ggml.h 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdbool.h>
  212. #include <stddef.h>
  213. #include <stdint.h>
  214. #include <stdio.h>
  215. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  216. #define GGML_FILE_VERSION 1
  217. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  218. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  219. #define GGML_MAX_DIMS 4
  220. #define GGML_MAX_PARAMS 2048
  221. #define GGML_MAX_CONTEXTS 64
  222. #define GGML_MAX_SRC 10
  223. #ifndef GGML_MAX_NAME
  224. #define GGML_MAX_NAME 64
  225. #endif
  226. #define GGML_MAX_OP_PARAMS 64
  227. #define GGML_DEFAULT_N_THREADS 4
  228. #define GGML_DEFAULT_GRAPH_SIZE 2048
  229. #if UINTPTR_MAX == 0xFFFFFFFF
  230. #define GGML_MEM_ALIGN 4
  231. #else
  232. #define GGML_MEM_ALIGN 16
  233. #endif
  234. #define GGML_EXIT_SUCCESS 0
  235. #define GGML_EXIT_ABORTED 1
  236. #define GGUF_MAGIC "GGUF"
  237. #define GGUF_VERSION 3
  238. #define GGUF_DEFAULT_ALIGNMENT 32
  239. #define GGML_UNUSED(x) (void)(x)
  240. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  241. #define GGML_ASSERT(x) \
  242. do { \
  243. if (!(x)) { \
  244. fflush(stdout); \
  245. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  246. ggml_print_backtrace(); \
  247. abort(); \
  248. } \
  249. } while (0)
  250. #ifndef NDEBUG
  251. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  252. #elif defined(__GNUC__)
  253. #define GGML_UNREACHABLE() __builtin_unreachable()
  254. #elif defined(_MSC_VER)
  255. #define GGML_UNREACHABLE() __assume(0)
  256. #else
  257. #define GGML_UNREACHABLE() ((void) 0)
  258. #endif
  259. // used to copy the number of elements and stride in bytes of tensors into local variables.
  260. // main purpose is to reduce code duplication and improve readability.
  261. //
  262. // example:
  263. //
  264. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  265. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  266. //
  267. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  268. const type prefix##0 = (pointer)->array[0]; \
  269. GGML_UNUSED(prefix##0);
  270. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  271. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  272. const type prefix##1 = (pointer)->array[1]; \
  273. GGML_UNUSED(prefix##1);
  274. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  275. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  276. const type prefix##2 = (pointer)->array[2]; \
  277. GGML_UNUSED(prefix##2);
  278. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  279. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  280. const type prefix##3 = (pointer)->array[3]; \
  281. GGML_UNUSED(prefix##3);
  282. #define GGML_TENSOR_UNARY_OP_LOCALS \
  283. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  284. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  285. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  287. #define GGML_TENSOR_BINARY_OP_LOCALS \
  288. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  289. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  290. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  294. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  295. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  296. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  297. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  298. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  299. #ifdef __cplusplus
  300. extern "C" {
  301. #endif
  302. enum ggml_status {
  303. GGML_STATUS_ALLOC_FAILED = -2,
  304. GGML_STATUS_FAILED = -1,
  305. GGML_STATUS_SUCCESS = 0,
  306. GGML_STATUS_ABORTED = 1,
  307. };
  308. // get ggml_status name string
  309. GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
  310. // ieee 754-2008 half-precision float16
  311. // todo: make this not an integral type
  312. typedef uint16_t ggml_fp16_t;
  313. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  314. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  315. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  316. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  317. // google brain half-precision bfloat16
  318. typedef struct { uint16_t bits; } ggml_bf16_t;
  319. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  320. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  321. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  322. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  323. struct ggml_object;
  324. struct ggml_context;
  325. // NOTE: always add types at the end of the enum to keep backward compatibility
  326. enum ggml_type {
  327. GGML_TYPE_F32 = 0,
  328. GGML_TYPE_F16 = 1,
  329. GGML_TYPE_Q4_0 = 2,
  330. GGML_TYPE_Q4_1 = 3,
  331. // GGML_TYPE_Q4_2 = 4, support has been removed
  332. // GGML_TYPE_Q4_3 = 5, support has been removed
  333. GGML_TYPE_Q5_0 = 6,
  334. GGML_TYPE_Q5_1 = 7,
  335. GGML_TYPE_Q8_0 = 8,
  336. GGML_TYPE_Q8_1 = 9,
  337. GGML_TYPE_Q2_K = 10,
  338. GGML_TYPE_Q3_K = 11,
  339. GGML_TYPE_Q4_K = 12,
  340. GGML_TYPE_Q5_K = 13,
  341. GGML_TYPE_Q6_K = 14,
  342. GGML_TYPE_Q8_K = 15,
  343. GGML_TYPE_IQ2_XXS = 16,
  344. GGML_TYPE_IQ2_XS = 17,
  345. GGML_TYPE_IQ3_XXS = 18,
  346. GGML_TYPE_IQ1_S = 19,
  347. GGML_TYPE_IQ4_NL = 20,
  348. GGML_TYPE_IQ3_S = 21,
  349. GGML_TYPE_IQ2_S = 22,
  350. GGML_TYPE_IQ4_XS = 23,
  351. GGML_TYPE_I8 = 24,
  352. GGML_TYPE_I16 = 25,
  353. GGML_TYPE_I32 = 26,
  354. GGML_TYPE_I64 = 27,
  355. GGML_TYPE_F64 = 28,
  356. GGML_TYPE_IQ1_M = 29,
  357. GGML_TYPE_BF16 = 30,
  358. GGML_TYPE_COUNT,
  359. };
  360. // precision
  361. enum ggml_prec {
  362. GGML_PREC_DEFAULT,
  363. GGML_PREC_F32,
  364. };
  365. enum ggml_backend_type {
  366. GGML_BACKEND_TYPE_CPU = 0,
  367. GGML_BACKEND_TYPE_GPU = 10,
  368. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  369. };
  370. // model file types
  371. enum ggml_ftype {
  372. GGML_FTYPE_UNKNOWN = -1,
  373. GGML_FTYPE_ALL_F32 = 0,
  374. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  375. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  376. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  377. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  378. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  379. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  380. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  394. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  395. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  396. };
  397. // available tensor operations:
  398. enum ggml_op {
  399. GGML_OP_NONE = 0,
  400. GGML_OP_DUP,
  401. GGML_OP_ADD,
  402. GGML_OP_ADD1,
  403. GGML_OP_ACC,
  404. GGML_OP_SUB,
  405. GGML_OP_MUL,
  406. GGML_OP_DIV,
  407. GGML_OP_SQR,
  408. GGML_OP_SQRT,
  409. GGML_OP_LOG,
  410. GGML_OP_SUM,
  411. GGML_OP_SUM_ROWS,
  412. GGML_OP_MEAN,
  413. GGML_OP_ARGMAX,
  414. GGML_OP_REPEAT,
  415. GGML_OP_REPEAT_BACK,
  416. GGML_OP_CONCAT,
  417. GGML_OP_SILU_BACK,
  418. GGML_OP_NORM, // normalize
  419. GGML_OP_RMS_NORM,
  420. GGML_OP_RMS_NORM_BACK,
  421. GGML_OP_GROUP_NORM,
  422. GGML_OP_MUL_MAT,
  423. GGML_OP_MUL_MAT_ID,
  424. GGML_OP_OUT_PROD,
  425. GGML_OP_SCALE,
  426. GGML_OP_SET,
  427. GGML_OP_CPY,
  428. GGML_OP_CONT,
  429. GGML_OP_RESHAPE,
  430. GGML_OP_VIEW,
  431. GGML_OP_PERMUTE,
  432. GGML_OP_TRANSPOSE,
  433. GGML_OP_GET_ROWS,
  434. GGML_OP_GET_ROWS_BACK,
  435. GGML_OP_DIAG,
  436. GGML_OP_DIAG_MASK_INF,
  437. GGML_OP_DIAG_MASK_ZERO,
  438. GGML_OP_SOFT_MAX,
  439. GGML_OP_SOFT_MAX_BACK,
  440. GGML_OP_ROPE,
  441. GGML_OP_ROPE_BACK,
  442. GGML_OP_CLAMP,
  443. GGML_OP_CONV_TRANSPOSE_1D,
  444. GGML_OP_IM2COL,
  445. GGML_OP_CONV_TRANSPOSE_2D,
  446. GGML_OP_POOL_1D,
  447. GGML_OP_POOL_2D,
  448. GGML_OP_UPSCALE, // nearest interpolate
  449. GGML_OP_PAD,
  450. GGML_OP_ARANGE,
  451. GGML_OP_TIMESTEP_EMBEDDING,
  452. GGML_OP_ARGSORT,
  453. GGML_OP_LEAKY_RELU,
  454. GGML_OP_FLASH_ATTN_EXT,
  455. GGML_OP_FLASH_ATTN_BACK,
  456. GGML_OP_SSM_CONV,
  457. GGML_OP_SSM_SCAN,
  458. GGML_OP_WIN_PART,
  459. GGML_OP_WIN_UNPART,
  460. GGML_OP_GET_REL_POS,
  461. GGML_OP_ADD_REL_POS,
  462. GGML_OP_UNARY,
  463. GGML_OP_MAP_UNARY,
  464. GGML_OP_MAP_BINARY,
  465. GGML_OP_MAP_CUSTOM1_F32,
  466. GGML_OP_MAP_CUSTOM2_F32,
  467. GGML_OP_MAP_CUSTOM3_F32,
  468. GGML_OP_MAP_CUSTOM1,
  469. GGML_OP_MAP_CUSTOM2,
