = 1.0f/S;
  12630. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12631. // dst indices
  12632. const int i1 = iq1;
  12633. const int i2 = iq2;
  12634. const int i3 = iq3;
  12635. // original
  12636. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12637. // permute(0, 2, 1, 3)
  12638. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12639. }
  12640. }
  12641. static void ggml_compute_forward_flash_attn_ext(
  12642. const struct ggml_compute_params * params,
  12643. const struct ggml_tensor * q,
  12644. const struct ggml_tensor * k,
  12645. const struct ggml_tensor * v,
  12646. const struct ggml_tensor * mask,
  12647. struct ggml_tensor * dst) {
  12648. switch (dst->op_params[2]) {
  12649. case GGML_PREC_DEFAULT:
  12650. case GGML_PREC_F32:
  12651. {
  12652. // uses F32 accumulators
  12653. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12654. } break;
  12655. default:
  12656. {
  12657. GGML_ASSERT(false);
  12658. } break;
  12659. }
  12660. }
  12661. // ggml_compute_forward_flash_attn_back
  12662. static void ggml_compute_forward_flash_attn_back_f32(
  12663. const struct ggml_compute_params * params,
  12664. const bool masked,
  12665. struct ggml_tensor * dst) {
  12666. const struct ggml_tensor * q = dst->src[0];
  12667. const struct ggml_tensor * k = dst->src[1];
  12668. const struct ggml_tensor * v = dst->src[2];
  12669. const struct ggml_tensor * d = dst->src[3];
  12670. int64_t t0 = ggml_perf_time_us();
  12671. UNUSED(t0);
  12672. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12673. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12674. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12675. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12676. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12677. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12678. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12679. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12680. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12681. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12682. const int ith = params->ith;
  12683. const int nth = params->nth;
  12684. const int64_t D = neq0;
  12685. const int64_t N = neq1;
  12686. const int64_t P = nek1 - N;
  12687. const int64_t M = P + N;
  12688. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12689. const int mxDM = MAX(D, Mup);
  12690. // GGML_ASSERT(ne0 == D);
  12691. // GGML_ASSERT(ne1 == N);
  12692. GGML_ASSERT(P >= 0);
  12693. GGML_ASSERT(nbq0 == sizeof(float));
  12694. GGML_ASSERT(nbk0 == sizeof(float));
  12695. GGML_ASSERT(nbv0 == sizeof(float));
  12696. GGML_ASSERT(neq0 == D);
  12697. GGML_ASSERT(nek0 == D);
  12698. GGML_ASSERT(nev1 == D);
  12699. GGML_ASSERT(ned0 == D);
  12700. GGML_ASSERT(neq1 == N);
  12701. GGML_ASSERT(nek1 == N + P);
  12702. GGML_ASSERT(nev1 == D);
  12703. GGML_ASSERT(ned1 == N);
  12704. // dst cannot be transposed or permuted
  12705. GGML_ASSERT(nb0 == sizeof(float));
  12706. GGML_ASSERT(nb0 <= nb1);
  12707. GGML_ASSERT(nb1 <= nb2);
  12708. GGML_ASSERT(nb2 <= nb3);
  12709. if (params->type == GGML_TASK_TYPE_INIT) {
  12710. if (ith == 0) {
  12711. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12712. }
  12713. return;
  12714. }
  12715. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12716. return;
  12717. }
  12718. const int64_t elem_q = ggml_nelements(q);
  12719. const int64_t elem_k = ggml_nelements(k);
  12720. enum ggml_type result_type = dst->type;
  12721. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12722. const size_t tsize = ggml_type_size(result_type);
  12723. const size_t offs_q = 0;
  12724. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12725. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12726. void * grad_q = (char *) dst->data;
  12727. void * grad_k = (char *) dst->data + offs_k;
  12728. void * grad_v = (char *) dst->data + offs_v;
  12729. const size_t nbgq1 = nb0*neq0;
  12730. const size_t nbgq2 = nb0*neq0*neq1;
  12731. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12732. const size_t nbgk1 = nb0*nek0;
  12733. const size_t nbgk2 = nb0*nek0*nek1;
  12734. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12735. const size_t nbgv1 = nb0*nev0;
  12736. const size_t nbgv2 = nb0*nev0*nev1;
  12737. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12738. // parallelize by k rows using ggml_vec_dot_f32
  12739. // total rows in k
  12740. const int nr = nek2*nek3;
  12741. // rows per thread
  12742. const int dr = (nr + nth - 1)/nth;
  12743. // row range for this thread
  12744. const int ir0 = dr*ith;
  12745. const int ir1 = MIN(ir0 + dr, nr);
  12746. const float scale = 1.0f/sqrtf(D);
  12747. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12748. // how often k2 (and v2) is repeated in q2
  12749. int nrep = neq2/nek2;
  12750. for (int ir = ir0; ir < ir1; ++ir) {
  12751. // q indices
  12752. const int ik3 = ir/(nek2);
  12753. const int ik2 = ir - ik3*nek2;
  12754. const int iq3 = ik3;
  12755. const int id3 = ik3;
  12756. const int iv3 = ik3;
  12757. const int iv2 = ik2;
  12758. for (int irep = 0; irep < nrep; ++irep) {
  12759. const int iq2 = ik2 + irep*nek2;
  12760. const int id2 = iq2;
  12761. // (ik2 + irep*nek2) % nek2 == ik2
  12762. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12763. const int id1 = iq1;
  12764. // not sure about CACHE_LINE_SIZE_F32..
  12765. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12766. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12767. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12768. for (int i = M; i < Mup; ++i) {
  12769. S[i] = -INFINITY;
  12770. }
  12771. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12772. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12773. // k indices
  12774. const int ik1 = ic;
  12775. // S indices
  12776. const int i1 = ik1;
  12777. ggml_vec_dot_f32(neq0,
  12778. S + i1, 0,
  12779. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12780. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12781. }
  12782. // scale
  12783. ggml_vec_scale_f32(masked_begin, S, scale);
  12784. for (int64_t i = masked_begin; i < M; i++) {
  12785. S[i] = -INFINITY;
  12786. }
  12787. // softmax
  12788. // exclude known -INF S[..] values from max and loop
  12789. // dont forget to set their SM values to zero
  12790. {
  12791. float max = -INFINITY;
  12792. ggml_vec_max_f32(masked_begin, &max, S);
  12793. ggml_float sum = 0.0;
  12794. {
  12795. #ifdef GGML_SOFT_MAX_ACCELERATE
  12796. max = -max;
  12797. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12798. vvexpf(SM, SM, &Mup);
  12799. ggml_vec_sum_f32(Mup, &sum, SM);
  12800. #else
  12801. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12802. #endif
  12803. }
  12804. assert(sum > 0.0);
  12805. sum = 1.0/sum;
  12806. ggml_vec_scale_f32(masked_begin, SM, sum);
  12807. }
  12808. // step-by-step explanation
  12809. {
  12810. // forward-process shape grads from backward process
  12811. // parallel_for ik2,ik3:
  12812. // for irep:
  12813. // iq2 = ik2 + irep*nek2
  12814. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12815. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12816. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12817. // for iq1:
  12818. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12819. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12820. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12821. // S0 = -Inf [D,1,1,1]
  12822. // ~S1[i] = dot(kcur[:D,i], qcur)
  12823. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12824. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12825. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12826. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12827. // ~S5[i] = dot(vcur[:,i], S4)
  12828. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12829. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12830. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12831. // dst backward-/ grad[dst] = d
  12832. //
  12833. // output gradients with their dependencies:
  12834. //
  12835. // grad[kcur] = grad[S1].T @ qcur
  12836. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12837. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12838. // grad[S4] = grad[S5] @ vcur
  12839. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12840. // grad[qcur] = grad[S1] @ kcur
  12841. // grad[vcur] = grad[S5].T @ S4
  12842. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12843. //
  12844. // in post-order:
  12845. //
  12846. // S1 = qcur @ kcur.T
  12847. // S2 = S1 * scale
  12848. // S3 = diag_mask_inf(S2, P)
  12849. // S4 = softmax(S3)
  12850. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12851. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12852. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12853. // grad[qcur] = grad[S1] @ kcur
  12854. // grad[kcur] = grad[S1].T @ qcur
  12855. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12856. //
  12857. // using less variables (SM=S4):
  12858. //
  12859. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12860. // SM = softmax(S)
  12861. // S = d[:D,iq1,iq2,iq3] @ vcur
  12862. // dot_SM_gradSM = dot(SM, S)
  12863. // S = SM * (S - dot(SM, S))
  12864. // S = diag_mask_zero(S, P) * scale
  12865. //
  12866. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12867. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12868. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12869. }
  12870. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12871. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12872. // for ic:
  12873. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12874. // exclude known future zero S[..] values from operation
  12875. ggml_vec_set_f32(masked_begin, S, 0);
  12876. for (int64_t ic = 0; ic < D; ++ic) {
  12877. ggml_vec_mad_f32(masked_begin,
  12878. S,
  12879. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12880. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12881. }
  12882. // S = SM * (S - dot(SM, S))
  12883. float dot_SM_gradSM = 0;
  12884. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12885. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12886. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12887. // S = diag_mask_zero(S, P) * scale
  12888. // already done by above ggml_vec_set_f32
  12889. // exclude known zero S[..] values from operation
  12890. ggml_vec_scale_f32(masked_begin, S, scale);
  12891. // S shape [M,1]
  12892. // SM shape [M,1]
  12893. // kcur shape [D,M]
  12894. // qcur shape [D,1]
  12895. // vcur shape [M,D]
  12896. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12897. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12898. // for ic:
  12899. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12900. // exclude known zero S[..] values from loop
  12901. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12902. ggml_vec_mad_f32(D,
  12903. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12904. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12905. S[ic]);
  12906. }
  12907. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12908. // for ic:
  12909. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12910. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12911. // exclude known zero S[..] values from loop
  12912. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12913. ggml_vec_mad_f32(D,
  12914. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12915. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12916. S[ic]);
  12917. }
  12918. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12919. // for ic:
  12920. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12921. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12922. // exclude known zero SM[..] values from mad
  12923. for (int64_t ic = 0; ic < D; ++ic) {
  12924. ggml_vec_mad_f32(masked_begin,
  12925. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12926. SM,
  12927. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12928. }
  12929. }
  12930. }
  12931. }
  12932. }
  12933. static void ggml_compute_forward_flash_attn_back(
  12934. const struct ggml_compute_params * params,
  12935. const bool masked,
  12936. struct ggml_tensor * dst) {
  12937. const struct ggml_tensor * q = dst->src[0];
  12938. switch (q->type) {
  12939. case GGML_TYPE_F32:
  12940. {
  12941. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12942. } break;
  12943. default:
  12944. {
  12945. GGML_ASSERT(false);
  12946. } break;
  12947. }
  12948. }
  12949. // ggml_compute_forward_ssm_conv
  12950. static void ggml_compute_forward_ssm_conv_f32(
  12951. const struct ggml_compute_params * params,
  12952. struct ggml_tensor * dst) {
  12953. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12954. return;
  12955. }
  12956. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12957. const struct ggml_tensor * src1 = dst->src[1]; // x
  12958. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12959. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12960. const int ith = params->ith;
  12961. const int nth = params->nth;
  12962. const int nc = src2->ne[0]; // d_conv
  12963. const int nr = src0->ne[1]; // d_inner
  12964. const int n_t = src1->ne[1]; // n_tokens
  12965. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12966. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12967. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12968. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12969. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12970. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12971. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12972. // for use with the destination state offset between sequences
  12973. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12974. // rows per thread
  12975. const int dr = (nr + nth - 1)/nth;
  12976. // row range for this thread
  12977. const int ir0 = dr*ith;
  12978. const int ir1 = MIN(ir0 + dr, nr);
  12979. const int ir = ir1 - ir0;
  12980. if (n_kv > 1) {
  12981. // multiple sequences means it's hard to know when it's the first time a state is read,
  12982. // so copy them all over to the destination, just to be sure.
  12983. for (int i3 = 0; i3 < n_kv; ++i3) {
  12984. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12985. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12986. // can't use memcpy because of d_conv vs d_conv - 1
  12987. for (int i1 = 0; i1 < ir; ++i1) {
  12988. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12989. // copy s0 to last (d_conv - 1) columns of s
  12990. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12991. }
  12992. }
  12993. }
  12994. }
  12995. for (int i2 = 0; i2 < n_t; ++i2) {
  12996. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12997. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12998. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12999. float * s0; // {d_conv - 1, d_inner, n_kv}
  13000. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13001. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13002. int ne0s0;
  13003. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13004. // avoid needing to copy the state for the first token
  13005. if (i2 == 0) {
  13006. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13007. ne0s0 = src0->ne[0];
  13008. } else {
  13009. // the source is the last (d_conv - 1) columns of the destination
  13010. s0 = s + 1;
  13011. ne0s0 = nc;
  13012. }
  13013. // d_inner
  13014. for (int i1 = 0; i1 < ir; ++i1) {
  13015. // shift state left
  13016. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13017. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13018. }
  13019. // insert x on the last column
  13020. s[(nc - 1) + i1*nc] = x0[i1];
  13021. }
  13022. // handle copies when there are multiple output states
  13023. for (int i3 = 1; i3 < n_kv; ++i3) {
  13024. int32_t seq = sq[i3];
  13025. if (0 <= seq && seq < n_kv) {
  13026. float * s1 = s + (seq - sq[0])*nc*nr;
  13027. memcpy(s1, s, nc*ir*sizeof(float));
  13028. } else {
  13029. // stop at negative or too big seq_ids
  13030. break;
  13031. }
  13032. }
  13033. // it seems a little faster when this is separate from the state shift
  13034. for (int i1 = 0; i1 < ir; ++i1) {
  13035. // rowwise dot product
  13036. float sumf = 0.0f;
  13037. for (int i0 = 0; i0 < nc; ++i0) {
  13038. int i = i0 + i1*nc;
  13039. sumf += s[i] * c[i];
  13040. }
  13041. x[i1] = sumf;
  13042. }
  13043. }
  13044. }
  13045. static void ggml_compute_forward_ssm_conv(
  13046. const struct ggml_compute_params * params,
  13047. struct ggml_tensor * dst) {
  13048. switch (dst->src[0]->type) {
  13049. case GGML_TYPE_F32:
  13050. {
  13051. ggml_compute_forward_ssm_conv_f32(params, dst);
  13052. } break;
  13053. default:
  13054. {
  13055. GGML_ASSERT(false);
  13056. } break;
  13057. }
  13058. }
  13059. // ggml_compute_forward_ssm_scan
  13060. static void ggml_compute_forward_ssm_scan_f32(
  13061. const struct ggml_compute_params * params,
  13062. struct ggml_tensor * dst) {
  13063. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13064. return;
  13065. }
  13066. const struct ggml_tensor * src0 = dst->src[0]; // s
  13067. const struct ggml_tensor * src1 = dst->src[1]; // x
  13068. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13069. const struct ggml_tensor * src3 = dst->src[3]; // A
  13070. const struct ggml_tensor * src4 = dst->src[4]; // B
  13071. const struct ggml_tensor * src5 = dst->src[5]; // C
  13072. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13073. const int ith = params->ith;
  13074. const int nth = params->nth;
  13075. const int64_t nc = src0->ne[0]; // d_state
  13076. const int64_t nr = src0->ne[1]; // d_inner
  13077. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13078. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13079. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13080. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13081. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13082. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13083. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13084. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13085. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13086. // required for the dot product between s and C, and when copying the states
  13087. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13088. // required for per-sequence offsets for states
  13089. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13090. // required to get correct offset for state destination (i.e. src1->nb[2])
  13091. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13092. // rows per thread
  13093. const int dr = (nr + nth - 1)/nth;
  13094. // row range for this thread
  13095. const int ir0 = dr*ith;
  13096. const int ir1 = MIN(ir0 + dr, nr);
  13097. const int ir = ir1 - ir0;
  13098. if (n_kv > 1) {
  13099. // it's hard to know if the source states have already been copied
  13100. // when there are multiple, so copy them already.
  13101. for (int i3 = 0; i3 < n_kv; ++i3) {
  13102. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13103. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13104. memcpy(s, s0, nc*ir*sizeof(float));
  13105. }
  13106. }
  13107. for (int i2 = 0; i2 < n_t; ++i2) {
  13108. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13109. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13110. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13111. float * s0;
  13112. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13113. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13114. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13115. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13116. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13117. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13118. // avoid needing to copy the state for the first token
  13119. if (i2 == 0) {
  13120. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13121. } else {
  13122. // otherwise the source is the same as the destination
  13123. s0 = s;
  13124. }
  13125. // d_inner
  13126. for (int i1 = 0; i1 < ir; ++i1) {
  13127. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13128. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13129. float x_dt = x[i1] * dt_soft_plus;
  13130. float sumf = 0.0f;
  13131. // d_state
  13132. for (int i0 = 0; i0 < nc; ++i0) {
  13133. int i = i0 + i1*nc;
  13134. // state = prev_state * dA + dB * x
  13135. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13136. // y = rowwise_dotprod(state, C)
  13137. sumf += state * C[i0];
  13138. s[i] = state;
  13139. }
  13140. y[i1] = sumf;
  13141. }
  13142. // handle copies when there are multiple output states
  13143. for (int i3 = 1; i3 < n_kv; ++i3) {
  13144. int32_t seq = sq[i3];
  13145. if (0 <= seq && seq < n_kv) {
  13146. float * s1 = s + (seq - sq[0])*nc*nr;
  13147. memcpy(s1, s, nc*ir*sizeof(float));
  13148. } else {
  13149. // stop at negative or too big seq_ids
  13150. break;
  13151. }
  13152. }
  13153. }
  13154. }
  13155. static void ggml_compute_forward_ssm_scan(
  13156. const struct ggml_compute_params * params,
  13157. struct ggml_tensor * dst) {
  13158. switch (dst->src[0]->type) {
  13159. case GGML_TYPE_F32:
  13160. {
  13161. ggml_compute_forward_ssm_scan_f32(params, dst);
  13162. } break;
  13163. default:
  13164. {
  13165. GGML_ASSERT(false);
  13166. } break;
  13167. }
  13168. }
  13169. // ggml_compute_forward_win_part
  13170. static void ggml_compute_forward_win_part_f32(
  13171. const struct ggml_compute_params * params,
  13172. struct ggml_tensor * dst) {
  13173. const struct ggml_tensor * src0 = dst->src[0];
  13174. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13175. return;
  13176. }
  13177. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13178. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13179. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13180. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13181. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13182. assert(ne00 == ne0);
  13183. assert(ne3 == nep0*nep1);
  13184. // TODO: optimize / multi-thread
  13185. for (int py = 0; py < nep1; ++py) {
  13186. for (int px = 0; px < nep0; ++px) {
  13187. const int64_t i3 = py*nep0 + px;
  13188. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13189. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13190. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13191. const int64_t i02 = py*w + i2;
  13192. const int64_t i01 = px*w + i1;
  13193. const int64_t i00 = i0;
  13194. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13195. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13196. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13197. ((float *) dst->data)[i] = 0.0f;
  13198. } else {
  13199. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13200. }
  13201. }
  13202. }
  13203. }
  13204. }
  13205. }
  13206. }
  13207. static void ggml_compute_forward_win_part(
  13208. const struct ggml_compute_params * params,
  13209. struct ggml_tensor * dst) {
  13210. const struct ggml_tensor * src0 = dst->src[0];
  13211. switch (src0->type) {
  13212. case GGML_TYPE_F32:
  13213. {
  13214. ggml_compute_forward_win_part_f32(params, dst);
  13215. } break;
  13216. default:
  13217. {
  13218. GGML_ASSERT(false);
  13219. } break;
  13220. }
  13221. }
  13222. // ggml_compute_forward_win_unpart
  13223. static void ggml_compute_forward_win_unpart_f32(
  13224. const struct ggml_compute_params * params,
  13225. struct ggml_tensor * dst) {
  13226. const struct ggml_tensor * src0 = dst->src[0];
  13227. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13228. return;
  13229. }
  13230. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13231. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13232. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13233. // padding
