1
0

test-backend-ops.cpp 176 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_prec prec) {
  230. return prec == GGML_PREC_F32 ? "f32" : "def";
  231. }
  232. static std::string var_to_str(ggml_op_pool pool) {
  233. switch (pool) {
  234. case GGML_OP_POOL_AVG: return "avg";
  235. case GGML_OP_POOL_MAX: return "max";
  236. default: return std::to_string(pool);
  237. }
  238. }
  239. static std::string var_to_str(ggml_scale_mode mode) {
  240. switch (mode) {
  241. case GGML_SCALE_MODE_NEAREST: return "nearest";
  242. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  243. default: return std::to_string(mode);
  244. }
  245. }
  246. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  247. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  248. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  249. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  250. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  251. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  252. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  253. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  254. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  255. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  256. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  257. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  258. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  259. #ifdef GGML_USE_SYCL
  260. static bool inline _isinf(float f) {
  261. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  262. }
  263. #else
  264. static bool inline _isinf(float f) { return std::isinf(f); }
  265. #endif
  266. // accept FLT_MAX as infinity
  267. static bool isinf_or_max(float f) {
  268. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  269. }
  270. static bool ggml_is_view_op(enum ggml_op op) {
  271. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  272. }
  273. enum test_mode {
  274. MODE_TEST,
  275. MODE_PERF,
  276. MODE_GRAD,
  277. };
  278. struct test_case {
  279. virtual ~test_case() {}
  280. virtual std::string op_desc(ggml_tensor * t) {
  281. return ggml_op_desc(t);
  282. }
  283. virtual std::string vars() {
  284. return "";
  285. }
  286. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  287. virtual double max_nmse_err() {
  288. return 1e-7;
  289. }
  290. virtual double max_maa_err() {
  291. return 1e-4;
  292. }
  293. virtual float grad_eps() {
  294. return 1e-1f;
  295. }
  296. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  297. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  298. virtual bool grad_precise() {
  299. return false;
  300. }
  301. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  302. virtual int64_t grad_nmax() {
  303. return 10000;
  304. }
  305. // No effect if empty.
  306. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  307. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  308. virtual std::vector<float> grad_expect() {
  309. return {};
  310. }
  311. virtual void initialize_tensors(ggml_context * ctx) {
  312. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  313. init_tensor_uniform(t);
  314. }
  315. }
  316. virtual size_t op_size(ggml_tensor * t) {
  317. size_t size = ggml_nbytes(t);
  318. // add source tensors
  319. for (int i = 0; i < GGML_MAX_SRC; i++) {
  320. if (t->src[i] != NULL) {
  321. size += ggml_nbytes(t->src[i]);
  322. }
  323. }
  324. return size;
  325. }
  326. virtual uint64_t op_flops(ggml_tensor * t) {
  327. GGML_UNUSED(t);
  328. return 0;
  329. }
  330. ggml_cgraph * gf = nullptr;
  331. ggml_cgraph * gb = nullptr;
  332. static const int sentinel_size = 1024;
  333. test_mode mode;
  334. std::vector<ggml_tensor *> sentinels;
  335. void add_sentinel(ggml_context * ctx) {
  336. if (mode == MODE_PERF || mode == MODE_GRAD) {
  337. return;
  338. }
  339. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  340. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  341. sentinels.push_back(sentinel);
  342. }
  343. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  344. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  345. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  346. add_sentinel(ctx);
  347. return t;
  348. }
  349. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  350. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  351. add_sentinel(ctx);
  352. return t;
  353. }
  354. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  355. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  356. add_sentinel(ctx);
  357. return t;
  358. }
  359. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  360. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  361. add_sentinel(ctx);
  362. return t;
  363. }
  364. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  365. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  366. add_sentinel(ctx);
  367. return t;
  368. }
  369. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  370. mode = MODE_TEST;
  371. ggml_init_params params = {
  372. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  373. /* .mem_base = */ NULL,
  374. /* .no_alloc = */ true,
  375. };
  376. ggml_context * ctx = ggml_init(params);
  377. GGML_ASSERT(ctx);
  378. gf = ggml_new_graph(ctx);
  379. // pre-graph sentinel
  380. add_sentinel(ctx);
  381. ggml_tensor * out = build_graph(ctx);
  382. if (op_name != nullptr && op_desc(out) != op_name) {
  383. //printf(" %s: skipping\n", op_desc(out).c_str());
  384. ggml_free(ctx);
  385. return true;
  386. }
  387. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  388. fflush(stdout);
  389. // check if the backends support the ops
  390. bool supported = true;
  391. for (ggml_backend_t backend : {backend1, backend2}) {
  392. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  393. if (!ggml_backend_supports_op(backend, t)) {
  394. printf("not supported [%s] ", ggml_backend_name(backend));
  395. supported = false;
  396. break;
  397. }
  398. }
  399. }
  400. if (!supported) {
  401. printf("\n");
  402. ggml_free(ctx);
  403. return true;
  404. }
  405. // post-graph sentinel
  406. add_sentinel(ctx);
  407. // allocate
  408. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  409. if (buf == NULL) {
  410. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  411. ggml_free(ctx);
  412. return false;
  413. }
  414. // build graph
  415. ggml_build_forward_expand(gf, out);
  416. // add sentinels as graph nodes so that they are checked in the callback
  417. for (ggml_tensor * sentinel : sentinels) {
  418. ggml_graph_add_node(gf, sentinel);
  419. }
  420. // randomize tensors
  421. initialize_tensors(ctx);
  422. // compare
  423. struct callback_userdata {
  424. bool ok;
  425. double max_err;
  426. ggml_backend_t backend1;
  427. ggml_backend_t backend2;
  428. };
  429. callback_userdata ud {
  430. true,
  431. max_nmse_err(),
  432. backend1,
  433. backend2
  434. };
  435. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  436. callback_userdata * ud = (callback_userdata *) user_data;
  437. const char * bn1 = ggml_backend_name(ud->backend1);
  438. const char * bn2 = ggml_backend_name(ud->backend2);
  439. if (t1->op == GGML_OP_NONE) {
  440. // sentinels must be unchanged
  441. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  442. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  443. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  444. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  445. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  446. printf("sentinel mismatch: %s ", t1->name);
  447. ud->ok = false;
  448. return true;
  449. }
  450. }
  451. std::vector<float> f1 = tensor_to_float(t1);
  452. std::vector<float> f2 = tensor_to_float(t2);
  453. for (size_t i = 0; i < f1.size(); i++) {
  454. // check for nans
  455. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  456. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  457. ud->ok = false;
  458. return true;
  459. }
  460. // check for infs: both must be inf of the same sign, or both must be finite
  461. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  462. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  463. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  464. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  465. ud->ok = false;
  466. return true;
  467. }
  468. } else {
  469. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  470. ud->ok = false;
  471. return true;
  472. }
  473. }
  474. }
  475. double err = nmse(f1.data(), f2.data(), f1.size());
  476. if (err > ud->max_err) {
  477. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  478. //for (int i = 0; i < (int) f1.size(); i++) {
  479. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  480. //}
  481. //printf("\n");
  482. //exit(1);
  483. ud->ok = false;
  484. }
  485. return true;
  486. GGML_UNUSED(index);
  487. };
  488. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  489. if (!cmp_ok) {
  490. printf("compare failed ");
  491. }
  492. ggml_backend_buffer_free(buf);
  493. ggml_free(ctx);
  494. if (ud.ok && cmp_ok) {
  495. printf("\033[1;32mOK\033[0m\n");
  496. return true;
  497. }
  498. printf("\033[1;31mFAIL\033[0m\n");
  499. return false;
  500. }
  501. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  502. mode = MODE_PERF;
  503. static const size_t graph_nodes = 8192;
  504. ggml_init_params params = {
  505. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  506. /* .mem_base = */ NULL,
  507. /* .no_alloc = */ true,
  508. };
  509. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  510. GGML_ASSERT(ctx);
  511. ggml_tensor * out = build_graph(ctx.get());
  512. if (op_name != nullptr && op_desc(out) != op_name) {
  513. //printf(" %s: skipping\n", op_desc(out).c_str());
  514. return true;
  515. }
  516. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  517. fflush(stdout);
  518. // check if backends support op
  519. if (!ggml_backend_supports_op(backend, out)) {
  520. printf("not supported\n");
  521. return true;
  522. }
  523. // align while also leaving some margin for variations in parameters
  524. int align = 8;
  525. int last = (len + align - 1) / align * align;
  526. if (last - len < 5) {
  527. last += align;
  528. }
  529. printf("%*s", last - len, "");
  530. // allocate
  531. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  532. if (buf == NULL) {
  533. printf("failed to allocate tensors\n");
  534. return false;
  535. }
  536. // randomize tensors
  537. initialize_tensors(ctx.get());
  538. // build graph
  539. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  540. ggml_build_forward_expand(gf, out);
  541. // warmup run
  542. ggml_status status = ggml_backend_graph_compute(backend, gf);
  543. if (status != GGML_STATUS_SUCCESS) {
  544. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  545. return false;
  546. }
  547. // determine number of runs
  548. int n_runs;
  549. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  550. if (op_flops(out) > 0) {
  551. // based on flops
  552. const uint64_t GFLOP = 1000 * 1000 * 1000;
  553. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  554. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  555. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  556. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  557. } else {
  558. // based on memory size
  559. const size_t GB = 1ULL << 30;
  560. const size_t target_size_cpu = 8 * GB;
  561. const size_t target_size_gpu = 32 * GB;
  562. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  563. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  564. }
  565. // duplicate the op
  566. for (int i = 1; i < n_runs; i++) {
  567. ggml_graph_add_node(gf, out);
  568. }
  569. // calculate memory
  570. size_t mem = n_runs * op_size(out);
  571. auto tensor_op_size = [](ggml_tensor * t) {
  572. size_t size = ggml_nbytes(t);
  573. // add source tensors
  574. for (int i = 0; i < GGML_MAX_SRC; i++) {
  575. if (t->src[i] != NULL) {
  576. size += ggml_nbytes(t->src[i]);
  577. }
  578. }
  579. return size;
  580. };
  581. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  582. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  583. continue;
  584. }
  585. mem += tensor_op_size(ggml_graph_node(gf, i));
  586. }
  587. // run
  588. int64_t total_time_us = 0;
  589. int64_t total_mem = 0;
  590. int total_runs = 0;
  591. do {
  592. int64_t start_time = ggml_time_us();
  593. ggml_status status = ggml_backend_graph_compute(backend, gf);
  594. if (status != GGML_STATUS_SUCCESS) {
  595. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  596. return false;
  597. }
  598. int64_t end_time = ggml_time_us();
  599. total_time_us += end_time - start_time;
  600. total_mem += mem;
  601. total_runs += n_runs;
  602. } while (total_time_us < 1000*1000); // run for at least 1 second
  603. printf(" %8d runs - %8.2f us/run - ",
  604. total_runs,
  605. (double)total_time_us / total_runs);
  606. if (op_flops(out) > 0) {
  607. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  608. auto format_flops = [](double flops) -> std::string {
  609. char buf[256];
  610. if (flops >= 1e12) {
  611. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  612. } else if (flops >= 1e9) {
  613. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  614. } else if (flops >= 1e6) {
  615. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  616. } else {
  617. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  618. }
  619. return buf;
  620. };
  621. printf("%s/run - \033[1;34m%sS\033[0m",
  622. format_flops(op_flops(out)).c_str(),
  623. format_flops(flops_per_sec).c_str());
  624. } else {
  625. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  626. op_size(out) / 1024,
  627. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  628. }
  629. printf("\n");
  630. return true;
  631. }
  632. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  633. mode = MODE_GRAD;
  634. const std::vector<float> expect = grad_expect();