  470. GGML_OP_MAP_CUSTOM3,
  471. GGML_OP_CROSS_ENTROPY_LOSS,
  472. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  473. GGML_OP_COUNT,
  474. };
  475. enum ggml_unary_op {
  476. GGML_UNARY_OP_ABS,
  477. GGML_UNARY_OP_SGN,
  478. GGML_UNARY_OP_NEG,
  479. GGML_UNARY_OP_STEP,
  480. GGML_UNARY_OP_TANH,
  481. GGML_UNARY_OP_ELU,
  482. GGML_UNARY_OP_RELU,
  483. GGML_UNARY_OP_SIGMOID,
  484. GGML_UNARY_OP_GELU,
  485. GGML_UNARY_OP_GELU_QUICK,
  486. GGML_UNARY_OP_SILU,
  487. GGML_UNARY_OP_HARDSWISH,
  488. GGML_UNARY_OP_HARDSIGMOID,
  489. GGML_UNARY_OP_COUNT,
  490. };
  491. enum ggml_object_type {
  492. GGML_OBJECT_TYPE_TENSOR,
  493. GGML_OBJECT_TYPE_GRAPH,
  494. GGML_OBJECT_TYPE_WORK_BUFFER
  495. };
  496. enum ggml_log_level {
  497. GGML_LOG_LEVEL_ERROR = 2,
  498. GGML_LOG_LEVEL_WARN = 3,
  499. GGML_LOG_LEVEL_INFO = 4,
  500. GGML_LOG_LEVEL_DEBUG = 5
  501. };
  502. enum ggml_tensor_flag {
  503. GGML_TENSOR_FLAG_INPUT = 1,
  504. GGML_TENSOR_FLAG_OUTPUT = 2,
  505. GGML_TENSOR_FLAG_PARAM = 4,
  506. };
  507. // ggml object
  508. struct ggml_object {
  509. size_t offs;
  510. size_t size;
  511. struct ggml_object * next;
  512. enum ggml_object_type type;
  513. char padding[4];
  514. };
  515. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  516. // n-dimensional tensor
  517. struct ggml_tensor {
  518. enum ggml_type type;
  519. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  520. struct ggml_backend_buffer * buffer;
  521. int64_t ne[GGML_MAX_DIMS]; // number of elements
  522. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  523. // nb[0] = ggml_type_size(type)
  524. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  525. // nb[i] = nb[i-1] * ne[i-1]
  526. // compute data
  527. enum ggml_op op;
  528. // op params - allocated as int32_t for alignment
  529. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  530. int32_t flags;
  531. struct ggml_tensor * grad;
  532. struct ggml_tensor * src[GGML_MAX_SRC];
  533. // performance
  534. int perf_runs;
  535. int64_t perf_cycles;
  536. int64_t perf_time_us;
  537. struct ggml_tensor * view_src;
  538. size_t view_offs;
  539. void * data;
  540. char name[GGML_MAX_NAME];
  541. void * extra; // extra things e.g. for ggml-cuda.cu
  542. char padding[8];
  543. };
  544. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  545. // Abort callback
  546. // If not NULL, called before ggml computation
  547. // If it returns true, the computation is aborted
  548. typedef bool (*ggml_abort_callback)(void * data);
  549. // the compute plan that needs to be prepared for ggml_graph_compute()
  550. // since https://github.com/ggerganov/ggml/issues/287
  551. struct ggml_cplan {
  552. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  553. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  554. int n_threads;
  555. // abort ggml_graph_compute when true
  556. ggml_abort_callback abort_callback;
  557. void * abort_callback_data;
  558. };
  559. enum ggml_cgraph_eval_order {
  560. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  561. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  562. GGML_CGRAPH_EVAL_ORDER_COUNT
  563. };
  564. struct ggml_hash_set {
  565. size_t size;
  566. struct ggml_tensor ** keys;
  567. };
  568. // computation graph
  569. struct ggml_cgraph {
  570. int size;
  571. int n_nodes;
  572. int n_leafs;
  573. struct ggml_tensor ** nodes;
  574. struct ggml_tensor ** grads;
  575. struct ggml_tensor ** leafs;
  576. struct ggml_hash_set visited_hash_table;
  577. enum ggml_cgraph_eval_order order;
  578. // performance
  579. int perf_runs;
  580. int64_t perf_cycles;
  581. int64_t perf_time_us;
  582. };
  583. // scratch buffer
  584. struct ggml_scratch {
  585. size_t offs;
  586. size_t size;
  587. void * data;
  588. };
  589. struct ggml_init_params {
  590. // memory pool
  591. size_t mem_size; // bytes
  592. void * mem_buffer; // if NULL, memory will be allocated internally
  593. bool no_alloc; // don't allocate memory for the tensor data
  594. };
  595. // compute types
  596. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  597. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  598. enum ggml_task_type {
  599. GGML_TASK_TYPE_INIT = 0,
  600. GGML_TASK_TYPE_COMPUTE,
  601. GGML_TASK_TYPE_FINALIZE,
  602. };
  603. struct ggml_compute_params {
  604. enum ggml_task_type type;
  605. // ith = thread index, nth = number of threads
  606. int ith, nth;
  607. // work buffer for all threads
  608. size_t wsize;
  609. void * wdata;
  610. };
  611. // numa strategies
  612. enum ggml_numa_strategy {
  613. GGML_NUMA_STRATEGY_DISABLED = 0,
  614. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  615. GGML_NUMA_STRATEGY_ISOLATE = 2,
  616. GGML_NUMA_STRATEGY_NUMACTL = 3,
  617. GGML_NUMA_STRATEGY_MIRROR = 4,
  618. GGML_NUMA_STRATEGY_COUNT
  619. };
  620. //
  621. // GUID
  622. //
  623. // GUID types
  624. typedef uint8_t ggml_guid[16];
  625. typedef ggml_guid * ggml_guid_t;
  626. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  627. // misc
  628. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  629. GGML_API int64_t ggml_time_ms(void);
  630. GGML_API int64_t ggml_time_us(void);
  631. GGML_API int64_t ggml_cycles(void);
  632. GGML_API int64_t ggml_cycles_per_ms(void);
  633. GGML_API void ggml_print_backtrace(void);
  634. // accepts a UTF-8 path, even on Windows
  635. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  636. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  637. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  638. GGML_API void ggml_print_object (const struct ggml_object * obj);
  639. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  640. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  641. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  642. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  643. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  644. GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
  645. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  646. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  647. GGML_DEPRECATED(
  648. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  649. "use ggml_row_size() instead");
  650. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  651. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  652. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  653. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  654. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  655. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  656. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  657. // TODO: temporary until model loading of ggml examples is refactored
  658. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  659. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  660. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  661. GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
  662. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  663. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  664. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  665. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  666. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  667. GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  668. GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  669. GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  670. GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  671. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  672. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  673. // use this to compute the memory overhead of a tensor
  674. GGML_API size_t ggml_tensor_overhead(void);
  675. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  676. // main
  677. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  678. GGML_API void ggml_free(struct ggml_context * ctx);
  679. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  680. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  681. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  682. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  683. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  684. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  685. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  686. GGML_API struct ggml_tensor * ggml_new_tensor(
