llama.cpp 369 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #ifdef GGML_USE_CUBLAS
  7. # include "ggml-cuda.h"
  8. #elif defined(GGML_USE_CLBLAST)
  9. # include "ggml-opencl.h"
  10. #endif
  11. #ifdef GGML_USE_METAL
  12. # include "ggml-metal.h"
  13. #endif
  14. #ifdef GGML_USE_MPI
  15. # include "ggml-mpi.h"
  16. #endif
  17. #ifdef GGML_USE_K_QUANTS
  18. # ifndef QK_K
  19. # ifdef GGML_QKK_64
  20. # define QK_K 64
  21. # else
  22. # define QK_K 256
  23. # endif
  24. # endif
  25. #endif
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #endif
  32. #if defined(_POSIX_MEMLOCK_RANGE)
  33. #include <sys/resource.h>
  34. #endif
  35. #endif
  36. #endif
  37. #if defined(_WIN32)
  38. #define WIN32_LEAN_AND_MEAN
  39. #ifndef NOMINMAX
  40. #define NOMINMAX
  41. #endif
  42. #include <windows.h>
  43. #include <io.h>
  44. #include <stdio.h> // for _fseeki64
  45. #endif
  46. #include <algorithm>
  47. #include <array>
  48. #include <cassert>
  49. #include <cinttypes>
  50. #include <climits>
  51. #include <cstdarg>
  52. #include <cstddef>
  53. #include <cstdint>
  54. #include <cstdio>
  55. #include <cstring>
  56. #include <ctime>
  57. #include <fstream>
  58. #include <initializer_list>
  59. #include <map>
  60. #include <memory>
  61. #include <mutex>
  62. #include <numeric>
  63. #include <queue>
  64. #include <random>
  65. #include <regex>
  66. #include <sstream>
  67. #include <thread>
  68. #include <unordered_map>
  69. #include <set>
  70. #include <forward_list>
  71. #if defined(_MSC_VER)
  72. #pragma warning(disable: 4244 4267) // possible loss of data
  73. #endif
  74. #ifdef __GNUC__
  75. #ifdef __MINGW32__
  76. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  77. #else
  78. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  79. #endif
  80. #else
  81. #define LLAMA_ATTRIBUTE_FORMAT(...)
  82. #endif
  83. //
  84. // logging
  85. //
  86. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  87. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  88. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  89. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  90. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  91. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  92. //
  93. // helpers
  94. //
  95. static size_t utf8_len(char src) {
  96. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  97. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  98. return lookup[highbits];
  99. }
  100. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  101. std::string result;
  102. for (size_t pos = 0; ; pos += search.length()) {
  103. auto new_pos = s.find(search, pos);
  104. if (new_pos == std::string::npos) {
  105. result += s.substr(pos, s.size() - pos);
  106. break;
  107. }
  108. result += s.substr(pos, new_pos - pos) + replace;
  109. pos = new_pos;
  110. }
  111. s = std::move(result);
  112. }
  113. static bool is_float_close(float a, float b, float abs_tol) {
  114. // Check for non-negative tolerance
  115. if (abs_tol < 0.0) {
  116. throw std::invalid_argument("Tolerance must be non-negative");
  117. }
  118. // Exact equality check
  119. if (a == b) {
  120. return true;
  121. }
  122. // Check for infinities
  123. if (std::isinf(a) || std::isinf(b)) {
  124. return false;
  125. }
  126. // Regular comparison using the provided absolute tolerance
  127. return std::fabs(b - a) <= abs_tol;
  128. }
  129. #ifdef GGML_USE_CPU_HBM
  130. #include <hbwmalloc.h>
  131. #endif
  132. static void zeros(std::ofstream & file, size_t n) {
  133. char zero = 0;
  134. for (size_t i = 0; i < n; ++i) {
  135. file.write(&zero, 1);
  136. }
  137. }
  138. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  139. static std::string format(const char * fmt, ...) {
  140. va_list ap;
  141. va_list ap2;
  142. va_start(ap, fmt);
  143. va_copy(ap2, ap);
  144. int size = vsnprintf(NULL, 0, fmt, ap);
  145. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  146. std::vector<char> buf(size + 1);
  147. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  148. GGML_ASSERT(size2 == size);
  149. va_end(ap2);
  150. va_end(ap);
  151. return std::string(buf.data(), size);
  152. }
  153. //
  154. // gguf constants (sync with gguf.py)
  155. //
  156. enum llm_arch {
  157. LLM_ARCH_LLAMA,
  158. LLM_ARCH_FALCON,
  159. LLM_ARCH_BAICHUAN,
  160. LLM_ARCH_GPT2,
  161. LLM_ARCH_GPTJ,
  162. LLM_ARCH_GPTNEOX,
  163. LLM_ARCH_MPT,
  164. LLM_ARCH_STARCODER,
  165. LLM_ARCH_PERSIMMON,
  166. LLM_ARCH_REFACT,
  167. LLM_ARCH_BLOOM,
  168. LLM_ARCH_UNKNOWN,
  169. };
  170. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  171. { LLM_ARCH_LLAMA, "llama" },
  172. { LLM_ARCH_FALCON, "falcon" },
  173. { LLM_ARCH_GPT2, "gpt2" },
  174. { LLM_ARCH_GPTJ, "gptj" },
  175. { LLM_ARCH_GPTNEOX, "gptneox" },
  176. { LLM_ARCH_MPT, "mpt" },
  177. { LLM_ARCH_BAICHUAN, "baichuan" },
  178. { LLM_ARCH_STARCODER, "starcoder" },
  179. { LLM_ARCH_PERSIMMON, "persimmon" },
  180. { LLM_ARCH_REFACT, "refact" },
  181. { LLM_ARCH_BLOOM, "bloom" },
  182. };
  183. enum llm_kv {
  184. LLM_KV_GENERAL_ARCHITECTURE,
  185. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  186. LLM_KV_GENERAL_ALIGNMENT,
  187. LLM_KV_GENERAL_NAME,
  188. LLM_KV_GENERAL_AUTHOR,
  189. LLM_KV_GENERAL_URL,
  190. LLM_KV_GENERAL_DESCRIPTION,
  191. LLM_KV_GENERAL_LICENSE,
  192. LLM_KV_GENERAL_SOURCE_URL,
  193. LLM_KV_GENERAL_SOURCE_HF_REPO,
  194. LLM_KV_CONTEXT_LENGTH,
  195. LLM_KV_EMBEDDING_LENGTH,
  196. LLM_KV_BLOCK_COUNT,
  197. LLM_KV_FEED_FORWARD_LENGTH,
  198. LLM_KV_USE_PARALLEL_RESIDUAL,
  199. LLM_KV_TENSOR_DATA_LAYOUT,
  200. LLM_KV_ATTENTION_HEAD_COUNT,
  201. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  202. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  203. LLM_KV_ATTENTION_CLAMP_KQV,
  204. LLM_KV_ATTENTION_LAYERNORM_EPS,
  205. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  206. LLM_KV_ROPE_DIMENSION_COUNT,
  207. LLM_KV_ROPE_FREQ_BASE,
  208. LLM_KV_ROPE_SCALE_LINEAR,
  209. LLM_KV_TOKENIZER_MODEL,
  210. LLM_KV_TOKENIZER_LIST,
  211. LLM_KV_TOKENIZER_TOKEN_TYPE,
  212. LLM_KV_TOKENIZER_SCORES,
  213. LLM_KV_TOKENIZER_MERGES,
  214. LLM_KV_TOKENIZER_BOS_ID,
  215. LLM_KV_TOKENIZER_EOS_ID,
  216. LLM_KV_TOKENIZER_UNK_ID,
  217. LLM_KV_TOKENIZER_SEP_ID,
  218. LLM_KV_TOKENIZER_PAD_ID,
  219. LLM_KV_TOKENIZER_HF_JSON,
  220. LLM_KV_TOKENIZER_RWKV,
  221. };
  222. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  223. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  224. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  225. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  226. { LLM_KV_GENERAL_NAME, "general.name" },
  227. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  228. { LLM_KV_GENERAL_URL, "general.url" },
  229. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  230. { LLM_KV_GENERAL_LICENSE, "general.license" },
  231. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  232. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  233. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  234. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  235. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  236. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  237. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  238. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  239. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  240. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  241. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  242. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  243. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  244. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  245. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  246. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  247. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  248. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  249. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  250. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  251. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  252. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  253. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  254. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  255. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  256. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  257. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  258. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  259. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  260. };
  261. struct LLM_KV {
  262. LLM_KV(llm_arch arch) : arch(arch) {}
  263. llm_arch arch;
  264. std::string operator()(llm_kv kv) const {
  265. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  266. }
  267. };
  268. enum llm_tensor {
  269. LLM_TENSOR_TOKEN_EMBD,
  270. LLM_TENSOR_TOKEN_EMBD_NORM,
  271. LLM_TENSOR_POS_EMBD,
  272. LLM_TENSOR_OUTPUT,
  273. LLM_TENSOR_OUTPUT_NORM,
  274. LLM_TENSOR_ROPE_FREQS,
  275. LLM_TENSOR_ATTN_Q,
  276. LLM_TENSOR_ATTN_K,
  277. LLM_TENSOR_ATTN_V,
  278. LLM_TENSOR_ATTN_QKV,
  279. LLM_TENSOR_ATTN_OUT,
  280. LLM_TENSOR_ATTN_NORM,
  281. LLM_TENSOR_ATTN_NORM_2,
  282. LLM_TENSOR_ATTN_ROT_EMBD,
  283. LLM_TENSOR_FFN_GATE,
  284. LLM_TENSOR_FFN_DOWN,
  285. LLM_TENSOR_FFN_UP,
  286. LLM_TENSOR_FFN_NORM,
  287. LLM_TENSOR_ATTN_Q_NORM,
  288. LLM_TENSOR_ATTN_K_NORM,
  289. };
  290. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  291. {
  292. LLM_ARCH_LLAMA,
  293. {
  294. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  295. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  296. { LLM_TENSOR_OUTPUT, "output" },
  297. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  298. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  299. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  300. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  301. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  302. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  303. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  304. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  305. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  306. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  307. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  308. },
  309. },
  310. {
  311. LLM_ARCH_BAICHUAN,
  312. {
  313. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  314. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  315. { LLM_TENSOR_OUTPUT, "output" },
  316. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  317. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  318. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  319. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  320. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  321. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  322. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  323. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  324. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  325. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  326. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  327. },
  328. },
  329. {
  330. LLM_ARCH_FALCON,
  331. {
  332. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  333. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  334. { LLM_TENSOR_OUTPUT, "output" },
  335. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  336. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  337. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  338. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  339. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  340. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  341. },
  342. },
  343. {
  344. LLM_ARCH_GPT2,
  345. {
  346. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  347. },
  348. },
  349. {
  350. LLM_ARCH_GPTJ,
  351. {
  352. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  353. },
  354. },
  355. {
  356. LLM_ARCH_GPTNEOX,
  357. {
  358. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  359. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  360. { LLM_TENSOR_OUTPUT, "output" },
  361. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  362. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  363. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  364. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  365. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  366. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  367. },
  368. },
  369. {
  370. LLM_ARCH_PERSIMMON,
  371. {
  372. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  373. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  374. { LLM_TENSOR_OUTPUT, "output"},
  375. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  376. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  377. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  378. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  379. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  380. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  381. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  382. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  383. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  384. },
  385. },
  386. {
  387. LLM_ARCH_MPT,
  388. {
  389. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  390. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  391. { LLM_TENSOR_OUTPUT, "output" },
  392. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  393. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  394. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  395. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  396. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  397. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  398. },
  399. },
  400. {
  401. LLM_ARCH_STARCODER,
  402. {
  403. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  404. { LLM_TENSOR_POS_EMBD, "position_embd" },
  405. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  406. { LLM_TENSOR_OUTPUT, "output" },
  407. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  408. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  409. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  410. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  411. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  412. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  413. },
  414. },
  415. {
  416. LLM_ARCH_REFACT,
  417. {
  418. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  419. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  420. { LLM_TENSOR_OUTPUT, "output" },
  421. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  422. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  423. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  424. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  425. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  426. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  427. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  428. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  429. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  430. },
  431. },
  432. {
  433. LLM_ARCH_BLOOM,
  434. {
  435. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  436. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  437. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  438. { LLM_TENSOR_OUTPUT, "output" },
  439. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  440. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  441. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  442. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  443. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  444. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  445. },
  446. },
  447. {
  448. LLM_ARCH_UNKNOWN,
  449. {
  450. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  451. },
  452. },
  453. };
  454. static llm_arch llm_arch_from_string(const std::string & name) {
  455. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  456. if (kv.second == name) {
  457. return kv.first;
  458. }
  459. }
  460. return LLM_ARCH_UNKNOWN;
  461. }
  462. // helper to handle gguf constants
  463. // usage:
  464. //
  465. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  466. //
  467. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  468. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  469. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  470. //
  471. struct LLM_TN {
  472. LLM_TN(llm_arch arch) : arch(arch) {}
  473. llm_arch arch;
  474. std::string operator()(llm_tensor tensor) const {
  475. return LLM_TENSOR_NAMES[arch].at(tensor);
  476. }
  477. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  478. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  479. }
  480. std::string operator()(llm_tensor tensor, int bid) const {
  481. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  482. }
  483. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  484. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  485. }
  486. };
  487. //
  488. // gguf helpers
  489. //
  490. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  491. do { \
  492. const std::string skey(key); \
  493. const int kid = gguf_find_key(ctx, skey.c_str()); \
  494. if (kid >= 0) { \
  495. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  496. if (ktype != (type)) { \
  497. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  498. } \
  499. (dst) = func(ctx, kid); \
  500. } else if (req) { \
  501. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  502. } \
  503. } while (0)
  504. //
  505. // ggml helpers
  506. //
  507. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  508. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  509. if (plan.work_size > 0) {
  510. buf.resize(plan.work_size);
  511. plan.work_data = buf.data();
  512. }
  513. ggml_graph_compute(graph, &plan);
  514. }
  515. //
  516. // llama helpers
  517. //
  518. #ifdef GGML_USE_CUBLAS
  519. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  520. # define llama_host_free(data) ggml_cuda_host_free(data)
  521. #elif GGML_USE_METAL
  522. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  523. # define llama_host_free(data) ggml_metal_host_free(data)
  524. #elif GGML_USE_CPU_HBM
  525. # define llama_host_malloc(n) hbw_malloc(n)
  526. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  527. #else
  528. # define llama_host_malloc(n) malloc(n)
  529. # define llama_host_free(data) free(data)
  530. #endif
  531. #if defined(_WIN32)
  532. static std::string llama_format_win_err(DWORD err) {
  533. LPSTR buf;
  534. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  535. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  536. if (!size) {
  537. return "FormatMessageA failed";
  538. }
  539. std::string ret(buf, size);
  540. LocalFree(buf);
  541. return ret;
  542. }
  543. #endif
  544. struct llama_buffer {
  545. void * data = NULL;
  546. size_t size = 0;
  547. // fallback to malloc / free
  548. // useful in cases where CUDA can try to allocate PINNED memory
  549. bool fallback = false;
  550. void resize(size_t n) {
  551. llama_host_free(data);
  552. data = llama_host_malloc(n);
  553. if (!data) {
  554. fallback = true;
  555. data = malloc(n);
  556. } else {
  557. fallback = false;
  558. }
  559. GGML_ASSERT(data);
  560. size = n;
  561. }
  562. ~llama_buffer() {
  563. if (data) {
  564. if (fallback) { // NOLINT
  565. free(data);
  566. } else {
  567. llama_host_free(data);
  568. }
  569. }
  570. data = NULL;
  571. }
  572. };
  573. struct llama_file {
  574. // use FILE * so we don't have to re-open the file to mmap
  575. FILE * fp;
  576. size_t size;
  577. llama_file(const char * fname, const char * mode) {
  578. fp = std::fopen(fname, mode);
  579. if (fp == NULL) {
  580. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  581. }
  582. seek(0, SEEK_END);
  583. size = tell();
  584. seek(0, SEEK_SET);
  585. }
  586. size_t tell() const {
  587. #ifdef _WIN32
  588. __int64 ret = _ftelli64(fp);
  589. #else
  590. long ret = std::ftell(fp);
  591. #endif
  592. GGML_ASSERT(ret != -1); // this really shouldn't fail
  593. return (size_t) ret;
  594. }
  595. void seek(size_t offset, int whence) const {
  596. #ifdef _WIN32
  597. int ret = _fseeki64(fp, (__int64) offset, whence);
  598. #else
  599. int ret = std::fseek(fp, (long) offset, whence);
  600. #endif
  601. GGML_ASSERT(ret == 0); // same
  602. }
  603. void read_raw(void * ptr, size_t len) const {
  604. if (len == 0) {
  605. return;
  606. }
  607. errno = 0;
  608. std::size_t ret = std::fread(ptr, len, 1, fp);
  609. if (ferror(fp)) {
  610. throw std::runtime_error(format("read error: %s", strerror(errno)));
  611. }
  612. if (ret != 1) {
  613. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  614. }
  615. }
  616. uint32_t read_u32() const {
  617. uint32_t ret;
  618. read_raw(&ret, sizeof(ret));
  619. return ret;
  620. }
  621. void write_raw(const void * ptr, size_t len) const {
  622. if (len == 0) {
  623. return;
  624. }
  625. errno = 0;
  626. size_t ret = std::fwrite(ptr, len, 1, fp);
  627. if (ret != 1) {
  628. throw std::runtime_error(format("write error: %s", strerror(errno)));
  629. }
  630. }
  631. void write_u32(std::uint32_t val) const {
  632. write_raw(&val, sizeof(val));
  633. }
  634. ~llama_file() {
  635. if (fp) {
  636. std::fclose(fp);
  637. }
  638. }
  639. };
  640. struct llama_mmap {
  641. void * addr;
  642. size_t size;
  643. llama_mmap(const llama_mmap &) = delete;
  644. #ifdef _POSIX_MAPPED_FILES
  645. static constexpr bool SUPPORTED = true;
  646. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  647. size = file->size;
  648. int fd = fileno(file->fp);
  649. int flags = MAP_SHARED;
  650. // prefetch/readahead impairs performance on NUMA systems
  651. if (numa) { prefetch = 0; }
  652. #ifdef __linux__
  653. if (prefetch) { flags |= MAP_POPULATE; }
  654. #endif
  655. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  656. if (addr == MAP_FAILED) {
  657. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  658. }
  659. if (prefetch > 0) {
  660. // Advise the kernel to preload the mapped memory
  661. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  662. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  663. strerror(errno));
  664. }
  665. }
  666. if (numa) {
  667. // advise the kernel not to use readahead
  668. // (because the next page might not belong on the same node)
  669. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  670. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  671. strerror(errno));
  672. }
  673. }
  674. }
  675. ~llama_mmap() {
  676. munmap(addr, size);
  677. }
  678. #elif defined(_WIN32)
  679. static constexpr bool SUPPORTED = true;
  680. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  681. (void) numa;
  682. size = file->size;
  683. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  684. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  685. DWORD error = GetLastError();
  686. if (hMapping == NULL) {
  687. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  688. }
  689. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  690. error = GetLastError();
  691. CloseHandle(hMapping);
  692. if (addr == NULL) {
  693. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  694. }
  695. if (prefetch) {
  696. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  697. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  698. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  699. // may fail on pre-Windows 8 systems
  700. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  701. if (pPrefetchVirtualMemory) {
  702. // advise the kernel to preload the mapped memory
  703. WIN32_MEMORY_RANGE_ENTRY range;
  704. range.VirtualAddress = addr;
  705. range.NumberOfBytes = (SIZE_T)size;
  706. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  707. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  708. llama_format_win_err(GetLastError()).c_str());
  709. }
  710. }
  711. }
  712. }
  713. ~llama_mmap() {
  714. if (!UnmapViewOfFile(addr)) {
  715. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  716. llama_format_win_err(GetLastError()).c_str());
  717. }
  718. }
  719. #else
  720. static constexpr bool SUPPORTED = false;
  721. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  722. (void) file;
  723. (void) prefetch;
  724. (void) numa;
  725. throw std::runtime_error(std::string("mmap not supported"));
  726. }
  727. #endif
  728. };
  729. // Represents some region of memory being locked using mlock or VirtualLock;
  730. // will automatically unlock on destruction.
  731. struct llama_mlock {
  732. void * addr = NULL;
  733. size_t size = 0;
  734. bool failed_already = false;
  735. llama_mlock() {}
  736. llama_mlock(const llama_mlock &) = delete;
  737. ~llama_mlock() {
  738. if (size) {
  739. raw_unlock(addr, size);
  740. }
  741. }
  742. void init(void * ptr) {
  743. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  744. addr = ptr;
  745. }
  746. void grow_to(size_t target_size) {
  747. GGML_ASSERT(addr);
  748. if (failed_already) {
  749. return;
  750. }
  751. size_t granularity = lock_granularity();
  752. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  753. if (target_size > size) {
  754. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  755. size = target_size;
  756. } else {
  757. failed_already = true;
  758. }
  759. }
  760. }
  761. #ifdef _POSIX_MEMLOCK_RANGE
  762. static constexpr bool SUPPORTED = true;
  763. static size_t lock_granularity() {
  764. return (size_t) sysconf(_SC_PAGESIZE);
  765. }
  766. #ifdef __APPLE__
  767. #define MLOCK_SUGGESTION \
  768. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  769. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  770. #else
  771. #define MLOCK_SUGGESTION \
  772. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  773. #endif
  774. bool raw_lock(const void * addr, size_t size) const {
  775. if (!mlock(addr, size)) {
  776. return true;
  777. }
  778. char* errmsg = std::strerror(errno);
  779. bool suggest = (errno == ENOMEM);
  780. // Check if the resource limit is fine after all
  781. struct rlimit lock_limit;
  782. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  783. suggest = false;
  784. }
  785. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  786. suggest = false;
  787. }
  788. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  789. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  790. return false;
  791. }
  792. #undef MLOCK_SUGGESTION
  793. static void raw_unlock(void * addr, size_t size) {
  794. if (munlock(addr, size)) {
  795. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  796. }
  797. }
  798. #elif defined(_WIN32)
  799. static constexpr bool SUPPORTED = true;
  800. static size_t lock_granularity() {
  801. SYSTEM_INFO si;
  802. GetSystemInfo(&si);
  803. return (size_t) si.dwPageSize;
  804. }
  805. bool raw_lock(void * ptr, size_t len) const {
  806. for (int tries = 1; ; tries++) {
  807. if (VirtualLock(ptr, len)) {
  808. return true;
  809. }
  810. if (tries == 2) {
  811. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  812. len, size, llama_format_win_err(GetLastError()).c_str());
  813. return false;
  814. }
  815. // It failed but this was only the first try; increase the working
  816. // set size and try again.
  817. SIZE_T min_ws_size, max_ws_size;
  818. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  819. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  820. llama_format_win_err(GetLastError()).c_str());
  821. return false;
  822. }
  823. // Per MSDN: "The maximum number of pages that a process can lock
  824. // is equal to the number of pages in its minimum working set minus
  825. // a small overhead."
  826. // Hopefully a megabyte is enough overhead:
  827. size_t increment = len + 1048576;
  828. // The minimum must be <= the maximum, so we need to increase both:
  829. min_ws_size += increment;
  830. max_ws_size += increment;
  831. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  832. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  833. llama_format_win_err(GetLastError()).c_str());
  834. return false;
  835. }
  836. }
  837. }
  838. static void raw_unlock(void * ptr, size_t len) {
  839. if (!VirtualUnlock(ptr, len)) {
  840. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  841. llama_format_win_err(GetLastError()).c_str());
  842. }
  843. }
  844. #else
  845. static constexpr bool SUPPORTED = false;
  846. static size_t lock_granularity() {
  847. return (size_t) 65536;
  848. }
  849. bool raw_lock(const void * addr, size_t len) const {
  850. fprintf(stderr, "warning: mlock not supported on this system\n");
  851. return false;
  852. }
  853. static void raw_unlock(const void * addr, size_t len) {}
  854. #endif
  855. };
  856. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  857. static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  858. (void) tensor;
  859. }
  860. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  861. std::vector<char> result(8, 0);
  862. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  863. if (n_tokens < 0) {
  864. result.resize(-n_tokens);
  865. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  866. GGML_ASSERT(check == -n_tokens);
  867. }
  868. else {
  869. result.resize(n_tokens);
  870. }
  871. return std::string(result.data(), result.size());
  872. }
  873. //
  874. // globals
  875. //
  876. struct llama_state {
  877. // We save the log callback globally
  878. ggml_log_callback log_callback = llama_log_callback_default;
  879. void * log_callback_user_data = nullptr;
  880. };
  881. static llama_state g_state;
  882. // available llama models
  883. enum e_model {
  884. MODEL_UNKNOWN,
  885. MODEL_1B,
  886. MODEL_3B,
  887. MODEL_7B,
  888. MODEL_8B,
  889. MODEL_13B,
  890. MODEL_15B,
  891. MODEL_30B,
  892. MODEL_34B,
  893. MODEL_40B,
  894. MODEL_65B,
  895. MODEL_70B,
  896. };
  897. static const size_t kB = 1024;
  898. static const size_t MB = 1024*kB;
  899. static const size_t GB = 1024*MB;
  900. struct llama_hparams {
  901. bool vocab_only;
  902. uint32_t n_vocab;
  903. uint32_t n_ctx_train; // context size the model was trained on
  904. uint32_t n_embd;
  905. uint32_t n_head;
  906. uint32_t n_head_kv;
  907. uint32_t n_layer;
  908. uint32_t n_rot;
  909. uint32_t n_ff;
  910. float f_norm_eps;
  911. float f_norm_rms_eps;
  912. float rope_freq_base_train;
  913. float rope_freq_scale_train;
  914. float f_clamp_kqv;
  915. float f_max_alibi_bias;
  916. bool operator!=(const llama_hparams & other) const {
  917. if (this->vocab_only != other.vocab_only) return true;
  918. if (this->n_vocab != other.n_vocab) return true;
  919. if (this->n_ctx_train != other.n_ctx_train) return true;
  920. if (this->n_embd != other.n_embd) return true;
  921. if (this->n_head != other.n_head) return true;
  922. if (this->n_head_kv != other.n_head_kv) return true;
  923. if (this->n_layer != other.n_layer) return true;
  924. if (this->n_rot != other.n_rot) return true;
  925. if (this->n_ff != other.n_ff) return true;
  926. const float EPSILON = 1e-9;
  927. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  928. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  929. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  930. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  931. return false;
  932. }
  933. uint32_t n_gqa() const {
  934. return n_head/n_head_kv;
  935. }
  936. uint32_t n_embd_head() const {
  937. return n_embd/n_head;
  938. }
  939. uint32_t n_embd_gqa() const {
  940. return n_embd/n_gqa();
  941. }
  942. };
  943. struct llama_cparams {
  944. uint32_t n_ctx; // context size used during inference
  945. uint32_t n_batch;
  946. uint32_t n_threads; // number of threads to use for generation
  947. uint32_t n_threads_batch; // number of threads to use for batch processing
  948. float rope_freq_base;
  949. float rope_freq_scale;
  950. bool mul_mat_q;
  951. };
  952. struct llama_layer {
  953. // normalization
  954. struct ggml_tensor * attn_norm;
  955. struct ggml_tensor * attn_norm_b;
  956. struct ggml_tensor * attn_norm_2;
  957. struct ggml_tensor * attn_norm_2_b;
  958. struct ggml_tensor * attn_q_norm;
  959. struct ggml_tensor * attn_q_norm_b;
  960. struct ggml_tensor * attn_k_norm;
  961. struct ggml_tensor * attn_k_norm_b;
  962. // attention
  963. struct ggml_tensor * wq;
  964. struct ggml_tensor * wk;
  965. struct ggml_tensor * wv;
  966. struct ggml_tensor * wo;
  967. struct ggml_tensor * wqkv;
  968. // attention bias
  969. struct ggml_tensor * bo;
  970. struct ggml_tensor * bqkv;
  971. // normalization
  972. struct ggml_tensor * ffn_norm;
  973. struct ggml_tensor * ffn_norm_b;
  974. // ff
  975. struct ggml_tensor * w1; // ffn_gate
  976. struct ggml_tensor * w2; // ffn_down
  977. struct ggml_tensor * w3; // ffn_up
  978. // ff bias
  979. struct ggml_tensor * b2; // ffn_down
  980. struct ggml_tensor * b3; // ffn_up
  981. };
  982. struct llama_kv_cell {
  983. llama_pos pos = -1;
  984. llama_pos delta = 0;
  985. std::set<llama_seq_id> seq_id;
  986. bool has_seq_id(const llama_seq_id & id) const {
  987. return seq_id.find(id) != seq_id.end();
  988. }
  989. };
  990. // ring-buffer of cached KV data
  991. struct llama_kv_cache {
  992. bool has_shift = false;
  993. // Note: The value of head isn't only used to optimize searching
  994. // for a free KV slot. llama_decode_internal also uses it, so it
  995. // cannot be freely changed after a slot has been allocated.
  996. uint32_t head = 0;
  997. uint32_t size = 0;
  998. // computed before each graph build
  999. uint32_t n = 0;
  1000. std::vector<llama_kv_cell> cells;
  1001. struct ggml_tensor * k = NULL;
  1002. struct ggml_tensor * v = NULL;
  1003. struct ggml_context * ctx = NULL;
  1004. llama_buffer buf;
  1005. ~llama_kv_cache() {
  1006. if (ctx) {
  1007. ggml_free(ctx);
  1008. }
  1009. #ifdef GGML_USE_CUBLAS
  1010. ggml_cuda_free_data(k);
  1011. ggml_cuda_free_data(v);
  1012. #endif // GGML_USE_CUBLAS
  1013. }
  1014. };
  1015. struct llama_vocab {
  1016. using id = int32_t;
  1017. using token = std::string;
  1018. using ttype = llama_token_type;
  1019. struct token_data {
  1020. token text;
  1021. float score;
  1022. ttype type;
  1023. };
  1024. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1025. std::unordered_map<token, id> token_to_id;
  1026. std::vector<token_data> id_to_token;
  1027. std::unordered_map<token, id> special_tokens_cache;
  1028. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1029. // default LLaMA special tokens
  1030. id special_bos_id = 1;
  1031. id special_eos_id = 2;
  1032. id special_unk_id = 0;
  1033. id special_sep_id = -1;
  1034. id special_pad_id = -1;
  1035. id linefeed_id = 13;
  1036. id special_prefix_id = 32007;
  1037. id special_middle_id = 32009;
  1038. id special_suffix_id = 32008;
  1039. id special_eot_id = 32010;
  1040. int find_bpe_rank(std::string token_left, std::string token_right) const {
  1041. GGML_ASSERT(token_left.find(" ") == std::string::npos);
  1042. GGML_ASSERT(token_left.find("\n") == std::string::npos);
  1043. GGML_ASSERT(token_right.find(" ") == std::string::npos);
  1044. GGML_ASSERT(token_right.find("\n") == std::string::npos);
  1045. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1046. if (it == bpe_ranks.end()) {
  1047. return -1;
  1048. }
  1049. return it->second;
  1050. }
  1051. };
  1052. struct llama_model {
  1053. e_model type = MODEL_UNKNOWN;
  1054. llm_arch arch = LLM_ARCH_UNKNOWN;
  1055. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1056. std::string name = "n/a";
  1057. llama_hparams hparams = {};
  1058. llama_vocab vocab;
  1059. struct ggml_tensor * tok_embeddings;
  1060. struct ggml_tensor * pos_embeddings;
  1061. struct ggml_tensor * tok_norm;
  1062. struct ggml_tensor * tok_norm_b;
  1063. struct ggml_tensor * output_norm;
  1064. struct ggml_tensor * output_norm_b;
  1065. struct ggml_tensor * output;
  1066. std::vector<llama_layer> layers;
  1067. int n_gpu_layers;
  1068. // context
  1069. struct ggml_context * ctx = NULL;
  1070. // the model memory buffer
  1071. llama_buffer buf;
  1072. // model memory mapped file
  1073. std::unique_ptr<llama_mmap> mapping;
  1074. // objects representing data potentially being locked in memory
  1075. llama_mlock mlock_buf;
  1076. llama_mlock mlock_mmap;
  1077. // for quantize-stats only
  1078. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1079. int64_t t_load_us = 0;
  1080. int64_t t_start_us = 0;
  1081. ~llama_model() {
  1082. if (ctx) {
  1083. ggml_free(ctx);
  1084. }
  1085. #ifdef GGML_USE_CUBLAS
  1086. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1087. ggml_cuda_free_data(tensors_by_name[i].second);
  1088. }
  1089. ggml_cuda_free_scratch();
  1090. #elif defined(GGML_USE_CLBLAST)
  1091. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1092. ggml_cl_free_data(tensors_by_name[i].second);
  1093. }
  1094. #endif
  1095. }
  1096. };
  1097. struct llama_context {
  1098. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1099. ~llama_context() {
  1100. #ifdef GGML_USE_METAL
  1101. if (ctx_metal) {
  1102. ggml_metal_free(ctx_metal);
  1103. }
  1104. #endif
  1105. if (alloc) {
  1106. ggml_allocr_free(alloc);
  1107. }
  1108. }
  1109. llama_cparams cparams;
  1110. const llama_model & model;
  1111. // key + value cache for the self attention
  1112. struct llama_kv_cache kv_self;
  1113. std::mt19937 rng;
  1114. bool has_evaluated_once = false;
  1115. int64_t t_start_us;
  1116. int64_t t_load_us;
  1117. int64_t t_sample_us = 0;
  1118. int64_t t_p_eval_us = 0;
  1119. int64_t t_eval_us = 0;
  1120. int32_t n_sample = 0; // number of tokens sampled
  1121. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1122. int32_t n_eval = 0; // number of eval calls
  1123. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1124. std::vector<float> logits;
  1125. bool logits_all = false;
  1126. // input embedding (1-dimensional array: [n_embd])
  1127. std::vector<float> embedding;
  1128. // reusable buffer for `struct ggml_graph_plan.work_data`
  1129. std::vector<uint8_t> work_buffer;
  1130. // memory buffers used to evaluate the model
  1131. llama_buffer buf_compute;
  1132. llama_buffer buf_alloc;
  1133. ggml_allocr * alloc = NULL;
  1134. #ifdef GGML_USE_METAL
  1135. ggml_metal_context * ctx_metal = NULL;
  1136. #endif
  1137. #ifdef GGML_USE_MPI
  1138. ggml_mpi_context * ctx_mpi = NULL;
  1139. #endif
  1140. };
  1141. //
  1142. // kv cache helpers
  1143. //
  1144. static bool llama_kv_cache_init(
  1145. const struct llama_hparams & hparams,
  1146. struct llama_kv_cache & cache,
  1147. ggml_type wtype,
  1148. uint32_t n_ctx,
  1149. int n_gpu_layers) {
  1150. const uint32_t n_embd = hparams.n_embd_gqa();
  1151. const uint32_t n_layer = hparams.n_layer;
  1152. const int64_t n_mem = n_layer*n_ctx;
  1153. const int64_t n_elements = n_embd*n_mem;
  1154. cache.has_shift = false;
  1155. cache.head = 0;
  1156. cache.size = n_ctx;
  1157. cache.cells.clear();
  1158. cache.cells.resize(n_ctx);
  1159. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
  1160. memset(cache.buf.data, 0, cache.buf.size);
  1161. struct ggml_init_params params;
  1162. params.mem_size = cache.buf.size;
  1163. params.mem_buffer = cache.buf.data;
  1164. params.no_alloc = false;
  1165. cache.ctx = ggml_init(params);
  1166. if (!cache.ctx) {
  1167. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1168. return false;
  1169. }
  1170. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1171. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1172. ggml_set_name(cache.k, "cache_k");
  1173. ggml_set_name(cache.v, "cache_v");
  1174. (void) n_gpu_layers;
  1175. #ifdef GGML_USE_CUBLAS
  1176. size_t vram_kv_cache = 0;
  1177. if (n_gpu_layers > (int)n_layer + 1) {
  1178. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1179. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1180. vram_kv_cache += ggml_nbytes(cache.v);
  1181. }
  1182. if (n_gpu_layers > (int)n_layer + 2) {
  1183. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1184. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1185. vram_kv_cache += ggml_nbytes(cache.k);
  1186. }
  1187. if (vram_kv_cache > 0) {
  1188. LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
  1189. }
  1190. #endif // GGML_USE_CUBLAS
  1191. return true;
  1192. }
  1193. // find an empty slot of size "n_tokens" in the cache
  1194. // updates the cache head
  1195. // Note: On success, it's important that cache.head points
  1196. // to the first cell of the slot.
