server.cpp 235 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "server-http.h"
  4. #include "inline-tools.h"
  5. #include "arg.h"
  6. #include "common.h"
  7. #include "json-schema-to-grammar.h"
  8. #include "llama.h"
  9. #include "log.h"
  10. #include "sampling.h"
  11. #include "speculative.h"
  12. #include "mtmd.h"
  13. #include <atomic>
  14. #include <chrono>
  15. #include <condition_variable>
  16. #include <cstddef>
  17. #include <cinttypes>
  18. #include <deque>
  19. #include <memory>
  20. #include <mutex>
  21. #include <list>
  22. #include <signal.h>
  23. #include <thread>
  24. #include <unordered_set>
  25. // fix problem with std::min and std::max
  26. #if defined(_WIN32)
  27. #define WIN32_LEAN_AND_MEAN
  28. #ifndef NOMINMAX
  29. # define NOMINMAX
  30. #endif
  31. #include <windows.h>
  32. #endif
  33. using json = nlohmann::ordered_json;
  34. constexpr int HTTP_POLLING_SECONDS = 1;
  35. enum stop_type {
  36. STOP_TYPE_NONE,
  37. STOP_TYPE_EOS,
  38. STOP_TYPE_WORD,
  39. STOP_TYPE_LIMIT,
  40. };
  41. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  42. enum slot_state {
  43. SLOT_STATE_IDLE,
  44. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  45. SLOT_STATE_PROCESSING_PROMPT,
  46. SLOT_STATE_DONE_PROMPT,
  47. SLOT_STATE_GENERATING,
  48. };
  49. enum server_state {
  50. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  51. SERVER_STATE_READY, // Server is ready and model is loaded
  52. };
  53. enum server_task_type {
  54. SERVER_TASK_TYPE_COMPLETION,
  55. SERVER_TASK_TYPE_EMBEDDING,
  56. SERVER_TASK_TYPE_RERANK,
  57. SERVER_TASK_TYPE_INFILL,
  58. SERVER_TASK_TYPE_CANCEL,
  59. SERVER_TASK_TYPE_NEXT_RESPONSE,
  60. SERVER_TASK_TYPE_METRICS,
  61. SERVER_TASK_TYPE_SLOT_SAVE,
  62. SERVER_TASK_TYPE_SLOT_RESTORE,
  63. SERVER_TASK_TYPE_SLOT_ERASE,
  64. SERVER_TASK_TYPE_SET_LORA,
  65. };
  66. enum oaicompat_type {
  67. OAICOMPAT_TYPE_NONE,
  68. OAICOMPAT_TYPE_CHAT,
  69. OAICOMPAT_TYPE_COMPLETION,
  70. OAICOMPAT_TYPE_EMBEDDING,
  71. };
  72. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  73. enum error_type {
  74. ERROR_TYPE_INVALID_REQUEST,
  75. ERROR_TYPE_AUTHENTICATION,
  76. ERROR_TYPE_SERVER,
  77. ERROR_TYPE_NOT_FOUND,
  78. ERROR_TYPE_PERMISSION,
  79. ERROR_TYPE_UNAVAILABLE, // custom error
  80. ERROR_TYPE_NOT_SUPPORTED, // custom error
  81. ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
  82. };
  83. static bool server_task_type_need_embd(server_task_type task_type) {
  84. switch (task_type) {
  85. case SERVER_TASK_TYPE_EMBEDDING:
  86. case SERVER_TASK_TYPE_RERANK:
  87. return true;
  88. default:
  89. return false;
  90. }
  91. }
  92. static bool server_task_type_need_logits(server_task_type task_type) {
  93. switch (task_type) {
  94. case SERVER_TASK_TYPE_COMPLETION:
  95. case SERVER_TASK_TYPE_INFILL:
  96. return true;
  97. default:
  98. return false;
  99. }
  100. }
  101. struct slot_params {
  102. bool stream = true;
  103. bool include_usage = false;
  104. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  105. bool return_tokens = false;
  106. bool return_progress = false;
  107. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  108. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  109. int32_t n_predict = -1; // new tokens to predict
  110. int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
  111. int64_t t_max_prompt_ms = -1; // TODO: implement
  112. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  113. std::vector<common_adapter_lora_info> lora;
  114. std::vector<std::string> antiprompt;
  115. std::vector<std::string> response_fields;
  116. bool timings_per_token = false;
  117. bool post_sampling_probs = false;
  118. struct common_params_sampling sampling;
  119. struct common_params_speculative speculative;
  120. // OAI-compat fields
  121. bool verbose = false;
  122. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  123. std::string oaicompat_model;
  124. std::string oaicompat_cmpl_id;
  125. common_chat_syntax oaicompat_chat_syntax;
  126. // Embeddings
  127. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  128. json to_json(bool only_metrics = false) const {
  129. std::vector<std::string> samplers;
  130. samplers.reserve(sampling.samplers.size());
  131. for (const auto & sampler : sampling.samplers) {
  132. samplers.emplace_back(common_sampler_type_to_str(sampler));
  133. }
  134. json lora = json::array();
  135. for (size_t i = 0; i < this->lora.size(); ++i) {
  136. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  137. }
  138. if (only_metrics) {
  139. return json {
  140. {"seed", sampling.seed},
  141. {"temperature", sampling.temp},
  142. {"dynatemp_range", sampling.dynatemp_range},
  143. {"dynatemp_exponent", sampling.dynatemp_exponent},
  144. {"top_k", sampling.top_k},
  145. {"top_p", sampling.top_p},
  146. {"min_p", sampling.min_p},
  147. {"top_n_sigma", sampling.top_n_sigma},
  148. {"xtc_probability", sampling.xtc_probability},
  149. {"xtc_threshold", sampling.xtc_threshold},
  150. {"typical_p", sampling.typ_p},
  151. {"repeat_last_n", sampling.penalty_last_n},
  152. {"repeat_penalty", sampling.penalty_repeat},
  153. {"presence_penalty", sampling.penalty_present},
  154. {"frequency_penalty", sampling.penalty_freq},
  155. {"dry_multiplier", sampling.dry_multiplier},
  156. {"dry_base", sampling.dry_base},
  157. {"dry_allowed_length", sampling.dry_allowed_length},
  158. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  159. {"mirostat", sampling.mirostat},
  160. {"mirostat_tau", sampling.mirostat_tau},
  161. {"mirostat_eta", sampling.mirostat_eta},
  162. {"max_tokens", n_predict},
  163. {"n_predict", n_predict}, // TODO: deduplicate?
  164. {"n_keep", n_keep},
  165. {"n_discard", n_discard},
  166. {"ignore_eos", sampling.ignore_eos},
  167. {"stream", stream},
  168. {"n_probs", sampling.n_probs},
  169. {"min_keep", sampling.min_keep},
  170. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  171. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  172. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  173. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  174. {"samplers", samplers},
  175. {"speculative.n_max", speculative.n_max},
  176. {"speculative.n_min", speculative.n_min},
  177. {"speculative.p_min", speculative.p_min},
  178. {"timings_per_token", timings_per_token},
  179. {"post_sampling_probs", post_sampling_probs},
  180. {"lora", lora},
  181. };
  182. }
  183. auto grammar_triggers = json::array();
  184. for (const auto & trigger : sampling.grammar_triggers) {
  185. server_grammar_trigger ct(trigger);
  186. grammar_triggers.push_back(ct.to_json());
  187. }
  188. return json {
  189. {"seed", sampling.seed},
  190. {"temperature", sampling.temp},
  191. {"dynatemp_range", sampling.dynatemp_range},
  192. {"dynatemp_exponent", sampling.dynatemp_exponent},
  193. {"top_k", sampling.top_k},
  194. {"top_p", sampling.top_p},
  195. {"min_p", sampling.min_p},
  196. {"top_n_sigma", sampling.top_n_sigma},
  197. {"xtc_probability", sampling.xtc_probability},
  198. {"xtc_threshold", sampling.xtc_threshold},
  199. {"typical_p", sampling.typ_p},
  200. {"repeat_last_n", sampling.penalty_last_n},
  201. {"repeat_penalty", sampling.penalty_repeat},
  202. {"presence_penalty", sampling.penalty_present},
  203. {"frequency_penalty", sampling.penalty_freq},
  204. {"dry_multiplier", sampling.dry_multiplier},
  205. {"dry_base", sampling.dry_base},
  206. {"dry_allowed_length", sampling.dry_allowed_length},
  207. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  208. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  209. {"mirostat", sampling.mirostat},
  210. {"mirostat_tau", sampling.mirostat_tau},
  211. {"mirostat_eta", sampling.mirostat_eta},
  212. {"stop", antiprompt},
  213. {"max_tokens", n_predict},
  214. {"n_predict", n_predict}, // TODO: deduplicate?
  215. {"n_keep", n_keep},
  216. {"n_discard", n_discard},
  217. {"ignore_eos", sampling.ignore_eos},
  218. {"stream", stream},
  219. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  220. {"n_probs", sampling.n_probs},
  221. {"min_keep", sampling.min_keep},
  222. {"grammar", sampling.grammar},
  223. {"grammar_lazy", sampling.grammar_lazy},
  224. {"grammar_triggers", grammar_triggers},
  225. {"preserved_tokens", sampling.preserved_tokens},
  226. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  227. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  228. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  229. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  230. {"samplers", samplers},
  231. {"speculative.n_max", speculative.n_max},
  232. {"speculative.n_min", speculative.n_min},
  233. {"speculative.p_min", speculative.p_min},
  234. {"timings_per_token", timings_per_token},
  235. {"post_sampling_probs", post_sampling_probs},
  236. {"lora", lora},
  237. };
  238. }
  239. };
  240. struct server_task {
  241. int id = -1; // to be filled by server_queue
  242. int index = -1; // used when there are multiple prompts (batch request)
  243. // used by SERVER_TASK_TYPE_CANCEL
  244. int id_target = -1;
  245. int id_slot = -1;
  246. // used by SERVER_TASK_TYPE_INFERENCE
  247. slot_params params;
  248. server_tokens tokens;
  249. server_task_type type;
  250. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  251. struct slot_action {
  252. int slot_id;
  253. std::string filename;
  254. std::string filepath;
  255. };
  256. slot_action slot_action;
  257. // used by SERVER_TASK_TYPE_METRICS
  258. bool metrics_reset_bucket = false;
  259. // used by SERVER_TASK_TYPE_SET_LORA
  260. std::vector<common_adapter_lora_info> set_lora;
  261. server_task() = default;
  262. server_task(server_task_type type) : type(type) {}
  263. int32_t n_tokens() const {
  264. return tokens.size();
  265. }
  266. static slot_params params_from_json_cmpl(
  267. const llama_context * ctx,
  268. const common_params & params_base,
  269. const json & data) {
  270. const llama_model * model = llama_get_model(ctx);
  271. const llama_vocab * vocab = llama_model_get_vocab(model);
  272. slot_params params;
  273. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  274. slot_params defaults;
  275. defaults.sampling = params_base.sampling;
  276. defaults.speculative = params_base.speculative;
  277. defaults.n_keep = params_base.n_keep;
  278. defaults.n_predict = params_base.n_predict;
  279. defaults.antiprompt = params_base.antiprompt;
  280. // enabling this will output extra debug information in the HTTP responses from the server
  281. params.verbose = params_base.verbosity > 9;
  282. params.timings_per_token = json_value(data, "timings_per_token", false);
  283. params.stream = json_value(data, "stream", false);
  284. auto stream_opt = json_value(data, "stream_options", json::object());
  285. params.include_usage = json_value(stream_opt, "include_usage", false);
  286. params.cache_prompt = json_value(data, "cache_prompt", true);
  287. params.return_tokens = json_value(data, "return_tokens", false);
  288. params.return_progress = json_value(data, "return_progress", false);
  289. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  290. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  291. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  292. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  293. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  294. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  295. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  296. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  297. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  298. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  299. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  300. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  301. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  302. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  303. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  304. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  305. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  306. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  307. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  308. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  309. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  310. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  311. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  312. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  313. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  314. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  315. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  316. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  317. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  318. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  319. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  320. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  321. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  322. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  323. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  324. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  325. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  326. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  327. // Use OpenAI API logprobs only if n_probs wasn't provided
  328. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  329. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  330. }
  331. if (data.contains("lora")) {
  332. if (data.at("lora").is_array()) {
  333. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  334. } else {
  335. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  336. }
  337. } else {
  338. params.lora = params_base.lora_adapters;
  339. }
  340. // TODO: add more sanity checks for the input parameters
  341. if (params.sampling.penalty_last_n < -1) {
  342. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  343. }
  344. if (params.sampling.dry_penalty_last_n < -1) {
  345. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  346. }
  347. if (params.sampling.penalty_last_n == -1) {
  348. // note: should be the slot's context and not the full context, but it's ok
  349. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  350. }
  351. if (params.sampling.dry_penalty_last_n == -1) {
  352. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  353. }
  354. if (params.sampling.dry_base < 1.0f) {
  355. params.sampling.dry_base = defaults.sampling.dry_base;
  356. }
  357. // sequence breakers for DRY
  358. {
  359. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  360. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  361. if (data.contains("dry_sequence_breakers")) {
  362. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  363. if (params.sampling.dry_sequence_breakers.empty()) {
  364. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  365. }
  366. }
  367. }
  368. // process "json_schema" and "grammar"
  369. if (data.contains("json_schema") && !data.contains("grammar")) {
  370. try {
  371. auto schema = json_value(data, "json_schema", json::object());
  372. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  373. params.sampling.grammar = json_schema_to_grammar(schema);
  374. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  375. } catch (const std::exception & e) {
  376. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  377. }
  378. } else {
  379. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  380. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  381. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  382. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  383. }
  384. {
  385. auto it = data.find("chat_format");
  386. if (it != data.end()) {
  387. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  388. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  389. } else {
  390. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  391. }
  392. common_reasoning_format reasoning_format = params_base.reasoning_format;
  393. if (data.contains("reasoning_format")) {
  394. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  395. }
  396. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  397. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  398. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  399. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  400. }
  401. {
  402. const auto preserved_tokens = data.find("preserved_tokens");
  403. if (preserved_tokens != data.end()) {
  404. for (const auto & t : *preserved_tokens) {
  405. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  406. if (ids.size() == 1) {
  407. SRV_DBG("Preserved token: %d\n", ids[0]);
  408. params.sampling.preserved_tokens.insert(ids[0]);
  409. } else {
  410. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  411. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  412. }
  413. }
  414. }
  415. const auto grammar_triggers = data.find("grammar_triggers");
  416. if (grammar_triggers != data.end()) {
  417. for (const auto & t : *grammar_triggers) {
  418. server_grammar_trigger ct(t);
  419. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  420. const auto & word = ct.value.value;
  421. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  422. if (ids.size() == 1) {
  423. auto token = ids[0];
  424. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  425. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  426. }
  427. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  428. common_grammar_trigger trigger;
  429. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  430. trigger.value = word;
  431. trigger.token = token;
  432. params.sampling.grammar_triggers.push_back(std::move(trigger));
  433. } else {
  434. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  435. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  436. }
  437. } else {
  438. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  439. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  440. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  441. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  442. } else {
  443. throw std::runtime_error("Unknown grammar trigger type");
  444. }
  445. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  446. }
  447. }
  448. }
  449. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  450. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  451. }
  452. }
  453. {
  454. params.sampling.logit_bias.clear();
  455. const auto & logit_bias = data.find("logit_bias");
  456. if (logit_bias != data.end() && logit_bias->is_array()) {
  457. const int n_vocab = llama_vocab_n_tokens(vocab);
  458. for (const auto & el : *logit_bias) {
  459. // TODO: we may want to throw errors here, in case "el" is incorrect
  460. if (el.is_array() && el.size() == 2) {
  461. float bias;
  462. if (el[1].is_number()) {
  463. bias = el[1].get<float>();
  464. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  465. bias = -INFINITY;
  466. } else {
  467. continue;
  468. }
  469. if (el[0].is_number_integer()) {
  470. llama_token tok = el[0].get<llama_token>();
  471. if (tok >= 0 && tok < n_vocab) {
  472. params.sampling.logit_bias.push_back({tok, bias});
  473. }
  474. } else if (el[0].is_string()) {
  475. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  476. for (auto tok : toks) {
  477. params.sampling.logit_bias.push_back({tok, bias});
  478. }
  479. }
  480. }
  481. }
  482. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  483. const int n_vocab = llama_vocab_n_tokens(vocab);
  484. for (const auto & el : logit_bias->items()) {
  485. float bias;
  486. const auto & key = el.key();
  487. const auto & value = el.value();
  488. if (value.is_number()) {
  489. bias = value.get<float>();
  490. } else if (value.is_boolean() && !value.get<bool>()) {
  491. bias = -INFINITY;
  492. } else {
  493. continue;
  494. }
  495. char *end;
  496. llama_token tok = strtol(key.c_str(), &end, 10);
  497. if (*end == 0) {
  498. if (tok >= 0 && tok < n_vocab) {
  499. params.sampling.logit_bias.push_back({tok, bias});
  500. }
  501. } else {
  502. auto toks = common_tokenize(vocab, key, false);
  503. for (auto tok : toks) {
  504. params.sampling.logit_bias.push_back({tok, bias});
  505. }
  506. }
  507. }
  508. }
  509. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  510. if (params.sampling.ignore_eos) {
  511. params.sampling.logit_bias.insert(
  512. params.sampling.logit_bias.end(),
  513. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  514. }
  515. }
  516. {
  517. params.antiprompt.clear();
  518. const auto & stop = data.find("stop");
  519. if (stop != data.end() && stop->is_array()) {
  520. for (const auto & word : *stop) {
  521. if (!word.empty()) {
  522. params.antiprompt.push_back(word);
  523. }
  524. }
  525. }
  526. // set reverse prompt from cli args if not set in the request
  527. if (params.antiprompt.empty()) {
  528. params.antiprompt = defaults.antiprompt;
  529. }
  530. }
  531. {
  532. const auto samplers = data.find("samplers");
  533. if (samplers != data.end()) {
  534. if (samplers->is_array()) {
  535. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  536. } else if (samplers->is_string()){
  537. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  538. }
  539. } else {
  540. params.sampling.samplers = defaults.sampling.samplers;
  541. }
  542. }
  543. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  544. params.oaicompat_model = json_value(data, "model", model_name);
  545. return params;
  546. }
  547. // utility function
  548. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  549. std::unordered_set<int> ids(tasks.size());
  550. for (size_t i = 0; i < tasks.size(); i++) {
  551. ids.insert(tasks[i].id);
  552. }
  553. return ids;
  554. }
  555. };
  556. struct result_timings {
  557. int32_t cache_n = -1;
  558. int32_t prompt_n = -1;
  559. double prompt_ms;
  560. double prompt_per_token_ms;
  561. double prompt_per_second;