  687. struct ggml_context * ctx,
  688. enum ggml_type type,
  689. int n_dims,
  690. const int64_t *ne);
  691. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  692. struct ggml_context * ctx,
  693. enum ggml_type type,
  694. int64_t ne0);
  695. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  696. struct ggml_context * ctx,
  697. enum ggml_type type,
  698. int64_t ne0,
  699. int64_t ne1);
  700. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  701. struct ggml_context * ctx,
  702. enum ggml_type type,
  703. int64_t ne0,
  704. int64_t ne1,
  705. int64_t ne2);
  706. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  707. struct ggml_context * ctx,
  708. enum ggml_type type,
  709. int64_t ne0,
  710. int64_t ne1,
  711. int64_t ne2,
  712. int64_t ne3);
  713. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  714. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  715. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  716. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  717. // Context tensor enumeration and lookup
  718. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  719. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  720. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  721. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  722. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  723. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  724. // Converts a flat index into coordinates
  725. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  726. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  727. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  728. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  729. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  730. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  731. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  732. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  733. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  734. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  735. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  736. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  737. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  738. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  739. GGML_ATTRIBUTE_FORMAT(2, 3)
  740. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  741. //
  742. // operations on tensors with backpropagation
  743. //
  744. GGML_API struct ggml_tensor * ggml_dup(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a);
  747. // in-place, returns view(a)
  748. GGML_API struct ggml_tensor * ggml_dup_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a);
  751. GGML_API struct ggml_tensor * ggml_add(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a,
  754. struct ggml_tensor * b);
  755. GGML_API struct ggml_tensor * ggml_add_inplace(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a,
  758. struct ggml_tensor * b);
  759. GGML_API struct ggml_tensor * ggml_add_cast(
  760. struct ggml_context * ctx,
  761. struct ggml_tensor * a,
  762. struct ggml_tensor * b,
  763. enum ggml_type type);
  764. GGML_API struct ggml_tensor * ggml_add1(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a,
  767. struct ggml_tensor * b);
  768. GGML_API struct ggml_tensor * ggml_add1_inplace(
  769. struct ggml_context * ctx,
  770. struct ggml_tensor * a,
  771. struct ggml_tensor * b);
  772. // dst = a
  773. // view(dst, nb1, nb2, nb3, offset) += b
  774. // return dst
  775. GGML_API struct ggml_tensor * ggml_acc(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a,
  778. struct ggml_tensor * b,
  779. size_t nb1,
  780. size_t nb2,
  781. size_t nb3,
  782. size_t offset);
  783. GGML_API struct ggml_tensor * ggml_acc_inplace(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a,
  786. struct ggml_tensor * b,
  787. size_t nb1,
  788. size_t nb2,
  789. size_t nb3,
  790. size_t offset);
  791. GGML_API struct ggml_tensor * ggml_sub(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a,
  794. struct ggml_tensor * b);
  795. GGML_API struct ggml_tensor * ggml_sub_inplace(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a,
  798. struct ggml_tensor * b);
  799. GGML_API struct ggml_tensor * ggml_mul(
  800. struct ggml_context * ctx,
  801. struct ggml_tensor * a,
  802. struct ggml_tensor * b);
  803. GGML_API struct ggml_tensor * ggml_mul_inplace(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. struct ggml_tensor * b);
  807. GGML_API struct ggml_tensor * ggml_div(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a,
  810. struct ggml_tensor * b);
  811. GGML_API struct ggml_tensor * ggml_div_inplace(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a,
  814. struct ggml_tensor * b);
  815. GGML_API struct ggml_tensor * ggml_sqr(
  816. struct ggml_context * ctx,
  817. struct ggml_tensor * a);
  818. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a);
  821. GGML_API struct ggml_tensor * ggml_sqrt(
  822. struct ggml_context * ctx,
  823. struct ggml_tensor * a);
  824. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a);
  827. GGML_API struct ggml_tensor * ggml_log(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a);
  830. GGML_API struct ggml_tensor * ggml_log_inplace(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a);
  833. // return scalar
  834. GGML_API struct ggml_tensor * ggml_sum(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  838. GGML_API struct ggml_tensor * ggml_sum_rows(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. // mean along rows
  842. GGML_API struct ggml_tensor * ggml_mean(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a);
  845. // argmax along rows
  846. GGML_API struct ggml_tensor * ggml_argmax(
  847. struct ggml_context * ctx,
  848. struct ggml_tensor * a);
  849. // if a is the same shape as b, and a is not parameter, return a
  850. // otherwise, return a new tensor: repeat(a) to fit in b
  851. GGML_API struct ggml_tensor * ggml_repeat(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a,
  854. struct ggml_tensor * b);
  855. // sums repetitions in a into shape of b
  856. GGML_API struct ggml_tensor * ggml_repeat_back(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a,
  859. struct ggml_tensor * b);
  860. // concat a and b along dim
  861. // used in stable-diffusion
  862. GGML_API struct ggml_tensor * ggml_concat(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a,
  865. struct ggml_tensor * b,
  866. int dim);
  867. GGML_API struct ggml_tensor * ggml_abs(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. GGML_API struct ggml_tensor * ggml_abs_inplace(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a);
  873. GGML_API struct ggml_tensor * ggml_sgn(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a);
  876. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a);
  879. GGML_API struct ggml_tensor * ggml_neg(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a);
  882. GGML_API struct ggml_tensor * ggml_neg_inplace(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a);
  885. GGML_API struct ggml_tensor * ggml_step(
  886. struct ggml_context * ctx,
  887. struct ggml_tensor * a);
  888. GGML_API struct ggml_tensor * ggml_step_inplace(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a);
  891. GGML_API struct ggml_tensor * ggml_tanh(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a);
  894. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a);
  897. GGML_API struct ggml_tensor * ggml_elu(
  898. struct ggml_context * ctx,
  899. struct ggml_tensor * a);
  900. GGML_API struct ggml_tensor * ggml_elu_inplace(
  901. struct ggml_context * ctx,
  902. struct ggml_tensor * a);
  903. GGML_API struct ggml_tensor * ggml_relu(
  904. struct ggml_context * ctx,
  905. struct ggml_tensor * a);
  906. GGML_API struct ggml_tensor * ggml_leaky_relu(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a, float negative_slope, bool inplace);
  909. GGML_API struct ggml_tensor * ggml_relu_inplace(
  910. struct ggml_context * ctx,
  911. struct ggml_tensor * a);
  912. GGML_API struct ggml_tensor * ggml_sigmoid(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a);
  915. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  916. struct ggml_context * ctx,
  917. struct ggml_tensor * a);
  918. GGML_API struct ggml_tensor * ggml_gelu(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a);