  1197. static bool llama_kv_cache_find_slot(
  1198. struct llama_kv_cache & cache,
  1199. const struct llama_batch & batch) {
  1200. const uint32_t n_ctx = cache.size;
  1201. const uint32_t n_tokens = batch.n_tokens;
  1202. if (n_tokens > n_ctx) {
  1203. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1204. return false;
  1205. }
  1206. uint32_t n_tested = 0;
  1207. while (true) {
  1208. if (cache.head + n_tokens > n_ctx) {
  1209. n_tested += n_ctx - cache.head;
  1210. cache.head = 0;
  1211. continue;
  1212. }
  1213. bool found = true;
  1214. for (uint32_t i = 0; i < n_tokens; i++) {
  1215. if (cache.cells[cache.head + i].pos >= 0) {
  1216. found = false;
  1217. cache.head += i + 1;
  1218. n_tested += i + 1;
  1219. break;
  1220. }
  1221. }
  1222. if (found) {
  1223. break;
  1224. }
  1225. if (n_tested >= n_ctx) {
  1226. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1227. return false;
  1228. }
  1229. }
  1230. for (uint32_t i = 0; i < n_tokens; i++) {
  1231. cache.cells[cache.head + i].pos = batch.pos[i];
  1232. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  1233. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  1234. }
  1235. }
  1236. return true;
  1237. }
  1238. // find how many cells are currently in use
  1239. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1240. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1241. if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
  1242. return i + 1;
  1243. }
  1244. }
  1245. return 0;
  1246. }
  1247. static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
  1248. if (c0 < 0) c0 = 0;
  1249. if (c1 < 0) c1 = cache.size;
  1250. for (int32_t i = c0; i < c1; ++i) {
  1251. cache.cells[i].pos = -1;
  1252. cache.cells[i].seq_id.clear();
  1253. }
  1254. // Searching for a free slot can start here since we know it will be empty.
  1255. cache.head = uint32_t(c0);
  1256. }
  1257. static void llama_kv_cache_seq_rm(
  1258. struct llama_kv_cache & cache,
  1259. llama_seq_id seq_id,
  1260. llama_pos p0,
  1261. llama_pos p1) {
  1262. uint32_t new_head = cache.size;
  1263. if (p0 < 0) p0 = 0;
  1264. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1265. for (uint32_t i = 0; i < cache.size; ++i) {
  1266. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1267. cache.cells[i].seq_id.erase(seq_id);
  1268. if (cache.cells[i].seq_id.empty()) {
  1269. cache.cells[i].pos = -1;
  1270. if (new_head == cache.size) new_head = i;
  1271. }
  1272. }
  1273. }
  1274. // If we freed up a slot, set head to it so searching can start there.
  1275. if (new_head != cache.size) cache.head = new_head;
  1276. }
  1277. static void llama_kv_cache_seq_cp(
  1278. struct llama_kv_cache & cache,
  1279. llama_seq_id seq_id_src,
  1280. llama_seq_id seq_id_dst,
  1281. llama_pos p0,
  1282. llama_pos p1) {
  1283. if (p0 < 0) p0 = 0;
  1284. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1285. cache.head = 0;
  1286. for (uint32_t i = 0; i < cache.size; ++i) {
  1287. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1288. cache.cells[i].seq_id.insert(seq_id_dst);
  1289. }
  1290. }
  1291. }
  1292. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1293. uint32_t new_head = cache.size;
  1294. for (uint32_t i = 0; i < cache.size; ++i) {
  1295. if (!cache.cells[i].has_seq_id(seq_id)) {
  1296. cache.cells[i].pos = -1;
  1297. cache.cells[i].seq_id.clear();
  1298. if (new_head == cache.size) new_head = i;
  1299. } else {
  1300. cache.cells[i].seq_id.clear();
  1301. cache.cells[i].seq_id.insert(seq_id);
  1302. }
  1303. }
  1304. // If we freed up a slot, set head to it so searching can start there.
  1305. if (new_head != cache.size) cache.head = new_head;
  1306. }
  1307. static void llama_kv_cache_seq_shift(
  1308. struct llama_kv_cache & cache,
  1309. llama_seq_id seq_id,
  1310. llama_pos p0,
  1311. llama_pos p1,
  1312. llama_pos delta) {
  1313. uint32_t new_head = cache.size;
  1314. if (p0 < 0) p0 = 0;
  1315. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1316. for (uint32_t i = 0; i < cache.size; ++i) {
  1317. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1318. cache.cells[i].pos += delta;
  1319. if (cache.cells[i].pos < 0) {
  1320. cache.cells[i].pos = -1;
  1321. cache.cells[i].seq_id.clear();
  1322. if (new_head == cache.size) new_head = i;
  1323. } else {
  1324. cache.has_shift = true;
  1325. cache.cells[i].delta = delta;
  1326. }
  1327. }
  1328. }
  1329. // If we freed up a slot, set head to it so searching can start there.
  1330. // Otherwise we just start the next search from the beginning.
  1331. cache.head = new_head != cache.size ? new_head : 0;
  1332. }
  1333. //
  1334. // model loading and saving
  1335. //
  1336. enum llama_fver {
  1337. GGUF_FILE_VERSION_V1 = 1,
  1338. GGUF_FILE_VERSION_V2 = 2,
  1339. };
  1340. static const char * llama_file_version_name(llama_fver version) {
  1341. switch (version) {
  1342. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1343. case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
  1344. }
  1345. return "unknown";
  1346. }
  1347. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1348. char buf[256];
  1349. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1350. for (size_t i = 1; i < ne.size(); i++) {
  1351. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1352. }
  1353. return buf;
  1354. }
  1355. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1356. char buf[256];
  1357. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1358. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1359. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1360. }
  1361. return buf;
  1362. }
  1363. struct llama_model_loader {
  1364. int n_kv = 0;
  1365. int n_tensors = 0;
  1366. int n_created = 0;
  1367. int64_t n_elements = 0;
  1368. size_t n_bytes = 0;
  1369. bool use_mmap = false;
  1370. llama_file file;
  1371. llama_ftype ftype;
  1372. llama_fver fver;
  1373. std::unique_ptr<llama_mmap> mapping;
  1374. struct gguf_context * ctx_gguf = NULL;
  1375. struct ggml_context * ctx_meta = NULL;
  1376. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1377. struct gguf_init_params params = {
  1378. /*.no_alloc = */ true,
  1379. /*.ctx = */ &ctx_meta,
  1380. };
  1381. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1382. if (!ctx_gguf) {
  1383. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1384. }
  1385. n_kv = gguf_get_n_kv(ctx_gguf);
  1386. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1387. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1388. for (int i = 0; i < n_tensors; i++) {
  1389. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1390. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1391. n_elements += ggml_nelements(t);
  1392. n_bytes += ggml_nbytes(t);
  1393. }
  1394. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1395. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1396. // determine file type based on the number of tensors for each quantization and print meta data
  1397. // TODO: make optional
  1398. {
  1399. std::map<enum ggml_type, uint32_t> n_type;
  1400. uint32_t n_type_max = 0;
  1401. enum ggml_type type_max = GGML_TYPE_F32;
  1402. for (int i = 0; i < n_tensors; i++) {
  1403. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1404. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1405. n_type[meta->type]++;
  1406. if (n_type_max < n_type[meta->type]) {
  1407. n_type_max = n_type[meta->type];
  1408. type_max = meta->type;
  1409. }
  1410. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1411. }
  1412. switch (type_max) {
  1413. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1414. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1415. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1416. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1417. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1418. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1419. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1420. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1421. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1422. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1423. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1424. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1425. default:
  1426. {
  1427. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1428. ftype = LLAMA_FTYPE_ALL_F32;
  1429. } break;
  1430. }
  1431. // this is a way to mark that we have "guessed" the file type
  1432. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1433. {
  1434. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1435. if (kid >= 0) {
  1436. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1437. }
  1438. }
  1439. for (int i = 0; i < n_kv; i++) {
  1440. const char * name = gguf_get_key(ctx_gguf, i);
  1441. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1442. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1443. }
  1444. // print type counts
  1445. for (auto & kv : n_type) {
  1446. if (kv.second == 0) {
  1447. continue;
  1448. }
  1449. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1450. }
  1451. }
  1452. if (!llama_mmap::SUPPORTED) {
  1453. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1454. use_mmap = false;
  1455. }
  1456. this->use_mmap = use_mmap;
  1457. }
  1458. ~llama_model_loader() {
  1459. if (ctx_gguf) {
  1460. gguf_free(ctx_gguf);
  1461. }
  1462. if (ctx_meta) {
  1463. ggml_free(ctx_meta);
  1464. }
  1465. }
  1466. std::string get_arch_name() const {
  1467. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1468. std::string arch_name;
  1469. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1470. return arch_name;
  1471. }
  1472. enum llm_arch get_arch() const {
  1473. const std::string arch_name = get_arch_name();
  1474. return llm_arch_from_string(arch_name);
  1475. }
  1476. const char * get_tensor_name(int i) const {
  1477. return gguf_get_tensor_name(ctx_gguf, i);
  1478. }
  1479. struct ggml_tensor * get_tensor_meta(int i) const {
  1480. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1481. }
  1482. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1483. ctx_size_p = 0;
  1484. mmapped_size_p = 0;
  1485. for (int i = 0; i < n_tensors; i++) {
  1486. struct ggml_tensor * meta = get_tensor_meta(i);
  1487. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1488. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1489. }
  1490. }
  1491. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) {
  1492. if (backend != GGML_BACKEND_CPU) {
  1493. ggml_set_no_alloc(ctx, true);
  1494. }
  1495. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1496. tensor->backend = backend; // TODO: ggml_set_backend
  1497. ggml_set_name(tensor, ggml_get_name(meta));
  1498. if (backend != GGML_BACKEND_CPU) {
  1499. ggml_set_no_alloc(ctx, use_mmap);
  1500. }
  1501. n_created++;
  1502. return tensor;
  1503. }
  1504. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
  1505. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1506. if (cur == NULL) {
  1507. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1508. }
  1509. {
  1510. bool is_ok = true;
  1511. for (size_t i = 0; i < ne.size(); ++i) {
  1512. if (ne[i] != cur->ne[i]) {
  1513. is_ok = false;
  1514. break;
  1515. }
  1516. }
  1517. if (!is_ok) {
  1518. throw std::runtime_error(
  1519. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1520. __func__, name.c_str(),
  1521. llama_format_tensor_shape(ne).c_str(),
  1522. llama_format_tensor_shape(cur).c_str()));
  1523. }
  1524. }
  1525. return create_tensor_for(ctx, cur, backend);
  1526. }
  1527. void done_getting_tensors() const {
  1528. if (n_created != n_tensors) {
  1529. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1530. }
  1531. }
  1532. size_t file_offset(const char * name) const {
  1533. const int idx = gguf_find_tensor(ctx_gguf, name);
  1534. if (idx < 0) {
  1535. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1536. }
  1537. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1538. }
  1539. void load_data_for(struct ggml_tensor * cur) const {
  1540. const size_t offs = file_offset(ggml_get_name(cur));
  1541. if (use_mmap) {
  1542. cur->data = (uint8_t *) mapping->addr + offs;
  1543. } else {
  1544. file.seek(offs, SEEK_SET);
  1545. file.read_raw(cur->data, ggml_nbytes(cur));
  1546. }
  1547. }
  1548. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1549. size_t size_data = 0;
  1550. size_t size_lock = 0;
  1551. size_t size_pref = 0; // prefetch
  1552. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1553. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1554. size_data += ggml_nbytes(cur);
  1555. if (cur->backend == GGML_BACKEND_CPU) {
  1556. size_pref += ggml_nbytes(cur);
  1557. }
  1558. }
  1559. if (use_mmap) {
  1560. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1561. if (lmlock) {
  1562. lmlock->init(mapping->addr);
  1563. }
  1564. }
  1565. size_t done_size = 0;
  1566. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1567. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1568. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1569. if (progress_callback) {
  1570. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1571. }
  1572. // allocate temp buffer if not using mmap
  1573. if (!use_mmap && cur->data == NULL) {
  1574. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1575. #ifdef GGML_USE_CPU_HBM
  1576. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1577. #else
  1578. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1579. #endif
  1580. }
  1581. load_data_for(cur);
  1582. switch (cur->backend) {
  1583. case GGML_BACKEND_CPU:
  1584. if (use_mmap && lmlock) {
  1585. size_lock += ggml_nbytes(cur);
  1586. lmlock->grow_to(size_lock);
  1587. }
  1588. break;
  1589. #ifdef GGML_USE_CUBLAS
  1590. case GGML_BACKEND_GPU:
  1591. case GGML_BACKEND_GPU_SPLIT:
  1592. // old code:
  1593. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1594. // TODO: test if this works !!
  1595. ggml_cuda_transform_tensor(cur->data, cur);
  1596. if (!use_mmap) {
  1597. free(cur->data);
  1598. }
  1599. break;
  1600. #elif defined(GGML_USE_CLBLAST)
  1601. case GGML_BACKEND_GPU:
  1602. ggml_cl_transform_tensor(cur->data, cur);
  1603. if (!use_mmap) {
  1604. free(cur->data);
  1605. }
  1606. break;
  1607. #endif
  1608. default:
  1609. continue;
  1610. }
  1611. done_size += ggml_nbytes(cur);
  1612. }
  1613. }
  1614. };
  1615. //
  1616. // load LLaMA models
  1617. //
  1618. static std::string llama_model_arch_name(llm_arch arch) {
  1619. auto it = LLM_ARCH_NAMES.find(arch);
  1620. if (it == LLM_ARCH_NAMES.end()) {
  1621. return "unknown";
  1622. }
  1623. return it->second;
  1624. }
  1625. static std::string llama_model_ftype_name(llama_ftype ftype) {
  1626. if (ftype & LLAMA_FTYPE_GUESSED) {
  1627. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1628. }
  1629. switch (ftype) {
  1630. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1631. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1632. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1633. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1634. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1635. return "mostly Q4_1, some F16";
  1636. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1637. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1638. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1639. // K-quants
  1640. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1641. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1642. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1643. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1644. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1645. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1646. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1647. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1648. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1649. default: return "unknown, may not work";
  1650. }
  1651. }
  1652. static const char * llama_model_type_name(e_model type) {
  1653. switch (type) {
  1654. case MODEL_1B: return "1B";
  1655. case MODEL_3B: return "3B";
  1656. case MODEL_7B: return "7B";
  1657. case MODEL_8B: return "8B";
  1658. case MODEL_13B: return "13B";
  1659. case MODEL_15B: return "15B";
  1660. case MODEL_30B: return "30B";
  1661. case MODEL_34B: return "34B";
  1662. case MODEL_40B: return "40B";
  1663. case MODEL_65B: return "65B";
  1664. case MODEL_70B: return "70B";
  1665. default: return "?B";
  1666. }
  1667. }
  1668. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1669. model.arch = ml.get_arch();
  1670. if (model.arch == LLM_ARCH_UNKNOWN) {
  1671. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1672. }
  1673. }
  1674. static void llm_load_hparams(
  1675. llama_model_loader & ml,
  1676. llama_model & model) {
  1677. struct gguf_context * ctx = ml.ctx_gguf;
  1678. const auto kv = LLM_KV(model.arch);
  1679. auto & hparams = model.hparams;
  1680. // get general kv
  1681. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1682. // get hparams kv
  1683. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1684. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1685. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1686. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1687. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1688. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1689. // n_head_kv is optional, default to n_head
  1690. hparams.n_head_kv = hparams.n_head;
  1691. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1692. // rope_freq_base (optional)
  1693. hparams.rope_freq_base_train = 10000.0f;
  1694. GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1695. // rope_freq_scale (inverse of the kv) is optional
  1696. float ropescale = 1.0f;
  1697. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1698. hparams.rope_freq_scale_train = 1.0f/ropescale;
  1699. // sanity check for n_rot (optional)
  1700. {
  1701. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1702. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1703. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1704. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1705. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1706. }
  1707. }
  1708. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1709. // gpt-j n_rot = rotary_dim
  1710. }
  1711. // arch-specific KVs
  1712. switch (model.arch) {
  1713. case LLM_ARCH_LLAMA:
  1714. {
  1715. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1716. switch (hparams.n_layer) {
  1717. case 26: model.type = e_model::MODEL_3B; break;
  1718. case 32: model.type = e_model::MODEL_7B; break;
  1719. case 40: model.type = e_model::MODEL_13B; break;
  1720. case 48: model.type = e_model::MODEL_34B; break;
  1721. case 60: model.type = e_model::MODEL_30B; break;
  1722. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1723. default: model.type = e_model::MODEL_UNKNOWN;
  1724. }
  1725. } break;
  1726. case LLM_ARCH_FALCON:
  1727. {
  1728. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1729. switch (hparams.n_layer) {
  1730. case 32: model.type = e_model::MODEL_7B; break;
  1731. case 60: model.type = e_model::MODEL_40B; break;
  1732. default: model.type = e_model::MODEL_UNKNOWN;
  1733. }
  1734. } break;
  1735. case LLM_ARCH_BAICHUAN:
  1736. {
  1737. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1738. switch (hparams.n_layer) {
  1739. case 32: model.type = e_model::MODEL_7B; break;
  1740. case 40: model.type = e_model::MODEL_13B; break;
  1741. default: model.type = e_model::MODEL_UNKNOWN;
  1742. }
  1743. } break;
  1744. case LLM_ARCH_STARCODER:
  1745. {
  1746. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1747. switch (hparams.n_layer) {
  1748. case 24: model.type = e_model::MODEL_1B; break;
  1749. case 36: model.type = e_model::MODEL_3B; break;
  1750. case 42: model.type = e_model::MODEL_7B; break;
  1751. case 40: model.type = e_model::MODEL_15B; break;
  1752. default: model.type = e_model::MODEL_UNKNOWN;
  1753. }
  1754. } break;
  1755. case LLM_ARCH_PERSIMMON:
  1756. {
  1757. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1758. switch (hparams.n_layer) {
  1759. case 36: model.type = e_model::MODEL_8B; break;
  1760. default: model.type = e_model::MODEL_UNKNOWN;
  1761. }
  1762. } break;
  1763. case LLM_ARCH_REFACT:
  1764. {
  1765. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1766. switch (hparams.n_layer) {
  1767. case 32: model.type = e_model::MODEL_1B; break;
  1768. default: model.type = e_model::MODEL_UNKNOWN;
  1769. }
  1770. } break;
  1771. case LLM_ARCH_BLOOM:
  1772. {
  1773. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1774. switch (hparams.n_layer) {
  1775. case 24: model.type = e_model::MODEL_1B; break;
  1776. case 30:
  1777. switch (hparams.n_embd) {
  1778. case 2560: model.type = e_model::MODEL_3B; break;
  1779. case 4096: model.type = e_model::MODEL_7B; break;
  1780. } break;
  1781. }
  1782. } break;
  1783. case LLM_ARCH_MPT:
  1784. {
  1785. hparams.f_clamp_kqv = 0.0f;
  1786. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1787. GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
  1788. GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
  1789. switch (hparams.n_layer) {
  1790. case 32: model.type = e_model::MODEL_7B; break;
  1791. case 48: model.type = e_model::MODEL_30B; break;
  1792. default: model.type = e_model::MODEL_UNKNOWN;
  1793. }
  1794. } break;
  1795. default: (void)0;
  1796. }
  1797. model.ftype = ml.ftype;
  1798. }
  1799. // TODO: This should probably be in llama.h
  1800. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  1801. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1802. static void llm_load_vocab(
  1803. llama_model_loader & ml,
  1804. llama_model & model) {
  1805. auto & vocab = model.vocab;
  1806. struct gguf_context * ctx = ml.ctx_gguf;
  1807. const auto kv = LLM_KV(model.arch);
  1808. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1809. if (token_idx == -1) {
  1810. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1811. }
  1812. const float * scores = nullptr;
  1813. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1814. if (score_idx != -1) {
  1815. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1816. }
  1817. const int * toktypes = nullptr;
  1818. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1819. if (toktype_idx != -1) {
  1820. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1821. }
  1822. // determine vocab type
  1823. {
  1824. std::string tokenizer_name;
  1825. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1826. if (tokenizer_name == "llama") {
  1827. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1828. // default special tokens
  1829. vocab.special_bos_id = 1;
  1830. vocab.special_eos_id = 2;
  1831. vocab.special_unk_id = 0;
  1832. vocab.special_sep_id = -1;
  1833. vocab.special_pad_id = -1;
  1834. } else if (tokenizer_name == "gpt2") {
  1835. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1836. // read bpe merges and populate bpe ranks
  1837. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1838. if (merges_keyidx == -1) {
  1839. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1840. }
  1841. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1842. for (int i = 0; i < n_merges; i++) {
  1843. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1844. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1845. std::string first;
  1846. std::string second;
  1847. const size_t pos = word.find(' ', 1);
  1848. if (pos != std::string::npos) {
  1849. first = word.substr(0, pos);
  1850. second = word.substr(pos + 1);
  1851. }
  1852. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1853. }
  1854. // default special tokens
  1855. vocab.special_bos_id = 11;
  1856. vocab.special_eos_id = 11;
  1857. vocab.special_unk_id = -1;
  1858. vocab.special_sep_id = -1;
  1859. vocab.special_pad_id = -1;
  1860. } else {
  1861. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1862. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1863. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1864. }
  1865. }
  1866. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1867. vocab.id_to_token.resize(n_vocab);
  1868. for (uint32_t i = 0; i < n_vocab; i++) {
  1869. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1870. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1871. vocab.token_to_id[word] = i;
  1872. auto & token_data = vocab.id_to_token[i];
  1873. token_data.text = std::move(word);
  1874. token_data.score = scores ? scores[i] : 0.0f;
  1875. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  1876. }
  1877. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  1878. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1879. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1880. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1881. } else {
  1882. const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
  1883. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1884. vocab.linefeed_id = ids[0];
  1885. }
  1886. // special tokens
  1887. {
  1888. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  1889. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  1890. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  1891. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  1892. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  1893. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  1894. };
  1895. for (const auto & it : special_token_types) {
  1896. const std::string & key = kv(std::get<0>(it));
  1897. int32_t & id = std::get<1>(it), old_id = id;
  1898. GGUF_GET_KEY(ctx, id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, key);
  1899. // Must be >= -1 and < vocab size. Since the key is unsigned, -1
  1900. // can only come from the default value, so there's no point in
  1901. // validating that.
  1902. if (size_t(id + 1) > vocab.id_to_token.size()) {
  1903. LLAMA_LOG_WARN("%s: bad special token: '%s' = %d, using default id %d\n",
  1904. __func__, key.c_str(), id, old_id);
  1905. id = old_id;
  1906. }
  1907. }
  1908. }
  1909. // build special tokens cache
  1910. {
  1911. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  1912. // and will always be correctly labeled in 'added_tokens.json' etc.
  1913. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  1914. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  1915. // are special tokens.
  1916. // From testing, this appears to corelate 1:1 with special tokens.
  1917. //
  1918. // Counting special tokens and verifying in only one direction
  1919. // is sufficient to detect difference in those two sets.