  562. int32_t predicted_n = -1;
  563. double predicted_ms;
  564. double predicted_per_token_ms;
  565. double predicted_per_second;
  566. // Optional speculative metrics - only included when > 0
  567. int32_t draft_n = 0;
  568. int32_t draft_n_accepted = 0;
  569. json to_json() const {
  570. json base = {
  571. {"cache_n", cache_n},
  572. {"prompt_n", prompt_n},
  573. {"prompt_ms", prompt_ms},
  574. {"prompt_per_token_ms", prompt_per_token_ms},
  575. {"prompt_per_second", prompt_per_second},
  576. {"predicted_n", predicted_n},
  577. {"predicted_ms", predicted_ms},
  578. {"predicted_per_token_ms", predicted_per_token_ms},
  579. {"predicted_per_second", predicted_per_second},
  580. };
  581. if (draft_n > 0) {
  582. base["draft_n"] = draft_n;
  583. base["draft_n_accepted"] = draft_n_accepted;
  584. }
  585. return base;
  586. }
  587. };
  588. struct result_prompt_progress {
  589. int32_t total = 0;
  590. int32_t cache = 0;
  591. int32_t processed = 0;
  592. int64_t time_ms = 0;
  593. json to_json() const {
  594. return json {
  595. {"total", total},
  596. {"cache", cache},
  597. {"processed", processed},
  598. {"time_ms", time_ms},
  599. };
  600. }
  601. };
  602. struct server_task_result {
  603. int id = -1;
  604. int id_slot = -1;
  605. virtual bool is_error() {
  606. // only used by server_task_result_error
  607. return false;
  608. }
  609. virtual bool is_stop() {
  610. // only used by server_task_result_cmpl_*
  611. return true;
  612. }
  613. virtual int get_index() {
  614. return -1;
  615. }
  616. virtual json to_json() = 0;
  617. virtual ~server_task_result() = default;
  618. };
  619. // using shared_ptr for polymorphism of server_task_result
  620. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  621. static inline std::string stop_type_to_str(stop_type type) {
  622. switch (type) {
  623. case STOP_TYPE_EOS: return "eos";
  624. case STOP_TYPE_WORD: return "word";
  625. case STOP_TYPE_LIMIT: return "limit";
  626. default: return "none";
  627. }
  628. }
  629. struct completion_token_output {
  630. llama_token tok;
  631. float prob;
  632. std::string text_to_send;
  633. struct prob_info {
  634. llama_token tok;
  635. std::string txt;
  636. float prob;
  637. };
  638. std::vector<prob_info> probs;
  639. json to_json(bool post_sampling_probs) const {
  640. json probs_for_token = json::array();
  641. for (const auto & p : probs) {
  642. std::string txt(p.txt);
  643. txt.resize(validate_utf8(txt));
  644. probs_for_token.push_back(json {
  645. {"id", p.tok},
  646. {"token", txt},
  647. {"bytes", str_to_bytes(p.txt)},
  648. {
  649. post_sampling_probs ? "prob" : "logprob",
  650. post_sampling_probs ? p.prob : logarithm(p.prob)
  651. },
  652. });
  653. }
  654. return probs_for_token;
  655. }
  656. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  657. json out = json::array();
  658. for (const auto & p : probs) {
  659. std::string txt(p.text_to_send);
  660. txt.resize(validate_utf8(txt));
  661. out.push_back(json {
  662. {"id", p.tok},
  663. {"token", txt},
  664. {"bytes", str_to_bytes(p.text_to_send)},
  665. {
  666. post_sampling_probs ? "prob" : "logprob",
  667. post_sampling_probs ? p.prob : logarithm(p.prob)
  668. },
  669. {
  670. post_sampling_probs ? "top_probs" : "top_logprobs",
  671. p.to_json(post_sampling_probs)
  672. },
  673. });
  674. }
  675. return out;
  676. }
  677. static float logarithm(float x) {
  678. // nlohmann::json converts -inf to null, so we need to prevent that
  679. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  680. }
  681. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  682. std::vector<unsigned char> bytes;
  683. for (unsigned char c : str) {
  684. bytes.push_back(c);
  685. }
  686. return bytes;
  687. }
  688. };
  689. struct server_task_result_cmpl_final : server_task_result {
  690. int index = 0;
  691. std::string content;
  692. llama_tokens tokens;
  693. bool stream;
  694. bool include_usage;
  695. result_timings timings;
  696. std::string prompt;
  697. bool truncated;
  698. int32_t n_decoded;
  699. int32_t n_prompt_tokens;
  700. int32_t n_tokens_cached;
  701. bool has_new_line;
  702. std::string stopping_word;
  703. stop_type stop = STOP_TYPE_NONE;
  704. bool post_sampling_probs;
  705. std::vector<completion_token_output> probs_output;
  706. std::vector<std::string> response_fields;
  707. slot_params generation_params;
  708. // OAI-compat fields
  709. bool verbose = false;
  710. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  711. std::string oaicompat_model;
  712. std::string oaicompat_cmpl_id;
  713. common_chat_msg oaicompat_msg;
  714. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  715. virtual int get_index() override {
  716. return index;
  717. }
  718. virtual bool is_stop() override {
  719. return true; // in stream mode, final responses are considered stop
  720. }
  721. virtual json to_json() override {
  722. switch (oaicompat) {
  723. case OAICOMPAT_TYPE_NONE:
  724. return to_json_non_oaicompat();
  725. case OAICOMPAT_TYPE_COMPLETION:
  726. return to_json_oaicompat();
  727. case OAICOMPAT_TYPE_CHAT:
  728. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  729. default:
  730. GGML_ASSERT(false && "Invalid oaicompat_type");
  731. }
  732. }
  733. json to_json_non_oaicompat() {
  734. json res = json {
  735. {"index", index},
  736. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  737. {"tokens", stream ? llama_tokens {} : tokens},
  738. {"id_slot", id_slot},
  739. {"stop", true},
  740. {"model", oaicompat_model},
  741. {"tokens_predicted", n_decoded},
  742. {"tokens_evaluated", n_prompt_tokens},
  743. {"generation_settings", generation_params.to_json()},
  744. {"prompt", prompt},
  745. {"has_new_line", has_new_line},
  746. {"truncated", truncated},
  747. {"stop_type", stop_type_to_str(stop)},
  748. {"stopping_word", stopping_word},
  749. {"tokens_cached", n_tokens_cached},
  750. {"timings", timings.to_json()},
  751. };
  752. if (!stream && !probs_output.empty()) {
  753. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  754. }
  755. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  756. }
  757. json to_json_oaicompat() {
  758. std::time_t t = std::time(0);
  759. json logprobs = json(nullptr); // OAI default to null
  760. if (!stream && probs_output.size() > 0) {
  761. logprobs = json{
  762. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  763. };
  764. }
  765. json finish_reason = "length";
  766. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  767. finish_reason = "stop";
  768. }
  769. json res = json {
  770. {"choices", json::array({
  771. json{
  772. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  773. {"index", index},
  774. {"logprobs", logprobs},
  775. {"finish_reason", finish_reason},
  776. }
  777. })},
  778. {"created", t},
  779. {"model", oaicompat_model},
  780. {"system_fingerprint", build_info},
  781. {"object", "text_completion"},
  782. {"usage", json {
  783. {"completion_tokens", n_decoded},
  784. {"prompt_tokens", n_prompt_tokens},
  785. {"total_tokens", n_decoded + n_prompt_tokens}
  786. }},
  787. {"id", oaicompat_cmpl_id}
  788. };
  789. // extra fields for debugging purposes
  790. if (verbose) {
  791. res["__verbose"] = to_json_non_oaicompat();
  792. }
  793. if (timings.prompt_n >= 0) {
  794. res.push_back({"timings", timings.to_json()});
  795. }
  796. return res;
  797. }
  798. json to_json_oaicompat_chat() {
  799. std::string finish_reason = "length";
  800. common_chat_msg msg;
  801. if (!oaicompat_msg.empty()) {
  802. msg = oaicompat_msg;
  803. } else {
  804. msg.role = "assistant";
  805. msg.content = content;
  806. }
  807. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  808. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  809. }
  810. json choice {
  811. {"finish_reason", finish_reason},
  812. {"index", 0},
  813. {"message", msg.to_json_oaicompat<json>()},
  814. };
  815. if (!stream && probs_output.size() > 0) {
  816. choice["logprobs"] = json{
  817. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  818. };
  819. }
  820. std::time_t t = std::time(0);
  821. json res = json {
  822. {"choices", json::array({choice})},
  823. {"created", t},
  824. {"model", oaicompat_model},
  825. {"system_fingerprint", build_info},
  826. {"object", "chat.completion"},
  827. {"usage", json {
  828. {"completion_tokens", n_decoded},
  829. {"prompt_tokens", n_prompt_tokens},
  830. {"total_tokens", n_decoded + n_prompt_tokens}
  831. }},
  832. {"id", oaicompat_cmpl_id}
  833. };
  834. // extra fields for debugging purposes
  835. if (verbose) {
  836. res["__verbose"] = to_json_non_oaicompat();
  837. }
  838. if (timings.prompt_n >= 0) {
  839. res.push_back({"timings", timings.to_json()});
  840. }
  841. return res;
  842. }
  843. json to_json_oaicompat_chat_stream() {
  844. std::time_t t = std::time(0);
  845. std::string finish_reason = "length";
  846. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  847. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  848. }
  849. json deltas = json::array();
  850. for (const auto & diff : oaicompat_msg_diffs) {
  851. deltas.push_back({
  852. {"choices", json::array({
  853. json {
  854. {"finish_reason", nullptr},
  855. {"index", 0},
  856. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  857. },
  858. })},
  859. {"created", t},
  860. {"id", oaicompat_cmpl_id},
  861. {"model", oaicompat_model},
  862. {"system_fingerprint", build_info},
  863. {"object", "chat.completion.chunk"},
  864. });
  865. }
  866. deltas.push_back({
  867. {"choices", json::array({
  868. json {
  869. {"finish_reason", finish_reason},
  870. {"index", 0},
  871. {"delta", json::object()},
  872. },
  873. })},
  874. {"created", t},
  875. {"id", oaicompat_cmpl_id},
  876. {"model", oaicompat_model},
  877. {"system_fingerprint", build_info},
  878. {"object", "chat.completion.chunk"},
  879. });
  880. if (include_usage) {
  881. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  882. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  883. deltas.push_back({
  884. {"choices", json::array()},
  885. {"created", t},
  886. {"id", oaicompat_cmpl_id},
  887. {"model", oaicompat_model},
  888. {"system_fingerprint", build_info},
  889. {"object", "chat.completion.chunk"},
  890. {"usage", json {
  891. {"completion_tokens", n_decoded},
  892. {"prompt_tokens", n_prompt_tokens},
  893. {"total_tokens", n_decoded + n_prompt_tokens},
  894. }},
  895. });
  896. }
  897. if (timings.prompt_n >= 0) {
  898. deltas.back().push_back({"timings", timings.to_json()});
  899. }
  900. // extra fields for debugging purposes
  901. if (verbose && !deltas.empty()) {
  902. deltas.front()["__verbose"] = to_json_non_oaicompat();
  903. }
  904. return deltas;
  905. }
  906. };
  907. struct server_task_result_cmpl_partial : server_task_result {
  908. int index = 0;
  909. std::string content;
  910. llama_tokens tokens;
  911. int32_t n_decoded;
  912. int32_t n_prompt_tokens;
  913. bool post_sampling_probs;
  914. bool is_progress = false;
  915. completion_token_output prob_output;
  916. result_timings timings;
  917. result_prompt_progress progress;
  918. // OAI-compat fields
  919. bool verbose = false;
  920. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  921. std::string oaicompat_model;
  922. std::string oaicompat_cmpl_id;
  923. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  924. virtual int get_index() override {
  925. return index;
  926. }
  927. virtual bool is_stop() override {
  928. return false; // in stream mode, partial responses are not considered stop
  929. }
  930. virtual json to_json() override {
  931. switch (oaicompat) {
  932. case OAICOMPAT_TYPE_NONE:
  933. return to_json_non_oaicompat();
  934. case OAICOMPAT_TYPE_COMPLETION:
  935. return to_json_oaicompat();
  936. case OAICOMPAT_TYPE_CHAT:
  937. return to_json_oaicompat_chat();
  938. default:
  939. GGML_ASSERT(false && "Invalid oaicompat_type");
  940. }
  941. }
  942. json to_json_non_oaicompat() {
  943. // non-OAI-compat JSON
  944. json res = json {
  945. {"index", index},
  946. {"content", content},
  947. {"tokens", tokens},
  948. {"stop", false},
  949. {"id_slot", id_slot},
  950. {"tokens_predicted", n_decoded},
  951. {"tokens_evaluated", n_prompt_tokens},
  952. };
  953. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  954. if (timings.prompt_n > 0) {
  955. res.push_back({"timings", timings.to_json()});
  956. }
  957. if (is_progress) {
  958. res.push_back({"prompt_progress", progress.to_json()});
  959. }
  960. if (!prob_output.probs.empty()) {
  961. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  962. }
  963. return res;
  964. }
  965. json to_json_oaicompat() {
  966. std::time_t t = std::time(0);
  967. json logprobs = json(nullptr); // OAI default to null
  968. if (prob_output.probs.size() > 0) {
  969. logprobs = json{
  970. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  971. };
  972. }
  973. json res = json {
  974. {"choices", json::array({
  975. json{
  976. {"text", content},
  977. {"index", index},
  978. {"logprobs", logprobs},
  979. {"finish_reason", nullptr},
  980. }
  981. })},
  982. {"created", t},
  983. {"model", oaicompat_model},
  984. {"system_fingerprint", build_info},
  985. {"object", "text_completion"},
  986. {"id", oaicompat_cmpl_id}
  987. };
  988. // extra fields for debugging purposes
  989. if (verbose) {
  990. res["__verbose"] = to_json_non_oaicompat();
  991. }
  992. if (timings.prompt_n >= 0) {
  993. res.push_back({"timings", timings.to_json()});
  994. }
  995. if (is_progress) {
  996. res.push_back({"prompt_progress", progress.to_json()});
  997. }
  998. return res;
  999. }
  1000. json to_json_oaicompat_chat() {
  1001. bool first = n_decoded == 1;
  1002. std::time_t t = std::time(0);
  1003. json choices;
  1004. std::vector<json> deltas;
  1005. auto add_delta = [&](const json & delta) {
  1006. deltas.push_back({
  1007. {"choices", json::array({
  1008. json {
  1009. {"finish_reason", nullptr},
  1010. {"index", 0},
  1011. {"delta", delta},
  1012. },
  1013. })},
  1014. {"created", t},
  1015. {"id", oaicompat_cmpl_id},
  1016. {"model", oaicompat_model},
  1017. {"system_fingerprint", build_info},
  1018. {"object", "chat.completion.chunk"},
  1019. });
  1020. };
  1021. // We have to send an initial update to conform to openai behavior
  1022. if (first || is_progress) {
  1023. add_delta({
  1024. {"role", "assistant"},
  1025. {"content", nullptr},
  1026. });
  1027. }
  1028. for (const auto & diff : oaicompat_msg_diffs) {
  1029. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  1030. }
  1031. if (!deltas.empty()) {
  1032. auto & last_json = deltas[deltas.size() - 1];
  1033. GGML_ASSERT(last_json.at("choices").size() >= 1);
  1034. if (prob_output.probs.size() > 0) {
  1035. last_json.at("choices").at(0)["logprobs"] = json {
  1036. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  1037. };
  1038. }
  1039. if (timings.prompt_n >= 0) {
  1040. last_json.push_back({"timings", timings.to_json()});
  1041. }
  1042. if (is_progress) {
  1043. last_json.push_back({"prompt_progress", progress.to_json()});
  1044. }
  1045. }
  1046. return deltas;
  1047. }
  1048. };
  1049. struct server_task_result_embd : server_task_result {
  1050. int index = 0;
  1051. std::vector<std::vector<float>> embedding;
  1052. int32_t n_tokens;
  1053. // OAI-compat fields
  1054. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  1055. virtual int get_index() override {
  1056. return index;
  1057. }
  1058. virtual json to_json() override {
  1059. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  1060. ? to_json_oaicompat()
  1061. : to_json_non_oaicompat();
  1062. }
  1063. json to_json_non_oaicompat() {
  1064. return json {
  1065. {"index", index},
  1066. {"embedding", embedding},
  1067. };
  1068. }
  1069. json to_json_oaicompat() {
  1070. return json {
  1071. {"index", index},
  1072. {"embedding", embedding[0]},
  1073. {"tokens_evaluated", n_tokens},
  1074. };
  1075. }
  1076. };
  1077. struct server_task_result_rerank : server_task_result {
  1078. int index = 0;
  1079. float score = -1e6;
  1080. int32_t n_tokens;
  1081. virtual int get_index() override {
  1082. return index;
  1083. }
  1084. virtual json to_json() override {
  1085. return json {
  1086. {"index", index},
  1087. {"score", score},
  1088. {"tokens_evaluated", n_tokens},
  1089. };
  1090. }
  1091. };
  1092. // this function maybe used outside of server_task_result_error
  1093. static json format_error_response(const std::string & message, const enum error_type type) {
  1094. std::string type_str;
  1095. int code = 500;
  1096. switch (type) {
  1097. case ERROR_TYPE_INVALID_REQUEST:
  1098. type_str = "invalid_request_error";
  1099. code = 400;
  1100. break;
  1101. case ERROR_TYPE_AUTHENTICATION:
  1102. type_str = "authentication_error";
  1103. code = 401;
  1104. break;
  1105. case ERROR_TYPE_NOT_FOUND:
  1106. type_str = "not_found_error";
  1107. code = 404;
  1108. break;
  1109. case ERROR_TYPE_SERVER:
  1110. type_str = "server_error";
  1111. code = 500;
  1112. break;
  1113. case ERROR_TYPE_PERMISSION:
  1114. type_str = "permission_error";
  1115. code = 403;
  1116. break;
  1117. case ERROR_TYPE_NOT_SUPPORTED:
  1118. type_str = "not_supported_error";
  1119. code = 501;
  1120. break;
  1121. case ERROR_TYPE_UNAVAILABLE:
  1122. type_str = "unavailable_error";
  1123. code = 503;
  1124. break;
  1125. case ERROR_TYPE_EXCEED_CONTEXT_SIZE:
  1126. type_str = "exceed_context_size_error";
  1127. code = 400;
  1128. break;
  1129. }
  1130. return json {
  1131. {"code", code},
  1132. {"message", message},
  1133. {"type", type_str},
  1134. };
  1135. }
  1136. struct server_task_result_error : server_task_result {
  1137. int index = 0;
  1138. error_type err_type = ERROR_TYPE_SERVER;
  1139. std::string err_msg;
  1140. // for ERROR_TYPE_EXCEED_CONTEXT_SIZE
  1141. int32_t n_prompt_tokens = 0;
  1142. int32_t n_ctx = 0;
  1143. virtual bool is_error() override {
  1144. return true;
  1145. }
  1146. virtual json to_json() override {
  1147. json res = format_error_response(err_msg, err_type);
  1148. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1149. res["n_prompt_tokens"] = n_prompt_tokens;
  1150. res["n_ctx"] = n_ctx;
  1151. }
  1152. return res;
  1153. }
  1154. };
  1155. struct server_task_result_metrics : server_task_result {
  1156. int n_idle_slots;
  1157. int n_processing_slots;
  1158. int n_tasks_deferred;
  1159. int64_t t_start;
  1160. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1161. uint64_t n_prompt_tokens_processed_total = 0;
  1162. uint64_t t_prompt_processing_total = 0;
  1163. uint64_t n_tokens_predicted_total = 0;
  1164. uint64_t t_tokens_generation_total = 0;
  1165. uint64_t n_tokens_max = 0;
  1166. uint64_t n_prompt_tokens_processed = 0;
  1167. uint64_t t_prompt_processing = 0;
  1168. uint64_t n_tokens_predicted = 0;
  1169. uint64_t t_tokens_generation = 0;
  1170. uint64_t n_decode_total = 0;
  1171. uint64_t n_busy_slots_total = 0;
  1172. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1173. // therefore, we use json to temporarily store the slot.to_json() result
  1174. json slots_data = json::array();
  1175. virtual json to_json() override {
  1176. return json {
  1177. { "idle", n_idle_slots },
  1178. { "processing", n_processing_slots },
  1179. { "deferred", n_tasks_deferred },
  1180. { "t_start", t_start },
  1181. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1182. { "t_tokens_generation_total", t_tokens_generation_total },
  1183. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1184. { "t_prompt_processing_total", t_prompt_processing_total },
  1185. { "n_tokens_max", n_tokens_max },
  1186. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1187. { "t_prompt_processing", t_prompt_processing },
  1188. { "n_tokens_predicted", n_tokens_predicted },
  1189. { "t_tokens_generation", t_tokens_generation },
  1190. { "n_decode_total", n_decode_total },
  1191. { "n_busy_slots_total", n_busy_slots_total },
  1192. { "slots", slots_data },
  1193. };
  1194. }
  1195. };
  1196. struct server_task_result_slot_save_load : server_task_result {
  1197. std::string filename;
  1198. bool is_save; // true = save, false = load
  1199. size_t n_tokens;
  1200. size_t n_bytes;
  1201. double t_ms;
  1202. virtual json to_json() override {
  1203. if (is_save) {
  1204. return json {
  1205. { "id_slot", id_slot },
  1206. { "filename", filename },
  1207. { "n_saved", n_tokens },
  1208. { "n_written", n_bytes },
  1209. { "timings", {
  1210. { "save_ms", t_ms }
  1211. }},
  1212. };
  1213. }
  1214. return json {
  1215. { "id_slot", id_slot },
  1216. { "filename", filename },
  1217. { "n_restored", n_tokens },
  1218. { "n_read", n_bytes },
  1219. { "timings", {
  1220. { "restore_ms", t_ms }
  1221. }},
  1222. };
  1223. }
  1224. };
  1225. struct server_task_result_slot_erase : server_task_result {
  1226. size_t n_erased;
  1227. virtual json to_json() override {
  1228. return json {
  1229. { "id_slot", id_slot },
  1230. { "n_erased", n_erased },
  1231. };
  1232. }
  1233. };
  1234. struct server_task_result_apply_lora : server_task_result {
  1235. virtual json to_json() override {
  1236. return json {{ "success", true }};
  1237. }
  1238. };
  1239. struct server_prompt_checkpoint {
  1240. llama_pos pos_min;
  1241. llama_pos pos_max;
  1242. std::vector<uint8_t> data;
  1243. size_t size() const {
  1244. return data.size();
  1245. }
  1246. };
  1247. struct server_prompt {
  1248. server_tokens tokens;
  1249. std::vector<uint8_t> data;
  1250. std::list<server_prompt_checkpoint> checkpoints;
  1251. size_t size() const {
  1252. size_t res = data.size();
  1253. for (const auto & checkpoint : checkpoints) {
  1254. res += checkpoint.size();
  1255. }
  1256. return res;
  1257. }
  1258. int n_tokens() const {
  1259. return tokens.size();