  921. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  922. struct ggml_context * ctx,
  923. struct ggml_tensor * a);
  924. GGML_API struct ggml_tensor * ggml_gelu_quick(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a);
  927. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a);
  930. GGML_API struct ggml_tensor * ggml_silu(
  931. struct ggml_context * ctx,
  932. struct ggml_tensor * a);
  933. GGML_API struct ggml_tensor * ggml_silu_inplace(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a);
  936. // a - x
  937. // b - dy
  938. GGML_API struct ggml_tensor * ggml_silu_back(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a,
  941. struct ggml_tensor * b);
  942. // hardswish(x) = x * relu6(x + 3) / 6
  943. GGML_API struct ggml_tensor * ggml_hardswish(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * a);
  946. // hardsigmoid(x) = relu6(x + 3) / 6
  947. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  948. struct ggml_context * ctx,
  949. struct ggml_tensor * a);
  950. // normalize along rows
  951. GGML_API struct ggml_tensor * ggml_norm(
  952. struct ggml_context * ctx,
  953. struct ggml_tensor * a,
  954. float eps);
  955. GGML_API struct ggml_tensor * ggml_norm_inplace(
  956. struct ggml_context * ctx,
  957. struct ggml_tensor * a,
  958. float eps);
  959. GGML_API struct ggml_tensor * ggml_rms_norm(
  960. struct ggml_context * ctx,
  961. struct ggml_tensor * a,
  962. float eps);
  963. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a,
  966. float eps);
  967. // group normalize along ne0*ne1*n_groups
  968. // used in stable-diffusion
  969. // TODO: eps is hardcoded to 1e-6 for now
  970. GGML_API struct ggml_tensor * ggml_group_norm(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. int n_groups);
  974. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a,
  977. int n_groups);
  978. // a - x
  979. // b - dy
  980. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a,
  983. struct ggml_tensor * b,
  984. float eps);
  985. // A: k columns, n rows => [ne03, ne02, n, k]
  986. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  987. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  988. GGML_API struct ggml_tensor * ggml_mul_mat(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a,
  991. struct ggml_tensor * b);
  992. // change the precision of a matrix multiplication
  993. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  994. GGML_API void ggml_mul_mat_set_prec(
  995. struct ggml_tensor * a,
  996. enum ggml_prec prec);
  997. // indirect matrix multiplication
  998. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  999. struct ggml_context * ctx,
  1000. struct ggml_tensor * as,
  1001. struct ggml_tensor * b,
  1002. struct ggml_tensor * ids);
  1003. // A: m columns, n rows,
  1004. // B: p columns, n rows,
  1005. // result is m columns, p rows
  1006. GGML_API struct ggml_tensor * ggml_out_prod(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a,
  1009. struct ggml_tensor * b);
  1010. //
  1011. // operations on tensors without backpropagation
  1012. //
  1013. GGML_API struct ggml_tensor * ggml_scale(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. float s);
  1017. // in-place, returns view(a)
  1018. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. float s);
  1022. // b -> view(a,offset,nb1,nb2,3), return modified a
  1023. GGML_API struct ggml_tensor * ggml_set(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. struct ggml_tensor * b,
  1027. size_t nb1,
  1028. size_t nb2,
  1029. size_t nb3,
  1030. size_t offset);
  1031. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1032. GGML_API struct ggml_tensor * ggml_set_inplace(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a,
  1035. struct ggml_tensor * b,
  1036. size_t nb1,
  1037. size_t nb2,
  1038. size_t nb3,
  1039. size_t offset);
  1040. GGML_API struct ggml_tensor * ggml_set_1d(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. struct ggml_tensor * b,
  1044. size_t offset);
  1045. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1046. struct ggml_context * ctx,
  1047. struct ggml_tensor * a,
  1048. struct ggml_tensor * b,
  1049. size_t offset);
  1050. // b -> view(a,offset,nb1,nb2,3), return modified a
  1051. GGML_API struct ggml_tensor * ggml_set_2d(
  1052. struct ggml_context * ctx,
  1053. struct ggml_tensor * a,
  1054. struct ggml_tensor * b,
  1055. size_t nb1,
  1056. size_t offset);
  1057. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1058. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. struct ggml_tensor * b,
  1062. size_t nb1,
  1063. size_t offset);
  1064. // a -> b, return view(b)
  1065. GGML_API struct ggml_tensor * ggml_cpy(
  1066. struct ggml_context * ctx,
  1067. struct ggml_tensor * a,
  1068. struct ggml_tensor * b);
  1069. GGML_API struct ggml_tensor * ggml_cast(
  1070. struct ggml_context * ctx,
  1071. struct ggml_tensor * a,
  1072. enum ggml_type type);
  1073. // make contiguous
  1074. GGML_API struct ggml_tensor * ggml_cont(
  1075. struct ggml_context * ctx,
  1076. struct ggml_tensor * a);
  1077. // make contiguous, with new shape
  1078. GGML_API struct ggml_tensor * ggml_cont_1d(
  1079. struct ggml_context * ctx,
  1080. struct ggml_tensor * a,
  1081. int64_t ne0);
  1082. GGML_API struct ggml_tensor * ggml_cont_2d(
  1083. struct ggml_context * ctx,
  1084. struct ggml_tensor * a,
  1085. int64_t ne0,
  1086. int64_t ne1);
  1087. GGML_API struct ggml_tensor * ggml_cont_3d(
  1088. struct ggml_context * ctx,
  1089. struct ggml_tensor * a,
  1090. int64_t ne0,
  1091. int64_t ne1,
  1092. int64_t ne2);
  1093. GGML_API struct ggml_tensor * ggml_cont_4d(
  1094. struct ggml_context * ctx,
  1095. struct ggml_tensor * a,
  1096. int64_t ne0,
  1097. int64_t ne1,
  1098. int64_t ne2,
  1099. int64_t ne3);
  1100. // return view(a), b specifies the new shape
  1101. // TODO: when we start computing gradient, make a copy instead of view
  1102. GGML_API struct ggml_tensor * ggml_reshape(
  1103. struct ggml_context * ctx,
  1104. struct ggml_tensor * a,
  1105. struct ggml_tensor * b);
  1106. // return view(a)
  1107. // TODO: when we start computing gradient, make a copy instead of view
  1108. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1109. struct ggml_context * ctx,
  1110. struct ggml_tensor * a,
  1111. int64_t ne0);
  1112. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a,
  1115. int64_t ne0,
  1116. int64_t ne1);
  1117. // return view(a)
  1118. // TODO: when we start computing gradient, make a copy instead of view
  1119. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1120. struct ggml_context * ctx,
  1121. struct ggml_tensor * a,
  1122. int64_t ne0,
  1123. int64_t ne1,
  1124. int64_t ne2);
  1125. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1126. struct ggml_context * ctx,
  1127. struct ggml_tensor * a,
  1128. int64_t ne0,
  1129. int64_t ne1,
  1130. int64_t ne2,
  1131. int64_t ne3);
  1132. // offset in bytes
  1133. GGML_API struct ggml_tensor * ggml_view_1d(
  1134. struct ggml_context * ctx,
  1135. struct ggml_tensor * a,
  1136. int64_t ne0,
  1137. size_t offset);
  1138. GGML_API struct ggml_tensor * ggml_view_2d(
  1139. struct ggml_context * ctx,
  1140. struct ggml_tensor * a,
  1141. int64_t ne0,
  1142. int64_t ne1,
  1143. size_t nb1, // row stride in bytes
  1144. size_t offset);
  1145. GGML_API struct ggml_tensor * ggml_view_3d(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. int64_t ne0,
  1149. int64_t ne1,
  1150. int64_t ne2,
  1151. size_t nb1, // row stride in bytes
  1152. size_t nb2, // slice stride in bytes
  1153. size_t offset);
  1154. GGML_API struct ggml_tensor * ggml_view_4d(
  1155. struct ggml_context * ctx,
  1156. struct ggml_tensor * a,
  1157. int64_t ne0,
  1158. int64_t ne1,
  1159. int64_t ne2,
  1160. int64_t ne3,
  1161. size_t nb1, // row stride in bytes
  1162. size_t nb2, // slice stride in bytes
  1163. size_t nb3,
  1164. size_t offset);
  1165. GGML_API struct ggml_tensor * ggml_permute(
  1166. struct ggml_context * ctx,
  1167. struct ggml_tensor * a,
  1168. int axis0,
  1169. int axis1,
  1170. int axis2,
  1171. int axis3);
  1172. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1173. GGML_API struct ggml_tensor * ggml_transpose(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a);