  1920. //
  1921. uint32_t special_tokens_count_by_type = 0;
  1922. uint32_t special_tokens_count_from_verification = 0;
  1923. bool special_tokens_definition_mismatch = false;
  1924. for (const auto & t : vocab.token_to_id) {
  1925. const auto & token = t.first;
  1926. const auto & id = t.second;
  1927. // Count all non-normal tokens in the vocab while iterating
  1928. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  1929. special_tokens_count_by_type++;
  1930. }
  1931. // Skip single character tokens
  1932. if (token.length() > 1) {
  1933. bool is_tokenizable = false;
  1934. // Split token string representation in two, in all possible ways
  1935. // and check if both halves can be matched to a valid token
  1936. for (unsigned i = 1; i < token.length();) {
  1937. const auto left = token.substr(0, i);
  1938. const auto right = token.substr(i);
  1939. // check if we didnt partition in the middle of a utf sequence
  1940. auto utf = utf8_len(left.at(left.length() - 1));
  1941. if (utf == 1) {
  1942. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  1943. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  1944. is_tokenizable = true;
  1945. break;
  1946. }
  1947. i++;
  1948. } else {
  1949. // skip over the rest of multibyte utf sequence
  1950. i += utf - 1;
  1951. }
  1952. }
  1953. if (!is_tokenizable) {
  1954. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  1955. // it's faster to re-filter them here, since there are way less candidates now
  1956. // Calculate a total "utf" length of a token string representation
  1957. size_t utf8_str_len = 0;
  1958. for (unsigned i = 0; i < token.length();) {
  1959. utf8_str_len++;
  1960. i += utf8_len(token.at(i));
  1961. }
  1962. // And skip the ones which are one character
  1963. if (utf8_str_len > 1) {
  1964. // At this point what we have left are special tokens only
  1965. vocab.special_tokens_cache[token] = id;
  1966. // Count manually found special tokens
  1967. special_tokens_count_from_verification++;
  1968. // If this manually found special token is not marked as such, flag a mismatch
  1969. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  1970. special_tokens_definition_mismatch = true;
  1971. }
  1972. }
  1973. }
  1974. }
  1975. }
  1976. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  1977. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  1978. __func__,
  1979. special_tokens_count_from_verification, vocab.id_to_token.size(),
  1980. special_tokens_count_by_type, vocab.id_to_token.size()
  1981. );
  1982. } else {
  1983. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  1984. __func__,
  1985. special_tokens_count_from_verification, vocab.id_to_token.size()
  1986. );
  1987. }
  1988. }
  1989. }
  1990. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  1991. const auto & hparams = model.hparams;
  1992. const auto & vocab = model.vocab;
  1993. // hparams
  1994. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  1995. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  1996. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  1997. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  1998. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  1999. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  2000. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  2001. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  2002. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  2003. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  2004. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  2005. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  2006. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  2007. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  2008. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  2009. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  2010. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  2011. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  2012. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  2013. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  2014. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  2015. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  2016. if (ml.n_bytes < GB) {
  2017. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2018. } else {
  2019. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2020. }
  2021. // general kv
  2022. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  2023. // special tokens
  2024. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  2025. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  2026. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  2027. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  2028. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  2029. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  2030. }
  2031. static void llm_load_tensors(
  2032. llama_model_loader & ml,
  2033. llama_model & model,
  2034. int n_gpu_layers,
  2035. int main_gpu,
  2036. const float * tensor_split,
  2037. bool use_mlock,
  2038. llama_progress_callback progress_callback,
  2039. void * progress_callback_user_data) {
  2040. model.t_start_us = ggml_time_us();
  2041. auto & ctx = model.ctx;
  2042. auto & hparams = model.hparams;
  2043. model.n_gpu_layers = n_gpu_layers;
  2044. size_t ctx_size;
  2045. size_t mmapped_size;
  2046. ml.calc_sizes(ctx_size, mmapped_size);
  2047. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  2048. // create the ggml context
  2049. {
  2050. model.buf.resize(ctx_size);
  2051. if (use_mlock) {
  2052. model.mlock_buf.init (model.buf.data);
  2053. model.mlock_buf.grow_to(model.buf.size);
  2054. }
  2055. struct ggml_init_params params = {
  2056. /*.mem_size =*/ model.buf.size,
  2057. /*.mem_buffer =*/ model.buf.data,
  2058. /*.no_alloc =*/ ml.use_mmap,
  2059. };
  2060. model.ctx = ggml_init(params);
  2061. if (!model.ctx) {
  2062. throw std::runtime_error(format("ggml_init() failed"));
  2063. }
  2064. }
  2065. (void) main_gpu;
  2066. #ifdef GGML_USE_CUBLAS
  2067. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  2068. ggml_cuda_set_main_device(main_gpu);
  2069. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2070. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  2071. #elif defined(GGML_USE_CLBLAST)
  2072. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  2073. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2074. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  2075. #else
  2076. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  2077. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  2078. #endif
  2079. // prepare memory for the weights
  2080. size_t vram_weights = 0;
  2081. {
  2082. const int64_t n_embd = hparams.n_embd;
  2083. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2084. const int64_t n_layer = hparams.n_layer;
  2085. const int64_t n_vocab = hparams.n_vocab;
  2086. const auto tn = LLM_TN(model.arch);
  2087. switch (model.arch) {
  2088. case LLM_ARCH_LLAMA:
  2089. case LLM_ARCH_REFACT:
  2090. {
  2091. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2092. // output
  2093. {
  2094. ggml_backend_type backend_norm;
  2095. ggml_backend_type backend_output;
  2096. if (n_gpu_layers > int(n_layer)) {
  2097. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2098. // on Windows however this is detrimental unless everything is on the GPU
  2099. #ifndef _WIN32
  2100. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2101. #else
  2102. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2103. #endif // _WIN32
  2104. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2105. } else {
  2106. backend_norm = GGML_BACKEND_CPU;
  2107. backend_output = GGML_BACKEND_CPU;
  2108. }
  2109. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2110. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2111. if (backend_norm == GGML_BACKEND_GPU) {
  2112. vram_weights += ggml_nbytes(model.output_norm);
  2113. }
  2114. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2115. vram_weights += ggml_nbytes(model.output);
  2116. }
  2117. }
  2118. const uint32_t n_ff = hparams.n_ff;
  2119. const int i_gpu_start = n_layer - n_gpu_layers;
  2120. model.layers.resize(n_layer);
  2121. for (uint32_t i = 0; i < n_layer; ++i) {
  2122. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2123. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2124. auto & layer = model.layers[i];
  2125. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2126. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2127. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2128. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2129. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2130. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2131. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2132. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2133. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2134. if (backend == GGML_BACKEND_GPU) {
  2135. vram_weights +=
  2136. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2137. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2138. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2139. }
  2140. }
  2141. } break;
  2142. case LLM_ARCH_BAICHUAN:
  2143. {
  2144. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2145. {
  2146. ggml_backend_type backend_norm;
  2147. ggml_backend_type backend_output;
  2148. if (n_gpu_layers > int(n_layer)) {
  2149. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2150. // on Windows however this is detrimental unless everything is on the GPU
  2151. #ifndef _WIN32
  2152. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2153. #else
  2154. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2155. #endif // _WIN32
  2156. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2157. } else {
  2158. backend_norm = GGML_BACKEND_CPU;
  2159. backend_output = GGML_BACKEND_CPU;
  2160. }
  2161. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2162. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2163. if (backend_norm == GGML_BACKEND_GPU) {
  2164. vram_weights += ggml_nbytes(model.output_norm);
  2165. }
  2166. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2167. vram_weights += ggml_nbytes(model.output);
  2168. }
  2169. }
  2170. const uint32_t n_ff = hparams.n_ff;
  2171. const int i_gpu_start = n_layer - n_gpu_layers;
  2172. model.layers.resize(n_layer);
  2173. for (uint32_t i = 0; i < n_layer; ++i) {
  2174. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2175. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2176. auto & layer = model.layers[i];
  2177. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2178. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2179. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2180. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2181. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2182. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2183. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2184. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2185. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2186. if (backend == GGML_BACKEND_GPU) {
  2187. vram_weights +=
  2188. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2189. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2190. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2191. }
  2192. }
  2193. } break;
  2194. case LLM_ARCH_FALCON:
  2195. {
  2196. // TODO: CPU-only for now
  2197. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2198. // output
  2199. {
  2200. ggml_backend_type backend_norm;
  2201. ggml_backend_type backend_output;
  2202. if (n_gpu_layers > int(n_layer)) {
  2203. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2204. // on Windows however this is detrimental unless everything is on the GPU
  2205. #ifndef _WIN32
  2206. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2207. #else
  2208. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2209. #endif // _WIN32
  2210. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2211. } else {
  2212. backend_norm = GGML_BACKEND_CPU;
  2213. backend_output = GGML_BACKEND_CPU;
  2214. }
  2215. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2216. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2217. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2218. if (backend_norm == GGML_BACKEND_GPU) {
  2219. vram_weights += ggml_nbytes(model.output_norm);
  2220. vram_weights += ggml_nbytes(model.output_norm_b);
  2221. }
  2222. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2223. vram_weights += ggml_nbytes(model.output);
  2224. }
  2225. }
  2226. const uint32_t n_ff = hparams.n_ff;
  2227. const int i_gpu_start = n_layer - n_gpu_layers;
  2228. model.layers.resize(n_layer);
  2229. for (uint32_t i = 0; i < n_layer; ++i) {
  2230. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2231. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2232. auto & layer = model.layers[i];
  2233. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2234. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2235. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  2236. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  2237. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  2238. if (backend == GGML_BACKEND_GPU) {
  2239. vram_weights += ggml_nbytes(layer.attn_norm_2);
  2240. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  2241. }
  2242. }
  2243. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2244. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2245. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2246. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2247. if (backend == GGML_BACKEND_GPU) {
  2248. vram_weights +=
  2249. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2250. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  2251. ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2252. }
  2253. }
  2254. } break;
  2255. case LLM_ARCH_STARCODER:
  2256. {
  2257. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2258. model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  2259. // output
  2260. {
  2261. ggml_backend_type backend_norm;
  2262. ggml_backend_type backend_output;
  2263. if (n_gpu_layers > int(n_layer)) {
  2264. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2265. // on Windows however this is detrimental unless everything is on the GPU
  2266. #ifndef _WIN32
  2267. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2268. #else
  2269. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2270. #endif // _WIN32
  2271. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2272. } else {
  2273. backend_norm = GGML_BACKEND_CPU;
  2274. backend_output = GGML_BACKEND_CPU;
  2275. }
  2276. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2277. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2278. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2279. if (backend_norm == GGML_BACKEND_GPU) {
  2280. vram_weights += ggml_nbytes(model.output_norm);
  2281. vram_weights += ggml_nbytes(model.output_norm_b);
  2282. }
  2283. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2284. vram_weights += ggml_nbytes(model.output);
  2285. }
  2286. }
  2287. const uint32_t n_ff = hparams.n_ff;
  2288. const int i_gpu_start = n_layer - n_gpu_layers;
  2289. model.layers.resize(n_layer);
  2290. for (uint32_t i = 0; i < n_layer; ++i) {
  2291. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2292. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2293. auto & layer = model.layers[i];
  2294. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2295. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2296. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2297. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2298. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2299. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2300. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2301. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2302. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2303. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2304. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2305. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2306. if (backend == GGML_BACKEND_GPU) {
  2307. vram_weights +=
  2308. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2309. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2310. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2311. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2312. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
  2313. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
  2314. }
  2315. }
  2316. } break;
  2317. case LLM_ARCH_PERSIMMON:
  2318. {
  2319. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2320. {
  2321. ggml_backend_type backend_norm;
  2322. ggml_backend_type backend_output;
  2323. if (n_gpu_layers > int(n_layer)) {
  2324. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2325. // on Windows however this is detrimental unless everything is on the GPU
  2326. #ifndef _WIN32
  2327. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2328. #else
  2329. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2330. #endif // _WIN32
  2331. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2332. } else {
  2333. backend_norm = GGML_BACKEND_CPU;
  2334. backend_output = GGML_BACKEND_CPU;
  2335. }
  2336. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2337. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2338. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2339. if (backend_norm == GGML_BACKEND_GPU) {
  2340. vram_weights += ggml_nbytes(model.output_norm);
  2341. vram_weights += ggml_nbytes(model.output_norm_b);
  2342. }
  2343. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2344. vram_weights += ggml_nbytes(model.output);
  2345. }
  2346. }
  2347. const uint32_t n_ff = hparams.n_ff;
  2348. const int i_gpu_start = n_layer - n_gpu_layers;
  2349. model.layers.resize(n_layer);
  2350. for (uint32_t i = 0; i < n_layer; ++i) {
  2351. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2352. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT;
  2353. auto & layer = model.layers[i];
  2354. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2355. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2356. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2357. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2358. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2359. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2360. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2361. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2362. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2363. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2364. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2365. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2366. layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend);
  2367. layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend);
  2368. layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend);
  2369. layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend);
  2370. }
  2371. } break;
  2372. case LLM_ARCH_BLOOM:
  2373. {
  2374. // TODO: CPU-only for now
  2375. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2376. model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU);
  2377. model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU);
  2378. // output
  2379. {
  2380. ggml_backend_type backend_norm;
  2381. ggml_backend_type backend_output;
  2382. if (n_gpu_layers > int(n_layer)) {
  2383. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2384. // on Windows however this is detrimental unless everything is on the GPU
  2385. #ifndef _WIN32
  2386. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2387. #else
  2388. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2389. #endif // _WIN32
  2390. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2391. } else {
  2392. backend_norm = GGML_BACKEND_CPU;
  2393. backend_output = GGML_BACKEND_CPU;
  2394. }
  2395. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2396. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2397. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2398. if (backend_norm == GGML_BACKEND_GPU) {
  2399. vram_weights += ggml_nbytes(model.output_norm);
  2400. vram_weights += ggml_nbytes(model.output_norm_b);
  2401. }
  2402. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2403. vram_weights += ggml_nbytes(model.output);
  2404. }
  2405. }
  2406. const uint32_t n_ff = hparams.n_ff;
  2407. const int i_gpu_start = n_layer - n_gpu_layers;
  2408. model.layers.resize(n_layer);
  2409. for (uint32_t i = 0; i < n_layer; ++i) {
  2410. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2411. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2412. auto & layer = model.layers[i];
  2413. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2414. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2415. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2416. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2417. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2418. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2419. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2420. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2421. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2422. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2423. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2424. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2425. if (backend == GGML_BACKEND_GPU) {
  2426. vram_weights +=
  2427. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2428. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2429. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2430. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2431. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) +
  2432. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2);
  2433. }
  2434. }
  2435. } break;
  2436. case LLM_ARCH_MPT:
  2437. {
  2438. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2439. // output
  2440. {
  2441. ggml_backend_type backend_norm;
  2442. ggml_backend_type backend_output;
  2443. if (n_gpu_layers > int(n_layer)) {
  2444. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2445. // on Windows however this is detrimental unless everything is on the GPU
  2446. #ifndef _WIN32
  2447. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2448. #else
  2449. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2450. #endif // _WIN32
  2451. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2452. } else {
  2453. backend_norm = GGML_BACKEND_CPU;
  2454. backend_output = GGML_BACKEND_CPU;
  2455. }
  2456. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2457. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2458. if (backend_norm == GGML_BACKEND_GPU) {
  2459. vram_weights += ggml_nbytes(model.output_norm);
  2460. }
  2461. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2462. vram_weights += ggml_nbytes(model.output);
  2463. }
  2464. }
  2465. const uint32_t n_ff = hparams.n_ff;
  2466. const int i_gpu_start = n_layer - n_gpu_layers;
  2467. model.layers.resize(n_layer);
  2468. for (uint32_t i = 0; i < n_layer; ++i) {
  2469. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2470. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2471. auto & layer = model.layers[i];
  2472. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2473. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2474. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2475. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2476. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2477. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2478. if (backend == GGML_BACKEND_GPU) {
  2479. vram_weights +=
  2480. ggml_nbytes(layer.attn_norm) +
  2481. ggml_nbytes(layer.wqkv) +
  2482. ggml_nbytes(layer.wo) +
  2483. ggml_nbytes(layer.ffn_norm) +
  2484. ggml_nbytes(layer.w2) +
  2485. ggml_nbytes(layer.w3);
  2486. }
  2487. }
  2488. } break;
  2489. default:
  2490. throw std::runtime_error("unknown architecture");
  2491. }
  2492. }
  2493. ml.done_getting_tensors();
  2494. // print memory requirements
  2495. {
  2496. // this is the total memory required to run the inference
  2497. size_t mem_required =
  2498. ctx_size +
  2499. mmapped_size - vram_weights; // weights in VRAM not in memory
  2500. LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
  2501. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2502. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2503. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2504. if (n_gpu_layers > (int) hparams.n_layer) {
  2505. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  2506. }
  2507. #ifdef GGML_USE_CUBLAS
  2508. const int max_backend_supported_layers = hparams.n_layer + 3;
  2509. const int max_offloadable_layers = hparams.n_layer + 3;
  2510. #elif defined(GGML_USE_CLBLAST)
  2511. const int max_backend_supported_layers = hparams.n_layer + 1;
  2512. const int max_offloadable_layers = hparams.n_layer + 1;
  2513. #endif // GGML_USE_CUBLAS
  2514. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2515. LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
  2516. #else
  2517. (void) n_gpu_layers;
  2518. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2519. }
  2520. // populate `tensors_by_name`
  2521. for (int i = 0; i < ml.n_tensors; ++i) {
  2522. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  2523. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2524. }
  2525. (void) tensor_split;
  2526. #ifdef GGML_USE_CUBLAS
  2527. {
  2528. ggml_cuda_set_tensor_split(tensor_split);
  2529. }
  2530. #endif
  2531. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  2532. if (progress_callback) {
  2533. progress_callback(1.0f, progress_callback_user_data);
  2534. }
  2535. model.mapping = std::move(ml.mapping);
  2536. // loading time will be recalculate after the first eval, so
  2537. // we take page faults deferred by mmap() into consideration
  2538. model.t_load_us = ggml_time_us() - model.t_start_us;
  2539. }
  2540. static bool llama_model_load(
  2541. const std::string & fname,
  2542. llama_model & model,
  2543. int n_gpu_layers,
  2544. int main_gpu,
  2545. const float * tensor_split,
  2546. bool use_mmap,
  2547. bool use_mlock,
  2548. bool vocab_only,
  2549. llama_progress_callback progress_callback,
  2550. void *progress_callback_user_data) {
  2551. try {
  2552. llama_model_loader ml(fname, use_mmap);
  2553. model.hparams.vocab_only = vocab_only;
  2554. llm_load_arch (ml, model);
  2555. llm_load_hparams(ml, model);
  2556. llm_load_vocab (ml, model);
  2557. llm_load_print_meta(ml, model);
  2558. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  2559. throw std::runtime_error("vocab size mismatch");
  2560. }
  2561. if (vocab_only) {
  2562. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2563. return true;
  2564. }
  2565. llm_load_tensors(
  2566. ml, model, n_gpu_layers,
  2567. main_gpu, tensor_split,
  2568. use_mlock, progress_callback, progress_callback_user_data);
  2569. } catch (const std::exception & err) {
  2570. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2571. return false;
  2572. }
  2573. return true;
  2574. }
  2575. static struct ggml_cgraph * llm_build_llama(
  2576. llama_context & lctx,
  2577. const llama_batch & batch) {
  2578. const auto & model = lctx.model;
  2579. const auto & hparams = model.hparams;
  2580. const auto & cparams = lctx.cparams;
  2581. const auto & kv_self = lctx.kv_self;
  2582. GGML_ASSERT(!!kv_self.ctx);
  2583. const int64_t n_embd = hparams.n_embd;
  2584. const int64_t n_layer = hparams.n_layer;
  2585. const int64_t n_ctx = cparams.n_ctx;
  2586. const int64_t n_head = hparams.n_head;
  2587. const int64_t n_head_kv = hparams.n_head_kv;
  2588. const int64_t n_embd_head = hparams.n_embd_head();
  2589. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2590. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2591. const float freq_base = cparams.rope_freq_base;
  2592. const float freq_scale = cparams.rope_freq_scale;
  2593. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2594. const int n_gpu_layers = model.n_gpu_layers;
  2595. const int32_t n_tokens = batch.n_tokens;
  2596. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2597. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2598. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2599. //printf("n_kv = %d\n", n_kv);
  2600. auto & buf_compute = lctx.buf_compute;
  2601. struct ggml_init_params params = {
  2602. /*.mem_size =*/ buf_compute.size,
  2603. /*.mem_buffer =*/ buf_compute.data,
  2604. /*.no_alloc =*/ true,
  2605. };
  2606. struct ggml_context * ctx0 = ggml_init(params);
  2607. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2608. struct ggml_tensor * cur;
  2609. struct ggml_tensor * inpL;
  2610. if (batch.token) {
  2611. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2612. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2613. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2614. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2615. }
  2616. ggml_set_name(inp_tokens, "inp_tokens");
  2617. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2618. } else {
  2619. #ifdef GGML_USE_MPI
  2620. GGML_ASSERT(false && "not implemented");
  2621. #endif
  2622. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2623. ggml_allocr_alloc(lctx.alloc, inpL);
  2624. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2625. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2626. }
  2627. }
  2628. const int i_gpu_start = n_layer - n_gpu_layers;
  2629. (void) i_gpu_start;
  2630. // offload functions set the tensor output backend to GPU
  2631. // tensors are GPU-accelerated if any input or the output has been offloaded
  2632. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2633. offload_func_t offload_func_kq = llama_nop;
  2634. offload_func_t offload_func_v = llama_nop;
  2635. #ifdef GGML_USE_CUBLAS
  2636. if (n_gpu_layers > n_layer) {
  2637. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2638. }
  2639. if (n_gpu_layers > n_layer + 1) {
  2640. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2641. }
  2642. if (n_gpu_layers > n_layer + 2) {
  2643. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2644. }
  2645. #endif // GGML_USE_CUBLAS
  2646. // KQ_scale
  2647. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2648. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2649. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2650. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2651. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  2652. }
  2653. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2654. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2655. offload_func_kq(KQ_mask);
  2656. ggml_set_name(KQ_mask, "KQ_mask");
  2657. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2658. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2659. float * data = (float *) KQ_mask->data;
  2660. memset(data, 0, ggml_nbytes(KQ_mask));
  2661. for (int h = 0; h < 1; ++h) {
  2662. for (int j = 0; j < n_tokens; ++j) {
  2663. const llama_pos pos = batch.pos[j];
  2664. const llama_seq_id seq_id = batch.seq_id[j][0];
  2665. for (int i = 0; i < n_kv; ++i) {
  2666. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2667. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2668. }
  2669. }
  2670. }
  2671. }
  2672. }
  2673. // KQ_pos - contains the positions
  2674. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2675. offload_func_kq(KQ_pos);
  2676. ggml_set_name(KQ_pos, "KQ_pos");
  2677. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2678. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2679. int * data = (int *) KQ_pos->data;
  2680. for (int i = 0; i < n_tokens; ++i) {
  2681. data[i] = batch.pos[i];
  2682. }
  2683. }
  2684. // shift the entire K-cache if needed
  2685. if (do_rope_shift) {
  2686. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  2687. offload_func_kq(K_shift);
  2688. ggml_set_name(K_shift, "K_shift");
  2689. ggml_allocr_alloc(lctx.alloc, K_shift);
  2690. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2691. int * data = (int *) K_shift->data;
  2692. for (int i = 0; i < n_ctx; ++i) {
  2693. data[i] = kv_self.cells[i].delta;
  2694. }
  2695. }
  2696. for (int il = 0; il < n_layer; ++il) {
  2697. struct ggml_tensor * tmp =
  2698. ggml_rope_custom_inplace(ctx0,
  2699. ggml_view_3d(ctx0, kv_self.k,
  2700. n_embd_head, n_head_kv, n_ctx,
  2701. ggml_element_size(kv_self.k)*n_embd_head,
  2702. ggml_element_size(kv_self.k)*n_embd_gqa,
  2703. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  2704. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  2705. offload_func_kq(tmp);
  2706. ggml_build_forward_expand(gf, tmp);
  2707. }
  2708. }
  2709. for (int il = 0; il < n_layer; ++il) {
  2710. ggml_format_name(inpL, "layer_inp_%d", il);
  2711. offload_func_t offload_func = llama_nop;
  2712. #ifdef GGML_USE_CUBLAS
  2713. if (il >= i_gpu_start) {
  2714. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2715. }
  2716. #endif // GGML_USE_CUBLAS
  2717. struct ggml_tensor * inpSA = inpL;
  2718. // norm
  2719. {
  2720. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2721. offload_func(cur);
  2722. ggml_set_name(cur, "rms_norm_0");
  2723. // cur = cur*attn_norm(broadcasted)
  2724. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2725. offload_func(cur);
  2726. ggml_set_name(cur, "attention_norm_0");
  2727. }
  2728. // self-attention
  2729. {
  2730. // compute Q and K and RoPE them
  2731. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2732. offload_func_kq(tmpk);
  2733. ggml_set_name(tmpk, "tmpk");
  2734. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2735. offload_func_kq(tmpq);
  2736. ggml_set_name(tmpq, "tmpq");
  2737. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2738. offload_func_kq(Kcur);
  2739. ggml_set_name(Kcur, "Kcur");
  2740. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2741. offload_func_kq(Qcur);
  2742. ggml_set_name(Qcur, "Qcur");
  2743. // store key and value to memory
  2744. {
  2745. // compute the transposed [n_tokens, n_embd] V matrix
  2746. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2747. offload_func_v(tmpv);
  2748. ggml_set_name(tmpv, "tmpv");
  2749. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  2750. offload_func_v(Vcur);
  2751. ggml_set_name(Vcur, "Vcur");
  2752. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2753. offload_func_kq(k);
  2754. ggml_set_name(k, "k");
  2755. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  2756. ( n_ctx)*ggml_element_size(kv_self.v),
  2757. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  2758. offload_func_v(v);
  2759. ggml_set_name(v, "v");
  2760. // important: storing RoPE-ed version of K in the KV cache!
  2761. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2762. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2763. }
  2764. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2765. offload_func_kq(Q);
  2766. ggml_set_name(Q, "Q");
  2767. struct ggml_tensor * K =
  2768. ggml_view_3d(ctx0, kv_self.k,
  2769. n_embd_head, n_kv, n_head_kv,
  2770. ggml_element_size(kv_self.k)*n_embd_gqa,
  2771. ggml_element_size(kv_self.k)*n_embd_head,
  2772. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2773. offload_func_kq(K);
  2774. ggml_set_name(K, "K");
  2775. // K * Q
  2776. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2777. offload_func_kq(KQ);
  2778. ggml_set_name(KQ, "KQ");
  2779. // KQ_scaled = KQ / sqrt(n_embd_head)
  2780. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  2781. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  2782. offload_func_kq(KQ_scaled);
  2783. ggml_set_name(KQ_scaled, "KQ_scaled");
  2784. // KQ_masked = mask_past(KQ_scaled)
  2785. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  2786. offload_func_kq(KQ_masked);
  2787. ggml_set_name(KQ_masked, "KQ_masked");
  2788. // KQ = soft_max(KQ_masked)
  2789. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  2790. offload_func_v(KQ_soft_max);
  2791. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2792. // split cached V into n_head heads
  2793. struct ggml_tensor * V =
  2794. ggml_view_3d(ctx0, kv_self.v,
  2795. n_kv, n_embd_head, n_head_kv,
  2796. ggml_element_size(kv_self.v)*n_ctx,
  2797. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2798. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2799. offload_func_v(V);
  2800. ggml_set_name(V, "V");
  2801. #if 1
  2802. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2803. offload_func_v(KQV);
  2804. ggml_set_name(KQV, "KQV");
  2805. #else
  2806. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2807. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2808. // is there a better way?
  2809. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  2810. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2811. #endif
  2812. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2813. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2814. offload_func_v(KQV_merged);
  2815. ggml_set_name(KQV_merged, "KQV_merged");
  2816. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  2817. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  2818. offload_func_v(cur);
  2819. ggml_set_name(cur, "KQV_merged_contiguous");
  2820. // projection (no bias)
  2821. cur = ggml_mul_mat(ctx0,
  2822. model.layers[il].wo,
  2823. cur);
  2824. offload_func(cur);
  2825. ggml_set_name(cur, "result_wo");
  2826. }
  2827. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2828. offload_func(inpFF);
  2829. ggml_set_name(inpFF, "inpFF");
  2830. // feed-forward network
  2831. {
  2832. // norm
  2833. {
  2834. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2835. offload_func(cur);
  2836. ggml_set_name(cur, "rms_norm_1");
  2837. // cur = cur*ffn_norm(broadcasted)
  2838. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2839. offload_func(cur);
  2840. ggml_set_name(cur, "ffn_norm");
  2841. }
  2842. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2843. model.layers[il].w3,
  2844. cur);
  2845. offload_func(tmp);
  2846. ggml_set_name(tmp, "result_w3");
  2847. cur = ggml_mul_mat(ctx0,
  2848. model.layers[il].w1,
  2849. cur);
  2850. offload_func(cur);
  2851. ggml_set_name(cur, "result_w1");
  2852. // SILU activation
  2853. cur = ggml_silu(ctx0, cur);
  2854. offload_func(cur);
  2855. ggml_set_name(cur, "silu");
  2856. cur = ggml_mul(ctx0, cur, tmp);
  2857. offload_func(cur);
  2858. ggml_set_name(cur, "silu_x_result_w3");
  2859. cur = ggml_mul_mat(ctx0,
  2860. model.layers[il].w2,
  2861. cur);
  2862. offload_func(cur);
  2863. ggml_set_name(cur, "result_w2");
  2864. }
  2865. cur = ggml_add(ctx0, cur, inpFF);
  2866. offload_func(cur);
  2867. ggml_set_name(cur, "inpFF_+_result_w2");
  2868. // input for next layer
  2869. inpL = cur;
  2870. }
  2871. cur = inpL;
  2872. // norm
  2873. {
  2874. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2875. offload_func_nr(cur);
  2876. ggml_set_name(cur, "rms_norm_2");
  2877. // cur = cur*norm(broadcasted)
  2878. cur = ggml_mul(ctx0, cur, model.output_norm);
  2879. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2880. ggml_set_name(cur, "result_norm");
  2881. }
  2882. // lm_head
  2883. cur = ggml_mul_mat(ctx0, model.output, cur);
  2884. ggml_set_name(cur, "result_output");
  2885. ggml_build_forward_expand(gf, cur);
  2886. ggml_free(ctx0);
  2887. return gf;
  2888. }
  2889. static struct ggml_cgraph * llm_build_baichaun(
  2890. llama_context & lctx,
  2891. const llama_batch & batch) {
  2892. const auto & model = lctx.model;
  2893. const auto & hparams = model.hparams;
  2894. const auto & cparams = lctx.cparams;
  2895. const auto & kv_self = lctx.kv_self;
  2896. GGML_ASSERT(!!kv_self.ctx);
  2897. const int64_t n_embd = hparams.n_embd;
  2898. const int64_t n_layer = hparams.n_layer;
  2899. const int64_t n_ctx = cparams.n_ctx;
  2900. const int64_t n_head = hparams.n_head;
  2901. const int64_t n_head_kv = hparams.n_head_kv;
  2902. const int64_t n_embd_head = hparams.n_embd_head();
  2903. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2904. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2905. const float freq_base = cparams.rope_freq_base;
  2906. const float freq_scale = cparams.rope_freq_scale;
  2907. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2908. const int n_gpu_layers = model.n_gpu_layers;
  2909. const int32_t n_tokens = batch.n_tokens;
  2910. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2911. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2912. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2913. auto & buf_compute = lctx.buf_compute;
  2914. struct ggml_init_params params = {
  2915. /*.mem_size =*/ buf_compute.size,
  2916. /*.mem_buffer =*/ buf_compute.data,
  2917. /*.no_alloc =*/ true,
  2918. };
  2919. struct ggml_context * ctx0 = ggml_init(params);
  2920. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2921. struct ggml_tensor * cur;
  2922. struct ggml_tensor * inpL;
  2923. if (batch.token) {
  2924. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2925. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2926. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2927. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2928. }
  2929. ggml_set_name(inp_tokens, "inp_tokens");
  2930. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2931. } else {
  2932. #ifdef GGML_USE_MPI
  2933. GGML_ASSERT(false && "not implemented");
  2934. #endif
  2935. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2936. ggml_allocr_alloc(lctx.alloc, inpL);
  2937. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2938. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2939. }
  2940. }
  2941. const int i_gpu_start = n_layer - n_gpu_layers;
  2942. (void) i_gpu_start;
  2943. // offload functions set the tensor output backend to GPU
  2944. // tensors are GPU-accelerated if any input or the output has been offloaded
  2945. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2946. offload_func_t offload_func_kq = llama_nop;
  2947. offload_func_t offload_func_v = llama_nop;
  2948. #ifdef GGML_USE_CUBLAS
  2949. if (n_gpu_layers > n_layer) {
  2950. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2951. }
  2952. if (n_gpu_layers > n_layer + 1) {
  2953. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2954. }
  2955. if (n_gpu_layers > n_layer + 2) {
  2956. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2957. }
  2958. #endif // GGML_USE_CUBLAS
  2959. // KQ_scale
  2960. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2961. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2962. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2963. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2964. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2965. }
  2966. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2967. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2968. offload_func_kq(KQ_mask);
  2969. ggml_set_name(KQ_mask, "KQ_mask");
  2970. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2971. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2972. float * data = (float *) KQ_mask->data;
  2973. memset(data, 0, ggml_nbytes(KQ_mask));
  2974. for (int h = 0; h < 1; ++h) {
  2975. for (int j = 0; j < n_tokens; ++j) {
  2976. const llama_pos pos = batch.pos[j];
  2977. const llama_seq_id seq_id = batch.seq_id[j][0];
  2978. for (int i = 0; i < n_kv; ++i) {
  2979. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2980. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2981. }
  2982. }
  2983. }
  2984. }
  2985. }
  2986. // KQ_pos - contains the positions
  2987. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2988. offload_func_kq(KQ_pos);
  2989. ggml_set_name(KQ_pos, "KQ_pos");
  2990. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2991. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2992. int * data = (int *) KQ_pos->data;
  2993. for (int i = 0; i < n_tokens; ++i) {
  2994. data[i] = batch.pos[i];
  2995. }
  2996. }
  2997. // shift the entire K-cache if needed
  2998. if (do_rope_shift) {
  2999. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3000. offload_func_kq(K_shift);
  3001. ggml_set_name(K_shift, "K_shift");
  3002. ggml_allocr_alloc(lctx.alloc, K_shift);
  3003. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3004. int * data = (int *) K_shift->data;
  3005. for (int i = 0; i < n_ctx; ++i) {
  3006. data[i] = kv_self.cells[i].delta;
  3007. }
  3008. }
  3009. for (int il = 0; il < n_layer; ++il) {
  3010. struct ggml_tensor * tmp =
  3011. ggml_rope_custom_inplace(ctx0,
  3012. ggml_view_3d(ctx0, kv_self.k,
  3013. n_embd_head, n_head_kv, n_ctx,
  3014. ggml_element_size(kv_self.k)*n_embd_head,
  3015. ggml_element_size(kv_self.k)*n_embd_gqa,
  3016. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  3017. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  3018. offload_func_kq(tmp);
  3019. ggml_build_forward_expand(gf, tmp);
  3020. }
  3021. }
  3022. for (int il = 0; il < n_layer; ++il) {
  3023. ggml_format_name(inpL, "layer_inp_%d", il);
  3024. offload_func_t offload_func = llama_nop;
  3025. #ifdef GGML_USE_CUBLAS
  3026. if (il >= i_gpu_start) {
  3027. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3028. }
  3029. #endif // GGML_USE_CUBLAS
  3030. struct ggml_tensor * inpSA = inpL;
  3031. // norm
  3032. {
  3033. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3034. offload_func(cur);
  3035. ggml_set_name(cur, "rms_norm_0");
  3036. // cur = cur*attn_norm(broadcasted)
  3037. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3038. offload_func(cur);
  3039. ggml_set_name(cur, "attention_norm_0");
  3040. }
  3041. // self-attention
  3042. {
  3043. // compute Q and K and RoPE them
  3044. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3045. offload_func_kq(tmpk);
  3046. ggml_set_name(tmpk, "tmpk");
  3047. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3048. offload_func_kq(tmpq);
  3049. ggml_set_name(tmpq, "tmpq");
  3050. struct ggml_tensor * Kcur;
  3051. struct ggml_tensor * Qcur;
  3052. switch (model.type) {
  3053. case MODEL_7B:
  3054. Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  3055. Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  3056. break;
  3057. case MODEL_13B:
  3058. Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens);
  3059. Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens);
  3060. break;
  3061. default:
  3062. GGML_ASSERT(false);
  3063. }
  3064. offload_func_kq(Kcur);
  3065. ggml_set_name(Kcur, "Kcur");
  3066. offload_func_kq(Qcur);
  3067. ggml_set_name(Qcur, "Qcur");
  3068. // store key and value to memory
  3069. {
  3070. // compute the transposed [n_tokens, n_embd] V matrix
  3071. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3072. offload_func_v(tmpv);
  3073. ggml_set_name(tmpv, "tmpv");
  3074. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3075. offload_func_v(Vcur);
  3076. ggml_set_name(Vcur, "Vcur");
  3077. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3078. offload_func_kq(k);
  3079. ggml_set_name(k, "k");
  3080. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3081. ( n_ctx)*ggml_element_size(kv_self.v),
  3082. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3083. offload_func_v(v);
  3084. ggml_set_name(v, "v");
  3085. // important: storing RoPE-ed version of K in the KV cache!