  1260. }
  1261. };
  1262. struct server_prompt_cache {
  1263. server_prompt_cache(int32_t limit_size_mib, size_t limit_tokens) {
  1264. this->limit_size = 1024ull*1024ull*(limit_size_mib < 0 ? 0 : limit_size_mib);
  1265. this->limit_tokens = limit_tokens;
  1266. }
  1267. std::list<server_prompt> states;
  1268. // in bytes, 0 = no limit
  1269. size_t limit_size = 0;
  1270. // in tokens, 0 = no limit
  1271. size_t limit_tokens = 0;
  1272. size_t size() const {
  1273. size_t res = 0;
  1274. for (const auto & state : states) {
  1275. res += state.size();
  1276. }
  1277. return res;
  1278. }
  1279. size_t n_tokens() const {
  1280. size_t res = 0;
  1281. for (const auto & state : states) {
  1282. res += state.n_tokens();
  1283. }
  1284. return res;
  1285. }
  1286. server_prompt * alloc(const server_prompt & prompt, size_t state_size) {
  1287. // first check if the current state is contained fully in the cache
  1288. for (auto it = states.begin(); it != states.end(); ++it) {
  1289. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1290. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1291. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1292. return nullptr;
  1293. }
  1294. }
  1295. // next, remove any cached prompts that are fully contained in the current prompt
  1296. for (auto it = states.begin(); it != states.end();) {
  1297. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1298. if (len == (int) it->tokens.size()) {
  1299. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1300. it = states.erase(it);
  1301. } else {
  1302. ++it;
  1303. }
  1304. }
  1305. std::vector<uint8_t> state_data;
  1306. // check if we can allocate enough memory for the new state
  1307. try {
  1308. state_data.resize(state_size);
  1309. } catch (const std::bad_alloc & e) {
  1310. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1311. limit_size = std::max<size_t>(1, 0.4*size());
  1312. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1313. update();
  1314. return nullptr;
  1315. }
  1316. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1317. auto & cur = states.emplace_back();
  1318. cur = {
  1319. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1320. /*.data =*/ std::move(state_data),
  1321. /*.checkpoints =*/ prompt.checkpoints,
  1322. };
  1323. return &cur;
  1324. }
  1325. bool load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1326. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1327. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1328. float sim_best = float(lcp_best) / tokens_new.size();
  1329. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1330. auto it_best = states.end();
  1331. // find the most similar cached prompt, that would also preserve the most context
  1332. for (auto it = states.begin(); it != states.end(); ++it) {
  1333. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1334. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1335. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1336. // don't trash large prompts
  1337. if (f_keep_cur < 0.25f) {
  1338. continue;
  1339. }
  1340. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1341. f_keep_best = f_keep_cur;
  1342. sim_best = sim_cur;
  1343. it_best = it;
  1344. }
  1345. }
  1346. if (it_best != states.end()) {
  1347. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1348. const size_t size = it_best->data.size();
  1349. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1350. if (n != size) {
  1351. SRV_WRN("failed to restore state with size %zu\n", size);
  1352. return false;
  1353. }
  1354. it_best->data.clear();
  1355. it_best->data.shrink_to_fit();
  1356. prompt = std::move(*it_best);
  1357. states.erase(it_best);
  1358. }
  1359. return true;
  1360. }
  1361. void update() {
  1362. if (limit_size > 0) {
  1363. // always keep at least one state, regardless of the limits
  1364. while (states.size() > 1 && size() > limit_size) {
  1365. if (states.empty()) {
  1366. break;
  1367. }
  1368. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1369. states.pop_front();
  1370. }
  1371. }
  1372. // average size per token
  1373. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1374. // dynamically increase the token limit if it can fit in the memory limit
  1375. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1376. if (limit_tokens > 0) {
  1377. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1378. if (states.empty()) {
  1379. break;
  1380. }
  1381. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1382. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1383. states.pop_front();
  1384. }
  1385. }
  1386. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1387. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1388. for (const auto & state : states) {
  1389. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1390. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1391. }
  1392. }
  1393. };
  1394. // Inline tool FSM states (must be outside struct for proper scoping)
  1395. enum ToolDetectionState {
  1396. TOOL_STATE_IDLE,
  1397. TOOL_STATE_SAW_OPEN_1, // Saw first '['
  1398. TOOL_STATE_SAW_OPEN_2, // Saw second '[' (full '[[')
  1399. TOOL_STATE_IN_COMMAND, // Reading command name and args
  1400. TOOL_STATE_SAW_BRACE, // Saw '{'
  1401. TOOL_STATE_SAW_EQ_1, // Saw first '='
  1402. TOOL_STATE_SAW_EQ_2, // Saw second '='
  1403. TOOL_STATE_COMPLETE // Saw '}' - ready to execute
  1404. };
  1405. struct server_slot {
  1406. int id;
  1407. llama_batch batch_spec = {};
  1408. // TODO: change to unique_ptrs for consistency:
  1409. llama_context * ctx = nullptr;
  1410. llama_context * ctx_dft = nullptr;
  1411. // multimodal
  1412. mtmd_context * mctx = nullptr;
  1413. common_speculative * spec = nullptr;
  1414. std::unique_ptr<const server_task> task;
  1415. std::unique_ptr<const server_task> task_prev; // used for debugging
  1416. // used to determine the slot that has been used the longest
  1417. int64_t t_last_used = -1;
  1418. // generation props
  1419. int32_t n_ctx = 0; // context size per slot
  1420. int32_t n_keep = 0;
  1421. int32_t n_decoded = 0;
  1422. int32_t n_remaining = -1;
  1423. int32_t i_batch = -1;
  1424. int32_t n_prompt_tokens_cache = 0;
  1425. int32_t n_prompt_tokens_processed = 0;
  1426. size_t last_nl_pos = 0;
  1427. std::string generated_text;
  1428. llama_tokens generated_tokens;
  1429. common_chat_msg chat_msg;
  1430. std::vector<completion_token_output> generated_token_probs;
  1431. bool has_next_token = true;
  1432. bool has_new_line = false;
  1433. bool truncated = false;
  1434. stop_type stop;
  1435. std::string stopping_word;
  1436. // state
  1437. slot_state state = SLOT_STATE_IDLE;
  1438. server_prompt prompt;
  1439. void prompt_save(server_prompt_cache & prompt_cache) const {
  1440. GGML_ASSERT(prompt.data.size() == 0);
  1441. const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0);
  1442. SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n",
  1443. (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0));
  1444. auto * cur = prompt_cache.alloc(prompt, cur_size);
  1445. if (cur == nullptr) {
  1446. return;
  1447. }
  1448. llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0);
  1449. }
  1450. bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) {
  1451. bool res = prompt_cache.load(prompt, tokens, ctx, id);
  1452. if (!res) {
  1453. SLT_WRN(*this, "%s", "failed to load prompt from cache\n");
  1454. }
  1455. return res;
  1456. }
  1457. std::vector<common_adapter_lora_info> lora;
  1458. int32_t alora_invocation_start = -1;
  1459. // sampling
  1460. json json_schema;
  1461. struct common_sampler * smpl = nullptr;
  1462. llama_token sampled;
  1463. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1464. std::vector<std::string> generated_tool_call_ids;
  1465. // stats
  1466. size_t n_sent_text = 0; // number of sent text character
  1467. int64_t t_start_process_prompt;
  1468. int64_t t_start_generation;
  1469. double t_prompt_processing; // ms
  1470. double t_token_generation; // ms
  1471. std::function<void(int)> callback_on_release;
  1472. // Speculative decoding stats
  1473. int32_t n_draft_total = 0; // Total draft tokens generated
  1474. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1475. // Inline tool FSM state
  1476. struct ToolState {
  1477. ToolDetectionState status = TOOL_STATE_IDLE;
  1478. std::string buffer;
  1479. int invocation_count = 0; // Security: track invocations per turn
  1480. bool inside_inter_think = false; // Track if we're inside <inter_think> block
  1481. std::string tag_buffer; // Buffer for detecting <inter_think> tags
  1482. } tool_state;
  1483. std::deque<llama_token> forced_tokens;
  1484. void reset() {
  1485. SLT_DBG(*this, "%s", "\n");
  1486. n_prompt_tokens_cache = 0;
  1487. last_nl_pos = 0;
  1488. generated_text = "";
  1489. has_new_line = false;
  1490. truncated = false;
  1491. stop = STOP_TYPE_NONE;
  1492. stopping_word = "";
  1493. n_sent_text = 0;
  1494. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1495. generated_tokens.clear();
  1496. generated_token_probs.clear();
  1497. chat_msg = {};
  1498. json_schema = json();
  1499. generated_tool_call_ids.clear();
  1500. // clear speculative decoding stats
  1501. n_draft_total = 0;
  1502. n_draft_accepted = 0;
  1503. task.reset();
  1504. task_prev.reset();
  1505. // clear alora start
  1506. alora_invocation_start = -1;
  1507. tool_state.status = TOOL_STATE_IDLE;
  1508. tool_state.buffer.clear();
  1509. tool_state.invocation_count = 0;
  1510. tool_state.inside_inter_think = false;
  1511. tool_state.tag_buffer.clear();
  1512. forced_tokens.clear();
  1513. }
  1514. bool need_embd() const {
  1515. GGML_ASSERT(task);
  1516. return server_task_type_need_embd(task->type);
  1517. }
  1518. bool need_logits() const {
  1519. GGML_ASSERT(task);
  1520. return server_task_type_need_logits(task->type);
  1521. }
  1522. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1523. // also we cannot split if the pooling would require any past tokens
  1524. bool can_split() const {
  1525. return
  1526. !need_embd() ||
  1527. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1528. }
  1529. bool can_batch_with(server_slot & other_slot) const {
  1530. GGML_ASSERT(task);
  1531. return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora);
  1532. }
  1533. bool has_budget(const common_params & global_params) {
  1534. GGML_ASSERT(task);
  1535. if (task->params.n_predict == -1 && global_params.n_predict == -1) {
  1536. return true; // limitless
  1537. }
  1538. n_remaining = -1;
  1539. if (task->params.n_predict != -1) {
  1540. n_remaining = task->params.n_predict - n_decoded;
  1541. } else if (global_params.n_predict != -1) {
  1542. n_remaining = global_params.n_predict - n_decoded;
  1543. }
  1544. return n_remaining > 0; // no budget
  1545. }
  1546. bool is_processing() const {
  1547. return state != SLOT_STATE_IDLE;
  1548. }
  1549. bool can_speculate() const {
  1550. return ctx_dft;
  1551. }
  1552. void add_token(const completion_token_output & token) {
  1553. if (!is_processing()) {
  1554. SLT_WRN(*this, "%s", "slot is not processing\n");
  1555. return;
  1556. }
  1557. generated_token_probs.push_back(token);
  1558. }
  1559. void release() {
  1560. if (is_processing()) {
  1561. GGML_ASSERT(task);
  1562. SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated);
  1563. t_last_used = ggml_time_us();
  1564. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1565. state = SLOT_STATE_IDLE;
  1566. task_prev = std::move(task);
  1567. task.reset();
  1568. callback_on_release(id);
  1569. }
  1570. }
  1571. result_timings get_timings() const {
  1572. result_timings timings;
  1573. timings.cache_n = n_prompt_tokens_cache;
  1574. timings.prompt_n = n_prompt_tokens_processed;
  1575. timings.prompt_ms = t_prompt_processing;
  1576. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1577. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1578. timings.predicted_n = n_decoded;
  1579. timings.predicted_ms = t_token_generation;
  1580. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1581. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1582. // Add speculative metrics
  1583. if (n_draft_total > 0) {
  1584. timings.draft_n = n_draft_total;
  1585. timings.draft_n_accepted = n_draft_accepted;
  1586. }
  1587. return timings;
  1588. }
  1589. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1590. GGML_ASSERT(task);
  1591. auto previous_msg = chat_msg;
  1592. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1593. auto new_msg = common_chat_parse(
  1594. generated_text,
  1595. /* is_partial= */ stop != STOP_TYPE_EOS,
  1596. task->params.oaicompat_chat_syntax);
  1597. if (!new_msg.empty()) {
  1598. new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
  1599. chat_msg = new_msg;
  1600. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1601. }
  1602. return chat_msg;
  1603. }
  1604. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1605. GGML_ASSERT(task);
  1606. size_t stop_pos = std::string::npos;
  1607. for (const std::string & word : task->params.antiprompt) {
  1608. size_t pos;
  1609. if (is_full_stop) {
  1610. const size_t tmp = word.size() + last_token_size;
  1611. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1612. pos = text.find(word, from_pos);
  1613. } else {
  1614. // otherwise, partial stop
  1615. pos = string_find_partial_stop(text, word);
  1616. }
  1617. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1618. if (is_full_stop) {
  1619. stop = STOP_TYPE_WORD;
  1620. stopping_word = word;
  1621. has_next_token = false;
  1622. }
  1623. stop_pos = pos;
  1624. }
  1625. }
  1626. return stop_pos;
  1627. }
  1628. void print_timings() const {
  1629. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1630. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1631. const double t_gen = t_token_generation / n_decoded;
  1632. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1633. SLT_INF(*this,
  1634. "\n"
  1635. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1636. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1637. " total time = %10.2f ms / %5d tokens\n",
  1638. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1639. t_token_generation, n_decoded, t_gen, n_gen_second,
  1640. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1641. if (n_draft_total > 0) {
  1642. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1643. SLT_INF(*this,
  1644. "\n"
  1645. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1646. draft_ratio, n_draft_accepted, n_draft_total
  1647. );
  1648. }
  1649. }
  1650. json to_json(bool only_metrics = false) const {
  1651. json res;
  1652. res = {
  1653. {"id", id},
  1654. {"n_ctx", n_ctx},
  1655. {"speculative", can_speculate()},
  1656. {"is_processing", is_processing()},
  1657. };
  1658. const auto & ptask = task ? task : task_prev;
  1659. if (ptask) {
  1660. res["id_task"] = ptask->id;
  1661. res["params"] = ptask->params.to_json(only_metrics);
  1662. res["next_token"] = {
  1663. {
  1664. {"has_next_token", has_next_token},
  1665. {"has_new_line", has_new_line},
  1666. {"n_remain", n_remaining},
  1667. {"n_decoded", n_decoded},
  1668. }
  1669. };
  1670. if (!only_metrics) {
  1671. res["prompt"] = ptask->tokens.detokenize(ctx, true);
  1672. res["generated"] = generated_text;
  1673. }
  1674. }
  1675. return res;
  1676. }
  1677. };
  1678. struct server_metrics {
  1679. int64_t t_start = 0;
  1680. uint64_t n_prompt_tokens_processed_total = 0;
  1681. uint64_t t_prompt_processing_total = 0;
  1682. uint64_t n_tokens_predicted_total = 0;
  1683. uint64_t t_tokens_generation_total = 0;
  1684. uint64_t n_tokens_max = 0;
  1685. uint64_t n_prompt_tokens_processed = 0;
  1686. uint64_t t_prompt_processing = 0;
  1687. uint64_t n_tokens_predicted = 0;
  1688. uint64_t t_tokens_generation = 0;
  1689. uint64_t n_decode_total = 0;
  1690. uint64_t n_busy_slots_total = 0;
  1691. void init() {
  1692. t_start = ggml_time_us();
  1693. }
  1694. void on_prompt_eval(const server_slot & slot) {
  1695. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1696. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1697. t_prompt_processing += slot.t_prompt_processing;
  1698. t_prompt_processing_total += slot.t_prompt_processing;
  1699. n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
  1700. }
  1701. void on_prediction(const server_slot & slot) {
  1702. n_tokens_predicted_total += slot.n_decoded;
  1703. n_tokens_predicted += slot.n_decoded;
  1704. t_tokens_generation += slot.t_token_generation;
  1705. t_tokens_generation_total += slot.t_token_generation;
  1706. }
  1707. void on_decoded(const std::vector<server_slot> & slots) {
  1708. n_decode_total++;
  1709. for (const auto & slot : slots) {
  1710. if (slot.is_processing()) {
  1711. n_busy_slots_total++;
  1712. }
  1713. n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
  1714. }
  1715. }
  1716. void reset_bucket() {
  1717. n_prompt_tokens_processed = 0;
  1718. t_prompt_processing = 0;
  1719. n_tokens_predicted = 0;
  1720. t_tokens_generation = 0;
  1721. }
  1722. };
  1723. struct server_queue {
  1724. int id = 0;
  1725. bool running;
  1726. // queues
  1727. std::deque<server_task> queue_tasks;
  1728. std::deque<server_task> queue_tasks_deferred;
  1729. std::mutex mutex_tasks;
  1730. std::condition_variable condition_tasks;
  1731. // callback functions
  1732. std::function<void(server_task &&)> callback_new_task;
  1733. std::function<void(void)> callback_update_slots;
  1734. // Add a new task to the end of the queue
  1735. int post(server_task && task, bool front = false) {
  1736. std::unique_lock<std::mutex> lock(mutex_tasks);
  1737. GGML_ASSERT(task.id != -1);
  1738. // if this is cancel task make sure to clean up pending tasks
  1739. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1740. cleanup_pending_task(task.id_target);
  1741. }
  1742. const int task_id = task.id;
  1743. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1744. if (front) {
  1745. queue_tasks.push_front(std::move(task));
  1746. } else {
  1747. queue_tasks.push_back(std::move(task));
  1748. }
  1749. condition_tasks.notify_one();
  1750. return task_id;
  1751. }
  1752. // multi-task version of post()
  1753. int post(std::vector<server_task> && tasks, bool front = false) {
  1754. std::unique_lock<std::mutex> lock(mutex_tasks);
  1755. for (auto & task : tasks) {
  1756. if (task.id == -1) {
  1757. task.id = id++;
  1758. }
  1759. // if this is cancel task make sure to clean up pending tasks
  1760. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1761. cleanup_pending_task(task.id_target);
  1762. }
  1763. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1764. if (front) {
  1765. queue_tasks.push_front(std::move(task));
  1766. } else {
  1767. queue_tasks.push_back(std::move(task));
  1768. }
  1769. }
  1770. condition_tasks.notify_one();
  1771. return 0;
  1772. }
  1773. // Add a new task, but defer until one slot is available
  1774. void defer(server_task && task) {
  1775. std::unique_lock<std::mutex> lock(mutex_tasks);
  1776. QUE_DBG("defer task, id = %d\n", task.id);
  1777. queue_tasks_deferred.push_back(std::move(task));
  1778. condition_tasks.notify_one();
  1779. }
  1780. // Get the next id for creating a new task
  1781. int get_new_id() {
  1782. std::unique_lock<std::mutex> lock(mutex_tasks);
  1783. int new_id = id++;
  1784. return new_id;
  1785. }
  1786. // Register function to process a new task
  1787. void on_new_task(std::function<void(server_task &&)> callback) {
  1788. callback_new_task = std::move(callback);
  1789. }
  1790. // Register the function to be called when all slots data is ready to be processed
  1791. void on_update_slots(std::function<void(void)> callback) {
  1792. callback_update_slots = std::move(callback);
  1793. }
  1794. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1795. void pop_deferred_task() {
  1796. std::unique_lock<std::mutex> lock(mutex_tasks);
  1797. if (!queue_tasks_deferred.empty()) {
  1798. queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
  1799. queue_tasks_deferred.pop_front();
  1800. }
  1801. condition_tasks.notify_one();
  1802. }
  1803. // end the start_loop routine
  1804. void terminate() {
  1805. std::unique_lock<std::mutex> lock(mutex_tasks);
  1806. running = false;
  1807. condition_tasks.notify_all();
  1808. }
  1809. /**
  1810. * Main loop consists of these steps:
  1811. * - Wait until a new task arrives
  1812. * - Process the task (i.e. maybe copy data into slot)
  1813. * - Check if multitask is finished
  1814. * - Update all slots
  1815. */
  1816. void start_loop() {
  1817. running = true;
  1818. while (true) {
  1819. QUE_DBG("%s", "processing new tasks\n");
  1820. while (true) {
  1821. std::unique_lock<std::mutex> lock(mutex_tasks);
  1822. if (!running) {
  1823. QUE_DBG("%s", "terminate\n");
  1824. return;
  1825. }
  1826. if (queue_tasks.empty()) {
  1827. lock.unlock();
  1828. break;
  1829. }
  1830. server_task task = std::move(queue_tasks.front());
  1831. queue_tasks.pop_front();
  1832. lock.unlock();
  1833. QUE_DBG("processing task, id = %d\n", task.id);
  1834. callback_new_task(std::move(task));
  1835. }
  1836. // all tasks in the current loop is processed, slots data is now ready
  1837. QUE_DBG("%s", "update slots\n");
  1838. callback_update_slots();
  1839. QUE_DBG("%s", "waiting for new tasks\n");
  1840. {
  1841. std::unique_lock<std::mutex> lock(mutex_tasks);
  1842. if (!running) {
  1843. QUE_DBG("%s", "terminate\n");
  1844. return;
  1845. }
  1846. if (queue_tasks.empty()) {
  1847. condition_tasks.wait(lock, [&]{
  1848. return (!queue_tasks.empty() || !running);
  1849. });
  1850. }
  1851. }
  1852. }
  1853. }
  1854. private:
  1855. void cleanup_pending_task(int id_target) {
  1856. // no need lock because this is called exclusively by post()
  1857. auto rm_func = [id_target](const server_task & task) {