  13234. const int px = (w - ne1%w)%w;
  13235. //const int py = (w - ne2%w)%w;
  13236. const int npx = (px + ne1)/w;
  13237. //const int npy = (py + ne2)/w;
  13238. assert(ne0 == ne00);
  13239. // TODO: optimize / multi-thread
  13240. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13241. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13242. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13243. const int ip2 = i2/w;
  13244. const int ip1 = i1/w;
  13245. const int64_t i02 = i2%w;
  13246. const int64_t i01 = i1%w;
  13247. const int64_t i00 = i0;
  13248. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13249. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13250. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13251. }
  13252. }
  13253. }
  13254. }
  13255. static void ggml_compute_forward_win_unpart(
  13256. const struct ggml_compute_params * params,
  13257. struct ggml_tensor * dst) {
  13258. const struct ggml_tensor * src0 = dst->src[0];
  13259. switch (src0->type) {
  13260. case GGML_TYPE_F32:
  13261. {
  13262. ggml_compute_forward_win_unpart_f32(params, dst);
  13263. } break;
  13264. default:
  13265. {
  13266. GGML_ASSERT(false);
  13267. } break;
  13268. }
  13269. }
  13270. //gmml_compute_forward_unary
  13271. static void ggml_compute_forward_unary(
  13272. const struct ggml_compute_params * params,
  13273. struct ggml_tensor * dst) {
  13274. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13275. switch (op) {
  13276. case GGML_UNARY_OP_ABS:
  13277. {
  13278. ggml_compute_forward_abs(params, dst);
  13279. } break;
  13280. case GGML_UNARY_OP_SGN:
  13281. {
  13282. ggml_compute_forward_sgn(params, dst);
  13283. } break;
  13284. case GGML_UNARY_OP_NEG:
  13285. {
  13286. ggml_compute_forward_neg(params, dst);
  13287. } break;
  13288. case GGML_UNARY_OP_STEP:
  13289. {
  13290. ggml_compute_forward_step(params, dst);
  13291. } break;
  13292. case GGML_UNARY_OP_TANH:
  13293. {
  13294. ggml_compute_forward_tanh(params, dst);
  13295. } break;
  13296. case GGML_UNARY_OP_ELU:
  13297. {
  13298. ggml_compute_forward_elu(params, dst);
  13299. } break;
  13300. case GGML_UNARY_OP_RELU:
  13301. {
  13302. ggml_compute_forward_relu(params, dst);
  13303. } break;
  13304. case GGML_UNARY_OP_SIGMOID:
  13305. {
  13306. ggml_compute_forward_sigmoid(params, dst);
  13307. } break;
  13308. case GGML_UNARY_OP_GELU:
  13309. {
  13310. ggml_compute_forward_gelu(params, dst);
  13311. } break;
  13312. case GGML_UNARY_OP_GELU_QUICK:
  13313. {
  13314. ggml_compute_forward_gelu_quick(params, dst);
  13315. } break;
  13316. case GGML_UNARY_OP_SILU:
  13317. {
  13318. ggml_compute_forward_silu(params, dst);
  13319. } break;
  13320. case GGML_UNARY_OP_HARDSWISH:
  13321. {
  13322. ggml_compute_forward_hardswish(params, dst);
  13323. } break;
  13324. case GGML_UNARY_OP_HARDSIGMOID:
  13325. {
  13326. ggml_compute_forward_hardsigmoid(params, dst);
  13327. } break;
  13328. default:
  13329. {
  13330. GGML_ASSERT(false);
  13331. } break;
  13332. }
  13333. }
  13334. // ggml_compute_forward_get_rel_pos
  13335. static void ggml_compute_forward_get_rel_pos_f16(
  13336. const struct ggml_compute_params * params,
  13337. struct ggml_tensor * dst) {
  13338. const struct ggml_tensor * src0 = dst->src[0];
  13339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13340. return;
  13341. }
  13342. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13343. GGML_TENSOR_UNARY_OP_LOCALS
  13344. const int64_t w = ne1;
  13345. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13346. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13347. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13348. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13349. const int64_t pos = (w - i1 - 1) + i2;
  13350. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13351. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13352. }
  13353. }
  13354. }
  13355. }
  13356. static void ggml_compute_forward_get_rel_pos(
  13357. const struct ggml_compute_params * params,
  13358. struct ggml_tensor * dst) {
  13359. const struct ggml_tensor * src0 = dst->src[0];
  13360. switch (src0->type) {
  13361. case GGML_TYPE_F16:
  13362. case GGML_TYPE_BF16:
  13363. {
  13364. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13365. } break;
  13366. default:
  13367. {
  13368. GGML_ASSERT(false);
  13369. } break;
  13370. }
  13371. }
  13372. // ggml_compute_forward_add_rel_pos
  13373. static void ggml_compute_forward_add_rel_pos_f32(
  13374. const struct ggml_compute_params * params,
  13375. struct ggml_tensor * dst) {
  13376. const struct ggml_tensor * src0 = dst->src[0];
  13377. const struct ggml_tensor * src1 = dst->src[1];
  13378. const struct ggml_tensor * src2 = dst->src[2];
  13379. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13380. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13381. if (params->ith != 0) {
  13382. return;
  13383. }
  13384. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13385. return;
  13386. }
  13387. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13388. return;
  13389. }
  13390. int64_t t0 = ggml_perf_time_us();
  13391. UNUSED(t0);
  13392. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13393. float * src1_data = (float *) src1->data;
  13394. float * src2_data = (float *) src2->data;
  13395. float * dst_data = (float *) dst->data;
  13396. const int64_t ne10 = src1->ne[0];
  13397. const int64_t ne11 = src1->ne[1];
  13398. const int64_t ne12 = src1->ne[2];
  13399. const int64_t ne13 = src1->ne[3];
  13400. const int ith = params->ith;
  13401. const int nth = params->nth;
  13402. // total patches in dst
  13403. const int np = ne13;
  13404. // patches per thread
  13405. const int dp = (np + nth - 1)/nth;
  13406. // patch range for this thread
  13407. const int ip0 = dp*ith;
  13408. const int ip1 = MIN(ip0 + dp, np);
  13409. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13410. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13411. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13412. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13413. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13414. const int64_t jp0 = jp1 + i10;
  13415. const float src1_e = src1_data[jp0];
  13416. const float src2_e = src2_data[jp0];
  13417. const int64_t jdh = jp0 * ne10;
  13418. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13419. for (int64_t j = 0; j < ne10; ++j) {
  13420. dst_data[jdh + j ] += src2_e;
  13421. dst_data[jdw + j*ne10] += src1_e;
  13422. }
  13423. }
  13424. }
  13425. }
  13426. }
  13427. }
  13428. static void ggml_compute_forward_add_rel_pos(
  13429. const struct ggml_compute_params * params,
  13430. struct ggml_tensor * dst) {
  13431. const struct ggml_tensor * src0 = dst->src[0];
  13432. switch (src0->type) {
  13433. case GGML_TYPE_F32:
  13434. {
  13435. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13436. } break;
  13437. default:
  13438. {
  13439. GGML_ASSERT(false);
  13440. } break;
  13441. }
  13442. }
  13443. // ggml_compute_forward_map_unary
  13444. static void ggml_compute_forward_map_unary_f32(
  13445. const struct ggml_compute_params * params,
  13446. struct ggml_tensor * dst,
  13447. const ggml_unary_op_f32_t fun) {
  13448. const struct ggml_tensor * src0 = dst->src[0];
  13449. assert(params->ith == 0);
  13450. assert(ggml_is_contiguous_1(src0));
  13451. assert(ggml_is_contiguous_1(dst));
  13452. assert(ggml_are_same_shape(src0, dst));
  13453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13454. return;
  13455. }
  13456. const int n = ggml_nrows(src0);
  13457. const int nc = src0->ne[0];
  13458. for (int i = 0; i < n; i++) {
  13459. fun(nc,
  13460. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13461. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13462. }
  13463. }
  13464. static void ggml_compute_forward_map_unary(
  13465. const struct ggml_compute_params * params,
  13466. struct ggml_tensor * dst,
  13467. const ggml_unary_op_f32_t fun) {
  13468. const struct ggml_tensor * src0 = dst->src[0];
  13469. switch (src0->type) {
  13470. case GGML_TYPE_F32:
  13471. {
  13472. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13473. } break;
  13474. default:
  13475. {
  13476. GGML_ASSERT(false);
  13477. } break;
  13478. }
  13479. }
  13480. // ggml_compute_forward_map_binary
  13481. static void ggml_compute_forward_map_binary_f32(
  13482. const struct ggml_compute_params * params,
  13483. struct ggml_tensor * dst,
  13484. const ggml_binary_op_f32_t fun) {
  13485. const struct ggml_tensor * src0 = dst->src[0];
  13486. const struct ggml_tensor * src1 = dst->src[1];
  13487. assert(params->ith == 0);
  13488. assert(ggml_is_contiguous_1(src0));
  13489. assert(ggml_is_contiguous_1(src1));
  13490. assert(ggml_is_contiguous_1(dst));
  13491. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13493. return;
  13494. }
  13495. const int n = ggml_nrows(src0);
  13496. const int nc = src0->ne[0];
  13497. for (int i = 0; i < n; i++) {
  13498. fun(nc,
  13499. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13500. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13501. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13502. }
  13503. }
  13504. static void ggml_compute_forward_map_binary(
  13505. const struct ggml_compute_params * params,
  13506. struct ggml_tensor * dst,
  13507. const ggml_binary_op_f32_t fun) {
  13508. const struct ggml_tensor * src0 = dst->src[0];
  13509. switch (src0->type) {
  13510. case GGML_TYPE_F32:
  13511. {
  13512. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13513. } break;
  13514. default:
  13515. {
  13516. GGML_ASSERT(false);
  13517. } break;
  13518. }
  13519. }
  13520. // ggml_compute_forward_map_custom1
  13521. static void ggml_compute_forward_map_custom1_f32(
  13522. const struct ggml_compute_params * params,
  13523. struct ggml_tensor * dst,
  13524. const ggml_custom1_op_f32_t fun) {
  13525. const struct ggml_tensor * a = dst->src[0];
  13526. assert(params->ith == 0);
  13527. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13528. return;
  13529. }
  13530. fun(dst, a);
  13531. }
  13532. // ggml_compute_forward_map_custom2
  13533. static void ggml_compute_forward_map_custom2_f32(
  13534. const struct ggml_compute_params * params,
  13535. struct ggml_tensor * dst,
  13536. const ggml_custom2_op_f32_t fun) {
  13537. const struct ggml_tensor * a = dst->src[0];
  13538. const struct ggml_tensor * b = dst->src[1];
  13539. assert(params->ith == 0);
  13540. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13541. return;
  13542. }
  13543. fun(dst, a, b);
  13544. }
  13545. // ggml_compute_forward_map_custom3
  13546. static void ggml_compute_forward_map_custom3_f32(
  13547. const struct ggml_compute_params * params,
  13548. struct ggml_tensor * dst,
  13549. const ggml_custom3_op_f32_t fun) {
  13550. const struct ggml_tensor * a = dst->src[0];
  13551. const struct ggml_tensor * b = dst->src[1];
  13552. const struct ggml_tensor * c = dst->src[1];
  13553. assert(params->ith == 0);
  13554. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13555. return;
  13556. }
  13557. fun(dst, a, b, c);
  13558. }
  13559. // ggml_compute_forward_map_custom1
  13560. static void ggml_compute_forward_map_custom1(
  13561. const struct ggml_compute_params * params,
  13562. struct ggml_tensor * dst) {
  13563. const struct ggml_tensor * a = dst->src[0];
  13564. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13565. return;
  13566. }
  13567. struct ggml_map_custom1_op_params p;
  13568. memcpy(&p, dst->op_params, sizeof(p));
  13569. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13570. }
  13571. // ggml_compute_forward_map_custom2
  13572. static void ggml_compute_forward_map_custom2(
  13573. const struct ggml_compute_params * params,
  13574. struct ggml_tensor * dst) {
  13575. const struct ggml_tensor * a = dst->src[0];
  13576. const struct ggml_tensor * b = dst->src[1];
  13577. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13578. return;
  13579. }
  13580. struct ggml_map_custom2_op_params p;
  13581. memcpy(&p, dst->op_params, sizeof(p));
  13582. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13583. }
  13584. // ggml_compute_forward_map_custom3
  13585. static void ggml_compute_forward_map_custom3(
  13586. const struct ggml_compute_params * params,
  13587. struct ggml_tensor * dst) {
  13588. const struct ggml_tensor * a = dst->src[0];
  13589. const struct ggml_tensor * b = dst->src[1];
  13590. const struct ggml_tensor * c = dst->src[2];
  13591. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13592. return;
  13593. }
  13594. struct ggml_map_custom3_op_params p;
  13595. memcpy(&p, dst->op_params, sizeof(p));
  13596. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13597. }
  13598. // ggml_compute_forward_cross_entropy_loss
  13599. static void ggml_compute_forward_cross_entropy_loss_f32(
  13600. const struct ggml_compute_params * params,
  13601. struct ggml_tensor * dst) {
  13602. const struct ggml_tensor * src0 = dst->src[0];
  13603. const struct ggml_tensor * src1 = dst->src[1];
  13604. GGML_ASSERT(ggml_is_contiguous(src0));
  13605. GGML_ASSERT(ggml_is_contiguous(src1));
  13606. GGML_ASSERT(ggml_is_scalar(dst));
  13607. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13608. const int ith = params->ith;
  13609. const int nth = params->nth;
  13610. float * sums = (float *) params->wdata;
  13611. // TODO: handle transposed/permuted matrices
  13612. const int nc = src0->ne[0];
  13613. const int nr = ggml_nrows(src0);
  13614. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13615. if (params->type == GGML_TASK_TYPE_INIT) {
  13616. if (ith == 0) {
  13617. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13618. }
  13619. return;
  13620. }
  13621. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13622. if (ith == 0) {
  13623. float * dp = (float *) dst->data;
  13624. ggml_vec_sum_f32(nth, dp, sums);
  13625. dp[0] *= -1.0f / (float) nr;
  13626. }
  13627. return;
  13628. }
  13629. const double eps = 1e-9;
  13630. // rows per thread
  13631. const int dr = (nr + nth - 1)/nth;
  13632. // row range for this thread
  13633. const int ir0 = dr*ith;
  13634. const int ir1 = MIN(ir0 + dr, nr);
  13635. for (int i1 = ir0; i1 < ir1; i1++) {
  13636. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13637. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13638. float * st = ((float *) params->wdata) + nth + ith*nc;
  13639. #ifndef NDEBUG
  13640. for (int i = 0; i < nc; ++i) {
  13641. //printf("p[%d] = %f\n", i, p[i]);
  13642. assert(!isnan(s0[i]));
  13643. assert(!isnan(s1[i]));
  13644. }
  13645. #endif
  13646. // soft_max
  13647. float max = -INFINITY;
  13648. ggml_vec_max_f32(nc, &max, s0);
  13649. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13650. assert(sum > 0.0);
  13651. sum = (1.0 - eps) / sum;
  13652. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13653. ggml_vec_scale_f32(nc, st, sum);
  13654. ggml_vec_add1_f32(nc, st, st, eps);
  13655. ggml_vec_log_f32(nc, st, st);
  13656. ggml_vec_mul_f32(nc, st, st, s1);
  13657. float st_sum = 0;
  13658. ggml_vec_sum_f32(nc, &st_sum, st);
  13659. sums[ith] += st_sum;
  13660. #ifndef NDEBUG
  13661. for (int i = 0; i < nc; ++i) {
  13662. assert(!isnan(st[i]));
  13663. assert(!isinf(st[i]));
  13664. }
  13665. #endif
  13666. }
  13667. }
  13668. static void ggml_compute_forward_cross_entropy_loss(
  13669. const struct ggml_compute_params * params,
  13670. struct ggml_tensor * dst) {
  13671. const struct ggml_tensor * src0 = dst->src[0];
  13672. switch (src0->type) {
  13673. case GGML_TYPE_F32:
  13674. {
  13675. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13676. } break;
  13677. default:
  13678. {
  13679. GGML_ASSERT(false);
  13680. } break;
  13681. }
  13682. }
  13683. // ggml_compute_forward_cross_entropy_loss_back
  13684. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13685. const struct ggml_compute_params * params,
  13686. struct ggml_tensor * dst) {
  13687. const struct ggml_tensor * src0 = dst->src[0];
  13688. const struct ggml_tensor * src1 = dst->src[1];
  13689. const struct ggml_tensor * opt0 = dst->src[2];
  13690. GGML_ASSERT(ggml_is_contiguous(dst));
  13691. GGML_ASSERT(ggml_is_contiguous(src0));
  13692. GGML_ASSERT(ggml_is_contiguous(src1));
  13693. GGML_ASSERT(ggml_is_contiguous(opt0));
  13694. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13695. const int64_t ith = params->ith;
  13696. const int64_t nth = params->nth;
  13697. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13698. return;
  13699. }
  13700. const double eps = 1e-9;
  13701. // TODO: handle transposed/permuted matrices
  13702. const int64_t nc = src0->ne[0];
  13703. const int64_t nr = ggml_nrows(src0);
  13704. // rows per thread
  13705. const int64_t dr = (nr + nth - 1)/nth;
  13706. // row range for this thread
  13707. const int64_t ir0 = dr*ith;
  13708. const int64_t ir1 = MIN(ir0 + dr, nr);
  13709. float * d = (float *) opt0->data;
  13710. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13711. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13712. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13713. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13714. #ifndef NDEBUG
  13715. for (int i = 0; i < nc; ++i) {
  13716. //printf("p[%d] = %f\n", i, p[i]);
  13717. assert(!isnan(s0[i]));
  13718. assert(!isnan(s1[i]));
  13719. }
  13720. #endif
  13721. // soft_max
  13722. float max = -INFINITY;
  13723. ggml_vec_max_f32(nc, &max, s0);
  13724. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13725. assert(sum > 0.0);
  13726. sum = (1.0 - eps) / sum;
  13727. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13728. ggml_vec_scale_f32(nc, ds0, sum);
  13729. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13730. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13731. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13732. #ifndef NDEBUG
  13733. for (int i = 0; i < nc; ++i) {
  13734. assert(!isnan(ds0[i]));
  13735. assert(!isinf(ds0[i]));
  13736. }
  13737. #endif
  13738. }
  13739. }
  13740. static void ggml_compute_forward_cross_entropy_loss_back(
  13741. const struct ggml_compute_params * params,
  13742. struct ggml_tensor * dst) {
  13743. const struct ggml_tensor * src0 = dst->src[0];
  13744. switch (src0->type) {
  13745. case GGML_TYPE_F32:
  13746. {
  13747. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13748. } break;
  13749. default:
  13750. {
  13751. GGML_ASSERT(false);
  13752. } break;
  13753. }
  13754. }
  13755. /////////////////////////////////
  13756. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  13757. GGML_ASSERT(params);
  13758. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13759. return;
  13760. }
  13761. switch (tensor->op) {
  13762. case GGML_OP_DUP:
  13763. {
  13764. ggml_compute_forward_dup(params, tensor);
  13765. } break;
  13766. case GGML_OP_ADD:
  13767. {
  13768. ggml_compute_forward_add(params, tensor);
  13769. } break;
  13770. case GGML_OP_ADD1:
  13771. {
  13772. ggml_compute_forward_add1(params, tensor);
  13773. } break;
  13774. case GGML_OP_ACC:
  13775. {
  13776. ggml_compute_forward_acc(params, tensor);
  13777. } break;
  13778. case GGML_OP_SUB:
  13779. {
  13780. ggml_compute_forward_sub(params, tensor);
  13781. } break;
  13782. case GGML_OP_MUL:
  13783. {
  13784. ggml_compute_forward_mul(params, tensor);
  13785. } break;
  13786. case GGML_OP_DIV:
  13787. {
  13788. ggml_compute_forward_div(params, tensor);
  13789. } break;
  13790. case GGML_OP_SQR:
  13791. {
  13792. ggml_compute_forward_sqr(params, tensor);
  13793. } break;
  13794. case GGML_OP_SQRT:
  13795. {
  13796. ggml_compute_forward_sqrt(params, tensor);
  13797. } break;
  13798. case GGML_OP_LOG:
  13799. {
  13800. ggml_compute_forward_log(params, tensor);
  13801. } break;
  13802. case GGML_OP_SUM:
  13803. {
  13804. ggml_compute_forward_sum(params, tensor);
  13805. } break;
  13806. case GGML_OP_SUM_ROWS:
  13807. {
  13808. ggml_compute_forward_sum_rows(params, tensor);
  13809. } break;
  13810. case GGML_OP_MEAN:
  13811. {
  13812. ggml_compute_forward_mean(params, tensor);
  13813. } break;
  13814. case GGML_OP_ARGMAX:
  13815. {
  13816. ggml_compute_forward_argmax(params, tensor);
  13817. } break;
  13818. case GGML_OP_REPEAT:
  13819. {
  13820. ggml_compute_forward_repeat(params, tensor);
  13821. } break;
  13822. case GGML_OP_REPEAT_BACK:
  13823. {
  13824. ggml_compute_forward_repeat_back(params, tensor);
  13825. } break;
  13826. case GGML_OP_CONCAT:
  13827. {
  13828. ggml_compute_forward_concat(params, tensor);
  13829. } break;
  13830. case GGML_OP_SILU_BACK:
  13831. {
  13832. ggml_compute_forward_silu_back(params, tensor);
  13833. } break;
  13834. case GGML_OP_NORM:
  13835. {
  13836. ggml_compute_forward_norm(params, tensor);
  13837. } break;
  13838. case GGML_OP_RMS_NORM:
  13839. {
  13840. ggml_compute_forward_rms_norm(params, tensor);
  13841. } break;
  13842. case GGML_OP_RMS_NORM_BACK:
  13843. {
  13844. ggml_compute_forward_rms_norm_back(params, tensor);
  13845. } break;
  13846. case GGML_OP_GROUP_NORM:
  13847. {
  13848. ggml_compute_forward_group_norm(params, tensor);
  13849. } break;
  13850. case GGML_OP_MUL_MAT:
  13851. {
  13852. ggml_compute_forward_mul_mat(params, tensor, state);
  13853. } break;
  13854. case GGML_OP_MUL_MAT_ID:
  13855. {
  13856. ggml_compute_forward_mul_mat_id(params, tensor);
  13857. } break;
  13858. case GGML_OP_OUT_PROD:
  13859. {
  13860. ggml_compute_forward_out_prod(params, tensor);
  13861. } break;
  13862. case GGML_OP_SCALE:
  13863. {
  13864. ggml_compute_forward_scale(params, tensor);
  13865. } break;
  13866. case GGML_OP_SET:
  13867. {
  13868. ggml_compute_forward_set(params, tensor);
  13869. } break;
  13870. case GGML_OP_CPY:
  13871. {
  13872. ggml_compute_forward_cpy(params, tensor);
  13873. } break;
  13874. case GGML_OP_CONT:
  13875. {
  13876. ggml_compute_forward_cont(params, tensor);
  13877. } break;
  13878. case GGML_OP_RESHAPE:
  13879. {
  13880. ggml_compute_forward_reshape(params, tensor);
  13881. } break;
  13882. case GGML_OP_VIEW:
  13883. {
  13884. ggml_compute_forward_view(params, tensor);
  13885. } break;
  13886. case GGML_OP_PERMUTE:
  13887. {
  13888. ggml_compute_forward_permute(params, tensor);
  13889. } break;
  13890. case GGML_OP_TRANSPOSE:
  13891. {
  13892. ggml_compute_forward_transpose(params, tensor);
  13893. } break;
  13894. case GGML_OP_GET_ROWS:
  13895. {
  13896. ggml_compute_forward_get_rows(params, tensor);
  13897. } break;
  13898. case GGML_OP_GET_ROWS_BACK:
  13899. {
  13900. ggml_compute_forward_get_rows_back(params, tensor);
  13901. } break;
  13902. case GGML_OP_DIAG:
  13903. {
  13904. ggml_compute_forward_diag(params, tensor);
  13905. } break;
  13906. case GGML_OP_DIAG_MASK_INF:
  13907. {
  13908. ggml_compute_forward_diag_mask_inf(params, tensor);
  13909. } break;
  13910. case GGML_OP_DIAG_MASK_ZERO:
  13911. {
  13912. ggml_compute_forward_diag_mask_zero(params, tensor);
  13913. } break;
  13914. case GGML_OP_SOFT_MAX:
  13915. {
  13916. ggml_compute_forward_soft_max(params, tensor);
  13917. } break;
  13918. case GGML_OP_SOFT_MAX_BACK:
  13919. {
  13920. ggml_compute_forward_soft_max_back(params, tensor);
  13921. } break;
  13922. case GGML_OP_ROPE:
  13923. {
  13924. ggml_compute_forward_rope(params, tensor);
  13925. } break;
  13926. case GGML_OP_ROPE_BACK:
  13927. {
  13928. ggml_compute_forward_rope_back(params, tensor);
  13929. } break;
  13930. case GGML_OP_CLAMP:
  13931. {
  13932. ggml_compute_forward_clamp(params, tensor);
  13933. } break;
  13934. case GGML_OP_CONV_TRANSPOSE_1D:
  13935. {
  13936. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13937. } break;
  13938. case GGML_OP_IM2COL:
  13939. {
  13940. ggml_compute_forward_im2col(params, tensor);
  13941. } break;
  13942. case GGML_OP_CONV_TRANSPOSE_2D:
  13943. {
  13944. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13945. } break;
  13946. case GGML_OP_POOL_1D:
  13947. {
  13948. ggml_compute_forward_pool_1d(params, tensor);
  13949. } break;
  13950. case GGML_OP_POOL_2D:
  13951. {
  13952. ggml_compute_forward_pool_2d(params, tensor);
  13953. } break;
  13954. case GGML_OP_UPSCALE:
  13955. {
  13956. ggml_compute_forward_upscale(params, tensor);
  13957. } break;
  13958. case GGML_OP_PAD:
  13959. {
  13960. ggml_compute_forward_pad(params, tensor);
  13961. } break;
  13962. case GGML_OP_ARANGE:
  13963. {
  13964. ggml_compute_forward_arange(params, tensor);
  13965. } break;
  13966. case GGML_OP_TIMESTEP_EMBEDDING:
  13967. {
  13968. ggml_compute_forward_timestep_embedding(params, tensor);
  13969. } break;
  13970. case GGML_OP_ARGSORT:
  13971. {
  13972. ggml_compute_forward_argsort(params, tensor);
  13973. } break;
  13974. case GGML_OP_LEAKY_RELU:
  13975. {
  13976. ggml_compute_forward_leaky_relu(params, tensor);
  13977. } break;
  13978. case GGML_OP_FLASH_ATTN_EXT:
  13979. {
  13980. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13981. } break;
  13982. case GGML_OP_FLASH_ATTN_BACK:
  13983. {
  13984. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13985. GGML_ASSERT(t == 0 || t == 1);
  13986. bool masked = t != 0;
  13987. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13988. } break;
  13989. case GGML_OP_SSM_CONV:
  13990. {
  13991. ggml_compute_forward_ssm_conv(params, tensor);
  13992. } break;
  13993. case GGML_OP_SSM_SCAN:
  13994. {
  13995. ggml_compute_forward_ssm_scan(params, tensor);
  13996. } break;
  13997. case GGML_OP_WIN_PART:
  13998. {
  13999. ggml_compute_forward_win_part(params, tensor);
  14000. } break;
  14001. case GGML_OP_WIN_UNPART:
  14002. {
  14003. ggml_compute_forward_win_unpart(params, tensor);
  14004. } break;
  14005. case GGML_OP_UNARY:
  14006. {
  14007. ggml_compute_forward_unary(params, tensor);
  14008. } break;
  14009. case GGML_OP_GET_REL_POS:
  14010. {
  14011. ggml_compute_forward_get_rel_pos(params, tensor);
  14012. } break;
  14013. case GGML_OP_ADD_REL_POS:
  14014. {
  14015. ggml_compute_forward_add_rel_pos(params, tensor);
  14016. } break;
  14017. case GGML_OP_MAP_UNARY:
  14018. {
  14019. ggml_unary_op_f32_t fun;
  14020. memcpy(&fun, tensor->op_params, sizeof(fun));
  14021. ggml_compute_forward_map_unary(params, tensor, fun);
  14022. }
  14023. break;
  14024. case GGML_OP_MAP_BINARY:
  14025. {
  14026. ggml_binary_op_f32_t fun;
  14027. memcpy(&fun, tensor->op_params, sizeof(fun));
  14028. ggml_compute_forward_map_binary(params, tensor, fun);
  14029. }
  14030. break;
  14031. case GGML_OP_MAP_CUSTOM1_F32:
  14032. {
  14033. ggml_custom1_op_f32_t fun;
  14034. memcpy(&fun, tensor->op_params, sizeof(fun));
  14035. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14036. }
  14037. break;
  14038. case GGML_OP_MAP_CUSTOM2_F32:
  14039. {
  14040. ggml_custom2_op_f32_t fun;
  14041. memcpy(&fun, tensor->op_params, sizeof(fun));
  14042. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14043. }
  14044. break;
  14045. case GGML_OP_MAP_CUSTOM3_F32:
  14046. {
  14047. ggml_custom3_op_f32_t fun;
  14048. memcpy(&fun, tensor->op_params, sizeof(fun));
  14049. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14050. }
  14051. break;
  14052. case GGML_OP_MAP_CUSTOM1:
  14053. {
  14054. ggml_compute_forward_map_custom1(params, tensor);
  14055. }
  14056. break;
  14057. case GGML_OP_MAP_CUSTOM2:
  14058. {
  14059. ggml_compute_forward_map_custom2(params, tensor);
  14060. }
  14061. break;
  14062. case GGML_OP_MAP_CUSTOM3:
  14063. {
  14064. ggml_compute_forward_map_custom3(params, tensor);
  14065. }
  14066. break;
  14067. case GGML_OP_CROSS_ENTROPY_LOSS:
  14068. {
  14069. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14070. }
  14071. break;
  14072. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14073. {
  14074. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14075. }
  14076. break;
  14077. case GGML_OP_NONE:
  14078. {
  14079. // nop
  14080. } break;
  14081. case GGML_OP_COUNT:
  14082. {
  14083. GGML_ASSERT(false);
  14084. } break;
  14085. }
  14086. }
  14087. ////////////////////////////////////////////////////////////////////////////////
  14088. static size_t ggml_hash_size(size_t min_sz) {
  14089. // next primes after powers of two
  14090. static const size_t primes[] = {
  14091. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14092. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14093. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14094. 16777259, 33554467, 67108879, 134217757, 268435459,
  14095. 536870923, 1073741827, 2147483659
  14096. };
  14097. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14098. // find the smallest prime that is larger or equal to min_sz
  14099. size_t l = 0;
  14100. size_t r = n_primes;
  14101. while (l < r) {
  14102. size_t m = (l + r)/2;
  14103. if (primes[m] < min_sz) {
  14104. l = m + 1;
  14105. } else {
  14106. r = m;
  14107. }
  14108. }
  14109. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14110. return sz;
  14111. }
  14112. static size_t ggml_hash(const void * p) {
  14113. return (size_t)p;
  14114. }
  14115. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14116. size_t h = ggml_hash(key) % hash_set.size;
  14117. // linear probing
  14118. size_t i = h;
  14119. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14120. i = (i + 1) % hash_set.size;
  14121. if (i == h) {
  14122. // visited all hash table entries -> not found
  14123. return GGML_HASHTABLE_FULL;
  14124. }
  14125. }
  14126. return i;
  14127. }
  14128. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14129. size_t i = ggml_hash_find(hash_set, key);
  14130. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14131. }
  14132. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14133. size_t i = ggml_hash_find(hash_set, key);
  14134. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14135. if (hash_set.keys[i] == key) {
  14136. return GGML_HASHTABLE_ALREADY_EXISTS;
  14137. }
  14138. // insert
  14139. GGML_ASSERT(hash_set.keys[i] == NULL);
  14140. hash_set.keys[i] = key;
  14141. return i;
  14142. }
  14143. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14144. size_t i = ggml_hash_find(hash_set, key);
  14145. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14146. hash_set.keys[i] = key;
  14147. return i;
  14148. }
  14149. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14150. size = ggml_hash_size(size);
  14151. struct ggml_hash_set result;
  14152. result.size = size;
  14153. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14154. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14155. return result;
  14156. }
  14157. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14158. GGML_FREE(hash_set.keys);
  14159. }
  14160. struct hash_map {
  14161. struct ggml_hash_set set;
  14162. struct ggml_tensor ** vals;
  14163. };
  14164. static struct hash_map * ggml_new_hash_map(size_t size) {
  14165. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14166. result->set = ggml_hash_set_new(size);
  14167. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14168. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14169. return result;
  14170. }
  14171. static void ggml_hash_map_free(struct hash_map * map) {
  14172. ggml_hash_set_free(map->set);
  14173. GGML_FREE(map->vals);
  14174. GGML_FREE(map);
  14175. }
  14176. // gradient checkpointing
  14177. static struct ggml_tensor * ggml_recompute_graph_node(
  14178. struct ggml_context * ctx,
  14179. struct ggml_cgraph * graph,
  14180. struct hash_map * replacements,
  14181. struct ggml_tensor * node) {
  14182. if (node == NULL) {
  14183. return NULL;
  14184. }
  14185. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14186. return node;
  14187. }
  14188. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14189. return node;
  14190. }
  14191. int count_children = 0;
  14192. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14193. if (node->src[k]) {
  14194. ++count_children;
  14195. }
  14196. }
  14197. if (count_children == 0) {
  14198. return node;
  14199. }
  14200. size_t i = ggml_hash_find(replacements->set, node);
  14201. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14202. if (replacements->set.keys[i] == node) {
  14203. return replacements->vals[i];
  14204. }
  14205. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14206. // insert clone into replacements
  14207. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14208. replacements->set.keys[i] = node;
  14209. replacements->vals[i] = clone;
  14210. clone->op = node->op;
  14211. clone->grad = node->grad;
  14212. clone->flags = node->flags;
  14213. clone->extra = node->extra;
  14214. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14215. clone->nb[k] = node->nb[k];
  14216. }
  14217. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14218. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14219. }
  14220. if (node->view_src != NULL) {
  14221. clone->data = (node->view_src->data == NULL)
  14222. ? NULL // view_src not yet allocated
  14223. : (char *) node->view_src->data // view_src already allocated
  14224. + node->view_offs;
  14225. clone->view_src = node->view_src;
  14226. clone->view_offs = node->view_offs;
  14227. }
  14228. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14229. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14230. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14231. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14232. return clone;
  14233. }
  14234. void ggml_build_backward_gradient_checkpointing(
  14235. struct ggml_context * ctx,
  14236. struct ggml_cgraph * gf,
  14237. struct ggml_cgraph * gb,
  14238. struct ggml_cgraph * gb_tmp,
  14239. struct ggml_tensor * * checkpoints,
  14240. int n_checkpoints) {
  14241. ggml_graph_cpy(gf, gb_tmp);
  14242. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14243. if (n_checkpoints <= 0) {
  14244. ggml_graph_cpy(gb_tmp, gb);
  14245. return;
  14246. }
  14247. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14248. // insert checkpoints in replacements
  14249. for (int i = 0; i < n_checkpoints; ++i) {
  14250. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14251. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14252. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14253. replacements->set.keys[k] = checkpoints[i];
  14254. replacements->vals[k] = checkpoints[i];
  14255. }
  14256. ggml_graph_cpy(gf, gb);
  14257. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14258. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14259. // by recomputing them from checkpoints
  14260. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14261. struct ggml_tensor * node = gb_tmp->nodes[i];
  14262. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14263. // insert new tensors recomputing src, reusing already made replacements,
  14264. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14265. // recurse for input tensors,
  14266. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14267. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14268. }
  14269. // insert rewritten backward node with replacements made into resulting backward graph gb
  14270. ggml_build_forward_expand(gb, node);
  14271. }
  14272. ggml_hash_map_free(replacements);
  14273. }
  14274. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14275. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14276. if (ggml_hash_contains(zero_table, a)) {
  14277. return b;
  14278. } else {
  14279. return ggml_add_impl(ctx, a, b, false);
  14280. }
  14281. }
  14282. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14283. if (ggml_hash_contains(zero_table, a)) {
  14284. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14285. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14286. } else {
  14287. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14288. }
  14289. }
  14290. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14291. if (ggml_hash_contains(zero_table, a)) {
  14292. return ggml_repeat(ctx, b, a);
  14293. } else {
  14294. return ggml_add1_impl(ctx, a, b, false);
  14295. }
  14296. }
  14297. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14298. if (ggml_hash_contains(zero_table, a)) {
  14299. return ggml_neg(ctx, b);
  14300. } else {
  14301. return ggml_sub_impl(ctx, a, b, false);
  14302. }
  14303. }
  14304. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14305. struct ggml_tensor * src0 = tensor->src[0];
  14306. struct ggml_tensor * src1 = tensor->src[1];
  14307. struct ggml_tensor * src2 = tensor->src[2];
  14308. switch (tensor->op) {
  14309. case GGML_OP_DUP:
  14310. {
  14311. if (src0->grad) {
  14312. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14313. }
  14314. } break;
  14315. case GGML_OP_ADD:
  14316. {
  14317. if (src0->grad) {
  14318. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14319. }
  14320. if (src1->grad) {
  14321. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14322. }
  14323. } break;
  14324. case GGML_OP_ADD1:
  14325. {
  14326. if (src0->grad) {
  14327. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14328. }
  14329. if (src1->grad) {
  14330. src1->grad = ggml_add_or_set(ctx,
  14331. src1->grad,
  14332. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14333. zero_table);
  14334. }
  14335. } break;
  14336. case GGML_OP_ACC:
  14337. {
  14338. if (src0->grad) {
  14339. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14340. }
  14341. if (src1->grad) {
  14342. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14343. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14344. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14345. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14346. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14347. tensor->grad,
  14348. src1->grad->ne[0],
  14349. src1->grad->ne[1],
  14350. src1->grad->ne[2],
  14351. src1->grad->ne[3],
  14352. nb1, nb2, nb3, offset);
  14353. src1->grad =
  14354. ggml_add_or_set(ctx,
  14355. src1->grad,
  14356. ggml_reshape(ctx,
  14357. ggml_cont(ctx, tensor_grad_view),
  14358. src1->grad),
  14359. zero_table);
  14360. }
  14361. } break;
  14362. case GGML_OP_SUB:
  14363. {
  14364. if (src0->grad) {
  14365. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14366. }
  14367. if (src1->grad) {
  14368. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14369. }
  14370. } break;
  14371. case GGML_OP_MUL:
  14372. {
  14373. if (src0->grad) {
  14374. src0->grad =
  14375. ggml_add_or_set(ctx,
  14376. src0->grad,
  14377. ggml_mul(ctx, src1, tensor->grad),
  14378. zero_table);
  14379. }
  14380. if (src1->grad) {
  14381. src1->grad =
  14382. ggml_add_or_set(ctx,
  14383. src1->grad,
  14384. ggml_mul(ctx, src0, tensor->grad),
  14385. zero_table);
  14386. }
  14387. } break;
  14388. case GGML_OP_DIV:
  14389. {
  14390. if (src0->grad) {
  14391. src0->grad =
  14392. ggml_add_or_set(ctx,
  14393. src0->grad,
  14394. ggml_div(ctx, tensor->grad, src1),
  14395. zero_table);
  14396. }
  14397. if (src1->grad) {
  14398. src1->grad =
  14399. ggml_sub_or_set(ctx,
  14400. src1->grad,
  14401. ggml_mul(ctx,
  14402. tensor->grad,
  14403. ggml_div(ctx, tensor, src1)),
  14404. zero_table);
  14405. }
  14406. } break;
  14407. case GGML_OP_SQR:
  14408. {
  14409. if (src0->grad) {
  14410. src0->grad =
  14411. ggml_add_or_set(ctx,
  14412. src0->grad,
  14413. ggml_scale(ctx,
  14414. ggml_mul(ctx, src0, tensor->grad),
  14415. 2.0f),
  14416. zero_table);
  14417. }
  14418. } break;
  14419. case GGML_OP_SQRT:
  14420. {
  14421. if (src0->grad) {
  14422. src0->grad =
  14423. ggml_add_or_set(ctx,
  14424. src0->grad,
  14425. ggml_scale(ctx,
  14426. ggml_div(ctx,
  14427. tensor->grad,
  14428. tensor),
  14429. 0.5f),
  14430. zero_table);
  14431. }
  14432. } break;
  14433. case GGML_OP_LOG:
  14434. {
  14435. if (src0->grad) {
  14436. src0->grad =
  14437. ggml_add_or_set(ctx,
  14438. src0->grad,
  14439. ggml_div(ctx,
  14440. tensor->grad,
  14441. src0),
  14442. zero_table);
  14443. }
  14444. } break;
  14445. case GGML_OP_SUM:
  14446. {
  14447. if (src0->grad) {
  14448. src0->grad =
  14449. ggml_add1_or_set(ctx,
  14450. src0->grad,
  14451. tensor->grad,
  14452. zero_table);
  14453. }
  14454. } break;
  14455. case GGML_OP_SUM_ROWS:
  14456. {
  14457. if (src0->grad) {
  14458. src0->grad =
  14459. ggml_add_or_set(ctx,
  14460. src0->grad,
  14461. ggml_repeat(ctx,
  14462. tensor->grad,
  14463. src0->grad),
  14464. zero_table);
  14465. }
  14466. } break;
  14467. case GGML_OP_MEAN:
  14468. case GGML_OP_ARGMAX:
  14469. {
  14470. GGML_ASSERT(false); // TODO: implement
  14471. } break;
  14472. case GGML_OP_REPEAT:
  14473. {
  14474. // necessary for llama
  14475. if (src0->grad) {
  14476. src0->grad = ggml_add_or_set(ctx,
  14477. src0->grad,
  14478. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14479. zero_table);
  14480. }
  14481. } break;
  14482. case GGML_OP_REPEAT_BACK:
  14483. {
  14484. if (src0->grad) {
  14485. // TODO: test this
  14486. src0->grad = ggml_add_or_set(ctx,
  14487. src0->grad,
  14488. ggml_repeat(ctx, tensor->grad, src0->grad),
  14489. zero_table);
  14490. }
  14491. } break;
  14492. case GGML_OP_CONCAT:
  14493. {
  14494. GGML_ASSERT(false); // TODO: implement
  14495. } break;
  14496. case GGML_OP_SILU_BACK:
  14497. {
  14498. GGML_ASSERT(false); // TODO: not implemented
  14499. } break;
  14500. case GGML_OP_NORM:
  14501. {
  14502. GGML_ASSERT(false); // TODO: not implemented
  14503. } break;
  14504. case GGML_OP_RMS_NORM:
  14505. {
  14506. // necessary for llama
  14507. if (src0->grad) {
  14508. float eps;
  14509. memcpy(&eps, tensor->op_params, sizeof(float));
  14510. src0->grad = ggml_add_or_set(ctx,
  14511. src0->grad,
  14512. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14513. zero_table);
  14514. }
  14515. } break;
  14516. case GGML_OP_RMS_NORM_BACK:
  14517. {
  14518. GGML_ASSERT(false); // TODO: not implemented
  14519. } break;
  14520. case GGML_OP_GROUP_NORM:
  14521. {
  14522. GGML_ASSERT(false); // TODO: not implemented
  14523. } break;
  14524. case GGML_OP_MUL_MAT:
  14525. {
  14526. // https://cs231n.github.io/optimization-2/#staged
  14527. // # forward pass
  14528. // s0 = np.random.randn(5, 10)
  14529. // s1 = np.random.randn(10, 3)
  14530. // t = s0.dot(s1)
  14531. // # now suppose we had the gradient on t from above in the circuit
  14532. // dt = np.random.randn(*t.shape) # same shape as t
  14533. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14534. // ds1 = t.T.dot(dt)
  14535. // tensor.shape [m,p,qq,rr]
  14536. // src0.shape [n,m,q1,r1]
  14537. // src1.shape [n,p,qq,rr]
  14538. // necessary for llama
  14539. if (src0->grad) {
  14540. struct ggml_tensor * s1_tg =
  14541. ggml_out_prod(ctx, // [n,m,qq,rr]
  14542. src1, // [n,p,qq,rr]
  14543. tensor->grad); // [m,p,qq,rr]
  14544. const int64_t qq = s1_tg->ne[2];
  14545. const int64_t rr = s1_tg->ne[3];
  14546. const int64_t q1 = src0->ne[2];
  14547. const int64_t r1 = src0->ne[3];
  14548. const bool ne2_broadcasted = qq > q1;
  14549. const bool ne3_broadcasted = rr > r1;
  14550. if (ne2_broadcasted || ne3_broadcasted) {
  14551. // sum broadcast repetitions of s1_tg into shape of src0
  14552. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14553. }
  14554. src0->grad =
  14555. ggml_add_or_set(ctx,
  14556. src0->grad, // [n,m,q1,r1]
  14557. s1_tg, // [n,m,q1,r1]
  14558. zero_table);
  14559. }
  14560. if (src1->grad) {
  14561. src1->grad =
  14562. ggml_add_or_set(ctx,
  14563. src1->grad, // [n,p,qq,rr]
  14564. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14565. // ggml_cont(ctx, // [m,n,q1,r1]
  14566. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14567. // tensor->grad), // [m,p,qq,rr]
  14568. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14569. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14570. // // and then use ggml_out_prod
  14571. ggml_out_prod(ctx, // [n,p,qq,rr]
  14572. src0, // [n,m,q1,r1]
  14573. ggml_transpose(ctx, // [p,m,qq,rr]
  14574. tensor->grad)), // [m,p,qq,rr]
  14575. zero_table);
  14576. }
  14577. } break;
  14578. case GGML_OP_MUL_MAT_ID:
  14579. {
  14580. GGML_ASSERT(false); // TODO: not implemented
  14581. } break;
  14582. case GGML_OP_OUT_PROD:
  14583. {
  14584. GGML_ASSERT(false); // TODO: not implemented
  14585. } break;
  14586. case GGML_OP_SCALE:
  14587. {
  14588. // necessary for llama
  14589. if (src0->grad) {
  14590. float s;
  14591. memcpy(&s, tensor->op_params, sizeof(float));
  14592. src0->grad =
  14593. ggml_add_or_set(ctx,
  14594. src0->grad,
  14595. ggml_scale_impl(ctx, tensor->grad, s, false),
  14596. zero_table);
  14597. }
  14598. } break;
  14599. case GGML_OP_SET:
  14600. {
  14601. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14602. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14603. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14604. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14605. struct ggml_tensor * tensor_grad_view = NULL;
  14606. if (src0->grad || src1->grad) {
  14607. GGML_ASSERT(src0->type == tensor->type);
  14608. GGML_ASSERT(tensor->grad->type == tensor->type);
  14609. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14610. tensor_grad_view = ggml_view_4d(ctx,
  14611. tensor->grad,
  14612. src1->grad->ne[0],
  14613. src1->grad->ne[1],
  14614. src1->grad->ne[2],
  14615. src1->grad->ne[3],
  14616. nb1, nb2, nb3, offset);
  14617. }
  14618. if (src0->grad) {
  14619. src0->grad = ggml_add_or_set(ctx,
  14620. src0->grad,
  14621. ggml_acc_impl(ctx,
  14622. tensor->grad,
  14623. ggml_neg(ctx, tensor_grad_view),
  14624. nb1, nb2, nb3, offset, false),
  14625. zero_table);
  14626. }
  14627. if (src1->grad) {
  14628. src1->grad =
  14629. ggml_add_or_set(ctx,
  14630. src1->grad,
  14631. ggml_reshape(ctx,
  14632. ggml_cont(ctx, tensor_grad_view),
  14633. src1->grad),
  14634. zero_table);
  14635. }
  14636. } break;
  14637. case GGML_OP_CPY:
  14638. {
  14639. // necessary for llama
  14640. // cpy overwrites value of src1 by src0 and returns view(src1)
  14641. // the overwriting is mathematically equivalent to:
  14642. // tensor = src0 * 1 + src1 * 0
  14643. if (src0->grad) {
  14644. // dsrc0 = dtensor * 1
  14645. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14646. }
  14647. if (src1->grad) {
  14648. // dsrc1 = dtensor * 0 -> noop
  14649. }
  14650. } break;
  14651. case GGML_OP_CONT:
  14652. {
  14653. // same as cpy
  14654. if (src0->grad) {
  14655. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14656. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14657. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14658. }
  14659. } break;
  14660. case GGML_OP_RESHAPE:
  14661. {
  14662. // necessary for llama
  14663. if (src0->grad) {
  14664. src0->grad =
  14665. ggml_add_or_set(ctx, src0->grad,
  14666. ggml_reshape(ctx,
  14667. ggml_is_contiguous(tensor->grad)
  14668. ? tensor->grad
  14669. : ggml_cont(ctx, tensor->grad),
  14670. src0->grad),
  14671. zero_table);
  14672. }
  14673. } break;
  14674. case GGML_OP_VIEW:
  14675. {
  14676. // necessary for llama
  14677. if (src0->grad) {
  14678. size_t offset;
  14679. memcpy(&offset, tensor->op_params, sizeof(offset));
  14680. size_t nb1 = tensor->nb[1];
  14681. size_t nb2 = tensor->nb[2];
  14682. size_t nb3 = tensor->nb[3];
  14683. if (src0->type != src0->grad->type) {