  3086. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3087. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3088. }
  3089. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3090. offload_func_kq(Q);
  3091. ggml_set_name(Q, "Q");
  3092. struct ggml_tensor * K =
  3093. ggml_view_3d(ctx0, kv_self.k,
  3094. n_embd_head, n_kv, n_head_kv,
  3095. ggml_element_size(kv_self.k)*n_embd_gqa,
  3096. ggml_element_size(kv_self.k)*n_embd_head,
  3097. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3098. offload_func_kq(K);
  3099. ggml_set_name(K, "K");
  3100. // K * Q
  3101. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3102. offload_func_kq(KQ);
  3103. ggml_set_name(KQ, "KQ");
  3104. // KQ_scaled = KQ / sqrt(n_embd_head)
  3105. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3106. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3107. offload_func_kq(KQ_scaled);
  3108. ggml_set_name(KQ_scaled, "KQ_scaled");
  3109. struct ggml_tensor * KQ_masked;
  3110. struct ggml_tensor * KQ_scaled_alibi;
  3111. switch (model.type) {
  3112. case MODEL_7B:
  3113. KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3114. break;
  3115. case MODEL_13B:
  3116. // TODO: replace with ggml_add()
  3117. KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3118. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3119. KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3120. break;
  3121. default:
  3122. GGML_ASSERT(false);
  3123. }
  3124. // KQ = soft_max(KQ_masked)
  3125. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3126. offload_func_v(KQ_soft_max);
  3127. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3128. // split cached V into n_head heads
  3129. struct ggml_tensor * V =
  3130. ggml_view_3d(ctx0, kv_self.v,
  3131. n_kv, n_embd_head, n_head_kv,
  3132. ggml_element_size(kv_self.v)*n_ctx,
  3133. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3134. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3135. offload_func_v(V);
  3136. ggml_set_name(V, "V");
  3137. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3138. offload_func_v(KQV);
  3139. ggml_set_name(KQV, "KQV");
  3140. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3141. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3142. offload_func_v(KQV_merged);
  3143. ggml_set_name(KQV_merged, "KQV_merged");
  3144. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3145. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3146. offload_func_v(cur);
  3147. ggml_set_name(cur, "KQV_merged_contiguous");
  3148. // projection (no bias)
  3149. cur = ggml_mul_mat(ctx0,
  3150. model.layers[il].wo,
  3151. cur);
  3152. offload_func(cur);
  3153. ggml_set_name(cur, "result_wo");
  3154. }
  3155. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3156. offload_func(inpFF);
  3157. ggml_set_name(inpFF, "inpFF");
  3158. // feed-forward network
  3159. {
  3160. // norm
  3161. {
  3162. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3163. offload_func(cur);
  3164. ggml_set_name(cur, "rms_norm_1");
  3165. // cur = cur*ffn_norm(broadcasted)
  3166. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3167. offload_func(cur);
  3168. ggml_set_name(cur, "ffn_norm");
  3169. }
  3170. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3171. model.layers[il].w3,
  3172. cur);
  3173. offload_func(tmp);
  3174. ggml_set_name(tmp, "result_w3");
  3175. cur = ggml_mul_mat(ctx0,
  3176. model.layers[il].w1,
  3177. cur);
  3178. offload_func(cur);
  3179. ggml_set_name(cur, "result_w1");
  3180. // SILU activation
  3181. cur = ggml_silu(ctx0, cur);
  3182. offload_func(cur);
  3183. ggml_set_name(cur, "silu");
  3184. cur = ggml_mul(ctx0, cur, tmp);
  3185. offload_func(cur);
  3186. ggml_set_name(cur, "silu_x_result_w3");
  3187. cur = ggml_mul_mat(ctx0,
  3188. model.layers[il].w2,
  3189. cur);
  3190. offload_func(cur);
  3191. ggml_set_name(cur, "result_w2");
  3192. }
  3193. cur = ggml_add(ctx0, cur, inpFF);
  3194. offload_func(cur);
  3195. ggml_set_name(cur, "inpFF_+_result_w2");
  3196. // input for next layer
  3197. inpL = cur;
  3198. }
  3199. cur = inpL;
  3200. // norm
  3201. {
  3202. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3203. offload_func_nr(cur);
  3204. ggml_set_name(cur, "rms_norm_2");
  3205. // cur = cur*norm(broadcasted)
  3206. cur = ggml_mul(ctx0, cur, model.output_norm);
  3207. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3208. ggml_set_name(cur, "result_norm");
  3209. }
  3210. // lm_head
  3211. cur = ggml_mul_mat(ctx0, model.output, cur);
  3212. ggml_set_name(cur, "result_output");
  3213. ggml_build_forward_expand(gf, cur);
  3214. ggml_free(ctx0);
  3215. return gf;
  3216. }
  3217. static struct ggml_cgraph * llm_build_refact(
  3218. llama_context & lctx,
  3219. const llama_batch & batch) {
  3220. const auto & model = lctx.model;
  3221. const auto & hparams = model.hparams;
  3222. const auto & cparams = lctx.cparams;
  3223. const auto & kv_self = lctx.kv_self;
  3224. GGML_ASSERT(!!kv_self.ctx);
  3225. const int64_t n_embd = hparams.n_embd;
  3226. const int64_t n_layer = hparams.n_layer;
  3227. const int64_t n_ctx = cparams.n_ctx;
  3228. const int64_t n_head = hparams.n_head;
  3229. const int64_t n_head_kv = hparams.n_head_kv;
  3230. const int64_t n_embd_head = hparams.n_embd_head();
  3231. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3232. const float norm_rms_eps = hparams.f_norm_rms_eps;
  3233. const int n_gpu_layers = model.n_gpu_layers;
  3234. const int32_t n_tokens = batch.n_tokens;
  3235. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3236. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3237. // printf("n_kv = %d\n", n_kv);
  3238. auto & buf_compute = lctx.buf_compute;
  3239. struct ggml_init_params params = {
  3240. /*.mem_size =*/ buf_compute.size,
  3241. /*.mem_buffer =*/ buf_compute.data,
  3242. /*.no_alloc =*/ true,
  3243. };
  3244. struct ggml_context * ctx0 = ggml_init(params);
  3245. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3246. struct ggml_tensor * cur;
  3247. struct ggml_tensor * inpL;
  3248. if (batch.token) {
  3249. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3250. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3251. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3252. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3253. }
  3254. ggml_set_name(inp_tokens, "inp_tokens");
  3255. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3256. } else {
  3257. #ifdef GGML_USE_MPI
  3258. GGML_ASSERT(false && "not implemented");
  3259. #endif
  3260. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3261. ggml_allocr_alloc(lctx.alloc, inpL);
  3262. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3263. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3264. }
  3265. }
  3266. const int i_gpu_start = n_layer - n_gpu_layers;
  3267. (void) i_gpu_start;
  3268. // offload functions set the tensor output backend to GPU
  3269. // tensors are GPU-accelerated if any input or the output has been offloaded
  3270. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3271. offload_func_t offload_func_kq = llama_nop;
  3272. offload_func_t offload_func_v = llama_nop;
  3273. #ifdef GGML_USE_CUBLAS
  3274. if (n_gpu_layers > n_layer) {
  3275. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3276. }
  3277. if (n_gpu_layers > n_layer + 1) {
  3278. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3279. }
  3280. if (n_gpu_layers > n_layer + 2) {
  3281. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3282. }
  3283. #endif // GGML_USE_CUBLAS
  3284. // KQ_scale
  3285. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3286. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3287. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3288. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3289. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  3290. }
  3291. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3292. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3293. offload_func_kq(KQ_mask);
  3294. ggml_set_name(KQ_mask, "KQ_mask");
  3295. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3296. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3297. float * data = (float *) KQ_mask->data;
  3298. memset(data, 0, ggml_nbytes(KQ_mask));
  3299. for (int h = 0; h < 1; ++h) {
  3300. for (int j = 0; j < n_tokens; ++j) {
  3301. const llama_pos pos = batch.pos[j];
  3302. const llama_seq_id seq_id = batch.seq_id[j][0];
  3303. for (int i = 0; i < n_kv; ++i) {
  3304. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3305. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3306. }
  3307. }
  3308. }
  3309. }
  3310. }
  3311. for (int il = 0; il < n_layer; ++il) {
  3312. ggml_format_name(inpL, "layer_inp_%d", il);
  3313. offload_func_t offload_func = llama_nop;
  3314. #ifdef GGML_USE_CUBLAS
  3315. if (il >= i_gpu_start) {
  3316. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3317. }
  3318. #endif // GGML_USE_CUBLAS
  3319. struct ggml_tensor * inpSA = inpL;
  3320. // norm
  3321. {
  3322. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3323. offload_func(cur);
  3324. ggml_set_name(cur, "rms_norm_0");
  3325. // cur = cur*attn_norm(broadcasted)
  3326. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3327. offload_func(cur);
  3328. ggml_set_name(cur, "attention_norm_0");
  3329. }
  3330. // self-attention
  3331. {
  3332. // compute Q and K
  3333. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3334. offload_func_kq(tmpk);
  3335. ggml_set_name(tmpk, "tmpk");
  3336. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3337. offload_func_kq(tmpq);
  3338. ggml_set_name(tmpq, "tmpq");
  3339. struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
  3340. offload_func_kq(Kcur);
  3341. ggml_set_name(Kcur, "Kcur");
  3342. struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
  3343. offload_func_kq(Qcur);
  3344. ggml_set_name(Qcur, "Qcur");
  3345. // store key and value to memory
  3346. {
  3347. // compute the transposed [n_tokens, n_embd] V matrix
  3348. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3349. offload_func_v(tmpv);
  3350. ggml_set_name(tmpv, "tmpv");
  3351. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3352. offload_func_v(Vcur);
  3353. ggml_set_name(Vcur, "Vcur");
  3354. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3355. offload_func_kq(k);
  3356. ggml_set_name(k, "k");
  3357. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3358. ( n_ctx)*ggml_element_size(kv_self.v),
  3359. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3360. offload_func_v(v);
  3361. ggml_set_name(v, "v");
  3362. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3363. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3364. }
  3365. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3366. offload_func_kq(Q);
  3367. ggml_set_name(Q, "Q");
  3368. struct ggml_tensor * K =
  3369. ggml_view_3d(ctx0, kv_self.k,
  3370. n_embd_head, n_kv, n_head_kv,
  3371. ggml_element_size(kv_self.k)*n_embd_gqa,
  3372. ggml_element_size(kv_self.k)*n_embd_head,
  3373. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3374. offload_func_kq(K);
  3375. ggml_set_name(K, "K");
  3376. // K * Q
  3377. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3378. offload_func_kq(KQ);
  3379. ggml_set_name(KQ, "KQ");
  3380. // KQ_scaled = KQ / sqrt(n_embd_head)
  3381. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  3382. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3383. offload_func_kq(KQ_scaled);
  3384. ggml_set_name(KQ_scaled, "KQ_scaled");
  3385. // KQ_masked = mask_past(KQ_scaled)
  3386. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3387. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3388. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3389. offload_func_kq(KQ_masked);
  3390. ggml_set_name(KQ_masked, "KQ_masked");
  3391. // KQ = soft_max(KQ_masked)
  3392. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3393. offload_func_v(KQ_soft_max);
  3394. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3395. // split cached V into n_head heads
  3396. struct ggml_tensor * V =
  3397. ggml_view_3d(ctx0, kv_self.v,
  3398. n_kv, n_embd_head, n_head_kv,
  3399. ggml_element_size(kv_self.v)*n_ctx,
  3400. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3401. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3402. offload_func_v(V);
  3403. ggml_set_name(V, "V");
  3404. #if 1
  3405. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3406. offload_func_v(KQV);
  3407. ggml_set_name(KQV, "KQV");
  3408. #else
  3409. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  3410. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  3411. // is there a better way?
  3412. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  3413. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  3414. #endif
  3415. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3416. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3417. offload_func_v(KQV_merged);
  3418. ggml_set_name(KQV_merged, "KQV_merged");
  3419. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3420. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3421. offload_func_v(cur);
  3422. ggml_set_name(cur, "KQV_merged_contiguous");
  3423. // projection (no bias)
  3424. cur = ggml_mul_mat(ctx0,
  3425. model.layers[il].wo,
  3426. cur);
  3427. offload_func(cur);
  3428. ggml_set_name(cur, "result_wo");
  3429. }
  3430. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3431. offload_func(inpFF);
  3432. ggml_set_name(inpFF, "inpFF");
  3433. // feed-forward network
  3434. {
  3435. // norm
  3436. {
  3437. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3438. offload_func(cur);
  3439. ggml_set_name(cur, "rms_norm_1");
  3440. // cur = cur*ffn_norm(broadcasted)
  3441. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3442. offload_func(cur);
  3443. ggml_set_name(cur, "ffn_norm");
  3444. }
  3445. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3446. model.layers[il].w3,
  3447. cur);
  3448. offload_func(tmp);
  3449. ggml_set_name(tmp, "result_w3");
  3450. cur = ggml_mul_mat(ctx0,
  3451. model.layers[il].w1,
  3452. cur);
  3453. offload_func(cur);
  3454. ggml_set_name(cur, "result_w1");
  3455. // SILU activation
  3456. cur = ggml_silu(ctx0, cur);
  3457. offload_func(cur);
  3458. ggml_set_name(cur, "silu");
  3459. cur = ggml_mul(ctx0, cur, tmp);
  3460. offload_func(cur);
  3461. ggml_set_name(cur, "silu_x_result_w3");
  3462. cur = ggml_mul_mat(ctx0,
  3463. model.layers[il].w2,
  3464. cur);
  3465. offload_func(cur);
  3466. ggml_set_name(cur, "result_w2");
  3467. }
  3468. cur = ggml_add(ctx0, cur, inpFF);
  3469. offload_func(cur);
  3470. ggml_set_name(cur, "inpFF_+_result_w2");
  3471. // input for next layer
  3472. inpL = cur;
  3473. }
  3474. cur = inpL;
  3475. // norm
  3476. {
  3477. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3478. offload_func_nr(cur);
  3479. ggml_set_name(cur, "rms_norm_2");
  3480. // cur = cur*norm(broadcasted)
  3481. cur = ggml_mul(ctx0, cur, model.output_norm);
  3482. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3483. ggml_set_name(cur, "result_norm");
  3484. }
  3485. // lm_head
  3486. cur = ggml_mul_mat(ctx0, model.output, cur);
  3487. ggml_set_name(cur, "result_output");
  3488. ggml_build_forward_expand(gf, cur);
  3489. ggml_free(ctx0);
  3490. return gf;
  3491. }
  3492. static struct ggml_cgraph * llm_build_falcon(
  3493. llama_context & lctx,
  3494. const llama_batch & batch) {
  3495. const auto & model = lctx.model;
  3496. const auto & hparams = model.hparams;
  3497. const auto & cparams = lctx.cparams;
  3498. const auto & kv_self = lctx.kv_self;
  3499. GGML_ASSERT(!!kv_self.ctx);
  3500. const int64_t n_embd = hparams.n_embd;
  3501. const int64_t n_layer = hparams.n_layer;
  3502. const int64_t n_ctx = cparams.n_ctx;
  3503. const int64_t n_head = hparams.n_head;
  3504. const int64_t n_head_kv = hparams.n_head_kv;
  3505. const int64_t n_embd_head = hparams.n_embd_head();
  3506. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3507. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3508. const float freq_base = cparams.rope_freq_base;
  3509. const float freq_scale = cparams.rope_freq_scale;
  3510. const float norm_eps = hparams.f_norm_eps;
  3511. const int n_gpu_layers = model.n_gpu_layers;
  3512. const int32_t n_tokens = batch.n_tokens;
  3513. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3514. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3515. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  3516. //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
  3517. // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
  3518. auto & buf_compute = lctx.buf_compute;
  3519. struct ggml_init_params params = {
  3520. /*.mem_size =*/ buf_compute.size,
  3521. /*.mem_buffer =*/ buf_compute.data,
  3522. /*.no_alloc =*/ true,
  3523. };
  3524. struct ggml_context * ctx0 = ggml_init(params);
  3525. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3526. struct ggml_tensor * cur;
  3527. struct ggml_tensor * inpL;
  3528. if (batch.token) {
  3529. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3530. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3531. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3532. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3533. }
  3534. ggml_set_name(inp_tokens, "inp_tokens");
  3535. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3536. } else {
  3537. #ifdef GGML_USE_MPI
  3538. GGML_ASSERT(false && "not implemented");
  3539. #endif
  3540. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3541. ggml_allocr_alloc(lctx.alloc, inpL);
  3542. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3543. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3544. }
  3545. }
  3546. const int i_gpu_start = n_layer - n_gpu_layers;
  3547. (void) i_gpu_start;
  3548. // offload functions set the tensor output backend to GPU
  3549. // tensors are GPU-accelerated if any input or the output has been offloaded
  3550. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3551. offload_func_t offload_func_kq = llama_nop;
  3552. offload_func_t offload_func_v = llama_nop;
  3553. #ifdef GGML_USE_CUBLAS
  3554. if (n_gpu_layers > n_layer) {
  3555. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3556. }
  3557. if (n_gpu_layers > n_layer + 1) {
  3558. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3559. }
  3560. if (n_gpu_layers > n_layer + 2) {
  3561. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3562. }
  3563. #endif // GGML_USE_CUBLAS
  3564. // KQ_scale
  3565. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3566. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3567. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3568. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3569. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3570. }
  3571. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3572. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3573. offload_func_kq(KQ_mask);
  3574. ggml_set_name(KQ_mask, "KQ_mask");
  3575. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3576. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3577. float * data = (float *) KQ_mask->data;
  3578. memset(data, 0, ggml_nbytes(KQ_mask));
  3579. for (int h = 0; h < 1; ++h) {
  3580. for (int j = 0; j < n_tokens; ++j) {
  3581. const llama_pos pos = batch.pos[j];
  3582. const llama_seq_id seq_id = batch.seq_id[j][0];
  3583. for (int i = 0; i < n_kv; ++i) {
  3584. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3585. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3586. }
  3587. }
  3588. }
  3589. }
  3590. }
  3591. // KQ_pos - contains the positions
  3592. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3593. offload_func_kq(KQ_pos);
  3594. ggml_set_name(KQ_pos, "KQ_pos");
  3595. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  3596. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3597. int * data = (int *) KQ_pos->data;
  3598. for (int i = 0; i < n_tokens; ++i) {
  3599. data[i] = batch.pos[i];
  3600. }
  3601. }
  3602. // shift the entire K-cache if needed
  3603. if (do_rope_shift) {
  3604. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3605. offload_func_kq(K_shift);
  3606. ggml_set_name(K_shift, "K_shift");
  3607. ggml_allocr_alloc(lctx.alloc, K_shift);
  3608. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3609. int * data = (int *) K_shift->data;
  3610. for (int i = 0; i < n_ctx; ++i) {
  3611. data[i] = kv_self.cells[i].delta;
  3612. }
  3613. }
  3614. for (int il = 0; il < n_layer; ++il) {
  3615. struct ggml_tensor * tmp =
  3616. ggml_rope_custom_inplace(ctx0,
  3617. ggml_view_3d(ctx0, kv_self.k,
  3618. n_embd_head, n_head_kv, n_ctx,
  3619. ggml_element_size(kv_self.k)*n_embd_head,
  3620. ggml_element_size(kv_self.k)*n_embd_gqa,
  3621. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  3622. K_shift, n_embd_head, 2, 0, freq_base, freq_scale);
  3623. offload_func_kq(tmp);
  3624. ggml_build_forward_expand(gf, tmp);
  3625. }
  3626. }
  3627. for (int il = 0; il < n_layer; ++il) {
  3628. struct ggml_tensor * attn_norm;
  3629. offload_func_t offload_func = llama_nop;
  3630. #ifdef GGML_USE_CUBLAS
  3631. if (il >= i_gpu_start) {
  3632. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3633. }
  3634. #endif // GGML_USE_CUBLAS
  3635. // self-attention
  3636. // TODO: refactor into common function (shared with LLaMA)
  3637. {
  3638. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  3639. offload_func(attn_norm);
  3640. attn_norm = ggml_add(ctx0,
  3641. ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
  3642. model.layers[il].attn_norm_b);
  3643. offload_func(attn_norm->src[0]);
  3644. offload_func(attn_norm);
  3645. if (model.layers[il].attn_norm_2) { // Falcon-40B
  3646. cur = ggml_norm(ctx0, inpL, norm_eps);
  3647. offload_func(cur);
  3648. cur = ggml_add(ctx0,
  3649. ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
  3650. model.layers[il].attn_norm_2_b);
  3651. offload_func(cur->src[0]);
  3652. offload_func(cur);
  3653. } else { // Falcon 7B
  3654. cur = attn_norm;
  3655. }
  3656. // compute QKV
  3657. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3658. offload_func_kq(cur);
  3659. // Note that the strides for Kcur, Vcur are set up so that the
  3660. // resulting views are misaligned with the tensor's storage
  3661. // (by applying the K/V offset we shift the tensor's original
  3662. // view to stick out behind the viewed QKV tensor's allocated
  3663. // memory, so to say). This is ok because no actual accesses
  3664. // happen to that out-of-range memory, but it can require some
  3665. // trickery when trying to accurately dump these views for
  3666. // debugging.
  3667. const size_t wsize = ggml_type_size(cur->type);
  3668. // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
  3669. // non-contiguous views is added for the rope operator
  3670. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
  3671. ctx0, cur, n_embd_head, n_head, n_tokens,
  3672. wsize * n_embd_head,
  3673. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3674. 0));
  3675. offload_func_kq(tmpq);
  3676. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
  3677. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3678. wsize * n_embd_head,
  3679. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3680. wsize * n_embd_head * n_head));
  3681. offload_func_kq(tmpk);
  3682. struct ggml_tensor * tmpv = ggml_view_3d(
  3683. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3684. wsize * n_embd_head,
  3685. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3686. wsize * n_embd_head * (n_head + n_head_kv));
  3687. offload_func_v(tmpv);
  3688. // using mode = 2 for neox mode
  3689. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3690. offload_func_kq(Qcur);
  3691. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3692. offload_func_kq(Kcur);
  3693. {
  3694. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3695. offload_func_v(Vcur);
  3696. offload_func_v(Vcur->src[0]->src[0]);
  3697. ggml_set_name(Vcur, "Vcur");
  3698. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3699. offload_func_kq(k);
  3700. ggml_set_name(k, "k");
  3701. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3702. ( n_ctx)*ggml_element_size(kv_self.v),
  3703. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3704. offload_func_v(v);
  3705. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3706. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3707. }
  3708. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3709. offload_func_kq(Q);
  3710. ggml_set_name(Q, "Q");
  3711. struct ggml_tensor * K =
  3712. ggml_view_3d(ctx0, kv_self.k,
  3713. n_embd_head, n_kv, n_head_kv,
  3714. ggml_element_size(kv_self.k)*n_embd_gqa,
  3715. ggml_element_size(kv_self.k)*n_embd_head,
  3716. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3717. offload_func_kq(K);
  3718. ggml_set_name(K, "K");
  3719. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3720. offload_func_kq(KQ);
  3721. ggml_set_name(KQ, "KQ");
  3722. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3723. offload_func_kq(KQ_scaled);
  3724. ggml_set_name(KQ_scaled, "KQ_scaled");
  3725. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3726. offload_func_kq(KQ_masked);
  3727. ggml_set_name(KQ_masked, "KQ_masked");
  3728. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3729. offload_func_v(KQ_soft_max);
  3730. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3731. struct ggml_tensor * V =
  3732. ggml_view_3d(ctx0, kv_self.v,
  3733. n_kv, n_embd_head, n_head_kv,
  3734. ggml_element_size(kv_self.v)*n_ctx,
  3735. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3736. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3737. offload_func_v(V);
  3738. ggml_set_name(V, "V");
  3739. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3740. offload_func_v(KQV);
  3741. ggml_set_name(KQV, "KQV");
  3742. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3743. offload_func_v(KQV_merged);
  3744. ggml_set_name(KQV_merged, "KQV_merged");
  3745. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3746. offload_func_v(cur);
  3747. ggml_set_name(cur, "KQV_merged_contiguous");
  3748. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  3749. offload_func(cur);
  3750. ggml_set_name(cur, "result_wo");
  3751. }
  3752. struct ggml_tensor * attn_out = cur;
  3753. // feed forward
  3754. {
  3755. struct ggml_tensor * inpFF = attn_norm;
  3756. cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
  3757. offload_func(cur);
  3758. cur = ggml_gelu(ctx0, cur);
  3759. offload_func(cur);
  3760. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  3761. offload_func(cur);
  3762. }
  3763. cur = ggml_add(ctx0, cur, attn_out);
  3764. offload_func(cur);
  3765. cur = ggml_add(ctx0, cur, inpL);
  3766. offload_func(cur);
  3767. // input for next layer
  3768. inpL = cur;
  3769. }
  3770. cur = inpL;
  3771. // norm
  3772. {
  3773. cur = ggml_norm(ctx0, cur, norm_eps);
  3774. offload_func_nr(cur);
  3775. cur = ggml_add(ctx0,
  3776. ggml_mul(ctx0, cur, model.output_norm),
  3777. model.output_norm_b);
  3778. ggml_set_name(cur, "result_norm");
  3779. }
  3780. cur = ggml_mul_mat(ctx0, model.output, cur);
  3781. ggml_set_name(cur, "result_output");
  3782. ggml_build_forward_expand(gf, cur);
  3783. ggml_free(ctx0);
  3784. return gf;
  3785. }
  3786. static struct ggml_cgraph * llm_build_starcoder(
  3787. llama_context & lctx,
  3788. const llama_batch & batch) {
  3789. const auto & model = lctx.model;
  3790. const auto & hparams = model.hparams;
  3791. const auto & cparams = lctx.cparams;
  3792. const auto & kv_self = lctx.kv_self;
  3793. GGML_ASSERT(!!kv_self.ctx);
  3794. const int64_t n_embd = hparams.n_embd;
  3795. const int64_t n_layer = hparams.n_layer;
  3796. const int64_t n_ctx = cparams.n_ctx;
  3797. const int64_t n_head = hparams.n_head;
  3798. const int64_t n_head_kv = hparams.n_head_kv;
  3799. const int64_t n_embd_head = hparams.n_embd_head();
  3800. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3801. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3802. const float norm_eps = hparams.f_norm_eps;
  3803. const int32_t n_tokens = batch.n_tokens;
  3804. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3805. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3806. auto & buf_compute = lctx.buf_compute;
  3807. struct ggml_init_params params = {
  3808. /*.mem_size =*/ buf_compute.size,
  3809. /*.mem_buffer =*/ buf_compute.data,
  3810. /*.no_alloc =*/ true,
  3811. };
  3812. struct ggml_context * ctx0 = ggml_init(params);
  3813. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3814. struct ggml_tensor * cur;
  3815. struct ggml_tensor * token;
  3816. struct ggml_tensor * position;
  3817. struct ggml_tensor * inpL;
  3818. if (batch.token) {
  3819. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3820. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3821. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3822. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3823. }
  3824. ggml_set_name(inp_tokens, "inp_tokens");
  3825. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3826. } else {
  3827. #ifdef GGML_USE_MPI
  3828. GGML_ASSERT(false && "not implemented");
  3829. #endif
  3830. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3831. ggml_allocr_alloc(lctx.alloc, token);
  3832. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3833. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  3834. }
  3835. }
  3836. {
  3837. // Compute position embeddings.
  3838. struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3839. ggml_allocr_alloc(lctx.alloc, inp_positions);
  3840. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3841. for (int i = 0; i < n_tokens; ++i) {
  3842. ((int32_t *) inp_positions->data)[i] = batch.pos[i];
  3843. }
  3844. }
  3845. ggml_set_name(inp_positions, "inp_positions");
  3846. position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
  3847. }
  3848. // KQ_scale
  3849. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3850. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3851. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3852. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3853. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3854. }
  3855. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3856. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3857. ggml_set_name(KQ_mask, "KQ_mask");
  3858. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3859. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3860. float * data = (float *) KQ_mask->data;
  3861. memset(data, 0, ggml_nbytes(KQ_mask));
  3862. for (int h = 0; h < 1; ++h) {
  3863. for (int j = 0; j < n_tokens; ++j) {
  3864. const llama_pos pos = batch.pos[j];
  3865. const llama_seq_id seq_id = batch.seq_id[j][0];
  3866. for (int i = 0; i < n_kv; ++i) {
  3867. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3868. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3869. }
  3870. }
  3871. }
  3872. }
  3873. }
  3874. inpL = ggml_add(ctx0, token, position);
  3875. ggml_set_name(inpL, "inpL");
  3876. for (int il = 0; il < n_layer; ++il) {
  3877. {
  3878. // Norm
  3879. cur = ggml_norm(ctx0, inpL, norm_eps);
  3880. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  3881. }
  3882. {
  3883. // Self Attention
  3884. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  3885. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  3886. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  3887. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  3888. struct ggml_tensor * Qcur = tmpq;
  3889. struct ggml_tensor * Kcur = tmpk;
  3890. {
  3891. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3892. ggml_set_name(Vcur, "Vcur");
  3893. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3894. ggml_set_name(k, "k");
  3895. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3896. ( n_ctx)*ggml_element_size(kv_self.v),
  3897. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3898. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3899. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3900. }
  3901. struct ggml_tensor * Q =
  3902. ggml_permute(ctx0,
  3903. ggml_cpy(ctx0,
  3904. Qcur,
  3905. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  3906. 0, 2, 1, 3);
  3907. ggml_set_name(Q, "Q");
  3908. struct ggml_tensor * K =
  3909. ggml_view_3d(ctx0, kv_self.k,
  3910. n_embd_head, n_kv, n_head_kv,
  3911. ggml_element_size(kv_self.k)*n_embd_gqa,
  3912. ggml_element_size(kv_self.k)*n_embd_head,
  3913. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3914. ggml_set_name(K, "K");
  3915. // K * Q
  3916. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3917. ggml_set_name(KQ, "KQ");
  3918. // KQ_scaled = KQ / sqrt(n_embd_head)
  3919. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3920. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  3921. ggml_set_name(KQ_scaled, "KQ_scaled");
  3922. // KQ_masked = mask_past(KQ_scaled)
  3923. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3924. ggml_set_name(KQ_masked, "KQ_masked");
  3925. // KQ = soft_max(KQ_masked)
  3926. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  3927. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3928. // split cached V into n_head heads
  3929. struct ggml_tensor * V =
  3930. ggml_view_3d(ctx0, kv_self.v,
  3931. n_kv, n_embd_head, n_head_kv,
  3932. ggml_element_size(kv_self.v)*n_ctx,
  3933. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3934. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3935. ggml_set_name(V, "V");
  3936. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3937. ggml_set_name(KQV, "KQV");
  3938. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3939. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3940. ggml_set_name(KQV_merged, "KQV_merged");
  3941. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3942. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3943. ggml_set_name(cur, "KQV_merged_contiguous");
  3944. }
  3945. // Projection
  3946. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  3947. // Add the input
  3948. cur = ggml_add(ctx0, cur, inpL);
  3949. struct ggml_tensor * inpFF = cur;
  3950. // FF
  3951. {
  3952. // Norm
  3953. {
  3954. cur = ggml_norm(ctx0, inpFF, norm_eps);
  3955. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  3956. }
  3957. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  3958. // GELU activation
  3959. cur = ggml_gelu(ctx0, cur);
  3960. // Projection
  3961. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  3962. }
  3963. inpL = ggml_add(ctx0, cur, inpFF);
  3964. }
  3965. // Output Norm
  3966. {
  3967. cur = ggml_norm(ctx0, inpL, norm_eps);
  3968. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  3969. }
  3970. ggml_set_name(cur, "result_norm");
  3971. cur = ggml_mul_mat(ctx0, model.output, cur);
  3972. ggml_set_name(cur, "result_output");
  3973. ggml_build_forward_expand(gf, cur);
  3974. ggml_free(ctx0);
  3975. return gf;
  3976. }
  3977. static struct ggml_cgraph * llm_build_persimmon(
  3978. llama_context & lctx,
  3979. const llama_batch & batch) {
  3980. const auto & model = lctx.model;
  3981. const auto & hparams = model.hparams;
  3982. const auto & kv_self = lctx.kv_self;
  3983. GGML_ASSERT(!!kv_self.ctx);
  3984. const auto & cparams = lctx.cparams;
  3985. const int64_t n_embd = hparams.n_embd;
  3986. const int64_t n_layer = hparams.n_layer;
  3987. const int64_t n_ctx = cparams.n_ctx;
  3988. const int64_t n_head_kv = hparams.n_head_kv;
  3989. const int64_t n_head = hparams.n_head;
  3990. const int64_t n_embd_head = hparams.n_embd_head();
  3991. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3992. const size_t n_rot = n_embd_head / 2;
  3993. const float freq_base = cparams.rope_freq_base;
  3994. const float freq_scale = cparams.rope_freq_scale;
  3995. const float norm_eps = hparams.f_norm_eps;
  3996. const int n_gpu_layers = model.n_gpu_layers;
  3997. const int32_t n_tokens = batch.n_tokens;
  3998. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3999. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4000. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  4001. auto & buf_compute = lctx.buf_compute;
  4002. struct ggml_init_params params = {
  4003. /*.mem_size =*/ buf_compute.size,
  4004. /*.mem_buffer =*/ buf_compute.data,
  4005. /*.no_alloc =*/ true,
  4006. };
  4007. struct ggml_context * ctx0 = ggml_init(params);
  4008. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4009. struct ggml_tensor * cur;
  4010. struct ggml_tensor * inpL;
  4011. if (batch.token) {
  4012. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4013. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4014. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4015. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4016. }
  4017. ggml_set_name(inp_tokens, "inp_tokens");
  4018. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4019. } else {
  4020. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4021. ggml_allocr_alloc(lctx.alloc, inpL);
  4022. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4023. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4024. }
  4025. }
  4026. const int i_gpu_start = n_layer - n_gpu_layers;
  4027. (void) i_gpu_start;
  4028. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4029. offload_func_t offload_func_kq = llama_nop;
  4030. offload_func_t offload_func_v = llama_nop;
  4031. // KQ_scale
  4032. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4033. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4034. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4035. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  4036. }
  4037. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4038. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4039. offload_func_kq(KQ_mask);
  4040. ggml_set_name(KQ_mask, "KQ_mask");
  4041. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4042. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4043. float * data = (float *) KQ_mask->data;
  4044. memset(data, 0, ggml_nbytes(KQ_mask));
  4045. for (int h = 0; h < 1; ++h) {
  4046. for (int j = 0; j < n_tokens; ++j) {
  4047. const llama_pos pos = batch.pos[j];
  4048. const llama_seq_id seq_id = batch.seq_id[j][0];
  4049. for (int i = 0; i < n_kv; ++i) {
  4050. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4051. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4052. }
  4053. }
  4054. }
  4055. }
  4056. }
  4057. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4058. offload_func_kq(KQ_pos);
  4059. ggml_set_name(KQ_pos, "KQ_pos");
  4060. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  4061. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4062. int * data = (int *) KQ_pos->data;
  4063. for (int i = 0; i < n_tokens; ++i) {
  4064. data[i] = batch.pos[i];
  4065. }
  4066. }
  4067. if (do_rope_shift) {
  4068. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  4069. offload_func_kq(K_shift);
  4070. ggml_set_name(K_shift, "K_shift");
  4071. ggml_allocr_alloc(lctx.alloc, K_shift);
  4072. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4073. int * data = (int *) K_shift->data;
  4074. for (int i = 0; i < n_ctx; ++i) {
  4075. data[i] = kv_self.cells[i].delta;
  4076. }
  4077. }
  4078. for (int il = 0; il < n_layer; ++il) {
  4079. struct ggml_tensor * tmp =
  4080. // we rotate only the first n_rot dimensions.
  4081. ggml_rope_custom_inplace(ctx0,
  4082. ggml_view_3d(ctx0, kv_self.k,
  4083. n_rot, n_head, n_ctx,
  4084. ggml_element_size(kv_self.k)*n_embd_gqa,
  4085. ggml_element_size(kv_self.k)*n_embd_head,
  4086. ggml_element_size(kv_self.k)*(n_embd_head*n_ctx*il)
  4087. ),
  4088. K_shift, n_rot, 2, 0, freq_base, freq_scale);
  4089. offload_func_kq(tmp);
  4090. ggml_build_forward_expand(gf, tmp);
  4091. }
  4092. }
  4093. for (int il=0; il < n_layer; ++il) {
  4094. struct ggml_tensor * residual = inpL;
  4095. offload_func_t offload_func = llama_nop;
  4096. {
  4097. cur = ggml_norm(ctx0, inpL, norm_eps);
  4098. offload_func(cur);
  4099. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  4100. offload_func(cur);
  4101. cur = ggml_add(ctx0, cur, model.layers[il].attn_norm_b);
  4102. offload_func(cur);
  4103. ggml_format_name(cur, "input_layernorm_%d", il);
  4104. }
  4105. // self attention
  4106. {
  4107. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4108. offload_func_kq(cur);
  4109. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4110. offload_func_kq(cur);
  4111. // split qkv
  4112. GGML_ASSERT(n_head_kv == n_head);
  4113. ggml_set_name(cur, format("qkv_%d", il).c_str());
  4114. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  4115. offload_func_kq(tmpqkv);
  4116. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  4117. offload_func_kq(tmpqkv_perm);
  4118. ggml_format_name(tmpqkv_perm, "tmpqkv_perm_%d", il);
  4119. struct ggml_tensor * tmpq = ggml_view_3d(
  4120. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4121. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4122. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4123. 0
  4124. );
  4125. offload_func_kq(tmpq);
  4126. struct ggml_tensor * tmpk = ggml_view_3d(
  4127. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4128. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4129. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4130. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  4131. );
  4132. offload_func_kq(tmpk);
  4133. // Q/K Layernorm
  4134. tmpq = ggml_norm(ctx0, tmpq, norm_eps);
  4135. offload_func_kq(tmpq);
  4136. tmpq = ggml_mul(ctx0, tmpq, model.layers[il].attn_q_norm);
  4137. offload_func_kq(tmpq);
  4138. tmpq = ggml_add(ctx0, tmpq, model.layers[il].attn_q_norm_b);
  4139. offload_func_kq(tmpq);
  4140. tmpk = ggml_norm(ctx0, tmpk, norm_eps);
  4141. offload_func_v(tmpk);
  4142. tmpk = ggml_mul(ctx0, tmpk, model.layers[il].attn_k_norm);
  4143. offload_func_v(tmpk);
  4144. tmpk = ggml_add(ctx0, tmpk, model.layers[il].attn_k_norm_b);
  4145. offload_func_v(tmpk);
  4146. // RoPE the first n_rot of q/k, pass the other half, and concat.