  1858. return task.id == id_target;
  1859. };
  1860. queue_tasks.erase(
  1861. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1862. queue_tasks.end());
  1863. queue_tasks_deferred.erase(
  1864. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1865. queue_tasks_deferred.end());
  1866. }
  1867. };
  1868. struct server_response {
  1869. bool running = true;
  1870. // for keeping track of all tasks waiting for the result
  1871. std::unordered_set<int> waiting_task_ids;
  1872. // the main result queue (using ptr for polymorphism)
  1873. std::vector<server_task_result_ptr> queue_results;
  1874. std::mutex mutex_results;
  1875. std::condition_variable condition_results;
  1876. // add the id_task to the list of tasks waiting for response
  1877. void add_waiting_task_id(int id_task) {
  1878. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1879. std::unique_lock<std::mutex> lock(mutex_results);
  1880. waiting_task_ids.insert(id_task);
  1881. }
  1882. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1883. std::unique_lock<std::mutex> lock(mutex_results);
  1884. for (const auto & task : tasks) {
  1885. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1886. waiting_task_ids.insert(task.id);
  1887. }
  1888. }
  1889. // when the request is finished, we can remove task associated with it
  1890. void remove_waiting_task_id(int id_task) {
  1891. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1892. std::unique_lock<std::mutex> lock(mutex_results);
  1893. waiting_task_ids.erase(id_task);
  1894. // make sure to clean up all pending results
  1895. queue_results.erase(
  1896. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1897. return res->id == id_task;
  1898. }),
  1899. queue_results.end());
  1900. }
  1901. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1902. std::unique_lock<std::mutex> lock(mutex_results);
  1903. for (const auto & id_task : id_tasks) {
  1904. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1905. waiting_task_ids.erase(id_task);
  1906. }
  1907. }
  1908. // This function blocks the thread until there is a response for one of the id_tasks
  1909. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1910. while (true) {
  1911. std::unique_lock<std::mutex> lock(mutex_results);
  1912. condition_results.wait(lock, [&]{
  1913. if (!running) {
  1914. SRV_DBG("%s : queue result stop\n", __func__);
  1915. std::terminate(); // we cannot return here since the caller is HTTP code
  1916. }
  1917. return !queue_results.empty();
  1918. });
  1919. for (size_t i = 0; i < queue_results.size(); i++) {
  1920. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1921. server_task_result_ptr res = std::move(queue_results[i]);
  1922. queue_results.erase(queue_results.begin() + i);
  1923. return res;
  1924. }
  1925. }
  1926. }
  1927. // should never reach here
  1928. }
  1929. // same as recv(), but have timeout in seconds
  1930. // if timeout is reached, nullptr is returned
  1931. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1932. while (true) {
  1933. std::unique_lock<std::mutex> lock(mutex_results);
  1934. for (int i = 0; i < (int) queue_results.size(); i++) {
  1935. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1936. server_task_result_ptr res = std::move(queue_results[i]);
  1937. queue_results.erase(queue_results.begin() + i);
  1938. return res;
  1939. }
  1940. }
  1941. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1942. if (!running) {
  1943. SRV_DBG("%s : queue result stop\n", __func__);
  1944. std::terminate(); // we cannot return here since the caller is HTTP code
  1945. }
  1946. if (cr_res == std::cv_status::timeout) {
  1947. return nullptr;
  1948. }
  1949. }
  1950. // should never reach here
  1951. }
  1952. // single-task version of recv()
  1953. server_task_result_ptr recv(int id_task) {
  1954. std::unordered_set<int> id_tasks = {id_task};
  1955. return recv(id_tasks);
  1956. }
  1957. // Send a new result to a waiting id_task
  1958. void send(server_task_result_ptr && result) {
  1959. SRV_DBG("sending result for task id = %d\n", result->id);
  1960. std::unique_lock<std::mutex> lock(mutex_results);
  1961. for (const auto & id_task : waiting_task_ids) {
  1962. if (result->id == id_task) {
  1963. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1964. queue_results.emplace_back(std::move(result));
  1965. condition_results.notify_all();
  1966. return;
  1967. }
  1968. }
  1969. }
  1970. // terminate the waiting loop
  1971. void terminate() {
  1972. running = false;
  1973. condition_results.notify_all();
  1974. }
  1975. };
  1976. struct server_context {
  1977. common_params params_base;
  1978. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1979. common_init_result llama_init;
  1980. common_init_result llama_init_dft;
  1981. llama_model * model = nullptr;
  1982. llama_context * ctx = nullptr;
  1983. // multimodal
  1984. mtmd_context * mctx = nullptr;
  1985. const llama_vocab * vocab = nullptr;
  1986. bool vocab_dft_compatible = true;
  1987. llama_model * model_dft = nullptr;
  1988. llama_context_params cparams_dft;
  1989. llama_batch batch {};
  1990. bool add_bos_token = true;
  1991. int32_t n_ctx; // total context for all clients / slots
  1992. // slots / clients
  1993. std::vector<server_slot> slots;
  1994. int slots_debug = 0;
  1995. server_queue queue_tasks;
  1996. server_response queue_results;
  1997. std::unique_ptr<server_prompt_cache> prompt_cache;
  1998. server_metrics metrics;
  1999. // Necessary similarity of prompt for slot selection
  2000. float slot_prompt_similarity = 0.0f;
  2001. common_chat_templates_ptr chat_templates;
  2002. oaicompat_parser_options oai_parser_opt;
  2003. InlineToolManager inline_tools;
  2004. ~server_context() {
  2005. mtmd_free(mctx);
  2006. // Clear any sampling context
  2007. for (server_slot & slot : slots) {
  2008. common_sampler_free(slot.smpl);
  2009. slot.smpl = nullptr;
  2010. llama_free(slot.ctx_dft);
  2011. slot.ctx_dft = nullptr;
  2012. common_speculative_free(slot.spec);
  2013. slot.spec = nullptr;
  2014. llama_batch_free(slot.batch_spec);
  2015. }
  2016. llama_batch_free(batch);
  2017. }
  2018. // load the model and initialize llama_context
  2019. bool load_model(const common_params & params) {
  2020. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  2021. params_base = params;
  2022. llama_init = common_init_from_params(params_base);
  2023. model = llama_init.model.get();
  2024. ctx = llama_init.context.get();
  2025. if (model == nullptr) {
  2026. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  2027. return false;
  2028. }
  2029. vocab = llama_model_get_vocab(model);
  2030. n_ctx = llama_n_ctx(ctx);
  2031. add_bos_token = llama_vocab_get_add_bos(vocab);
  2032. if (params_base.has_speculative()) {
  2033. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  2034. auto params_dft = params_base;
  2035. params_dft.devices = params_base.speculative.devices;
  2036. params_dft.model = params_base.speculative.model;
  2037. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
  2038. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  2039. params_dft.n_parallel = 1;
  2040. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  2041. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  2042. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  2043. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  2044. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  2045. llama_init_dft = common_init_from_params(params_dft);
  2046. model_dft = llama_init_dft.model.get();
  2047. if (model_dft == nullptr) {
  2048. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  2049. return false;
  2050. }
  2051. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  2052. if (!vocab_dft_compatible) {
  2053. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  2054. }
  2055. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  2056. cparams_dft = common_context_params_to_llama(params_dft);
  2057. cparams_dft.n_batch = n_ctx_dft;
  2058. // the context is not needed - we will create one for each slot
  2059. llama_init_dft.context.reset();
  2060. }
  2061. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  2062. try {
  2063. common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
  2064. } catch (const std::exception & e) {
  2065. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  2066. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  2067. chat_templates = common_chat_templates_init(model, "chatml");
  2068. }
  2069. std::string & mmproj_path = params_base.mmproj.path;
  2070. if (!mmproj_path.empty()) {
  2071. mtmd_helper_log_set(common_log_default_callback, nullptr);
  2072. mtmd_context_params mparams = mtmd_context_params_default();
  2073. mparams.use_gpu = params_base.mmproj_use_gpu;
  2074. mparams.print_timings = false;
  2075. mparams.n_threads = params_base.cpuparams.n_threads;
  2076. mparams.flash_attn_type = params_base.flash_attn_type;
  2077. mparams.image_min_tokens = params_base.image_min_tokens;
  2078. mparams.image_max_tokens = params_base.image_max_tokens;
  2079. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  2080. if (mctx == nullptr) {
  2081. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  2082. return false;
  2083. }
  2084. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  2085. if (params_base.ctx_shift) {
  2086. params_base.ctx_shift = false;
  2087. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  2088. }
  2089. if (params_base.n_cache_reuse) {
  2090. params_base.n_cache_reuse = 0;
  2091. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  2092. }
  2093. if (params_base.has_speculative()) {
  2094. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  2095. return false;
  2096. }
  2097. }
  2098. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  2099. if (params_base.ctx_shift) {
  2100. params_base.ctx_shift = false;
  2101. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  2102. }
  2103. if (params_base.n_cache_reuse) {
  2104. params_base.n_cache_reuse = 0;
  2105. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  2106. }
  2107. }
  2108. return true;
  2109. }
  2110. // initialize slots and server-related data
  2111. void init() {
  2112. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  2113. const int n_ctx_train = llama_model_n_ctx_train(model);
  2114. int n_ctx_slot = llama_n_ctx_seq(ctx);
  2115. if (n_ctx_slot > n_ctx_train) {
  2116. SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train);
  2117. n_ctx_slot = n_ctx_train;
  2118. }
  2119. for (int i = 0; i < params_base.n_parallel; i++) {
  2120. server_slot slot;
  2121. slot.id = i;
  2122. slot.ctx = ctx;
  2123. slot.n_ctx = n_ctx_slot;
  2124. slot.mctx = mctx;
  2125. slot.prompt.tokens.has_mtmd = mctx != nullptr;
  2126. if (model_dft) {
  2127. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  2128. // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
  2129. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  2130. if (slot.ctx_dft == nullptr) {
  2131. SRV_ERR("%s", "failed to create draft context\n");
  2132. return;
  2133. }
  2134. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  2135. if (slot.spec == nullptr) {
  2136. SRV_ERR("%s", "failed to create speculator\n");
  2137. return;
  2138. }
  2139. for (auto & pair : params_base.speculative.replacements) {
  2140. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  2141. }
  2142. }
  2143. SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
  2144. slot.callback_on_release = [this](int) {
  2145. queue_tasks.pop_deferred_task();
  2146. };
  2147. slot.reset();
  2148. slots.push_back(std::move(slot));
  2149. }
  2150. {
  2151. const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG");
  2152. slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0;
  2153. if (slots_debug) {
  2154. SRV_WRN("slots debug = %d\n", slots_debug);
  2155. }
  2156. }
  2157. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  2158. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  2159. {
  2160. const int32_t n_batch = llama_n_batch(ctx);
  2161. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  2162. }
  2163. metrics.init();
  2164. if (params_base.cache_ram_mib != 0) {
  2165. if (params_base.cache_ram_mib < 0) {
  2166. SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit");
  2167. } else {
  2168. SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib);
  2169. }
  2170. SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n");
  2171. prompt_cache = std::make_unique<server_prompt_cache>(params_base.cache_ram_mib, n_ctx);
  2172. } else {
  2173. SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
  2174. }
  2175. SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n");
  2176. // thinking is enabled if:
  2177. // 1. It's not explicitly disabled (reasoning_budget == 0)
  2178. // 2. The chat template supports it
  2179. const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
  2180. SRV_INF("thinking = %d\n", enable_thinking);
  2181. oai_parser_opt = {
  2182. /* use_jinja */ params_base.use_jinja,
  2183. /* prefill_assistant */ params_base.prefill_assistant,
  2184. /* reasoning_format */ params_base.reasoning_format,
  2185. /* chat_template_kwargs */ params_base.default_template_kwargs,
  2186. /* common_chat_templates */ chat_templates.get(),
  2187. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  2188. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  2189. /* enable_thinking */ enable_thinking,
  2190. };
  2191. // print sample chat example to make it clear which template is used
  2192. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  2193. common_chat_templates_source(chat_templates.get()),
  2194. common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());
  2195. }
  2196. server_slot * get_slot_by_id(int id) {
  2197. for (server_slot & slot : slots) {
  2198. if (slot.id == id) {
  2199. return &slot;
  2200. }
  2201. }
  2202. return nullptr;
  2203. }
  2204. server_slot * get_available_slot(const server_task & task) {
  2205. server_slot * ret = nullptr;
  2206. bool update_cache = false;
  2207. // find the slot that has at least n% prompt similarity
  2208. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  2209. float sim_best = 0;
  2210. for (server_slot & slot : slots) {
  2211. // skip the slot if it is not available
  2212. if (slot.is_processing()) {
  2213. continue;
  2214. }
  2215. const auto & tokens = slot.prompt.tokens;
  2216. // skip the slot if it does not contains cached tokens
  2217. if (tokens.empty()) {
  2218. continue;
  2219. }
  2220. // fraction of the Longest Common Prefix length with respect to the input prompt length
  2221. const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size();
  2222. // select the current slot if the criteria match
  2223. if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
  2224. sim_best = sim_cur;
  2225. ret = &slot;
  2226. }
  2227. }
  2228. if (ret != nullptr) {
  2229. const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size();
  2230. SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n",
  2231. sim_best, slot_prompt_similarity, f_keep);
  2232. // if we are about to lose a large portion of the existing context - save it in the prompt cache
  2233. if (f_keep < 0.5f) {
  2234. update_cache = true;
  2235. }
  2236. }
  2237. }
  2238. // find the slot that has been least recently used
  2239. if (ret == nullptr) {
  2240. int64_t t_last = -1;
  2241. for (server_slot & slot : slots) {
  2242. // skip the slot if it is not available
  2243. if (slot.is_processing()) {
  2244. continue;
  2245. }
  2246. // select the current slot if the criteria match
  2247. if (!ret || slot.t_last_used <= t_last) {
  2248. t_last = slot.t_last_used;
  2249. ret = &slot;
  2250. }
  2251. }
  2252. if (ret != nullptr) {
  2253. SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);
  2254. update_cache = true;
  2255. }
  2256. }
  2257. if (ret) {
  2258. const auto & tokens = ret->prompt.tokens;
  2259. update_cache = update_cache && prompt_cache;
  2260. // cache prompts only for completion tasks
  2261. update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION;
  2262. // don't update the cache if the slot's context is empty
  2263. update_cache = update_cache && tokens.size() > 0;
  2264. // TODO: mtmd does not support prompt cache
  2265. update_cache = update_cache && (ret->mctx == nullptr);
  2266. if (update_cache) {
  2267. SRV_WRN("%s", "updating prompt cache\n");
  2268. const int64_t t_start = ggml_time_us();
  2269. ret->prompt_save(*prompt_cache);
  2270. if (!ret->prompt_load(*prompt_cache, task.tokens)) {
  2271. clear_slot(*ret);
  2272. }
  2273. prompt_cache->update();
  2274. SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
  2275. }
  2276. }
  2277. return ret;
  2278. }
  2279. void clear_slot(server_slot & slot) const {
  2280. GGML_ASSERT(!slot.is_processing());
  2281. SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size());
  2282. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2283. slot.prompt.tokens.clear();
  2284. }
  2285. // return true if at least one slot has been cleared
  2286. // TODO: improve logic
  2287. // - smarter decision which slot to clear (LRU or longest prompt?)
  2288. // - move slot to level 2 cache instead of removing?
  2289. // - instead of purging, try to store and resume later?
  2290. bool try_clear_idle_slots() {
  2291. bool res = false;
  2292. if (!params_base.kv_unified) {
  2293. return res;
  2294. }
  2295. for (auto & slot : slots) {
  2296. if (slot.is_processing()) {
  2297. continue;
  2298. }
  2299. if (slot.prompt.n_tokens() > 0) {
  2300. SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size());
  2301. clear_slot(slot);
  2302. res = true;
  2303. // clear slots one by one
  2304. break;
  2305. }
  2306. }
  2307. return res;
  2308. }
  2309. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  2310. slot.reset();
  2311. if (!are_lora_equal(task.params.lora, slot.lora)) {
  2312. // if lora has changed, check to see if the cache should be cleared
  2313. if (lora_should_clear_cache(slot.lora, task.params.lora)) {
  2314. SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size());
  2315. slot.prompt.tokens.clear();
  2316. } else {
  2317. SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task.params.lora.size());
  2318. }
  2319. slot.lora = task.params.lora;
  2320. }
  2321. // if using alora, make sure it's only a single one requested and active
  2322. size_t alora_invocation_start = task.tokens.size();
  2323. if (lora_all_alora(slot.lora)) {
  2324. const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
  2325. // TODO: This will error out if a user requests two aloras, but only
  2326. // provides the activation string for one. We could, instead search
  2327. // for all requested alora activation strings and then either keep
  2328. // only the last one, or reject if multiple are found.
  2329. if (enabled_ids.size() != 1) {
  2330. send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
  2331. return false;
  2332. }
  2333. const auto & lora = slot.lora[enabled_ids[0]].ptr;
  2334. // get the pointer and count for the invocation tokens
  2335. const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
  2336. const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora);
  2337. // scan backwards through the prompt tokens to find the last
  2338. // occurrence of the invocation sequence
  2339. int match_idx = static_cast<int>(n_invocation_tokens) - 1;
  2340. for (int i = task.tokens.size() - 1; i >= 0; --i) {
  2341. // the token in this position matches the next token to find in
  2342. // the invocation sequence
  2343. if (task.tokens[i] == invocation_tokens[match_idx]) {
  2344. // if it's a full match, we've found the start
  2345. if (match_idx == 0) {
  2346. alora_invocation_start = i;
  2347. break;
  2348. }
  2349. // otherwise, check the next token in the sequence
  2350. --match_idx;
  2351. } else {
  2352. // no match in this position, so start looking over again
  2353. match_idx = static_cast<int>(n_invocation_tokens) - 1;
  2354. }
  2355. }
  2356. // if the activation string is not found, disable the alora
  2357. if (alora_invocation_start == task.tokens.size()) {
  2358. SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
  2359. slot.lora[enabled_ids[0]].scale = 0.0f;
  2360. } else {
  2361. SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
  2362. slot.alora_invocation_start = alora_invocation_start;
  2363. }
  2364. }
  2365. if (!task.tokens.validate(ctx)) {
  2366. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  2367. return false;
  2368. }
  2369. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  2370. // initialize samplers
  2371. {
  2372. if (slot.smpl != nullptr) {
  2373. common_sampler_free(slot.smpl);
  2374. }
  2375. slot.smpl = common_sampler_init(model, task.params.sampling);
  2376. if (slot.smpl == nullptr) {
  2377. // for now, the only error that may happen here is invalid grammar
  2378. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  2379. return false;
  2380. }
  2381. SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str());
  2382. }
  2383. // initialize draft batch
  2384. // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
  2385. if (slot.ctx_dft) {
  2386. llama_batch_free(slot.batch_spec);
  2387. slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
  2388. }
  2389. slot.task = std::make_unique<const server_task>(std::move(task));
  2390. slot.state = SLOT_STATE_STARTED;
  2391. SLT_INF(slot, "%s", "processing task\n");
  2392. return true;
  2393. }
  2394. bool process_token(completion_token_output & result, server_slot & slot) {
  2395. // remember which tokens were sampled - used for repetition penalties during sampling
  2396. const std::string token_str = result.text_to_send;
  2397. slot.sampled = result.tok;
  2398. // INTER_THINK BLOCK AND TOOL DETECTION