  1176. // supports 3D: a->ne[2] == b->ne[1]
  1177. GGML_API struct ggml_tensor * ggml_get_rows(
  1178. struct ggml_context * ctx,
  1179. struct ggml_tensor * a,
  1180. struct ggml_tensor * b);
  1181. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. struct ggml_tensor * b,
  1185. struct ggml_tensor * c);
  1186. GGML_API struct ggml_tensor * ggml_diag(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * a);
  1189. // set elements above the diagonal to -INF
  1190. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1191. struct ggml_context * ctx,
  1192. struct ggml_tensor * a,
  1193. int n_past);
  1194. // in-place, returns view(a)
  1195. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1196. struct ggml_context * ctx,
  1197. struct ggml_tensor * a,
  1198. int n_past);
  1199. // set elements above the diagonal to 0
  1200. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1201. struct ggml_context * ctx,
  1202. struct ggml_tensor * a,
  1203. int n_past);
  1204. // in-place, returns view(a)
  1205. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1206. struct ggml_context * ctx,
  1207. struct ggml_tensor * a,
  1208. int n_past);
  1209. GGML_API struct ggml_tensor * ggml_soft_max(
  1210. struct ggml_context * ctx,
  1211. struct ggml_tensor * a);
  1212. // in-place, returns view(a)
  1213. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1214. struct ggml_context * ctx,
  1215. struct ggml_tensor * a);
  1216. // fused soft_max(a*scale + mask*(ALiBi slope))
  1217. // mask is optional
  1218. // max_bias = 0.0f for no ALiBi
  1219. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1220. struct ggml_context * ctx,
  1221. struct ggml_tensor * a,
  1222. struct ggml_tensor * mask,
  1223. float scale,
  1224. float max_bias);
  1225. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1226. struct ggml_context * ctx,
  1227. struct ggml_tensor * a,
  1228. struct ggml_tensor * b);
  1229. // in-place, returns view(a)
  1230. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1231. struct ggml_context * ctx,
  1232. struct ggml_tensor * a,
  1233. struct ggml_tensor * b);
  1234. // rotary position embedding
  1235. // if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
  1236. // if mode & 2 == 1, GPT-NeoX style
  1237. //
  1238. // b is an int32 vector with size a->ne[2], it contains the positions
  1239. // c is freq factors (e.g. phi3-128k), (optional)
  1240. GGML_API struct ggml_tensor * ggml_rope(
  1241. struct ggml_context * ctx,
  1242. struct ggml_tensor * a,
  1243. struct ggml_tensor * b,
  1244. int n_dims,
  1245. int mode);
  1246. // in-place, returns view(a)
  1247. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1248. struct ggml_context * ctx,
  1249. struct ggml_tensor * a,
  1250. struct ggml_tensor * b,
  1251. int n_dims,
  1252. int mode);
  1253. // custom RoPE
  1254. GGML_API struct ggml_tensor * ggml_rope_ext(
  1255. struct ggml_context * ctx,
  1256. struct ggml_tensor * a,
  1257. struct ggml_tensor * b,
  1258. struct ggml_tensor * c,
  1259. int n_dims,
  1260. int mode,
  1261. int n_ctx_orig,
  1262. float freq_base,
  1263. float freq_scale,
  1264. float ext_factor,
  1265. float attn_factor,
  1266. float beta_fast,
  1267. float beta_slow);
  1268. // in-place, returns view(a)
  1269. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1270. struct ggml_context * ctx,
  1271. struct ggml_tensor * a,
  1272. struct ggml_tensor * b,
  1273. struct ggml_tensor * c,
  1274. int n_dims,
  1275. int mode,
  1276. int n_ctx_orig,
  1277. float freq_base,
  1278. float freq_scale,
  1279. float ext_factor,
  1280. float attn_factor,
  1281. float beta_fast,
  1282. float beta_slow);
  1283. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1284. struct ggml_context * ctx,
  1285. struct ggml_tensor * a,
  1286. struct ggml_tensor * b,
  1287. int n_dims,
  1288. int mode,
  1289. int n_ctx_orig,
  1290. float freq_base,
  1291. float freq_scale,
  1292. float ext_factor,
  1293. float attn_factor,
  1294. float beta_fast,
  1295. float beta_slow),
  1296. "use ggml_rope_ext instead");
  1297. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1298. struct ggml_context * ctx,
  1299. struct ggml_tensor * a,
  1300. struct ggml_tensor * b,
  1301. int n_dims,
  1302. int mode,
  1303. int n_ctx_orig,
  1304. float freq_base,
  1305. float freq_scale,
  1306. float ext_factor,
  1307. float attn_factor,
  1308. float beta_fast,
  1309. float beta_slow),
  1310. "use ggml_rope_ext_inplace instead");
  1311. // compute correction dims for YaRN RoPE scaling
  1312. GGML_CALL void ggml_rope_yarn_corr_dims(
  1313. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1314. // rotary position embedding backward, i.e compute dx from dy
  1315. // a - dy
  1316. GGML_API struct ggml_tensor * ggml_rope_back(
  1317. struct ggml_context * ctx,
  1318. struct ggml_tensor * a,
  1319. struct ggml_tensor * b,
  1320. struct ggml_tensor * c,
  1321. int n_dims,
  1322. int mode,
  1323. int n_ctx_orig,
  1324. float freq_base,
  1325. float freq_scale,
  1326. float ext_factor,
  1327. float attn_factor,
  1328. float beta_fast,
  1329. float beta_slow);
  1330. // clamp
  1331. // in-place, returns view(a)
  1332. GGML_API struct ggml_tensor * ggml_clamp(
  1333. struct ggml_context * ctx,
  1334. struct ggml_tensor * a,
  1335. float min,
  1336. float max);
  1337. GGML_API struct ggml_tensor * ggml_im2col(
  1338. struct ggml_context * ctx,
  1339. struct ggml_tensor * a,
  1340. struct ggml_tensor * b,
  1341. int s0,
  1342. int s1,
  1343. int p0,
  1344. int p1,
  1345. int d0,
  1346. int d1,
  1347. bool is_2D,
  1348. enum ggml_type dst_type);
  1349. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1350. struct ggml_context * ctx,
  1351. struct ggml_tensor * a,
  1352. struct ggml_tensor * b,
  1353. int s0,
  1354. int s1,
  1355. int p0,
  1356. int p1,
  1357. int d0,
  1358. int d1);
  1359. GGML_API struct ggml_tensor * ggml_conv_1d(
  1360. struct ggml_context * ctx,
  1361. struct ggml_tensor * a,
  1362. struct ggml_tensor * b,
  1363. int s0, // stride
  1364. int p0, // padding
  1365. int d0); // dilation
  1366. // conv_1d with padding = half
  1367. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1368. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1369. struct ggml_context * ctx,
  1370. struct ggml_tensor * a,
  1371. struct ggml_tensor * b,
  1372. int s,
  1373. int d);
  1374. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1375. struct ggml_context * ctx,
  1376. struct ggml_tensor * a,
  1377. struct ggml_tensor * b,
  1378. int s0,
  1379. int p0,
  1380. int d0);
  1381. GGML_API struct ggml_tensor * ggml_conv_2d(
  1382. struct ggml_context * ctx,
  1383. struct ggml_tensor * a,
  1384. struct ggml_tensor * b,
  1385. int s0,
  1386. int s1,
  1387. int p0,
  1388. int p1,
  1389. int d0,
  1390. int d1);
  1391. // kernel size is a->ne[0] x a->ne[1]
  1392. // stride is equal to kernel size
  1393. // padding is zero
  1394. // example:
  1395. // a: 16 16 3 768
  1396. // b: 1024 1024 3 1
  1397. // res: 64 64 768 1
  1398. // used in sam
  1399. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1400. struct ggml_context * ctx,
  1401. struct ggml_tensor * a,
  1402. struct ggml_tensor * b);
  1403. // kernel size is a->ne[0] x a->ne[1]
  1404. // stride is 1
  1405. // padding is half
  1406. // example:
  1407. // a: 3 3 256 256
  1408. // b: 64 64 256 1
  1409. // res: 64 64 256 1
  1410. // used in sam
  1411. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1412. struct ggml_context * ctx,
  1413. struct ggml_tensor * a,
  1414. struct ggml_tensor * b);
  1415. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1416. struct ggml_context * ctx,
  1417. struct ggml_tensor * a,
  1418. struct ggml_tensor * b,
  1419. int stride);
  1420. enum ggml_op_pool {
  1421. GGML_OP_POOL_MAX,
  1422. GGML_OP_POOL_AVG,
  1423. GGML_OP_POOL_COUNT,
  1424. };
  1425. GGML_API struct ggml_tensor * ggml_pool_1d(
  1426. struct ggml_context * ctx,
  1427. struct ggml_tensor * a,
  1428. enum ggml_op_pool op,
  1429. int k0, // kernel size
  1430. int s0, // stride
  1431. int p0); // padding
  1432. // the result will have 2*p0 padding for the first dimension
  1433. // and 2*p1 padding for the second dimension
  1434. GGML_API struct ggml_tensor * ggml_pool_2d(