  14684. // gradient is typically F32, but src0 could be other type
  14685. size_t ng = ggml_element_size(src0->grad);
  14686. size_t n0 = ggml_element_size(src0);
  14687. GGML_ASSERT(offset % n0 == 0);
  14688. GGML_ASSERT(nb1 % n0 == 0);
  14689. GGML_ASSERT(nb2 % n0 == 0);
  14690. GGML_ASSERT(nb3 % n0 == 0);
  14691. offset = (offset / n0) * ng;
  14692. nb1 = (nb1 / n0) * ng;
  14693. nb2 = (nb2 / n0) * ng;
  14694. nb3 = (nb3 / n0) * ng;
  14695. }
  14696. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14697. }
  14698. } break;
  14699. case GGML_OP_PERMUTE:
  14700. {
  14701. // necessary for llama
  14702. if (src0->grad) {
  14703. int32_t * axes = (int32_t *) tensor->op_params;
  14704. int axis0 = axes[0] & 0x3;
  14705. int axis1 = axes[1] & 0x3;
  14706. int axis2 = axes[2] & 0x3;
  14707. int axis3 = axes[3] & 0x3;
  14708. int axes_backward[4] = {0,0,0,0};
  14709. axes_backward[axis0] = 0;
  14710. axes_backward[axis1] = 1;
  14711. axes_backward[axis2] = 2;
  14712. axes_backward[axis3] = 3;
  14713. src0->grad =
  14714. ggml_add_or_set(ctx, src0->grad,
  14715. ggml_permute(ctx,
  14716. tensor->grad,
  14717. axes_backward[0],
  14718. axes_backward[1],
  14719. axes_backward[2],
  14720. axes_backward[3]),
  14721. zero_table);
  14722. }
  14723. } break;
  14724. case GGML_OP_TRANSPOSE:
  14725. {
  14726. // necessary for llama
  14727. if (src0->grad) {
  14728. src0->grad =
  14729. ggml_add_or_set(ctx, src0->grad,
  14730. ggml_transpose(ctx, tensor->grad),
  14731. zero_table);
  14732. }
  14733. } break;
  14734. case GGML_OP_GET_ROWS:
  14735. {
  14736. // necessary for llama (only for tokenizer)
  14737. if (src0->grad) {
  14738. src0->grad =
  14739. ggml_add_or_set(ctx, src0->grad,
  14740. // last ggml_get_rows_back argument src0->grad is only
  14741. // necessary to setup correct output shape
  14742. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14743. zero_table);
  14744. }
  14745. if (src1->grad) {
  14746. // noop
  14747. }
  14748. } break;
  14749. case GGML_OP_GET_ROWS_BACK:
  14750. {
  14751. GGML_ASSERT(false); // TODO: not implemented
  14752. } break;
  14753. case GGML_OP_DIAG:
  14754. {
  14755. GGML_ASSERT(false); // TODO: not implemented
  14756. } break;
  14757. case GGML_OP_DIAG_MASK_INF:
  14758. {
  14759. // necessary for llama
  14760. if (src0->grad) {
  14761. const int n_past = ((int32_t *) tensor->op_params)[0];
  14762. src0->grad =
  14763. ggml_add_or_set(ctx, src0->grad,
  14764. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14765. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14766. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14767. zero_table);
  14768. }
  14769. } break;
  14770. case GGML_OP_DIAG_MASK_ZERO:
  14771. {
  14772. // necessary for llama
  14773. if (src0->grad) {
  14774. const int n_past = ((int32_t *) tensor->op_params)[0];
  14775. src0->grad =
  14776. ggml_add_or_set(ctx, src0->grad,
  14777. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14778. zero_table);
  14779. }
  14780. } break;
  14781. case GGML_OP_SOFT_MAX:
  14782. {
  14783. // necessary for llama
  14784. if (src0->grad) {
  14785. src0->grad =
  14786. ggml_add_or_set(ctx, src0->grad,
  14787. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14788. zero_table);
  14789. }
  14790. } break;
  14791. case GGML_OP_SOFT_MAX_BACK:
  14792. {
  14793. GGML_ASSERT(false); // TODO: not implemented
  14794. } break;
  14795. case GGML_OP_ROPE:
  14796. {
  14797. // necessary for llama
  14798. if (src0->grad) {
  14799. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14800. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14801. const int mode = ((int32_t *) tensor->op_params)[2];
  14802. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14803. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14804. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14805. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14806. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14807. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14808. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14809. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14810. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14811. src0->grad = ggml_add_or_set(ctx,
  14812. src0->grad,
  14813. ggml_rope_back(ctx,
  14814. tensor->grad,
  14815. src1,
  14816. src2,
  14817. n_dims,
  14818. mode,
  14819. n_ctx_orig,
  14820. freq_base,
  14821. freq_scale,
  14822. ext_factor,
  14823. attn_factor,
  14824. beta_fast,
  14825. beta_slow),
  14826. zero_table);
  14827. }
  14828. } break;
  14829. case GGML_OP_ROPE_BACK:
  14830. {
  14831. if (src0->grad) {
  14832. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14833. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14834. const int mode = ((int32_t *) tensor->op_params)[2];
  14835. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14836. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14837. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14838. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14839. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14840. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14841. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14842. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14843. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14844. src0->grad = ggml_add_or_set(ctx,
  14845. src0->grad,
  14846. ggml_rope_impl(ctx,
  14847. tensor->grad,
  14848. src1,
  14849. src2,
  14850. n_dims,
  14851. mode,
  14852. n_ctx_orig,
  14853. freq_base,
  14854. freq_scale,
  14855. ext_factor,
  14856. attn_factor,
  14857. beta_fast,
  14858. beta_slow,
  14859. false),
  14860. zero_table);
  14861. }
  14862. } break;
  14863. case GGML_OP_CLAMP:
  14864. {
  14865. GGML_ASSERT(false); // TODO: not implemented
  14866. } break;
  14867. case GGML_OP_CONV_TRANSPOSE_1D:
  14868. {
  14869. GGML_ASSERT(false); // TODO: not implemented
  14870. } break;
  14871. case GGML_OP_IM2COL:
  14872. {
  14873. GGML_ASSERT(false); // TODO: not implemented
  14874. } break;
  14875. case GGML_OP_CONV_TRANSPOSE_2D:
  14876. {
  14877. GGML_ASSERT(false); // TODO: not implemented
  14878. } break;
  14879. case GGML_OP_POOL_1D:
  14880. {
  14881. GGML_ASSERT(false); // TODO: not implemented
  14882. } break;
  14883. case GGML_OP_POOL_2D:
  14884. {
  14885. GGML_ASSERT(false); // TODO: not implemented
  14886. } break;
  14887. case GGML_OP_UPSCALE:
  14888. {
  14889. GGML_ASSERT(false); // TODO: not implemented
  14890. } break;
  14891. case GGML_OP_PAD:
  14892. {
  14893. GGML_ASSERT(false); // TODO: not implemented
  14894. } break;
  14895. case GGML_OP_ARANGE:
  14896. {
  14897. GGML_ASSERT(false); // TODO: not implemented
  14898. } break;
  14899. case GGML_OP_TIMESTEP_EMBEDDING:
  14900. {
  14901. GGML_ASSERT(false); // TODO: not implemented
  14902. } break;
  14903. case GGML_OP_ARGSORT:
  14904. {
  14905. GGML_ASSERT(false); // TODO: not implemented
  14906. } break;
  14907. case GGML_OP_LEAKY_RELU:
  14908. {
  14909. GGML_ASSERT(false); // TODO: not implemented
  14910. } break;
  14911. case GGML_OP_FLASH_ATTN_EXT:
  14912. {
  14913. struct ggml_tensor * flash_grad = NULL;
  14914. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14915. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14916. GGML_ASSERT(t == 0 || t == 1);
  14917. bool masked = t != 0;
  14918. flash_grad =
  14919. ggml_flash_attn_back(ctx,
  14920. src0,
  14921. src1,
  14922. tensor->src[2],
  14923. tensor->grad,
  14924. masked);
  14925. }
  14926. const int64_t elem_q = ggml_nelements(src0);
  14927. const int64_t elem_k = ggml_nelements(src1);
  14928. const int64_t elem_v = ggml_nelements(src2);
  14929. enum ggml_type result_type = flash_grad->type;
  14930. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14931. const size_t tsize = ggml_type_size(result_type);
  14932. const size_t offs_q = 0;
  14933. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14934. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14935. if (src0->grad) {
  14936. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14937. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14938. src0->grad = ggml_add_or_set(ctx,
  14939. src0->grad,
  14940. grad_q,
  14941. zero_table);
  14942. }
  14943. if (src1->grad) {
  14944. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14945. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14946. src1->grad = ggml_add_or_set(ctx,
  14947. src1->grad,
  14948. grad_k,
  14949. zero_table);
  14950. }
  14951. if (src2->grad) {
  14952. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14953. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14954. src2->grad = ggml_add_or_set(ctx,
  14955. src2->grad,
  14956. grad_v,
  14957. zero_table);
  14958. }
  14959. } break;
  14960. case GGML_OP_FLASH_ATTN_BACK:
  14961. {
  14962. GGML_ASSERT(false); // not supported
  14963. } break;
  14964. case GGML_OP_SSM_CONV:
  14965. case GGML_OP_SSM_SCAN:
  14966. {
  14967. GGML_ASSERT(false); // TODO: not implemented
  14968. } break;
  14969. case GGML_OP_WIN_PART:
  14970. case GGML_OP_WIN_UNPART:
  14971. case GGML_OP_UNARY:
  14972. {
  14973. switch (ggml_get_unary_op(tensor)) {
  14974. case GGML_UNARY_OP_ABS:
  14975. {
  14976. if (src0->grad) {
  14977. src0->grad =
  14978. ggml_add_or_set(ctx,
  14979. src0->grad,
  14980. ggml_mul(ctx,
  14981. ggml_sgn(ctx, src0),
  14982. tensor->grad),
  14983. zero_table);
  14984. }
  14985. } break;
  14986. case GGML_UNARY_OP_SGN:
  14987. {
  14988. if (src0->grad) {
  14989. // noop
  14990. }
  14991. } break;
  14992. case GGML_UNARY_OP_NEG:
  14993. {
  14994. if (src0->grad) {
  14995. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14996. }
  14997. } break;
  14998. case GGML_UNARY_OP_STEP:
  14999. {
  15000. if (src0->grad) {
  15001. // noop
  15002. }
  15003. } break;
  15004. case GGML_UNARY_OP_TANH:
  15005. {
  15006. GGML_ASSERT(false); // TODO: not implemented
  15007. } break;
  15008. case GGML_UNARY_OP_ELU:
  15009. {
  15010. GGML_ASSERT(false); // TODO: not implemented
  15011. } break;
  15012. case GGML_UNARY_OP_RELU:
  15013. {
  15014. if (src0->grad) {
  15015. src0->grad = ggml_add_or_set(ctx,
  15016. src0->grad,
  15017. ggml_mul(ctx,
  15018. ggml_step(ctx, src0),
  15019. tensor->grad),
  15020. zero_table);
  15021. }
  15022. } break;
  15023. case GGML_UNARY_OP_SIGMOID:
  15024. {
  15025. GGML_ASSERT(false); // TODO: not implemented
  15026. } break;
  15027. case GGML_UNARY_OP_GELU:
  15028. {
  15029. GGML_ASSERT(false); // TODO: not implemented
  15030. } break;
  15031. case GGML_UNARY_OP_GELU_QUICK:
  15032. {
  15033. GGML_ASSERT(false); // TODO: not implemented
  15034. } break;
  15035. case GGML_UNARY_OP_SILU:
  15036. {
  15037. // necessary for llama
  15038. if (src0->grad) {
  15039. src0->grad = ggml_add_or_set(ctx,
  15040. src0->grad,
  15041. ggml_silu_back(ctx, src0, tensor->grad),
  15042. zero_table);
  15043. }
  15044. } break;
  15045. default:
  15046. GGML_ASSERT(false);
  15047. }
  15048. } break;
  15049. case GGML_OP_GET_REL_POS:
  15050. case GGML_OP_ADD_REL_POS:
  15051. case GGML_OP_MAP_UNARY:
  15052. case GGML_OP_MAP_BINARY:
  15053. case GGML_OP_MAP_CUSTOM1_F32:
  15054. case GGML_OP_MAP_CUSTOM2_F32:
  15055. case GGML_OP_MAP_CUSTOM3_F32:
  15056. case GGML_OP_MAP_CUSTOM1:
  15057. case GGML_OP_MAP_CUSTOM2:
  15058. case GGML_OP_MAP_CUSTOM3:
  15059. {
  15060. GGML_ASSERT(false); // not supported
  15061. } break;
  15062. case GGML_OP_CROSS_ENTROPY_LOSS:
  15063. {
  15064. if (src0->grad) {
  15065. src0->grad = ggml_add_or_set(ctx,
  15066. src0->grad,
  15067. ggml_cross_entropy_loss_back(ctx,
  15068. src0,
  15069. src1,
  15070. tensor->grad),
  15071. zero_table);
  15072. }
  15073. } break;
  15074. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15075. {
  15076. GGML_ASSERT(false); // not supported
  15077. } break;
  15078. case GGML_OP_NONE:
  15079. {
  15080. // nop
  15081. } break;
  15082. case GGML_OP_COUNT:
  15083. {
  15084. GGML_ASSERT(false);
  15085. } break;
  15086. }
  15087. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15088. if (tensor->src[i] && tensor->src[i]->grad) {
  15089. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15090. }
  15091. }
  15092. }
  15093. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15094. if (node->grad == NULL) {
  15095. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15096. // it can also happen during forward pass, if the user performs computations with constants
  15097. if (node->op != GGML_OP_NONE) {
  15098. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15099. }
  15100. }
  15101. // check if already visited
  15102. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15103. return;
  15104. }
  15105. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15106. const int k =
  15107. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15108. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15109. /* unknown order, just fall back to using i*/ i;
  15110. if (node->src[k]) {
  15111. ggml_visit_parents(cgraph, node->src[k]);
  15112. }
  15113. }
  15114. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15115. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15116. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15117. if (strlen(node->name) == 0) {
  15118. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15119. }
  15120. cgraph->leafs[cgraph->n_leafs] = node;
  15121. cgraph->n_leafs++;
  15122. } else {
  15123. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15124. if (strlen(node->name) == 0) {
  15125. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15126. }
  15127. cgraph->nodes[cgraph->n_nodes] = node;
  15128. if (cgraph->grads) {
  15129. cgraph->grads[cgraph->n_nodes] = node->grad;
  15130. }
  15131. cgraph->n_nodes++;
  15132. }
  15133. }
  15134. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15135. if (!expand) {
  15136. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15137. ggml_graph_clear(cgraph);
  15138. }
  15139. const int n0 = cgraph->n_nodes;
  15140. UNUSED(n0);
  15141. ggml_visit_parents(cgraph, tensor);
  15142. const int n_new = cgraph->n_nodes - n0;
  15143. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15144. if (n_new > 0) {
  15145. // the last added node should always be starting point
  15146. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15147. }
  15148. }
  15149. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15150. ggml_build_forward_impl(cgraph, tensor, true);
  15151. }
  15152. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15153. GGML_ASSERT(gf->n_nodes > 0);
  15154. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15155. if (keep) {
  15156. for (int i = 0; i < gf->n_nodes; i++) {
  15157. struct ggml_tensor * node = gf->nodes[i];
  15158. if (node->grad) {
  15159. node->grad = ggml_dup_tensor(ctx, node);
  15160. gf->grads[i] = node->grad;
  15161. }
  15162. }
  15163. }
  15164. // remember original gradients which start with zero values
  15165. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15166. for (int i = 0; i < gf->n_nodes; i++) {
  15167. if (gf->grads[i]) {
  15168. ggml_hash_insert(zero_table, gf->grads[i]);
  15169. }
  15170. }
  15171. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15172. struct ggml_tensor * node = gf->nodes[i];
  15173. // inplace operations to add gradients are not created by ggml_compute_backward
  15174. // use allocator to automatically make inplace operations
  15175. if (node->grad) {
  15176. ggml_compute_backward(ctx, node, zero_table);
  15177. }
  15178. }
  15179. for (int i = 0; i < gf->n_nodes; i++) {
  15180. struct ggml_tensor * node = gf->nodes[i];
  15181. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15182. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15183. ggml_build_forward_expand(gb, node->grad);
  15184. }
  15185. }
  15186. ggml_hash_set_free(zero_table);
  15187. }
  15188. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15189. size_t nbytes = sizeof(struct ggml_cgraph);
  15190. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15191. if (grads) {
  15192. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15193. }
  15194. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15195. return nbytes;
  15196. }
  15197. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15198. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15199. }
  15200. size_t ggml_graph_overhead(void) {
  15201. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15202. }
  15203. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15204. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15205. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15206. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15207. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15208. size_t hash_size = ggml_hash_size(size * 2);
  15209. struct ggml_tensor ** nodes_ptr = data_start;
  15210. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15211. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15212. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15213. // check that we allocated the correct amount of memory
  15214. assert(obj_size == (size_t) (
  15215. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15216. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15217. *cgraph = (struct ggml_cgraph) {
  15218. /*.size =*/ size,
  15219. /*.n_nodes =*/ 0,
  15220. /*.n_leafs =*/ 0,
  15221. /*.nodes =*/ nodes_ptr,
  15222. /*.grads =*/ grads_ptr,
  15223. /*.leafs =*/ leafs_ptr,
  15224. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15225. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15226. /*.perf_runs =*/ 0,
  15227. /*.perf_cycles =*/ 0,
  15228. /*.perf_time_us =*/ 0,
  15229. };
  15230. return cgraph;
  15231. }
  15232. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15233. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15234. }
  15235. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15236. struct ggml_cgraph cgraph = {
  15237. /*.size =*/ 0,
  15238. /*.n_nodes =*/ i1 - i0,
  15239. /*.n_leafs =*/ 0,
  15240. /*.nodes =*/ cgraph0->nodes + i0,
  15241. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15242. /*.leafs =*/ NULL,
  15243. /*.hash_table =*/ { 0, NULL },
  15244. /*.order =*/ cgraph0->order,
  15245. /*.perf_runs =*/ 0,
  15246. /*.perf_cycles =*/ 0,
  15247. /*.perf_time_us =*/ 0,
  15248. };
  15249. return cgraph;
  15250. }
  15251. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15252. GGML_ASSERT(dst->size >= src->n_leafs);
  15253. GGML_ASSERT(dst->size >= src->n_nodes);
  15254. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15255. dst->n_leafs = src->n_leafs;
  15256. dst->n_nodes = src->n_nodes;
  15257. dst->order = src->order;
  15258. for (int i = 0; i < src->n_leafs; ++i) {
  15259. dst->leafs[i] = src->leafs[i];
  15260. }
  15261. for (int i = 0; i < src->n_nodes; ++i) {
  15262. dst->nodes[i] = src->nodes[i];
  15263. }
  15264. if (src->grads) {
  15265. GGML_ASSERT(dst->grads != NULL);
  15266. for (int i = 0; i < src->n_nodes; ++i) {
  15267. dst->grads[i] = src->grads[i];
  15268. }
  15269. }
  15270. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15271. if (src->visited_hash_table.keys[i]) {
  15272. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15273. }
  15274. }
  15275. }
  15276. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15277. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15278. ggml_graph_cpy(cgraph, result);
  15279. return result;
  15280. }
  15281. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15282. GGML_ASSERT(cgraph->grads != NULL);
  15283. for (int i = 0; i < cgraph->n_nodes; i++) {
  15284. struct ggml_tensor * grad = cgraph->grads[i];
  15285. if (grad) {
  15286. ggml_set_zero(grad);
  15287. }
  15288. }
  15289. }
  15290. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15291. cgraph->n_leafs = 0;
  15292. cgraph->n_nodes = 0;
  15293. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15294. }
  15295. //
  15296. // thread data
  15297. //
  15298. // synchronization is done via busy loops
  15299. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15300. //
  15301. #ifdef __APPLE__
  15302. //#include <os/lock.h>
  15303. //
  15304. //typedef os_unfair_lock ggml_lock_t;
  15305. //
  15306. //#define ggml_lock_init(x) UNUSED(x)
  15307. //#define ggml_lock_destroy(x) UNUSED(x)
  15308. //#define ggml_lock_lock os_unfair_lock_lock
  15309. //#define ggml_lock_unlock os_unfair_lock_unlock
  15310. //
  15311. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15312. typedef int ggml_lock_t;
  15313. #define ggml_lock_init(x) UNUSED(x)
  15314. #define ggml_lock_destroy(x) UNUSED(x)
  15315. #define ggml_lock_lock(x) UNUSED(x)
  15316. #define ggml_lock_unlock(x) UNUSED(x)
  15317. #define GGML_LOCK_INITIALIZER 0
  15318. #define ggml_thread_create pthread_create
  15319. #define ggml_thread_join pthread_join
  15320. #else
  15321. //typedef pthread_spinlock_t ggml_lock_t;
  15322. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15323. //#define ggml_lock_destroy pthread_spin_destroy
  15324. //#define ggml_lock_lock pthread_spin_lock
  15325. //#define ggml_lock_unlock pthread_spin_unlock
  15326. typedef int ggml_lock_t;
  15327. #define ggml_lock_init(x) UNUSED(x)
  15328. #define ggml_lock_destroy(x) UNUSED(x)
  15329. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15330. #define ggml_lock_lock(x) _mm_pause()
  15331. #else
  15332. #define ggml_lock_lock(x) UNUSED(x)
  15333. #endif
  15334. #define ggml_lock_unlock(x) UNUSED(x)
  15335. #define GGML_LOCK_INITIALIZER 0
  15336. #define ggml_thread_create pthread_create
  15337. #define ggml_thread_join pthread_join
  15338. #endif
  15339. // Android's libc implementation "bionic" does not support setting affinity
  15340. #if defined(__gnu_linux__)
  15341. static void set_numa_thread_affinity(int thread_n) {
  15342. if (!ggml_is_numa()) {
  15343. return;
  15344. }
  15345. int node_num;
  15346. int rv;
  15347. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15348. switch(g_state.numa.numa_strategy) {
  15349. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15350. // run thread on node_num thread_n / (threads per node)
  15351. node_num = thread_n % g_state.numa.n_nodes;
  15352. break;
  15353. case GGML_NUMA_STRATEGY_ISOLATE:
  15354. // run thread on current_node
  15355. node_num = g_state.numa.current_node;
  15356. break;
  15357. case GGML_NUMA_STRATEGY_NUMACTL:
  15358. // use the cpuset that numactl gave us
  15359. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15360. if (rv) {
  15361. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15362. }
  15363. return;
  15364. default:
  15365. return;
  15366. }
  15367. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15368. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15369. CPU_ZERO_S(setsize, cpus);
  15370. for (size_t i = 0; i < node->n_cpus; ++i) {
  15371. CPU_SET_S(node->cpus[i], setsize, cpus);
  15372. }
  15373. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15374. if (rv) {
  15375. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15376. }
  15377. CPU_FREE(cpus);
  15378. }
  15379. static void clear_numa_thread_affinity(void) {
  15380. if (!ggml_is_numa()) {
  15381. return;
  15382. }
  15383. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15384. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15385. CPU_ZERO_S(setsize, cpus);
  15386. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15387. CPU_SET_S(i, setsize, cpus);
  15388. }
  15389. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15390. if (rv) {
  15391. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15392. }
  15393. CPU_FREE(cpus);
  15394. }
  15395. #else
  15396. // TODO: Windows etc.