  4147. struct ggml_tensor * qrot = ggml_view_3d(
  4148. ctx0, tmpq, n_rot, n_head, n_tokens,
  4149. ggml_element_size(tmpq) * n_embd_head,
  4150. ggml_element_size(tmpq) * n_embd_head * n_head,
  4151. 0
  4152. );
  4153. offload_func_kq(qrot);
  4154. ggml_format_name(qrot, "qrot_%d", il);
  4155. struct ggml_tensor * krot = ggml_view_3d(
  4156. ctx0, tmpk, n_rot, n_head, n_tokens,
  4157. ggml_element_size(tmpk) * n_embd_head,
  4158. ggml_element_size(tmpk) * n_embd_head * n_head,
  4159. 0
  4160. );
  4161. offload_func_kq(krot);
  4162. ggml_format_name(krot, "krot_%d", il);
  4163. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  4164. struct ggml_tensor * qpass = ggml_view_3d(
  4165. ctx0, tmpq, n_rot, n_head, n_tokens,
  4166. ggml_element_size(tmpq) * n_embd_head,
  4167. ggml_element_size(tmpq) * n_embd_head * n_head,
  4168. ggml_element_size(tmpq) * n_rot
  4169. );
  4170. offload_func_kq(qpass);
  4171. ggml_format_name(qpass, "qpass_%d", il);
  4172. struct ggml_tensor * kpass = ggml_view_3d(
  4173. ctx0, tmpk, n_rot, n_head, n_tokens,
  4174. ggml_element_size(tmpk) * n_embd_head,
  4175. ggml_element_size(tmpk) * n_embd_head * n_head,
  4176. ggml_element_size(tmpk) * n_rot
  4177. );
  4178. offload_func_kq(kpass);
  4179. ggml_format_name(kpass, "kpass_%d", il);
  4180. struct ggml_tensor * qrotated = ggml_rope_custom(
  4181. ctx0, qrot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4182. );
  4183. offload_func_kq(qrotated);
  4184. struct ggml_tensor * krotated = ggml_rope_custom(
  4185. ctx0, krot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4186. );
  4187. offload_func_kq(krotated);
  4188. // ggml currently only supports concatenation on dim=2
  4189. // so we need to permute qrot, qpass, concat, then permute back.
  4190. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  4191. offload_func_kq(qrotated);
  4192. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  4193. offload_func_kq(krotated);
  4194. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  4195. offload_func_kq(qpass);
  4196. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  4197. offload_func_kq(kpass);
  4198. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  4199. offload_func_kq(Qcur);
  4200. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  4201. offload_func_kq(Kcur);
  4202. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3));
  4203. offload_func_kq(Q);
  4204. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  4205. offload_func_kq(Kcur);
  4206. {
  4207. struct ggml_tensor * tmpv = ggml_view_3d(
  4208. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4209. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4210. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4211. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  4212. );
  4213. offload_func_v(tmpv);
  4214. // store K, V in cache
  4215. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  4216. offload_func_v(Vcur);
  4217. ggml_set_name(Vcur, "Vcur");
  4218. struct ggml_tensor * k = ggml_view_1d(
  4219. ctx0, kv_self.k, n_tokens*n_embd_gqa,
  4220. (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)
  4221. );
  4222. offload_func_kq(k);
  4223. ggml_set_name(k, "k");
  4224. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4225. ( n_ctx)*ggml_element_size(kv_self.v),
  4226. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4227. offload_func_v(v);
  4228. ggml_set_name(v, "v");
  4229. // important: storing RoPE-ed version of K in the KV cache!
  4230. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4231. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4232. }
  4233. struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k,
  4234. n_embd_head, n_kv, n_head_kv,
  4235. ggml_element_size(kv_self.k)*n_embd_gqa,
  4236. ggml_element_size(kv_self.k)*n_embd_head,
  4237. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4238. offload_func_kq(K);
  4239. ggml_format_name(K, "K_%d", il);
  4240. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4241. offload_func_kq(KQ);
  4242. ggml_set_name(KQ, "KQ");
  4243. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4244. offload_func_kq(KQ_scaled);
  4245. ggml_set_name(KQ_scaled, "KQ_scaled");
  4246. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  4247. offload_func_kq(KQ_masked);
  4248. ggml_set_name(KQ_masked, "KQ_masked");
  4249. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4250. offload_func_kq(KQ_soft_max);
  4251. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4252. struct ggml_tensor * V =
  4253. ggml_view_3d(ctx0, kv_self.v,
  4254. n_kv, n_embd_head, n_head_kv,
  4255. ggml_element_size(kv_self.v)*n_ctx,
  4256. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4257. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4258. offload_func_v(V);
  4259. ggml_set_name(V, "V");
  4260. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4261. offload_func_v(KQV);
  4262. ggml_set_name(KQV, "KQV");
  4263. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4264. offload_func_v(KQV_merged);
  4265. ggml_set_name(KQV_merged, "KQV_merged");
  4266. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4267. offload_func_v(cur);
  4268. ggml_set_name(cur, "KQV_merged_contiguous");
  4269. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4270. offload_func(cur);
  4271. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  4272. offload_func(cur);
  4273. ggml_set_name(cur, "result_wo");
  4274. }
  4275. struct ggml_tensor * inpFF = ggml_add(ctx0, residual, cur);
  4276. offload_func(inpFF);
  4277. ggml_set_name(inpFF, "inpFF");
  4278. {
  4279. // MLP
  4280. {
  4281. // Norm
  4282. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4283. offload_func(cur);
  4284. cur = ggml_add(ctx0,
  4285. ggml_mul(ctx0, cur, model.layers[il].ffn_norm),
  4286. model.layers[il].ffn_norm_b
  4287. );
  4288. ggml_set_name(cur, "ffn_norm");
  4289. offload_func(cur);
  4290. }
  4291. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4292. offload_func(cur);
  4293. cur = ggml_add(ctx0, cur, model.layers[il].b3);
  4294. offload_func(cur);
  4295. ggml_set_name(cur, "result_ffn_up");
  4296. cur = ggml_sqr(ctx0, ggml_relu(ctx0, cur));
  4297. ggml_set_name(cur, "result_ffn_act");
  4298. offload_func(cur);
  4299. offload_func(cur->src[0]);
  4300. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4301. offload_func(cur);
  4302. cur = ggml_add(ctx0,
  4303. cur,
  4304. model.layers[il].b2);
  4305. offload_func(cur);
  4306. ggml_set_name(cur, "outFF");
  4307. }
  4308. cur = ggml_add(ctx0, cur, inpFF);
  4309. offload_func(cur);
  4310. ggml_set_name(cur, "inpFF_+_outFF");
  4311. inpL = cur;
  4312. }
  4313. cur = inpL;
  4314. {
  4315. cur = ggml_norm(ctx0, cur, norm_eps);
  4316. offload_func_nr(cur);
  4317. cur = ggml_mul(ctx0, cur, model.output_norm);
  4318. offload_func_nr(cur);
  4319. cur = ggml_add(ctx0, cur, model.output_norm_b);
  4320. // offload_func_nr(cur);
  4321. ggml_set_name(cur, "result_norm");
  4322. }
  4323. cur = ggml_mul_mat(ctx0, model.output, cur);
  4324. ggml_set_name(cur, "result_output");
  4325. ggml_build_forward_expand(gf, cur);
  4326. ggml_free(ctx0);
  4327. return gf;
  4328. }
  4329. static struct ggml_cgraph * llm_build_bloom(
  4330. llama_context & lctx,
  4331. const llama_batch & batch) {
  4332. const auto & model = lctx.model;
  4333. const auto & hparams = model.hparams;
  4334. const auto & cparams = lctx.cparams;
  4335. const auto & kv_self = lctx.kv_self;
  4336. GGML_ASSERT(!!kv_self.ctx);
  4337. const int64_t n_embd = hparams.n_embd;
  4338. const int64_t n_layer = hparams.n_layer;
  4339. const int64_t n_ctx = cparams.n_ctx;
  4340. const int64_t n_head = hparams.n_head;
  4341. const int64_t n_head_kv = hparams.n_head_kv;
  4342. const int64_t n_embd_head = hparams.n_embd_head();
  4343. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4344. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4345. const float norm_eps = hparams.f_norm_eps;
  4346. const int32_t n_tokens = batch.n_tokens;
  4347. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4348. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4349. auto & buf_compute = lctx.buf_compute;
  4350. struct ggml_init_params params = {
  4351. /*.mem_size =*/ buf_compute.size,
  4352. /*.mem_buffer =*/ buf_compute.data,
  4353. /*.no_alloc =*/ false,
  4354. };
  4355. params.no_alloc = true;
  4356. struct ggml_context * ctx0 = ggml_init(params);
  4357. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4358. struct ggml_tensor * cur;
  4359. struct ggml_tensor * token;
  4360. struct ggml_tensor * inpL;
  4361. if (batch.token) {
  4362. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4363. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4364. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4365. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4366. }
  4367. ggml_set_name(inp_tokens, "inp_tokens");
  4368. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4369. } else {
  4370. #ifdef GGML_USE_MPI
  4371. GGML_ASSERT(false && "not implemented");
  4372. #endif
  4373. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4374. ggml_allocr_alloc(lctx.alloc, token);
  4375. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4376. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  4377. }
  4378. }
  4379. // KQ_scale
  4380. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4381. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4382. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4383. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4384. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4385. }
  4386. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4387. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4388. ggml_set_name(KQ_mask, "KQ_mask");
  4389. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4390. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4391. float * data = (float *) KQ_mask->data;
  4392. memset(data, 0, ggml_nbytes(KQ_mask));
  4393. for (int h = 0; h < 1; ++h) {
  4394. for (int j = 0; j < n_tokens; ++j) {
  4395. const llama_pos pos = batch.pos[j];
  4396. const llama_seq_id seq_id = batch.seq_id[j][0];
  4397. for (int i = 0; i < n_kv; ++i) {
  4398. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4399. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4400. }
  4401. }
  4402. }
  4403. }
  4404. }
  4405. // norm
  4406. {
  4407. inpL = ggml_norm(ctx0, token, norm_eps);
  4408. inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b);
  4409. }
  4410. ggml_set_name(inpL, "inpL");
  4411. for (int il = 0; il < n_layer; ++il) {
  4412. {
  4413. // Norm
  4414. cur = ggml_norm(ctx0, inpL, norm_eps);
  4415. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  4416. }
  4417. {
  4418. // Self Attention
  4419. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  4420. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  4421. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  4422. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  4423. struct ggml_tensor * Qcur = tmpq;
  4424. struct ggml_tensor * Kcur = tmpk;
  4425. // store key and value to memory
  4426. {
  4427. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4428. ggml_set_name(Vcur, "Vcur");
  4429. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4430. ggml_set_name(k, "k");
  4431. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4432. ( n_ctx)*ggml_element_size(kv_self.v),
  4433. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4434. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4435. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4436. }
  4437. struct ggml_tensor * Q =
  4438. ggml_permute(ctx0,
  4439. ggml_cpy(ctx0,
  4440. Qcur,
  4441. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  4442. 0, 2, 1, 3);
  4443. ggml_set_name(Q, "Q");
  4444. struct ggml_tensor * K =
  4445. ggml_view_3d(ctx0, kv_self.k,
  4446. n_embd_head, n_kv, n_head_kv,
  4447. ggml_element_size(kv_self.k)*n_embd_gqa,
  4448. ggml_element_size(kv_self.k)*n_embd_head,
  4449. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4450. ggml_set_name(K, "K");
  4451. // K * Q
  4452. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4453. ggml_set_name(KQ, "KQ");
  4454. // KQ_scaled = KQ / sqrt(n_embd_head)
  4455. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  4456. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  4457. ggml_set_name(KQ_scaled, "KQ_scaled");
  4458. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8);
  4459. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4460. // KQ_masked = mask_past(KQ_scaled)
  4461. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4462. ggml_set_name(KQ_masked, "KQ_masked");
  4463. // KQ = soft_max(KQ_masked)
  4464. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4465. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4466. // split cached V into n_head heads
  4467. struct ggml_tensor * V =
  4468. ggml_view_3d(ctx0, kv_self.v,
  4469. n_kv, n_embd_head, n_head_kv,
  4470. ggml_element_size(kv_self.v)*n_ctx,
  4471. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4472. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4473. ggml_set_name(V, "V");
  4474. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4475. ggml_set_name(KQV, "KQV");
  4476. // KQV_merged = KQV.permute(0, 2, 1, 3)
  4477. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4478. ggml_set_name(KQV_merged, "KQV_merged");
  4479. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  4480. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4481. ggml_set_name(cur, "KQV_merged_contiguous");
  4482. }
  4483. // Projection
  4484. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  4485. // Add the input
  4486. cur = ggml_add(ctx0, cur, inpL);
  4487. struct ggml_tensor * inpFF = cur;
  4488. // FF
  4489. {
  4490. // Norm
  4491. {
  4492. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4493. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  4494. }
  4495. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  4496. // GELU activation
  4497. cur = ggml_gelu(ctx0, cur);
  4498. // Projection
  4499. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  4500. }
  4501. inpL = ggml_add(ctx0, cur, inpFF);
  4502. }
  4503. // Output Norm
  4504. {
  4505. cur = ggml_norm(ctx0, inpL, norm_eps);
  4506. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  4507. }
  4508. ggml_set_name(cur, "result_norm");
  4509. cur = ggml_mul_mat(ctx0, model.output, cur);
  4510. ggml_set_name(cur, "result_output");
  4511. ggml_build_forward_expand(gf, cur);
  4512. ggml_free(ctx0);
  4513. return gf;
  4514. }
  4515. static struct ggml_cgraph * llm_build_mpt(
  4516. llama_context & lctx,
  4517. const llama_batch & batch) {
  4518. const auto & model = lctx.model;
  4519. const auto & hparams = model.hparams;
  4520. const auto & cparams = lctx.cparams;
  4521. const auto & kv_self = lctx.kv_self;
  4522. GGML_ASSERT(!!kv_self.ctx);
  4523. const int64_t n_embd = hparams.n_embd;
  4524. const int64_t n_layer = hparams.n_layer;
  4525. const int64_t n_ctx = cparams.n_ctx;
  4526. const int64_t n_head = hparams.n_head;
  4527. const int64_t n_head_kv = hparams.n_head_kv;
  4528. const int64_t n_embd_head = hparams.n_embd_head();
  4529. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4530. const float norm_eps = hparams.f_norm_eps;
  4531. const float clamp_kqv = hparams.f_clamp_kqv;
  4532. const float max_alibi_bias = hparams.f_max_alibi_bias;
  4533. const int n_gpu_layers = model.n_gpu_layers;
  4534. const int32_t n_tokens = batch.n_tokens;
  4535. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4536. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4537. auto & buf_compute = lctx.buf_compute;
  4538. struct ggml_init_params params = {
  4539. /*.mem_size =*/ buf_compute.size,
  4540. /*.mem_buffer =*/ buf_compute.data,
  4541. /*.no_alloc =*/ false,
  4542. };
  4543. params.no_alloc = true;
  4544. struct ggml_context * ctx0 = ggml_init(params);
  4545. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4546. struct ggml_tensor * cur;
  4547. struct ggml_tensor * inpL;
  4548. //int warmup = 0;
  4549. if (batch.token) {
  4550. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4551. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4552. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4553. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4554. //warmup = ((uint32_t*) inp_tokens->data)[0] == 0;
  4555. }
  4556. ggml_set_name(inp_tokens, "inp_tokens");
  4557. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4558. } else {
  4559. #ifdef GGML_USE_MPI
  4560. GGML_ASSERT(false && "not implemented");
  4561. #endif
  4562. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4563. ggml_allocr_alloc(lctx.alloc, inpL);
  4564. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4565. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4566. }
  4567. }
  4568. const int i_gpu_start = n_layer - n_gpu_layers;
  4569. (void) i_gpu_start;
  4570. // offload functions set the tensor output backend to GPU
  4571. // tensors are GPU-accelerated if any input or the output has been offloaded
  4572. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4573. offload_func_t offload_func_kq = llama_nop;
  4574. offload_func_t offload_func_v = llama_nop;
  4575. #ifdef GGML_USE_CUBLAS
  4576. if (n_gpu_layers > n_layer) {
  4577. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  4578. }
  4579. if (n_gpu_layers > n_layer + 1) {
  4580. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  4581. }
  4582. if (n_gpu_layers > n_layer + 2) {
  4583. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  4584. }
  4585. #endif // GGML_USE_CUBLAS
  4586. // KQ_scale
  4587. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4588. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4589. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4590. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4591. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4592. }
  4593. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4594. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4595. offload_func_kq(KQ_mask);
  4596. ggml_set_name(KQ_mask, "KQ_mask");
  4597. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4598. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4599. float * data = (float *) KQ_mask->data;
  4600. memset(data, 0, ggml_nbytes(KQ_mask));
  4601. for (int h = 0; h < 1; ++h) {
  4602. for (int j = 0; j < n_tokens; ++j) {
  4603. const llama_pos pos = batch.pos[j];
  4604. const llama_seq_id seq_id = batch.seq_id[j][0];
  4605. for (int i = 0; i < n_kv; ++i) {
  4606. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4607. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4608. }
  4609. }
  4610. }
  4611. }
  4612. }
  4613. for (int il = 0; il < n_layer; ++il) {
  4614. struct ggml_tensor * attn_norm;
  4615. offload_func_t offload_func = llama_nop;
  4616. #ifdef GGML_USE_CUBLAS
  4617. if (il >= i_gpu_start) {
  4618. offload_func = ggml_cuda_assign_buffers_no_alloc;
  4619. }
  4620. #endif // GGML_USE_CUBLAS
  4621. // self-attention
  4622. // TODO: refactor into common function (shared with LLaMA)
  4623. {
  4624. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  4625. offload_func(attn_norm);
  4626. attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm);
  4627. offload_func(attn_norm);
  4628. if (1) {
  4629. cur = attn_norm;
  4630. }
  4631. // compute QKV
  4632. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4633. offload_func_kq(cur);
  4634. if (clamp_kqv > 0.0f) {
  4635. cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv);
  4636. offload_func_kq(cur);
  4637. }
  4638. const size_t wsize = ggml_type_size(cur->type);
  4639. struct ggml_tensor * Qcur = ggml_view_3d(
  4640. ctx0, cur, n_embd_head, n_head, n_tokens,
  4641. wsize * n_embd_head,
  4642. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4643. 0);
  4644. offload_func_kq(Qcur);
  4645. struct ggml_tensor * Kcur = ggml_view_3d(
  4646. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4647. wsize * n_embd_head,
  4648. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4649. wsize * n_embd_head * n_head);
  4650. offload_func_kq(Kcur);
  4651. struct ggml_tensor * tmpv = ggml_view_3d(
  4652. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4653. wsize * n_embd_head,
  4654. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4655. wsize * n_embd_head * (n_head + n_head_kv));
  4656. offload_func_kq(Kcur);
  4657. ggml_set_name(Qcur, "Qcur");
  4658. ggml_set_name(Kcur, "Kcur");
  4659. {
  4660. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4661. offload_func_v(Vcur);
  4662. offload_func_v(Vcur->src[0]->src[0]);
  4663. ggml_set_name(Vcur, "Vcur");
  4664. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4665. offload_func_kq(k);
  4666. ggml_set_name(k, "k");
  4667. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4668. ( n_ctx)*ggml_element_size(kv_self.v),
  4669. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4670. offload_func_v(v);
  4671. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4672. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4673. }
  4674. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  4675. offload_func_kq(Q);
  4676. ggml_set_name(Q, "Q");
  4677. struct ggml_tensor * K =
  4678. ggml_view_3d(ctx0, kv_self.k,
  4679. n_embd_head, n_kv, n_head_kv,
  4680. ggml_element_size(kv_self.k)*n_embd_gqa,
  4681. ggml_element_size(kv_self.k)*n_embd_head,
  4682. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4683. offload_func_kq(K);
  4684. ggml_set_name(K, "K");
  4685. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4686. offload_func_kq(KQ);
  4687. ggml_set_name(KQ, "KQ");
  4688. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4689. offload_func_kq(KQ_scaled);
  4690. ggml_set_name(KQ_scaled, "KQ_scaled");
  4691. // TODO: replace with ggml_add()
  4692. struct ggml_tensor * KQ_scaled_alibi =
  4693. ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias);
  4694. offload_func_kq(KQ_scaled_alibi);
  4695. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4696. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4697. offload_func_kq(KQ_masked);
  4698. ggml_set_name(KQ_masked, "KQ_masked");
  4699. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  4700. offload_func_v(KQ_soft_max);
  4701. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4702. struct ggml_tensor * V =
  4703. ggml_view_3d(ctx0, kv_self.v,
  4704. n_kv, n_embd_head, n_head_kv,
  4705. ggml_element_size(kv_self.v)*n_ctx,
  4706. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4707. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4708. offload_func_v(V);
  4709. ggml_set_name(V, "V");
  4710. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4711. offload_func_v(KQV);
  4712. ggml_set_name(KQV, "KQV");
  4713. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4714. offload_func_v(KQV_merged);
  4715. ggml_set_name(KQV_merged, "KQV_merged");
  4716. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4717. offload_func_v(cur);
  4718. ggml_set_name(cur, "KQV_merged_contiguous");
  4719. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4720. offload_func(cur);
  4721. ggml_set_name(cur, "result_wo");
  4722. }
  4723. // Add the input
  4724. cur = ggml_add(ctx0, cur, inpL);
  4725. offload_func(cur);
  4726. struct ggml_tensor * attn_out = cur;
  4727. // feed forward
  4728. {
  4729. // Norm
  4730. {
  4731. cur = ggml_norm(ctx0, attn_out, norm_eps);
  4732. offload_func(cur);
  4733. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  4734. offload_func(cur);
  4735. }
  4736. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4737. offload_func(cur);
  4738. cur = ggml_gelu(ctx0, cur);
  4739. offload_func(cur);
  4740. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4741. offload_func(cur);
  4742. }
  4743. cur = ggml_add(ctx0, cur, attn_out);
  4744. offload_func(cur);
  4745. // input for next layer
  4746. inpL = cur;
  4747. }
  4748. cur = inpL;
  4749. // norm
  4750. {
  4751. cur = ggml_norm(ctx0, cur, norm_eps);
  4752. offload_func_nr(cur);
  4753. cur = ggml_mul(ctx0, cur, model.output_norm);
  4754. ggml_set_name(cur, "result_norm");
  4755. }
  4756. cur = ggml_mul_mat(ctx0, model.output, cur);
  4757. ggml_set_name(cur, "result_output");
  4758. ggml_build_forward_expand(gf, cur);
  4759. ggml_free(ctx0);
  4760. return gf;
  4761. }
  4762. static struct ggml_cgraph * llama_build_graph(
  4763. llama_context & lctx,
  4764. const llama_batch & batch) {
  4765. const auto & model = lctx.model;
  4766. struct ggml_cgraph * result = NULL;
  4767. switch (model.arch) {
  4768. case LLM_ARCH_LLAMA:
  4769. {
  4770. result = llm_build_llama(lctx, batch);
  4771. } break;
  4772. case LLM_ARCH_BAICHUAN:
  4773. {
  4774. result = llm_build_baichaun(lctx, batch);
  4775. } break;
  4776. case LLM_ARCH_FALCON:
  4777. {
  4778. result = llm_build_falcon(lctx, batch);
  4779. } break;
  4780. case LLM_ARCH_STARCODER:
  4781. {
  4782. result = llm_build_starcoder(lctx, batch);
  4783. } break;
  4784. case LLM_ARCH_PERSIMMON:
  4785. {
  4786. result = llm_build_persimmon(lctx, batch);
  4787. } break;
  4788. case LLM_ARCH_REFACT:
  4789. {
  4790. result = llm_build_refact(lctx, batch);
  4791. } break;
  4792. case LLM_ARCH_BLOOM:
  4793. {
  4794. result = llm_build_bloom(lctx, batch);
  4795. } break;
  4796. case LLM_ARCH_MPT:
  4797. {
  4798. result = llm_build_mpt(lctx, batch);
  4799. } break;
  4800. default:
  4801. GGML_ASSERT(false);
  4802. }
  4803. return result;
  4804. }
  4805. // decode a batch of tokens by evaluating the transformer
  4806. //
  4807. // - lctx: llama context
  4808. // - batch: batch to evaluate
  4809. //
  4810. // return 0 on success
  4811. // return positive int on warning
  4812. // return negative int on error
  4813. //
  4814. static int llama_decode_internal(
  4815. llama_context & lctx,
  4816. llama_batch batch) {
  4817. const uint32_t n_tokens = batch.n_tokens;
  4818. if (n_tokens == 0) {
  4819. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  4820. return -1;
  4821. }
  4822. const auto & model = lctx.model;
  4823. const auto & hparams = model.hparams;
  4824. const auto & cparams = lctx.cparams;
  4825. const auto n_batch = cparams.n_batch;
  4826. GGML_ASSERT(n_tokens <= n_batch);
  4827. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  4828. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  4829. const int64_t t_start_us = ggml_time_us();
  4830. #ifdef GGML_USE_MPI
  4831. // TODO: needs fix after #3228
  4832. GGML_ASSERT(false && "not implemented");
  4833. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  4834. #endif
  4835. GGML_ASSERT(n_threads > 0);
  4836. auto & kv_self = lctx.kv_self;
  4837. GGML_ASSERT(!!kv_self.ctx);
  4838. const int64_t n_embd = hparams.n_embd;
  4839. const int64_t n_vocab = hparams.n_vocab;
  4840. // helpers for smoother batch API transistion
  4841. // after deprecating the llama_eval calls, these will be removed
  4842. std::vector<llama_pos> pos;
  4843. std::vector<int32_t> n_seq_id;
  4844. std::vector<llama_seq_id *> seq_id_arr;
  4845. std::vector<std::vector<llama_seq_id>> seq_id;
  4846. if (batch.pos == nullptr) {
  4847. pos.resize(n_tokens);
  4848. for (uint32_t i = 0; i < n_tokens; i++) {
  4849. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  4850. }
  4851. batch.pos = pos.data();
  4852. }
  4853. if (batch.seq_id == nullptr) {
  4854. n_seq_id.resize(n_tokens);
  4855. seq_id.resize(n_tokens);
  4856. seq_id_arr.resize(n_tokens);
  4857. for (uint32_t i = 0; i < n_tokens; i++) {
  4858. n_seq_id[i] = 1;
  4859. seq_id[i].resize(1);
  4860. seq_id[i][0] = batch.all_seq_id;
  4861. seq_id_arr[i] = seq_id[i].data();
  4862. }
  4863. batch.n_seq_id = n_seq_id.data();
  4864. batch.seq_id = seq_id_arr.data();
  4865. }
  4866. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  4867. return 1;
  4868. }
  4869. // a heuristic, to avoid attending the full cache if it is not yet utilized
  4870. // after enough generations, the benefit from this heuristic disappears
  4871. // if we start defragmenting the cache, the benefit from this will be more important
  4872. //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
  4873. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
  4874. //printf("kv_self.n = %d\n", kv_self.n);
  4875. ggml_allocr_reset(lctx.alloc);
  4876. ggml_cgraph * gf = llama_build_graph(lctx, batch);
  4877. ggml_allocr_alloc_graph(lctx.alloc, gf);
  4878. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  4879. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  4880. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  4881. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  4882. #ifdef GGML_USE_CUBLAS
  4883. for (int i = 0; i < gf->n_leafs; i++) {
  4884. ggml_tensor * node = gf->leafs[i];
  4885. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4886. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4887. ggml_cuda_copy_to_device(node);
  4888. }
  4889. }
  4890. for (int i = 0; i < gf->n_nodes; i++) {
  4891. ggml_tensor * node = gf->nodes[i];
  4892. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4893. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4894. }
  4895. }
  4896. ggml_cuda_set_mul_mat_q(cparams.mul_mat_q);
  4897. // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed
  4898. if (!lctx.embedding.empty()) {
  4899. embeddings->backend = GGML_BACKEND_CPU;
  4900. }
  4901. res->backend = GGML_BACKEND_CPU;
  4902. #endif
  4903. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  4904. // for big prompts, if BLAS is enabled, it is better to use only one thread
  4905. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  4906. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  4907. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  4908. // with the BLAS calls. need a better solution
  4909. if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  4910. n_threads = std::min(4, n_threads);
  4911. }
  4912. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  4913. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
  4914. model.arch == LLM_ARCH_BAICHUAN ||
  4915. model.arch == LLM_ARCH_FALCON ||
  4916. model.arch == LLM_ARCH_REFACT ||
  4917. model.arch == LLM_ARCH_MPT;
  4918. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  4919. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  4920. n_threads = 1;
  4921. }
  4922. #if GGML_USE_MPI
  4923. const int64_t n_layer = hparams.n_layer;
  4924. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  4925. #endif
  4926. #ifdef GGML_USE_METAL
  4927. if (lctx.ctx_metal) {
  4928. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  4929. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  4930. } else {
  4931. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4932. }
  4933. #else
  4934. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4935. #endif
  4936. #if GGML_USE_MPI
  4937. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  4938. #endif
  4939. // update the kv ring buffer
  4940. lctx.kv_self.has_shift = false;
  4941. lctx.kv_self.head += n_tokens;
  4942. // Ensure kv cache head points to a valid index.
  4943. if (lctx.kv_self.head >= lctx.kv_self.size) {
  4944. lctx.kv_self.head = 0;
  4945. }
  4946. #ifdef GGML_PERF
  4947. // print timing information per ggml operation (for debugging purposes)
  4948. // requires GGML_PERF to be defined
  4949. ggml_graph_print(gf);
  4950. #endif
  4951. // plot the computation graph in dot format (for debugging purposes)
  4952. //if (n_past%100 == 0) {
  4953. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  4954. //}
  4955. // extract logits
  4956. {
  4957. auto & logits_out = lctx.logits;
  4958. if (batch.logits) {
  4959. logits_out.resize(n_vocab * n_tokens);
  4960. for (uint32_t i = 0; i < n_tokens; i++) {
  4961. if (batch.logits[i] == 0) {
  4962. continue;
  4963. }
  4964. memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
  4965. }
  4966. } else if (lctx.logits_all) {
  4967. logits_out.resize(n_vocab * n_tokens);
  4968. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
  4969. } else {
  4970. logits_out.resize(n_vocab);
  4971. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
  4972. }
  4973. }
  4974. // extract embeddings
  4975. if (!lctx.embedding.empty()) {
  4976. auto & embedding_out = lctx.embedding;
  4977. embedding_out.resize(n_embd);
  4978. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
  4979. }
  4980. // measure the performance only for the single-token evals
  4981. if (n_tokens == 1) {
  4982. lctx.t_eval_us += ggml_time_us() - t_start_us;
  4983. lctx.n_eval++;
  4984. }
  4985. else if (n_tokens > 1) {
  4986. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  4987. lctx.n_p_eval += n_tokens;
  4988. }
  4989. // get a more accurate load time, upon first eval
  4990. // TODO: fix this
  4991. if (!lctx.has_evaluated_once) {
  4992. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  4993. lctx.has_evaluated_once = true;
  4994. }
  4995. return 0;
  4996. }
  4997. //
  4998. // tokenizer
  4999. //
  5000. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  5001. return vocab.type;
  5002. }
  5003. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  5004. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  5005. }
  5006. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  5007. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  5008. }
  5009. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  5010. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  5011. }
  5012. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  5013. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  5014. }
  5015. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  5016. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  5017. }
  5018. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  5019. GGML_ASSERT(llama_is_byte_token(vocab, id));
  5020. const auto& token_data = vocab.id_to_token.at(id);
  5021. switch (llama_vocab_get_type(vocab)) {
  5022. case LLAMA_VOCAB_TYPE_SPM: {
  5023. auto buf = token_data.text.substr(3, 2);
  5024. return strtol(buf.c_str(), NULL, 16);
  5025. }
  5026. case LLAMA_VOCAB_TYPE_BPE: {
  5027. GGML_ASSERT(false);
  5028. return unicode_to_bytes_bpe(token_data.text);
  5029. }
  5030. default:
  5031. GGML_ASSERT(false);
  5032. }
  5033. }
  5034. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  5035. static const char * hex = "0123456789ABCDEF";
  5036. switch (llama_vocab_get_type(vocab)) {
  5037. case LLAMA_VOCAB_TYPE_SPM: {
  5038. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  5039. return vocab.token_to_id.at(buf);
  5040. }
  5041. case LLAMA_VOCAB_TYPE_BPE: {
  5042. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  5043. }
  5044. default:
  5045. GGML_ASSERT(false);
  5046. }
  5047. }
  5048. static void llama_escape_whitespace(std::string & text) {
  5049. replace_all(text, " ", "\xe2\x96\x81");
  5050. }
  5051. static void llama_unescape_whitespace(std::string & word) {
  5052. replace_all(word, "\xe2\x96\x81", " ");
  5053. }
  5054. struct llm_symbol {
  5055. using index = int;
  5056. index prev;
  5057. index next;
  5058. const char * text;
  5059. size_t n;
  5060. };
  5061. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  5062. // SPM tokenizer
  5063. // original implementation:
  5064. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  5065. struct llm_bigram_spm {
  5066. struct comparator {
  5067. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  5068. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  5069. }
  5070. };
  5071. using queue_storage = std::vector<llm_bigram_spm>;
  5072. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  5073. llm_symbol::index left;
  5074. llm_symbol::index right;
  5075. float score;
  5076. size_t size;
  5077. };
  5078. struct llm_tokenizer_spm {
  5079. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  5080. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5081. // split string into utf8 chars
  5082. int index = 0;
  5083. size_t offs = 0;
  5084. while (offs < text.size()) {
  5085. llm_symbol sym;
  5086. size_t len = utf8_len(text[offs]);
  5087. sym.text = text.c_str() + offs;
  5088. sym.n = std::min(len, text.size() - offs);
  5089. offs += sym.n;
  5090. sym.prev = index - 1;
  5091. sym.next = offs == text.size() ? -1 : index + 1;
  5092. index++;
  5093. symbols.emplace_back(sym);
  5094. }
  5095. // seed the work queue with all possible 2-character tokens.
  5096. for (size_t i = 1; i < symbols.size(); ++i) {
  5097. try_add_bigram(i - 1, i);
  5098. }
  5099. // keep substituting the highest frequency pairs for as long as we can.
  5100. while (!work_queue.empty()) {
  5101. auto bigram = work_queue.top();
  5102. work_queue.pop();
  5103. auto & left_sym = symbols[bigram.left];
  5104. auto & right_sym = symbols[bigram.right];
  5105. // if one of the symbols already got merged, skip it.