  2399. // Tools only work inside <inter_think> blocks for full model control
  2400. if (!slot.forced_tokens.empty()) {
  2401. // Currently injecting forced tokens - skip detection to avoid interference
  2402. } else {
  2403. // Process each character for both tag detection and tool detection
  2404. for (char c : token_str) {
  2405. // Track last 20 characters for tag detection
  2406. slot.tool_state.tag_buffer += c;
  2407. if (slot.tool_state.tag_buffer.length() > 20) {
  2408. slot.tool_state.tag_buffer.erase(0, 1);
  2409. }
  2410. // Check for <inter_think> opening tag
  2411. if (slot.tool_state.tag_buffer.find("<inter_think>") != std::string::npos) {
  2412. slot.tool_state.inside_inter_think = true;
  2413. SRV_INF("%s\n", "Entered <inter_think> block - tool detection active");
  2414. }
  2415. // Check for </inter_think> closing tag
  2416. if (slot.tool_state.tag_buffer.find("</inter_think>") != std::string::npos) {
  2417. slot.tool_state.inside_inter_think = false;
  2418. SRV_INF("%s\n", "Exited </inter_think> block - tool detection inactive");
  2419. }
  2420. // Tool detection FSM - ONLY active inside <inter_think> blocks
  2421. if (!slot.tool_state.inside_inter_think) {
  2422. // Outside inter_think block - reset tool FSM if needed
  2423. if (slot.tool_state.status != TOOL_STATE_IDLE) {
  2424. slot.tool_state.status = TOOL_STATE_IDLE;
  2425. slot.tool_state.buffer.clear();
  2426. }
  2427. continue;
  2428. }
  2429. // Inside inter_think block - process tool invocations
  2430. switch (slot.tool_state.status) {
  2431. case TOOL_STATE_IDLE:
  2432. if (c == '[') {
  2433. slot.tool_state.status = TOOL_STATE_SAW_OPEN_1;
  2434. slot.tool_state.buffer.clear();
  2435. }
  2436. break;
  2437. case TOOL_STATE_SAW_OPEN_1:
  2438. if (c == '[') {
  2439. slot.tool_state.status = TOOL_STATE_SAW_OPEN_2;
  2440. // Start accumulating command
  2441. } else {
  2442. // False alarm, reset
  2443. slot.tool_state.status = TOOL_STATE_IDLE;
  2444. }
  2445. break;
  2446. case TOOL_STATE_SAW_OPEN_2:
  2447. if (c == '{') {
  2448. slot.tool_state.status = TOOL_STATE_SAW_BRACE;
  2449. } else {
  2450. // Accumulate command content
  2451. slot.tool_state.buffer += c;
  2452. slot.tool_state.status = TOOL_STATE_IN_COMMAND;
  2453. }
  2454. break;
  2455. case TOOL_STATE_IN_COMMAND:
  2456. if (c == '{') {
  2457. slot.tool_state.status = TOOL_STATE_SAW_BRACE;
  2458. } else {
  2459. slot.tool_state.buffer += c;
  2460. }
  2461. break;
  2462. case TOOL_STATE_SAW_BRACE:
  2463. if (c == '=') {
  2464. slot.tool_state.status = TOOL_STATE_SAW_EQ_1;
  2465. } else {
  2466. // Not a tool call, add brace to buffer and continue
  2467. slot.tool_state.buffer += '{';
  2468. slot.tool_state.buffer += c;
  2469. slot.tool_state.status = TOOL_STATE_IN_COMMAND;
  2470. }
  2471. break;
  2472. case TOOL_STATE_SAW_EQ_1:
  2473. if (c == '=') {
  2474. slot.tool_state.status = TOOL_STATE_SAW_EQ_2;
  2475. } else {
  2476. // Not a tool call
  2477. slot.tool_state.buffer += "{=";
  2478. slot.tool_state.buffer += c;
  2479. slot.tool_state.status = TOOL_STATE_IN_COMMAND;
  2480. }
  2481. break;
  2482. case TOOL_STATE_SAW_EQ_2:
  2483. if (c == '}') {
  2484. slot.tool_state.status = TOOL_STATE_COMPLETE;
  2485. } else {
  2486. // Not a tool call
  2487. slot.tool_state.buffer += "{==";
  2488. slot.tool_state.buffer += c;
  2489. slot.tool_state.status = TOOL_STATE_IN_COMMAND;
  2490. }
  2491. break;
  2492. case TOOL_STATE_COMPLETE:
  2493. // Should not reach here in normal flow
  2494. break;
  2495. }
  2496. // Check if we completed a tool invocation
  2497. if (slot.tool_state.status == TOOL_STATE_COMPLETE) {
  2498. // Execute the tool
  2499. std::string command = "[[" + slot.tool_state.buffer + "{==}";
  2500. SRV_INF("Tool invocation #%d: %s\n", slot.tool_state.invocation_count + 1, command.c_str());
  2501. std::string tool_result = inline_tools.check_and_execute(command);
  2502. if (!tool_result.empty()) {
  2503. SRV_INF("Tool result: %s\n", tool_result.c_str());
  2504. // Tokenize and inject the result
  2505. std::vector<llama_token> tokens = ::common_tokenize(ctx, tool_result, false, true);
  2506. for (auto t : tokens) {
  2507. slot.forced_tokens.push_back(t);
  2508. }
  2509. slot.tool_state.invocation_count++;
  2510. } else {
  2511. SRV_WRN("%s\n", "Tool execution failed or returned empty result");
  2512. }
  2513. // Reset FSM
  2514. slot.tool_state.status = TOOL_STATE_IDLE;
  2515. slot.tool_state.buffer.clear();
  2516. break;
  2517. }
  2518. }
  2519. }
  2520. slot.generated_text += token_str;
  2521. if (slot.task->params.return_tokens) {
  2522. slot.generated_tokens.push_back(result.tok);
  2523. }
  2524. slot.has_next_token = true;
  2525. // check if there is incomplete UTF-8 character at the end
  2526. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  2527. // search stop word and delete it
  2528. if (!incomplete) {
  2529. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2530. const std::string str_test = slot.generated_text.substr(pos);
  2531. bool send_text = true;
  2532. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  2533. if (stop_pos != std::string::npos) {
  2534. slot.generated_text.erase(
  2535. slot.generated_text.begin() + pos + stop_pos,
  2536. slot.generated_text.end());
  2537. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2538. } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) {
  2539. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  2540. send_text = stop_pos == std::string::npos;
  2541. }
  2542. // check if there is any token to predict
  2543. if (send_text) {
  2544. // no send the stop word in the response
  2545. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  2546. slot.n_sent_text += result.text_to_send.size();
  2547. // add the token to slot queue and cache
  2548. } else {
  2549. result.text_to_send = "";
  2550. }
  2551. slot.add_token(result);
  2552. if (slot.task->params.stream) {
  2553. send_partial_response(slot, result, false);
  2554. }
  2555. }
  2556. if (incomplete) {
  2557. slot.has_next_token = true;
  2558. }
  2559. // if context shifting is disabled, make sure that we don't run out of context
  2560. if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
  2561. slot.truncated = true;
  2562. slot.stop = STOP_TYPE_LIMIT;
  2563. slot.has_next_token = false;
  2564. SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2565. slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx);
  2566. }
  2567. // check the limits
  2568. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  2569. slot.stop = STOP_TYPE_LIMIT;
  2570. slot.has_next_token = false;
  2571. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict);
  2572. }
  2573. if (slot.has_new_line) {
  2574. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  2575. if (slot.task->params.n_indent > 0) {
  2576. // check the current indentation
  2577. // TODO: improve by not doing it more than once for each new line
  2578. if (slot.last_nl_pos > 0) {
  2579. size_t pos = slot.last_nl_pos;
  2580. int n_indent = 0;
  2581. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  2582. n_indent++;
  2583. pos++;
  2584. }
  2585. if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) {
  2586. slot.stop = STOP_TYPE_LIMIT;
  2587. slot.has_next_token = false;
  2588. // cut the last line
  2589. slot.generated_text.erase(pos, std::string::npos);
  2590. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2591. }
  2592. }
  2593. // find the next new line
  2594. {
  2595. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2596. if (pos != std::string::npos) {
  2597. slot.last_nl_pos = pos + 1;
  2598. }
  2599. }
  2600. }
  2601. }
  2602. // check if there is a new line in the generated text
  2603. if (result.text_to_send.find('\n') != std::string::npos) {
  2604. slot.has_new_line = true;
  2605. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2606. if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) {
  2607. slot.stop = STOP_TYPE_LIMIT;
  2608. slot.has_next_token = false;
  2609. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms);
  2610. }
  2611. }
  2612. if (llama_vocab_is_eog(vocab, result.tok)) {
  2613. slot.stop = STOP_TYPE_EOS;
  2614. slot.has_next_token = false;
  2615. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2616. }
  2617. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2618. return slot.has_next_token; // continue
  2619. }
  2620. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
  2621. size_t n_probs = slot.task->params.sampling.n_probs;
  2622. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2623. if (post_sampling) {
  2624. const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
  2625. const size_t max_probs = cur_p->size;
  2626. // set probability for sampled token
  2627. for (size_t i = 0; i < max_probs; i++) {
  2628. if (cur_p->data[i].id == result.tok) {
  2629. result.prob = cur_p->data[i].p;
  2630. break;
  2631. }
  2632. }
  2633. // set probability for top n_probs tokens
  2634. result.probs.reserve(max_probs);
  2635. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2636. result.probs.push_back({
  2637. cur_p->data[i].id,
  2638. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2639. cur_p->data[i].p
  2640. });
  2641. }
  2642. } else {
  2643. // TODO: optimize this with min-p optimization
  2644. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2645. // set probability for sampled token
  2646. for (size_t i = 0; i < n_vocab; i++) {
  2647. // set probability for sampled token
  2648. if (cur[i].id == result.tok) {
  2649. result.prob = cur[i].p;
  2650. break;
  2651. }
  2652. }
  2653. // set probability for top n_probs tokens
  2654. result.probs.reserve(n_probs);
  2655. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2656. result.probs.push_back({
  2657. cur[i].id,
  2658. common_token_to_piece(ctx, cur[i].id, special),
  2659. cur[i].p
  2660. });
  2661. }
  2662. }
  2663. }
  2664. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2665. send_error(task.id, error, type);
  2666. }
  2667. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2668. send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx);
  2669. }
  2670. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
  2671. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2672. if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  2673. GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
  2674. }
  2675. auto res = std::make_unique<server_task_result_error>();
  2676. res->id = id_task;
  2677. res->err_type = type;
  2678. res->err_msg = error;
  2679. res->n_prompt_tokens = n_prompt_tokens;
  2680. res->n_ctx = n_ctx;
  2681. queue_results.send(std::move(res));
  2682. }
  2683. // if multimodal is enabled, send an error and return false
  2684. bool check_no_mtmd(const int id_task) {
  2685. if (mctx) {
  2686. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2687. return false;
  2688. }
  2689. return true;
  2690. }
  2691. void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
  2692. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2693. res->id = slot.task->id;
  2694. res->index = slot.task->index;
  2695. if (is_progress) {
  2696. res->is_progress = true;
  2697. res->progress.total = slot.task->n_tokens();
  2698. res->progress.cache = slot.n_prompt_tokens_cache;
  2699. res->progress.processed = slot.prompt.tokens.size();
  2700. res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt) / 1000;
  2701. } else {
  2702. res->content = tkn.text_to_send;
  2703. res->tokens = { tkn.tok };
  2704. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2705. }
  2706. res->n_decoded = slot.n_decoded;
  2707. res->n_prompt_tokens = slot.task->n_tokens();
  2708. res->post_sampling_probs = slot.task->params.post_sampling_probs;
  2709. res->verbose = slot.task->params.verbose;
  2710. res->oaicompat = slot.task->params.oaicompat;
  2711. res->oaicompat_model = slot.task->params.oaicompat_model;
  2712. res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
  2713. // populate res.probs_output
  2714. if (slot.task->params.sampling.n_probs > 0) {
  2715. res->prob_output = tkn; // copy the token probs
  2716. }
  2717. // populate timings if this is final response or timings_per_token is enabled
  2718. if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) {
  2719. res->timings = slot.get_timings();
  2720. }
  2721. queue_results.send(std::move(res));
  2722. }
  2723. void send_final_response(server_slot & slot) {
  2724. auto res = std::make_unique<server_task_result_cmpl_final>();
  2725. res->id = slot.task->id;
  2726. res->id_slot = slot.id;
  2727. res->index = slot.task->index;
  2728. res->content = slot.generated_text;
  2729. res->tokens = std::move(slot.generated_tokens);
  2730. res->timings = slot.get_timings();
  2731. res->prompt = slot.task->tokens.detokenize(ctx, true);
  2732. res->response_fields = std::move(slot.task->params.response_fields);
  2733. res->truncated = slot.truncated;
  2734. res->n_decoded = slot.n_decoded;
  2735. res->n_prompt_tokens = slot.task->n_tokens();
  2736. res->n_tokens_cached = slot.prompt.n_tokens();
  2737. res->has_new_line = slot.has_new_line;
  2738. res->stopping_word = slot.stopping_word;
  2739. res->stop = slot.stop;
  2740. res->post_sampling_probs = slot.task->params.post_sampling_probs;
  2741. res->verbose = slot.task->params.verbose;
  2742. res->stream = slot.task->params.stream;
  2743. res->include_usage = slot.task->params.include_usage;
  2744. res->oaicompat = slot.task->params.oaicompat;
  2745. res->oaicompat_model = slot.task->params.oaicompat_model;
  2746. res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
  2747. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2748. // populate res.probs_output
  2749. if (slot.task->params.sampling.n_probs > 0) {
  2750. if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) {
  2751. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2752. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2753. res->probs_output = std::vector<completion_token_output>(
  2754. slot.generated_token_probs.begin(),
  2755. slot.generated_token_probs.end() - safe_offset);
  2756. } else {
  2757. res->probs_output = std::vector<completion_token_output>(
  2758. slot.generated_token_probs.begin(),
  2759. slot.generated_token_probs.end());
  2760. }
  2761. }
  2762. res->generation_params = slot.task->params; // copy the parameters
  2763. queue_results.send(std::move(res));
  2764. }
  2765. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2766. auto res = std::make_unique<server_task_result_embd>();
  2767. res->id = slot.task->id;
  2768. res->index = slot.task->index;
  2769. res->n_tokens = slot.task->n_tokens();
  2770. res->oaicompat = slot.task->params.oaicompat;
  2771. const int n_embd = llama_model_n_embd(model);
  2772. std::vector<float> embd_res(n_embd, 0.0f);
  2773. for (int i = 0; i < batch.n_tokens; ++i) {
  2774. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2775. continue;
  2776. }
  2777. const float * embd = nullptr;
  2778. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2779. embd = llama_get_embeddings_ith(ctx, i);
  2780. } else {
  2781. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2782. }
  2783. if (embd == nullptr) {
  2784. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2785. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2786. continue;
  2787. }
  2788. // normalize only when there is pooling
  2789. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2790. common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
  2791. res->embedding.push_back(embd_res);
  2792. break;
  2793. }
  2794. res->embedding.emplace_back(embd, embd + n_embd);
  2795. }
  2796. SLT_DBG(slot, "%s", "sending embeddings\n");
  2797. queue_results.send(std::move(res));
  2798. }
  2799. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2800. auto res = std::make_unique<server_task_result_rerank>();
  2801. res->id = slot.task->id;
  2802. res->index = slot.task->index;
  2803. res->n_tokens = slot.task->n_tokens();
  2804. for (int i = 0; i < batch.n_tokens; ++i) {
  2805. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2806. continue;
  2807. }
  2808. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2809. if (embd == NULL) {
  2810. embd = llama_get_embeddings_ith(ctx, i);
  2811. }
  2812. if (embd == NULL) {
  2813. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2814. res->score = -1e6;
  2815. continue;
  2816. }
  2817. res->score = embd[0];
  2818. }
  2819. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2820. queue_results.send(std::move(res));
  2821. }
  2822. //
  2823. // Functions to process the task
  2824. //
  2825. void process_single_task(server_task && task) {
  2826. switch (task.type) {
  2827. case SERVER_TASK_TYPE_COMPLETION:
  2828. case SERVER_TASK_TYPE_INFILL:
  2829. case SERVER_TASK_TYPE_EMBEDDING:
  2830. case SERVER_TASK_TYPE_RERANK:
  2831. {
  2832. const int id_slot = task.id_slot;
  2833. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2834. if (slot == nullptr) {
  2835. // if no slot is available, we defer this task for processing later
  2836. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2837. queue_tasks.defer(std::move(task));
  2838. break;
  2839. }
  2840. if (slot->is_processing()) {
  2841. // if requested slot is unavailable, we defer this task for processing later
  2842. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2843. queue_tasks.defer(std::move(task));
  2844. break;
  2845. }
  2846. if (!launch_slot_with_task(*slot, std::move(task))) {
  2847. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2848. break;
  2849. }
  2850. } break;
  2851. case SERVER_TASK_TYPE_CANCEL:
  2852. {
  2853. // release slot linked with the task id
  2854. for (auto & slot : slots) {
  2855. if (slot.task && slot.task->id == task.id_target) {
  2856. slot.release();
  2857. break;
  2858. }
  2859. }
  2860. } break;
  2861. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2862. {
  2863. // do nothing
  2864. } break;
  2865. case SERVER_TASK_TYPE_METRICS:
  2866. {
  2867. json slots_data = json::array();
  2868. int n_idle_slots = 0;
  2869. int n_processing_slots = 0;
  2870. for (server_slot & slot : slots) {
  2871. json slot_data = slot.to_json(slots_debug == 0);
  2872. if (slot.is_processing()) {
  2873. n_processing_slots++;
  2874. } else {
  2875. n_idle_slots++;
  2876. }
  2877. slots_data.push_back(slot_data);
  2878. }
  2879. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2880. auto res = std::make_unique<server_task_result_metrics>();
  2881. res->id = task.id;
  2882. res->slots_data = std::move(slots_data);
  2883. res->n_idle_slots = n_idle_slots;
  2884. res->n_processing_slots = n_processing_slots;
  2885. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2886. res->t_start = metrics.t_start;
  2887. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2888. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2889. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2890. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2891. res->n_tokens_max = metrics.n_tokens_max;
  2892. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2893. res->t_prompt_processing = metrics.t_prompt_processing;
  2894. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2895. res->t_tokens_generation = metrics.t_tokens_generation;
  2896. res->n_decode_total = metrics.n_decode_total;
  2897. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2898. if (task.metrics_reset_bucket) {
  2899. metrics.reset_bucket();
  2900. }
  2901. queue_results.send(std::move(res));
  2902. } break;
  2903. case SERVER_TASK_TYPE_SLOT_SAVE:
  2904. {
  2905. if (!check_no_mtmd(task.id)) {
  2906. break;
  2907. }
  2908. int id_slot = task.slot_action.slot_id;
  2909. server_slot * slot = get_slot_by_id(id_slot);
  2910. if (slot == nullptr) {
  2911. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2912. break;
  2913. }
  2914. if (slot->is_processing()) {
  2915. // if requested slot is unavailable, we defer this task for processing later
  2916. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2917. queue_tasks.defer(std::move(task));
  2918. break;
  2919. }
  2920. const size_t token_count = slot->prompt.tokens.size();
  2921. const int64_t t_start = ggml_time_us();
  2922. std::string filename = task.slot_action.filename;
  2923. std::string filepath = task.slot_action.filepath;
  2924. const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens();
  2925. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2926. const int64_t t_end = ggml_time_us();
  2927. const double t_save_ms = (t_end - t_start) / 1000.0;
  2928. auto res = std::make_unique<server_task_result_slot_save_load>();
  2929. res->id = task.id;
  2930. res->id_slot = id_slot;
  2931. res->filename = filename;
  2932. res->is_save = true;
  2933. res->n_tokens = token_count;
  2934. res->n_bytes = nwrite;
  2935. res->t_ms = t_save_ms;
  2936. queue_results.send(std::move(res));
  2937. } break;
  2938. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2939. {
  2940. if (!check_no_mtmd(task.id)) break;
  2941. int id_slot = task.slot_action.slot_id;
  2942. server_slot * slot = get_slot_by_id(id_slot);
  2943. if (slot == nullptr) {
  2944. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2945. break;
  2946. }
  2947. if (slot->is_processing()) {
  2948. // if requested slot is unavailable, we defer this task for processing later
  2949. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2950. queue_tasks.defer(std::move(task));
  2951. break;
  2952. }
  2953. const int64_t t_start = ggml_time_us();
  2954. std::string filename = task.slot_action.filename;
  2955. std::string filepath = task.slot_action.filepath;
  2956. llama_tokens tokens;
  2957. tokens.resize(slot->n_ctx);
  2958. size_t token_count = 0;
  2959. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2960. if (nread == 0) {
  2961. slot->prompt.tokens.clear(); // KV may already been invalidated?