  15397. // (the linux implementation may also work on BSD, someone should test)
  15398. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15399. static void clear_numa_thread_affinity(void) {}
  15400. #endif
  15401. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15402. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15403. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15404. node->perf_runs++;
  15405. node->perf_cycles += cycles_cur;
  15406. node->perf_time_us += time_us_cur;
  15407. }
  15408. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15409. int n_tasks = 0;
  15410. if (ggml_is_empty(node)) {
  15411. // no need to multi-thread a no-op
  15412. n_tasks = 1;
  15413. return n_tasks;
  15414. }
  15415. switch (node->op) {
  15416. case GGML_OP_CPY:
  15417. case GGML_OP_DUP:
  15418. case GGML_OP_CONT:
  15419. case GGML_OP_ADD:
  15420. case GGML_OP_ADD1:
  15421. case GGML_OP_ACC:
  15422. {
  15423. n_tasks = n_threads;
  15424. } break;
  15425. case GGML_OP_SUB:
  15426. case GGML_OP_SQR:
  15427. case GGML_OP_SQRT:
  15428. case GGML_OP_LOG:
  15429. case GGML_OP_SUM:
  15430. case GGML_OP_SUM_ROWS:
  15431. case GGML_OP_MEAN:
  15432. case GGML_OP_ARGMAX:
  15433. case GGML_OP_REPEAT:
  15434. case GGML_OP_REPEAT_BACK:
  15435. case GGML_OP_LEAKY_RELU:
  15436. {
  15437. n_tasks = 1;
  15438. } break;
  15439. case GGML_OP_UNARY:
  15440. switch (ggml_get_unary_op(node)) {
  15441. case GGML_UNARY_OP_ABS:
  15442. case GGML_UNARY_OP_SGN:
  15443. case GGML_UNARY_OP_NEG:
  15444. case GGML_UNARY_OP_STEP:
  15445. case GGML_UNARY_OP_TANH:
  15446. case GGML_UNARY_OP_ELU:
  15447. case GGML_UNARY_OP_RELU:
  15448. case GGML_UNARY_OP_SIGMOID:
  15449. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15450. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15451. {
  15452. n_tasks = 1;
  15453. } break;
  15454. case GGML_UNARY_OP_GELU:
  15455. case GGML_UNARY_OP_GELU_QUICK:
  15456. case GGML_UNARY_OP_SILU:
  15457. {
  15458. n_tasks = n_threads;
  15459. } break;
  15460. default:
  15461. GGML_ASSERT(false);
  15462. }
  15463. break;
  15464. case GGML_OP_SILU_BACK:
  15465. case GGML_OP_MUL:
  15466. case GGML_OP_DIV:
  15467. case GGML_OP_NORM:
  15468. case GGML_OP_RMS_NORM:
  15469. case GGML_OP_RMS_NORM_BACK:
  15470. case GGML_OP_GROUP_NORM:
  15471. case GGML_OP_CONCAT:
  15472. {
  15473. n_tasks = n_threads;
  15474. } break;
  15475. case GGML_OP_MUL_MAT:
  15476. {
  15477. n_tasks = n_threads;
  15478. // TODO: use different scheduling for different matrix sizes
  15479. //const int nr0 = ggml_nrows(node->src[0]);
  15480. //const int nr1 = ggml_nrows(node->src[1]);
  15481. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15482. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15483. } break;
  15484. case GGML_OP_MUL_MAT_ID:
  15485. {
  15486. n_tasks = n_threads;
  15487. } break;
  15488. case GGML_OP_OUT_PROD:
  15489. {
  15490. n_tasks = n_threads;
  15491. } break;
  15492. case GGML_OP_GET_ROWS:
  15493. {
  15494. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15495. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15496. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15497. } break;
  15498. case GGML_OP_SCALE:
  15499. case GGML_OP_SET:
  15500. case GGML_OP_RESHAPE:
  15501. case GGML_OP_VIEW:
  15502. case GGML_OP_PERMUTE:
  15503. case GGML_OP_TRANSPOSE:
  15504. case GGML_OP_GET_ROWS_BACK:
  15505. case GGML_OP_DIAG:
  15506. {
  15507. n_tasks = 1;
  15508. } break;
  15509. case GGML_OP_DIAG_MASK_ZERO:
  15510. case GGML_OP_DIAG_MASK_INF:
  15511. case GGML_OP_SOFT_MAX_BACK:
  15512. case GGML_OP_ROPE:
  15513. case GGML_OP_ROPE_BACK:
  15514. case GGML_OP_ADD_REL_POS:
  15515. {
  15516. n_tasks = n_threads;
  15517. } break;
  15518. case GGML_OP_CLAMP:
  15519. {
  15520. n_tasks = 1; //TODO
  15521. } break;
  15522. case GGML_OP_SOFT_MAX:
  15523. {
  15524. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15525. } break;
  15526. case GGML_OP_CONV_TRANSPOSE_1D:
  15527. {
  15528. n_tasks = n_threads;
  15529. } break;
  15530. case GGML_OP_IM2COL:
  15531. {
  15532. n_tasks = n_threads;
  15533. } break;
  15534. case GGML_OP_CONV_TRANSPOSE_2D:
  15535. {
  15536. n_tasks = n_threads;
  15537. } break;
  15538. case GGML_OP_POOL_1D:
  15539. case GGML_OP_POOL_2D:
  15540. {
  15541. n_tasks = 1;
  15542. } break;
  15543. case GGML_OP_UPSCALE:
  15544. {
  15545. n_tasks = n_threads;
  15546. } break;
  15547. case GGML_OP_PAD:
  15548. {
  15549. n_tasks = n_threads;
  15550. } break;
  15551. case GGML_OP_ARANGE:
  15552. {
  15553. n_tasks = n_threads;
  15554. } break;
  15555. case GGML_OP_TIMESTEP_EMBEDDING:
  15556. {
  15557. n_tasks = n_threads;
  15558. } break;
  15559. case GGML_OP_ARGSORT:
  15560. {
  15561. n_tasks = n_threads;
  15562. } break;
  15563. case GGML_OP_FLASH_ATTN_EXT:
  15564. {
  15565. n_tasks = n_threads;
  15566. } break;
  15567. case GGML_OP_FLASH_ATTN_BACK:
  15568. {
  15569. n_tasks = n_threads;
  15570. } break;
  15571. case GGML_OP_SSM_CONV:
  15572. case GGML_OP_SSM_SCAN:
  15573. {
  15574. n_tasks = n_threads;
  15575. } break;
  15576. case GGML_OP_WIN_PART:
  15577. case GGML_OP_WIN_UNPART:
  15578. case GGML_OP_GET_REL_POS:
  15579. case GGML_OP_MAP_UNARY:
  15580. case GGML_OP_MAP_BINARY:
  15581. case GGML_OP_MAP_CUSTOM1_F32:
  15582. case GGML_OP_MAP_CUSTOM2_F32:
  15583. case GGML_OP_MAP_CUSTOM3_F32:
  15584. {
  15585. n_tasks = 1;
  15586. } break;
  15587. case GGML_OP_MAP_CUSTOM1:
  15588. {
  15589. struct ggml_map_custom1_op_params p;
  15590. memcpy(&p, node->op_params, sizeof(p));
  15591. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15592. n_tasks = n_threads;
  15593. } else {
  15594. n_tasks = MIN(p.n_tasks, n_threads);
  15595. }
  15596. } break;
  15597. case GGML_OP_MAP_CUSTOM2:
  15598. {
  15599. struct ggml_map_custom2_op_params p;
  15600. memcpy(&p, node->op_params, sizeof(p));
  15601. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15602. n_tasks = n_threads;
  15603. } else {
  15604. n_tasks = MIN(p.n_tasks, n_threads);
  15605. }
  15606. } break;
  15607. case GGML_OP_MAP_CUSTOM3:
  15608. {
  15609. struct ggml_map_custom3_op_params p;
  15610. memcpy(&p, node->op_params, sizeof(p));
  15611. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15612. n_tasks = n_threads;
  15613. } else {
  15614. n_tasks = MIN(p.n_tasks, n_threads);
  15615. }
  15616. } break;
  15617. case GGML_OP_CROSS_ENTROPY_LOSS:
  15618. {
  15619. n_tasks = n_threads;
  15620. } break;
  15621. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15622. {
  15623. n_tasks = n_threads;
  15624. } break;
  15625. case GGML_OP_NONE:
  15626. {
  15627. n_tasks = 1;
  15628. } break;
  15629. case GGML_OP_COUNT:
  15630. {
  15631. GGML_ASSERT(false);
  15632. } break;
  15633. default:
  15634. {
  15635. fprintf(stderr, "%s: op not implemented: ", __func__);
  15636. if (node->op < GGML_OP_COUNT) {
  15637. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15638. } else {
  15639. fprintf(stderr, "%d\n", node->op);
  15640. }
  15641. GGML_ASSERT(false);
  15642. } break;
  15643. }
  15644. assert(n_tasks > 0);
  15645. return n_tasks;
  15646. }
  15647. #ifdef GGML_USE_OPENMP
  15648. static void ggml_barrier(struct ggml_compute_state * state) {
  15649. if (state->shared->n_threads == 1) {
  15650. return;
  15651. }
  15652. #pragma omp barrier
  15653. }
  15654. #else
  15655. static void ggml_barrier(struct ggml_compute_state * state) {
  15656. if (state->shared->n_threads == 1) {
  15657. return;
  15658. }
  15659. atomic_int * n_barrier = &state->shared->n_barrier;
  15660. atomic_int * n_barrier_passed = &state->shared->n_barrier_passed;
  15661. int n_threads = state->shared->n_threads;
  15662. int passed_old = atomic_load(n_barrier_passed);
  15663. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  15664. // last thread
  15665. atomic_store(n_barrier, 0);
  15666. atomic_fetch_add(n_barrier_passed, 1);
  15667. } else {
  15668. // wait for other threads
  15669. //while (atomic_load(n_barrier_passed) == passed_old) {
  15670. //}
  15671. const int n_spin_before_sleep = 100000;
  15672. while (true) {
  15673. for (int i = 0; i < n_spin_before_sleep; i++) {
  15674. if (atomic_load(n_barrier_passed) != passed_old) {
  15675. return;
  15676. }
  15677. #if defined(__SSE3__)
  15678. _mm_pause();
  15679. #endif
  15680. }
  15681. sched_yield();
  15682. }
  15683. }
  15684. }
  15685. #endif
  15686. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15687. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15688. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15689. const struct ggml_cplan * cplan = state->shared->cplan;
  15690. const int ith = state->ith;
  15691. const int n_threads = state->shared->n_threads;
  15692. set_numa_thread_affinity(ith);
  15693. struct ggml_compute_params params = {
  15694. /*.type =*/ GGML_TASK_TYPE_INIT,
  15695. /*.ith =*/ ith,
  15696. /*.nth =*/ state->shared->n_threads,
  15697. /*.wsize =*/ cplan->work_size,
  15698. /*.wdata =*/ cplan->work_data,
  15699. };
  15700. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  15701. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15702. state->ec = GGML_STATUS_ABORTED;
  15703. return 0;
  15704. }
  15705. struct ggml_tensor * node = cgraph->nodes[node_n];
  15706. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15707. params.nth = n_tasks;
  15708. /* INIT */
  15709. if (GGML_OP_HAS_INIT[node->op]) {
  15710. if (ith < n_tasks) {
  15711. params.type = GGML_TASK_TYPE_INIT;
  15712. ggml_compute_forward(&params, node, state);
  15713. }
  15714. ggml_barrier(state);
  15715. }
  15716. /* COMPUTE */
  15717. if (ith < n_tasks) {
  15718. params.type = GGML_TASK_TYPE_COMPUTE;
  15719. ggml_compute_forward(&params, node, state);
  15720. }
  15721. ggml_barrier(state);
  15722. /* FINALIZE */
  15723. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15724. if (params.ith == 0) {
  15725. params.type = GGML_TASK_TYPE_FINALIZE;
  15726. ggml_compute_forward(&params, node, state);
  15727. }
  15728. ggml_barrier(state);
  15729. }
  15730. }
  15731. return 0;
  15732. }
  15733. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15734. if (n_threads <= 0) {
  15735. n_threads = GGML_DEFAULT_N_THREADS;
  15736. }
  15737. size_t work_size = 0;
  15738. struct ggml_cplan cplan;
  15739. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15740. int max_tasks = 1;
  15741. // thread scheduling for the different operations + work buffer size estimation
  15742. for (int i = 0; i < cgraph->n_nodes; i++) {
  15743. struct ggml_tensor * node = cgraph->nodes[i];
  15744. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15745. max_tasks = MAX(max_tasks, n_tasks);
  15746. size_t cur = 0;
  15747. switch (node->op) {
  15748. case GGML_OP_CPY:
  15749. case GGML_OP_DUP:
  15750. {
  15751. if (ggml_is_quantized(node->type) ||
  15752. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15753. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15754. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15755. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15756. }
  15757. } break;
  15758. case GGML_OP_ADD:
  15759. case GGML_OP_ADD1:
  15760. {
  15761. if (ggml_is_quantized(node->src[0]->type)) {
  15762. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15763. }
  15764. } break;
  15765. case GGML_OP_ACC:
  15766. {
  15767. if (ggml_is_quantized(node->src[0]->type)) {
  15768. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15769. }
  15770. } break;
  15771. case GGML_OP_MUL_MAT:
  15772. {
  15773. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15774. if (node->src[1]->type != vec_dot_type) {
  15775. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15776. }
  15777. } break;
  15778. case GGML_OP_MUL_MAT_ID:
  15779. {
  15780. cur = 0;
  15781. const struct ggml_tensor * src0 = node->src[0];
  15782. const struct ggml_tensor * src1 = node->src[1];
  15783. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15784. if (src1->type != vec_dot_type) {
  15785. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15786. }
  15787. const int n_as = src0->ne[2];
  15788. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15789. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15790. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15791. } break;
  15792. case GGML_OP_OUT_PROD:
  15793. {
  15794. if (ggml_is_quantized(node->src[0]->type)) {
  15795. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15796. }
  15797. } break;
  15798. case GGML_OP_SOFT_MAX:
  15799. case GGML_OP_ROPE:
  15800. {
  15801. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15802. } break;
  15803. case GGML_OP_CONV_TRANSPOSE_1D:
  15804. {
  15805. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15806. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15807. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15808. const int64_t ne00 = node->src[0]->ne[0]; // K
  15809. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15810. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15811. const int64_t ne10 = node->src[1]->ne[0]; // L
  15812. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15813. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15814. node->src[0]->type == GGML_TYPE_BF16) &&
  15815. node->src[1]->type == GGML_TYPE_F32) {
  15816. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15817. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15818. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15819. node->src[1]->type == GGML_TYPE_F32) {
  15820. cur += sizeof(float)*ne00*ne01*ne02;
  15821. cur += sizeof(float)*ne10*ne11;
  15822. } else {
  15823. GGML_ASSERT(false);
  15824. }
  15825. } break;
  15826. case GGML_OP_CONV_TRANSPOSE_2D:
  15827. {
  15828. const int64_t ne00 = node->src[0]->ne[0]; // W
  15829. const int64_t ne01 = node->src[0]->ne[1]; // H
  15830. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15831. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15832. const int64_t ne10 = node->src[1]->ne[0]; // W
  15833. const int64_t ne11 = node->src[1]->ne[1]; // H
  15834. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15835. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15836. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15837. } break;
  15838. case GGML_OP_FLASH_ATTN_EXT:
  15839. {
  15840. const int64_t ne00 = node->src[0]->ne[0]; // D
  15841. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15842. } break;
  15843. case GGML_OP_FLASH_ATTN_BACK:
  15844. {
  15845. const int64_t D = node->src[0]->ne[0];
  15846. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15847. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15848. if (node->src[1]->type == GGML_TYPE_F32) {
  15849. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15850. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15851. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15852. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15853. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15854. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15855. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15856. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15857. }
  15858. } break;
  15859. case GGML_OP_CROSS_ENTROPY_LOSS:
  15860. {
  15861. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15862. } break;
  15863. case GGML_OP_COUNT:
  15864. {
  15865. GGML_ASSERT(false);
  15866. } break;
  15867. default:
  15868. break;
  15869. }
  15870. work_size = MAX(work_size, cur);
  15871. }
  15872. if (work_size > 0) {
  15873. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15874. }
  15875. cplan.n_threads = MIN(max_tasks, n_threads);
  15876. cplan.work_size = work_size;
  15877. cplan.work_data = NULL;
  15878. return cplan;
  15879. }
  15880. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  15881. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  15882. #ifdef GGML_USE_OPENMP
  15883. if (n_threads > 1) {
  15884. #pragma omp parallel num_threads(n_threads)
  15885. {
  15886. #pragma omp single
  15887. {
  15888. // update the number of threads from the actual number of threads that we got from OpenMP
  15889. n_threads = omp_get_num_threads();
  15890. workers[0].shared->n_threads = n_threads;
  15891. }
  15892. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  15893. }
  15894. } else {
  15895. ggml_graph_compute_thread(&workers[0]);
  15896. }
  15897. #else
  15898. // create thread pool
  15899. if (n_threads > 1) {
  15900. for (int j = 1; j < n_threads; ++j) {
  15901. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15902. GGML_ASSERT(rc == 0);
  15903. UNUSED(rc);
  15904. }
  15905. }
  15906. // this is a work thread too
  15907. ggml_graph_compute_thread(&workers[0]);
  15908. // join or kill thread pool
  15909. if (n_threads > 1) {
  15910. for (int j = 1; j < n_threads; j++) {
  15911. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15912. GGML_ASSERT(rc == 0);
  15913. UNUSED(rc);
  15914. }
  15915. }
  15916. #endif
  15917. // don't leave affinity set on the main thread
  15918. clear_numa_thread_affinity();
  15919. for (int j = 0; j < n_threads; j++) {
  15920. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  15921. compute_status = workers[j].ec;
  15922. break;
  15923. }
  15924. }
  15925. return compute_status;
  15926. }
  15927. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15928. {
  15929. GGML_ASSERT(cplan);
  15930. GGML_ASSERT(cplan->n_threads > 0);
  15931. if (cplan->work_size > 0) {
  15932. GGML_ASSERT(cplan->work_data);
  15933. }
  15934. }
  15935. int n_threads = cplan->n_threads;
  15936. #if defined(GGML_USE_OPENMP)
  15937. n_threads = MIN(n_threads, omp_get_max_threads());
  15938. #endif
  15939. struct ggml_compute_state_shared state_shared = {
  15940. /*.cgraph =*/ cgraph,
  15941. /*.cgraph_plan =*/ cplan,
  15942. /*.perf_node_start_cycles =*/ 0,
  15943. /*.perf_node_start_time_us =*/ 0,
  15944. /*.n_threads =*/ n_threads,
  15945. /*.n_barrier =*/ 0,
  15946. /*.n_barrier_passed =*/ 0,
  15947. /*.abort_callback =*/ NULL,
  15948. /*.abort_callback_data =*/ NULL,
  15949. /*.current_chunk; =*/ 0,
  15950. };
  15951. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15952. const int64_t perf_start_cycles = ggml_perf_cycles();
  15953. const int64_t perf_start_time_us = ggml_perf_time_us();
  15954. for (int j = 0; j < n_threads; ++j) {
  15955. workers[j] = (struct ggml_compute_state) {
  15956. .thrd = 0,
  15957. .ith = j,
  15958. .shared = &state_shared,
  15959. .ec = GGML_STATUS_SUCCESS,
  15960. };
  15961. }
  15962. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  15963. // performance stats (graph)
  15964. {
  15965. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15966. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15967. cgraph->perf_runs++;
  15968. cgraph->perf_cycles += perf_cycles_cur;
  15969. cgraph->perf_time_us += perf_time_us_cur;
  15970. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15971. __func__, cgraph->perf_runs,
  15972. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15973. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15974. (double) perf_time_us_cur / 1000.0,
  15975. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15976. }
  15977. return compute_status;
  15978. }
  15979. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15980. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15981. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15982. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15983. return ggml_graph_compute(cgraph, &cplan);
  15984. }
  15985. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15986. for (int i = 0; i < cgraph->n_leafs; i++) {
  15987. struct ggml_tensor * leaf = cgraph->leafs[i];
  15988. if (strcmp(leaf->name, name) == 0) {
  15989. return leaf;
  15990. }
  15991. }
  15992. for (int i = 0; i < cgraph->n_nodes; i++) {
  15993. struct ggml_tensor * node = cgraph->nodes[i];
  15994. if (strcmp(node->name, name) == 0) {
  15995. return node;
  15996. }
  15997. }
  15998. return NULL;
  15999. }
  16000. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16001. const int64_t * ne = tensor->ne;
  16002. const size_t * nb = tensor->nb;
  16003. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16004. ggml_type_name(tensor->type),
  16005. ggml_op_name (tensor->op),
  16006. ggml_n_dims(tensor),
  16007. ne[0], ne[1], ne[2], ne[3],
  16008. nb[0], nb[1], nb[2], nb[3],
  16009. tensor->data,
  16010. tensor->name);
  16011. }
  16012. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16013. const int64_t * ne = tensor->ne;
  16014. const size_t * nb = tensor->nb;
  16015. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16016. arg,
  16017. ggml_type_name(tensor->type),
  16018. ggml_op_name (tensor->op),
  16019. ggml_n_dims(tensor),
  16020. ne[0], ne[1], ne[2], ne[3],
  16021. nb[0], nb[1], nb[2], nb[3],
  16022. tensor->data,
  16023. tensor->name);
  16024. }
  16025. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16026. uint64_t size_eval = 0;
  16027. // compute size of intermediate results
  16028. // TODO: does not take into account scratch buffers !!!!