  1435. struct ggml_context * ctx,
  1436. struct ggml_tensor * a,
  1437. enum ggml_op_pool op,
  1438. int k0,
  1439. int k1,
  1440. int s0,
  1441. int s1,
  1442. float p0,
  1443. float p1);
  1444. // nearest interpolate
  1445. // multiplies ne0 and ne1 by scale factor
  1446. // used in stable-diffusion
  1447. GGML_API struct ggml_tensor * ggml_upscale(
  1448. struct ggml_context * ctx,
  1449. struct ggml_tensor * a,
  1450. int scale_factor);
  1451. // nearest interpolate
  1452. // nearest interpolate to specified dimensions
  1453. // used in tortoise.cpp
  1454. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1455. struct ggml_context * ctx,
  1456. struct ggml_tensor * a,
  1457. int ne0,
  1458. int ne1,
  1459. int ne2,
  1460. int ne3);
  1461. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1462. GGML_API struct ggml_tensor * ggml_pad(
  1463. struct ggml_context * ctx,
  1464. struct ggml_tensor * a,
  1465. int p0,
  1466. int p1,
  1467. int p2,
  1468. int p3);
  1469. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1470. // timesteps: [N,]
  1471. // return: [N, dim]
  1472. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1473. struct ggml_context * ctx,
  1474. struct ggml_tensor * timesteps,
  1475. int dim,
  1476. int max_period);
  1477. // sort rows
  1478. enum ggml_sort_order {
  1479. GGML_SORT_ORDER_ASC,
  1480. GGML_SORT_ORDER_DESC,
  1481. };
  1482. GGML_API struct ggml_tensor * ggml_argsort(
  1483. struct ggml_context * ctx,
  1484. struct ggml_tensor * a,
  1485. enum ggml_sort_order order);
  1486. GGML_API struct ggml_tensor * ggml_arange(
  1487. struct ggml_context * ctx,
  1488. float start,
  1489. float stop,
  1490. float step);
  1491. // top k elements per row
  1492. GGML_API struct ggml_tensor * ggml_top_k(
  1493. struct ggml_context * ctx,
  1494. struct ggml_tensor * a,
  1495. int k);
  1496. #define GGML_KQ_MASK_PAD 32
  1497. // q: [n_embd, n_batch, n_head, 1]
  1498. // k: [n_embd, n_kv, n_head_kv, 1]
  1499. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1500. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1501. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1502. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1503. struct ggml_context * ctx,
  1504. struct ggml_tensor * q,
  1505. struct ggml_tensor * k,
  1506. struct ggml_tensor * v,
  1507. struct ggml_tensor * mask,
  1508. float scale,
  1509. float max_bias);
  1510. GGML_API void ggml_flash_attn_ext_set_prec(
  1511. struct ggml_tensor * a,
  1512. enum ggml_prec prec);
  1513. // TODO: needs to be adapted to ggml_flash_attn_ext
  1514. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1515. struct ggml_context * ctx,
  1516. struct ggml_tensor * q,
  1517. struct ggml_tensor * k,
  1518. struct ggml_tensor * v,
  1519. struct ggml_tensor * d,
  1520. bool masked);
  1521. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1522. struct ggml_context * ctx,
  1523. struct ggml_tensor * s,
  1524. struct ggml_tensor * x,
  1525. struct ggml_tensor * c,
  1526. struct ggml_tensor * sq);
  1527. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1528. struct ggml_context * ctx,
  1529. struct ggml_tensor * s,
  1530. struct ggml_tensor * x,
  1531. struct ggml_tensor * dt,
  1532. struct ggml_tensor * A,
  1533. struct ggml_tensor * B,
  1534. struct ggml_tensor * C,
  1535. struct ggml_tensor * sq);
  1536. // partition into non-overlapping windows with padding if needed
  1537. // example:
  1538. // a: 768 64 64 1
  1539. // w: 14
  1540. // res: 768 14 14 25
  1541. // used in sam
  1542. GGML_API struct ggml_tensor * ggml_win_part(
  1543. struct ggml_context * ctx,
  1544. struct ggml_tensor * a,
  1545. int w);
  1546. // reverse of ggml_win_part
  1547. // used in sam
  1548. GGML_API struct ggml_tensor * ggml_win_unpart(
  1549. struct ggml_context * ctx,
  1550. struct ggml_tensor * a,
  1551. int w0,
  1552. int h0,
  1553. int w);
  1554. GGML_API struct ggml_tensor * ggml_unary(
  1555. struct ggml_context * ctx,
  1556. struct ggml_tensor * a,
  1557. enum ggml_unary_op op);
  1558. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1559. struct ggml_context * ctx,
  1560. struct ggml_tensor * a,
  1561. enum ggml_unary_op op);
  1562. // used in sam
  1563. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1564. struct ggml_context * ctx,
  1565. struct ggml_tensor * a,
  1566. int qh,
  1567. int kh);
  1568. // used in sam
  1569. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1570. struct ggml_context * ctx,
  1571. struct ggml_tensor * a,
  1572. struct ggml_tensor * pw,
  1573. struct ggml_tensor * ph);
  1574. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1575. struct ggml_context * ctx,
  1576. struct ggml_tensor * a,
  1577. struct ggml_tensor * pw,
  1578. struct ggml_tensor * ph);
  1579. // custom operators
  1580. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1581. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1582. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1583. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1584. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1585. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1586. struct ggml_context * ctx,
  1587. struct ggml_tensor * a,
  1588. ggml_unary_op_f32_t fun),
  1589. "use ggml_map_custom1 instead");
  1590. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1591. struct ggml_context * ctx,
  1592. struct ggml_tensor * a,
  1593. ggml_unary_op_f32_t fun),
  1594. "use ggml_map_custom1_inplace instead");
  1595. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1596. struct ggml_context * ctx,
  1597. struct ggml_tensor * a,
  1598. struct ggml_tensor * b,
  1599. ggml_binary_op_f32_t fun),
  1600. "use ggml_map_custom2 instead");
  1601. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1602. struct ggml_context * ctx,
  1603. struct ggml_tensor * a,
  1604. struct ggml_tensor * b,
  1605. ggml_binary_op_f32_t fun),
  1606. "use ggml_map_custom2_inplace instead");
  1607. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1608. struct ggml_context * ctx,
  1609. struct ggml_tensor * a,
  1610. ggml_custom1_op_f32_t fun),
  1611. "use ggml_map_custom1 instead");
  1612. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1613. struct ggml_context * ctx,
  1614. struct ggml_tensor * a,
  1615. ggml_custom1_op_f32_t fun),
  1616. "use ggml_map_custom1_inplace instead");
  1617. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1618. struct ggml_context * ctx,
  1619. struct ggml_tensor * a,
  1620. struct ggml_tensor * b,
  1621. ggml_custom2_op_f32_t fun),
  1622. "use ggml_map_custom2 instead");
  1623. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1624. struct ggml_context * ctx,
  1625. struct ggml_tensor * a,
  1626. struct ggml_tensor * b,
  1627. ggml_custom2_op_f32_t fun),
  1628. "use ggml_map_custom2_inplace instead");
  1629. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1630. struct ggml_context * ctx,
  1631. struct ggml_tensor * a,
  1632. struct ggml_tensor * b,
  1633. struct ggml_tensor * c,
  1634. ggml_custom3_op_f32_t fun),
  1635. "use ggml_map_custom3 instead");
  1636. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1637. struct ggml_context * ctx,
  1638. struct ggml_tensor * a,
  1639. struct ggml_tensor * b,
  1640. struct ggml_tensor * c,
  1641. ggml_custom3_op_f32_t fun),
  1642. "use ggml_map_custom3_inplace instead");
  1643. // custom operators v2
  1644. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1645. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1646. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1647. #define GGML_N_TASKS_MAX -1
  1648. GGML_API struct ggml_tensor * ggml_map_custom1(
  1649. struct ggml_context * ctx,
  1650. struct ggml_tensor * a,
  1651. ggml_custom1_op_t fun,
  1652. int n_tasks,
  1653. void * userdata);
  1654. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1655. struct ggml_context * ctx,
  1656. struct ggml_tensor * a,
  1657. ggml_custom1_op_t fun,
  1658. int n_tasks,
  1659. void * userdata);
  1660. GGML_API struct ggml_tensor * ggml_map_custom2(
  1661. struct ggml_context * ctx,
  1662. struct ggml_tensor * a,
  1663. struct ggml_tensor * b,
  1664. ggml_custom2_op_t fun,
  1665. int n_tasks,
  1666. void * userdata);
  1667. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1668. struct ggml_context * ctx,