  2962. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2963. break;
  2964. }
  2965. tokens.resize(token_count);
  2966. slot->prompt.tokens.clear();
  2967. slot->prompt.tokens.insert(tokens);
  2968. const int64_t t_end = ggml_time_us();
  2969. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2970. auto res = std::make_unique<server_task_result_slot_save_load>();
  2971. res->id = task.id;
  2972. res->id_slot = id_slot;
  2973. res->filename = filename;
  2974. res->is_save = false;
  2975. res->n_tokens = token_count;
  2976. res->n_bytes = nread;
  2977. res->t_ms = t_restore_ms;
  2978. queue_results.send(std::move(res));
  2979. } break;
  2980. case SERVER_TASK_TYPE_SLOT_ERASE:
  2981. {
  2982. if (!check_no_mtmd(task.id)) {
  2983. break;
  2984. }
  2985. int id_slot = task.slot_action.slot_id;
  2986. server_slot * slot = get_slot_by_id(id_slot);
  2987. if (slot == nullptr) {
  2988. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2989. break;
  2990. }
  2991. if (slot->is_processing()) {
  2992. // if requested slot is unavailable, we defer this task for processing later
  2993. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2994. queue_tasks.defer(std::move(task));
  2995. break;
  2996. }
  2997. // Erase token cache
  2998. const size_t n_erased = slot->prompt.tokens.size();
  2999. clear_slot(*slot);
  3000. auto res = std::make_unique<server_task_result_slot_erase>();
  3001. res->id = task.id;
  3002. res->id_slot = id_slot;
  3003. res->n_erased = n_erased;
  3004. queue_results.send(std::move(res));
  3005. } break;
  3006. case SERVER_TASK_TYPE_SET_LORA:
  3007. {
  3008. params_base.lora_adapters = std::move(task.set_lora);
  3009. auto res = std::make_unique<server_task_result_apply_lora>();
  3010. res->id = task.id;
  3011. queue_results.send(std::move(res));
  3012. } break;
  3013. }
  3014. }
  3015. void update_slots() {
  3016. // check if all slots are idle
  3017. {
  3018. bool all_idle = true;
  3019. for (auto & slot : slots) {
  3020. if (slot.is_processing()) {
  3021. all_idle = false;
  3022. break;
  3023. }
  3024. }
  3025. if (all_idle) {
  3026. SRV_INF("%s", "all slots are idle\n");
  3027. return;
  3028. }
  3029. }
  3030. {
  3031. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  3032. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  3033. task.id = queue_tasks.get_new_id();
  3034. queue_tasks.post(std::move(task));
  3035. }
  3036. // apply context-shift if needed
  3037. // TODO: simplify and improve
  3038. for (server_slot & slot : slots) {
  3039. if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
  3040. if (!params_base.ctx_shift) {
  3041. // this check is redundant (for good)
  3042. // we should never get here, because generation should already stopped in process_token()
  3043. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  3044. slot.release();
  3045. continue;
  3046. }
  3047. if (mctx) {
  3048. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  3049. // we don't support ctx_shift because an image chunk may contains multiple tokens
  3050. GGML_ABORT("not supported by multimodal");
  3051. }
  3052. // Shift context
  3053. int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
  3054. if (add_bos_token) {
  3055. n_keep += 1;
  3056. }
  3057. n_keep = std::min(slot.n_ctx - 4, n_keep);
  3058. const int n_left = slot.prompt.n_tokens() - n_keep;
  3059. const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2);
  3060. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  3061. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  3062. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard);
  3063. // add generated tokens to cache
  3064. // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481
  3065. {
  3066. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  3067. llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy
  3068. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  3069. new_tokens[i - n_discard] = new_tokens[i];
  3070. }
  3071. new_tokens.resize(slot.prompt.tokens.size() - n_discard);
  3072. slot.prompt.tokens.clear();
  3073. slot.prompt.tokens.insert(new_tokens);
  3074. }
  3075. slot.truncated = true;
  3076. }
  3077. }
  3078. // start populating the batch for this iteration
  3079. common_batch_clear(batch);
  3080. // track if given slot can be batched with slots already in the batch
  3081. server_slot * slot_batched = nullptr;
  3082. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  3083. return params_base.special ||
  3084. slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end();
  3085. };
  3086. // first, add sampled tokens from any ongoing sequences
  3087. for (auto & slot : slots) {
  3088. if (slot.state != SLOT_STATE_GENERATING) {
  3089. continue;
  3090. }
  3091. // check if we can batch this slot with the previous one
  3092. if (!slot_batched) {
  3093. slot_batched = &slot;
  3094. } else if (!slot_batched->can_batch_with(slot)) {
  3095. continue;
  3096. }
  3097. slot.i_batch = batch.n_tokens;
  3098. common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
  3099. slot.prompt.tokens.push_back(slot.sampled);
  3100. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
  3101. slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
  3102. }
  3103. // process in chunks of params.n_batch
  3104. int32_t n_batch = llama_n_batch(ctx);
  3105. int32_t n_ubatch = llama_n_ubatch(ctx);
  3106. float alora_scale = -1.0f;
  3107. size_t alora_disabled_id = 0;
  3108. // next, batch any pending prompts without exceeding n_batch
  3109. if (params_base.cont_batching || batch.n_tokens == 0) {
  3110. for (auto & slot : slots) {
  3111. if (!slot.is_processing()) {
  3112. continue;
  3113. }
  3114. // check if we can batch this slot with the previous one
  3115. if (slot_batched && !slot_batched->can_batch_with(slot)) {
  3116. continue;
  3117. }
  3118. // this slot still has a prompt to be processed
  3119. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  3120. const auto & input_tokens = slot.task->tokens;
  3121. // TODO: maybe move branch to outside of this loop in the future
  3122. if (slot.state == SLOT_STATE_STARTED) {
  3123. slot.t_start_process_prompt = ggml_time_us();
  3124. slot.t_start_generation = 0;
  3125. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  3126. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n",
  3127. slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens());
  3128. // print prompt tokens (for debugging)
  3129. /*if (1) {
  3130. // first 16 tokens (avoid flooding logs)
  3131. for (int i = 0; i < std::min<int>(16, input_tokens.size()); i++) {
  3132. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
  3133. }
  3134. } else {
  3135. // all
  3136. for (int i = 0; i < (int) input_tokens.size(); i++) {
  3137. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
  3138. }
  3139. }*/
  3140. // keep track how many tokens we can reuse from the previous state
  3141. int n_past = 0;
  3142. // empty prompt passed -> release the slot and send empty response
  3143. if (input_tokens.empty()) {
  3144. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  3145. slot.print_timings();
  3146. send_final_response(slot);
  3147. slot.release();
  3148. continue;
  3149. }
  3150. // TODO: support memory-less logits computation
  3151. if (slot.need_logits() && !llama_get_memory(ctx)) {
  3152. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  3153. slot.release();
  3154. continue;
  3155. }
  3156. if (!slot.can_split()) {
  3157. if (slot.task->n_tokens() > n_ubatch) {
  3158. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  3159. slot.release();
  3160. continue;
  3161. }
  3162. if (slot.task->n_tokens() > slot.n_ctx) {
  3163. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  3164. slot.release();
  3165. continue;
  3166. }
  3167. } else {
  3168. if (slot.task->n_tokens() >= slot.n_ctx) {
  3169. send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  3170. slot.release();
  3171. continue;
  3172. }
  3173. if (slot.task->params.cache_prompt) {
  3174. // reuse any previously computed tokens that are common with the new prompt
  3175. n_past = slot.prompt.tokens.get_common_prefix(input_tokens);
  3176. // if there is an alora invoked, don't cache after the invocation start
  3177. if (slot.alora_invocation_start > 0) {
  3178. SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start);
  3179. n_past = std::min(n_past, slot.alora_invocation_start - 1);
  3180. }
  3181. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  3182. if (params_base.n_cache_reuse > 0) {
  3183. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  3184. size_t head_c = n_past; // cache
  3185. size_t head_p = n_past; // current prompt
  3186. if (mctx) {
  3187. // we should never reach this
  3188. GGML_ABORT("not supported by multimodal");
  3189. }
  3190. SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past);
  3191. while (head_c < slot.prompt.tokens.size() &&
  3192. head_p < input_tokens.size()) {
  3193. size_t n_match = 0;
  3194. while (head_c + n_match < slot.prompt.tokens.size() &&
  3195. head_p + n_match < input_tokens.size() &&
  3196. slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
  3197. n_match++;
  3198. }
  3199. if (n_match >= (size_t) params_base.n_cache_reuse) {
  3200. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  3201. //for (size_t i = head_p; i < head_p + n_match; i++) {
  3202. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  3203. //}
  3204. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  3205. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  3206. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  3207. for (size_t i = 0; i < n_match; i++) {
  3208. slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]);
  3209. n_past++;
  3210. }
  3211. head_c += n_match;
  3212. head_p += n_match;
  3213. } else {
  3214. head_c += 1;
  3215. }
  3216. }
  3217. SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past);
  3218. }
  3219. } else {
  3220. // if we don't cache the prompt, we have to remove all previous tokens
  3221. n_past = 0;
  3222. }
  3223. // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
  3224. const auto n_swa = std::max(1, llama_model_n_swa(model));
  3225. // the largest pos_min required for a checkpoint to be useful
  3226. const auto pos_min_thold = std::max(0, n_past - n_swa);
  3227. // note: disallow with mtmd contexts for now
  3228. // https://github.com/ggml-org/llama.cpp/issues/17043
  3229. if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) {
  3230. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  3231. if (pos_min == -1) {
  3232. SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
  3233. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  3234. }
  3235. // when the prompt prefix does not match, print the tokens around the mismatch
  3236. // this is useful for debugging prompt caching
  3237. if (slots_debug) {
  3238. const int np0 = std::max<int>(n_past - 4, 0);
  3239. const int np1 = std::min<int>(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size()));
  3240. std::stringstream ss0;
  3241. std::stringstream ss1;
  3242. std::stringstream st0;
  3243. std::stringstream st1;
  3244. ss0 << "old: ... ";
  3245. ss1 << "new: ... ";
  3246. for (int i = np0; i < np1; i++) {
  3247. if (i == n_past) {
  3248. ss0 << " | ";
  3249. ss1 << " | ";
  3250. }
  3251. {
  3252. const auto token = slot.prompt.tokens[i];
  3253. const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
  3254. ss0 << piece;
  3255. st0 << std::setw(8) << token;
  3256. }
  3257. {
  3258. const auto token = slot.task->tokens[i];
  3259. const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
  3260. ss1 << piece;
  3261. st1 << std::setw(8) << token;
  3262. }
  3263. }
  3264. SLT_WRN(slot, "%s\n", ss0.str().c_str());
  3265. SLT_WRN(slot, "%s\n", ss1.str().c_str());
  3266. SLT_WRN(slot, "%s\n", st0.str().c_str());
  3267. SLT_WRN(slot, "%s\n", st1.str().c_str());
  3268. }
  3269. if (pos_min > pos_min_thold) {
  3270. // TODO: support can be added in the future when corresponding vision models get released
  3271. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  3272. SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
  3273. // search for a context checkpoint
  3274. const auto it = std::find_if(
  3275. slot.prompt.checkpoints.rbegin(),
  3276. slot.prompt.checkpoints.rend(),
  3277. [&](const auto & cur) {
  3278. // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
  3279. return cur.pos_min < pos_min_thold;
  3280. }
  3281. );
  3282. bool do_reset = it == slot.prompt.checkpoints.rend();
  3283. if (!do_reset) {
  3284. // restore the context checkpoint
  3285. const size_t checkpoint_size = it->data.size();
  3286. const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3287. if (n != checkpoint_size) {
  3288. SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
  3289. do_reset = true;
  3290. //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
  3291. } else {
  3292. n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max));
  3293. SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
  3294. }
  3295. }
  3296. if (do_reset) {
  3297. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
  3298. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  3299. n_past = 0;
  3300. }
  3301. }
  3302. }
  3303. {
  3304. // erase any checkpoints with pos_min > pos_min_thold
  3305. for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) {
  3306. const auto & cur = *it;
  3307. if (cur.pos_min > pos_min_thold) {
  3308. SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
  3309. it = slot.prompt.checkpoints.erase(it);
  3310. } else {
  3311. ++it;
  3312. }
  3313. }
  3314. }
  3315. }
  3316. // [TAG_PROMPT_LOGITS]
  3317. if (n_past == slot.task->n_tokens() && n_past > 0) {
  3318. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens());
  3319. n_past--;
  3320. SLT_WRN(slot, "n_past was set to %d\n", n_past);
  3321. }
  3322. slot.n_prompt_tokens_cache = n_past;
  3323. slot.n_prompt_tokens_processed = 0;
  3324. slot.prompt.tokens.keep_first(n_past);
  3325. }
  3326. if (!slot.can_split()) {
  3327. // cannot fit the prompt in the current batch - will try next iter
  3328. if (batch.n_tokens + slot.task->n_tokens() > n_batch) {
  3329. continue;
  3330. }
  3331. }
  3332. // truncate any tokens that are beyond n_past for this slot
  3333. const llama_pos p0 = slot.prompt.tokens.pos_next();
  3334. SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0);
  3335. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) {
  3336. SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0);
  3337. clear_slot(slot);
  3338. // there is no common part left
  3339. slot.n_prompt_tokens_cache = 0;
  3340. }
  3341. // check if we should process the image
  3342. if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) {
  3343. // process the image
  3344. size_t n_tokens_out = 0;
  3345. int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out);
  3346. if (res != 0) {
  3347. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  3348. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  3349. slot.release();
  3350. continue;
  3351. }
  3352. slot.n_prompt_tokens_processed += n_tokens_out;
  3353. // add the image chunk to cache
  3354. {
  3355. const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens());
  3356. slot.prompt.tokens.push_back(chunk.get()); // copy
  3357. }
  3358. }
  3359. // If using an alora, there may be uncached tokens that come
  3360. // before the invocation sequence. When this happens, the
  3361. // tokens before the invocation sequence need to be
  3362. // processed without the adapter in a separate batch, then
  3363. // the adapter needs to be enabled for the remaining tokens.
  3364. if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) {
  3365. SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
  3366. const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
  3367. GGML_ASSERT(enabled_loras.size() == 1);
  3368. alora_scale = slot.lora[enabled_loras[0]].scale;
  3369. slot.lora[enabled_loras[0]].scale = 0.0f;
  3370. alora_disabled_id = enabled_loras[0];
  3371. }
  3372. bool do_checkpoint = params_base.n_ctx_checkpoints > 0;
  3373. // make checkpoints only for completion tasks
  3374. do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION;
  3375. // make a checkpoint of the parts of the memory that cannot be rolled back.
  3376. // checkpoints are created only if:
  3377. // - the model uses SWA and we are not using `swa_full`
  3378. // - the model architecture is marked as recurrent or hybrid
  3379. //
  3380. // TODO: try to make this conditional on the context or the memory module, instead of the model type
  3381. do_checkpoint = do_checkpoint && (
  3382. llama_model_is_recurrent(model) ||
  3383. llama_model_is_hybrid(model) ||
  3384. (llama_model_n_swa(model) > 0 && !params_base.swa_full)
  3385. );
  3386. // add prompt tokens for processing in the current batch
  3387. while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) {
  3388. // get next token to process
  3389. llama_token cur_tok = input_tokens[slot.prompt.n_tokens()];
  3390. if (cur_tok == LLAMA_TOKEN_NULL) {
  3391. break; // end of text chunk
  3392. }
  3393. // if this is an alora request with pre-invocation
  3394. // tokens that are not cached, we need to stop filling
  3395. // this batch at those pre-invocation tokens.
  3396. if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) {
  3397. SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
  3398. break;
  3399. }
  3400. // embedding requires all tokens in the batch to be output
  3401. common_batch_add(batch,
  3402. cur_tok,
  3403. slot.prompt.tokens.pos_next(),
  3404. { slot.id },
  3405. slot.need_embd());
  3406. slot.prompt.tokens.push_back(cur_tok);
  3407. slot.n_prompt_tokens_processed++;
  3408. // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
  3409. if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
  3410. break;
  3411. }
  3412. }
  3413. // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());
  3414. SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens());
  3415. // entire prompt has been processed
  3416. if (slot.prompt.n_tokens() == slot.task->n_tokens()) {
  3417. slot.state = SLOT_STATE_DONE_PROMPT;
  3418. GGML_ASSERT(batch.n_tokens > 0);
  3419. common_sampler_reset(slot.smpl);
  3420. // Process all prompt tokens through sampler system
  3421. for (int i = 0; i < slot.task->n_tokens(); ++i) {
  3422. llama_token id = input_tokens[i];
  3423. if (id != LLAMA_TOKEN_NULL) {
  3424. common_sampler_accept(slot.smpl, id, false);
  3425. }
  3426. }
  3427. // extract the logits only for the last token
  3428. batch.logits[batch.n_tokens - 1] = true;
  3429. slot.n_decoded = 0;
  3430. slot.i_batch = batch.n_tokens - 1;
  3431. SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens);
  3432. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  3433. const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id);
  3434. // no need for empty or small checkpoints
  3435. do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64);
  3436. // no need to create checkpoints that are too close together
  3437. do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64);
  3438. if (do_checkpoint) {
  3439. while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
  3440. // make room for the new checkpoint, if needed
  3441. const auto & cur = slot.prompt.checkpoints.front();
  3442. SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  3443. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3444. slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin());
  3445. }
  3446. const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3447. auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{
  3448. /*.pos_min = */ pos_min,
  3449. /*.pos_max = */ pos_max,
  3450. /*.data = */ std::vector<uint8_t>(checkpoint_size),
  3451. });
  3452. llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3453. SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  3454. (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3455. }
  3456. }
  3457. }
  3458. if (!slot_batched) {
  3459. slot_batched = &slot;
  3460. }
  3461. if (batch.n_tokens >= n_batch) {
  3462. break;
  3463. }
  3464. }
  3465. }
  3466. if (batch.n_tokens == 0) {
  3467. SRV_WRN("%s", "no tokens to decode\n");
  3468. return;
  3469. }
  3470. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  3471. if (slot_batched) {
  3472. // apply lora, only need to do it once per batch
  3473. common_set_adapter_lora(ctx, slot_batched->lora);
  3474. // if the lora is temporarily disabled for an alora, re-enable it
  3475. // for next time
  3476. if (alora_scale > 0.0f) {
  3477. SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
  3478. slot_batched->lora[alora_disabled_id].scale = alora_scale;
  3479. }
  3480. llama_set_embeddings(ctx, slot_batched->need_embd());
  3481. }
  3482. int32_t i_next = 0;
  3483. // process the created batch of tokens
  3484. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  3485. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  3486. llama_batch batch_view = {
  3487. n_tokens,
  3488. batch.token + i,
  3489. nullptr,
  3490. batch.pos + i,
  3491. batch.n_seq_id + i,
  3492. batch.seq_id + i,
  3493. batch.logits + i,
  3494. };
  3495. const int ret = llama_decode(ctx, batch_view);
  3496. metrics.on_decoded(slots);
  3497. if (ret != 0) {
  3498. {
  3499. std::string err;
  3500. if (n_batch == 1 && ret == 1) {
  3501. // TODO: try to terminate only the largest active slot/sequence and continue with the rest
  3502. // need to remove the tokens from the current batch too
  3503. err = "Context size has been exceeded.";
  3504. }
  3505. if (ret == -1) {
  3506. err = "Invalid input batch.";
  3507. }
  3508. if (ret < -1) {
  3509. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  3510. err = "Compute error.";
  3511. }
  3512. // TODO: handle ret == 2 (abort) when we start aborting
  3513. if (!err.empty()) {
  3514. SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  3515. for (auto & slot : slots) {
  3516. if (slot.is_processing()) {
  3517. send_error(slot, err);
  3518. slot.release();
  3519. // note: it's complicated to keep track of how much of the current batch has been
  3520. // processed before the error occurred, so we simply clear the entire context
  3521. clear_slot(slot);
  3522. }
  3523. }
  3524. break;
  3525. }
  3526. }
  3527. // retry with half the batch size to try to find a free slot in the KV cache
  3528. if (!try_clear_idle_slots()) {
  3529. n_batch /= 2;
  3530. }
  3531. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  3532. continue; // continue loop of n_batch
  3533. }
  3534. // move the head of the batch forward with the number of tokens we just processed
  3535. i_next = i + n_tokens;
  3536. // on successful decode, restore the original batch size
  3537. n_batch = llama_n_batch(ctx);
  3538. for (auto & slot : slots) {
  3539. // optionally send prompt processing progress
  3540. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
  3541. if (slot.task->params.stream && slot.task->params.return_progress) {
  3542. send_partial_response(slot, {}, true);
  3543. }
  3544. }
  3545. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  3546. continue; // continue loop of slots
  3547. }
  3548. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  3549. if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) {
  3550. // prompt evaluated for embedding
  3551. send_embedding(slot, batch_view);
  3552. slot.release();
  3553. slot.i_batch = -1;
  3554. continue; // continue loop of slots
  3555. }
  3556. if (slot.task->type == SERVER_TASK_TYPE_RERANK) {
  3557. send_rerank(slot, batch_view);
  3558. slot.release();
  3559. slot.i_batch = -1;
  3560. continue; // continue loop of slots
  3561. }
  3562. // prompt evaluated for next-token prediction
  3563. slot.state = SLOT_STATE_GENERATING;
  3564. } else if (slot.state != SLOT_STATE_GENERATING) {
  3565. continue; // continue loop of slots
  3566. }
  3567. const int tok_idx = slot.i_batch - i;
  3568. llama_token id;
  3569. if (!slot.forced_tokens.empty()) {
  3570. id = slot.forced_tokens.front();
  3571. slot.forced_tokens.pop_front();
  3572. // We need to accept it to update the sampler state?
  3573. // Or just let the context update naturally via llama_decode later?
  3574. // common_sampler_accept updates the internal ring buffer of the sampler.
  3575. // Yes, we should accept it so repetition penalties etc work correctly.