  16029. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16030. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16031. }
  16032. // print
  16033. {
  16034. FILE * fout = stdout;
  16035. fprintf(fout, "\n");
  16036. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16037. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16038. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16039. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16040. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16041. // header
  16042. fprintf(fout, "\n");
  16043. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16044. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16045. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16046. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16047. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16048. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16049. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16050. }
  16051. // header
  16052. fprintf(fout, "\n");
  16053. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16054. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16055. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16056. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16057. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16058. if (cgraph->nodes[i]->src[j]) {
  16059. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16060. }
  16061. }
  16062. fprintf(fout, "\n");
  16063. }
  16064. fprintf(fout, "\n");
  16065. }
  16066. // write binary data
  16067. {
  16068. FILE * fout = ggml_fopen(fname, "wb");
  16069. if (!fout) {
  16070. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16071. return;
  16072. }
  16073. // header
  16074. {
  16075. const uint32_t magic = GGML_FILE_MAGIC;
  16076. const uint32_t version = GGML_FILE_VERSION;
  16077. const uint32_t n_leafs = cgraph->n_leafs;
  16078. const uint32_t n_nodes = cgraph->n_nodes;
  16079. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16080. fwrite(&version, sizeof(uint32_t), 1, fout);
  16081. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16082. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16083. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16084. }
  16085. // leafs
  16086. {
  16087. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16088. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16089. const uint32_t type = tensor->type;
  16090. const uint32_t op = tensor->op;
  16091. fwrite(&type, sizeof(uint32_t), 1, fout);
  16092. fwrite(&op, sizeof(uint32_t), 1, fout);
  16093. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16094. const uint64_t ne = tensor->ne[j];
  16095. const uint64_t nb = tensor->nb[j];
  16096. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16097. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16098. }
  16099. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16100. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16101. // dump the data
  16102. // TODO: pad this to 32 byte boundary
  16103. {
  16104. const size_t size = ggml_nbytes(tensor);
  16105. fwrite(tensor->data, sizeof(char), size, fout);
  16106. }
  16107. }
  16108. }
  16109. // nodes
  16110. {
  16111. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16112. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16113. const uint32_t type = tensor->type;
  16114. const uint32_t op = tensor->op;
  16115. fwrite(&type, sizeof(uint32_t), 1, fout);
  16116. fwrite(&op, sizeof(uint32_t), 1, fout);
  16117. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16118. const uint64_t ne = tensor->ne[j];
  16119. const uint64_t nb = tensor->nb[j];
  16120. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16121. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16122. }
  16123. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16124. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16125. // output the op arguments
  16126. {
  16127. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16128. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16129. args[j] = tensor->src[j];
  16130. }
  16131. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16132. if (args[j]) {
  16133. int32_t idx = -1;
  16134. // check if leaf
  16135. {
  16136. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16137. if (args[j] == cgraph->leafs[k]) {
  16138. idx = k;
  16139. break;
  16140. }
  16141. }
  16142. }
  16143. // check if node
  16144. if (idx == -1) {
  16145. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16146. if (args[j] == cgraph->nodes[k]) {
  16147. idx = cgraph->n_leafs + k;
  16148. break;
  16149. }
  16150. }
  16151. }
  16152. if (idx == -1) {
  16153. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16154. fclose(fout);
  16155. return;
  16156. }
  16157. fwrite(&idx, sizeof(int32_t), 1, fout);
  16158. } else {
  16159. const int32_t nul = -1;
  16160. fwrite(&nul, sizeof(int32_t), 1, fout);
  16161. }
  16162. }
  16163. }
  16164. }
  16165. }
  16166. fclose(fout);
  16167. }
  16168. }
  16169. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16170. assert(*ctx_data == NULL);
  16171. assert(*ctx_eval == NULL);
  16172. struct ggml_cgraph * result = NULL;
  16173. struct ggml_tensor * data = NULL;
  16174. // read file into data
  16175. {
  16176. FILE * fin = ggml_fopen(fname, "rb");
  16177. if (!fin) {
  16178. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16179. return result;
  16180. }
  16181. size_t fsize = 0;
  16182. fseek(fin, 0, SEEK_END);
  16183. fsize = ftell(fin);
  16184. fseek(fin, 0, SEEK_SET);
  16185. // create the data context
  16186. {
  16187. const size_t overhead = 1*ggml_tensor_overhead();
  16188. struct ggml_init_params params = {
  16189. .mem_size = fsize + overhead,
  16190. .mem_buffer = NULL,
  16191. .no_alloc = false,
  16192. };
  16193. *ctx_data = ggml_init(params);
  16194. if (!*ctx_data) {
  16195. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16196. fclose(fin);
  16197. return result;
  16198. }
  16199. }
  16200. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16201. {
  16202. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16203. if (ret != fsize) {
  16204. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16205. fclose(fin);
  16206. return result;
  16207. }
  16208. }
  16209. fclose(fin);
  16210. }
  16211. // populate result
  16212. {
  16213. char * ptr = (char *) data->data;
  16214. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16215. if (magic != GGML_FILE_MAGIC) {
  16216. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16217. return result;
  16218. }
  16219. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16220. if (version != GGML_FILE_VERSION) {
  16221. fprintf(stderr, "%s: invalid version number\n", __func__);
  16222. return result;
  16223. }
  16224. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16225. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16226. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16227. const int graph_size = MAX(n_leafs, n_nodes);
  16228. // create the data context
  16229. {
  16230. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16231. struct ggml_init_params params = {
  16232. .mem_size = size_eval + overhead,
  16233. .mem_buffer = NULL,
  16234. .no_alloc = true,
  16235. };
  16236. *ctx_eval = ggml_init(params);
  16237. if (!*ctx_eval) {
  16238. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16239. return result;
  16240. }
  16241. }
  16242. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16243. result->n_leafs = n_leafs;
  16244. result->n_nodes = n_nodes;
  16245. // leafs
  16246. {
  16247. uint32_t type;
  16248. uint32_t op;
  16249. for (uint32_t i = 0; i < n_leafs; ++i) {
  16250. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16251. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16252. int64_t ne[GGML_MAX_DIMS];
  16253. size_t nb[GGML_MAX_DIMS];
  16254. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16255. uint64_t ne_cur;
  16256. uint64_t nb_cur;
  16257. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16258. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16259. ne[j] = ne_cur;
  16260. nb[j] = nb_cur;
  16261. }
  16262. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16263. tensor->op = (enum ggml_op) op;
  16264. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16265. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16266. tensor->data = (void *) ptr;
  16267. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16268. tensor->nb[j] = nb[j];
  16269. }
  16270. result->leafs[i] = tensor;
  16271. ptr += ggml_nbytes(tensor);
  16272. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16273. }
  16274. }
  16275. ggml_set_no_alloc(*ctx_eval, false);
  16276. // nodes
  16277. {
  16278. uint32_t type;
  16279. uint32_t op;
  16280. for (uint32_t i = 0; i < n_nodes; ++i) {
  16281. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16282. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16283. enum ggml_op eop = (enum ggml_op) op;
  16284. int64_t ne[GGML_MAX_DIMS];
  16285. size_t nb[GGML_MAX_DIMS];
  16286. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16287. uint64_t ne_cur;
  16288. uint64_t nb_cur;
  16289. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16290. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16291. ne[j] = ne_cur;
  16292. nb[j] = nb_cur;
  16293. }
  16294. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16295. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16296. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16297. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16298. // parse args
  16299. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16300. const int32_t arg_idx = ptr_arg_idx[j];
  16301. if (arg_idx == -1) {
  16302. continue;
  16303. }
  16304. if (arg_idx < result->n_leafs) {
  16305. args[j] = result->leafs[arg_idx];
  16306. } else {
  16307. args[j] = result->nodes[arg_idx - result->n_leafs];
  16308. }
  16309. }
  16310. // create the tensor
  16311. // "view" operations are handled differently
  16312. // TODO: handle inplace ops - currently a copy is always made
  16313. struct ggml_tensor * tensor = NULL;
  16314. switch (eop) {
  16315. // TODO: implement other view ops
  16316. case GGML_OP_RESHAPE:
  16317. {
  16318. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16319. } break;
  16320. case GGML_OP_VIEW:
  16321. {
  16322. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16323. size_t offs;
  16324. memcpy(&offs, ptr_op_params, sizeof(offs));
  16325. tensor->data = ((char *) tensor->data) + offs;
  16326. } break;
  16327. case GGML_OP_TRANSPOSE:
  16328. {
  16329. tensor = ggml_transpose(*ctx_eval, args[0]);
  16330. } break;
  16331. case GGML_OP_PERMUTE:
  16332. {
  16333. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16334. } break;
  16335. default:
  16336. {
  16337. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16338. tensor->op = eop;
  16339. } break;
  16340. }
  16341. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16342. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16343. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16344. tensor->nb[j] = nb[j];
  16345. }
  16346. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16347. tensor->src[j] = args[j];
  16348. }
  16349. result->nodes[i] = tensor;
  16350. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16351. }
  16352. }
  16353. }
  16354. return result;
  16355. }
  16356. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16357. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16358. GGML_PRINT("=== GRAPH ===\n");
  16359. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16360. for (int i = 0; i < cgraph->n_nodes; i++) {
  16361. struct ggml_tensor * node = cgraph->nodes[i];
  16362. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16363. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16364. i,
  16365. node->ne[0], node->ne[1], node->ne[2],
  16366. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16367. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16368. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16369. (double) node->perf_time_us / 1000.0,
  16370. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16371. }
  16372. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16373. for (int i = 0; i < cgraph->n_leafs; i++) {
  16374. struct ggml_tensor * node = cgraph->leafs[i];
  16375. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16376. i,
  16377. node->ne[0], node->ne[1],
  16378. ggml_op_name(node->op),
  16379. ggml_get_name(node));
  16380. }
  16381. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16382. if (perf_total_per_op_us[i] == 0) {
  16383. continue;
  16384. }
  16385. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16386. }
  16387. GGML_PRINT("========================================\n");
  16388. }
  16389. // check if node is part of the graph
  16390. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16391. if (cgraph == NULL) {
  16392. return true;
  16393. }
  16394. for (int i = 0; i < cgraph->n_nodes; i++) {
  16395. if (cgraph->nodes[i] == node) {
  16396. return true;
  16397. }
  16398. }
  16399. return false;
  16400. }
  16401. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16402. for (int i = 0; i < cgraph->n_nodes; i++) {
  16403. struct ggml_tensor * parent = cgraph->nodes[i];
  16404. if (parent->grad == node) {
  16405. return parent;
  16406. }
  16407. }
  16408. return NULL;
  16409. }
  16410. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16411. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16412. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16413. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16414. gparent0 ? (void *) gparent0 : (void *) parent,
  16415. gparent0 ? "g" : "x",
  16416. gparent ? (void *) gparent : (void *) node,
  16417. gparent ? "g" : "x",
  16418. gparent ? "empty" : "vee",
  16419. gparent ? "dashed" : "solid",
  16420. label);
  16421. }
  16422. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16423. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16424. (void *) parent, "x",
  16425. (void *) node, "x",
  16426. label);
  16427. }
  16428. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16429. char color[16];
  16430. FILE * fp = ggml_fopen(filename, "w");
  16431. GGML_ASSERT(fp);
  16432. fprintf(fp, "digraph G {\n");
  16433. fprintf(fp, " newrank = true;\n");
  16434. fprintf(fp, " rankdir = LR;\n");
  16435. for (int i = 0; i < gb->n_nodes; i++) {
  16436. struct ggml_tensor * node = gb->nodes[i];
  16437. if (ggml_graph_get_parent(gb, node) != NULL) {
  16438. continue;
  16439. }
  16440. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16441. snprintf(color, sizeof(color), "yellow");
  16442. } else if (node->grad) {
  16443. if (ggml_graph_find(gf, node)) {
  16444. snprintf(color, sizeof(color), "green");
  16445. } else {
  16446. snprintf(color, sizeof(color), "lightblue");
  16447. }
  16448. } else {
  16449. snprintf(color, sizeof(color), "white");
  16450. }
  16451. fprintf(fp, " \"%p\" [ "
  16452. "style = filled; fillcolor = %s; shape = record; "
  16453. "label=\"",
  16454. (void *) node, color);
  16455. if (strlen(node->name) > 0) {
  16456. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16457. } else {
  16458. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16459. }
  16460. if (ggml_is_matrix(node)) {
  16461. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16462. } else {
  16463. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16464. }
  16465. if (node->grad) {
  16466. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16467. } else {
  16468. fprintf(fp, "\"; ]\n");
  16469. }
  16470. }
  16471. for (int i = 0; i < gb->n_leafs; i++) {
  16472. struct ggml_tensor * node = gb->leafs[i];
  16473. snprintf(color, sizeof(color), "pink");
  16474. fprintf(fp, " \"%p\" [ "
  16475. "style = filled; fillcolor = %s; shape = record; "
  16476. "label=\"<x>",
  16477. (void *) node, color);
  16478. if (strlen(node->name) > 0) {
  16479. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16480. } else {
  16481. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16482. }
  16483. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16484. if (ggml_nelements(node) < 5) {
  16485. fprintf(fp, " | (");
  16486. for (int j = 0; j < ggml_nelements(node); j++) {
  16487. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16488. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16489. }
  16490. else if (node->type == GGML_TYPE_F32 ||
  16491. node->type == GGML_TYPE_F16 ||
  16492. node->type == GGML_TYPE_BF16) {
  16493. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16494. }
  16495. else {
  16496. fprintf(fp, "#");
  16497. }
  16498. if (j < ggml_nelements(node) - 1) {
  16499. fprintf(fp, ", ");
  16500. }
  16501. }
  16502. fprintf(fp, ")");
  16503. }
  16504. fprintf(fp, "\"; ]\n");
  16505. }
  16506. for (int i = 0; i < gb->n_nodes; i++) {
  16507. struct ggml_tensor * node = gb->nodes[i];
  16508. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16509. if (node->src[j]) {
  16510. char label[16];
  16511. snprintf(label, sizeof(label), "src %d", j);
  16512. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16513. }
  16514. }
  16515. }
  16516. for (int i = 0; i < gb->n_leafs; i++) {
  16517. struct ggml_tensor * node = gb->leafs[i];
  16518. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16519. if (node->src[j]) {
  16520. char label[16];
  16521. snprintf(label, sizeof(label), "src %d", j);
  16522. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16523. }
  16524. }
  16525. }
  16526. fprintf(fp, "}\n");
  16527. fclose(fp);
  16528. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16529. }
  16530. ////////////////////////////////////////////////////////////////////////////////
  16531. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16532. int i = 0;
  16533. for (int p = 0; p < np; ++p) {
  16534. const int64_t ne = ggml_nelements(ps[p]) ;
  16535. // TODO: add function to set tensor from array
  16536. for (int64_t j = 0; j < ne; ++j) {
  16537. ggml_set_f32_1d(ps[p], j, x[i++]);
  16538. }
  16539. }
  16540. }
  16541. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16542. int i = 0;
  16543. for (int p = 0; p < np; ++p) {
  16544. const int64_t ne = ggml_nelements(ps[p]) ;
  16545. // TODO: add function to get all elements at once
  16546. for (int64_t j = 0; j < ne; ++j) {
  16547. x[i++] = ggml_get_f32_1d(ps[p], j);
  16548. }
  16549. }
  16550. }
  16551. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16552. int64_t i = 0;
  16553. for (int p = 0; p < np; ++p) {
  16554. const int64_t ne = ggml_nelements(ps[p]) ;
  16555. // TODO: add function to get all elements at once
  16556. for (int64_t j = 0; j < ne; ++j) {
  16557. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16558. }
  16559. }
  16560. }
  16561. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16562. int64_t i = 0;
  16563. for (int p = 0; p < np; ++p) {
  16564. const int64_t ne = ggml_nelements(ps[p]) ;
  16565. // TODO: add function to get all elements at once
  16566. for (int64_t j = 0; j < ne; ++j) {
  16567. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16568. }
  16569. }
  16570. }
  16571. //
  16572. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16573. //
  16574. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16575. //
  16576. static enum ggml_opt_result ggml_opt_adam(
  16577. struct ggml_context * ctx,
  16578. struct ggml_opt_context * opt,
  16579. struct ggml_opt_params params,
  16580. struct ggml_tensor * f,
  16581. struct ggml_cgraph * gf,
  16582. struct ggml_cgraph * gb,
  16583. ggml_opt_callback callback,
  16584. void * callback_data) {
  16585. GGML_ASSERT(ggml_is_scalar(f));
  16586. // these will store the parameters we want to optimize
  16587. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16588. int np = 0;
  16589. int64_t nx = 0;
  16590. for (int i = 0; i < gf->n_nodes; ++i) {
  16591. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16592. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16593. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16594. ps[np++] = gf->nodes[i];
  16595. nx += ggml_nelements(gf->nodes[i]);
  16596. }
  16597. }
  16598. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16599. int iter = opt->iter;
  16600. ggml_opt_init(opt->ctx, opt, params, nx);
  16601. opt->iter = iter;
  16602. }
  16603. // constants
  16604. float sched = params.adam.sched;
  16605. const float alpha = params.adam.alpha;
  16606. const float decay = params.adam.decay * alpha;
  16607. const float beta1 = params.adam.beta1;
  16608. const float beta2 = params.adam.beta2;
  16609. const float eps = params.adam.eps;
  16610. const float gclip = params.adam.gclip;
  16611. const int decay_min_ndim = params.adam.decay_min_ndim;
  16612. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16613. const float accum_norm = 1.0f / (float) n_accum;
  16614. float * g = opt->adam.g->data; // gradients
  16615. float * m = opt->adam.m->data; // first moment
  16616. float * v = opt->adam.v->data; // second moment
  16617. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16618. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16619. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16620. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16621. bool cancel = false;
  16622. // compute the function value
  16623. float fx = 0;
  16624. ggml_set_zero(opt->adam.g);
  16625. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16626. if (callback) {
  16627. callback(callback_data, accum_step, &sched, &cancel);
  16628. if (cancel) {
  16629. return GGML_OPT_RESULT_CANCEL;
  16630. }
  16631. }
  16632. // ggml_graph_reset (gf);
  16633. ggml_set_f32 (f->grad, 1.0f);
  16634. ggml_graph_compute(gb, &cplan);
  16635. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16636. fx += ggml_get_f32_1d(f, 0);
  16637. }
  16638. fx *= accum_norm;
  16639. opt->adam.fx_prev = fx;
  16640. opt->adam.fx_best = opt->adam.fx_prev;
  16641. if (pf) {
  16642. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16643. }
  16644. opt->loss_before = opt->adam.fx_prev;
  16645. opt->loss_after = opt->adam.fx_prev;
  16646. // initialize
  16647. if (opt->just_initialized) {
  16648. opt->adam.n_no_improvement = 0;
  16649. opt->just_initialized = false;
  16650. }
  16651. float * fx_best = &opt->adam.fx_best;
  16652. float * fx_prev = &opt->adam.fx_prev;
  16653. int * n_no_improvement = &opt->adam.n_no_improvement;
  16654. int iter0 = opt->iter;
  16655. // run the optimizer
  16656. for (int t = 0; t < params.adam.n_iter; ++t) {
  16657. opt->iter = iter0 + t + 1;
  16658. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16659. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16660. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16661. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16662. for (int i = 0; i < np; ++i) {
  16663. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16664. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16665. }
  16666. const int64_t t_start_wall = ggml_time_us();
  16667. const int64_t t_start_cpu = ggml_cycles();
  16668. UNUSED(t_start_wall);
  16669. UNUSED(t_start_cpu);
  16670. {
  16671. float gnorm = 1.0f;
  16672. if (gclip > 0.0f) {
  16673. // gradient clipping
  16674. ggml_float sum = 0.0;
  16675. for (int64_t i = 0; i < nx; ++i) {
  16676. sum += (ggml_float)(g[i]*g[i]);
  16677. }
  16678. ggml_float norm = sqrt(sum);
  16679. if (norm > (ggml_float) gclip) {
  16680. gnorm = (float) ((ggml_float) gclip / norm);
  16681. }
  16682. }
  16683. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16684. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16685. int64_t i = 0;
  16686. for (int p = 0; p < np; ++p) {
  16687. const int64_t ne = ggml_nelements(ps[p]);
  16688. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16689. for (int64_t j = 0; j < ne; ++j) {
  16690. float x = ggml_get_f32_1d(ps[p], j);
  16691. float g_ = g[i]*gnorm;
  16692. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16693. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16694. float mh = m[i]*beta1h;
  16695. float vh = v[i]*beta2h;
  16696. vh = sqrtf(vh) + eps;
  16697. x = x*(1.0f - p_decay) - mh/vh;
  16698. ggml_set_f32_1d(ps[p], j, x);
  16699. ++i;
  16700. }
  16701. }
  16702. }
  16703. fx = 0;
  16704. ggml_set_zero(opt->adam.g);
  16705. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16706. if (callback) {
  16707. callback(callback_data, accum_step, &sched, &cancel);
  16708. if (cancel) {
  16709. return GGML_OPT_RESULT_CANCEL;;
  16710. }
  16711. }
  16712. // ggml_graph_reset (gf);
  16713. ggml_set_f32 (f->grad, 1.0f);
  16714. ggml_graph_compute(gb, &cplan);
  16715. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16716. fx += ggml_get_f32_1d(f, 0);
  16717. }
  16718. fx *= accum_norm;
  16719. opt->loss_after = fx;
  16720. // check convergence
  16721. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16722. GGML_PRINT_DEBUG("converged\n");
  16723. return GGML_OPT_RESULT_OK;
  16724. }
  16725. // delta-based convergence test
  16726. if (pf != NULL) {
  16727. // need at least params.past iterations to start checking for convergence
  16728. if (params.past <= iter0 + t) {
  16729. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16730. if (fabsf(rate) < params.delta) {
  16731. return GGML_OPT_RESULT_OK;
  16732. }
  16733. }
  16734. pf[(iter0 + t)%params.past] = fx;
  16735. }
  16736. // check for improvement
  16737. if (params.max_no_improvement > 0) {
  16738. if (fx_best[0] > fx) {
  16739. fx_best[0] = fx;
  16740. n_no_improvement[0] = 0;
  16741. } else {
  16742. ++n_no_improvement[0];
  16743. if (n_no_improvement[0] >= params.max_no_improvement) {
  16744. return GGML_OPT_RESULT_OK;
  16745. }
  16746. }
  16747. }
  16748. fx_prev[0] = fx;
  16749. {
  16750. const int64_t t_end_cpu = ggml_cycles();
  16751. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16752. UNUSED(t_end_cpu);
  16753. const int64_t t_end_wall = ggml_time_us();
  16754. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16755. UNUSED(t_end_wall);
  16756. }
  16757. }
  16758. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16759. }
  16760. //
  16761. // L-BFGS
  16762. //
  16763. // the L-BFGS implementation below is based on the following implementation:
  16764. //
  16765. // https://github.com/chokkan/liblbfgs
  16766. //
  16767. struct ggml_lbfgs_iteration_data {
  16768. float alpha;
  16769. float ys;
  16770. float * s;
  16771. float * y;
  16772. };
  16773. static enum ggml_opt_result linesearch_backtracking(
  16774. const struct ggml_opt_params * params,
  16775. int nx,
  16776. float * x,
  16777. float * fx,
  16778. float * g,
  16779. float * d,
  16780. float * step,
  16781. const float * xp,
  16782. struct ggml_tensor * f,
  16783. struct ggml_cgraph * gb,
  16784. struct ggml_cplan * cplan,
  16785. const int np,
  16786. struct ggml_tensor * ps[],
  16787. bool * cancel,
  16788. ggml_opt_callback callback,
  16789. void * callback_data) {
  16790. int count = 0;
  16791. float width = 0.0f;
  16792. float dg = 0.0f;
  16793. float finit = 0.0f;
  16794. float dginit = 0.0f;
  16795. float dgtest = 0.0f;
  16796. const float dec = 0.5f;
  16797. const float inc = 2.1f;
  16798. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16799. const float accum_norm = 1.0f / (float) n_accum;
  16800. if (*step <= 0.f) {
  16801. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16802. }
  16803. // compute the initial gradient in the search direction
  16804. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16805. // make sure that d points to a descent direction
  16806. if (0 < dginit) {
  16807. return GGML_LINESEARCH_FAIL;
  16808. }
  16809. // initialize local variables
  16810. finit = *fx;
  16811. dgtest = params->lbfgs.ftol*dginit;
  16812. while (true) {
  16813. ggml_vec_cpy_f32(nx, x, xp);
  16814. ggml_vec_mad_f32(nx, x, d, *step);
  16815. // evaluate the function and gradient values
  16816. {
  16817. ggml_opt_set_params(np, ps, x);
  16818. *fx = 0;
  16819. memset(g, 0, sizeof(float)*nx);
  16820. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16821. if (callback) {
  16822. // LBFG-S does not support learning rate -> ignore learning schedule
  16823. float sched = 0;
  16824. callback(callback_data, accum_step, &sched, cancel);
  16825. if (*cancel) {
  16826. return GGML_OPT_RESULT_CANCEL;
  16827. }
  16828. }
  16829. // ggml_graph_reset (gf);
  16830. ggml_set_f32 (f->grad, 1.0f);
  16831. ggml_graph_compute(gb, cplan);
  16832. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16833. *fx += ggml_get_f32_1d(f, 0);
  16834. }
  16835. *fx *= accum_norm;
  16836. }
  16837. ++count;
  16838. if (*fx > finit + (*step)*dgtest) {
  16839. width = dec;
  16840. } else {
  16841. // Armijo condition is satisfied
  16842. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16843. return count;
  16844. }
  16845. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16846. // check the Wolfe condition
  16847. if (dg < params->lbfgs.wolfe * dginit) {
  16848. width = inc;
  16849. } else {
  16850. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16851. // regular Wolfe conditions
  16852. return count;
  16853. }
  16854. if(dg > -params->lbfgs.wolfe*dginit) {
  16855. width = dec;
  16856. } else {
  16857. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16858. return count;
  16859. }
  16860. }
  16861. }
  16862. if (*step < params->lbfgs.min_step) {
  16863. return GGML_LINESEARCH_MINIMUM_STEP;
  16864. }
  16865. if (*step > params->lbfgs.max_step) {
  16866. return GGML_LINESEARCH_MAXIMUM_STEP;
  16867. }
  16868. if (params->lbfgs.max_linesearch <= count) {
  16869. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16870. }
  16871. (*step) *= width;
  16872. }
  16873. GGML_ASSERT(false && "line search failed");
  16874. return GGML_LINESEARCH_FAIL;
  16875. }
  16876. static enum ggml_opt_result ggml_opt_lbfgs(
  16877. struct ggml_context * ctx,
  16878. struct ggml_opt_context * opt,
  16879. struct ggml_opt_params params,
  16880. struct ggml_tensor * f,
  16881. struct ggml_cgraph * gf,
  16882. struct ggml_cgraph * gb,
  16883. ggml_opt_callback callback,
  16884. void * callback_data) {
  16885. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16886. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16887. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16888. return GGML_OPT_RESULT_INVALID_WOLFE;
  16889. }
  16890. }
  16891. const int m = params.lbfgs.m;
  16892. // these will store the parameters we want to optimize
  16893. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16894. int np = 0;
  16895. int nx = 0;
  16896. for (int i = 0; i < gf->n_nodes; ++i) {
  16897. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16898. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16899. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16900. ps[np++] = gf->nodes[i];
  16901. nx += ggml_nelements(gf->nodes[i]);
  16902. }
  16903. }
  16904. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16905. int iter = opt->iter;
  16906. ggml_opt_init(ctx, opt, params, nx);
  16907. opt->iter = iter;
  16908. }
  16909. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16910. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16911. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16912. float * x = opt->lbfgs.x->data; // current parameters
  16913. float * xp = opt->lbfgs.xp->data; // previous parameters
  16914. float * g = opt->lbfgs.g->data; // current gradient
  16915. float * gp = opt->lbfgs.gp->data; // previous gradient
  16916. float * d = opt->lbfgs.d->data; // search direction
  16917. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16918. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16919. const float accum_norm = 1.0f / (float) n_accum;
  16920. float fx = 0.0f; // cost function value
  16921. float xnorm = 0.0f; // ||x||
  16922. float gnorm = 0.0f; // ||g||
  16923. // initialize x from the graph nodes
  16924. ggml_opt_get_params(np, ps, x);
  16925. // the L-BFGS memory
  16926. float * lm_alpha = opt->lbfgs.lmal->data;
  16927. float * lm_ys = opt->lbfgs.lmys->data;
  16928. float * lm_s = opt->lbfgs.lms->data;
  16929. float * lm_y = opt->lbfgs.lmy->data;
  16930. bool cancel = false;
  16931. // evaluate the function value and its gradient
  16932. {
  16933. ggml_opt_set_params(np, ps, x);
  16934. fx = 0;
  16935. memset(g, 0, sizeof(float)*nx);
  16936. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16937. if (callback) {
  16938. // LBFG-S does not support learning rate -> ignore learning schedule
  16939. float sched = 0;
  16940. callback(callback_data, accum_step, &sched, &cancel);
  16941. if (cancel) {
  16942. return GGML_OPT_RESULT_CANCEL;
  16943. }
  16944. }
  16945. // ggml_graph_reset (gf);
  16946. ggml_set_f32 (f->grad, 1.0f);
  16947. ggml_graph_compute(gb, &cplan);
  16948. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16949. fx += ggml_get_f32_1d(f, 0);
  16950. }
  16951. fx *= accum_norm;
  16952. opt->loss_before = fx;
  16953. opt->loss_after = fx;
  16954. }
  16955. // search direction = -gradient
  16956. ggml_vec_neg_f32(nx, d, g);
  16957. // ||x||, ||g||
  16958. ggml_vec_norm_f32(nx, &xnorm, x);
  16959. ggml_vec_norm_f32(nx, &gnorm, g);
  16960. if (xnorm < 1.0f) {
  16961. xnorm = 1.0f;
  16962. }
  16963. // already optimized
  16964. if (gnorm/xnorm <= params.lbfgs.eps) {
  16965. return GGML_OPT_RESULT_OK;
  16966. }
  16967. if (opt->just_initialized) {
  16968. if (pf) {
  16969. pf[0] = fx;
  16970. }
  16971. opt->lbfgs.fx_best = fx;
  16972. // initial step
  16973. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16974. opt->lbfgs.j = 0;
  16975. opt->lbfgs.k = 1;
  16976. opt->lbfgs.end = 0;
  16977. opt->lbfgs.n_no_improvement = 0;
  16978. opt->just_initialized = false;
  16979. }
  16980. float * fx_best = &opt->lbfgs.fx_best;
  16981. float * step = &opt->lbfgs.step;
  16982. int * j = &opt->lbfgs.j;
  16983. int * k = &opt->lbfgs.k;
  16984. int * end = &opt->lbfgs.end;
  16985. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16986. int ls = 0;
  16987. int bound = 0;
  16988. float ys = 0.0f;
  16989. float yy = 0.0f;
  16990. float beta = 0.0f;
  16991. int it = 0;
  16992. while (true) {
  16993. // store the current position and gradient vectors
  16994. ggml_vec_cpy_f32(nx, xp, x);
  16995. ggml_vec_cpy_f32(nx, gp, g);
  16996. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16997. // to determine if the optimization should be cancelled
  16998. // this is a simple change, but not doing this atm, since I don't have a nice
  16999. // way to test and don't want to break something with so many changes lined up
  17000. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17001. if (cancel) {
  17002. return GGML_OPT_RESULT_CANCEL;
  17003. }
  17004. if (ls < 0) {
  17005. // linesearch failed - go back to the previous point and return
  17006. ggml_vec_cpy_f32(nx, x, xp);
  17007. ggml_vec_cpy_f32(nx, g, gp);
  17008. return ls;
  17009. }
  17010. opt->loss_after = fx;
  17011. ggml_vec_norm_f32(nx, &xnorm, x);
  17012. ggml_vec_norm_f32(nx, &gnorm, g);
  17013. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17014. if (xnorm < 1.0f) {
  17015. xnorm = 1.0f;
  17016. }
  17017. if (gnorm/xnorm <= params.lbfgs.eps) {
  17018. // converged
  17019. return GGML_OPT_RESULT_OK;
  17020. }
  17021. // delta-based convergence test
  17022. if (pf != NULL) {
  17023. // need at least params.past iterations to start checking for convergence
  17024. if (params.past <= k[0]) {
  17025. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17026. if (fabsf(rate) < params.delta) {
  17027. return GGML_OPT_RESULT_OK;
  17028. }
  17029. }
  17030. pf[k[0]%params.past] = fx;
  17031. }
  17032. // check for improvement
  17033. if (params.max_no_improvement > 0) {
  17034. if (fx < fx_best[0]) {
  17035. fx_best[0] = fx;
  17036. n_no_improvement[0] = 0;
  17037. } else {
  17038. n_no_improvement[0]++;
  17039. if (n_no_improvement[0] >= params.max_no_improvement) {
  17040. return GGML_OPT_RESULT_OK;
  17041. }
  17042. }
  17043. }
  17044. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17045. // reached the maximum number of iterations
  17046. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17047. }
  17048. // update vectors s and y:
  17049. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17050. // y_{k+1} = g_{k+1} - g_{k}.