  1669. struct ggml_tensor * a,
  1670. struct ggml_tensor * b,
  1671. ggml_custom2_op_t fun,
  1672. int n_tasks,
  1673. void * userdata);
  1674. GGML_API struct ggml_tensor * ggml_map_custom3(
  1675. struct ggml_context * ctx,
  1676. struct ggml_tensor * a,
  1677. struct ggml_tensor * b,
  1678. struct ggml_tensor * c,
  1679. ggml_custom3_op_t fun,
  1680. int n_tasks,
  1681. void * userdata);
  1682. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1683. struct ggml_context * ctx,
  1684. struct ggml_tensor * a,
  1685. struct ggml_tensor * b,
  1686. struct ggml_tensor * c,
  1687. ggml_custom3_op_t fun,
  1688. int n_tasks,
  1689. void * userdata);
  1690. // loss function
  1691. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1692. struct ggml_context * ctx,
  1693. struct ggml_tensor * a,
  1694. struct ggml_tensor * b);
  1695. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1696. struct ggml_context * ctx,
  1697. struct ggml_tensor * a,
  1698. struct ggml_tensor * b,
  1699. struct ggml_tensor * c);
  1700. //
  1701. // automatic differentiation
  1702. //
  1703. GGML_API void ggml_set_param(
  1704. struct ggml_context * ctx,
  1705. struct ggml_tensor * tensor);
  1706. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1707. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1708. // graph allocation in a context
  1709. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1710. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1711. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1712. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1713. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1714. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1715. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1716. GGML_API size_t ggml_graph_overhead(void);
  1717. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1718. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1719. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1720. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1721. GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1722. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1723. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1724. GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1725. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1726. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1727. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1728. // print info and performance information for the graph
  1729. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1730. // dump the graph into a file using the dot format
  1731. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1732. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1733. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1734. // but without the second forward pass nodes.
  1735. GGML_API void ggml_build_backward_gradient_checkpointing(
  1736. struct ggml_context * ctx,
  1737. struct ggml_cgraph * gf,
  1738. struct ggml_cgraph * gb,
  1739. struct ggml_cgraph * gb_tmp,
  1740. struct ggml_tensor * * checkpoints,
  1741. int n_checkpoints);
  1742. //
  1743. // optimization
  1744. //
  1745. // optimization methods
  1746. enum ggml_opt_type {
  1747. GGML_OPT_TYPE_ADAM,
  1748. GGML_OPT_TYPE_LBFGS,
  1749. };
  1750. // linesearch methods
  1751. enum ggml_linesearch {
  1752. GGML_LINESEARCH_DEFAULT = 1,
  1753. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1754. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1755. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1756. };
  1757. // optimization return values
  1758. enum ggml_opt_result {
  1759. GGML_OPT_RESULT_OK = 0,
  1760. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1761. GGML_OPT_RESULT_NO_CONTEXT,
  1762. GGML_OPT_RESULT_INVALID_WOLFE,
  1763. GGML_OPT_RESULT_FAIL,
  1764. GGML_OPT_RESULT_CANCEL,
  1765. GGML_LINESEARCH_FAIL = -128,
  1766. GGML_LINESEARCH_MINIMUM_STEP,
  1767. GGML_LINESEARCH_MAXIMUM_STEP,
  1768. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1769. GGML_LINESEARCH_INVALID_PARAMETERS,
  1770. };
  1771. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1772. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1773. // optimization parameters
  1774. //
  1775. // see ggml.c (ggml_opt_default_params) for default values
  1776. //
  1777. struct ggml_opt_params {
  1778. enum ggml_opt_type type;
  1779. size_t graph_size;
  1780. int n_threads;
  1781. // delta-based convergence test
  1782. //
  1783. // if past == 0 - disabled
  1784. // if past > 0:
  1785. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1786. //
  1787. int past;
  1788. float delta;
  1789. // maximum number of iterations without improvement
  1790. //
  1791. // if 0 - disabled
  1792. // if > 0:
  1793. // assume convergence if no cost improvement in this number of iterations
  1794. //
  1795. int max_no_improvement;
  1796. bool print_forward_graph;
  1797. bool print_backward_graph;
  1798. int n_gradient_accumulation;
  1799. // ADAM parameters
  1800. struct {
  1801. int n_iter;
  1802. float sched; // schedule multiplier (fixed, decay or warmup)
  1803. float decay; // weight decay for AdamW, use 0.0f to disable
  1804. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1805. float alpha; // learning rate
  1806. float beta1;
  1807. float beta2;
  1808. float eps; // epsilon for numerical stability
  1809. float eps_f; // epsilon for convergence test
  1810. float eps_g; // epsilon for convergence test
  1811. float gclip; // gradient clipping
  1812. } adam;
  1813. // LBFGS parameters
  1814. struct {
  1815. int m; // number of corrections to approximate the inv. Hessian
  1816. int n_iter;
  1817. int max_linesearch;
  1818. float eps; // convergence tolerance
  1819. float ftol; // line search tolerance
  1820. float wolfe;
  1821. float min_step;
  1822. float max_step;
  1823. enum ggml_linesearch linesearch;
  1824. } lbfgs;
  1825. };
  1826. struct ggml_opt_context {
  1827. struct ggml_context * ctx;
  1828. struct ggml_opt_params params;
  1829. int iter;
  1830. int64_t nx; // number of parameter elements
  1831. bool just_initialized;
  1832. float loss_before;
  1833. float loss_after;
  1834. struct {
  1835. struct ggml_tensor * g; // current gradient
  1836. struct ggml_tensor * m; // first moment
  1837. struct ggml_tensor * v; // second moment
  1838. struct ggml_tensor * pf; // past function values
  1839. float fx_best;
  1840. float fx_prev;
  1841. int n_no_improvement;
  1842. } adam;
  1843. struct {
  1844. struct ggml_tensor * x; // current parameters
  1845. struct ggml_tensor * xp; // previous parameters
  1846. struct ggml_tensor * g; // current gradient
  1847. struct ggml_tensor * gp; // previous gradient
  1848. struct ggml_tensor * d; // search direction
  1849. struct ggml_tensor * pf; // past function values
  1850. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1851. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1852. struct ggml_tensor * lms; // the L-BFGS memory s
  1853. struct ggml_tensor * lmy; // the L-BFGS memory y
  1854. float fx_best;
  1855. float step;
  1856. int j;
  1857. int k;
  1858. int end;
  1859. int n_no_improvement;
  1860. } lbfgs;
  1861. };
  1862. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1863. // optimize the function defined by the tensor f
  1864. GGML_API enum ggml_opt_result ggml_opt(
  1865. struct ggml_context * ctx,
  1866. struct ggml_opt_params params,
  1867. struct ggml_tensor * f);
  1868. // initialize optimizer context
  1869. GGML_API void ggml_opt_init(
  1870. struct ggml_context * ctx,
  1871. struct ggml_opt_context * opt,
  1872. struct ggml_opt_params params,
  1873. int64_t nx);
  1874. // continue optimizing the function defined by the tensor f
  1875. GGML_API enum ggml_opt_result ggml_opt_resume(
  1876. struct ggml_context * ctx,
  1877. struct ggml_opt_context * opt,
  1878. struct ggml_tensor * f);
  1879. // continue optimizing the function defined by the tensor f
  1880. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1881. struct ggml_context * ctx,
  1882. struct ggml_opt_context * opt,
  1883. struct ggml_tensor * f,
  1884. struct ggml_cgraph * gf,
  1885. struct ggml_cgraph * gb,
  1886. ggml_opt_callback callback,
  1887. void * callback_data);
  1888. //
  1889. // tensor flags
  1890. //