  3576. } else {
  3577. id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  3578. }
  3579. slot.i_batch = -1;
  3580. common_sampler_accept(slot.smpl, id, true);
  3581. slot.n_decoded += 1;
  3582. const int64_t t_current = ggml_time_us();
  3583. if (slot.n_decoded == 1) {
  3584. slot.t_start_generation = t_current;
  3585. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  3586. metrics.on_prompt_eval(slot);
  3587. }
  3588. slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
  3589. completion_token_output result;
  3590. result.tok = id;
  3591. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3592. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  3593. if (slot.task->params.sampling.n_probs > 0) {
  3594. populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx);
  3595. }
  3596. if (!process_token(result, slot)) {
  3597. // release slot because of stop condition
  3598. slot.print_timings();
  3599. send_final_response(slot);
  3600. metrics.on_prediction(slot);
  3601. slot.release();
  3602. continue;
  3603. }
  3604. }
  3605. // do speculative decoding
  3606. // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
  3607. // perform the speculative drafting for all sequences at the same time in a single batch
  3608. for (auto & slot : slots) {
  3609. if (!slot.is_processing() || !slot.can_speculate()) {
  3610. continue;
  3611. }
  3612. if (slot.state != SLOT_STATE_GENERATING) {
  3613. continue;
  3614. }
  3615. if (mctx) {
  3616. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  3617. GGML_ABORT("not supported by multimodal");
  3618. }
  3619. // determine the max draft that fits the current slot state
  3620. int n_draft_max = slot.task->params.speculative.n_max;
  3621. // note: slot.prompt is not yet expanded with the `id` token sampled above
  3622. // also, need to leave space for 1 extra token to allow context shifts
  3623. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2);
  3624. if (slot.n_remaining > 0) {
  3625. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  3626. }
  3627. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  3628. if (n_draft_max < slot.task->params.speculative.n_min) {
  3629. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min);
  3630. continue;
  3631. }
  3632. llama_token id = slot.sampled;
  3633. struct common_speculative_params params_spec;
  3634. params_spec.n_draft = n_draft_max;
  3635. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
  3636. params_spec.p_min = slot.task->params.speculative.p_min;
  3637. const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
  3638. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  3639. // ignore small drafts
  3640. if (slot.task->params.speculative.n_min > (int) draft.size()) {
  3641. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
  3642. continue;
  3643. }
  3644. // keep track of total number of drafted tokens tested
  3645. slot.n_draft_total += draft.size();
  3646. // construct the speculation batch
  3647. common_batch_clear(slot.batch_spec);
  3648. common_batch_add (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true);
  3649. for (size_t i = 0; i < draft.size(); ++i) {
  3650. common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true);
  3651. }
  3652. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3653. llama_decode(ctx, slot.batch_spec);
  3654. // the accepted tokens from the speculation
  3655. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3656. slot.n_decoded += ids.size();
  3657. // update how many tokens out of those tested were accepted
  3658. slot.n_draft_accepted += ids.size() - 1;
  3659. slot.prompt.tokens.push_back(id);
  3660. slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
  3661. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);
  3662. for (size_t i = 0; i < ids.size(); ++i) {
  3663. completion_token_output result;
  3664. result.tok = ids[i];
  3665. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3666. result.prob = 1.0f; // set later
  3667. // TODO: set result.probs
  3668. if (!process_token(result, slot)) {
  3669. slot.print_timings();
  3670. send_final_response(slot);
  3671. metrics.on_prediction(slot);
  3672. slot.release();
  3673. break;
  3674. }
  3675. }
  3676. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens());
  3677. }
  3678. }
  3679. SRV_DBG("%s", "run slots completed\n");
  3680. }
  3681. json model_meta() const {
  3682. return json {
  3683. {"vocab_type", llama_vocab_type (vocab)},
  3684. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3685. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3686. {"n_embd", llama_model_n_embd (model)},
  3687. {"n_params", llama_model_n_params (model)},
  3688. {"size", llama_model_size (model)},
  3689. };
  3690. }
  3691. };
  3692. // generator-like API for server responses, support pooling connection state and aggregating results
  3693. struct server_response_reader {
  3694. std::unordered_set<int> id_tasks;
  3695. server_context & ctx_server;
  3696. size_t received_count = 0;
  3697. bool cancelled = false;
  3698. server_response_reader(server_context & ctx_server) : ctx_server(ctx_server) {}
  3699. ~server_response_reader() {
  3700. stop();
  3701. }
  3702. void post_tasks(std::vector<server_task> && tasks) {
  3703. id_tasks = server_task::get_list_id(tasks);
  3704. ctx_server.queue_results.add_waiting_tasks(tasks);
  3705. ctx_server.queue_tasks.post(std::move(tasks));
  3706. }
  3707. bool has_next() const {
  3708. return !cancelled && received_count < id_tasks.size();
  3709. }
  3710. // return nullptr if should_stop() is true before receiving a result
  3711. // note: if one error is received, it will stop further processing and return error result
  3712. server_task_result_ptr next(const std::function<bool()> & should_stop) {
  3713. while (true) {
  3714. server_task_result_ptr result = ctx_server.queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  3715. if (result == nullptr) {
  3716. // timeout, check stop condition
  3717. if (should_stop()) {
  3718. SRV_DBG("%s", "stopping wait for next result due to should_stop condition\n");
  3719. return nullptr;
  3720. }
  3721. } else {
  3722. if (result->is_error()) {
  3723. stop(); // cancel remaining tasks
  3724. SRV_DBG("%s", "received error result, stopping further processing\n");
  3725. return result;
  3726. }
  3727. if (result->is_stop()) {
  3728. received_count++;
  3729. }
  3730. return result;
  3731. }
  3732. }
  3733. // should not reach here
  3734. }
  3735. struct batch_response {
  3736. bool is_terminated = false; // if true, indicates that processing was stopped before all results were received
  3737. std::vector<server_task_result_ptr> results;
  3738. server_task_result_ptr error; // nullptr if no error
  3739. };
  3740. batch_response wait_for_all(const std::function<bool()> & should_stop) {
  3741. batch_response batch_res;
  3742. batch_res.results.resize(id_tasks.size());
  3743. while (has_next()) {
  3744. auto res = next(should_stop);
  3745. if (res == nullptr) {
  3746. batch_res.is_terminated = true;
  3747. return batch_res;
  3748. }
  3749. if (res->is_error()) {
  3750. batch_res.error = std::move(res);
  3751. return batch_res;
  3752. }
  3753. const size_t idx = res->get_index();
  3754. GGML_ASSERT(idx < batch_res.results.size() && "index out of range");
  3755. GGML_ASSERT(batch_res.results[idx] == nullptr && "duplicate result received");
  3756. batch_res.results[idx] = std::move(res);
  3757. }
  3758. return batch_res;
  3759. }
  3760. void stop() {
  3761. ctx_server.queue_results.remove_waiting_task_ids(id_tasks);
  3762. if (has_next() && !cancelled) {
  3763. // if tasks is not finished yet, cancel them
  3764. cancelled = true;
  3765. std::vector<server_task> cancel_tasks;
  3766. cancel_tasks.reserve(id_tasks.size());
  3767. for (const auto & id_task : id_tasks) {
  3768. SRV_WRN("cancel task, id_task = %d\n", id_task);
  3769. server_task task(SERVER_TASK_TYPE_CANCEL);
  3770. task.id_target = id_task;
  3771. ctx_server.queue_results.remove_waiting_task_id(id_task);
  3772. cancel_tasks.push_back(std::move(task));
  3773. }
  3774. // push to beginning of the queue, so it has highest priority
  3775. ctx_server.queue_tasks.post(std::move(cancel_tasks), true);
  3776. } else {
  3777. SRV_DBG("%s", "all tasks already finished, no need to cancel\n");
  3778. }
  3779. }
  3780. };
  3781. // generator-like API for HTTP response generation
  3782. struct server_res_generator : server_http_res {
  3783. server_response_reader rd;
  3784. server_res_generator(server_context & ctx_server_) : rd(ctx_server_) {}
  3785. void ok(const json & response_data) {
  3786. status = 200;
  3787. data = safe_json_to_str(response_data);
  3788. }
  3789. void error(const json & error_data) {
  3790. status = json_value(error_data, "code", 500);
  3791. data = safe_json_to_str({{ "error", error_data }});
  3792. }
  3793. };
  3794. struct server_routes {
  3795. const common_params & params;
  3796. server_context & ctx_server;
  3797. server_http_context & ctx_http; // for reading is_ready
  3798. server_routes(const common_params & params, server_context & ctx_server, server_http_context & ctx_http)
  3799. : params(params), ctx_server(ctx_server), ctx_http(ctx_http) {}
  3800. public:
  3801. // handlers using lambda function, so that they can capture `this` without `std::bind`
  3802. server_http_context::handler_t get_health = [this](const server_http_req &) {
  3803. // error and loading states are handled by middleware
  3804. auto res = std::make_unique<server_res_generator>(ctx_server);
  3805. res->ok({{"status", "ok"}});
  3806. return res;
  3807. };
  3808. server_http_context::handler_t get_metrics = [this](const server_http_req &) {
  3809. auto res = std::make_unique<server_res_generator>(ctx_server);
  3810. if (!params.endpoint_metrics) {
  3811. res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3812. return res;
  3813. }
  3814. // request slots data using task queue
  3815. // TODO: use server_response_reader
  3816. int task_id = ctx_server.queue_tasks.get_new_id();
  3817. {
  3818. server_task task(SERVER_TASK_TYPE_METRICS);
  3819. task.id = task_id;
  3820. ctx_server.queue_results.add_waiting_task_id(task_id);
  3821. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3822. }
  3823. // get the result
  3824. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3825. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3826. if (result->is_error()) {
  3827. res->error(result->to_json());
  3828. return res;
  3829. }
  3830. // TODO: get rid of this dynamic_cast
  3831. auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
  3832. GGML_ASSERT(res_task != nullptr);
  3833. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3834. json all_metrics_def = json {
  3835. {"counter", {{
  3836. {"name", "prompt_tokens_total"},
  3837. {"help", "Number of prompt tokens processed."},
  3838. {"value", (uint64_t) res_task->n_prompt_tokens_processed_total}
  3839. }, {
  3840. {"name", "prompt_seconds_total"},
  3841. {"help", "Prompt process time"},
  3842. {"value", (uint64_t) res_task->t_prompt_processing_total / 1.e3}
  3843. }, {
  3844. {"name", "tokens_predicted_total"},
  3845. {"help", "Number of generation tokens processed."},
  3846. {"value", (uint64_t) res_task->n_tokens_predicted_total}
  3847. }, {
  3848. {"name", "tokens_predicted_seconds_total"},
  3849. {"help", "Predict process time"},
  3850. {"value", (uint64_t) res_task->t_tokens_generation_total / 1.e3}
  3851. }, {
  3852. {"name", "n_decode_total"},
  3853. {"help", "Total number of llama_decode() calls"},
  3854. {"value", res_task->n_decode_total}
  3855. }, {
  3856. {"name", "n_tokens_max"},
  3857. {"help", "Largest observed n_tokens."},
  3858. {"value", res_task->n_tokens_max}
  3859. }, {
  3860. {"name", "n_busy_slots_per_decode"},
  3861. {"help", "Average number of busy slots per llama_decode() call"},
  3862. {"value", (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)}
  3863. }}},
  3864. {"gauge", {{
  3865. {"name", "prompt_tokens_seconds"},
  3866. {"help", "Average prompt throughput in tokens/s."},
  3867. {"value", res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.}
  3868. },{
  3869. {"name", "predicted_tokens_seconds"},
  3870. {"help", "Average generation throughput in tokens/s."},
  3871. {"value", res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.}
  3872. },{
  3873. {"name", "requests_processing"},
  3874. {"help", "Number of requests processing."},
  3875. {"value", (uint64_t) res_task->n_processing_slots}
  3876. },{
  3877. {"name", "requests_deferred"},
  3878. {"help", "Number of requests deferred."},
  3879. {"value", (uint64_t) res_task->n_tasks_deferred}
  3880. }}}
  3881. };
  3882. std::stringstream prometheus;
  3883. for (const auto & el : all_metrics_def.items()) {
  3884. const auto & type = el.key();
  3885. const auto & metrics_def = el.value();
  3886. for (const auto & metric_def : metrics_def) {
  3887. const std::string name = metric_def.at("name");
  3888. const std::string help = metric_def.at("help");
  3889. auto value = json_value(metric_def, "value", 0.);
  3890. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3891. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3892. << "llamacpp:" << name << " " << value << "\n";
  3893. }
  3894. }
  3895. res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start);
  3896. res->content_type = "text/plain; version=0.0.4";
  3897. res->ok(prometheus.str());
  3898. return res;
  3899. };
  3900. server_http_context::handler_t get_slots = [this](const server_http_req & req) {
  3901. auto res = std::make_unique<server_res_generator>(ctx_server);
  3902. if (!params.endpoint_slots) {
  3903. res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3904. return res;
  3905. }
  3906. // request slots data using task queue
  3907. int task_id = ctx_server.queue_tasks.get_new_id();
  3908. {
  3909. server_task task(SERVER_TASK_TYPE_METRICS);
  3910. task.id = task_id;
  3911. ctx_server.queue_results.add_waiting_task_id(task_id);
  3912. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3913. }
  3914. // get the result
  3915. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3916. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3917. if (result->is_error()) {
  3918. res->error(result->to_json());
  3919. return res;
  3920. }
  3921. // TODO: get rid of this dynamic_cast
  3922. auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
  3923. GGML_ASSERT(res_task != nullptr);
  3924. // optionally return "fail_on_no_slot" error
  3925. if (!req.get_param("fail_on_no_slot").empty()) {
  3926. if (res_task->n_idle_slots == 0) {
  3927. res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3928. return res;
  3929. }
  3930. }
  3931. res->ok(res_task->slots_data);
  3932. return res;
  3933. };
  3934. server_http_context::handler_t post_slots = [this](const server_http_req & req) {
  3935. auto res = std::make_unique<server_res_generator>(ctx_server);
  3936. if (params.slot_save_path.empty()) {
  3937. res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3938. return res;
  3939. }
  3940. std::string id_slot_str = req.get_param("id_slot");
  3941. int id_slot;
  3942. try {
  3943. id_slot = std::stoi(id_slot_str);
  3944. } catch (const std::exception &) {
  3945. res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3946. return res;
  3947. }
  3948. std::string action = req.get_param("action");
  3949. if (action == "save") {
  3950. return handle_slots_save(req, id_slot);
  3951. } else if (action == "restore") {
  3952. return handle_slots_restore(req, id_slot);
  3953. } else if (action == "erase") {
  3954. return handle_slots_erase(req, id_slot);
  3955. } else {
  3956. res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3957. return res;
  3958. }
  3959. };
  3960. server_http_context::handler_t get_props = [this](const server_http_req &) {
  3961. auto res = std::make_unique<server_res_generator>(ctx_server);
  3962. json default_generation_settings_for_props;
  3963. {
  3964. slot_params params;
  3965. params.sampling = ctx_server.params_base.sampling;
  3966. default_generation_settings_for_props = json {
  3967. {"params", params.to_json(true)},
  3968. {"n_ctx", ctx_server.slots[0].n_ctx},
  3969. };
  3970. }
  3971. // this endpoint is publicly available, please only return what is safe to be exposed
  3972. json data = {
  3973. { "default_generation_settings", default_generation_settings_for_props },
  3974. { "total_slots", ctx_server.params_base.n_parallel },
  3975. { "model_alias", ctx_server.params_base.model_alias },
  3976. { "model_path", ctx_server.params_base.model.path },
  3977. { "modalities", json {
  3978. {"vision", ctx_server.oai_parser_opt.allow_image},
  3979. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3980. } },
  3981. { "endpoint_slots", params.endpoint_slots },
  3982. { "endpoint_props", params.endpoint_props },
  3983. { "endpoint_metrics", params.endpoint_metrics },
  3984. { "webui", params.webui },
  3985. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3986. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3987. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3988. { "build_info", build_info },
  3989. };
  3990. if (ctx_server.params_base.use_jinja) {
  3991. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3992. data["chat_template_tool_use"] = tool_use_src;
  3993. }
  3994. }
  3995. res->ok(data);
  3996. return res;
  3997. };
  3998. server_http_context::handler_t post_props = [this](const server_http_req &) {
  3999. auto res = std::make_unique<server_res_generator>(ctx_server);
  4000. if (!params.endpoint_props) {
  4001. res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  4002. return res;
  4003. }
  4004. // update any props here
  4005. res->ok({{ "success", true }});
  4006. return res;
  4007. };
  4008. server_http_context::handler_t get_memory = [this](const server_http_req &) {
  4009. auto res = std::make_unique<server_res_generator>(ctx_server);
  4010. std::ifstream file("llama_memory.txt");
  4011. if (!file.is_open()) {
  4012. res->ok({{"content", ""}, {"size", 0}});
  4013. return res;
  4014. }
  4015. std::stringstream buffer;
  4016. buffer << file.rdbuf();
  4017. std::string content = buffer.str();
  4018. file.close();
  4019. res->ok({{"content", content}, {"size", content.size()}});
  4020. return res;
  4021. };
  4022. server_http_context::handler_t post_memory = [this](const server_http_req & req) {
  4023. auto res = std::make_unique<server_res_generator>(ctx_server);
  4024. json data = json::parse(req.body);
  4025. std::string content = json_value(data, "content", std::string(""));
  4026. const size_t MAX_SIZE = 5 * 1024; // 5KB limit
  4027. if (content.size() > MAX_SIZE) {
  4028. res->error(format_error_response("Memory content exceeds 5KB limit", ERROR_TYPE_INVALID_REQUEST));
  4029. return res;
  4030. }
  4031. std::ofstream file("llama_memory.txt", std::ios::trunc);
  4032. if (!file.is_open()) {
  4033. res->error(format_error_response("Failed to write memory file", ERROR_TYPE_SERVER));
  4034. return res;
  4035. }
  4036. file << content;
  4037. file.close();
  4038. res->ok({{"success", true}, {"size", content.size()}});
  4039. return res;
  4040. };
  4041. server_http_context::handler_t get_api_show = [this](const server_http_req &) {
  4042. auto res = std::make_unique<server_res_generator>(ctx_server);
  4043. bool has_mtmd = ctx_server.mctx != nullptr;
  4044. json data = {
  4045. {
  4046. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  4047. },
  4048. {
  4049. "model_info", {
  4050. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  4051. }
  4052. },
  4053. {"modelfile", ""},
  4054. {"parameters", ""},
  4055. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  4056. {"details", {
  4057. {"parent_model", ""},
  4058. {"format", "gguf"},
  4059. {"family", ""},
  4060. {"families", {""}},
  4061. {"parameter_size", ""},
  4062. {"quantization_level", ""}
  4063. }},
  4064. {"model_info", ""},
  4065. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
  4066. };
  4067. res->ok(data);
  4068. return res;
  4069. };
  4070. server_http_context::handler_t post_infill = [this](const server_http_req & req) {
  4071. auto res = std::make_unique<server_res_generator>(ctx_server);
  4072. // check model compatibility
  4073. std::string err;
  4074. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  4075. err += "prefix token is missing. ";
  4076. }
  4077. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  4078. err += "suffix token is missing. ";
  4079. }
  4080. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  4081. err += "middle token is missing. ";
  4082. }
  4083. if (!err.empty()) {
  4084. res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  4085. return res;
  4086. }
  4087. // validate input
  4088. json data = json::parse(req.body);
  4089. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  4090. // prompt is optional
  4091. res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4092. }
  4093. if (!data.contains("input_prefix")) {
  4094. res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  4095. }
  4096. if (!data.contains("input_suffix")) {
  4097. res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  4098. }
  4099. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  4100. // input_extra is optional
  4101. res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  4102. return res;
  4103. }
  4104. json input_extra = json_value(data, "input_extra", json::array());
  4105. for (const auto & chunk : input_extra) {
  4106. // { "text": string, "filename": string }
  4107. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  4108. res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  4109. return res;
  4110. }
  4111. // filename is optional
  4112. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  4113. res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  4114. return res;
  4115. }
  4116. }
  4117. data["input_extra"] = input_extra; // default to empty array if it's not exist
  4118. std::string prompt = json_value(data, "prompt", std::string());
  4119. std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
  4120. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  4121. data["prompt"] = format_infill(
  4122. ctx_server.vocab,
  4123. data.at("input_prefix"),
  4124. data.at("input_suffix"),
  4125. data.at("input_extra"),
  4126. ctx_server.params_base.n_batch,
  4127. ctx_server.params_base.n_predict,
  4128. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  4129. ctx_server.params_base.spm_infill,
  4130. tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
  4131. );
  4132. std::vector<raw_buffer> files; // dummy
  4133. return handle_completions_impl(
  4134. SERVER_TASK_TYPE_INFILL,
  4135. data,
  4136. files,
  4137. req.should_stop,
  4138. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  4139. };
  4140. server_http_context::handler_t post_completions = [this](const server_http_req & req) {
  4141. std::vector<raw_buffer> files; // dummy
  4142. const json body = json::parse(req.body);
  4143. return handle_completions_impl(
  4144. SERVER_TASK_TYPE_COMPLETION,
  4145. body,
  4146. files,
  4147. req.should_stop,
  4148. OAICOMPAT_TYPE_NONE);
  4149. };
  4150. server_http_context::handler_t post_completions_oai = [this](const server_http_req & req) {
  4151. std::vector<raw_buffer> files; // dummy
  4152. const json body = json::parse(req.body);
  4153. return handle_completions_impl(
  4154. SERVER_TASK_TYPE_COMPLETION,
  4155. body,
  4156. files,
  4157. req.should_stop,
  4158. OAICOMPAT_TYPE_COMPLETION);
  4159. };
  4160. server_http_context::handler_t post_chat_completions = [this](const server_http_req & req) {
  4161. std::vector<raw_buffer> files;
  4162. json body = json::parse(req.body);
  4163. json body_parsed = oaicompat_chat_params_parse(
  4164. body,
  4165. ctx_server.oai_parser_opt,
  4166. files);
  4167. return handle_completions_impl(
  4168. SERVER_TASK_TYPE_COMPLETION,
  4169. body_parsed,
  4170. files,
  4171. req.should_stop,
  4172. OAICOMPAT_TYPE_CHAT);
  4173. };
  4174. // same with handle_chat_completions, but without inference part
  4175. server_http_context::handler_t post_apply_template = [this](const server_http_req & req) {
  4176. auto res = std::make_unique<server_res_generator>(ctx_server);
  4177. std::vector<raw_buffer> files; // dummy, unused
  4178. json body = json::parse(req.body);
  4179. json data = oaicompat_chat_params_parse(
  4180. body,
  4181. ctx_server.oai_parser_opt,
  4182. files);
  4183. res->ok({{ "prompt", std::move(data.at("prompt")) }});
  4184. return res;
  4185. };
  4186. server_http_context::handler_t get_models = [this](const server_http_req &) {
  4187. auto res = std::make_unique<server_res_generator>(ctx_server);
  4188. bool is_model_ready = ctx_http.is_ready.load();
  4189. json model_meta = nullptr;
  4190. if (is_model_ready) {
  4191. model_meta = ctx_server.model_meta();
  4192. }
  4193. bool has_mtmd = ctx_server.mctx != nullptr;
  4194. json models = {
  4195. {"models", {
  4196. {
  4197. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  4198. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  4199. {"modified_at", ""},
  4200. {"size", ""},
  4201. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  4202. {"type", "model"},
  4203. {"description", ""},
  4204. {"tags", {""}},
  4205. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
  4206. {"parameters", ""},
  4207. {"details", {
  4208. {"parent_model", ""},
  4209. {"format", "gguf"},
  4210. {"family", ""},
  4211. {"families", {""}},
  4212. {"parameter_size", ""},
  4213. {"quantization_level", ""}
  4214. }}
  4215. }
  4216. }},
  4217. {"object", "list"},
  4218. {"data", {
  4219. {
  4220. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  4221. {"object", "model"},
  4222. {"created", std::time(0)},
  4223. {"owned_by", "llamacpp"},
  4224. {"meta", model_meta},
  4225. },
  4226. }}
  4227. };
  4228. res->ok(models);
  4229. return res;
  4230. };
  4231. server_http_context::handler_t post_tokenize = [this](const server_http_req & req) {
  4232. auto res = std::make_unique<server_res_generator>(ctx_server);
  4233. const json body = json::parse(req.body);
  4234. json tokens_response = json::array();
  4235. if (body.count("content") != 0) {
  4236. const bool add_special = json_value(body, "add_special", false);
  4237. const bool parse_special = json_value(body, "parse_special", true);
  4238. const bool with_pieces = json_value(body, "with_pieces", false);
  4239. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  4240. if (with_pieces) {
  4241. for (const auto& token : tokens) {
  4242. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  4243. json piece_json;
  4244. // Check if the piece is valid UTF-8
  4245. if (is_valid_utf8(piece)) {
  4246. piece_json = piece;
  4247. } else {
  4248. // If not valid UTF-8, store as array of byte values
  4249. piece_json = json::array();
  4250. for (unsigned char c : piece) {
  4251. piece_json.push_back(static_cast<int>(c));
  4252. }
  4253. }
  4254. tokens_response.push_back({
  4255. {"id", token},
  4256. {"piece", piece_json}
  4257. });
  4258. }
  4259. } else {
  4260. tokens_response = tokens;
  4261. }
  4262. }
  4263. const json data = format_tokenizer_response(tokens_response);
  4264. res->ok(data);
  4265. return res;
  4266. };
  4267. server_http_context::handler_t post_detokenize = [this](const server_http_req & req) {
  4268. auto res = std::make_unique<server_res_generator>(ctx_server);
  4269. const json body = json::parse(req.body);
  4270. std::string content;
  4271. if (body.count("tokens") != 0) {
  4272. const llama_tokens tokens = body.at("tokens");
  4273. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  4274. }
  4275. const json data = format_detokenized_response(content);
  4276. res->ok(data);
  4277. return res;
  4278. };
  4279. server_http_context::handler_t post_embeddings = [this](const server_http_req & req) {
  4280. return handle_embeddings_impl(req, OAICOMPAT_TYPE_NONE);
  4281. };
  4282. server_http_context::handler_t post_embeddings_oai = [this](const server_http_req & req) {
  4283. return handle_embeddings_impl(req, OAICOMPAT_TYPE_EMBEDDING);
  4284. };
  4285. server_http_context::handler_t post_rerank = [this](const server_http_req & req) {
  4286. auto res = std::make_unique<server_res_generator>(ctx_server);
  4287. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  4288. res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  4289. return res;
  4290. }
  4291. const json body = json::parse(req.body);
  4292. // if true, use TEI API format, otherwise use Jina API format
  4293. // Jina: https://jina.ai/reranker/
  4294. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  4295. bool is_tei_format = body.contains("texts");
  4296. json query;
  4297. if (body.count("query") == 1) {
  4298. query = body.at("query");
  4299. if (!query.is_string()) {
  4300. res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4301. return res;
  4302. }
  4303. } else {
  4304. res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4305. return res;
  4306. }
  4307. std::vector<std::string> documents = json_value(body, "documents",
  4308. json_value(body, "texts", std::vector<std::string>()));
  4309. if (documents.empty()) {
  4310. res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  4311. return res;
  4312. }
  4313. int top_n = json_value(body, "top_n", (int)documents.size());
  4314. // create and queue the task
  4315. json responses = json::array();
  4316. server_response_reader rd(ctx_server);
  4317. {
  4318. std::vector<server_task> tasks;
  4319. tasks.reserve(documents.size());
  4320. for (size_t i = 0; i < documents.size(); i++) {
  4321. auto tmp = format_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
  4322. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  4323. task.id = ctx_server.queue_tasks.get_new_id();
  4324. task.index = i;
  4325. task.tokens = std::move(tmp);
  4326. tasks.push_back(std::move(task));
  4327. }
  4328. rd.post_tasks(std::move(tasks));
  4329. }
  4330. // wait for the results
  4331. auto all_results = rd.wait_for_all(req.should_stop);
  4332. // collect results
  4333. if (all_results.is_terminated) {
  4334. return res; // connection is closed
  4335. } else if (all_results.error) {
  4336. res->error(all_results.error->to_json());
  4337. return res;
  4338. } else {
  4339. for (auto & res : all_results.results) {
  4340. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  4341. responses.push_back(res->to_json());
  4342. }
  4343. }
  4344. // write JSON response
  4345. json root = format_response_rerank(
  4346. body,
  4347. responses,
  4348. is_tei_format,
  4349. documents,
  4350. top_n);
  4351. res->ok(root);
  4352. return res;
  4353. };
  4354. server_http_context::handler_t get_lora_adapters = [this](const server_http_req &) {
  4355. auto res = std::make_unique<server_res_generator>(ctx_server);
  4356. json result = json::array();
  4357. const auto & loras = ctx_server.params_base.lora_adapters;
  4358. for (size_t i = 0; i < loras.size(); ++i) {
  4359. auto & lora = loras[i];
  4360. json entry = {
  4361. {"id", i},
  4362. {"path", lora.path},
  4363. {"scale", lora.scale},
  4364. {"task_name", lora.task_name},
  4365. {"prompt_prefix", lora.prompt_prefix},
  4366. };
  4367. std::string alora_invocation_string = "";
  4368. const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
  4369. std::vector<llama_token> alora_invocation_tokens;
  4370. if (n_alora_tokens) {
  4371. const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
  4372. for (uint64_t i = 0; i < n_alora_tokens; ++i) {
  4373. alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]);
  4374. alora_invocation_tokens.push_back(alora_tokens[i]);
  4375. }
  4376. entry["alora_invocation_string"] = alora_invocation_string;
  4377. entry["alora_invocation_tokens"] = alora_invocation_tokens;
  4378. }
  4379. result.push_back(std::move(entry));
  4380. }
  4381. res->ok(result);
  4382. return res;
  4383. };
  4384. server_http_context::handler_t post_lora_adapters = [this](const server_http_req & req) {
  4385. auto res = std::make_unique<server_res_generator>(ctx_server);
  4386. const json body = json::parse(req.body);
  4387. if (!body.is_array()) {
  4388. res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4389. return res;
  4390. }
  4391. int task_id = ctx_server.queue_tasks.get_new_id();
  4392. {
  4393. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4394. task.id = task_id;
  4395. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4396. ctx_server.queue_results.add_waiting_task_id(task_id);
  4397. ctx_server.queue_tasks.post(std::move(task));
  4398. }
  4399. // get the result
  4400. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4401. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4402. if (result->is_error()) {
  4403. res->error(result->to_json());
  4404. return res;
  4405. }
  4406. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4407. res->ok(result->to_json());
  4408. return res;
  4409. };
  4410. private:
  4411. std::unique_ptr<server_res_generator> handle_completions_impl(
  4412. server_task_type type,
  4413. const json & data,
  4414. const std::vector<raw_buffer> & files,
  4415. const std::function<bool()> & should_stop,
  4416. oaicompat_type oaicompat) {
  4417. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  4418. auto res = std::make_unique<server_res_generator>(ctx_server);
  4419. auto completion_id = gen_chatcmplid();
  4420. auto & rd = res->rd;
  4421. try {
  4422. std::vector<server_task> tasks;
  4423. const auto & prompt = data.at("prompt");
  4424. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  4425. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  4426. // process prompt
  4427. std::vector<server_tokens> inputs;
  4428. if (oaicompat && ctx_server.mctx != nullptr) {
  4429. // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
  4430. inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
  4431. } else {
  4432. // Everything else, including multimodal completions.