  635. ggml_init_params params = {
  636. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  637. /* .mem_base = */ NULL,
  638. /* .no_alloc = */ true,
  639. };
  640. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  641. GGML_ASSERT(ctx);
  642. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  643. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  644. ggml_tensor * out = build_graph(ctx.get());
  645. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  646. //printf(" %s: skipping\n", op_desc(out).c_str());
  647. return true;
  648. }
  649. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  650. fflush(stdout);
  651. if (out->type != GGML_TYPE_F32) {
  652. printf("not supported [%s->type != FP32]\n", out->name);
  653. return true;
  654. }
  655. // check if the backend supports the ops
  656. bool supported = true;
  657. bool any_params = false;
  658. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  659. if (!ggml_backend_supports_op(backend, t)) {
  660. printf("not supported [%s] ", ggml_backend_name(backend));
  661. supported = false;
  662. break;
  663. }
  664. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  665. any_params = true;
  666. if (t->type != GGML_TYPE_F32) {
  667. printf("not supported [%s->type != FP32] ", t->name);
  668. supported = false;
  669. break;
  670. }
  671. }
  672. }
  673. if (!any_params) {
  674. printf("not supported [%s] \n", op_desc(out).c_str());
  675. supported = false;
  676. }
  677. if (!supported) {
  678. printf("\n");
  679. return true;
  680. }
  681. int64_t ngrads = 0;
  682. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  683. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  684. ngrads += ggml_nelements(t);
  685. }
  686. }
  687. if (ngrads > grad_nmax()) {
  688. printf("skipping large tensors for speed \n");
  689. return true;
  690. }
  691. if (!ggml_is_scalar(out)) {
  692. out = ggml_sum(ctx.get(), out);
  693. ggml_set_name(out, "sum_of_out");
  694. }
  695. ggml_set_loss(out);
  696. ggml_build_forward_expand(gf, out);
  697. ggml_graph_cpy(gf, gb);
  698. ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
  699. if (expect.size() != 1 || expect[0] != 0.0f) {
  700. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  701. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  702. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  703. }
  704. }
  705. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  706. if (!ggml_backend_supports_op(backend, t)) {
  707. printf("not supported [%s] ", ggml_backend_name(backend));
  708. supported = false;
  709. break;
  710. }
  711. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  712. printf("not supported [%s->type != FP32] ", t->name);
  713. supported = false;
  714. break;
  715. }
  716. }
  717. if (!supported) {
  718. printf("\n");
  719. return true;
  720. }
  721. // allocate
  722. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  723. if (buf == NULL) {
  724. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  725. return false;
  726. }
  727. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  728. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  729. ggml_status status = ggml_backend_graph_compute(backend, gf);
  730. if (status != GGML_STATUS_SUCCESS) {
  731. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  732. return false;
  733. }
  734. status = ggml_backend_graph_compute(backend, gb);
  735. if (status != GGML_STATUS_SUCCESS) {
  736. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  737. return false;
  738. }
  739. bool ok = true;
  740. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  741. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  742. continue;
  743. }
  744. const char * bn = ggml_backend_name(backend);
  745. const int64_t ne = ggml_nelements(t);
  746. std::vector<float> ga;
  747. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  748. if (grad) {
  749. ga = tensor_to_float(grad);
  750. } else {
  751. ga.resize(ne); // default value is 0.0f
  752. }
  753. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  754. // check for nans
  755. if (!std::isfinite(ga[i])) {
  756. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  757. ok = false;
  758. break;
  759. }
  760. }
  761. if (!ok) {
  762. break;
  763. }
  764. std::vector<float> gn(ne); // gradient numeric
  765. GGML_ASSERT(ga.size() == gn.size());
  766. std::vector<float> x0 = tensor_to_float(t); // original t data
  767. GGML_ASSERT(ggml_is_scalar(out));
  768. GGML_ASSERT(out->type == GGML_TYPE_F32);
  769. const float eps = grad_eps();
  770. for (int64_t i = 0; i < ne; ++i) {
  771. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  772. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  773. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  774. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  775. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  776. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  777. status = ggml_backend_graph_compute(backend, gf);
  778. if (status != GGML_STATUS_SUCCESS) {
  779. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  780. return false;
  781. }
  782. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  783. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  784. status = ggml_backend_graph_compute(backend, gf);
  785. if (status != GGML_STATUS_SUCCESS) {
  786. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  787. return false;
  788. }
  789. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  790. if (grad_precise()) {
  791. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  792. status = ggml_backend_graph_compute(backend, gf);
  793. if (status != GGML_STATUS_SUCCESS) {
  794. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  795. return false;
  796. }
  797. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  798. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  799. status = ggml_backend_graph_compute(backend, gf);
  800. if (status != GGML_STATUS_SUCCESS) {
  801. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  802. return false;
  803. }
  804. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  805. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  806. } else {
  807. gn[i] = (fu - fd) / (2.0f*eps);
  808. }
  809. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  810. }
  811. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  812. if (err > max_maa_err()) {
  813. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  814. ok = false;
  815. break;
  816. }
  817. if (!ok) {
  818. break;
  819. }
  820. }
  821. if (!ok) {
  822. printf("compare failed ");
  823. }
  824. if (ok) {
  825. printf("\033[1;32mOK\033[0m\n");
  826. return true;
  827. }
  828. printf("\033[1;31mFAIL\033[0m\n");
  829. return false;
  830. }
  831. };
  832. // ###################################
  833. // ## Section 2: GGML Op Defintions ##
  834. // ###################################
  835. // The following is an example showing the bare minimum for creating a test for a GGML op.
  836. // GGML_OP_EXAMPLE
  837. struct test_example : public test_case {
  838. // Always define these 2 or variants thereof:
  839. const ggml_type type; // The type of the input tensors.
  840. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  841. // For some ops it's necessary to define multiple types or shapes for the inputs.
  842. // Or they may need additional parameters.
  843. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  844. // In most cases these are just the properties of the struct that you defined above.
  845. // This is needed for info prints.
  846. std::string vars() override {
  847. return VARS_TO_STR2(type, ne);
  848. }
  849. // Define a constructor for the struct.
  850. // In most cases it will be sufficient to have the same arguments as the struct has properties
  851. // and just use initializer lists.
  852. test_example(ggml_type type = GGML_TYPE_F32,
  853. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  854. : type(type), ne(ne) {}
  855. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  856. ggml_tensor * build_graph(ggml_context * ctx) override {
  857. // Step 1: create input tensors that don't depend on any other tensors:
  858. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  859. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  860. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  861. ggml_set_name(b, "b");
  862. // Step 2: use the op that you want to test in the GGML compute graph.
  863. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  864. ggml_set_name(out, "out");
  865. // Step 3: return the output tensor.
  866. return out;
  867. }
  868. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  869. // immediately after you create the tensors.
  870. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  871. };
  872. // GGML_OP_UNARY
  873. struct test_unary : public test_case {
  874. const ggml_unary_op op;
  875. const ggml_type type;
  876. const std::array<int64_t, 4> ne_a;
  877. int v; // view (1 : non-contiguous a)
  878. std::string vars() override {
  879. return VARS_TO_STR3(type, ne_a, v);
  880. }
  881. test_unary(ggml_unary_op op,
  882. ggml_type type = GGML_TYPE_F32,
  883. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  884. int v = 0)
  885. : op(op), type(type), ne_a(ne_a), v(v) {}
  886. ggml_tensor * build_graph(ggml_context * ctx) override {
  887. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  888. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  889. ggml_tensor * a;
  890. if (v & 1) {
  891. auto ne = ne_a; ne[0] *= 3;
  892. a = ggml_new_tensor(ctx, type, 4, ne.data());
  893. if (grad_supported) {
  894. ggml_set_param(ctx, a);
  895. }
  896. ggml_set_name(a, "a");
  897. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  898. ggml_set_name(a, "view_of_a");
  899. } else {
  900. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  901. if (grad_supported) {
  902. ggml_set_param(ctx, a);
  903. }
  904. ggml_set_name(a, "a");
  905. }
  906. ggml_tensor * out = ggml_unary(ctx, a, op);
  907. ggml_set_name(out, "out");
  908. return out;
  909. }
  910. void initialize_tensors(ggml_context * ctx) override {
  911. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  912. // test extended range of values to check for NaNs in GELU
  913. init_tensor_uniform(t, -150.f, 150.f);
  914. }
  915. }
  916. float grad_eps() override {
  917. return 15.0f;
  918. }
  919. std::vector<float> grad_expect() override {
  920. if (op == GGML_UNARY_OP_ABS) {
  921. return {-1.0f, 1.0f};
  922. }
  923. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  924. return {0.0f};
  925. }
  926. if (op == GGML_UNARY_OP_RELU) {
  927. return {0.0f, 1.0f};
  928. }
  929. return {};
  930. }
  931. };
  932. // GGML_OP_GET_ROWS
  933. struct test_get_rows : public test_case {
  934. const ggml_type type;
  935. const int n; // cols
  936. const int m; // rows
  937. const int r; // rows to get
  938. const int b; // batch size
  939. const bool v; // view (non-contiguous src1)
  940. std::string vars() override {
  941. return VARS_TO_STR6(type, n, m, r, b, v);
  942. }
  943. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  944. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  945. ggml_tensor * build_graph(ggml_context * ctx) override {
  946. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  947. ggml_set_name(in, "in");
  948. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  949. ggml_set_name(rows, "rows");
  950. if (v) {
  951. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  952. ggml_set_name(rows, "view_of_rows");
  953. }
  954. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  955. if (grad_supported) {
  956. ggml_set_param(ctx, in);
  957. // rows is a constant input -> no gradients
  958. }
  959. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  960. ggml_set_name(out, "out");
  961. return out;
  962. }
  963. void initialize_tensors(ggml_context * ctx) override {
  964. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  965. if (t->type == GGML_TYPE_I32) {
  966. if (ggml_is_view_op(t->op)) { continue; }
  967. // rows
  968. std::vector<int> data(r*b);
  969. for (int i = 0; i < r*b; i++) {
  970. data[i] = rand() % m;
  971. }
  972. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  973. } else {
  974. init_tensor_uniform(t);
  975. }
  976. }
  977. }
  978. };
  979. // GGML_OP_GET_ROWS_BACK
  980. struct test_get_rows_back : public test_case {
  981. const ggml_type type;
  982. const int n; // cols
  983. const int m; // rows
  984. const int r; // rows to get
  985. const int b; // batch size
  986. const bool v; // view (non-contiguous src1)
  987. std::string vars() override {
  988. return VARS_TO_STR6(type, n, m, r, b, v);
  989. }
  990. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  991. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  992. ggml_tensor * build_graph(ggml_context * ctx) override {
  993. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  994. ggml_set_name(in_forward, "in_forward");
  995. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  996. ggml_set_name(rows, "rows");
  997. if (v) {
  998. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  999. ggml_set_name(rows, "view_of_rows");
  1000. }
  1001. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1002. ggml_set_name(grad, "grad");
  1003. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1004. ggml_set_name(out, "out");
  1005. return out;
  1006. }
  1007. void initialize_tensors(ggml_context * ctx) override {
  1008. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1009. if (t->type == GGML_TYPE_I32) {
  1010. if (ggml_is_view_op(t->op)) { continue; }
  1011. // rows
  1012. std::vector<int> data(r*b);
  1013. for (int i = 0; i < r*b; i++) {
  1014. data[i] = rand() % m;
  1015. }
  1016. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1017. } else {
  1018. init_tensor_uniform(t);
  1019. }
  1020. }