  17051. //
  17052. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17053. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17054. // compute scalars ys and yy:
  17055. // ys = y^t \cdot s -> 1 / \rho.
  17056. // yy = y^t \cdot y.
  17057. //
  17058. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17059. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17060. lm_ys[end[0]] = ys;
  17061. // find new search direction
  17062. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17063. bound = (m <= k[0]) ? m : k[0];
  17064. k[0]++;
  17065. it++;
  17066. end[0] = (end[0] + 1)%m;
  17067. // initialize search direction with -g
  17068. ggml_vec_neg_f32(nx, d, g);
  17069. j[0] = end[0];
  17070. for (int i = 0; i < bound; ++i) {
  17071. j[0] = (j[0] + m - 1) % m;
  17072. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17073. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17074. lm_alpha[j[0]] /= lm_ys[j[0]];
  17075. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17076. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17077. }
  17078. ggml_vec_scale_f32(nx, d, ys/yy);
  17079. for (int i = 0; i < bound; ++i) {
  17080. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17081. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17082. beta /= lm_ys[j[0]];
  17083. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17084. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17085. j[0] = (j[0] + 1)%m;
  17086. }
  17087. step[0] = 1.0;
  17088. }
  17089. GGML_ASSERT(false && "lbfgs failed");
  17090. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17091. }
  17092. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17093. struct ggml_opt_params result;
  17094. switch (type) {
  17095. case GGML_OPT_TYPE_ADAM:
  17096. {
  17097. result = (struct ggml_opt_params) {
  17098. .type = GGML_OPT_TYPE_ADAM,
  17099. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17100. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17101. .past = 0,
  17102. .delta = 1e-5f,
  17103. .max_no_improvement = 100,
  17104. .print_forward_graph = true,
  17105. .print_backward_graph = true,
  17106. .n_gradient_accumulation = 1,
  17107. .adam = {
  17108. .n_iter = 10000,
  17109. .sched = 1.000f,
  17110. .decay = 0.0f,
  17111. .decay_min_ndim = 2,
  17112. .alpha = 0.001f,
  17113. .beta1 = 0.9f,
  17114. .beta2 = 0.999f,
  17115. .eps = 1e-8f,
  17116. .eps_f = 1e-5f,
  17117. .eps_g = 1e-3f,
  17118. .gclip = 0.0f,
  17119. },
  17120. };
  17121. } break;
  17122. case GGML_OPT_TYPE_LBFGS:
  17123. {
  17124. result = (struct ggml_opt_params) {
  17125. .type = GGML_OPT_TYPE_LBFGS,
  17126. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17127. .n_threads = 1,
  17128. .past = 0,
  17129. .delta = 1e-5f,
  17130. .max_no_improvement = 0,
  17131. .print_forward_graph = true,
  17132. .print_backward_graph = true,
  17133. .n_gradient_accumulation = 1,
  17134. .lbfgs = {
  17135. .m = 6,
  17136. .n_iter = 100,
  17137. .max_linesearch = 20,
  17138. .eps = 1e-5f,
  17139. .ftol = 1e-4f,
  17140. .wolfe = 0.9f,
  17141. .min_step = 1e-20f,
  17142. .max_step = 1e+20f,
  17143. .linesearch = GGML_LINESEARCH_DEFAULT,
  17144. },
  17145. };
  17146. } break;
  17147. }
  17148. return result;
  17149. }
  17150. GGML_API void ggml_opt_init(
  17151. struct ggml_context * ctx,
  17152. struct ggml_opt_context * opt,
  17153. struct ggml_opt_params params,
  17154. int64_t nx) {
  17155. opt->ctx = ctx;
  17156. opt->params = params;
  17157. opt->iter = 0;
  17158. opt->nx = nx;
  17159. opt->just_initialized = true;
  17160. if (opt->ctx == NULL) {
  17161. struct ggml_init_params ctx_opt_params;
  17162. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17163. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17164. if (opt->params.past > 0) {
  17165. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17166. }
  17167. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17168. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17169. if (opt->params.past > 0) {
  17170. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17171. }
  17172. }
  17173. ctx_opt_params.mem_buffer = NULL;
  17174. ctx_opt_params.no_alloc = false;
  17175. opt->ctx = ggml_init(ctx_opt_params);
  17176. }
  17177. switch (opt->params.type) {
  17178. case GGML_OPT_TYPE_ADAM:
  17179. {
  17180. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17181. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17182. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17183. opt->adam.pf = params.past > 0
  17184. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17185. : NULL;
  17186. ggml_set_zero(opt->adam.m);
  17187. ggml_set_zero(opt->adam.v);
  17188. if (opt->adam.pf) {
  17189. ggml_set_zero(opt->adam.pf);
  17190. }
  17191. } break;
  17192. case GGML_OPT_TYPE_LBFGS:
  17193. {
  17194. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17195. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17196. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17197. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17198. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17199. opt->lbfgs.pf = params.past > 0
  17200. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17201. : NULL;
  17202. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17203. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17204. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17205. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17206. ggml_set_zero(opt->lbfgs.x);
  17207. ggml_set_zero(opt->lbfgs.xp);
  17208. ggml_set_zero(opt->lbfgs.g);
  17209. ggml_set_zero(opt->lbfgs.gp);
  17210. ggml_set_zero(opt->lbfgs.d);
  17211. if (opt->lbfgs.pf) {
  17212. ggml_set_zero(opt->lbfgs.pf);
  17213. }
  17214. ggml_set_zero(opt->lbfgs.lmal);
  17215. ggml_set_zero(opt->lbfgs.lmys);
  17216. ggml_set_zero(opt->lbfgs.lms);
  17217. ggml_set_zero(opt->lbfgs.lmy);
  17218. } break;
  17219. }
  17220. }
  17221. enum ggml_opt_result ggml_opt(
  17222. struct ggml_context * ctx,
  17223. struct ggml_opt_params params,
  17224. struct ggml_tensor * f) {
  17225. bool free_ctx = false;
  17226. if (ctx == NULL) {
  17227. struct ggml_init_params params_ctx = {
  17228. .mem_size = 16*1024*1024,
  17229. .mem_buffer = NULL,
  17230. .no_alloc = false,
  17231. };
  17232. ctx = ggml_init(params_ctx);
  17233. if (ctx == NULL) {
  17234. return GGML_OPT_RESULT_NO_CONTEXT;
  17235. }
  17236. free_ctx = true;
  17237. }
  17238. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17239. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17240. ggml_opt_init(ctx, opt, params, 0);
  17241. result = ggml_opt_resume(ctx, opt, f);
  17242. if (free_ctx) {
  17243. ggml_free(ctx);
  17244. }
  17245. return result;
  17246. }
  17247. enum ggml_opt_result ggml_opt_resume(
  17248. struct ggml_context * ctx,
  17249. struct ggml_opt_context * opt,
  17250. struct ggml_tensor * f) {
  17251. // build forward + backward compute graphs
  17252. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17253. ggml_build_forward_expand(gf, f);
  17254. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17255. ggml_build_backward_expand(ctx, gf, gb, true);
  17256. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17257. }
  17258. enum ggml_opt_result ggml_opt_resume_g(
  17259. struct ggml_context * ctx,
  17260. struct ggml_opt_context * opt,
  17261. struct ggml_tensor * f,
  17262. struct ggml_cgraph * gf,
  17263. struct ggml_cgraph * gb,
  17264. ggml_opt_callback callback,
  17265. void * callback_data) {
  17266. // build forward + backward compute graphs
  17267. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17268. switch (opt->params.type) {
  17269. case GGML_OPT_TYPE_ADAM:
  17270. {
  17271. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17272. } break;
  17273. case GGML_OPT_TYPE_LBFGS:
  17274. {
  17275. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17276. } break;
  17277. }
  17278. if (opt->params.print_forward_graph) {
  17279. ggml_graph_print (gf);
  17280. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17281. }
  17282. if (opt->params.print_backward_graph) {
  17283. ggml_graph_print (gb);
  17284. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17285. }
  17286. return result;
  17287. }
  17288. ////////////////////////////////////////////////////////////////////////////////
  17289. void ggml_set_input(struct ggml_tensor * tensor) {
  17290. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17291. }
  17292. void ggml_set_output(struct ggml_tensor * tensor) {
  17293. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17294. }
  17295. ////////////////////////////////////////////////////////////////////////////////
  17296. void ggml_quantize_init(enum ggml_type type) {
  17297. ggml_critical_section_start();
  17298. switch (type) {
  17299. case GGML_TYPE_IQ2_XXS:
  17300. case GGML_TYPE_IQ2_XS:
  17301. case GGML_TYPE_IQ2_S:
  17302. case GGML_TYPE_IQ1_S:
  17303. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17304. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17305. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17306. default: // nothing
  17307. break;
  17308. }
  17309. ggml_critical_section_end();
  17310. }
  17311. void ggml_quantize_free(void) {
  17312. ggml_critical_section_start();
  17313. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17314. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17315. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17316. iq3xs_free_impl(256);
  17317. ggml_critical_section_end();
  17318. }
  17319. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17320. return
  17321. type == GGML_TYPE_IQ2_XXS ||
  17322. type == GGML_TYPE_IQ2_XS ||
  17323. type == GGML_TYPE_IQ1_S;// ||
  17324. //type == GGML_TYPE_IQ1_M;
  17325. }
  17326. size_t ggml_quantize_chunk(
  17327. enum ggml_type type,
  17328. const float * src,
  17329. void * dst,
  17330. int64_t start,
  17331. int64_t nrows,
  17332. int64_t n_per_row,
  17333. const float * imatrix) {
  17334. const int64_t n = (int64_t) nrows * n_per_row;
  17335. if (ggml_quantize_requires_imatrix(type)) {
  17336. GGML_ASSERT(imatrix != NULL);
  17337. }
  17338. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17339. GGML_ASSERT(start % n_per_row == 0);
  17340. ggml_quantize_init(type); // this is noop if already initialized
  17341. const size_t start_row = start / n_per_row;
  17342. const size_t row_size = ggml_row_size(type, n_per_row);
  17343. size_t result = 0;
  17344. switch (type) {
  17345. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17346. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17347. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17348. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17349. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17350. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17351. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17352. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17353. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17354. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17355. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17356. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17357. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17358. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17359. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17360. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17361. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17362. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17363. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17364. case GGML_TYPE_F16:
  17365. {
  17366. size_t elemsize = sizeof(ggml_fp16_t);
  17367. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17368. result = n * elemsize;
  17369. } break;
  17370. case GGML_TYPE_BF16:
  17371. {
  17372. size_t elemsize = sizeof(ggml_bf16_t);
  17373. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17374. result = n * elemsize;
  17375. } break;
  17376. case GGML_TYPE_F32:
  17377. {
  17378. size_t elemsize = sizeof(float);
  17379. result = n * elemsize;
  17380. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17381. } break;
  17382. default:
  17383. assert(false);
  17384. }
  17385. GGML_ASSERT(result == nrows * row_size);
  17386. return result;
  17387. }
  17388. ////////////////////////////////////////////////////////////////////////////////
  17389. struct gguf_str {
  17390. uint64_t n; // GGUFv2
  17391. char * data;
  17392. };
  17393. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17394. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17395. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17396. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17397. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17398. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17399. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17400. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17401. [GGUF_TYPE_BOOL] = sizeof(bool),
  17402. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17403. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17404. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17405. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17406. [GGUF_TYPE_ARRAY] = 0, // undefined
  17407. };
  17408. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17409. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17410. [GGUF_TYPE_UINT8] = "u8",
  17411. [GGUF_TYPE_INT8] = "i8",
  17412. [GGUF_TYPE_UINT16] = "u16",
  17413. [GGUF_TYPE_INT16] = "i16",
  17414. [GGUF_TYPE_UINT32] = "u32",
  17415. [GGUF_TYPE_INT32] = "i32",
  17416. [GGUF_TYPE_FLOAT32] = "f32",
  17417. [GGUF_TYPE_BOOL] = "bool",
  17418. [GGUF_TYPE_STRING] = "str",
  17419. [GGUF_TYPE_ARRAY] = "arr",
  17420. [GGUF_TYPE_UINT64] = "u64",
  17421. [GGUF_TYPE_INT64] = "i64",
  17422. [GGUF_TYPE_FLOAT64] = "f64",
  17423. };
  17424. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17425. union gguf_value {
  17426. uint8_t uint8;
  17427. int8_t int8;
  17428. uint16_t uint16;
  17429. int16_t int16;
  17430. uint32_t uint32;
  17431. int32_t int32;
  17432. float float32;
  17433. uint64_t uint64;
  17434. int64_t int64;
  17435. double float64;
  17436. bool bool_;
  17437. struct gguf_str str;
  17438. struct {
  17439. enum gguf_type type;
  17440. uint64_t n; // GGUFv2
  17441. void * data;
  17442. } arr;
  17443. };
  17444. struct gguf_kv {
  17445. struct gguf_str key;
  17446. enum gguf_type type;
  17447. union gguf_value value;
  17448. };
  17449. struct gguf_header {
  17450. char magic[4];
  17451. uint32_t version;
  17452. uint64_t n_tensors; // GGUFv2
  17453. uint64_t n_kv; // GGUFv2
  17454. };
  17455. struct gguf_tensor_info {
  17456. struct gguf_str name;
  17457. uint32_t n_dims;
  17458. uint64_t ne[GGML_MAX_DIMS];
  17459. enum ggml_type type;
  17460. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17461. // for writing API
  17462. const void * data;
  17463. size_t size;
  17464. };
  17465. struct gguf_context {
  17466. struct gguf_header header;
  17467. struct gguf_kv * kv;
  17468. struct gguf_tensor_info * infos;
  17469. size_t alignment;
  17470. size_t offset; // offset of `data` from beginning of file
  17471. size_t size; // size of `data` in bytes
  17472. //uint8_t * padding;
  17473. void * data;
  17474. };
  17475. static size_t gguf_type_size(enum gguf_type type) {
  17476. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17477. return GGUF_TYPE_SIZE[type];
  17478. }
  17479. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17480. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17481. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17482. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17483. GGML_ASSERT(info->ne[i] > 0);
  17484. }
  17485. // prevent overflow for total number of elements
  17486. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17487. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17488. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17489. }
  17490. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17491. const size_t n = fread(dst, 1, size, file);
  17492. *offset += n;
  17493. return n == size;
  17494. }
  17495. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17496. p->n = 0;
  17497. p->data = NULL;
  17498. bool ok = true;
  17499. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17500. // early exit if string length is invalid, prevents from integer overflow
  17501. if (p->n == SIZE_MAX) {
  17502. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17503. return false;
  17504. }
  17505. p->data = GGML_CALLOC(p->n + 1, 1);
  17506. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17507. return ok;
  17508. }
  17509. static void gguf_free_kv(struct gguf_kv * kv) {
  17510. if (kv->key.data) {
  17511. GGML_FREE(kv->key.data);
  17512. }
  17513. if (kv->type == GGUF_TYPE_STRING) {
  17514. if (kv->value.str.data) {
  17515. GGML_FREE(kv->value.str.data);
  17516. }
  17517. }
  17518. if (kv->type == GGUF_TYPE_ARRAY) {
  17519. if (kv->value.arr.data) {
  17520. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17521. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17522. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17523. if (str->data) {
  17524. GGML_FREE(str->data);
  17525. }
  17526. }
  17527. }
  17528. GGML_FREE(kv->value.arr.data);
  17529. }
  17530. }
  17531. }
  17532. struct gguf_context * gguf_init_empty(void) {
  17533. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17534. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17535. ctx->header.version = GGUF_VERSION;
  17536. ctx->header.n_tensors = 0;
  17537. ctx->header.n_kv = 0;
  17538. ctx->kv = NULL;
  17539. ctx->infos = NULL;
  17540. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17541. ctx->offset = 0;
  17542. ctx->size = 0;
  17543. ctx->data = NULL;
  17544. return ctx;
  17545. }
  17546. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17547. FILE * file = ggml_fopen(fname, "rb");
  17548. if (!file) {
  17549. return NULL;
  17550. }
  17551. // offset from start of file
  17552. size_t offset = 0;
  17553. char magic[4];
  17554. // check the magic before making allocations
  17555. {
  17556. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17557. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17558. if (magic[i] != GGUF_MAGIC[i]) {
  17559. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17560. fclose(file);
  17561. return NULL;
  17562. }
  17563. }
  17564. }
  17565. bool ok = true;
  17566. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17567. // read the header
  17568. {
  17569. strncpy(ctx->header.magic, magic, 4);
  17570. ctx->kv = NULL;
  17571. ctx->infos = NULL;
  17572. ctx->data = NULL;
  17573. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17574. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17575. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17576. if (ctx->header.version == 1) {
  17577. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17578. fclose(file);
  17579. gguf_free(ctx);
  17580. return NULL;
  17581. }
  17582. // sanity-checks to prevent from integer/buffer overflows
  17583. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17584. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17585. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17586. if (!ok) {
  17587. fprintf(stderr, "%s: failed to read header\n", __func__);
  17588. fclose(file);
  17589. gguf_free(ctx);
  17590. return NULL;
  17591. }
  17592. }
  17593. // read the kv pairs
  17594. {
  17595. const uint64_t n_kv = ctx->header.n_kv;
  17596. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17597. ctx->header.n_kv = 0;
  17598. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17599. for (uint64_t i = 0; i < n_kv; ++i) {
  17600. struct gguf_kv * kv = &ctx->kv[i];
  17601. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17602. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17603. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17604. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17605. switch (kv->type) {
  17606. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17607. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17608. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17609. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17610. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17611. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17612. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17613. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17614. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17615. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17616. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17617. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17618. case GGUF_TYPE_ARRAY:
  17619. {
  17620. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17621. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17622. switch (kv->value.arr.type) {
  17623. case GGUF_TYPE_UINT8:
  17624. case GGUF_TYPE_INT8:
  17625. case GGUF_TYPE_UINT16:
  17626. case GGUF_TYPE_INT16:
  17627. case GGUF_TYPE_UINT32:
  17628. case GGUF_TYPE_INT32:
  17629. case GGUF_TYPE_FLOAT32:
  17630. case GGUF_TYPE_UINT64:
  17631. case GGUF_TYPE_INT64:
  17632. case GGUF_TYPE_FLOAT64:
  17633. case GGUF_TYPE_BOOL:
  17634. {
  17635. // prevent from integer overflow in the malloc below
  17636. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17637. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17638. fclose(file);
  17639. gguf_free(ctx);
  17640. return NULL;
  17641. }
  17642. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17643. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17644. } break;
  17645. case GGUF_TYPE_STRING:
  17646. {
  17647. // prevent from integer overflow in the malloc below
  17648. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17649. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17650. fclose(file);
  17651. gguf_free(ctx);
  17652. return NULL;
  17653. }
  17654. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17655. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17656. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17657. }
  17658. } break;
  17659. case GGUF_TYPE_ARRAY:
  17660. default: GGML_ASSERT(false && "invalid type"); break;
  17661. }
  17662. } break;
  17663. default: GGML_ASSERT(false && "invalid type");
  17664. }
  17665. if (!ok) {
  17666. break;
  17667. }
  17668. ctx->header.n_kv++;
  17669. }
  17670. if (!ok) {
  17671. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17672. fclose(file);
  17673. gguf_free(ctx);
  17674. return NULL;
  17675. }
  17676. }
  17677. // read the tensor infos
  17678. if (ctx->header.n_tensors > 0) {
  17679. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17680. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17681. struct gguf_tensor_info * info = &ctx->infos[i];
  17682. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17683. info->ne[j] = 1;
  17684. }
  17685. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17686. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17687. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17688. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17689. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17690. }
  17691. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17692. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17693. // TODO: return an error instead of crashing with GGML_ASSERT
  17694. gguf_tensor_info_sanitize(info);
  17695. // make sure there is no duplicated tensor names
  17696. for (uint64_t j = 0; j < i; ++j) {
  17697. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17698. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17699. ok = false;
  17700. }
  17701. }
  17702. if (!ok) {
  17703. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17704. fclose(file);
  17705. gguf_free(ctx);
  17706. return NULL;
  17707. }
  17708. }
  17709. }
  17710. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17711. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17712. if (alignment_idx != -1) {
  17713. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17714. }
  17715. // we require the data section to be aligned, so take into account any padding
  17716. {
  17717. const size_t offset_pad = offset % ctx->alignment;
  17718. if (offset_pad != 0) {
  17719. offset += ctx->alignment - offset_pad;
  17720. fseek(file, offset, SEEK_SET);
  17721. }
  17722. }
  17723. // store the current file offset - this is where the data section starts
  17724. ctx->offset = offset;
  17725. // compute the total size of the data section, taking into account the alignment
  17726. {
  17727. ctx->size = 0;
  17728. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17729. struct gguf_tensor_info * info = &ctx->infos[i];
  17730. const int64_t ne =
  17731. (int64_t) info->ne[0] *
  17732. (int64_t) info->ne[1] *
  17733. (int64_t) info->ne[2] *
  17734. (int64_t) info->ne[3];
  17735. if (ne % ggml_blck_size(info->type) != 0) {
  17736. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17737. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17738. fclose(file);
  17739. gguf_free(ctx);
  17740. return NULL;
  17741. }
  17742. const size_t size_cur = ggml_row_size(info->type, ne);
  17743. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17744. }
  17745. }
  17746. // load the tensor data only if requested
  17747. if (params.ctx != NULL) {
  17748. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17749. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17750. // the ggml_tensor structs to the appropriate locations in the binary blob
  17751. // compute the exact size needed for the new ggml_context
  17752. const size_t mem_size =
  17753. params.no_alloc ?