  5106. if (left_sym.n == 0 || right_sym.n == 0 ||
  5107. left_sym.n + right_sym.n != bigram.size) {
  5108. continue;
  5109. }
  5110. // merge the right sym into the left one
  5111. left_sym.n += right_sym.n;
  5112. right_sym.n = 0;
  5113. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  5114. // remove the right sym from the chain
  5115. left_sym.next = right_sym.next;
  5116. if (right_sym.next >= 0) {
  5117. symbols[right_sym.next].prev = bigram.left;
  5118. }
  5119. // find more substitutions
  5120. try_add_bigram(left_sym.prev, bigram.left);
  5121. try_add_bigram(bigram.left, left_sym.next);
  5122. }
  5123. for (int i = 0; i != -1; i = symbols[i].next) {
  5124. auto & symbol = symbols[i];
  5125. resegment(symbol, output);
  5126. }
  5127. }
  5128. private:
  5129. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  5130. auto text = std::string(symbol.text, symbol.n);
  5131. auto token = vocab.token_to_id.find(text);
  5132. // Do we need to support is_unused?
  5133. if (token != vocab.token_to_id.end()) {
  5134. output.push_back((*token).second);
  5135. return;
  5136. }
  5137. const auto p = rev_merge.find(text);
  5138. if (p == rev_merge.end()) {
  5139. // output any symbols that did not form tokens as bytes.
  5140. for (int j = 0; j < (int)symbol.n; ++j) {
  5141. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  5142. output.push_back(token_id);
  5143. }
  5144. return;
  5145. }
  5146. resegment(symbols[p->second.first], output);
  5147. resegment(symbols[p->second.second], output);
  5148. }
  5149. void try_add_bigram(int left, int right) {
  5150. if (left == -1 || right == -1) {
  5151. return;
  5152. }
  5153. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  5154. auto token = vocab.token_to_id.find(text);
  5155. if (token == vocab.token_to_id.end()) {
  5156. return;
  5157. }
  5158. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  5159. return;
  5160. }
  5161. const auto & tok_data = vocab.id_to_token[(*token).second];
  5162. llm_bigram_spm bigram;
  5163. bigram.left = left;
  5164. bigram.right = right;
  5165. bigram.score = tok_data.score;
  5166. bigram.size = text.size();
  5167. work_queue.push(bigram);
  5168. // Do we need to support is_unused?
  5169. rev_merge[text] = std::make_pair(left, right);
  5170. }
  5171. const llama_vocab & vocab;
  5172. std::vector<llm_symbol> symbols;
  5173. llm_bigram_spm::queue work_queue;
  5174. std::map<std::string, std::pair<int, int>> rev_merge;
  5175. };
  5176. // BPE tokenizer
  5177. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  5178. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  5179. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  5180. struct llm_bigram_bpe {
  5181. struct comparator {
  5182. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  5183. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  5184. }
  5185. };
  5186. using queue_storage = std::vector<llm_bigram_bpe>;
  5187. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  5188. llm_symbol::index left;
  5189. llm_symbol::index right;
  5190. std::string text;
  5191. int rank;
  5192. size_t size;
  5193. };
  5194. struct llm_tokenizer_bpe {
  5195. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  5196. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5197. int final_prev_index = -1;
  5198. auto word_collection = bpe_gpt2_preprocess(text);
  5199. symbols_final.clear();
  5200. for (auto & word : word_collection) {
  5201. work_queue = llm_bigram_bpe::queue();
  5202. symbols.clear();
  5203. int index = 0;
  5204. size_t offset = 0;
  5205. while (offset < word.size()) {
  5206. llm_symbol sym;
  5207. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  5208. sym.text = word.c_str() + offset;
  5209. sym.n = char_len;
  5210. offset += sym.n;
  5211. sym.prev = index - 1;
  5212. sym.next = offset == word.size() ? -1 : index + 1;
  5213. index++;
  5214. symbols.emplace_back(sym);
  5215. }
  5216. for (size_t i = 1; i < symbols.size(); ++i) {
  5217. add_new_bigram(i - 1, i);
  5218. }
  5219. // build token(s)
  5220. while (!work_queue.empty()) {
  5221. auto bigram = work_queue.top();
  5222. work_queue.pop();
  5223. auto & left_symbol = symbols[bigram.left];
  5224. auto & right_symbol = symbols[bigram.right];
  5225. if (left_symbol.n == 0 || right_symbol.n == 0) {
  5226. continue;
  5227. }
  5228. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  5229. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  5230. if (left_token + right_token != bigram.text) {
  5231. continue; // Skip this bigram if it's outdated
  5232. }
  5233. // merge the right sym into the left one
  5234. left_symbol.n += right_symbol.n;
  5235. right_symbol.n = 0;
  5236. // remove the right sym from the chain
  5237. left_symbol.next = right_symbol.next;
  5238. if (right_symbol.next >= 0) {
  5239. symbols[right_symbol.next].prev = bigram.left;
  5240. }
  5241. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  5242. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  5243. }
  5244. // add the fnished tokens to the final list keeping correct order for next and prev
  5245. for (auto & sym : symbols) {
  5246. if (sym.n > 0) {
  5247. sym.prev = final_prev_index;
  5248. sym.next = -1;
  5249. if (final_prev_index != -1) {
  5250. symbols_final[final_prev_index].next = symbols_final.size();
  5251. }
  5252. symbols_final.emplace_back(sym);
  5253. final_prev_index = symbols_final.size() - 1;
  5254. }
  5255. }
  5256. }
  5257. symbols = symbols_final;
  5258. if (!symbols.empty()) {
  5259. for (int i = 0; i != -1; i = symbols[i].next) {
  5260. auto & symbol = symbols[i];
  5261. if (symbol.n == 0) {
  5262. continue;
  5263. }
  5264. const std::string str = std::string(symbol.text, symbol.n);
  5265. const auto token = vocab.token_to_id.find(str);
  5266. if (token == vocab.token_to_id.end()) {
  5267. for (auto j = str.begin(); j != str.end(); ++j) {
  5268. std::string byte_str(1, *j);
  5269. auto token_multibyte = vocab.token_to_id.find(byte_str);
  5270. if (token_multibyte == vocab.token_to_id.end()) {
  5271. throw std::runtime_error("ERROR: byte not found in vocab");
  5272. }
  5273. output.push_back((*token_multibyte).second);
  5274. }
  5275. } else {
  5276. output.push_back((*token).second);
  5277. }
  5278. }
  5279. }
  5280. }
  5281. private:
  5282. void add_new_bigram(int left, int right) {
  5283. if (left == -1 || right == -1) {
  5284. return;
  5285. }
  5286. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  5287. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  5288. int rank_found = -1;
  5289. rank_found = vocab.find_bpe_rank(left_token, right_token);
  5290. if (rank_found < 0) {
  5291. return;
  5292. }
  5293. llm_bigram_bpe bigram;
  5294. bigram.left = left;
  5295. bigram.right = right;
  5296. bigram.text = left_token + right_token;
  5297. bigram.size = left_token.size() + right_token.size();
  5298. bigram.rank = rank_found;
  5299. work_queue.push(bigram);
  5300. }
  5301. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  5302. std::vector<std::string> bpe_words;
  5303. std::vector<std::string> bpe_encoded_words;
  5304. std::string token = "";
  5305. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  5306. bool collecting_numeric = false;
  5307. bool collecting_letter = false;
  5308. bool collecting_special = false;
  5309. bool collecting_whitespace_lookahead = false;
  5310. bool collecting = false;
  5311. std::vector<std::string> text_utf;
  5312. text_utf.reserve(text.size());
  5313. bpe_words.reserve(text.size());
  5314. bpe_encoded_words.reserve(text.size());
  5315. auto cps = codepoints_from_utf8(text);
  5316. for (size_t i = 0; i < cps.size(); ++i)
  5317. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  5318. for (int i = 0; i < (int)text_utf.size(); i++) {
  5319. const std::string & utf_char = text_utf[i];
  5320. bool split_condition = false;
  5321. int bytes_remain = text_utf.size() - i;
  5322. // forward backward lookups
  5323. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  5324. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  5325. // handling contractions
  5326. if (!split_condition && bytes_remain >= 2) {
  5327. // 's|'t|'m|'d
  5328. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  5329. split_condition = true;
  5330. }
  5331. if (split_condition) {
  5332. if (token.size()) {
  5333. bpe_words.emplace_back(token); // push previous content as token
  5334. }
  5335. token = utf_char + utf_char_next;
  5336. bpe_words.emplace_back(token);
  5337. token = "";
  5338. i++;
  5339. continue;
  5340. }
  5341. }
  5342. if (!split_condition && bytes_remain >= 3) {
  5343. // 're|'ve|'ll
  5344. if (utf_char == "\'" && (
  5345. (utf_char_next == "r" && utf_char_next_next == "e") ||
  5346. (utf_char_next == "v" && utf_char_next_next == "e") ||
  5347. (utf_char_next == "l" && utf_char_next_next == "l"))
  5348. ) {
  5349. split_condition = true;
  5350. }
  5351. if (split_condition) {
  5352. // current token + next token can be defined
  5353. if (token.size()) {
  5354. bpe_words.emplace_back(token); // push previous content as token
  5355. }
  5356. token = utf_char + utf_char_next + utf_char_next_next;
  5357. bpe_words.emplace_back(token); // the contraction
  5358. token = "";
  5359. i += 2;
  5360. continue;
  5361. }
  5362. }
  5363. if (!split_condition && !collecting) {
  5364. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  5365. collecting_letter = true;
  5366. collecting = true;
  5367. }
  5368. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5369. collecting_numeric = true;
  5370. collecting = true;
  5371. }
  5372. else if (
  5373. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  5374. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  5375. ) {
  5376. collecting_special = true;
  5377. collecting = true;
  5378. }
  5379. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  5380. collecting_whitespace_lookahead = true;
  5381. collecting = true;
  5382. }
  5383. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  5384. split_condition = true;
  5385. }
  5386. }
  5387. else if (!split_condition && collecting) {
  5388. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  5389. split_condition = true;
  5390. }
  5391. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  5392. split_condition = true;
  5393. }
  5394. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  5395. split_condition = true;
  5396. }
  5397. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5398. split_condition = true;
  5399. }
  5400. }
  5401. if (utf_char_next == "") {
  5402. split_condition = true; // final
  5403. token += utf_char;
  5404. }
  5405. if (split_condition) {
  5406. if (token.size()) {
  5407. bpe_words.emplace_back(token);
  5408. }
  5409. token = utf_char;
  5410. collecting = false;
  5411. collecting_letter = false;
  5412. collecting_numeric = false;
  5413. collecting_special = false;
  5414. collecting_whitespace_lookahead = false;
  5415. }
  5416. else {
  5417. token += utf_char;
  5418. }
  5419. }
  5420. for (std::string & word : bpe_words) {
  5421. std::string encoded_token = "";
  5422. for (char & c : word) {
  5423. encoded_token += bytes_to_unicode_bpe(c);
  5424. }
  5425. bpe_encoded_words.emplace_back(encoded_token);
  5426. }
  5427. return bpe_encoded_words;
  5428. }
  5429. const llama_vocab & vocab;
  5430. std::vector<llm_symbol> symbols;
  5431. std::vector<llm_symbol> symbols_final;
  5432. llm_bigram_bpe::queue work_queue;
  5433. };
  5434. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
  5435. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  5436. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  5437. } FRAGMENT_BUFFER_VARIANT_TYPE;
  5438. struct fragment_buffer_variant{
  5439. fragment_buffer_variant(llama_vocab::id _token)
  5440. :
  5441. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  5442. token(_token),
  5443. raw_text(_dummy),
  5444. offset(0),
  5445. length(0){}
  5446. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  5447. :
  5448. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  5449. token((llama_vocab::id)-1),
  5450. raw_text(_raw_text),
  5451. offset(_offset),
  5452. length(_length){
  5453. GGML_ASSERT( _offset >= 0 );
  5454. GGML_ASSERT( _length >= 1 );
  5455. GGML_ASSERT( offset + length <= raw_text.length() );
  5456. }
  5457. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  5458. const llama_vocab::id token;
  5459. const std::string _dummy;
  5460. const std::string & raw_text;
  5461. const uint64_t offset;
  5462. const uint64_t length;
  5463. };
  5464. // #define PRETOKENIZERDEBUG
  5465. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
  5466. {
  5467. // for each special token
  5468. for (const auto & st: vocab.special_tokens_cache) {
  5469. const auto & special_token = st.first;
  5470. const auto & special_id = st.second;
  5471. // for each text fragment
  5472. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  5473. while (it != buffer.end()) {
  5474. auto & fragment = (*it);
  5475. // if a fragment is text ( not yet processed )
  5476. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  5477. auto * raw_text = &(fragment.raw_text);
  5478. auto raw_text_base_offset = fragment.offset;
  5479. auto raw_text_base_length = fragment.length;
  5480. // loop over the text
  5481. while (true) {
  5482. // find the first occurence of a given special token in this fragment
  5483. // passing offset argument only limit the "search area" but match coordinates
  5484. // are still relative to the source full raw_text
  5485. auto match = raw_text->find(special_token, raw_text_base_offset);
  5486. // no occurences found, stop processing this fragment for a given special token
  5487. if (match == std::string::npos) break;
  5488. // check if match is within bounds of offset <-> length
  5489. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  5490. #ifdef PRETOKENIZERDEBUG
  5491. fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5492. #endif
  5493. auto source = std::distance(buffer.begin(), it);
  5494. // if match is further than base offset
  5495. // then we have some text to the left of it
  5496. if (match > raw_text_base_offset) {
  5497. // left
  5498. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  5499. const int64_t left_reminder_length = match - raw_text_base_offset;
  5500. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  5501. #ifdef PRETOKENIZERDEBUG
  5502. fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  5503. #endif
  5504. it++;
  5505. }
  5506. // special token
  5507. buffer.emplace_after(it, special_id);
  5508. it++;
  5509. // right
  5510. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  5511. const int64_t right_reminder_offset = match + special_token.length();
  5512. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  5513. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  5514. #ifdef PRETOKENIZERDEBUG
  5515. fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  5516. #endif
  5517. it++;
  5518. if (source == 0) {
  5519. buffer.erase_after(buffer.before_begin());
  5520. } else {
  5521. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5522. }
  5523. // repeat for the right side
  5524. raw_text_base_offset = right_reminder_offset;
  5525. raw_text_base_length = right_reminder_length;
  5526. #ifdef PRETOKENIZERDEBUG
  5527. fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5528. #endif
  5529. } else {
  5530. if (source == 0) {
  5531. buffer.erase_after(buffer.before_begin());
  5532. } else {
  5533. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5534. }
  5535. break;
  5536. }
  5537. }
  5538. }
  5539. it++;
  5540. }
  5541. }
  5542. }
  5543. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  5544. std::vector<llama_vocab::id> output;
  5545. // OG tokenizer behavior:
  5546. //
  5547. // tokenizer.encode('', add_bos=True) returns [1]
  5548. // tokenizer.encode('', add_bos=False) returns []
  5549. if (bos && vocab.special_bos_id != -1) {
  5550. output.push_back(vocab.special_bos_id);
  5551. }
  5552. if (raw_text.empty()) {
  5553. return output;
  5554. }
  5555. std::forward_list<fragment_buffer_variant> fragment_buffer;
  5556. fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
  5557. if (special) tokenizer_st_partition( vocab, fragment_buffer );
  5558. switch (vocab.type) {
  5559. case LLAMA_VOCAB_TYPE_SPM:
  5560. {
  5561. for (const auto & fragment: fragment_buffer)
  5562. {
  5563. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5564. {
  5565. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  5566. // TODO: It's likely possible to get rid of this string copy entirely
  5567. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  5568. // and passing 'add space prefix' as bool argument
  5569. //
  5570. auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
  5571. #ifdef PRETOKENIZERDEBUG
  5572. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5573. #endif
  5574. llm_tokenizer_spm tokenizer(vocab);
  5575. llama_escape_whitespace(raw_text);
  5576. tokenizer.tokenize(raw_text, output);
  5577. }
  5578. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5579. {
  5580. output.push_back(fragment.token);
  5581. }
  5582. }
  5583. } break;
  5584. case LLAMA_VOCAB_TYPE_BPE:
  5585. {
  5586. for (const auto & fragment: fragment_buffer)
  5587. {
  5588. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5589. {
  5590. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  5591. #ifdef PRETOKENIZERDEBUG
  5592. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5593. #endif
  5594. llm_tokenizer_bpe tokenizer(vocab);
  5595. tokenizer.tokenize(raw_text, output);
  5596. }
  5597. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5598. {
  5599. output.push_back(fragment.token);
  5600. }
  5601. }
  5602. } break;
  5603. }
  5604. return output;
  5605. }
  5606. //
  5607. // grammar - internal
  5608. //
  5609. struct llama_partial_utf8 {
  5610. uint32_t value; // bit value so far (unshifted)
  5611. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  5612. };
  5613. struct llama_grammar {
  5614. const std::vector<std::vector<llama_grammar_element>> rules;
  5615. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5616. // buffer for partially generated UTF-8 sequence from accepted tokens
  5617. llama_partial_utf8 partial_utf8;
  5618. };
  5619. struct llama_grammar_candidate {
  5620. size_t index;
  5621. const uint32_t * code_points;
  5622. llama_partial_utf8 partial_utf8;
  5623. };
  5624. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  5625. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  5626. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  5627. const char * src,
  5628. llama_partial_utf8 partial_start) {
  5629. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  5630. const char * pos = src;
  5631. std::vector<uint32_t> code_points;
  5632. uint32_t value = partial_start.value;
  5633. int n_remain = partial_start.n_remain;
  5634. // continue previous decode, if applicable
  5635. while (*pos != 0 && n_remain > 0) {
  5636. uint8_t next_byte = static_cast<uint8_t>(*pos);
  5637. if ((next_byte >> 6) != 2) {
  5638. // invalid sequence, abort
  5639. code_points.push_back(0);
  5640. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  5641. }
  5642. value = (value << 6) + (next_byte & 0x3F);
  5643. ++pos;
  5644. --n_remain;
  5645. }
  5646. if (partial_start.n_remain > 0 && n_remain == 0) {
  5647. code_points.push_back(value);
  5648. }
  5649. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  5650. while (*pos != 0) {
  5651. uint8_t first_byte = static_cast<uint8_t>(*pos);
  5652. uint8_t highbits = first_byte >> 4;
  5653. n_remain = lookup[highbits] - 1;
  5654. if (n_remain < 0) {
  5655. // invalid sequence, abort
  5656. code_points.clear();
  5657. code_points.push_back(0);
  5658. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  5659. }
  5660. uint8_t mask = (1 << (7 - n_remain)) - 1;
  5661. value = first_byte & mask;
  5662. ++pos;
  5663. while (*pos != 0 && n_remain > 0) {
  5664. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  5665. ++pos;
  5666. --n_remain;
  5667. }
  5668. if (n_remain == 0) {
  5669. code_points.push_back(value);
  5670. }
  5671. }
  5672. code_points.push_back(0);
  5673. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  5674. }
  5675. // returns true iff pos points to the end of one of the definitions of a rule
  5676. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  5677. switch (pos->type) {
  5678. case LLAMA_GRETYPE_END: return true; // NOLINT
  5679. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  5680. default: return false;
  5681. }
  5682. }
  5683. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  5684. // asserts that pos is pointing to a char range element
  5685. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  5686. const llama_grammar_element * pos,
  5687. const uint32_t chr) {
  5688. bool found = false;
  5689. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5690. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  5691. do {
  5692. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5693. // inclusive range, e.g. [a-z]
  5694. found = found || (pos->value <= chr && chr <= pos[1].value);
  5695. pos += 2;
  5696. } else {
  5697. // exact char match, e.g. [a] or "a"
  5698. found = found || pos->value == chr;
  5699. pos += 1;
  5700. }
  5701. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5702. return std::make_pair(found == is_positive_char, pos);
  5703. }
  5704. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  5705. // range at pos (regular or inverse range)
  5706. // asserts that pos is pointing to a char range element
  5707. static bool llama_grammar_match_partial_char(
  5708. const llama_grammar_element * pos,
  5709. const llama_partial_utf8 partial_utf8) {
  5710. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5711. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  5712. uint32_t partial_value = partial_utf8.value;
  5713. int n_remain = partial_utf8.n_remain;
  5714. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  5715. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  5716. return false;
  5717. }
  5718. // range of possible code points this partial UTF-8 sequence could complete to
  5719. uint32_t low = partial_value << (n_remain * 6);
  5720. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  5721. if (low == 0) {
  5722. if (n_remain == 2) {
  5723. low = 1 << 11;
  5724. } else if (n_remain == 3) {
  5725. low = 1 << 16;
  5726. }
  5727. }
  5728. do {
  5729. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5730. // inclusive range, e.g. [a-z]
  5731. if (pos->value <= high && low <= pos[1].value) {
  5732. return is_positive_char;
  5733. }
  5734. pos += 2;
  5735. } else {
  5736. // exact char match, e.g. [a] or "a"
  5737. if (low <= pos->value && pos->value <= high) {
  5738. return is_positive_char;
  5739. }
  5740. pos += 1;
  5741. }
  5742. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5743. return !is_positive_char;
  5744. }
  5745. // transforms a grammar pushdown stack into N possible stacks, all ending
  5746. // at a character range (terminal element)
  5747. static void llama_grammar_advance_stack(
  5748. const std::vector<std::vector<llama_grammar_element>> & rules,
  5749. const std::vector<const llama_grammar_element *> & stack,
  5750. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  5751. if (stack.empty()) {
  5752. new_stacks.emplace_back(stack);
  5753. return;
  5754. }
  5755. const llama_grammar_element * pos = stack.back();
  5756. switch (pos->type) {
  5757. case LLAMA_GRETYPE_RULE_REF: {
  5758. const size_t rule_id = static_cast<size_t>(pos->value);
  5759. const llama_grammar_element * subpos = rules[rule_id].data();
  5760. do {
  5761. // init new stack without the top (pos)
  5762. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5763. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  5764. // if this rule ref is followed by another element, add that to stack
  5765. new_stack.push_back(pos + 1);
  5766. }
  5767. if (!llama_grammar_is_end_of_sequence(subpos)) {
  5768. // if alternate is nonempty, add to stack
  5769. new_stack.push_back(subpos);
  5770. }
  5771. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5772. while (!llama_grammar_is_end_of_sequence(subpos)) {
  5773. // scan to end of alternate def
  5774. subpos++;
  5775. }
  5776. if (subpos->type == LLAMA_GRETYPE_ALT) {
  5777. // there's another alternate def of this rule to process
  5778. subpos++;
  5779. } else {
  5780. break;
  5781. }
  5782. } while (true);
  5783. break;
  5784. }
  5785. case LLAMA_GRETYPE_CHAR:
  5786. case LLAMA_GRETYPE_CHAR_NOT:
  5787. new_stacks.emplace_back(stack);
  5788. break;
  5789. default:
  5790. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  5791. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  5792. // those
  5793. GGML_ASSERT(false);
  5794. }
  5795. }
  5796. // takes a set of possible pushdown stacks on a grammar, which are required to
  5797. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  5798. // produces the N possible stacks if the given char is accepted at those
  5799. // positions
  5800. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  5801. const std::vector<std::vector<llama_grammar_element>> & rules,
  5802. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5803. const uint32_t chr) {
  5804. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  5805. for (const auto & stack : stacks) {
  5806. if (stack.empty()) {
  5807. continue;
  5808. }
  5809. auto match = llama_grammar_match_char(stack.back(), chr);
  5810. if (match.first) {
  5811. const llama_grammar_element * pos = match.second;
  5812. // update top of stack to next element, if any
  5813. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5814. if (!llama_grammar_is_end_of_sequence(pos)) {
  5815. new_stack.push_back(pos);
  5816. }
  5817. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5818. }
  5819. }
  5820. return new_stacks;
  5821. }
  5822. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5823. const std::vector<std::vector<llama_grammar_element>> & rules,
  5824. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5825. const std::vector<llama_grammar_candidate> & candidates);
  5826. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  5827. const std::vector<std::vector<llama_grammar_element>> & rules,
  5828. const std::vector<const llama_grammar_element *> & stack,
  5829. const std::vector<llama_grammar_candidate> & candidates) {
  5830. std::vector<llama_grammar_candidate> rejects;
  5831. if (stack.empty()) {
  5832. for (const auto & tok : candidates) {
  5833. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  5834. rejects.push_back(tok);
  5835. }
  5836. }
  5837. return rejects;
  5838. }
  5839. const llama_grammar_element * stack_pos = stack.back();
  5840. std::vector<llama_grammar_candidate> next_candidates;
  5841. for (const auto & tok : candidates) {
  5842. if (*tok.code_points == 0) {
  5843. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  5844. // that cannot satisfy this position in grammar
  5845. if (tok.partial_utf8.n_remain != 0 &&
  5846. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  5847. rejects.push_back(tok);
  5848. }
  5849. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  5850. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  5851. } else {
  5852. rejects.push_back(tok);
  5853. }
  5854. }
  5855. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  5856. // update top of stack to next element, if any
  5857. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  5858. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  5859. stack_after.push_back(stack_pos_after);
  5860. }
  5861. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  5862. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  5863. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  5864. for (const auto & tok : next_rejects) {
  5865. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  5866. }
  5867. return rejects;
  5868. }
  5869. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5870. const std::vector<std::vector<llama_grammar_element>> & rules,
  5871. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5872. const std::vector<llama_grammar_candidate> & candidates) {
  5873. GGML_ASSERT(!stacks.empty()); // REVIEW
  5874. if (candidates.empty()) {
  5875. return std::vector<llama_grammar_candidate>();
  5876. }
  5877. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  5878. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  5879. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  5880. }
  5881. return rejects;
  5882. }
  5883. //
  5884. // grammar - external
  5885. //
  5886. struct llama_grammar * llama_grammar_init(
  5887. const llama_grammar_element ** rules,
  5888. size_t n_rules,
  5889. size_t start_rule_index) {
  5890. const llama_grammar_element * pos;
  5891. // copy rule definitions into vectors
  5892. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  5893. for (size_t i = 0; i < n_rules; i++) {
  5894. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  5895. vec_rules[i].push_back(*pos);
  5896. }
  5897. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  5898. }
  5899. // loop over alternates of start rule to build initial stacks
  5900. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5901. pos = rules[start_rule_index];
  5902. do {
  5903. std::vector<const llama_grammar_element *> stack;
  5904. if (!llama_grammar_is_end_of_sequence(pos)) {
  5905. // if alternate is nonempty, add to stack
  5906. stack.push_back(pos);
  5907. }
  5908. llama_grammar_advance_stack(vec_rules, stack, stacks);
  5909. while (!llama_grammar_is_end_of_sequence(pos)) {
  5910. // scan to end of alternate def
  5911. pos++;
  5912. }
  5913. if (pos->type == LLAMA_GRETYPE_ALT) {
  5914. // there's another alternate def of this rule to process
  5915. pos++;
  5916. } else {
  5917. break;
  5918. }
  5919. } while (true);
  5920. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  5921. }
  5922. void llama_grammar_free(struct llama_grammar * grammar) {
  5923. delete grammar;
  5924. }
  5925. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  5926. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  5927. // redirect elements in stacks to point to new rules
  5928. for (size_t is = 0; is < result->stacks.size(); is++) {
  5929. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  5930. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  5931. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  5932. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  5933. result->stacks[is][ie] = &result->rules[ir0][ir1];
  5934. }
  5935. }
  5936. }
  5937. }
  5938. }
  5939. return result;
  5940. }
  5941. //
  5942. // sampling
  5943. //
  5944. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5945. if (seed == LLAMA_DEFAULT_SEED) {
  5946. seed = time(NULL);
  5947. }
  5948. ctx->rng.seed(seed);
  5949. }
  5950. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  5951. GGML_ASSERT(candidates->size > 0);
  5952. const int64_t t_start_sample_us = ggml_time_us();
  5953. // Sort the logits in descending order
  5954. if (!candidates->sorted) {
  5955. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5956. return a.logit > b.logit;
  5957. });
  5958. candidates->sorted = true;
  5959. }
  5960. float max_l = candidates->data[0].logit;
  5961. float cum_sum = 0.0f;
  5962. for (size_t i = 0; i < candidates->size; ++i) {
  5963. float p = expf(candidates->data[i].logit - max_l);
  5964. candidates->data[i].p = p;
  5965. cum_sum += p;
  5966. }
  5967. for (size_t i = 0; i < candidates->size; ++i) {
  5968. candidates->data[i].p /= cum_sum;
  5969. }
  5970. if (ctx) {
  5971. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5972. }
  5973. }
  5974. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  5975. const int64_t t_start_sample_us = ggml_time_us();
  5976. k = std::max(k, (int) min_keep);
  5977. k = std::min(k, (int) candidates->size);
  5978. // Sort scores in descending order
  5979. if (!candidates->sorted) {
  5980. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  5981. return a.logit > b.logit;
  5982. };
  5983. if (k == (int) candidates->size) {
  5984. std::sort(candidates->data, candidates->data + candidates->size, comp);
  5985. } else {
  5986. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  5987. }
  5988. candidates->sorted = true;
  5989. }
  5990. candidates->size = k;
  5991. if (ctx) {
  5992. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5993. }
  5994. }
  5995. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5996. if (p >= 1.0f) {
  5997. return;
  5998. }
  5999. llama_sample_softmax(ctx, candidates);
  6000. const int64_t t_start_sample_us = ggml_time_us();
  6001. // Compute the cumulative probabilities
  6002. float cum_sum = 0.0f;
  6003. size_t last_idx = candidates->size;
  6004. for (size_t i = 0; i < candidates->size; ++i) {
  6005. cum_sum += candidates->data[i].p;
  6006. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  6007. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  6008. if (cum_sum >= p && i + 1 >= min_keep) {
  6009. last_idx = i + 1;
  6010. break;
  6011. }
  6012. }
  6013. // Resize the output vector to keep only the top-p tokens
  6014. candidates->size = last_idx;
  6015. if (ctx) {
  6016. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6017. }
  6018. }
  6019. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  6020. if (z >= 1.0f || candidates->size <= 2) {
  6021. return;
  6022. }
  6023. llama_sample_softmax(nullptr, candidates);
  6024. const int64_t t_start_sample_us = ggml_time_us();
  6025. // Compute the first and second derivatives
  6026. std::vector<float> first_derivatives(candidates->size - 1);
  6027. std::vector<float> second_derivatives(candidates->size - 2);
  6028. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  6029. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  6030. }
  6031. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6032. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  6033. }
  6034. // Calculate absolute value of second derivatives
  6035. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6036. second_derivatives[i] = std::abs(second_derivatives[i]);
  6037. }
  6038. // Normalize the second derivatives
  6039. {
  6040. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  6041. if (second_derivatives_sum > 1e-6f) {
  6042. for (float & value : second_derivatives) {
  6043. value /= second_derivatives_sum;
  6044. }
  6045. } else {
  6046. for (float & value : second_derivatives) {
  6047. value = 1.0f / second_derivatives.size();
  6048. }
  6049. }
  6050. }
  6051. float cum_sum = 0.0f;
  6052. size_t last_idx = candidates->size;
  6053. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6054. cum_sum += second_derivatives[i];
  6055. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  6056. if (cum_sum > z && i >= min_keep) {
  6057. last_idx = i;
  6058. break;
  6059. }
  6060. }
  6061. // Resize the output vector to keep only the tokens above the tail location
  6062. candidates->size = last_idx;
  6063. if (ctx) {
  6064. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6065. }
  6066. }
  6067. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  6068. // Reference implementation:
  6069. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  6070. if (p >= 1.0f) {
  6071. return;
  6072. }
  6073. // Compute the softmax of logits and calculate entropy
  6074. llama_sample_softmax(nullptr, candidates);
  6075. const int64_t t_start_sample_us = ggml_time_us();
  6076. float entropy = 0.0f;
  6077. for (size_t i = 0; i < candidates->size; ++i) {
  6078. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  6079. }
  6080. // Compute the absolute difference between negative log probability and entropy for each candidate
  6081. std::vector<float> shifted_scores;
  6082. for (size_t i = 0; i < candidates->size; ++i) {
  6083. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  6084. shifted_scores.push_back(shifted_score);
  6085. }
  6086. // Sort tokens based on the shifted_scores and their corresponding indices
  6087. std::vector<size_t> indices(candidates->size);
  6088. std::iota(indices.begin(), indices.end(), 0);
  6089. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  6090. return shifted_scores[a] < shifted_scores[b];
  6091. });
  6092. // Compute the cumulative probabilities
  6093. float cum_sum = 0.0f;
  6094. size_t last_idx = indices.size();
  6095. for (size_t i = 0; i < indices.size(); ++i) {
  6096. size_t idx = indices[i];
  6097. cum_sum += candidates->data[idx].p;
  6098. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  6099. if (cum_sum > p && i >= min_keep - 1) {
  6100. last_idx = i + 1;
  6101. break;
  6102. }
  6103. }
  6104. // Resize the output vector to keep only the locally typical tokens
  6105. std::vector<llama_token_data> new_candidates;
  6106. for (size_t i = 0; i < last_idx; ++i) {
  6107. size_t idx = indices[i];
  6108. new_candidates.push_back(candidates->data[idx]);
  6109. }
  6110. // Replace the data in candidates with the new_candidates data
  6111. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  6112. candidates->size = new_candidates.size();
  6113. if (ctx) {
  6114. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6115. }
  6116. }
  6117. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  6118. const int64_t t_start_sample_us = ggml_time_us();
  6119. for (size_t i = 0; i < candidates_p->size; ++i) {
  6120. candidates_p->data[i].logit /= temp;
  6121. }
  6122. if (ctx) {
  6123. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6124. }
  6125. }
  6126. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  6127. llama_sample_temp(ctx, candidates_p, temp);
  6128. }
  6129. void llama_sample_repetition_penalties(
  6130. struct llama_context * ctx,
  6131. llama_token_data_array * candidates,
  6132. const llama_token * last_tokens,
  6133. size_t penalty_last_n,
  6134. float penalty_repeat,
  6135. float penalty_freq,
  6136. float penalty_present) {
  6137. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  6138. return;
  6139. }
  6140. const int64_t t_start_sample_us = ggml_time_us();
  6141. // Create a frequency map to count occurrences of each token in last_tokens
  6142. std::unordered_map<llama_token, int> token_count;
  6143. for (size_t i = 0; i < penalty_last_n; ++i) {
  6144. token_count[last_tokens[i]]++;
  6145. }
  6146. // Apply frequency and presence penalties to the candidates
  6147. for (size_t i = 0; i < candidates->size; ++i) {
  6148. const auto token_iter = token_count.find(candidates->data[i].id);
  6149. if (token_iter == token_count.end()) {
  6150. continue;
  6151. }
  6152. const int count = token_iter->second;
  6153. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  6154. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  6155. if (candidates->data[i].logit <= 0) {
  6156. candidates->data[i].logit *= penalty_repeat;
  6157. } else {
  6158. candidates->data[i].logit /= penalty_repeat;
  6159. }
  6160. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  6161. }
  6162. candidates->sorted = false;
  6163. if (ctx) {
  6164. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6165. }
  6166. }
  6167. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  6168. GGML_ASSERT(ctx);
  6169. const int64_t t_start_sample_us = ggml_time_us();
  6170. bool allow_eos = false;
  6171. for (const auto & stack : grammar->stacks) {
  6172. if (stack.empty()) {
  6173. allow_eos = true;
  6174. break;
  6175. }
  6176. }
  6177. const llama_token eos = llama_token_eos(&ctx->model);
  6178. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  6179. std::vector<llama_grammar_candidate> candidates_grammar;
  6180. for (size_t i = 0; i < candidates->size; ++i) {
  6181. const llama_token id = candidates->data[i].id;
  6182. const std::string piece = llama_token_to_piece(ctx, id);
  6183. if (id == eos) {
  6184. if (!allow_eos) {
  6185. candidates->data[i].logit = -INFINITY;
  6186. }
  6187. } else if (piece.empty() || piece[0] == 0) {
  6188. candidates->data[i].logit = -INFINITY;
  6189. } else {
  6190. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  6191. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  6192. }
  6193. }
  6194. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  6195. for (const auto & reject : rejects) {
  6196. candidates->data[reject.index].logit = -INFINITY;
  6197. }
  6198. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6199. }
  6200. static void llama_log_softmax(float * array, size_t size) {
  6201. float max_l = *std::max_element(array, array + size);
  6202. float sum = 0.f;
  6203. for (size_t i = 0; i < size; ++i) {
  6204. float p = expf(array[i] - max_l);
  6205. sum += p;
  6206. array[i] = p;
  6207. }
  6208. for (size_t i = 0; i < size; ++i) {
  6209. array[i] = logf(array[i] / sum);
  6210. }
  6211. }
  6212. void llama_sample_classifier_free_guidance(
  6213. struct llama_context * ctx,
  6214. llama_token_data_array * candidates,
  6215. struct llama_context * guidance_ctx,
  6216. float scale) {
  6217. int64_t t_start_sample_us = ggml_time_us();
  6218. GGML_ASSERT(ctx);
  6219. auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  6220. GGML_ASSERT(n_vocab == (int)candidates->size);
  6221. GGML_ASSERT(!candidates->sorted);
  6222. std::vector<float> logits_base;
  6223. logits_base.reserve(candidates->size);
  6224. for (size_t i = 0; i < candidates->size; ++i) {
  6225. logits_base.push_back(candidates->data[i].logit);
  6226. }
  6227. llama_log_softmax(logits_base.data(), candidates->size);
  6228. float* logits_guidance = llama_get_logits(guidance_ctx);
  6229. llama_log_softmax(logits_guidance, n_vocab);
  6230. for (int i = 0; i < n_vocab; ++i) {
  6231. float logit_guidance = logits_guidance[i];
  6232. float logit_base = logits_base[i];
  6233. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  6234. }
  6235. if (ctx) {
  6236. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6237. }
  6238. }
  6239. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  6240. GGML_ASSERT(ctx);
  6241. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  6242. int64_t t_start_sample_us;
  6243. t_start_sample_us = ggml_time_us();
  6244. llama_sample_softmax(nullptr, candidates);
  6245. // Estimate s_hat using the most probable m tokens
  6246. float s_hat = 0.0;
  6247. float sum_ti_bi = 0.0;
  6248. float sum_ti_sq = 0.0;
  6249. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  6250. float t_i = logf(float(i + 2) / float(i + 1));
  6251. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  6252. sum_ti_bi += t_i * b_i;
  6253. sum_ti_sq += t_i * t_i;
  6254. }
  6255. s_hat = sum_ti_bi / sum_ti_sq;
  6256. // Compute k from the estimated s_hat and target surprise value
  6257. float epsilon_hat = s_hat - 1;
  6258. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  6259. // Sample the next word X using top-k sampling
  6260. llama_sample_top_k(nullptr, candidates, int(k), 1);
  6261. if (ctx) {
  6262. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6263. }
  6264. llama_token X = llama_sample_token(ctx, candidates);
  6265. t_start_sample_us = ggml_time_us();
  6266. // Compute error as the difference between observed surprise and target surprise value
  6267. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6268. return candidate.id == X;
  6269. }));
  6270. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6271. float e = observed_surprise - tau;
  6272. // Update mu using the learning rate and error
  6273. *mu = *mu - eta * e;
  6274. if (ctx) {
  6275. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6276. }
  6277. return X;
  6278. }
  6279. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  6280. int64_t t_start_sample_us;
  6281. t_start_sample_us = ggml_time_us();
  6282. llama_sample_softmax(ctx, candidates);
  6283. // Truncate the words with surprise values greater than mu
  6284. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6285. return -log2f(candidate.p) > *mu;
  6286. }));
  6287. if (candidates->size == 0) {
  6288. candidates->size = 1;
  6289. }
  6290. if (ctx) {
  6291. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6292. }
  6293. // Normalize the probabilities of the remaining words
  6294. llama_sample_softmax(ctx, candidates);
  6295. // Sample the next word X from the remaining words
  6296. llama_token X = llama_sample_token(ctx, candidates);
  6297. t_start_sample_us = ggml_time_us();
  6298. // Compute error as the difference between observed surprise and target surprise value
  6299. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6300. return candidate.id == X;
  6301. }));
  6302. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6303. float e = observed_surprise - tau;
  6304. // Update mu using the learning rate and error
  6305. *mu = *mu - eta * e;
  6306. if (ctx) {
  6307. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6308. }
  6309. return X;
  6310. }
  6311. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  6312. const int64_t t_start_sample_us = ggml_time_us();
  6313. // Find max element
  6314. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  6315. return a.logit < b.logit;
  6316. });
  6317. llama_token result = max_iter->id;
  6318. if (ctx) {
  6319. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6320. ctx->n_sample++;
  6321. }
  6322. return result;
  6323. }
  6324. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  6325. GGML_ASSERT(ctx);
  6326. const int64_t t_start_sample_us = ggml_time_us();
  6327. llama_sample_softmax(nullptr, candidates);
  6328. std::vector<float> probs;
  6329. probs.reserve(candidates->size);
  6330. for (size_t i = 0; i < candidates->size; ++i) {
  6331. probs.push_back(candidates->data[i].p);
  6332. }
  6333. std::discrete_distribution<> dist(probs.begin(), probs.end());
  6334. auto & rng = ctx->rng;
  6335. int idx = dist(rng);
  6336. llama_token result = candidates->data[idx].id;
  6337. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6338. ctx->n_sample++;
  6339. return result;
  6340. }
  6341. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  6342. const int64_t t_start_sample_us = ggml_time_us();
  6343. if (token == llama_token_eos(&ctx->model)) {
  6344. for (const auto & stack : grammar->stacks) {
  6345. if (stack.empty()) {
  6346. return;
  6347. }
  6348. }
  6349. GGML_ASSERT(false);
  6350. }
  6351. const std::string piece = llama_token_to_piece(ctx, token);
  6352. // Note terminating 0 in decoded string
  6353. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  6354. const auto & code_points = decoded.first;
  6355. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  6356. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  6357. }
  6358. grammar->partial_utf8 = decoded.second;
  6359. GGML_ASSERT(!grammar->stacks.empty());
  6360. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6361. }
  6362. //
  6363. // Beam search
  6364. //
  6365. struct llama_beam {
  6366. std::vector<llama_token> tokens;
  6367. float p; // Cumulative beam probability (renormalized relative to all beams)
  6368. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  6369. // Sort beams by probability. In case of ties, prefer beams at eob.