  1021. }
  1022. };
  1023. // GGML_OP_ARGMAX
  1024. struct test_argmax : public test_case {
  1025. const ggml_type type;
  1026. const std::array<int64_t, 4> ne;
  1027. std::string vars() override {
  1028. return VARS_TO_STR2(type, ne);
  1029. }
  1030. test_argmax(ggml_type type = GGML_TYPE_F32,
  1031. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1032. : type(type), ne(ne) {}
  1033. ggml_tensor * build_graph(ggml_context * ctx) override {
  1034. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1035. ggml_set_name(a, "a");
  1036. ggml_tensor * out = ggml_argmax(ctx, a);
  1037. ggml_set_name(out, "out");
  1038. return out;
  1039. }
  1040. void initialize_tensors(ggml_context * ctx) override {
  1041. std::random_device rd;
  1042. std::default_random_engine rng(rd());
  1043. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1044. if (t->type == GGML_TYPE_F32) {
  1045. // initialize with unique values to avoid ties
  1046. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1047. std::vector<float> data(t->ne[0]);
  1048. for (int i = 0; i < t->ne[0]; i++) {
  1049. data[i] = i;
  1050. }
  1051. std::shuffle(data.begin(), data.end(), rng);
  1052. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1053. }
  1054. } else {
  1055. init_tensor_uniform(t);
  1056. }
  1057. }
  1058. }
  1059. double max_nmse_err() override {
  1060. return 0.0;
  1061. }
  1062. };
  1063. // GGML_OP_COUNT_EQUAL
  1064. struct test_count_equal : public test_case {
  1065. const ggml_type type;
  1066. const std::array<int64_t, 4> ne;
  1067. std::string vars() override {
  1068. return VARS_TO_STR2(type, ne);
  1069. }
  1070. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1071. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1072. : type(type), ne(ne) {}
  1073. ggml_tensor * build_graph(ggml_context * ctx) override {
  1074. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1075. ggml_set_name(a, "a");
  1076. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1077. ggml_set_name(a_argmax, "a_argmax");
  1078. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1079. ggml_set_name(b, "b");
  1080. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1081. ggml_set_name(b_argmax, "b_argmax");
  1082. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1083. ggml_set_name(out, "out");
  1084. return out;
  1085. }
  1086. double max_nmse_err() override {
  1087. return 0.0;
  1088. }
  1089. };
  1090. // GGML_OP_REPEAT
  1091. struct test_repeat : public test_case {
  1092. const ggml_type type;
  1093. const std::array<int64_t, 4> ne;
  1094. const std::array<int, 4> nr;
  1095. std::string vars() override {
  1096. return VARS_TO_STR3(type, ne, nr);
  1097. }
  1098. size_t op_size(ggml_tensor * t) override {
  1099. return ggml_nbytes(t) * 2;
  1100. }
  1101. test_repeat(ggml_type type = GGML_TYPE_F32,
  1102. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1103. std::array<int, 4> nr = {2, 2, 2, 2})
  1104. : type(type), ne(ne), nr(nr) {}
  1105. ggml_tensor * build_graph(ggml_context * ctx) override {
  1106. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1107. ggml_set_name(target, "target");
  1108. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1109. ggml_set_param(ctx, src);
  1110. ggml_set_name(src, "src");
  1111. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1112. ggml_set_name(out, "out");
  1113. return out;
  1114. }
  1115. };
  1116. // GGML_OP_REPEAT_BACK
  1117. struct test_repeat_back : public test_case {
  1118. const ggml_type type;
  1119. const std::array<int64_t, 4> ne;
  1120. const std::array<int, 4> nr;
  1121. const bool v; // whether src is a noncontiguous view
  1122. std::string vars() override {
  1123. return VARS_TO_STR4(type, ne, nr, v);
  1124. }
  1125. size_t op_size(ggml_tensor * t) override {
  1126. return ggml_nbytes(t) * 2;
  1127. }
  1128. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1129. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1130. std::array<int, 4> nr = {2, 2, 2, 2},
  1131. bool v = false)
  1132. : type(type), ne(ne), nr(nr), v(v) {}
  1133. ggml_tensor * build_graph(ggml_context * ctx) override {
  1134. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1135. ggml_set_name(src, "src");
  1136. if (v) {
  1137. GGML_ASSERT(ne[0] % 2 == 0);
  1138. GGML_ASSERT(ne[1] % 2 == 0);
  1139. GGML_ASSERT(ne[2] % 2 == 0);
  1140. GGML_ASSERT(ne[3] % 2 == 0);
  1141. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1142. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1143. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1144. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1145. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1146. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1147. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1148. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1149. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1150. }
  1151. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1152. ggml_set_name(target, "target");
  1153. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1154. ggml_set_name(out, "out");
  1155. return out;
  1156. }
  1157. };
  1158. // GGML_OP_DUP
  1159. struct test_dup : public test_case {
  1160. const ggml_type type;
  1161. const std::array<int64_t, 4> ne;
  1162. const std::array<int64_t, 4> permute;
  1163. bool _use_permute;
  1164. std::string vars() override {
  1165. std::string v = VARS_TO_STR2(type, ne);
  1166. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1167. return v;
  1168. }
  1169. test_dup(ggml_type type = GGML_TYPE_F32,
  1170. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1171. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1172. : type(type), ne(ne), permute(permute),
  1173. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1174. ggml_tensor * build_graph(ggml_context * ctx) override {
  1175. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1176. ggml_set_param(ctx, src);
  1177. ggml_set_name(src, "src");
  1178. if (_use_permute) {
  1179. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1180. ggml_set_name(src, "src_permuted");
  1181. }
  1182. ggml_tensor * out = ggml_dup(ctx, src);
  1183. ggml_set_name(out, "out");
  1184. return out;
  1185. }
  1186. };
  1187. // GGML_OP_SET
  1188. struct test_set : public test_case {
  1189. const ggml_type type_src;
  1190. const ggml_type type_dst;
  1191. const std::array<int64_t, 4> ne;
  1192. const int dim;
  1193. std::string vars() override {
  1194. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1195. }
  1196. size_t op_size(ggml_tensor * t) override {
  1197. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1198. }
  1199. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1200. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1201. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1202. ggml_tensor * build_graph(ggml_context * ctx) override {
  1203. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1204. ggml_set_param(ctx, src);
  1205. ggml_set_name(src, "src");
  1206. auto ne_dst = ne;
  1207. for (int i = 0; i < dim; ++i) {
  1208. ne_dst[i] *= 2;
  1209. }
  1210. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1211. ggml_set_param(ctx, dst);
  1212. ggml_set_name(dst, "dst");
  1213. size_t offset = 0;
  1214. for (int i = 0; i < dim; ++i) {
  1215. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1216. }
  1217. ggml_tensor * out = ggml_set(ctx, dst, src,
  1218. // The backward pass requires setting a contiguous region:
  1219. src->nb[1], src->nb[2], src->nb[3], offset);
  1220. ggml_set_name(out, "out");
  1221. return out;
  1222. }
  1223. };
  1224. // GGML_OP_CPY
  1225. struct test_cpy : public test_case {
  1226. const ggml_type type_src;
  1227. const ggml_type type_dst;
  1228. const std::array<int64_t, 4> ne;
  1229. const std::array<int64_t, 4> permute_src;
  1230. const std::array<int64_t, 4> permute_dst;
  1231. bool _src_use_permute;
  1232. bool _dst_use_permute;
  1233. std::string vars() override {
  1234. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  1235. }
  1236. double max_nmse_err() override {
  1237. return 1e-6;
  1238. }
  1239. size_t op_size(ggml_tensor * t) override {
  1240. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1241. }
  1242. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1243. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1244. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  1245. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  1246. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  1247. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  1248. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  1249. ggml_tensor * build_graph(ggml_context * ctx) override {
  1250. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1251. ggml_set_param(ctx, src);
  1252. ggml_set_name(src, "src");
  1253. if (_src_use_permute) {
  1254. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  1255. ggml_set_name(src, "src_permuted");
  1256. }
  1257. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1258. ggml_set_name(dst, "dst");
  1259. if (_dst_use_permute) {
  1260. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  1261. ggml_set_name(dst, "dst_permuted");
  1262. }
  1263. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1264. ggml_set_name(out, "out");
  1265. return out;
  1266. }
  1267. };
  1268. // GGML_OP_CONT
  1269. struct test_cont : public test_case {
  1270. const ggml_type type;
  1271. const std::array<int64_t, 4> ne;
  1272. std::string vars() override {
  1273. return VARS_TO_STR2(type, ne);
  1274. }
  1275. test_cont(ggml_type type = GGML_TYPE_F32,
  1276. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1277. : type(type), ne(ne) {}
  1278. ggml_tensor * build_graph(ggml_context * ctx) override {
  1279. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1280. ggml_set_param(ctx, src);
  1281. ggml_set_name(src, "src");
  1282. src = ggml_transpose(ctx, src);
  1283. ggml_set_name(src, "src_transposed");
  1284. ggml_tensor * out = ggml_cont(ctx, src);
  1285. ggml_set_name(out, "out");
  1286. return out;
  1287. }
  1288. };
  1289. // GGML_OP_ADD
  1290. // GGML_OP_SUB
  1291. // GGML_OP_MUL
  1292. // GGML_OP_DIV
  1293. struct test_bin_bcast : public test_case {
  1294. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1295. op_t op;
  1296. const ggml_type type;
  1297. const std::array<int64_t, 4> ne;
  1298. const std::array<int, 4> nr;
  1299. std::string vars() override {
  1300. return VARS_TO_STR3(type, ne, nr);
  1301. }
  1302. size_t op_size(ggml_tensor * t) override {
  1303. return ggml_nbytes(t) * 3;
  1304. }
  1305. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1306. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1307. std::array<int, 4> nr = {1, 2, 1, 1})
  1308. : op(op), type(type), ne(ne), nr(nr) {}
  1309. ggml_tensor * build_graph(ggml_context * ctx) override {
  1310. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1311. ggml_set_name(a, "a");
  1312. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1313. ggml_set_name(b, "b");
  1314. // The backward pass supports broadcasting only for GGML_ADD:
  1315. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1316. if (grad_supported) {
  1317. ggml_set_param(ctx, a);
  1318. ggml_set_param(ctx, b);
  1319. }
  1320. ggml_tensor * out = op(ctx, a, b);
  1321. ggml_set_name(out, "out");
  1322. return out;
  1323. }
  1324. void initialize_tensors(ggml_context * ctx) override {
  1325. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1326. if (op == ggml_mul || op == ggml_div) {
  1327. // MUL and DIV have numerical issues around zero:
  1328. init_tensor_uniform(t, 0.9f, 1.1f);
  1329. } else {
  1330. init_tensor_uniform(t);
  1331. }
  1332. }
  1333. }
  1334. float grad_eps() override {
  1335. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1336. }
  1337. bool grad_precise() override {
  1338. return op == ggml_div;
  1339. }
  1340. double max_maa_err() override {
  1341. return op == ggml_add ? 1e-4 : 1e-3;
  1342. }
  1343. };
  1344. // GGML_OP_ADD1
  1345. struct test_add1 : public test_case {
  1346. const ggml_type type;
  1347. const std::array<int64_t, 4> ne;
  1348. std::string vars() override {
  1349. return VARS_TO_STR2(type, ne);
  1350. }
  1351. test_add1(ggml_type type = GGML_TYPE_F32,
  1352. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1353. : type(type), ne(ne) {}
  1354. ggml_tensor * build_graph(ggml_context * ctx) override {
  1355. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1356. ggml_set_param(ctx, a);
  1357. ggml_set_name(a, "a");
  1358. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1359. // ggml_set_param(ctx, b); // TODO: implement
  1360. ggml_set_name(b, "b");
  1361. ggml_tensor * out = ggml_add1(ctx, a, b);
  1362. ggml_set_name(out, "out");
  1363. return out;
  1364. }
  1365. float grad_eps() override {
  1366. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1367. }
  1368. };
  1369. // GGML_OP_SCALE
  1370. struct test_scale : public test_case {
  1371. const ggml_type type;
  1372. const std::array<int64_t, 4> ne;
  1373. float scale;
  1374. std::string vars() override {
  1375. return VARS_TO_STR3(type, ne, scale);
  1376. }
  1377. test_scale(ggml_type type = GGML_TYPE_F32,
  1378. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1379. float scale = 2.0f)
  1380. : type(type), ne(ne), scale(scale) {}
  1381. ggml_tensor * build_graph(ggml_context * ctx) override {
  1382. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1383. ggml_set_param(ctx, a);
  1384. ggml_set_name(a, "a");
  1385. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1386. ggml_set_name(out, "out");
  1387. return out;
  1388. }
  1389. };
  1390. // GGML_OP_SILU_BACK
  1391. struct test_silu_back : public test_case {
  1392. const ggml_type type;
  1393. const std::array<int64_t, 4> ne;
  1394. float eps;
  1395. std::string vars() override {
  1396. return VARS_TO_STR3(type, ne, eps);
  1397. }