  17754. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17755. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17756. struct ggml_init_params pdata = {
  17757. .mem_size = mem_size,
  17758. .mem_buffer = NULL,
  17759. .no_alloc = params.no_alloc,
  17760. };
  17761. *params.ctx = ggml_init(pdata);
  17762. struct ggml_context * ctx_data = *params.ctx;
  17763. struct ggml_tensor * data = NULL;
  17764. if (!params.no_alloc) {
  17765. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17766. ok = ok && data != NULL;
  17767. // read the binary blob with the tensor data
  17768. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17769. if (!ok) {
  17770. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17771. fclose(file);
  17772. ggml_free(ctx_data);
  17773. gguf_free(ctx);
  17774. return NULL;
  17775. }
  17776. ctx->data = data->data;
  17777. }
  17778. ggml_set_no_alloc(ctx_data, true);
  17779. // create the tensors
  17780. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17781. const int64_t ne[GGML_MAX_DIMS] = {
  17782. ctx->infos[i].ne[0],
  17783. ctx->infos[i].ne[1],
  17784. ctx->infos[i].ne[2],
  17785. ctx->infos[i].ne[3],
  17786. };
  17787. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17788. ok = ok && cur != NULL;
  17789. if (!ok) {
  17790. break;
  17791. }
  17792. ggml_set_name(cur, ctx->infos[i].name.data);
  17793. // point the data member to the appropriate location in the binary blob using the tensor infos
  17794. if (!params.no_alloc) {
  17795. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17796. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17797. }
  17798. }
  17799. if (!ok) {
  17800. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17801. fclose(file);
  17802. ggml_free(ctx_data);
  17803. gguf_free(ctx);
  17804. return NULL;
  17805. }
  17806. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17807. }
  17808. fclose(file);
  17809. return ctx;
  17810. }
  17811. void gguf_free(struct gguf_context * ctx) {
  17812. if (ctx == NULL) {
  17813. return;
  17814. }
  17815. if (ctx->kv) {
  17816. // free string memory - not great..
  17817. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17818. gguf_free_kv(&ctx->kv[i]);
  17819. }
  17820. GGML_FREE(ctx->kv);
  17821. }
  17822. if (ctx->infos) {
  17823. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17824. struct gguf_tensor_info * info = &ctx->infos[i];
  17825. if (info->name.data) {
  17826. GGML_FREE(info->name.data);
  17827. }
  17828. }
  17829. GGML_FREE(ctx->infos);
  17830. }
  17831. GGML_FREE(ctx);
  17832. }
  17833. const char * gguf_type_name(enum gguf_type type) {
  17834. return GGUF_TYPE_NAME[type];
  17835. }
  17836. int gguf_get_version(const struct gguf_context * ctx) {
  17837. return ctx->header.version;
  17838. }
  17839. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17840. return ctx->alignment;
  17841. }
  17842. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17843. return ctx->offset;
  17844. }
  17845. void * gguf_get_data(const struct gguf_context * ctx) {
  17846. return ctx->data;
  17847. }
  17848. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17849. return ctx->header.n_kv;
  17850. }
  17851. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17852. // return -1 if key not found
  17853. int keyfound = -1;
  17854. const int n_kv = gguf_get_n_kv(ctx);
  17855. for (int i = 0; i < n_kv; ++i) {
  17856. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17857. keyfound = i;
  17858. break;
  17859. }
  17860. }
  17861. return keyfound;
  17862. }
  17863. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17864. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17865. return ctx->kv[key_id].key.data;
  17866. }
  17867. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17868. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17869. return ctx->kv[key_id].type;
  17870. }
  17871. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17872. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17873. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17874. return ctx->kv[key_id].value.arr.type;
  17875. }
  17876. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17877. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17878. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17879. return ctx->kv[key_id].value.arr.data;
  17880. }
  17881. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17882. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17883. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17884. struct gguf_kv * kv = &ctx->kv[key_id];
  17885. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17886. return str->data;
  17887. }
  17888. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17889. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17890. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17891. return ctx->kv[key_id].value.arr.n;
  17892. }
  17893. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17894. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17895. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17896. return ctx->kv[key_id].value.uint8;
  17897. }
  17898. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17899. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17900. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17901. return ctx->kv[key_id].value.int8;
  17902. }
  17903. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17904. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17905. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17906. return ctx->kv[key_id].value.uint16;
  17907. }
  17908. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17909. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17910. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17911. return ctx->kv[key_id].value.int16;
  17912. }
  17913. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17914. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17915. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17916. return ctx->kv[key_id].value.uint32;
  17917. }
  17918. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17919. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17920. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17921. return ctx->kv[key_id].value.int32;
  17922. }
  17923. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17924. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17925. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17926. return ctx->kv[key_id].value.float32;
  17927. }
  17928. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17929. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17930. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17931. return ctx->kv[key_id].value.uint64;
  17932. }
  17933. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17934. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17935. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17936. return ctx->kv[key_id].value.int64;
  17937. }
  17938. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17939. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17940. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17941. return ctx->kv[key_id].value.float64;
  17942. }
  17943. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17944. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17945. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17946. return ctx->kv[key_id].value.bool_;
  17947. }
  17948. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17949. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17950. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17951. return ctx->kv[key_id].value.str.data;
  17952. }
  17953. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17954. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17955. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17956. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17957. return &ctx->kv[key_id].value;
  17958. }
  17959. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17960. return ctx->header.n_tensors;
  17961. }
  17962. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17963. // return -1 if tensor not found
  17964. int tensorfound = -1;
  17965. const int n_tensors = gguf_get_n_tensors(ctx);
  17966. for (int i = 0; i < n_tensors; ++i) {
  17967. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17968. tensorfound = i;
  17969. break;
  17970. }
  17971. }
  17972. return tensorfound;
  17973. }
  17974. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17975. return ctx->infos[i].offset;
  17976. }
  17977. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17978. return ctx->infos[i].name.data;
  17979. }
  17980. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17981. return ctx->infos[i].type;
  17982. }
  17983. // returns the index
  17984. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17985. const int idx = gguf_find_key(ctx, key);
  17986. if (idx >= 0) {
  17987. return idx;
  17988. }
  17989. const int n_kv = gguf_get_n_kv(ctx);
  17990. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17991. ctx->kv[n_kv].key.n = strlen(key);
  17992. ctx->kv[n_kv].key.data = strdup(key);
  17993. ctx->header.n_kv++;
  17994. return n_kv;
  17995. }
  17996. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17997. const int idx = gguf_find_key(ctx, key);
  17998. if (idx >= 0) {
  17999. const int n_kv = gguf_get_n_kv(ctx);
  18000. gguf_free_kv(&ctx->kv[idx]);
  18001. for (int i = idx; i < n_kv-1; ++i) {
  18002. ctx->kv[i] = ctx->kv[i+1];
  18003. }
  18004. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18005. ctx->header.n_kv--;
  18006. }
  18007. }
  18008. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18009. const int idx = gguf_get_or_add_key(ctx, key);
  18010. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18011. ctx->kv[idx].value.uint8 = val;
  18012. }
  18013. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18014. const int idx = gguf_get_or_add_key(ctx, key);
  18015. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18016. ctx->kv[idx].value.int8 = val;
  18017. }
  18018. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18019. const int idx = gguf_get_or_add_key(ctx, key);
  18020. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18021. ctx->kv[idx].value.uint16 = val;
  18022. }
  18023. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18024. const int idx = gguf_get_or_add_key(ctx, key);
  18025. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18026. ctx->kv[idx].value.int16 = val;
  18027. }
  18028. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18029. const int idx = gguf_get_or_add_key(ctx, key);
  18030. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18031. ctx->kv[idx].value.uint32 = val;
  18032. }
  18033. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18034. const int idx = gguf_get_or_add_key(ctx, key);
  18035. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18036. ctx->kv[idx].value.int32 = val;
  18037. }
  18038. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18039. const int idx = gguf_get_or_add_key(ctx, key);
  18040. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18041. ctx->kv[idx].value.float32 = val;
  18042. }
  18043. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18044. const int idx = gguf_get_or_add_key(ctx, key);
  18045. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18046. ctx->kv[idx].value.uint64 = val;
  18047. }
  18048. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18049. const int idx = gguf_get_or_add_key(ctx, key);
  18050. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18051. ctx->kv[idx].value.int64 = val;
  18052. }
  18053. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18054. const int idx = gguf_get_or_add_key(ctx, key);
  18055. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18056. ctx->kv[idx].value.float64 = val;
  18057. }
  18058. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18059. const int idx = gguf_get_or_add_key(ctx, key);
  18060. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18061. ctx->kv[idx].value.bool_ = val;
  18062. }
  18063. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18064. const int idx = gguf_get_or_add_key(ctx, key);
  18065. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18066. ctx->kv[idx].value.str.n = strlen(val);
  18067. ctx->kv[idx].value.str.data = strdup(val);
  18068. }
  18069. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18070. const int idx = gguf_get_or_add_key(ctx, key);
  18071. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18072. ctx->kv[idx].value.arr.type = type;
  18073. ctx->kv[idx].value.arr.n = n;
  18074. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18075. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18076. }
  18077. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18078. const int idx = gguf_get_or_add_key(ctx, key);
  18079. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18080. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18081. ctx->kv[idx].value.arr.n = n;
  18082. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18083. for (int i = 0; i < n; i++) {
  18084. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18085. str->n = strlen(data[i]);
  18086. str->data = strdup(data[i]);
  18087. }
  18088. }
  18089. // set or add KV pairs from another context
  18090. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18091. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18092. switch (src->kv[i].type) {
  18093. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18094. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18095. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18096. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18097. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18098. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18099. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18100. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18101. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18102. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18103. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18104. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18105. case GGUF_TYPE_ARRAY:
  18106. {
  18107. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18108. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18109. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18110. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18111. }
  18112. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18113. GGML_FREE((void *)data);
  18114. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18115. GGML_ASSERT(false && "nested arrays not supported");
  18116. } else {
  18117. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18118. }
  18119. } break;
  18120. default: GGML_ASSERT(false && "invalid type"); break;
  18121. }
  18122. }
  18123. }
  18124. void gguf_add_tensor(
  18125. struct gguf_context * ctx,
  18126. const struct ggml_tensor * tensor) {
  18127. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18128. GGML_ASSERT(false && "duplicated tensor name");
  18129. }
  18130. const int idx = ctx->header.n_tensors;
  18131. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18132. ctx->infos[idx].name.n = strlen(tensor->name);
  18133. ctx->infos[idx].name.data = strdup(tensor->name);
  18134. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18135. ctx->infos[idx].ne[i] = 1;
  18136. }
  18137. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18138. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18139. ctx->infos[idx].ne[i] = tensor->ne[i];
  18140. }
  18141. ctx->infos[idx].type = tensor->type;
  18142. ctx->infos[idx].offset = 0;
  18143. ctx->infos[idx].data = tensor->data;
  18144. ctx->infos[idx].size = ggml_nbytes(tensor);
  18145. if (ctx->header.n_tensors > 0) {
  18146. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18147. }
  18148. ctx->header.n_tensors++;
  18149. }
  18150. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18151. const int idx = gguf_find_tensor(ctx, name);
  18152. if (idx < 0) {
  18153. GGML_ASSERT(false && "tensor not found");
  18154. }
  18155. ctx->infos[idx].type = type;
  18156. }
  18157. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18158. const int idx = gguf_find_tensor(ctx, name);
  18159. if (idx < 0) {
  18160. GGML_ASSERT(false && "tensor not found");
  18161. }
  18162. ctx->infos[idx].data = data;
  18163. ctx->infos[idx].size = size;
  18164. // update offsets
  18165. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18166. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18167. }
  18168. }
  18169. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18170. // fwrite(&val->n, sizeof(val->n), 1, file);
  18171. // fwrite(val->data, sizeof(char), val->n, file);
  18172. //}
  18173. //
  18174. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18175. // fwrite(val, sizeof(char), size, file);
  18176. //}
  18177. struct gguf_buf {
  18178. void * data;
  18179. size_t size;
  18180. size_t offset;
  18181. };
  18182. static struct gguf_buf gguf_buf_init(size_t size) {
  18183. struct gguf_buf buf = {
  18184. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18185. /*buf.size =*/ size,
  18186. /*buf.offset =*/ 0,
  18187. };
  18188. return buf;
  18189. }
  18190. static void gguf_buf_free(struct gguf_buf buf) {
  18191. if (buf.data) {
  18192. GGML_FREE(buf.data);
  18193. }
  18194. }
  18195. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18196. if (buf->offset + size > buf->size) {
  18197. buf->size = 1.5*(buf->offset + size);
  18198. if (buf->data) {
  18199. buf->data = realloc(buf->data, buf->size);
  18200. }
  18201. }
  18202. }
  18203. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18204. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18205. if (buf->data) {
  18206. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18207. }
  18208. buf->offset += sizeof(val->n);
  18209. if (buf->data) {
  18210. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18211. }
  18212. buf->offset += val->n;
  18213. }
  18214. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18215. gguf_buf_grow(buf, el_size);
  18216. if (buf->data) {
  18217. memcpy((char *) buf->data + buf->offset, val, el_size);
  18218. }
  18219. buf->offset += el_size;
  18220. }
  18221. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18222. // write header
  18223. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18224. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18225. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18226. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18227. // write key-value pairs
  18228. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18229. struct gguf_kv * kv = &ctx->kv[i];
  18230. gguf_bwrite_str(buf, &kv->key);
  18231. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18232. switch (kv->type) {
  18233. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18234. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18235. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18236. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18237. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18238. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18239. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18240. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18241. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18242. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18243. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18244. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18245. case GGUF_TYPE_ARRAY:
  18246. {
  18247. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18248. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18249. switch (kv->value.arr.type) {
  18250. case GGUF_TYPE_UINT8:
  18251. case GGUF_TYPE_INT8:
  18252. case GGUF_TYPE_UINT16:
  18253. case GGUF_TYPE_INT16:
  18254. case GGUF_TYPE_UINT32:
  18255. case GGUF_TYPE_INT32:
  18256. case GGUF_TYPE_FLOAT32:
  18257. case GGUF_TYPE_UINT64:
  18258. case GGUF_TYPE_INT64:
  18259. case GGUF_TYPE_FLOAT64:
  18260. case GGUF_TYPE_BOOL:
  18261. {
  18262. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18263. } break;
  18264. case GGUF_TYPE_STRING:
  18265. {
  18266. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18267. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18268. }
  18269. } break;
  18270. case GGUF_TYPE_ARRAY:
  18271. default: GGML_ASSERT(false && "invalid type"); break;
  18272. }
  18273. } break;
  18274. default: GGML_ASSERT(false && "invalid type");
  18275. }
  18276. }
  18277. // write tensor infos
  18278. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18279. struct gguf_tensor_info * info = &ctx->infos[i];
  18280. gguf_bwrite_str(buf, &info->name);
  18281. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18282. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18283. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18284. }
  18285. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18286. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18287. }
  18288. // we require the data section to be aligned, so take into account any padding
  18289. {
  18290. const size_t offset = buf->offset;
  18291. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18292. if (offset_pad != offset) {
  18293. uint8_t pad = 0;
  18294. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18295. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18296. }
  18297. }
  18298. }
  18299. if (only_meta) {
  18300. return;
  18301. }
  18302. size_t offset = 0;
  18303. // write tensor data
  18304. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18305. struct gguf_tensor_info * info = &ctx->infos[i];
  18306. const size_t size = info->size;
  18307. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18308. gguf_bwrite_el(buf, info->data, size);
  18309. if (size_pad != size) {
  18310. uint8_t pad = 0;
  18311. for (size_t j = 0; j < size_pad - size; ++j) {
  18312. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18313. }
  18314. }
  18315. GGML_ASSERT(offset == info->offset);
  18316. offset += size_pad;
  18317. }
  18318. }
  18319. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18320. FILE * file = ggml_fopen(fname, "wb");
  18321. if (!file) {
  18322. GGML_ASSERT(false && "failed to open file for writing");
  18323. }
  18324. struct gguf_buf buf = gguf_buf_init(16*1024);
  18325. gguf_write_to_buf(ctx, &buf, only_meta);
  18326. fwrite(buf.data, 1, buf.offset, file);
  18327. gguf_buf_free(buf);
  18328. fclose(file);
  18329. }
  18330. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18331. // no allocs - only compute size
  18332. struct gguf_buf buf = gguf_buf_init(0);
  18333. gguf_write_to_buf(ctx, &buf, true);
  18334. return buf.offset;
  18335. }
  18336. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18337. struct gguf_buf buf = gguf_buf_init(16*1024);
  18338. gguf_write_to_buf(ctx, &buf, true);
  18339. memcpy(data, buf.data, buf.offset);
  18340. gguf_buf_free(buf);
  18341. }
  18342. ////////////////////////////////////////////////////////////////////////////////
  18343. int ggml_cpu_has_avx(void) {
  18344. #if defined(__AVX__)
  18345. return 1;
  18346. #else
  18347. return 0;
  18348. #endif
  18349. }
  18350. int ggml_cpu_has_avx_vnni(void) {
  18351. #if defined(__AVXVNNI__)
  18352. return 1;
  18353. #else
  18354. return 0;
  18355. #endif
  18356. }
  18357. int ggml_cpu_has_avx2(void) {
  18358. #if defined(__AVX2__)
  18359. return 1;
  18360. #else
  18361. return 0;
  18362. #endif
  18363. }
  18364. int ggml_cpu_has_avx512(void) {
  18365. #if defined(__AVX512F__)
  18366. return 1;
  18367. #else
  18368. return 0;
  18369. #endif
  18370. }
  18371. int ggml_cpu_has_avx512_vbmi(void) {
  18372. #if defined(__AVX512VBMI__)
  18373. return 1;
  18374. #else
  18375. return 0;
  18376. #endif
  18377. }
  18378. int ggml_cpu_has_avx512_vnni(void) {
  18379. #if defined(__AVX512VNNI__)
  18380. return 1;
  18381. #else
  18382. return 0;
  18383. #endif
  18384. }
  18385. int ggml_cpu_has_avx512_bf16(void) {
  18386. #if defined(__AVX512BF16__)
  18387. return 1;
  18388. #else
  18389. return 0;
  18390. #endif
  18391. }
  18392. int ggml_cpu_has_fma(void) {
  18393. #if defined(__FMA__)
  18394. return 1;
  18395. #else
  18396. return 0;
  18397. #endif
  18398. }
  18399. int ggml_cpu_has_neon(void) {
  18400. #if defined(__ARM_NEON)
  18401. return 1;
  18402. #else
  18403. return 0;
  18404. #endif
  18405. }
  18406. int ggml_cpu_has_sve(void) {
  18407. #if defined(__ARM_FEATURE_SVE)
  18408. // TODO: Currently, SVE 256 bit is only supported.
  18409. GGML_ASSERT(svcntb() == QK8_0);
  18410. return 1;
  18411. #else
  18412. return 0;
  18413. #endif
  18414. }
  18415. int ggml_cpu_has_arm_fma(void) {
  18416. #if defined(__ARM_FEATURE_FMA)
  18417. return 1;
  18418. #else
  18419. return 0;
  18420. #endif
  18421. }
  18422. int ggml_cpu_has_metal(void) {
  18423. #if defined(GGML_USE_METAL)
  18424. return 1;
  18425. #else
  18426. return 0;
  18427. #endif
  18428. }
  18429. int ggml_cpu_has_f16c(void) {
  18430. #if defined(__F16C__)
  18431. return 1;
  18432. #else
  18433. return 0;
  18434. #endif
  18435. }
  18436. int ggml_cpu_has_fp16_va(void) {
  18437. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18438. return 1;
  18439. #else
  18440. return 0;
  18441. #endif
  18442. }
  18443. int ggml_cpu_has_wasm_simd(void) {
  18444. #if defined(__wasm_simd128__)
  18445. return 1;
  18446. #else
  18447. return 0;
  18448. #endif
  18449. }
  18450. int ggml_cpu_has_blas(void) {
  18451. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18452. return 1;
  18453. #else
  18454. return 0;
  18455. #endif
  18456. }
  18457. int ggml_cpu_has_cuda(void) {
  18458. #if defined(GGML_USE_CUDA)
  18459. return 1;
  18460. #else
  18461. return 0;
  18462. #endif
  18463. }
  18464. int ggml_cpu_has_vulkan(void) {
  18465. #if defined(GGML_USE_VULKAN)
  18466. return 1;
  18467. #else
  18468. return 0;
  18469. #endif
  18470. }
  18471. int ggml_cpu_has_kompute(void) {
  18472. #if defined(GGML_USE_KOMPUTE)
  18473. return 1;
  18474. #else
  18475. return 0;
  18476. #endif
  18477. }
  18478. int ggml_cpu_has_sycl(void) {
  18479. #if defined(GGML_USE_SYCL)
  18480. return 1;
  18481. #else
  18482. return 0;
  18483. #endif
  18484. }
  18485. int ggml_cpu_has_rpc(void) {
  18486. #if defined(GGML_USE_RPC)
  18487. return 1;
  18488. #else
  18489. return 0;
  18490. #endif
  18491. }
  18492. int ggml_cpu_has_gpublas(void) {
  18493. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18494. }
  18495. int ggml_cpu_has_sse3(void) {
  18496. #if defined(__SSE3__)
  18497. return 1;
  18498. #else
  18499. return 0;
  18500. #endif
  18501. }
  18502. int ggml_cpu_has_ssse3(void) {
  18503. #if defined(__SSSE3__)
  18504. return 1;
  18505. #else
  18506. return 0;
  18507. #endif
  18508. }
  18509. int ggml_cpu_has_vsx(void) {
  18510. #if defined(__POWER9_VECTOR__)
  18511. return 1;
  18512. #else
  18513. return 0;
  18514. #endif
  18515. }
  18516. int ggml_cpu_has_matmul_int8(void) {
  18517. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18518. return 1;
  18519. #else
  18520. return 0;
  18521. #endif
  18522. }
  18523. ////////////////////////////////////////////////////////////////////////////////