  1891. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1892. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1893. //
  1894. // quantization
  1895. //
  1896. // - ggml_quantize_init can be called multiple times with the same type
  1897. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1898. // automatically called by ggml_quantize_chunk for convenience
  1899. //
  1900. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1901. // call this at the end of the program to avoid memory leaks
  1902. //
  1903. // note: these are thread-safe
  1904. //
  1905. GGML_API void ggml_quantize_init(enum ggml_type type);
  1906. GGML_API void ggml_quantize_free(void);
  1907. // some quantization type cannot be used without an importance matrix
  1908. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1909. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1910. GGML_API size_t ggml_quantize_chunk(
  1911. enum ggml_type type,
  1912. const float * src,
  1913. void * dst,
  1914. int64_t start,
  1915. int64_t nrows,
  1916. int64_t n_per_row,
  1917. const float * imatrix);
  1918. //
  1919. // gguf
  1920. //
  1921. enum gguf_type {
  1922. GGUF_TYPE_UINT8 = 0,
  1923. GGUF_TYPE_INT8 = 1,
  1924. GGUF_TYPE_UINT16 = 2,
  1925. GGUF_TYPE_INT16 = 3,
  1926. GGUF_TYPE_UINT32 = 4,
  1927. GGUF_TYPE_INT32 = 5,
  1928. GGUF_TYPE_FLOAT32 = 6,
  1929. GGUF_TYPE_BOOL = 7,
  1930. GGUF_TYPE_STRING = 8,
  1931. GGUF_TYPE_ARRAY = 9,
  1932. GGUF_TYPE_UINT64 = 10,
  1933. GGUF_TYPE_INT64 = 11,
  1934. GGUF_TYPE_FLOAT64 = 12,
  1935. GGUF_TYPE_COUNT, // marks the end of the enum
  1936. };
  1937. struct gguf_context;
  1938. struct gguf_init_params {
  1939. bool no_alloc;
  1940. // if not NULL, create a ggml_context and allocate the tensor data in it
  1941. struct ggml_context ** ctx;
  1942. };
  1943. GGML_API struct gguf_context * gguf_init_empty(void);
  1944. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1945. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1946. GGML_API void gguf_free(struct gguf_context * ctx);
  1947. GGML_API const char * gguf_type_name(enum gguf_type type);
  1948. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1949. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1950. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1951. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1952. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1953. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1954. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1955. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1956. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1957. // will abort if the wrong type is used for the key
  1958. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1959. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1960. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1961. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1962. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1963. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1964. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1965. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1966. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1967. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1968. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1969. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1970. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1971. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1972. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1973. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1974. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1975. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1976. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1977. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1978. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1979. // removes key if it exists
  1980. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1981. // overrides existing values or adds a new one
  1982. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1983. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1984. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1985. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1986. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1987. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1988. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1989. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1990. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1991. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1992. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1993. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1994. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1995. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1996. // set or add KV pairs from another context
  1997. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1998. // manage tensor info
  1999. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  2000. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  2001. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  2002. // writing gguf files can be done in 2 ways:
  2003. //
  2004. // - write the entire gguf_context to a binary file in a single pass:
  2005. //
  2006. // gguf_write_to_file(ctx, fname);
  2007. //
  2008. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  2009. //
  2010. // FILE * f = fopen(fname, "wb");
  2011. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2012. // fwrite(f, ...);
  2013. // void * data = gguf_meta_get_meta_data(ctx);
  2014. // fseek(f, 0, SEEK_SET);
  2015. // fwrite(f, data, gguf_get_meta_size(ctx));
  2016. // free(data);
  2017. // fclose(f);
  2018. //
  2019. // write the entire context to a binary file
  2020. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2021. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2022. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2023. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2024. //
  2025. // system info
  2026. //
  2027. GGML_API int ggml_cpu_has_avx (void);
  2028. GGML_API int ggml_cpu_has_avx_vnni (void);
  2029. GGML_API int ggml_cpu_has_avx2 (void);
  2030. GGML_API int ggml_cpu_has_avx512 (void);
  2031. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2032. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2033. GGML_API int ggml_cpu_has_avx512_bf16(void);
  2034. GGML_API int ggml_cpu_has_fma (void);
  2035. GGML_API int ggml_cpu_has_neon (void);
  2036. GGML_API int ggml_cpu_has_sve (void);
  2037. GGML_API int ggml_cpu_has_arm_fma (void);
  2038. GGML_API int ggml_cpu_has_metal (void);
  2039. GGML_API int ggml_cpu_has_f16c (void);
  2040. GGML_API int ggml_cpu_has_fp16_va (void);
  2041. GGML_API int ggml_cpu_has_wasm_simd (void);
  2042. GGML_API int ggml_cpu_has_blas (void);
  2043. GGML_API int ggml_cpu_has_cuda (void);
  2044. GGML_API int ggml_cpu_has_vulkan (void);
  2045. GGML_API int ggml_cpu_has_kompute (void);
  2046. GGML_API int ggml_cpu_has_gpublas (void);
  2047. GGML_API int ggml_cpu_has_sse3 (void);
  2048. GGML_API int ggml_cpu_has_ssse3 (void);
  2049. GGML_API int ggml_cpu_has_sycl (void);
  2050. GGML_API int ggml_cpu_has_rpc (void);
  2051. GGML_API int ggml_cpu_has_vsx (void);
  2052. GGML_API int ggml_cpu_has_matmul_int8(void);
  2053. //
  2054. // Internal types and functions exposed for tests and benchmarks
  2055. //
  2056. #ifdef __cplusplus
  2057. // restrict not standard in C++
  2058. #define GGML_RESTRICT
  2059. #else
  2060. #define GGML_RESTRICT restrict
  2061. #endif
  2062. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2063. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2064. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  2065. const void * GGML_RESTRICT y, size_t by, int nrc);
  2066. typedef struct {
  2067. const char * type_name;
  2068. int blck_size;
  2069. size_t type_size;
  2070. bool is_quantized;
  2071. ggml_to_float_t to_float;
  2072. ggml_from_float_t from_float;
  2073. ggml_from_float_t from_float_reference;
  2074. ggml_vec_dot_t vec_dot;
  2075. enum ggml_type vec_dot_type;
  2076. int64_t nrows; // number of rows to process simultaneously;
  2077. } ggml_type_traits_t;
  2078. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2079. #ifdef __cplusplus
  2080. }
  2081. #endif