  1398. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1399. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1400. float eps = 1e-6f)
  1401. : type(type), ne(ne), eps(eps) {}
  1402. ggml_tensor * build_graph(ggml_context * ctx) override {
  1403. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1404. ggml_set_name(a, "a");
  1405. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1406. ggml_set_name(grad, "grad");
  1407. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1408. ggml_set_name(out, "out");
  1409. return out;
  1410. }
  1411. bool grad_precise() override {
  1412. return true;
  1413. }
  1414. };
  1415. // GGML_OP_NORM
  1416. struct test_norm : public test_case {
  1417. const ggml_type type;
  1418. const std::array<int64_t, 4> ne;
  1419. const bool v; // whether a is a non-contiguous view
  1420. const float eps;
  1421. std::string vars() override {
  1422. return VARS_TO_STR4(type, ne, v, eps);
  1423. }
  1424. test_norm(ggml_type type = GGML_TYPE_F32,
  1425. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1426. bool v = false,
  1427. float eps = 1e-6f)
  1428. : type(type), ne(ne), v(v), eps(eps) {}
  1429. ggml_tensor * build_graph(ggml_context * ctx) override {
  1430. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1431. ggml_set_name(a, "a");
  1432. if (v) {
  1433. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1434. ggml_set_name(a, "view of a");
  1435. }
  1436. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1437. ggml_set_name(out, "out");
  1438. return out;
  1439. }
  1440. };
  1441. // GGML_OP_RMS_NORM
  1442. struct test_rms_norm : public test_case {
  1443. const ggml_type type;
  1444. const std::array<int64_t, 4> ne;
  1445. const bool v; // whether a is a non-contiguous view
  1446. const float eps;
  1447. std::string vars() override {
  1448. return VARS_TO_STR4(type, ne, v, eps);
  1449. }
  1450. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1451. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1452. bool v = false,
  1453. float eps = 1e-6f)
  1454. : type(type), ne(ne), v(v), eps(eps) {}
  1455. ggml_tensor * build_graph(ggml_context * ctx) override {
  1456. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1457. ggml_set_param(ctx, a);
  1458. ggml_set_name(a, "a");
  1459. if (v) {
  1460. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1461. ggml_set_name(a, "view of a");
  1462. }
  1463. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1464. ggml_set_name(out, "out");
  1465. return out;
  1466. }
  1467. void initialize_tensors(ggml_context * ctx) override {
  1468. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1469. init_tensor_uniform(t, -10.f, 10.f);
  1470. }
  1471. }
  1472. float grad_eps() override {
  1473. return 1.0f;
  1474. }
  1475. bool grad_precise() override {
  1476. return true;
  1477. }
  1478. };
  1479. // GGML_OP_RMS_NORM_BACK
  1480. struct test_rms_norm_back : public test_case {
  1481. const ggml_type type;
  1482. const std::array<int64_t, 4> ne;
  1483. const float eps;
  1484. std::string vars() override {
  1485. return VARS_TO_STR3(type, ne, eps);
  1486. }
  1487. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1488. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1489. float eps = 1e-6f)
  1490. : type(type), ne(ne), eps(eps) {}
  1491. ggml_tensor * build_graph(ggml_context * ctx) override {
  1492. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1493. ggml_set_name(a, "a");
  1494. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1495. ggml_set_name(b, "b");
  1496. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1497. ggml_set_name(out, "out");
  1498. return out;
  1499. }
  1500. void initialize_tensors(ggml_context * ctx) override {
  1501. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1502. init_tensor_uniform(t, -10.f, 10.f);
  1503. }
  1504. }
  1505. };
  1506. // GGML_OP_SSM_CONV
  1507. struct test_ssm_conv : public test_case {
  1508. const ggml_type type;
  1509. const std::array<int64_t, 4> ne_a;
  1510. const std::array<int64_t, 4> ne_b;
  1511. std::string vars() override {
  1512. return VARS_TO_STR3(type, ne_a, ne_b);
  1513. }
  1514. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1515. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1516. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1517. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1518. ggml_tensor * build_graph(ggml_context * ctx) override {
  1519. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1520. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1521. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1522. return out;
  1523. }
  1524. };
  1525. // GGML_OP_SSM_SCAN
  1526. struct test_ssm_scan : public test_case {
  1527. const ggml_type type;
  1528. const int64_t d_state;
  1529. const int64_t d_inner;
  1530. const int64_t n_seq_tokens;
  1531. const int64_t n_seqs;
  1532. std::string vars() override {
  1533. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1534. }
  1535. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1536. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1537. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1538. ggml_tensor * build_graph(ggml_context * ctx) override {
  1539. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1540. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1541. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1542. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1543. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1544. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1545. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1546. return out;
  1547. }
  1548. };
  1549. // GGML_OP_RWKV_WKV6
  1550. struct test_rwkv_wkv6 : public test_case {
  1551. const ggml_type type;
  1552. const int64_t head_count;
  1553. const int64_t head_size;
  1554. const int64_t n_seq_tokens;
  1555. const int64_t n_seqs;
  1556. std::string vars() override {
  1557. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1558. }
  1559. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1560. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1561. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1562. ggml_tensor * build_graph(ggml_context * ctx) override {
  1563. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1564. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1565. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1566. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1567. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1568. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1569. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1570. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1571. return out;
  1572. }
  1573. };
  1574. // GGML_OP_GATED_LINEAR_ATTN
  1575. struct test_gla : public test_case {
  1576. const ggml_type type;
  1577. const int64_t head_count;
  1578. const int64_t head_size;
  1579. const int64_t n_seq_tokens;
  1580. const int64_t n_seqs;
  1581. std::string vars() override {
  1582. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1583. }
  1584. test_gla(ggml_type type = GGML_TYPE_F32,
  1585. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1586. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1587. ggml_tensor * build_graph(ggml_context * ctx) override {
  1588. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1589. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1590. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1591. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1592. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1593. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1594. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1595. return out;
  1596. }
  1597. };
  1598. // GGML_OP_RWKV_WKV7
  1599. struct test_rwkv_wkv7 : public test_case {
  1600. const ggml_type type;
  1601. const int64_t head_count;
  1602. const int64_t head_size;
  1603. const int64_t n_seq_tokens;
  1604. const int64_t n_seqs;
  1605. std::string vars() override {
  1606. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1607. }
  1608. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  1609. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1610. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1611. ggml_tensor * build_graph(ggml_context * ctx) override {
  1612. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1613. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1614. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1615. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1616. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1617. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1618. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1619. // Outputs may become NaN with long seqlen without these normalization
  1620. a = ggml_l2_norm(ctx, a, 1e-7F);
  1621. b = ggml_l2_norm(ctx, b, 1e-7F);
  1622. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1623. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  1624. return out;
  1625. }
  1626. };
  1627. // GGML_OP_MUL_MAT
  1628. struct test_mul_mat : public test_case {
  1629. const ggml_type type_a;
  1630. const ggml_type type_b;
  1631. const int64_t m;
  1632. const int64_t n;
  1633. const int64_t k;
  1634. const std::array<int64_t, 2> bs; // dims 3 and 4
  1635. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1636. const std::array<int64_t, 4> per; // permutation of dimensions
  1637. const bool v; // whether a and b are non-contiguous views
  1638. std::string vars() override {
  1639. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  1640. }
  1641. double max_nmse_err() override {
  1642. return 5e-4;
  1643. }
  1644. int64_t grad_nmax() override {
  1645. return 20000;
  1646. }
  1647. uint64_t op_flops(ggml_tensor * t) override {
  1648. GGML_UNUSED(t);
  1649. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1650. }
  1651. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1652. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1653. std::array<int64_t, 2> bs = {10, 10},
  1654. std::array<int64_t, 2> nr = {2, 2},
  1655. std::array<int64_t, 4> per = {0, 1, 2, 3},
  1656. bool v = false)
  1657. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  1658. ggml_tensor * build_graph(ggml_context * ctx) override {
  1659. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1660. ggml_tensor * a;
  1661. ggml_tensor * b;
  1662. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1663. if (npermuted > 0) {
  1664. GGML_ASSERT(npermuted == 2);
  1665. GGML_ASSERT(!v); // not handled
  1666. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1667. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1668. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1669. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1670. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1671. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1672. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1673. if (!ggml_is_quantized(type_a)) {
  1674. if (bs[1] == 1 && nr[1] == 1) {
  1675. ggml_set_param(ctx, a);
  1676. }
  1677. ggml_set_param(ctx, b);
  1678. }
  1679. ggml_set_name(a, "a");
  1680. ggml_set_name(b, "b");
  1681. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1682. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1683. ggml_set_name(a, "a_permuted");
  1684. ggml_set_name(b, "b_permuted");
  1685. } else {
  1686. if (v) {
  1687. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  1688. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  1689. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  1690. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  1691. } else {
  1692. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1693. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1694. }
  1695. if (!ggml_is_quantized(type_a)) {
  1696. if (bs[1] == 1 && nr[1] == 1) {
  1697. ggml_set_param(ctx, a);
  1698. }
  1699. ggml_set_param(ctx, b);
  1700. }
  1701. ggml_set_name(a, "a");
  1702. ggml_set_name(b, "b");
  1703. }
  1704. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1705. ggml_set_name(out, "out");
  1706. return out;
  1707. }
  1708. };
  1709. // GGML_OP_MUL_MAT_ID
  1710. struct test_mul_mat_id : public test_case {
  1711. const ggml_type type_a;
  1712. const ggml_type type_b;
  1713. const int n_mats;
  1714. const int n_used;
  1715. const bool b; // broadcast b matrix
  1716. const int64_t m;
  1717. const int64_t n;
  1718. const int64_t k;
  1719. std::string vars() override {
  1720. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1721. }
  1722. double max_nmse_err() override {
  1723. return 5e-4;
  1724. }
  1725. uint64_t op_flops(ggml_tensor * t) override {
  1726. GGML_UNUSED(t);
  1727. return 2 * m * k * n * n_used;
  1728. }
  1729. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1730. int n_mats = 8, int n_used = 2, bool b = false,
  1731. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1732. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1733. m(m), n(n), k(k) {
  1734. GGML_ASSERT(n_used <= n_mats);
  1735. }
  1736. ggml_tensor * build_graph(ggml_context * ctx) override {
  1737. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1738. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1739. ggml_set_name(as, "as");
  1740. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1741. ggml_set_name(ids, "ids");
  1742. if (n_used != n_mats) {
  1743. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1744. ggml_set_name(ids, "view_of_ids");
  1745. }
  1746. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1747. ggml_set_name(b, "b");
  1748. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1749. ggml_set_name(out, "out");
  1750. return out;
  1751. }
  1752. void initialize_tensors(ggml_context * ctx) override {
  1753. std::random_device rd;
  1754. std::default_random_engine rng(rd());
  1755. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1756. if (t->type == GGML_TYPE_I32) {