  6370. bool operator<(const llama_beam & rhs) const {
  6371. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  6372. }
  6373. // Shift off first n tokens and discard them.
  6374. void shift_tokens(const size_t n) {
  6375. if (n) {
  6376. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  6377. tokens.resize(tokens.size() - n);
  6378. }
  6379. }
  6380. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  6381. };
  6382. // A struct for calculating logit-related info.
  6383. struct llama_logit_info {
  6384. const float * const logits;
  6385. const int n_vocab;
  6386. const float max_l;
  6387. const float normalizer;
  6388. struct sum_exp {
  6389. float max_l;
  6390. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  6391. };
  6392. llama_logit_info(llama_context * ctx)
  6393. : logits(llama_get_logits(ctx))
  6394. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  6395. , max_l(*std::max_element(logits, logits + n_vocab))
  6396. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  6397. { }
  6398. llama_token_data get_token_data(const llama_token token_id) const {
  6399. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  6400. return {token_id, logits[token_id], p};
  6401. }
  6402. // Return top k token_data by logit.
  6403. std::vector<llama_token_data> top_k(size_t k) {
  6404. std::vector<llama_token_data> min_heap; // min-heap by logit
  6405. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  6406. min_heap.reserve(k_min);
  6407. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  6408. min_heap.push_back(get_token_data(token_id));
  6409. }
  6410. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  6411. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  6412. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  6413. if (min_heap.front().logit < logits[token_id]) {
  6414. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  6415. min_heap.back().id = token_id;
  6416. min_heap.back().logit = logits[token_id];
  6417. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  6418. }
  6419. }
  6420. return min_heap;
  6421. }
  6422. float probability_from_logit(float logit) const {
  6423. return normalizer * std::exp(logit - max_l);
  6424. }
  6425. };
  6426. struct llama_beam_search_data {
  6427. llama_context * ctx;
  6428. size_t n_beams;
  6429. int n_past;
  6430. int n_predict;
  6431. std::vector<llama_beam> beams;
  6432. std::vector<llama_beam> next_beams;
  6433. // Re-calculated on each loop iteration
  6434. size_t common_prefix_length;
  6435. // Used to communicate to/from callback on beams state.
  6436. std::vector<llama_beam_view> beam_views;
  6437. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  6438. : ctx(ctx)
  6439. , n_beams(n_beams)
  6440. , n_past(n_past)
  6441. , n_predict(n_predict)
  6442. , beam_views(n_beams) {
  6443. beams.reserve(n_beams);
  6444. next_beams.reserve(n_beams);
  6445. }
  6446. // Collapse beams to a single beam given by index.
  6447. void collapse_beams(const size_t beam_idx) {
  6448. if (0u < beam_idx) {
  6449. std::swap(beams[0], beams[beam_idx]);
  6450. }
  6451. beams.resize(1);
  6452. }
  6453. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  6454. // The repetative patterns below reflect the 2 stages of heaps:
  6455. // * Gather elements until the vector is full, then call std::make_heap() on it.
  6456. // * If the heap is full and a new element is found that should be included, pop the
  6457. // least element to the back(), replace it with the new, then push it into the heap.
  6458. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  6459. // Min-heaps use a greater-than comparator.
  6460. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  6461. if (beam.eob) {
  6462. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  6463. if (next_beams.size() < n_beams) {
  6464. next_beams.push_back(std::move(beam));
  6465. if (next_beams.size() == n_beams) {
  6466. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6467. }
  6468. } else if (next_beams.front().p < beam.p) {
  6469. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6470. next_beams.back() = std::move(beam);
  6471. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6472. }
  6473. } else {
  6474. // beam is not at end-of-sentence, so branch with next top_k tokens.
  6475. if (!beam.tokens.empty()) {
  6476. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  6477. }
  6478. llama_logit_info logit_info(ctx);
  6479. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  6480. size_t i=0;
  6481. if (next_beams.size() < n_beams) {
  6482. for (; next_beams.size() < n_beams ; ++i) {
  6483. llama_beam next_beam = beam;
  6484. next_beam.tokens.push_back(next_tokens[i].id);
  6485. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6486. next_beams.push_back(std::move(next_beam));
  6487. }
  6488. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6489. } else {
  6490. for (; next_beams.front().p == 0.0f ; ++i) {
  6491. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6492. next_beams.back() = beam;
  6493. next_beams.back().tokens.push_back(next_tokens[i].id);
  6494. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6495. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6496. }
  6497. }
  6498. for (; i < n_beams ; ++i) {
  6499. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  6500. if (next_beams.front().p < next_p) {
  6501. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6502. next_beams.back() = beam;
  6503. next_beams.back().tokens.push_back(next_tokens[i].id);
  6504. next_beams.back().p = next_p;
  6505. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6506. }
  6507. }
  6508. }
  6509. }
  6510. // Find common_prefix_length based on beams.
  6511. // Requires beams is not empty.
  6512. size_t find_common_prefix_length() {
  6513. size_t common_prefix_length = beams[0].tokens.size();
  6514. for (size_t i = 1 ; i < beams.size() ; ++i) {
  6515. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  6516. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  6517. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  6518. common_prefix_length = j;
  6519. break;
  6520. }
  6521. }
  6522. }
  6523. return common_prefix_length;
  6524. }
  6525. // Construct beams_state to send back to caller via the callback function.
  6526. // Side effect: set common_prefix_length = find_common_prefix_length();
  6527. llama_beams_state get_beams_state(const bool last_call) {
  6528. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6529. beam_views[i] = beams[i].view();
  6530. }
  6531. common_prefix_length = find_common_prefix_length();
  6532. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  6533. }
  6534. // Loop:
  6535. // * while i < n_predict, AND
  6536. // * any of the beams have not yet reached end-of-beam (eob), AND
  6537. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  6538. // (since all other beam probabilities can only decrease)
  6539. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  6540. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  6541. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  6542. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  6543. !beams[top_beam_index()].eob ; ++i) {
  6544. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  6545. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  6546. if (common_prefix_length) {
  6547. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  6548. n_past += common_prefix_length;
  6549. }
  6550. // Zero-out next_beam probabilities to place them last in following min-heap.
  6551. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  6552. for (llama_beam & beam : beams) {
  6553. beam.shift_tokens(common_prefix_length);
  6554. fill_next_beams_by_top_probabilities(beam);
  6555. }
  6556. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  6557. beams.swap(next_beams);
  6558. renormalize_beam_probabilities(beams);
  6559. }
  6560. collapse_beams(top_beam_index());
  6561. callback(callback_data, get_beams_state(true));
  6562. }
  6563. // As beams grow, the cumulative probabilities decrease.
  6564. // Renormalize them to avoid floating point underflow.
  6565. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  6566. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  6567. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  6568. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  6569. }
  6570. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  6571. size_t top_beam_index() {
  6572. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  6573. }
  6574. // Copy (p,eob) for each beam which may have been changed by the callback.
  6575. void update_beams_from_beam_views() {
  6576. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6577. beams[i].p = beam_views[i].p;
  6578. beams[i].eob = beam_views[i].eob;
  6579. }
  6580. }
  6581. };
  6582. void llama_beam_search(llama_context * ctx,
  6583. llama_beam_search_callback_fn_t callback, void * callback_data,
  6584. size_t n_beams, int n_past, int n_predict) {
  6585. assert(ctx);
  6586. const int64_t t_start_sample_us = ggml_time_us();
  6587. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  6588. beam_search_data.loop(callback, callback_data);
  6589. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6590. ctx->n_sample++;
  6591. }
  6592. //
  6593. // quantization
  6594. //
  6595. template <typename T>
  6596. struct no_init {
  6597. T value;
  6598. no_init() { /* do nothing */ }
  6599. };
  6600. static void llama_convert_tensor_internal(
  6601. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  6602. const size_t nelements, const int nthread
  6603. ) {
  6604. if (output.size() < nelements) {
  6605. output.resize(nelements);
  6606. }
  6607. float * f32_output = (float *) output.data();
  6608. ggml_type_traits_t qtype;
  6609. if (ggml_is_quantized(tensor->type)) {
  6610. qtype = ggml_internal_get_type_traits(tensor->type);
  6611. if (qtype.to_float == NULL) {
  6612. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  6613. }
  6614. } else if (tensor->type != GGML_TYPE_F16) {
  6615. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  6616. }
  6617. if (nthread < 2) {
  6618. if (tensor->type == GGML_TYPE_F16) {
  6619. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  6620. } else if (ggml_is_quantized(tensor->type)) {
  6621. qtype.to_float(tensor->data, f32_output, nelements);
  6622. } else {
  6623. GGML_ASSERT(false); // unreachable
  6624. }
  6625. return;
  6626. }
  6627. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  6628. auto block_size_bytes = ggml_type_size(tensor->type);
  6629. GGML_ASSERT(nelements % block_size == 0);
  6630. auto nblocks = nelements / block_size;
  6631. auto blocks_per_thread = nblocks / nthread;
  6632. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  6633. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  6634. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  6635. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  6636. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  6637. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  6638. if (typ == GGML_TYPE_F16) {
  6639. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  6640. } else {
  6641. qtype.to_float(inbuf, outbuf, nels);
  6642. }
  6643. };
  6644. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  6645. in_buff_offs += thr_block_bytes;
  6646. out_buff_offs += thr_elems;
  6647. }
  6648. for (auto & w : workers) { w.join(); }
  6649. workers.clear();
  6650. }
  6651. #ifdef GGML_USE_K_QUANTS
  6652. static ggml_type get_k_quant_type(
  6653. ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
  6654. int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
  6655. ) {
  6656. const std::string name = ggml_get_name(tensor);
  6657. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6658. const auto tn = LLM_TN(model.arch);
  6659. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  6660. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  6661. };
  6662. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6663. int nx = tensor->ne[0];
  6664. if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  6665. new_type = GGML_TYPE_Q8_0;
  6666. }
  6667. else if (new_type != GGML_TYPE_Q8_0) {
  6668. new_type = GGML_TYPE_Q6_K;
  6669. }
  6670. } else if (name.find("attn_v.weight") != std::string::npos) {
  6671. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6672. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6673. new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6674. }
  6675. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6676. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  6677. use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  6678. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  6679. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  6680. (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  6681. if (model.type == MODEL_70B) {
  6682. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  6683. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  6684. // nearly negligible increase in model size by quantizing this tensor with more bits:
  6685. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  6686. }
  6687. ++*i_attention_wv;
  6688. } else if (name.find("ffn_down.weight") != std::string::npos) {
  6689. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6690. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6691. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  6692. : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
  6693. : GGML_TYPE_Q3_K;
  6694. }
  6695. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  6696. new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  6697. }
  6698. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  6699. if (model.arch == LLM_ARCH_FALCON) {
  6700. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  6701. use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6702. } else {
  6703. if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6704. }
  6705. }
  6706. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6707. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
  6708. new_type = GGML_TYPE_Q5_K;
  6709. }
  6710. ++*i_feed_forward_w2;
  6711. } else if (name.find("attn_output.weight") != std::string::npos) {
  6712. if (model.arch != LLM_ARCH_FALCON) {
  6713. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  6714. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  6715. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6716. } else {
  6717. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6718. }
  6719. }
  6720. else if (name.find("attn_qkv.weight") != std::string::npos) {
  6721. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6722. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  6723. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  6724. }
  6725. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  6726. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6727. }
  6728. // This can be used to reduce the size of the Q5_K_S model.
  6729. // The associated PPL increase is fully in line with the size reduction
  6730. //else {
  6731. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  6732. //}
  6733. bool convert_incompatible_tensor = false;
  6734. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  6735. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  6736. int nx = tensor->ne[0];
  6737. int ny = tensor->ne[1];
  6738. if (nx % QK_K != 0) {
  6739. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
  6740. convert_incompatible_tensor = true;
  6741. }
  6742. }
  6743. if (convert_incompatible_tensor) {
  6744. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6745. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  6746. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
  6747. } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  6748. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  6749. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
  6750. } else {
  6751. throw std::runtime_error("Unsupported tensor size encountered\n");
  6752. }
  6753. }
  6754. return new_type;
  6755. }
  6756. #endif
  6757. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  6758. ggml_type quantized_type;
  6759. llama_ftype ftype = params->ftype;
  6760. switch (params->ftype) {
  6761. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  6762. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  6763. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  6764. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  6765. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  6766. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  6767. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  6768. #ifdef GGML_USE_K_QUANTS
  6769. // K-quants
  6770. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  6771. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  6772. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  6773. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  6774. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  6775. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  6776. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  6777. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  6778. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  6779. #endif
  6780. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  6781. }
  6782. int nthread = params->nthread;
  6783. if (nthread <= 0) {
  6784. nthread = std::thread::hardware_concurrency();
  6785. }
  6786. // mmap consistently increases speed Linux, and also increases speed on Windows with
  6787. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  6788. #if defined(__linux__) || defined(_WIN32)
  6789. constexpr bool use_mmap = true;
  6790. #else
  6791. constexpr bool use_mmap = false;
  6792. #endif
  6793. llama_model_loader ml(fname_inp, use_mmap);
  6794. if (ml.use_mmap) {
  6795. ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
  6796. }
  6797. llama_model model;
  6798. llm_load_arch(ml, model);
  6799. llm_load_hparams(ml, model);
  6800. if (params->only_copy) {
  6801. ftype = model.ftype;
  6802. }
  6803. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  6804. struct gguf_context * ctx_out = gguf_init_empty();
  6805. // copy the KV pairs from the input file
  6806. gguf_set_kv (ctx_out, ml.ctx_gguf);
  6807. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  6808. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  6809. #ifdef GGML_USE_K_QUANTS
  6810. int n_attention_wv = 0;
  6811. int n_feed_forward_w2 = 0;
  6812. for (int i = 0; i < ml.n_tensors; ++i) {
  6813. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6814. const std::string name = ggml_get_name(meta);
  6815. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6816. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  6817. ++n_attention_wv;
  6818. }
  6819. else if (name.find("ffn_down.weight") != std::string::npos) {
  6820. ++n_feed_forward_w2;
  6821. }
  6822. }
  6823. if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
  6824. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  6825. __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
  6826. }
  6827. int i_attention_wv = 0;
  6828. int i_feed_forward_w2 = 0;
  6829. #endif
  6830. size_t total_size_org = 0;
  6831. size_t total_size_new = 0;
  6832. std::vector<int64_t> hist_all(1 << 4, 0);
  6833. std::vector<std::thread> workers;
  6834. workers.reserve(nthread);
  6835. std::mutex mutex;
  6836. int idx = 0;
  6837. std::vector<no_init<uint8_t>> read_data;
  6838. std::vector<no_init<uint8_t>> work;
  6839. std::vector<no_init<float>> f32_conv_buf;
  6840. // populate the original tensors so we get an initial meta data
  6841. for (int i = 0; i < ml.n_tensors; ++i) {
  6842. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6843. gguf_add_tensor(ctx_out, meta);
  6844. }
  6845. std::ofstream fout(fname_out, std::ios::binary);
  6846. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  6847. const size_t meta_size = gguf_get_meta_size(ctx_out);
  6848. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  6849. // placeholder for the meta data
  6850. ::zeros(fout, meta_size);
  6851. for (int i = 0; i < ml.n_tensors; ++i) {
  6852. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  6853. const std::string name = ggml_get_name(tensor);
  6854. if (!ml.use_mmap) {
  6855. if (read_data.size() < ggml_nbytes(tensor)) {
  6856. read_data.resize(ggml_nbytes(tensor));
  6857. }
  6858. tensor->data = read_data.data();
  6859. }
  6860. ml.load_data_for(tensor);
  6861. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  6862. ++idx, ml.n_tensors,
  6863. ggml_get_name(tensor),
  6864. llama_format_tensor_shape(tensor).c_str(),
  6865. ggml_type_name(tensor->type));
  6866. // This used to be a regex, but <regex> has an extreme cost to compile times.
  6867. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  6868. // quantize only 2D tensors
  6869. quantize &= (tensor->n_dims == 2);
  6870. quantize &= params->quantize_output_tensor || name != "output.weight";
  6871. quantize &= !params->only_copy;
  6872. enum ggml_type new_type;
  6873. void * new_data;
  6874. size_t new_size;
  6875. if (quantize) {
  6876. new_type = quantized_type;
  6877. #ifdef GGML_USE_K_QUANTS
  6878. new_type = get_k_quant_type(
  6879. new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
  6880. );
  6881. #endif
  6882. // If we've decided to quantize to the same type the tensor is already
  6883. // in then there's nothing to do.
  6884. quantize = tensor->type != new_type;
  6885. }
  6886. if (!quantize) {
  6887. new_type = tensor->type;
  6888. new_data = tensor->data;
  6889. new_size = ggml_nbytes(tensor);
  6890. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  6891. } else {
  6892. const size_t nelements = ggml_nelements(tensor);
  6893. float * f32_data;
  6894. if (tensor->type == GGML_TYPE_F32) {
  6895. f32_data = (float *) tensor->data;
  6896. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  6897. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  6898. } else {
  6899. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  6900. f32_data = (float *) f32_conv_buf.data();
  6901. }
  6902. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  6903. fflush(stdout);
  6904. if (work.size() < nelements * 4) {
  6905. work.resize(nelements * 4); // upper bound on size
  6906. }
  6907. new_data = work.data();
  6908. std::array<int64_t, 1 << 4> hist_cur = {};
  6909. static const int chunk_size = 32 * 512;
  6910. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  6911. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  6912. if (nthread_use < 2) {
  6913. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  6914. } else {
  6915. size_t counter = 0;
  6916. new_size = 0;
  6917. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  6918. std::array<int64_t, 1 << 4> local_hist = {};
  6919. size_t local_size = 0;
  6920. while (true) {
  6921. std::unique_lock<std::mutex> lock(mutex);
  6922. size_t first = counter; counter += chunk_size;
  6923. if (first >= nelements) {
  6924. if (local_size > 0) {
  6925. for (int j=0; j<int(local_hist.size()); ++j) {
  6926. hist_cur[j] += local_hist[j];
  6927. }
  6928. new_size += local_size;
  6929. }
  6930. break;
  6931. }
  6932. lock.unlock();
  6933. size_t last = std::min(nelements, first + chunk_size);
  6934. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  6935. }
  6936. };
  6937. for (int it = 0; it < nthread_use - 1; ++it) {
  6938. workers.emplace_back(compute);
  6939. }
  6940. compute();
  6941. for (auto & w : workers) { w.join(); }
  6942. workers.clear();
  6943. }
  6944. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  6945. int64_t tot_count = 0;
  6946. for (size_t i = 0; i < hist_cur.size(); i++) {
  6947. hist_all[i] += hist_cur[i];
  6948. tot_count += hist_cur[i];
  6949. }
  6950. if (tot_count > 0) {
  6951. for (size_t i = 0; i < hist_cur.size(); i++) {
  6952. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  6953. }
  6954. }
  6955. LLAMA_LOG_INFO("\n");
  6956. }
  6957. total_size_org += ggml_nbytes(tensor);
  6958. total_size_new += new_size;
  6959. // update the gguf meta data as we go
  6960. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  6961. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  6962. // write tensor data + padding
  6963. fout.write((const char *) new_data, new_size);
  6964. zeros(fout, GGML_PAD(new_size, align) - new_size);
  6965. }
  6966. // go back to beginning of file and write the updated meta data
  6967. {
  6968. fout.seekp(0);
  6969. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  6970. gguf_get_meta_data(ctx_out, data.data());
  6971. fout.write((const char *) data.data(), data.size());
  6972. }
  6973. fout.close();
  6974. gguf_free(ctx_out);
  6975. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  6976. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  6977. // print histogram for all tensors
  6978. {
  6979. int64_t sum_all = 0;
  6980. for (size_t i = 0; i < hist_all.size(); i++) {
  6981. sum_all += hist_all[i];
  6982. }
  6983. if (sum_all > 0) {
  6984. LLAMA_LOG_INFO("%s: hist: ", __func__);
  6985. for (size_t i = 0; i < hist_all.size(); i++) {
  6986. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  6987. }
  6988. LLAMA_LOG_INFO("\n");
  6989. }
  6990. }
  6991. }
  6992. static int llama_apply_lora_from_file_internal(
  6993. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  6994. ) {
  6995. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  6996. const int64_t t_start_lora_us = ggml_time_us();
  6997. auto fin = std::ifstream(path_lora, std::ios::binary);
  6998. if (!fin) {
  6999. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  7000. return 1;
  7001. }
  7002. // verify magic and version
  7003. {
  7004. uint32_t magic;
  7005. fin.read((char *) &magic, sizeof(magic));
  7006. uint32_t format_version;
  7007. fin.read((char *) &format_version, sizeof(format_version));
  7008. if (format_version != 1) {
  7009. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  7010. return 1;
  7011. }
  7012. }
  7013. int32_t lora_r;
  7014. int32_t lora_alpha;
  7015. fin.read((char *) &lora_r, sizeof(lora_r));
  7016. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  7017. float scaling = scale * (float)lora_alpha / (float)lora_r;
  7018. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  7019. // create a temporary ggml context to store the lora tensors
  7020. // todo: calculate size from biggest possible tensor
  7021. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  7022. struct ggml_init_params params;
  7023. params.mem_size = lora_buf.size();
  7024. params.mem_buffer = lora_buf.data();
  7025. params.no_alloc = false;
  7026. ggml_context * lora_ctx = ggml_init(params);
  7027. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  7028. // create a name -> tensor map of the model to accelerate lookups
  7029. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  7030. for (const auto & kv : model.tensors_by_name) {
  7031. model_tensors.insert(kv);
  7032. }
  7033. // load base model
  7034. std::unique_ptr<llama_model_loader> ml;
  7035. ggml_context * base_ctx = NULL;
  7036. std::vector<uint8_t> base_buf;
  7037. if (path_base_model) {
  7038. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  7039. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  7040. size_t ctx_size;
  7041. size_t mmapped_size;
  7042. ml->calc_sizes(ctx_size, mmapped_size);
  7043. base_buf.resize(ctx_size);
  7044. ggml_init_params base_params;
  7045. base_params.mem_size = base_buf.size();
  7046. base_params.mem_buffer = base_buf.data();
  7047. base_params.no_alloc = ml->use_mmap;
  7048. base_ctx = ggml_init(base_params);
  7049. // maybe this should in llama_model_loader
  7050. if (ml->use_mmap) {
  7051. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  7052. }
  7053. }
  7054. // read tensors and apply
  7055. bool warned = false;
  7056. int n_tensors = 0;
  7057. std::vector<uint8_t> work_buffer;
  7058. while (true) {
  7059. int32_t n_dims;
  7060. int32_t length;
  7061. int32_t ftype;
  7062. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  7063. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  7064. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  7065. if (fin.eof()) {
  7066. break;
  7067. }
  7068. int32_t ne[2] = { 1, 1 };
  7069. for (int i = 0; i < n_dims; ++i) {
  7070. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  7071. }
  7072. std::string name;
  7073. {
  7074. char buf[1024];
  7075. fin.read(buf, length);
  7076. name = std::string(buf, length);
  7077. }
  7078. // check for lora suffix and get the type of tensor
  7079. const std::string lora_suffix = ".lora";
  7080. size_t pos = name.rfind(lora_suffix);
  7081. if (pos == std::string::npos) {
  7082. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  7083. return 1;
  7084. }
  7085. std::string lora_type = name.substr(pos + lora_suffix.length());
  7086. std::string base_name = name;
  7087. base_name.erase(pos);
  7088. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  7089. if (model_tensors.find(base_name) == model_tensors.end()) {
  7090. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  7091. return 1;
  7092. }
  7093. // create ggml tensor
  7094. ggml_type wtype;
  7095. switch (ftype) {
  7096. case 0: wtype = GGML_TYPE_F32; break;
  7097. case 1: wtype = GGML_TYPE_F16; break;
  7098. default:
  7099. {
  7100. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  7101. __func__, ftype);
  7102. return false;
  7103. }
  7104. }
  7105. ggml_tensor * lora_tensor;
  7106. if (n_dims == 2) {
  7107. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  7108. }
  7109. else {
  7110. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  7111. return 1;
  7112. }
  7113. ggml_set_name(lora_tensor, "lora_tensor");
  7114. // load tensor data
  7115. size_t offset = fin.tellg();
  7116. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  7117. offset = (offset + 31) & -32;
  7118. fin.seekg(offset);
  7119. fin.read((char*)lora_tensor->data, tensor_data_size);
  7120. lora_tensors[name] = lora_tensor;
  7121. // check if we have both A and B tensors and apply
  7122. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  7123. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  7124. ggml_tensor * dest_t = model_tensors[base_name];
  7125. offload_func_t offload_func = llama_nop;
  7126. offload_func_t offload_func_force_inplace = llama_nop;
  7127. #ifdef GGML_USE_CUBLAS
  7128. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  7129. if (dest_t->type != GGML_TYPE_F16) {
  7130. throw std::runtime_error(format(
  7131. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  7132. }
  7133. offload_func = ggml_cuda_assign_buffers;
  7134. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  7135. }
  7136. #endif // GGML_USE_CUBLAS
  7137. ggml_tensor * base_t;
  7138. if (ml) {
  7139. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  7140. // load from base model
  7141. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  7142. // TODO: throw
  7143. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  7144. return 1;
  7145. }
  7146. // TODO: not tested!! maybe not working!