  4433. inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  4434. }
  4435. tasks.reserve(inputs.size());
  4436. for (size_t i = 0; i < inputs.size(); i++) {
  4437. server_task task = server_task(type);
  4438. task.id = ctx_server.queue_tasks.get_new_id();
  4439. task.index = i;
  4440. task.tokens = std::move(inputs[i]);
  4441. task.params = server_task::params_from_json_cmpl(
  4442. ctx_server.ctx,
  4443. ctx_server.params_base,
  4444. data);
  4445. task.id_slot = json_value(data, "id_slot", -1);
  4446. // OAI-compat
  4447. task.params.oaicompat = oaicompat;
  4448. task.params.oaicompat_cmpl_id = completion_id;
  4449. // oaicompat_model is already populated by params_from_json_cmpl
  4450. tasks.push_back(std::move(task));
  4451. }
  4452. rd.post_tasks(std::move(tasks));
  4453. } catch (const std::exception & e) {
  4454. res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  4455. return res;
  4456. }
  4457. bool stream = json_value(data, "stream", false);
  4458. if (!stream) {
  4459. // non-stream, wait for the results
  4460. auto all_results = rd.wait_for_all(should_stop);
  4461. if (all_results.is_terminated) {
  4462. return res; // connection is closed
  4463. } else if (all_results.error) {
  4464. res->error(all_results.error->to_json());
  4465. return res;
  4466. } else {
  4467. json arr = json::array();
  4468. for (auto & res : all_results.results) {
  4469. GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
  4470. arr.push_back(res->to_json());
  4471. }
  4472. // if single request, return single object instead of array
  4473. res->ok(arr.size() == 1 ? arr[0] : arr);
  4474. }
  4475. } else {
  4476. // in streaming mode, the first error must be treated as non-stream response
  4477. // this is to match the OAI API behavior
  4478. // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309
  4479. server_task_result_ptr first_result = rd.next(should_stop);
  4480. if (first_result == nullptr) {
  4481. return res; // connection is closed
  4482. } else if (first_result->is_error()) {
  4483. res->error(first_result->to_json());
  4484. return res;
  4485. } else {
  4486. GGML_ASSERT(
  4487. dynamic_cast<server_task_result_cmpl_partial*>(first_result.get()) != nullptr
  4488. || dynamic_cast<server_task_result_cmpl_final*>(first_result.get()) != nullptr
  4489. );
  4490. }
  4491. // next responses are streamed
  4492. res->data = format_sse(first_result->to_json()); // to be sent immediately
  4493. res->status = 200;
  4494. res->content_type = "text/event-stream";
  4495. res->next = [res_this = res.get(), oaicompat, &should_stop](std::string & output) -> bool {
  4496. if (should_stop()) {
  4497. SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
  4498. return false; // should_stop condition met
  4499. }
  4500. if (!res_this->data.empty()) {
  4501. // flush the first chunk
  4502. output = std::move(res_this->data);
  4503. res_this->data.clear();
  4504. return true;
  4505. }
  4506. server_response_reader & rd = res_this->rd;
  4507. // check if there is more data
  4508. if (!rd.has_next()) {
  4509. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  4510. output = "data: [DONE]\n\n";
  4511. } else {
  4512. output = "";
  4513. }
  4514. SRV_DBG("%s", "all results received, terminating stream\n");
  4515. return false; // no more data, terminate
  4516. }
  4517. // receive subsequent results
  4518. auto result = rd.next(should_stop);
  4519. if (result == nullptr) {
  4520. SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
  4521. return false; // should_stop condition met
  4522. }
  4523. // send the results
  4524. json res_json = result->to_json();
  4525. if (result->is_error()) {
  4526. output = format_sse(json {{ "error", res_json }});
  4527. SRV_DBG("%s", "error received during streaming, terminating stream\n");
  4528. return false; // terminate on error
  4529. } else {
  4530. GGML_ASSERT(
  4531. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  4532. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  4533. );
  4534. output = format_sse(res_json);
  4535. }
  4536. // has next data, continue
  4537. return true;
  4538. };
  4539. }
  4540. return res;
  4541. }
  4542. std::unique_ptr<server_res_generator> handle_slots_save(const server_http_req & req, int id_slot) {
  4543. auto res = std::make_unique<server_res_generator>(ctx_server);
  4544. const json request_data = json::parse(req.body);
  4545. std::string filename = request_data.at("filename");
  4546. if (!fs_validate_filename(filename)) {
  4547. res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  4548. return res;
  4549. }
  4550. std::string filepath = params.slot_save_path + filename;
  4551. int task_id = ctx_server.queue_tasks.get_new_id();
  4552. {
  4553. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  4554. task.id = task_id;
  4555. task.slot_action.slot_id = id_slot;
  4556. task.slot_action.filename = filename;
  4557. task.slot_action.filepath = filepath;
  4558. // TODO: use server_response_reader
  4559. ctx_server.queue_results.add_waiting_task_id(task_id);
  4560. ctx_server.queue_tasks.post(std::move(task));
  4561. }
  4562. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4563. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4564. if (result->is_error()) {
  4565. res->error(result->to_json());
  4566. return res;
  4567. }
  4568. res->ok(result->to_json());
  4569. return res;
  4570. }
  4571. std::unique_ptr<server_res_generator> handle_slots_restore(const server_http_req & req, int id_slot) {
  4572. auto res = std::make_unique<server_res_generator>(ctx_server);
  4573. const json request_data = json::parse(req.body);
  4574. std::string filename = request_data.at("filename");
  4575. if (!fs_validate_filename(filename)) {
  4576. res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  4577. return res;
  4578. }
  4579. std::string filepath = params.slot_save_path + filename;
  4580. int task_id = ctx_server.queue_tasks.get_new_id();
  4581. {
  4582. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  4583. task.id = task_id;
  4584. task.slot_action.slot_id = id_slot;
  4585. task.slot_action.filename = filename;
  4586. task.slot_action.filepath = filepath;
  4587. // TODO: use server_response_reader
  4588. ctx_server.queue_results.add_waiting_task_id(task_id);
  4589. ctx_server.queue_tasks.post(std::move(task));
  4590. }
  4591. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4592. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4593. if (result->is_error()) {
  4594. res->error(result->to_json());
  4595. return res;
  4596. }
  4597. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  4598. res->ok(result->to_json());
  4599. return res;
  4600. }
  4601. std::unique_ptr<server_res_generator> handle_slots_erase(const server_http_req &, int id_slot) {
  4602. auto res = std::make_unique<server_res_generator>(ctx_server);
  4603. int task_id = ctx_server.queue_tasks.get_new_id();
  4604. {
  4605. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  4606. task.id = task_id;
  4607. task.slot_action.slot_id = id_slot;
  4608. // TODO: use server_response_reader
  4609. ctx_server.queue_results.add_waiting_task_id(task_id);
  4610. ctx_server.queue_tasks.post(std::move(task));
  4611. }
  4612. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4613. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4614. if (result->is_error()) {
  4615. res->error(result->to_json());
  4616. return res;
  4617. }
  4618. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  4619. res->ok(result->to_json());
  4620. return res;
  4621. }
  4622. std::unique_ptr<server_res_generator> handle_embeddings_impl(const server_http_req & req, oaicompat_type oaicompat) {
  4623. auto res = std::make_unique<server_res_generator>(ctx_server);
  4624. if (!ctx_server.params_base.embedding) {
  4625. res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  4626. return res;
  4627. }
  4628. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4629. res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  4630. return res;
  4631. }
  4632. const json body = json::parse(req.body);
  4633. // for the shape of input/content, see tokenize_input_prompts()
  4634. json prompt;
  4635. if (body.count("input") != 0) {
  4636. prompt = body.at("input");
  4637. } else if (body.contains("content")) {
  4638. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  4639. prompt = body.at("content");
  4640. } else {
  4641. res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4642. return res;
  4643. }
  4644. bool use_base64 = false;
  4645. if (body.count("encoding_format") != 0) {
  4646. const std::string& format = body.at("encoding_format");
  4647. if (format == "base64") {
  4648. use_base64 = true;
  4649. } else if (format != "float") {
  4650. res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  4651. return res;
  4652. }
  4653. }
  4654. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  4655. for (const auto & tokens : tokenized_prompts) {
  4656. // this check is necessary for models that do not add BOS token to the input
  4657. if (tokens.empty()) {
  4658. res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  4659. return res;
  4660. }
  4661. }
  4662. int embd_normalize = 2; // default to Euclidean/L2 norm
  4663. if (body.count("embd_normalize") != 0) {
  4664. embd_normalize = body.at("embd_normalize");
  4665. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4666. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  4667. }
  4668. }
  4669. // create and queue the task
  4670. json responses = json::array();
  4671. server_response_reader rd(ctx_server);
  4672. {
  4673. std::vector<server_task> tasks;
  4674. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  4675. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  4676. task.id = ctx_server.queue_tasks.get_new_id();
  4677. task.index = i;
  4678. task.tokens = std::move(tokenized_prompts[i]);
  4679. // OAI-compat
  4680. task.params.oaicompat = oaicompat;
  4681. task.params.embd_normalize = embd_normalize;
  4682. tasks.push_back(std::move(task));
  4683. }
  4684. rd.post_tasks(std::move(tasks));
  4685. }
  4686. // wait for the results
  4687. auto all_results = rd.wait_for_all(req.should_stop);
  4688. // collect results
  4689. if (all_results.is_terminated) {
  4690. return res; // connection is closed
  4691. } else if (all_results.error) {
  4692. res->error(all_results.error->to_json());
  4693. return res;
  4694. } else {
  4695. for (auto & res : all_results.results) {
  4696. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  4697. responses.push_back(res->to_json());
  4698. }
  4699. }
  4700. // write JSON response
  4701. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  4702. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  4703. : json(responses);
  4704. res->ok(root);
  4705. return res;
  4706. }
  4707. };
  4708. std::function<void(int)> shutdown_handler;
  4709. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  4710. inline void signal_handler(int signal) {
  4711. if (is_terminating.test_and_set()) {
  4712. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  4713. // this is for better developer experience, we can remove when the server is stable enough
  4714. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  4715. exit(1);
  4716. }
  4717. shutdown_handler(signal);
  4718. }
  4719. // wrapper function that handles exceptions and logs errors
  4720. // this is to make sure handler_t never throws exceptions; instead, it returns an error response
  4721. static server_http_context::handler_t ex_wrapper(server_http_context::handler_t func) {
  4722. return [func = std::move(func)](const server_http_req & req) -> server_http_res_ptr {
  4723. std::string message;
  4724. try {
  4725. return func(req);
  4726. } catch (const std::exception & e) {
  4727. message = e.what();
  4728. } catch (...) {
  4729. message = "unknown error";
  4730. }
  4731. auto res = std::make_unique<server_http_res>();
  4732. res->status = 500;
  4733. try {
  4734. json error_data = format_error_response(message, ERROR_TYPE_SERVER);
  4735. res->status = json_value(error_data, "code", 500);
  4736. res->data = safe_json_to_str({{ "error", error_data }});
  4737. LOG_WRN("got exception: %s\n", res->data.c_str());
  4738. } catch (const std::exception & e) {
  4739. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  4740. res->data = "Internal Server Error";
  4741. }
  4742. return res;
  4743. };
  4744. }
  4745. int main(int argc, char ** argv) {
  4746. // own arguments required by this example
  4747. common_params params;
  4748. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  4749. return 1;
  4750. }
  4751. // TODO: should we have a separate n_parallel parameter for the server?
  4752. // https://github.com/ggml-org/llama.cpp/pull/16736#discussion_r2483763177
  4753. // TODO: this is a common configuration that is suitable for most local use cases
  4754. // however, overriding the parameters is a bit confusing - figure out something more intuitive
  4755. if (params.n_parallel == 1 && params.kv_unified == false && !params.has_speculative()) {
  4756. LOG_WRN("%s: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this)\n", __func__);
  4757. params.n_parallel = 4;
  4758. params.kv_unified = true;
  4759. }
  4760. common_init();
  4761. // struct that contains llama context and inference
  4762. server_context ctx_server;
  4763. // Necessary similarity of prompt for slot selection
  4764. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  4765. llama_backend_init();
  4766. llama_numa_init(params.numa);
  4767. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  4768. LOG_INF("\n");
  4769. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  4770. LOG_INF("\n");
  4771. server_http_context ctx_http;
  4772. if (!ctx_http.init(params)) {
  4773. LOG_ERR("%s: failed to initialize HTTP server\n", __func__);
  4774. return 1;
  4775. }
  4776. //
  4777. // Router
  4778. //
  4779. // register API routes
  4780. server_routes routes(params, ctx_server, ctx_http);
  4781. ctx_http.get ("/health", ex_wrapper(routes.get_health)); // public endpoint (no API key check)
  4782. ctx_http.get ("/v1/health", ex_wrapper(routes.get_health)); // public endpoint (no API key check)
  4783. ctx_http.get ("/metrics", ex_wrapper(routes.get_metrics));
  4784. ctx_http.get ("/props", ex_wrapper(routes.get_props));
  4785. ctx_http.post("/props", ex_wrapper(routes.post_props));
  4786. ctx_http.post("/api/show", ex_wrapper(routes.get_api_show));
  4787. ctx_http.get ("/memory", ex_wrapper(routes.get_memory));
  4788. ctx_http.post("/memory", ex_wrapper(routes.post_memory));
  4789. ctx_http.get ("/models", ex_wrapper(routes.get_models)); // public endpoint (no API key check)
  4790. ctx_http.get ("/v1/models", ex_wrapper(routes.get_models)); // public endpoint (no API key check)
  4791. ctx_http.get ("/api/tags", ex_wrapper(routes.get_models)); // ollama specific endpoint. public endpoint (no API key check)
  4792. ctx_http.post("/completion", ex_wrapper(routes.post_completions)); // legacy
  4793. ctx_http.post("/completions", ex_wrapper(routes.post_completions));
  4794. ctx_http.post("/v1/completions", ex_wrapper(routes.post_completions_oai));
  4795. ctx_http.post("/chat/completions", ex_wrapper(routes.post_chat_completions));
  4796. ctx_http.post("/v1/chat/completions", ex_wrapper(routes.post_chat_completions));
  4797. ctx_http.post("/api/chat", ex_wrapper(routes.post_chat_completions)); // ollama specific endpoint
  4798. ctx_http.post("/infill", ex_wrapper(routes.post_infill));
  4799. ctx_http.post("/embedding", ex_wrapper(routes.post_embeddings)); // legacy
  4800. ctx_http.post("/embeddings", ex_wrapper(routes.post_embeddings));
  4801. ctx_http.post("/v1/embeddings", ex_wrapper(routes.post_embeddings_oai));
  4802. ctx_http.post("/rerank", ex_wrapper(routes.post_rerank));
  4803. ctx_http.post("/reranking", ex_wrapper(routes.post_rerank));
  4804. ctx_http.post("/v1/rerank", ex_wrapper(routes.post_rerank));
  4805. ctx_http.post("/v1/reranking", ex_wrapper(routes.post_rerank));
  4806. ctx_http.post("/tokenize", ex_wrapper(routes.post_tokenize));
  4807. ctx_http.post("/detokenize", ex_wrapper(routes.post_detokenize));
  4808. ctx_http.post("/apply-template", ex_wrapper(routes.post_apply_template));
  4809. // LoRA adapters hotswap
  4810. ctx_http.get ("/lora-adapters", ex_wrapper(routes.get_lora_adapters));
  4811. ctx_http.post("/lora-adapters", ex_wrapper(routes.post_lora_adapters));
  4812. // Save & load slots
  4813. ctx_http.get ("/slots", ex_wrapper(routes.get_slots));
  4814. ctx_http.post("/slots/:id_slot", ex_wrapper(routes.post_slots));
  4815. //
  4816. // Start the server
  4817. //
  4818. // setup clean up function, to be called before exit
  4819. auto clean_up = [&ctx_http, &ctx_server]() {
  4820. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4821. ctx_http.stop();
  4822. ctx_server.queue_results.terminate();
  4823. llama_backend_free();
  4824. };
  4825. // start the HTTP server before loading the model to be able to serve /health requests
  4826. if (!ctx_http.start()) {
  4827. clean_up();
  4828. LOG_ERR("%s: exiting due to HTTP server error\n", __func__);
  4829. return 1;
  4830. }
  4831. // load the model
  4832. LOG_INF("%s: loading model\n", __func__);
  4833. if (!ctx_server.load_model(params)) {
  4834. clean_up();
  4835. if (ctx_http.thread.joinable()) {
  4836. ctx_http.thread.join();
  4837. }
  4838. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4839. return 1;
  4840. }
  4841. ctx_server.init();
  4842. ctx_http.is_ready.store(true);
  4843. LOG_INF("%s: model loaded\n", __func__);
  4844. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4845. ctx_server.process_single_task(std::move(task));
  4846. });
  4847. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4848. ctx_server.update_slots();
  4849. });
  4850. shutdown_handler = [&](int) {
  4851. // this will unblock start_loop()
  4852. ctx_server.queue_tasks.terminate();
  4853. };
  4854. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4855. struct sigaction sigint_action;
  4856. sigint_action.sa_handler = signal_handler;
  4857. sigemptyset (&sigint_action.sa_mask);
  4858. sigint_action.sa_flags = 0;
  4859. sigaction(SIGINT, &sigint_action, NULL);
  4860. sigaction(SIGTERM, &sigint_action, NULL);
  4861. #elif defined (_WIN32)
  4862. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4863. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4864. };
  4865. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4866. #endif
  4867. LOG_INF("%s: server is listening on %s\n", __func__, ctx_http.listening_address.c_str());
  4868. LOG_INF("%s: starting the main loop...\n", __func__);
  4869. // this call blocks the main thread until queue_tasks.terminate() is called
  4870. ctx_server.queue_tasks.start_loop();
  4871. clean_up();
  4872. if (ctx_http.thread.joinable()) {
  4873. ctx_http.thread.join();
  4874. }
  4875. llama_memory_breakdown_print(ctx_server.ctx);
  4876. return 0;
  4877. }