  1757. if (ggml_is_view_op(t->op)) { continue; }
  1758. // ids
  1759. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1760. std::vector<int32_t> data(t->ne[0]);
  1761. for (int i = 0; i < t->ne[0]; i++) {
  1762. data[i] = i % n_mats;
  1763. }
  1764. std::shuffle(data.begin(), data.end(), rng);
  1765. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1766. }
  1767. } else {
  1768. init_tensor_uniform(t);
  1769. }
  1770. }
  1771. }
  1772. };
  1773. // GGML_OP_OUT_PROD
  1774. struct test_out_prod : public test_case {
  1775. const ggml_type type_a;
  1776. const ggml_type type_b;
  1777. const int64_t m;
  1778. const int64_t n;
  1779. const int64_t k;
  1780. const std::array<int64_t, 2> bs; // dims 3 and 4
  1781. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1782. const bool trans_b;
  1783. std::string vars() override {
  1784. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1785. }
  1786. double max_nmse_err() override {
  1787. return 5e-4;
  1788. }
  1789. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1790. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1791. std::array<int64_t, 2> bs = {10, 10},
  1792. std::array<int64_t, 2> nr = {2, 2},
  1793. bool trans_b = false)
  1794. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1795. ggml_tensor * build_graph(ggml_context * ctx) override {
  1796. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1797. ggml_set_name(a, "a");
  1798. ggml_tensor * b;
  1799. if (trans_b) {
  1800. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1801. b = ggml_transpose(ctx, b);
  1802. } else {
  1803. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1804. }
  1805. ggml_set_name(b, "b");
  1806. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1807. ggml_set_name(out, "out");
  1808. return out;
  1809. }
  1810. };
  1811. // GGML_OP_SQR
  1812. struct test_sqr : public test_case {
  1813. const ggml_type type;
  1814. const std::array<int64_t, 4> ne;
  1815. std::string vars() override {
  1816. return VARS_TO_STR2(type, ne);
  1817. }
  1818. test_sqr(ggml_type type = GGML_TYPE_F32,
  1819. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1820. : type(type), ne(ne) {}
  1821. ggml_tensor * build_graph(ggml_context * ctx) override {
  1822. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1823. ggml_set_param(ctx, a);
  1824. ggml_set_name(a, "a");
  1825. ggml_tensor * out = ggml_sqr(ctx, a);
  1826. ggml_set_name(out, "out");
  1827. return out;
  1828. }
  1829. float grad_eps() override {
  1830. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1831. }
  1832. };
  1833. // GGML_OP_SQRT
  1834. struct test_sqrt : public test_case {
  1835. const ggml_type type;
  1836. const std::array<int64_t, 4> ne;
  1837. std::string vars() override {
  1838. return VARS_TO_STR2(type, ne);
  1839. }
  1840. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1841. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1842. : type(type), ne(ne) {}
  1843. ggml_tensor * build_graph(ggml_context * ctx) override {
  1844. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1845. ggml_set_param(ctx, a);
  1846. ggml_set_name(a, "a");
  1847. ggml_tensor * out = ggml_sqrt(ctx, a);
  1848. ggml_set_name(out, "out");
  1849. return out;
  1850. }
  1851. void initialize_tensors(ggml_context * ctx) override {
  1852. // fill with positive values
  1853. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1854. init_tensor_uniform(t, 50.0f, 100.0f);
  1855. }
  1856. }
  1857. float grad_eps() override {
  1858. return 20.0f;
  1859. }
  1860. bool grad_precise() override {
  1861. return true;
  1862. }
  1863. };
  1864. // GGML_OP_LOG
  1865. struct test_log : public test_case {
  1866. const ggml_type type;
  1867. const std::array<int64_t, 4> ne;
  1868. std::string vars() override {
  1869. return VARS_TO_STR2(type, ne);
  1870. }
  1871. test_log(ggml_type type = GGML_TYPE_F32,
  1872. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1873. : type(type), ne(ne) {}
  1874. ggml_tensor * build_graph(ggml_context * ctx) override {
  1875. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1876. ggml_set_param(ctx, a);
  1877. ggml_set_name(a, "a");
  1878. ggml_tensor * out = ggml_log(ctx, a);
  1879. ggml_set_name(out, "out");
  1880. return out;
  1881. }
  1882. void initialize_tensors(ggml_context * ctx) override {
  1883. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1884. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1885. init_tensor_uniform(t, 0.9f, 1.1f);
  1886. }
  1887. }
  1888. bool grad_precise() override {
  1889. return true;
  1890. }
  1891. };
  1892. // GGML_OP_SIN
  1893. struct test_sin : public test_case {
  1894. const ggml_type type;
  1895. const std::array<int64_t, 4> ne;
  1896. std::string vars() override {
  1897. return VARS_TO_STR2(type, ne);
  1898. }
  1899. test_sin(ggml_type type = GGML_TYPE_F32,
  1900. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1901. : type(type), ne(ne) {}
  1902. ggml_tensor * build_graph(ggml_context * ctx) override {
  1903. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1904. ggml_set_param(ctx, a);
  1905. ggml_set_name(a, "a");
  1906. ggml_tensor * out = ggml_sin(ctx, a);
  1907. ggml_set_name(out, "out");
  1908. return out;
  1909. }
  1910. void initialize_tensors(ggml_context * ctx) override {
  1911. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1912. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1913. }
  1914. }
  1915. double max_maa_err() override {
  1916. return 1e-3;
  1917. }
  1918. float grad_eps() override {
  1919. return 0.2f;
  1920. }
  1921. bool grad_precise() override {
  1922. return true;
  1923. }
  1924. };
  1925. // GGML_OP_COS
  1926. struct test_cos : public test_case {
  1927. const ggml_type type;
  1928. const std::array<int64_t, 4> ne;
  1929. std::string vars() override {
  1930. return VARS_TO_STR2(type, ne);
  1931. }
  1932. test_cos(ggml_type type = GGML_TYPE_F32,
  1933. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1934. : type(type), ne(ne) {}
  1935. ggml_tensor * build_graph(ggml_context * ctx) override {
  1936. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1937. ggml_set_param(ctx, a);
  1938. ggml_set_name(a, "a");
  1939. ggml_tensor * out = ggml_cos(ctx, a);
  1940. ggml_set_name(out, "out");
  1941. return out;
  1942. }
  1943. void initialize_tensors(ggml_context * ctx) override {
  1944. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1945. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1946. }
  1947. }
  1948. double max_maa_err() override {
  1949. return 1e-3;
  1950. }
  1951. float grad_eps() override {
  1952. return 0.2f;
  1953. }
  1954. bool grad_precise() override {
  1955. return true;
  1956. }
  1957. };
  1958. // GGML_OP_CLAMP
  1959. struct test_clamp : public test_case {
  1960. const ggml_type type;
  1961. const std::array<int64_t, 4> ne;
  1962. float min;
  1963. float max;
  1964. std::string vars() override {
  1965. return VARS_TO_STR4(type, ne, min, max);
  1966. }
  1967. test_clamp(ggml_type type = GGML_TYPE_F32,
  1968. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1969. float min = -0.5f, float max = 0.5f)
  1970. : type(type), ne(ne), min(min), max(max) {}
  1971. ggml_tensor * build_graph(ggml_context * ctx) override {
  1972. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1973. ggml_set_name(a, "a");
  1974. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1975. ggml_set_name(out, "out");
  1976. return out;
  1977. }
  1978. float grad_eps() override {
  1979. return 1e-2f;
  1980. }
  1981. std::vector<float> grad_expect() override {
  1982. return {0.0f, 1.0f};
  1983. }
  1984. };
  1985. // GGML_OP_DIAG_MASK_INF
  1986. struct test_diag_mask_inf : public test_case {
  1987. const ggml_type type;
  1988. const std::array<int64_t, 4> ne;
  1989. const int n_past;
  1990. std::string vars() override {
  1991. return VARS_TO_STR3(type, ne, n_past);
  1992. }
  1993. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1994. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1995. int n_past = 5)
  1996. : type(type), ne(ne), n_past(n_past) {}
  1997. ggml_tensor * build_graph(ggml_context * ctx) override {
  1998. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1999. ggml_set_param(ctx, a);
  2000. ggml_set_name(a, "a");
  2001. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  2002. ggml_set_name(out, "out");
  2003. return out;
  2004. }
  2005. };
  2006. // GGML_OP_SOFT_MAX
  2007. struct test_soft_max : public test_case {
  2008. const ggml_type type;
  2009. const std::array<int64_t, 4> ne;
  2010. const bool mask;
  2011. const ggml_type m_prec;
  2012. const float scale;
  2013. const float max_bias;
  2014. std::string vars() override {
  2015. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  2016. }
  2017. // the 1024 test with bias occasionally fails:
  2018. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2019. virtual double max_nmse_err() override {
  2020. return 1e-6;
  2021. }
  2022. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2023. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2024. bool mask = false,
  2025. ggml_type m_prec = GGML_TYPE_F32,
  2026. float scale = 1.0f,
  2027. float max_bias = 0.0f)
  2028. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  2029. ggml_tensor * build_graph(ggml_context * ctx) override {
  2030. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2031. ggml_set_param(ctx, a);
  2032. ggml_set_name(a, "a");
  2033. ggml_tensor * mask = nullptr;
  2034. if (this->mask) {
  2035. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  2036. ggml_set_name(mask, "mask");
  2037. }
  2038. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2039. ggml_set_name(out, "out");
  2040. return out;
  2041. }
  2042. bool grad_precise() override {
  2043. return true;
  2044. }
  2045. };
  2046. // GGML_OP_SOFT_MAX_BACK
  2047. struct test_soft_max_back : public test_case {
  2048. const ggml_type type;
  2049. const std::array<int64_t, 4> ne;
  2050. const float scale;
  2051. const float max_bias;
  2052. std::string vars() override {
  2053. return VARS_TO_STR4(type, ne, scale, max_bias);
  2054. }
  2055. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2056. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2057. float scale = 1.0f,
  2058. float max_bias = 0.0f)
  2059. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2060. ggml_tensor * build_graph(ggml_context * ctx) override {
  2061. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2062. ggml_set_name(a, "a");
  2063. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2064. ggml_set_name(a, "a");
  2065. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2066. ggml_set_name(out, "out");
  2067. return out;
  2068. }
  2069. };
  2070. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2071. struct test_rope : public test_case {
  2072. const ggml_type type;
  2073. const std::array<int64_t, 4> ne_a;
  2074. int n_dims;
  2075. int mode;
  2076. int n_ctx; // used to generate positions
  2077. float fs; // freq_scale
  2078. float ef; // ext_factor
  2079. float af; // attn_factor
  2080. bool ff;
  2081. int v; // view (1 : non-contiguous a)
  2082. bool forward;
  2083. std::string vars() override {
  2084. // forward can be inferred from the op, does not need to be printed
  2085. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2086. }
  2087. test_rope(ggml_type type = GGML_TYPE_F32,
  2088. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2089. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2090. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2091. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2092. ggml_tensor * build_graph(ggml_context * ctx) override {
  2093. ggml_tensor * a;
  2094. if (v & 1) {
  2095. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2096. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2097. if (forward) {
  2098. ggml_set_param(ctx, a);
  2099. }
  2100. ggml_set_name(a, "a");
  2101. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2102. ggml_set_name(a, "view_of_a");
  2103. } else {
  2104. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2105. if (forward) {
  2106. ggml_set_param(ctx, a);
  2107. }
  2108. ggml_set_name(a, "a");
  2109. }
  2110. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2111. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2112. ggml_tensor * pos;
  2113. if (is_mrope || is_vision) {
  2114. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2115. } else {
  2116. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2117. }
  2118. ggml_set_name(pos, "pos");
  2119. ggml_tensor * freq = nullptr;
  2120. if (ff) {
  2121. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2122. ggml_set_name(freq, "freq");
  2123. }
  2124. ggml_tensor * out;
  2125. if (is_mrope) {
  2126. if (is_vision) {
  2127. GGML_ASSERT(n_dims/4 > 0);
  2128. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2129. if (forward) {
  2130. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2131. } else {
  2132. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2133. }
  2134. } else {
  2135. GGML_ASSERT(n_dims/3 > 0);
  2136. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2137. if (forward) {
  2138. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2139. } else {
  2140. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2141. }
  2142. }
  2143. } else {
  2144. if (forward) {
  2145. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2146. } else {
  2147. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2148. }
  2149. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  2150. }
  2151. ggml_set_name(out, "out");
  2152. return out;
  2153. }
  2154. void initialize_tensors(ggml_context * ctx) override {
  2155. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2156. if (t->type == GGML_TYPE_I32) {
  2157. // pos
  2158. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2159. std::vector<int> data(num_pos_ids);
  2160. for (int i = 0; i < num_pos_ids; i++) {