  7147. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  7148. ml->load_data_for(base_t);
  7149. } else {
  7150. base_t = dest_t;
  7151. }
  7152. if (ggml_is_quantized(base_t->type)) {
  7153. if (!warned) {
  7154. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  7155. "use a f16 or f32 base model with --lora-base\n", __func__);
  7156. warned = true;
  7157. }
  7158. }
  7159. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  7160. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  7161. ggml_set_name(loraA, "loraA");
  7162. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  7163. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  7164. ggml_set_name(loraB, "loraB");
  7165. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  7166. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  7167. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  7168. return 1;
  7169. }
  7170. // w = w + BA*s
  7171. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  7172. offload_func(BA);
  7173. ggml_set_name(BA, "BA");
  7174. if (scaling != 1.0f) {
  7175. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  7176. ggml_set_name(scale_tensor, "scale_tensor");
  7177. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  7178. offload_func(BA);
  7179. ggml_set_name(BA, "BA_scaled");
  7180. }
  7181. ggml_tensor * r;
  7182. if (base_t == dest_t) {
  7183. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  7184. offload_func_force_inplace(r);
  7185. ggml_set_name(r, "r_add_inplace");
  7186. }
  7187. else {
  7188. r = ggml_add(lora_ctx, base_t, BA);
  7189. offload_func(r);
  7190. ggml_set_name(r, "r_add");
  7191. r = ggml_cpy(lora_ctx, r, dest_t);
  7192. offload_func(r);
  7193. ggml_set_name(r, "r_cpy");
  7194. }
  7195. struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  7196. ggml_build_forward_expand(gf, r);
  7197. ggml_graph_compute_helper(work_buffer, gf, n_threads);
  7198. // we won't need these tensors again, reset the context to save memory
  7199. ggml_free(lora_ctx);
  7200. lora_ctx = ggml_init(params);
  7201. lora_tensors.clear();
  7202. n_tensors++;
  7203. if (n_tensors % 4 == 0) {
  7204. LLAMA_LOG_INFO(".");
  7205. }
  7206. }
  7207. }
  7208. // TODO: this should be in a destructor, it will leak on failure
  7209. ggml_free(lora_ctx);
  7210. if (base_ctx) {
  7211. ggml_free(base_ctx);
  7212. }
  7213. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  7214. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  7215. return 0;
  7216. }
  7217. //
  7218. // interface implementation
  7219. //
  7220. struct llama_model_params llama_model_default_params() {
  7221. struct llama_model_params result = {
  7222. /*.n_gpu_layers =*/ 0,
  7223. /*.main_gpu =*/ 0,
  7224. /*.tensor_split =*/ nullptr,
  7225. /*.progress_callback =*/ nullptr,
  7226. /*.progress_callback_user_data =*/ nullptr,
  7227. /*.vocab_only =*/ false,
  7228. /*.use_mmap =*/ true,
  7229. /*.use_mlock =*/ false,
  7230. };
  7231. #ifdef GGML_USE_METAL
  7232. result.n_gpu_layers = 1;
  7233. #endif
  7234. return result;
  7235. }
  7236. struct llama_context_params llama_context_default_params() {
  7237. struct llama_context_params result = {
  7238. /*.seed =*/ LLAMA_DEFAULT_SEED,
  7239. /*.n_ctx =*/ 512,
  7240. /*.n_batch =*/ 512,
  7241. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  7242. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  7243. /*.rope_freq_base =*/ 0.0f,
  7244. /*.rope_freq_scale =*/ 0.0f,
  7245. /*.mul_mat_q =*/ true,
  7246. /*.f16_kv =*/ true,
  7247. /*.logits_all =*/ false,
  7248. /*.embedding =*/ false,
  7249. };
  7250. return result;
  7251. }
  7252. struct llama_model_quantize_params llama_model_quantize_default_params() {
  7253. struct llama_model_quantize_params result = {
  7254. /*.nthread =*/ 0,
  7255. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  7256. /*.allow_requantize =*/ false,
  7257. /*.quantize_output_tensor =*/ true,
  7258. /*.only_copy =*/ false,
  7259. };
  7260. return result;
  7261. }
  7262. int llama_max_devices(void) {
  7263. return LLAMA_MAX_DEVICES;
  7264. }
  7265. bool llama_mmap_supported(void) {
  7266. return llama_mmap::SUPPORTED;
  7267. }
  7268. bool llama_mlock_supported(void) {
  7269. return llama_mlock::SUPPORTED;
  7270. }
  7271. void llama_backend_init(bool numa) {
  7272. ggml_time_init();
  7273. // needed to initialize f16 tables
  7274. {
  7275. struct ggml_init_params params = { 0, NULL, false };
  7276. struct ggml_context * ctx = ggml_init(params);
  7277. ggml_free(ctx);
  7278. }
  7279. if (numa) {
  7280. ggml_numa_init();
  7281. }
  7282. #ifdef GGML_USE_MPI
  7283. ggml_mpi_backend_init();
  7284. #endif
  7285. }
  7286. void llama_backend_free(void) {
  7287. #ifdef GGML_USE_MPI
  7288. ggml_mpi_backend_free();
  7289. #endif
  7290. }
  7291. int64_t llama_time_us(void) {
  7292. return ggml_time_us();
  7293. }
  7294. struct llama_model * llama_load_model_from_file(
  7295. const char * path_model,
  7296. struct llama_model_params params) {
  7297. ggml_time_init();
  7298. llama_model * model = new llama_model;
  7299. unsigned cur_percentage = 0;
  7300. if (params.progress_callback == NULL) {
  7301. params.progress_callback_user_data = &cur_percentage;
  7302. params.progress_callback = [](float progress, void * ctx) {
  7303. unsigned * cur_percentage_p = (unsigned *) ctx;
  7304. unsigned percentage = (unsigned) (100 * progress);
  7305. while (percentage > *cur_percentage_p) {
  7306. *cur_percentage_p = percentage;
  7307. LLAMA_LOG_INFO(".");
  7308. if (percentage >= 100) {
  7309. LLAMA_LOG_INFO("\n");
  7310. }
  7311. }
  7312. };
  7313. }
  7314. if (!llama_model_load(path_model, *model, params.n_gpu_layers,
  7315. params.main_gpu, params.tensor_split,
  7316. params.use_mmap, params.use_mlock, params.vocab_only,
  7317. params.progress_callback, params.progress_callback_user_data)) {
  7318. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  7319. delete model;
  7320. return nullptr;
  7321. }
  7322. return model;
  7323. }
  7324. void llama_free_model(struct llama_model * model) {
  7325. delete model;
  7326. }
  7327. struct llama_context * llama_new_context_with_model(
  7328. struct llama_model * model,
  7329. struct llama_context_params params) {
  7330. if (!model) {
  7331. return nullptr;
  7332. }
  7333. llama_context * ctx = new llama_context(*model);
  7334. const auto & hparams = model->hparams;
  7335. auto & cparams = ctx->cparams;
  7336. cparams.n_batch = params.n_batch;
  7337. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  7338. cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base;
  7339. cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  7340. cparams.n_threads = params.n_threads;
  7341. cparams.n_threads_batch = params.n_threads_batch;
  7342. cparams.mul_mat_q = params.mul_mat_q;
  7343. if (params.seed == LLAMA_DEFAULT_SEED) {
  7344. params.seed = time(NULL);
  7345. }
  7346. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  7347. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  7348. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  7349. ctx->rng = std::mt19937(params.seed);
  7350. ctx->logits_all = params.logits_all;
  7351. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  7352. // reserve memory for context buffers
  7353. if (!hparams.vocab_only) {
  7354. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
  7355. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  7356. llama_free(ctx);
  7357. return nullptr;
  7358. }
  7359. {
  7360. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  7361. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  7362. }
  7363. // resized during inference
  7364. if (params.logits_all) {
  7365. ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
  7366. } else {
  7367. ctx->logits.reserve(hparams.n_vocab);
  7368. }
  7369. if (params.embedding){
  7370. ctx->embedding.resize(hparams.n_embd);
  7371. }
  7372. {
  7373. static const size_t tensor_alignment = 32;
  7374. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  7375. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  7376. // create measure allocator
  7377. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  7378. // build worst-case graph
  7379. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  7380. int n_past = cparams.n_ctx - n_tokens;
  7381. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  7382. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
  7383. #ifdef GGML_USE_METAL
  7384. if (model->n_gpu_layers > 0) {
  7385. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  7386. ctx->ctx_metal = ggml_metal_init(1);
  7387. if (!ctx->ctx_metal) {
  7388. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  7389. llama_free(ctx);
  7390. return NULL;
  7391. }
  7392. //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  7393. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7394. }
  7395. #endif
  7396. // measure memory requirements for the graph
  7397. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  7398. LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  7399. // recreate allocator with exact memory requirements
  7400. ggml_allocr_free(ctx->alloc);
  7401. ctx->buf_alloc.resize(alloc_size);
  7402. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  7403. #ifdef GGML_USE_METAL
  7404. if (ctx->ctx_metal) {
  7405. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7406. }
  7407. #endif
  7408. #ifdef GGML_USE_CUBLAS
  7409. ggml_cuda_set_scratch_size(alloc_size);
  7410. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  7411. // calculate total VRAM usage
  7412. auto add_tensor = [](const ggml_tensor * t, size_t & size) {
  7413. if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) {
  7414. size += ggml_nbytes(t);
  7415. }
  7416. };
  7417. size_t model_vram_size = 0;
  7418. for (const auto & kv : model->tensors_by_name) {
  7419. add_tensor(kv.second, model_vram_size);
  7420. }
  7421. size_t kv_vram_size = 0;
  7422. add_tensor(ctx->kv_self.k, kv_vram_size);
  7423. add_tensor(ctx->kv_self.v, kv_vram_size);
  7424. size_t ctx_vram_size = alloc_size + kv_vram_size;
  7425. size_t total_vram_size = model_vram_size + ctx_vram_size;
  7426. LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
  7427. total_vram_size / 1024.0 / 1024.0,
  7428. model_vram_size / 1024.0 / 1024.0,
  7429. ctx_vram_size / 1024.0 / 1024.0);
  7430. #endif
  7431. }
  7432. #ifdef GGML_USE_METAL
  7433. if (model->n_gpu_layers > 0) {
  7434. // this allocates all Metal resources and memory buffers
  7435. void * data_ptr = NULL;
  7436. size_t data_size = 0;
  7437. if (ctx->model.mapping) {
  7438. data_ptr = ctx->model.mapping->addr;
  7439. data_size = ctx->model.mapping->size;
  7440. } else {
  7441. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  7442. data_size = ggml_get_mem_size (ctx->model.ctx);
  7443. }
  7444. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  7445. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  7446. #define LLAMA_METAL_CHECK_BUF(result) \
  7447. if (!(result)) { \
  7448. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  7449. llama_free(ctx); \
  7450. return NULL; \
  7451. }
  7452. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  7453. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  7454. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  7455. #undef LLAMA_METAL_CHECK_BUF
  7456. }
  7457. #endif
  7458. }
  7459. #ifdef GGML_USE_MPI
  7460. ctx->ctx_mpi = ggml_mpi_init();
  7461. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  7462. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  7463. // TODO: needs fix after #3228
  7464. GGML_ASSERT(false && "not implemented");
  7465. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  7466. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  7467. llama_backend_free();
  7468. exit(1);
  7469. }
  7470. #endif
  7471. return ctx;
  7472. }
  7473. void llama_free(struct llama_context * ctx) {
  7474. delete ctx;
  7475. }
  7476. const llama_model * llama_get_model(const struct llama_context * ctx) {
  7477. return &ctx->model;
  7478. }
  7479. int llama_n_ctx(const struct llama_context * ctx) {
  7480. return ctx->cparams.n_ctx;
  7481. }
  7482. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  7483. return model->vocab.type;
  7484. }
  7485. int llama_n_vocab(const struct llama_model * model) {
  7486. return model->vocab.id_to_token.size();
  7487. }
  7488. int llama_n_ctx_train(const struct llama_model * model) {
  7489. return model->hparams.n_ctx_train;
  7490. }
  7491. int llama_n_embd(const struct llama_model * model) {
  7492. return model->hparams.n_embd;
  7493. }
  7494. float llama_rope_freq_scale_train(const struct llama_model * model) {
  7495. return model->hparams.rope_freq_scale_train;
  7496. }
  7497. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  7498. return snprintf(buf, buf_size, "%s %s %s",
  7499. llama_model_arch_name(model->arch).c_str(),
  7500. llama_model_type_name(model->type),
  7501. llama_model_ftype_name(model->ftype).c_str());
  7502. }
  7503. uint64_t llama_model_size(const struct llama_model * model) {
  7504. uint64_t size = 0;
  7505. for (const auto & it : model->tensors_by_name) {
  7506. size += ggml_nbytes(it.second);
  7507. }
  7508. return size;
  7509. }
  7510. uint64_t llama_model_n_params(const struct llama_model * model) {
  7511. uint64_t nparams = 0;
  7512. for (const auto & it : model->tensors_by_name) {
  7513. nparams += ggml_nelements(it.second);
  7514. }
  7515. return nparams;
  7516. }
  7517. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  7518. return ggml_get_tensor(model->ctx, name);
  7519. }
  7520. int llama_model_quantize(
  7521. const char * fname_inp,
  7522. const char * fname_out,
  7523. const llama_model_quantize_params * params) {
  7524. try {
  7525. llama_model_quantize_internal(fname_inp, fname_out, params);
  7526. return 0;
  7527. } catch (const std::exception & err) {
  7528. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  7529. return 1;
  7530. }
  7531. }
  7532. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7533. try {
  7534. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  7535. } catch (const std::exception & err) {
  7536. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7537. return 1;
  7538. }
  7539. }
  7540. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7541. try {
  7542. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  7543. } catch (const std::exception & err) {
  7544. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7545. return 1;
  7546. }
  7547. }
  7548. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  7549. return ctx->kv_self.head;
  7550. }
  7551. void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) {
  7552. llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1);
  7553. }
  7554. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  7555. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  7556. }
  7557. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  7558. if (seq_id_src == seq_id_dst) {
  7559. return;
  7560. }
  7561. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  7562. }
  7563. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  7564. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  7565. }
  7566. void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  7567. llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
  7568. }
  7569. // Returns the *maximum* size of the state
  7570. size_t llama_get_state_size(const struct llama_context * ctx) {
  7571. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  7572. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  7573. const size_t s_rng_size = sizeof(size_t);
  7574. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  7575. const size_t s_logits_capacity = sizeof(size_t);
  7576. const size_t s_logits_size = sizeof(size_t);
  7577. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  7578. const size_t s_embedding_size = sizeof(size_t);
  7579. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  7580. const size_t s_kv_size = sizeof(size_t);
  7581. const size_t s_kv_ntok = sizeof(int);
  7582. const size_t s_kv = ctx->kv_self.buf.size;
  7583. const size_t s_total = (
  7584. + s_rng_size
  7585. + s_rng
  7586. + s_logits_capacity
  7587. + s_logits_size
  7588. + s_logits
  7589. + s_embedding_size
  7590. + s_embedding
  7591. + s_kv_size
  7592. + s_kv_ntok
  7593. + s_kv
  7594. );
  7595. return s_total;
  7596. }
  7597. // llama_context_data
  7598. struct llama_data_context {
  7599. virtual void write(const void * src, size_t size) = 0;
  7600. virtual size_t get_size_written() = 0;
  7601. virtual ~llama_data_context() = default;
  7602. };
  7603. struct llama_data_buffer_context : llama_data_context {
  7604. uint8_t * ptr;
  7605. size_t size_written = 0;
  7606. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  7607. void write(const void * src, size_t size) override {
  7608. memcpy(ptr, src, size);
  7609. ptr += size;
  7610. size_written += size;
  7611. }
  7612. size_t get_size_written() override {
  7613. return size_written;
  7614. }
  7615. };
  7616. struct llama_data_file_context : llama_data_context {
  7617. llama_file * file;
  7618. size_t size_written = 0;
  7619. llama_data_file_context(llama_file * f) : file(f) {}
  7620. void write(const void * src, size_t size) override {
  7621. file->write_raw(src, size);
  7622. size_written += size;
  7623. }
  7624. size_t get_size_written() override {
  7625. return size_written;
  7626. }
  7627. };
  7628. /** copy state data into either a buffer or file depending on the passed in context
  7629. *
  7630. * file context:
  7631. * llama_file file("/path", "wb");
  7632. * llama_data_file_context data_ctx(&file);
  7633. * llama_copy_state_data(ctx, &data_ctx);
  7634. *
  7635. * buffer context:
  7636. * std::vector<uint8_t> buf(max_size, 0);
  7637. * llama_data_buffer_context data_ctx(&buf.data());
  7638. * llama_copy_state_data(ctx, &data_ctx);
  7639. *
  7640. */
  7641. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  7642. // copy rng
  7643. {
  7644. std::stringstream rng_ss;
  7645. rng_ss << ctx->rng;
  7646. const size_t rng_size = rng_ss.str().size();
  7647. char rng_buf[LLAMA_MAX_RNG_STATE];
  7648. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  7649. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  7650. data_ctx->write(&rng_size, sizeof(rng_size));
  7651. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  7652. }
  7653. // copy logits
  7654. {
  7655. const size_t logits_cap = ctx->logits.capacity();
  7656. const size_t logits_size = ctx->logits.size();
  7657. data_ctx->write(&logits_cap, sizeof(logits_cap));
  7658. data_ctx->write(&logits_size, sizeof(logits_size));
  7659. if (logits_size) {
  7660. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  7661. }
  7662. // If there is a gap between the size and the capacity, write padding
  7663. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  7664. if (padding_size > 0) {
  7665. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  7666. data_ctx->write(padding.data(), padding_size);
  7667. }
  7668. }
  7669. // copy embeddings
  7670. {
  7671. const size_t embedding_size = ctx->embedding.size();
  7672. data_ctx->write(&embedding_size, sizeof(embedding_size));
  7673. if (embedding_size) {
  7674. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  7675. }
  7676. }
  7677. // copy kv cache
  7678. {
  7679. const auto & kv_self = ctx->kv_self;
  7680. const auto & hparams = ctx->model.hparams;
  7681. const auto & cparams = ctx->cparams;
  7682. const auto n_layer = hparams.n_layer;
  7683. const auto n_embd = hparams.n_embd_gqa();
  7684. const auto n_ctx = cparams.n_ctx;
  7685. const size_t kv_buf_size = kv_self.buf.size;
  7686. const uint32_t kv_head = kv_self.head;
  7687. const uint32_t kv_size = kv_self.size;
  7688. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  7689. data_ctx->write(&kv_head, sizeof(kv_head));
  7690. data_ctx->write(&kv_size, sizeof(kv_size));
  7691. if (kv_buf_size) {
  7692. const size_t elt_size = ggml_element_size(kv_self.k);
  7693. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7694. ggml_cgraph gf{};
  7695. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7696. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  7697. kout3d->data = kout3d_data.data();
  7698. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7699. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  7700. vout3d->data = vout3d_data.data();
  7701. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7702. n_embd, kv_head, n_layer,
  7703. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7704. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7705. kv_head, n_embd, n_layer,
  7706. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7707. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  7708. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  7709. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7710. ggml_free(cpy_ctx);
  7711. // our data is now in the kout3d_data and vout3d_data buffers
  7712. // write them to file
  7713. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  7714. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  7715. }
  7716. for (uint32_t i = 0; i < kv_size; ++i) {
  7717. const auto & cell = kv_self.cells[i];
  7718. const llama_pos pos = cell.pos;
  7719. const size_t seq_id_size = cell.seq_id.size();
  7720. data_ctx->write(&pos, sizeof(pos));
  7721. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  7722. for (auto seq_id : cell.seq_id) {
  7723. data_ctx->write(&seq_id, sizeof(seq_id));
  7724. }
  7725. }
  7726. }
  7727. }
  7728. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  7729. llama_data_buffer_context data_ctx(dst);
  7730. llama_copy_state_data_internal(ctx, &data_ctx);
  7731. return data_ctx.get_size_written();
  7732. }
  7733. // Sets the state reading from the specified source address
  7734. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  7735. uint8_t * inp = src;
  7736. // set rng
  7737. {
  7738. size_t rng_size;
  7739. char rng_buf[LLAMA_MAX_RNG_STATE];
  7740. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  7741. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  7742. std::stringstream rng_ss;
  7743. rng_ss.str(std::string(&rng_buf[0], rng_size));
  7744. rng_ss >> ctx->rng;
  7745. GGML_ASSERT(!rng_ss.fail());
  7746. }
  7747. // set logits
  7748. {
  7749. size_t logits_cap;
  7750. size_t logits_size;
  7751. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  7752. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  7753. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  7754. if (logits_size) {
  7755. ctx->logits.resize(logits_size);
  7756. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  7757. }
  7758. inp += logits_cap * sizeof(float);
  7759. }
  7760. // set embeddings
  7761. {
  7762. size_t embedding_size;
  7763. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  7764. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  7765. if (embedding_size) {
  7766. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  7767. inp += embedding_size * sizeof(float);
  7768. }
  7769. }
  7770. // set kv cache
  7771. {
  7772. const auto & kv_self = ctx->kv_self;
  7773. const auto & hparams = ctx->model.hparams;
  7774. const auto & cparams = ctx->cparams;
  7775. const int n_layer = hparams.n_layer;
  7776. const int n_embd = hparams.n_embd_gqa();
  7777. const int n_ctx = cparams.n_ctx;
  7778. size_t kv_buf_size;
  7779. uint32_t kv_head;
  7780. uint32_t kv_size;
  7781. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  7782. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  7783. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  7784. if (kv_buf_size) {
  7785. GGML_ASSERT(kv_self.buf.size == kv_buf_size);
  7786. const size_t elt_size = ggml_element_size(kv_self.k);
  7787. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7788. ggml_cgraph gf{};
  7789. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7790. kin3d->data = (void *) inp;
  7791. inp += ggml_nbytes(kin3d);
  7792. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7793. vin3d->data = (void *) inp;
  7794. inp += ggml_nbytes(vin3d);
  7795. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7796. n_embd, kv_head, n_layer,
  7797. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7798. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7799. kv_head, n_embd, n_layer,
  7800. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7801. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  7802. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  7803. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7804. ggml_free(cpy_ctx);
  7805. }
  7806. ctx->kv_self.head = kv_head;
  7807. ctx->kv_self.size = kv_size;
  7808. ctx->kv_self.cells.resize(kv_size);
  7809. for (uint32_t i = 0; i < kv_size; ++i) {
  7810. llama_pos pos;
  7811. size_t seq_id_size;
  7812. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  7813. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  7814. ctx->kv_self.cells[i].pos = pos;
  7815. llama_seq_id seq_id;
  7816. for (size_t j = 0; j < seq_id_size; ++j) {
  7817. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  7818. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  7819. }
  7820. }
  7821. }
  7822. const size_t nread = inp - src;
  7823. const size_t max_size = llama_get_state_size(ctx);
  7824. GGML_ASSERT(nread <= max_size);
  7825. return nread;
  7826. }
  7827. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7828. llama_file file(path_session, "rb");
  7829. // sanity checks
  7830. {
  7831. const uint32_t magic = file.read_u32();
  7832. const uint32_t version = file.read_u32();
  7833. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  7834. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  7835. return false;
  7836. }
  7837. llama_hparams session_hparams;
  7838. file.read_raw(&session_hparams, sizeof(llama_hparams));
  7839. if (session_hparams != ctx->model.hparams) {
  7840. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  7841. return false;
  7842. }
  7843. }
  7844. // load the prompt
  7845. {
  7846. const uint32_t n_token_count = file.read_u32();
  7847. if (n_token_count > n_token_capacity) {
  7848. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  7849. return false;
  7850. }
  7851. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  7852. *n_token_count_out = n_token_count;
  7853. }
  7854. // restore the context state
  7855. {
  7856. const size_t n_state_size_cur = file.size - file.tell();
  7857. const size_t n_state_size_max = llama_get_state_size(ctx);
  7858. if (n_state_size_cur > n_state_size_max) {
  7859. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  7860. return false;
  7861. }
  7862. std::vector<uint8_t> state_data(n_state_size_max);
  7863. file.read_raw(state_data.data(), n_state_size_cur);
  7864. llama_set_state_data(ctx, state_data.data());
  7865. }
  7866. return true;
  7867. }
  7868. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7869. try {
  7870. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  7871. } catch (const std::exception & err) {
  7872. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  7873. return false;
  7874. }
  7875. }
  7876. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  7877. llama_file file(path_session, "wb");
  7878. file.write_u32(LLAMA_SESSION_MAGIC);
  7879. file.write_u32(LLAMA_SESSION_VERSION);
  7880. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  7881. // save the prompt
  7882. file.write_u32((uint32_t) n_token_count);
  7883. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  7884. // save the context state using stream saving
  7885. llama_data_file_context data_ctx(&file);
  7886. llama_copy_state_data_internal(ctx, &data_ctx);
  7887. return true;
  7888. }
  7889. int llama_eval(
  7890. struct llama_context * ctx,
  7891. llama_token * tokens,
  7892. int32_t n_tokens,
  7893. int n_past) {
  7894. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7895. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  7896. if (ret < 0) {
  7897. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7898. }
  7899. return ret;
  7900. }
  7901. int llama_eval_embd(
  7902. struct llama_context * ctx,
  7903. float * embd,
  7904. int32_t n_tokens,
  7905. int n_past) {
  7906. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7907. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
  7908. const int ret = llama_decode_internal(*ctx, batch);
  7909. if (ret < 0) {
  7910. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7911. }
  7912. return ret;
  7913. }
  7914. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  7915. ctx->cparams.n_threads = n_threads;
  7916. ctx->cparams.n_threads_batch = n_threads_batch;
  7917. }
  7918. struct llama_batch llama_batch_get_one(
  7919. llama_token * tokens,
  7920. int32_t n_tokens,
  7921. llama_pos pos_0,
  7922. llama_seq_id seq_id) {
  7923. return {
  7924. /*n_tokens =*/ n_tokens,
  7925. /*tokens =*/ tokens,
  7926. /*embd =*/ nullptr,
  7927. /*pos =*/ nullptr,
  7928. /*n_seq_id =*/ nullptr,
  7929. /*seq_id =*/ nullptr,
  7930. /*logits =*/ nullptr,
  7931. /*all_pos_0 =*/ pos_0,
  7932. /*all_pos_1 =*/ 1,
  7933. /*all_seq_id =*/ seq_id,
  7934. };
  7935. }
  7936. struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
  7937. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  7938. if (embd) {
  7939. batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
  7940. } else {
  7941. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
  7942. }
  7943. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
  7944. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
  7945. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
  7946. for (int i = 0; i < n_tokens; ++i) {
  7947. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  7948. }
  7949. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
  7950. return batch;
  7951. }
  7952. void llama_batch_free(struct llama_batch batch) {
  7953. if (batch.token) free(batch.token);
  7954. if (batch.embd) free(batch.embd);
  7955. if (batch.pos) free(batch.pos);
  7956. if (batch.n_seq_id) free(batch.n_seq_id);
  7957. if (batch.seq_id) {
  7958. for (int i = 0; i < batch.n_tokens; ++i) {
  7959. free(batch.seq_id[i]);
  7960. }
  7961. free(batch.seq_id);
  7962. }
  7963. if (batch.logits) free(batch.logits);
  7964. }
  7965. int llama_decode(
  7966. struct llama_context * ctx,
  7967. struct llama_batch batch) {
  7968. const int ret = llama_decode_internal(*ctx, batch);
  7969. if (ret < 0) {
  7970. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7971. }
  7972. return ret;
  7973. }
  7974. float * llama_get_logits(struct llama_context * ctx) {
  7975. return ctx->logits.data();
  7976. }
  7977. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  7978. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  7979. }
  7980. float * llama_get_embeddings(struct llama_context * ctx) {
  7981. return ctx->embedding.data();
  7982. }
  7983. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  7984. return model->vocab.id_to_token[token].text.c_str();
  7985. }
  7986. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  7987. return model->vocab.id_to_token[token].score;
  7988. }
  7989. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  7990. return model->vocab.id_to_token[token].type;
  7991. }
  7992. llama_token llama_token_bos(const struct llama_model * model) {
  7993. return model->vocab.special_bos_id;
  7994. }
  7995. llama_token llama_token_eos(const struct llama_model * model) {
  7996. return model->vocab.special_eos_id;
  7997. }
  7998. llama_token llama_token_nl(const struct llama_model * model) {
  7999. return model->vocab.linefeed_id;
  8000. }
  8001. llama_token llama_token_prefix(const struct llama_model * model) {
  8002. return model->vocab.special_prefix_id;
  8003. }
  8004. llama_token llama_token_middle(const struct llama_model * model) {
  8005. return model->vocab.special_middle_id;
  8006. }
  8007. llama_token llama_token_suffix(const struct llama_model * model) {
  8008. return model->vocab.special_suffix_id;
  8009. }
  8010. llama_token llama_token_eot(const struct llama_model * model) {
  8011. return model->vocab.special_eot_id;
  8012. }
  8013. int llama_tokenize(
  8014. const struct llama_model * model,
  8015. const char * text,
  8016. int text_len,
  8017. llama_token * tokens,
  8018. int n_max_tokens,
  8019. bool add_bos,
  8020. bool special) {
  8021. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  8022. if (n_max_tokens < (int) res.size()) {
  8023. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  8024. return -((int) res.size());
  8025. }
  8026. for (size_t i = 0; i < res.size(); i++) {
  8027. tokens[i] = res[i];
  8028. }
  8029. return res.size();
  8030. }
  8031. static std::string llama_decode_text(const std::string & text) {
  8032. std::string decoded_text;
  8033. auto unicode_sequences = codepoints_from_utf8(text);
  8034. for (auto& unicode_sequence : unicode_sequences) {
  8035. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  8036. }
  8037. return decoded_text;
  8038. }
  8039. // does not write null-terminator to buf
  8040. int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
  8041. if (0 <= token && token < llama_n_vocab(model)) {
  8042. switch (llama_vocab_get_type(model->vocab)) {
  8043. case LLAMA_VOCAB_TYPE_SPM: {
  8044. if (llama_is_normal_token(model->vocab, token)) {
  8045. std::string result = model->vocab.id_to_token[token].text;
  8046. llama_unescape_whitespace(result);
  8047. if (length < (int) result.length()) {
  8048. return -result.length();
  8049. }
  8050. memcpy(buf, result.c_str(), result.length());
  8051. return result.length();
  8052. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  8053. if (length < 3) {
  8054. return -3;
  8055. }
  8056. memcpy(buf, "\xe2\x96\x85", 3);
  8057. return 3;
  8058. } else if (llama_is_control_token(model->vocab, token)) {
  8059. ;
  8060. } else if (llama_is_byte_token(model->vocab, token)) {
  8061. if (length < 1) {
  8062. return -1;
  8063. }
  8064. buf[0] = llama_token_to_byte(model->vocab, token);
  8065. return 1;
  8066. } else {
  8067. // TODO: for now we accept all unsupported token types,
  8068. // suppressing them like CONTROL tokens.
  8069. // GGML_ASSERT(false);
  8070. }
  8071. break;
  8072. }
  8073. case LLAMA_VOCAB_TYPE_BPE: {
  8074. if (llama_is_normal_token(model->vocab, token)) {
  8075. std::string result = model->vocab.id_to_token[token].text;
  8076. result = llama_decode_text(result);
  8077. if (length < (int) result.length()) {
  8078. return -result.length();
  8079. }
  8080. memcpy(buf, result.c_str(), result.length());
  8081. return result.length();
  8082. } else if (llama_is_control_token(model->vocab, token)) {
  8083. ;
  8084. } else {
  8085. // TODO: for now we accept all unsupported token types,
  8086. // suppressing them like CONTROL tokens.
  8087. // GGML_ASSERT(false);
  8088. }
  8089. break;
  8090. }
  8091. default:
  8092. GGML_ASSERT(false);
  8093. }
  8094. }
  8095. return 0;
  8096. }
  8097. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  8098. struct llama_timings result = {
  8099. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  8100. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  8101. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  8102. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  8103. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  8104. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  8105. /*.n_sample =*/ std::max(1, ctx->n_sample),
  8106. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  8107. /*.n_eval =*/ std::max(1, ctx->n_eval),
  8108. };
  8109. return result;
  8110. }
  8111. void llama_print_timings(struct llama_context * ctx) {
  8112. const llama_timings timings = llama_get_timings(ctx);
  8113. LLAMA_LOG_INFO("\n");
  8114. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  8115. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  8116. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  8117. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  8118. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  8119. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  8120. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  8121. LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  8122. }
  8123. void llama_reset_timings(struct llama_context * ctx) {
  8124. ctx->t_start_us = ggml_time_us();
  8125. ctx->t_sample_us = ctx->n_sample = 0;
  8126. ctx->t_eval_us = ctx->n_eval = 0;
  8127. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  8128. }
  8129. const char * llama_print_system_info(void) {
  8130. static std::string s;
  8131. s = "";
  8132. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  8133. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  8134. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  8135. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  8136. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  8137. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  8138. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  8139. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  8140. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  8141. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  8142. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  8143. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  8144. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  8145. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  8146. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  8147. return s.c_str();
  8148. }
  8149. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  8150. fprintf(stream, "\n");
  8151. fprintf(stream, "###########\n");
  8152. fprintf(stream, "# Timings #\n");
  8153. fprintf(stream, "###########\n");
  8154. fprintf(stream, "\n");
  8155. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  8156. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  8157. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  8158. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  8159. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  8160. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  8161. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  8162. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  8163. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  8164. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  8165. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  8166. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  8167. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  8168. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  8169. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  8170. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  8171. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  8172. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  8173. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  8174. }
  8175. // For internal test use
  8176. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  8177. struct llama_context * ctx
  8178. ) {
  8179. return ctx->model.tensors_by_name;
  8180. }
  8181. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  8182. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  8183. g_state.log_callback_user_data = user_data;
  8184. }
  8185. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  8186. va_list args_copy;
  8187. va_copy(args_copy, args);
  8188. char buffer[128];
  8189. int len = vsnprintf(buffer, 128, format, args);
  8190. if (len < 128) {
  8191. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  8192. } else {
  8193. char* buffer2 = new char[len+1];
  8194. vsnprintf(buffer2, len+1, format, args_copy);
  8195. buffer2[len] = 0;
  8196. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  8197. delete[] buffer2;
  8198. }
  8199. va_end(args_copy);
  8200. }
  8201. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  8202. va_list args;
  8203. va_start(args, format);
  8204. llama_log_internal_v(level, format, args);
  8205. va_end(args);
  8206. }
  8207. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  8208. (void) level;
  8209. (void) user_data;
  8210. fputs(text, stderr);
  8211. fflush(stderr);
  8212. }