  2161. data[i] = rand() % n_ctx;
  2162. }
  2163. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2164. } else {
  2165. if (t->ne[0] == n_dims/2) {
  2166. // frequency factors in the range [0.9f, 1.1f]
  2167. init_tensor_uniform(t, 0.9f, 1.1f);
  2168. } else {
  2169. init_tensor_uniform(t);
  2170. }
  2171. }
  2172. }
  2173. }
  2174. double max_maa_err() override {
  2175. return 1e-3;
  2176. }
  2177. bool grad_precise() override {
  2178. return true;
  2179. }
  2180. };
  2181. // GGML_OP_POOL2D
  2182. struct test_pool2d : public test_case {
  2183. enum ggml_op_pool pool_type;
  2184. const ggml_type type_input;
  2185. const std::array<int64_t, 4> ne_input;
  2186. // kernel size
  2187. const int k0;
  2188. const int k1;
  2189. // stride
  2190. const int s0;
  2191. const int s1;
  2192. // padding
  2193. const int p0;
  2194. const int p1;
  2195. std::string vars() override {
  2196. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2197. }
  2198. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2199. ggml_type type_input = GGML_TYPE_F32,
  2200. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2201. int k0 = 3, int k1 = 3,
  2202. int s0 = 1, int s1 = 1,
  2203. int p0 = 1, int p1 = 1)
  2204. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2205. ggml_tensor * build_graph(ggml_context * ctx) override {
  2206. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2207. ggml_set_param(ctx, input);
  2208. ggml_set_name(input, "input");
  2209. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2210. ggml_set_name(out, "out");
  2211. return out;
  2212. }
  2213. };
  2214. // GGML_OP_CONV_TRANSPOSE_1D
  2215. struct test_conv_transpose_1d : public test_case {
  2216. const std::array<int64_t, 4> ne_input;
  2217. const std::array<int64_t, 4> ne_kernel;
  2218. const int s0; // stride
  2219. const int p0; // padding
  2220. const int d0; // dilation
  2221. std::string vars() override {
  2222. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2223. }
  2224. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2225. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2226. int s0 = 1, int p0 = 0, int d0 = 1)
  2227. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2228. ggml_tensor * build_graph(ggml_context * ctx) override {
  2229. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2230. ggml_set_name(input, "input");
  2231. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2232. ggml_set_name(kernel, "kernel");
  2233. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2234. ggml_set_name(out, "out");
  2235. return out;
  2236. }
  2237. };
  2238. // GGML_OP_IM2COL
  2239. struct test_im2col : public test_case {
  2240. const ggml_type type_input;
  2241. const ggml_type type_kernel;
  2242. const ggml_type dst_type;
  2243. const std::array<int64_t, 4> ne_input;
  2244. const std::array<int64_t, 4> ne_kernel;
  2245. // stride
  2246. const int s0;
  2247. const int s1;
  2248. // padding
  2249. const int p0;
  2250. const int p1;
  2251. // dilation
  2252. const int d0;
  2253. const int d1;
  2254. // mode
  2255. const bool is_2D;
  2256. std::string vars() override {
  2257. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2258. }
  2259. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2260. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2261. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2262. int s0 = 1, int s1 = 1,
  2263. int p0 = 1, int p1 = 1,
  2264. int d0 = 1, int d1 = 1,
  2265. bool is_2D = true)
  2266. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2267. ggml_tensor * build_graph(ggml_context * ctx) override {
  2268. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2269. ggml_set_param(ctx, input);
  2270. ggml_set_name(input, "input");
  2271. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2272. ggml_set_name(kernel, "kernel");
  2273. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2274. ggml_set_name(out, "out");
  2275. return out;
  2276. }
  2277. };
  2278. // GGML_OP_CONV_2D_DW
  2279. struct test_conv_2d_dw : public test_case {
  2280. const std::array<int64_t, 4> ne_input;
  2281. const std::array<int64_t, 4> ne_kernel;
  2282. const int stride;
  2283. const int padding;
  2284. const int dilation;
  2285. const bool cwhn;
  2286. std::string vars() override {
  2287. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  2288. }
  2289. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  2290. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  2291. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  2292. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  2293. ggml_tensor * build_graph(ggml_context * ctx) override {
  2294. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2295. ggml_set_name(input, "input");
  2296. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2297. ggml_set_name(kernel, "kernel");
  2298. if (cwhn) {
  2299. // change memory layout to channel-most-contiguous (CWHN),
  2300. // then permute it back so NE matches the original input
  2301. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  2302. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  2303. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  2304. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  2305. }
  2306. ggml_tensor * out = ggml_conv_2d_dw_direct(
  2307. ctx, kernel, input,
  2308. stride, stride, padding, padding, dilation, dilation);
  2309. ggml_set_name(out, "out");
  2310. return out;
  2311. }
  2312. };
  2313. // GGML_OP_CONCAT
  2314. struct test_concat : public test_case {
  2315. const ggml_type type;
  2316. const std::array<int64_t, 4> ne_a;
  2317. const int64_t ne_b_d;
  2318. const int dim;
  2319. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2320. std::string vars() override {
  2321. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2322. }
  2323. test_concat(ggml_type type = GGML_TYPE_F32,
  2324. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2325. int64_t ne_b_d = 5,
  2326. int dim = 2, int v = 0)
  2327. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2328. ggml_tensor * build_graph(ggml_context * ctx) override {
  2329. auto ne_b = ne_a;
  2330. ne_b[dim] = ne_b_d;
  2331. ggml_tensor * a;
  2332. if (v & 1) {
  2333. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2334. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2335. ggml_set_name(a, "a");
  2336. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2337. ggml_set_name(a, "view_of_a");
  2338. } else {
  2339. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2340. ggml_set_name(a, "a");
  2341. }
  2342. ggml_tensor * b;
  2343. if (v & 2) {
  2344. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2345. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2346. ggml_set_name(b, "b");
  2347. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2348. ggml_set_name(b, "view_of_b");
  2349. } else {
  2350. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2351. ggml_set_name(b, "b");
  2352. }
  2353. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2354. ggml_set_name(out, "out");
  2355. return out;
  2356. }
  2357. };
  2358. // GGML_OP_ARGSORT
  2359. struct test_argsort : public test_case {
  2360. const ggml_type type;
  2361. const std::array<int64_t, 4> ne;
  2362. ggml_sort_order order;
  2363. std::string vars() override {
  2364. return VARS_TO_STR3(type, ne, order);
  2365. }
  2366. test_argsort(ggml_type type = GGML_TYPE_F32,
  2367. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2368. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2369. : type(type), ne(ne), order(order) {}
  2370. ggml_tensor * build_graph(ggml_context * ctx) override {
  2371. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2372. ggml_set_name(a, "a");
  2373. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2374. ggml_set_name(out, "out");
  2375. return out;
  2376. }
  2377. void initialize_tensors(ggml_context * ctx) override {
  2378. std::random_device rd;
  2379. std::default_random_engine rng(rd());
  2380. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2381. if (t->type == GGML_TYPE_I32) {
  2382. // indices
  2383. std::vector<int> data(ggml_nelements(t));
  2384. for (int i = 0; i < ggml_nelements(t); i++) {
  2385. data[i] = rand();
  2386. }
  2387. std::shuffle(data.begin(), data.end(), rng);
  2388. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2389. } else if (t->type == GGML_TYPE_F32) {
  2390. // initialize with unique values to avoid ties
  2391. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2392. std::vector<float> data(t->ne[0]);
  2393. for (int i = 0; i < t->ne[0]; i++) {
  2394. data[i] = i;
  2395. }
  2396. std::shuffle(data.begin(), data.end(), rng);
  2397. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2398. }
  2399. } else {
  2400. GGML_ABORT("fatal error");
  2401. }
  2402. }
  2403. }
  2404. };
  2405. // GGML_OP_SUM
  2406. struct test_sum : public test_case {
  2407. const ggml_type type;
  2408. const std::array<int64_t, 4> ne;
  2409. std::string vars() override {
  2410. return VARS_TO_STR2(type, ne);
  2411. }
  2412. test_sum(ggml_type type = GGML_TYPE_F32,
  2413. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2414. : type(type), ne(ne) {}
  2415. ggml_tensor * build_graph(ggml_context * ctx) override {
  2416. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2417. ggml_set_param(ctx, a);
  2418. ggml_set_name(a, "a");
  2419. ggml_tensor * out = ggml_sum(ctx, a);
  2420. ggml_set_name(out, "out");
  2421. return out;
  2422. }
  2423. float grad_eps() override {
  2424. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2425. }
  2426. };
  2427. // GGML_OP_SUM_ROWS
  2428. struct test_sum_rows : public test_case {
  2429. const ggml_type type;
  2430. const std::array<int64_t, 4> ne;
  2431. std::string vars() override {
  2432. return VARS_TO_STR2(type, ne);
  2433. }
  2434. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2435. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2436. : type(type), ne(ne) {}
  2437. ggml_tensor * build_graph(ggml_context * ctx) override {
  2438. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2439. ggml_set_param(ctx, a);
  2440. ggml_set_name(a, "a");
  2441. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2442. ggml_set_name(out, "out");
  2443. return out;
  2444. }
  2445. };
  2446. // GGML_OP_MEAN
  2447. struct test_mean : public test_case {
  2448. const ggml_type type;
  2449. const std::array<int64_t, 4> ne;
  2450. std::string vars() override {
  2451. return VARS_TO_STR2(type, ne);
  2452. }
  2453. test_mean(ggml_type type = GGML_TYPE_F32,
  2454. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2455. : type(type), ne(ne) {}
  2456. ggml_tensor * build_graph(ggml_context * ctx) override {
  2457. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2458. ggml_set_param(ctx, a);
  2459. ggml_set_name(a, "a");
  2460. ggml_tensor * out = ggml_mean(ctx, a);
  2461. ggml_set_name(out, "out");
  2462. return out;
  2463. }
  2464. float grad_eps() override {
  2465. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2466. }
  2467. };
  2468. // GGML_OP_UPSCALE
  2469. struct test_upscale : public test_case {
  2470. const ggml_type type;
  2471. const std::array<int64_t, 4> ne;
  2472. const int32_t scale_factor;
  2473. const bool transpose;
  2474. const ggml_scale_mode mode;
  2475. std::string vars() override {
  2476. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  2477. }
  2478. test_upscale(ggml_type type = GGML_TYPE_F32,
  2479. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2480. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  2481. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  2482. ggml_tensor * build_graph(ggml_context * ctx) override {
  2483. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2484. ggml_set_name(a, "a");
  2485. if (transpose) {
  2486. a = ggml_transpose(ctx, a);
  2487. ggml_set_name(a, "a_transposed");
  2488. }
  2489. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  2490. ggml_set_name(out, "out");
  2491. return out;
  2492. }
  2493. };
  2494. // GGML_OP_UPSCALE (ext)
  2495. struct test_upscale_ext : public test_case {
  2496. const ggml_type type;
  2497. const std::array<int64_t, 4> ne;
  2498. const std::array<int64_t, 4> ne_tgt;
  2499. const ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST;
  2500. std::string vars() override {
  2501. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  2502. }
  2503. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2504. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2505. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  2506. ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST)
  2507. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  2508. ggml_tensor * build_graph(ggml_context * ctx) override {
  2509. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2510. ggml_set_name(a, "a");
  2511. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  2512. ggml_set_name(out, "out");
  2513. return out;
  2514. }
  2515. };
  2516. // GGML_OP_GROUP_NORM
  2517. struct test_group_norm : public test_case {
  2518. const ggml_type type;
  2519. const std::array<int64_t, 4> ne;
  2520. const int32_t num_groups;
  2521. const float eps;
  2522. std::string vars() override {
  2523. return VARS_TO_STR4(type, ne, num_groups, eps);
  2524. }
  2525. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2526. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2527. int32_t num_groups = 32,
  2528. float eps = 1e-6f)
  2529. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2530. ggml_tensor * build_graph(ggml_context * ctx) override {
  2531. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2532. ggml_set_name(a, "a");
  2533. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2534. ggml_set_name(out, "out");
  2535. return out;
  2536. }
  2537. };
  2538. // GGML_OP_L2_NORM
  2539. struct test_l2_norm : public test_case {
  2540. const ggml_type type;
  2541. const std::array<int64_t, 4> ne;
  2542. const float eps;
  2543. std::string vars() override {
  2544. return VARS_TO_STR2(type, ne);
  2545. }
  2546. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  2547. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2548. float eps = 1e-12f)
  2549. : type(type), ne(ne), eps(eps) {}
  2550. ggml_tensor * build_graph(ggml_context * ctx) override {
  2551. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2552. ggml_set_name(a, "a");
  2553. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  2554. ggml_set_name(out, "out");
  2555. return out;
  2556. }
  2557. };
  2558. // GGML_OP_ACC
  2559. struct test_acc : public test_case {
  2560. const ggml_type type;
  2561. const std::array<int64_t, 4> ne_a;
  2562. const std::array<int64_t, 4> ne_b;
  2563. std::string vars() override {
  2564. return VARS_TO_STR3(type, ne_a, ne_b);
  2565. }
  2566. test_acc(ggml_type type = GGML_TYPE_F32,
  2567. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2568. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2569. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2570. ggml_tensor * build_graph(ggml_context * ctx) override {
  2571. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2572. ggml_set_param(ctx, a);
  2573. ggml_set_name(a, "a");
  2574. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2575. ggml_set_param(ctx, b);
  2576. ggml_set_name(b, "b");
  2577. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2578. ggml_set_name(out, "out");
  2579. return out;
  2580. }
  2581. };
  2582. // GGML_OP_PAD
  2583. struct test_pad : public test_case {
  2584. const ggml_type type;
  2585. const std::array<int64_t, 4> ne_a;
  2586. const int pad_0;
  2587. const int pad_1;
  2588. std::string vars() override {
  2589. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2590. }
  2591. test_pad(ggml_type type = GGML_TYPE_F32,
  2592. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2593. int pad_0 = 1, int pad_1 = 1)
  2594. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2595. ggml_tensor * build_graph(ggml_context * ctx) override {
  2596. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2597. ggml_set_name(a, "a");
  2598. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2599. ggml_set_name(out, "out");
  2600. return out;
  2601. }
  2602. };
  2603. // GGML_OP_PAD_REFLECT_1D
  2604. struct test_pad_reflect_1d : public test_case {
  2605. const ggml_type type;
  2606. const std::array<int64_t, 4> ne_a;
  2607. const int pad_0;
  2608. const int pad_1;
  2609. std::string vars() override {
  2610. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2611. }
  2612. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2613. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2614. int pad_0 = 10, int pad_1 = 9)
  2615. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2616. ggml_tensor * build_graph(ggml_context * ctx) override {
  2617. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2618. ggml_set_name(a, "a");
  2619. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2620. ggml_set_name(out, "out");
  2621. return out;
  2622. }
  2623. };
  2624. // GGML_OP_ARANGE
  2625. struct test_arange : public test_case {
  2626. const ggml_type type;
  2627. const float start;
  2628. const float stop;
  2629. const float step;
  2630. std::string vars() override {
  2631. return VARS_TO_STR4(type, start, stop, step);
  2632. }
  2633. test_arange(ggml_type type = GGML_TYPE_F32,
  2634. float start = 0.f, float stop = 10.f, float step = 1.f)
  2635. : type(type), start(start), stop(stop), step(step) {}
  2636. ggml_tensor * build_graph(ggml_context * ctx) override {
  2637. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2638. ggml_set_name(out, "out");
  2639. return out;
  2640. }
  2641. };
  2642. // GGML_OP_TIMESTEP_EMBEDDING
  2643. struct test_timestep_embedding : public test_case {
  2644. const ggml_type type;
  2645. const std::array<int64_t, 4> ne_a;
  2646. const int dim;
  2647. const int max_period;
  2648. std::string vars() override {
  2649. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2650. }
  2651. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2652. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2653. int dim = 320, int max_period=10000)
  2654. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2655. ggml_tensor * build_graph(ggml_context * ctx) override {
  2656. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2657. ggml_set_name(a, "a");
  2658. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2659. ggml_set_name(out, "out");
  2660. return out;
  2661. }
  2662. };
  2663. // GGML_OP_LEAKY_RELU
  2664. struct test_leaky_relu : public test_case {
  2665. const ggml_type type;
  2666. const std::array<int64_t, 4> ne_a;
  2667. const float negative_slope;
  2668. std::string vars() override {
  2669. return VARS_TO_STR3(type, ne_a, negative_slope);
  2670. }
  2671. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2672. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2673. float negative_slope = 0.1f)
  2674. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2675. ggml_tensor * build_graph(ggml_context * ctx) override {
  2676. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2677. ggml_set_name(a, "a");
  2678. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2679. ggml_set_name(out, "out");
  2680. return out;
  2681. }
  2682. };
  2683. // GGML_OP_FLASH_ATTN_EXT
  2684. struct test_flash_attn_ext : public test_case {
  2685. const int64_t hsk; // K head size
  2686. const int64_t hsv; // V head size
  2687. const int64_t nh; // num heads
  2688. const int64_t nr; // repeat in Q, tests for grouped-query attention
  2689. const int64_t kv; // kv size
  2690. const int64_t nb; // batch size
  2691. const bool mask; // use mask
  2692. const float max_bias; // ALiBi
  2693. const float logit_softcap; // Gemma 2
  2694. const ggml_prec prec;
  2695. const ggml_type type_KV;
  2696. std::array<int32_t, 4> permute;
  2697. std::string vars() override {
  2698. return VARS_TO_STR12(hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  2699. }
  2700. double max_nmse_err() override {
  2701. return 5e-4;
  2702. }
  2703. uint64_t op_flops(ggml_tensor * t) override {
  2704. GGML_UNUSED(t);
  2705. // Just counting matmul costs:
  2706. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  2707. return 2 * nh*nr * nb * (hsk + hsv) * kv;
  2708. }
  2709. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
  2710. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  2711. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2712. : hsk(hsk), hsv(hsv), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  2713. ggml_tensor * build_graph(ggml_context * ctx) override {
  2714. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  2715. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  2716. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2717. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2718. int64_t ne_perm[4];
  2719. for (int i = 0; i < 4; ++i) {
  2720. ne_perm[permute[i]] = ne[i];
  2721. }
  2722. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2723. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2724. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2725. }
  2726. return t;
  2727. };
  2728. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr, 1);
  2729. ggml_set_name(q, "q");
  2730. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, 1);
  2731. ggml_set_name(k, "k");
  2732. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, 1);
  2733. ggml_set_name(v, "v");
  2734. ggml_tensor * m = nullptr;
  2735. if (mask) {
  2736. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2737. ggml_set_name(m, "m");
  2738. }
  2739. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  2740. ggml_flash_attn_ext_set_prec(out, prec);
  2741. ggml_set_name(out, "out");
  2742. return out;
  2743. }
  2744. bool grad_precise() override {
  2745. return true;
  2746. }
  2747. };
  2748. // GGML_OP_CROSS_ENTROPY_LOSS
  2749. struct test_cross_entropy_loss : public test_case {
  2750. const ggml_type type;
  2751. const std::array<int64_t, 4> ne;
  2752. std::string vars() override {
  2753. return VARS_TO_STR2(type, ne);
  2754. }
  2755. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2756. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2757. : type(type), ne(ne) {}
  2758. ggml_tensor * build_graph(ggml_context * ctx) override {
  2759. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2760. ggml_set_param(ctx, logits);
  2761. ggml_set_name(logits, "logits");
  2762. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2763. // The labels are assumed to be constant -> no gradients.
  2764. ggml_set_name(labels, "labels");
  2765. // Ensure labels add up to 1:
  2766. labels = ggml_soft_max(ctx, labels);
  2767. ggml_set_name(labels, "labels_normalized");
  2768. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2769. ggml_set_name(out, "out");
  2770. return out;
  2771. }
  2772. void initialize_tensors(ggml_context * ctx) override {
  2773. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2774. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2775. init_tensor_uniform(t, -100.0f, 100.0f);
  2776. }
  2777. }
  2778. float grad_eps() override {
  2779. return 1.0f;
  2780. }
  2781. bool grad_precise() override {
  2782. return true;
  2783. }
  2784. };
  2785. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2786. struct test_cross_entropy_loss_back : public test_case {
  2787. const ggml_type type;
  2788. const std::array<int64_t, 4> ne;
  2789. std::string vars() override {
  2790. return VARS_TO_STR2(type, ne);
  2791. }
  2792. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2793. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2794. : type(type), ne(ne) {}
  2795. ggml_tensor * build_graph(ggml_context * ctx) override {
  2796. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2797. ggml_set_name(grad, "grad");
  2798. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2799. ggml_set_name(logits, "logits");
  2800. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2801. ggml_set_name(labels, "labels");
  2802. // Ensure labels add up to 1:
  2803. labels = ggml_soft_max(ctx, labels);
  2804. ggml_set_name(labels, "labels_normalized");
  2805. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2806. ggml_set_name(out, "out");
  2807. return out;
  2808. }
  2809. };
  2810. // GGML_OP_OPT_STEP_ADAMW
  2811. struct test_opt_step_adamw : public test_case {
  2812. const ggml_type type;
  2813. const std::array<int64_t, 4> ne;
  2814. std::string vars() override {
  2815. return VARS_TO_STR2(type, ne);
  2816. }
  2817. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2818. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2819. : type(type), ne(ne) {}
  2820. ggml_tensor * build_graph(ggml_context * ctx) override {
  2821. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2822. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2823. ggml_set_name(a, "a");
  2824. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2825. ggml_set_name(grad, "grad");
  2826. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2827. ggml_set_name(grad_m, "grad_m");
  2828. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2829. ggml_set_name(grad_v, "grad_v");
  2830. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2831. ggml_set_name(adamw_params, "adamw_params");
  2832. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2833. ggml_set_name(out, "out");
  2834. return out;
  2835. }
  2836. void initialize_tensors(ggml_context * ctx) override {
  2837. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2838. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2839. }
  2840. }
  2841. bool grad_precise() override {
  2842. return true;
  2843. }
  2844. };
  2845. enum llm_norm_type {
  2846. LLM_NORM,
  2847. LLM_NORM_RMS,
  2848. };
  2849. struct llama_hparams {
  2850. uint32_t n_vocab;
  2851. uint32_t n_embd;
  2852. uint32_t n_head;
  2853. uint32_t n_head_kv;
  2854. static constexpr uint32_t n_layer = 1;
  2855. uint32_t n_rot;
  2856. uint32_t n_embd_head; // dimension of values (d_v)
  2857. uint32_t n_ff;
  2858. float f_norm_eps;
  2859. float f_norm_rms_eps;
  2860. // cparams
  2861. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2862. static constexpr uint32_t n_ctx_orig = n_ctx;
  2863. // batch
  2864. int32_t n_tokens;
  2865. // llm_build_context
  2866. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2867. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2868. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2869. return n_embd_head * n_head_kv;
  2870. }
  2871. };
  2872. // LLM base class
  2873. struct test_llm : public test_case {
  2874. llama_hparams hp;
  2875. protected:
  2876. test_llm(llama_hparams hp)
  2877. : hp(std::move(hp)) {
  2878. }
  2879. public:
  2880. struct ggml_tensor * llm_build_norm(
  2881. struct ggml_context * ctx,
  2882. struct ggml_tensor * cur,
  2883. struct ggml_tensor * mw,
  2884. struct ggml_tensor * mb,
  2885. llm_norm_type type) {
  2886. switch (type) {
  2887. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2888. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2889. }
  2890. cur = ggml_mul(ctx, cur, mw);
  2891. if (mb) {
  2892. cur = ggml_add(ctx, cur, mb);
  2893. }
  2894. return cur;
  2895. }
  2896. void llm_build_kv_store(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * k_l,
  2899. struct ggml_tensor * v_l,
  2900. struct ggml_tensor * k_cur,
  2901. struct ggml_tensor * v_cur) {
  2902. // compute the transposed [n_tokens, n_embd] V matrix
  2903. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2904. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2905. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2906. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2907. ( hp.n_ctx)*ggml_element_size(v_l),
  2908. (hp.kv_head)*ggml_element_size(v_l));
  2909. // important: storing RoPE-ed version of K in the KV cache!
  2910. ggml_cpy(ctx, k_cur, k_cache_view);
  2911. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2912. }
  2913. struct ggml_tensor * llm_build_kqv(
  2914. struct ggml_context * ctx,
  2915. struct ggml_tensor * k_l,
  2916. struct ggml_tensor * v_l,
  2917. struct ggml_tensor * q_cur,
  2918. struct ggml_tensor * kq_mask,
  2919. float kq_scale) {
  2920. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2921. struct ggml_tensor * k =
  2922. ggml_view_3d(ctx, k_l,
  2923. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2924. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2925. ggml_row_size(k_l->type, hp.n_embd_head),
  2926. 0);
  2927. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2928. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2929. // split cached v into n_head heads
  2930. struct ggml_tensor * v =
  2931. ggml_view_3d(ctx, v_l,
  2932. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2933. ggml_element_size(v_l)*hp.n_ctx,
  2934. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2935. 0);
  2936. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2937. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2938. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2939. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2940. cur = ggml_mul_mat(ctx, wo, cur);
  2941. return cur;
  2942. }
  2943. void initialize_tensors(ggml_context * ctx) override {
  2944. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2945. if (t->type == GGML_TYPE_I32) {
  2946. // pos
  2947. std::vector<int> data(hp.n_tokens);
  2948. for (int i = 0; i < hp.n_tokens; i++) {
  2949. data[i] = rand() % hp.n_ctx;
  2950. }
  2951. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2952. } else {
  2953. init_tensor_uniform(t);
  2954. }
  2955. }
  2956. }
  2957. };
  2958. // Llama
  2959. struct test_llama : public test_llm {
  2960. static constexpr float freq_base = 10000.0f;
  2961. static constexpr float freq_scale = 1.0f;
  2962. static constexpr float ext_factor = 0.0f;
  2963. static constexpr float attn_factor = 1.0f;
  2964. static constexpr float beta_fast = 32.0f;
  2965. static constexpr float beta_slow = 1.0f;
  2966. std::string op_desc(ggml_tensor * t) override {
  2967. GGML_UNUSED(t);
  2968. return "LLAMA";
  2969. }
  2970. std::string vars() override {
  2971. auto n_tokens = hp.n_tokens;
  2972. return VARS_TO_STR1(n_tokens);
  2973. }
  2974. double max_nmse_err() override {
  2975. return 2e-3;
  2976. }
  2977. test_llama(int n_tokens = 1)
  2978. : test_llm({
  2979. /*n_vocab =*/ 32000,
  2980. /*n_embd =*/ 3200,
  2981. /*n_head =*/ 32,
  2982. /*n_head_kv =*/ 32,
  2983. /*n_rot =*/ 100,
  2984. /*n_embd_head =*/ 100,
  2985. /*n_ff =*/ 8640,
  2986. /*f_norm_eps =*/ 0.f,
  2987. /*f_norm_rms_eps =*/ 1e-5f,
  2988. /*n_tokens =*/ n_tokens,
  2989. }) {
  2990. }
  2991. ggml_tensor * build_graph(ggml_context * ctx) override {
  2992. struct ggml_tensor * cur;
  2993. struct ggml_tensor * inpL;
  2994. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2995. // inp_pos - contains the positions
  2996. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2997. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2998. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2999. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3000. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3001. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3002. struct ggml_tensor * inpSA = inpL;
  3003. // norm
  3004. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3005. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  3006. // self-attention
  3007. {
  3008. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3009. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3010. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3011. // compute Q and K and RoPE them
  3012. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  3013. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  3014. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  3015. Qcur = ggml_rope_ext(
  3016. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  3017. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3018. ext_factor, attn_factor, beta_fast, beta_slow
  3019. );
  3020. Kcur = ggml_rope_ext(
  3021. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  3022. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3023. ext_factor, attn_factor, beta_fast, beta_slow
  3024. );
  3025. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3026. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3027. }
  3028. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  3029. // feed-forward network
  3030. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3031. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  3032. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3033. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3034. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3035. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  3036. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  3037. cur = ggml_silu(ctx, cur);
  3038. cur = ggml_mul(ctx, cur, tmp);
  3039. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3040. cur = ggml_add(ctx, cur, ffn_inp);
  3041. // input for next layer
  3042. inpL = cur;
  3043. }
  3044. cur = inpL;
  3045. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3046. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  3047. // lm_head
  3048. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  3049. cur = ggml_mul_mat(ctx, output, cur);
  3050. return cur;
  3051. }
  3052. };
  3053. // Falcon
  3054. struct test_falcon : public test_llm {
  3055. static constexpr float freq_base = 10000.0f;
  3056. static constexpr float freq_scale = 1.0f;
  3057. static constexpr float ext_factor = 0.0f;
  3058. static constexpr float attn_factor = 1.0f;
  3059. static constexpr float beta_fast = 32.0f;
  3060. static constexpr float beta_slow = 1.0f;
  3061. std::string op_desc(ggml_tensor * t) override {
  3062. GGML_UNUSED(t);
  3063. return "FALCON";
  3064. }
  3065. std::string vars() override {
  3066. auto n_tokens = hp.n_tokens;
  3067. return VARS_TO_STR1(n_tokens);
  3068. }
  3069. double max_nmse_err() override {
  3070. return 2e-3;
  3071. }
  3072. test_falcon(int n_tokens = 1)
  3073. : test_llm({
  3074. /*n_vocab =*/ 32000,
  3075. /*n_embd =*/ 3200,
  3076. /*n_head =*/ 50,
  3077. /*n_head_kv =*/ 1,
  3078. /*n_rot =*/ 64,
  3079. /*n_embd_head =*/ 64,
  3080. /*n_ff =*/ 8640,
  3081. /*f_norm_eps =*/ 1e-5f,
  3082. /*f_norm_rms_eps =*/ 0.f,
  3083. /*n_tokens =*/ n_tokens,
  3084. }) {
  3085. }
  3086. ggml_tensor * build_graph(ggml_context * ctx) override {
  3087. struct ggml_tensor * cur;
  3088. struct ggml_tensor * inpL;
  3089. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3090. // inp_pos - contains the positions
  3091. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3092. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3093. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3094. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3095. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3096. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3097. // norm
  3098. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3099. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3100. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3101. // self-attention
  3102. {
  3103. cur = attn_norm;
  3104. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3105. cur = ggml_mul_mat(ctx, wqkv, cur);
  3106. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3107. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3108. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3109. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3110. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3111. // using mode = 2 for neox mode
  3112. Qcur = ggml_rope_ext(
  3113. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3114. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3115. );
  3116. Kcur = ggml_rope_ext(
  3117. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3118. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3119. );
  3120. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3121. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3122. }
  3123. struct ggml_tensor * ffn_inp = cur;
  3124. // feed forward
  3125. {
  3126. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3127. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3128. cur = attn_norm;
  3129. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3130. cur = ggml_gelu(ctx, cur);
  3131. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3132. }
  3133. cur = ggml_add(ctx, cur, ffn_inp);
  3134. cur = ggml_add(ctx, cur, inpL);
  3135. // input for next layer
  3136. inpL = cur;
  3137. }
  3138. cur = inpL;
  3139. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3140. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3141. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3142. // lm_head
  3143. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3144. cur = ggml_mul_mat(ctx, output, cur);
  3145. return cur;
  3146. }
  3147. };
  3148. // ###########################################
  3149. // ## Section 3: GGML Op Test Instantiation ##
  3150. // ###########################################
  3151. static const ggml_type all_types[] = {
  3152. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3153. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3154. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3155. GGML_TYPE_Q8_0,
  3156. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3157. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3158. GGML_TYPE_Q6_K,
  3159. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3160. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3161. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3162. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3163. };
  3164. static const ggml_type base_types[] = {
  3165. GGML_TYPE_F32, GGML_TYPE_F16,
  3166. GGML_TYPE_Q8_0, // for I8MM tests
  3167. GGML_TYPE_Q4_0,
  3168. GGML_TYPE_Q4_1, // for I8MM tests
  3169. GGML_TYPE_Q4_K,
  3170. GGML_TYPE_IQ2_XXS
  3171. };
  3172. static const ggml_type other_types[] = {
  3173. GGML_TYPE_Q4_1,
  3174. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3175. GGML_TYPE_Q8_0,
  3176. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3177. GGML_TYPE_Q5_K,
  3178. GGML_TYPE_Q6_K,
  3179. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3180. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3181. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3182. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3183. GGML_TYPE_BF16,
  3184. };
  3185. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3186. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3187. std::vector<std::unique_ptr<test_case>> test_cases;
  3188. std::default_random_engine rng(0);
  3189. // unary ops
  3190. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3191. for (int v : {0, 1}) {
  3192. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3193. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3194. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3195. }
  3196. }
  3197. }
  3198. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3199. for (ggml_type type : all_types) {
  3200. for (int b : {1, 7}) {
  3201. for (bool v : {false, true}) {
  3202. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3203. }
  3204. }
  3205. }
  3206. for (int b : {1, 7}) {
  3207. for (bool v : {false, true}) {
  3208. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3209. }
  3210. }
  3211. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3212. for (ggml_type type : all_types) {
  3213. for (bool v : {false, true}) {
  3214. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3215. }
  3216. }
  3217. for (bool v : {false, true}) {
  3218. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3219. }
  3220. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3221. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3222. for (int k0 : {1, 3}) {
  3223. for (int k1 : {1, 3}) {
  3224. for (int s0 : {1, 2}) {
  3225. for (int s1 : {1, 2}) {
  3226. for (int p0 : {0, 1}) {
  3227. for (int p1 : {0, 1}) {
  3228. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3229. }
  3230. }
  3231. }
  3232. }
  3233. }
  3234. }
  3235. }
  3236. }
  3237. // im2col 1D
  3238. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3239. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3240. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3241. for (int s0 : {1, 3}) {
  3242. for (int p0 : {0, 3}) {
  3243. for (int d0 : {1, 3}) {
  3244. test_cases.emplace_back(new test_im2col(
  3245. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3246. s0, 0, p0, 0, d0, 0, false));
  3247. }
  3248. }
  3249. }
  3250. // im2col 2D
  3251. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3252. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3253. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3254. for (int s0 : {1, 3}) {
  3255. for (int s1 : {1, 3}) {
  3256. for (int p0 : {0, 3}) {
  3257. for (int p1 : {0, 3}) {
  3258. for (int d0 : {1, 3}) {
  3259. for (int d1 : {1, 3}) {
  3260. test_cases.emplace_back(new test_im2col(
  3261. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3262. s0, s1, p0, p1, d0, d1, true));
  3263. }
  3264. }
  3265. }
  3266. }
  3267. }
  3268. }
  3269. // extra tests for im2col 2D
  3270. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3271. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3272. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3273. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3274. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3275. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3276. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3277. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3278. // sycl backend will limit task global_range < MAX_INT
  3279. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3280. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3281. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3282. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3283. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3284. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  3285. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  3286. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  3287. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  3288. test_cases.emplace_back(new test_conv_transpose_1d());
  3289. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3290. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3291. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3292. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3293. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3294. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3295. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3296. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3297. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3298. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3299. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3300. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3301. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3302. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3303. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3304. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3305. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3306. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3307. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3308. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3309. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3310. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3311. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3312. }
  3313. for (bool view : {false, true}) {
  3314. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3315. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3316. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3317. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3318. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3319. }
  3320. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3321. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3322. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3323. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3324. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3325. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3326. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3327. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3328. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3329. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3330. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3331. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3332. }
  3333. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3334. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3335. }
  3336. // same-type copy
  3337. for (ggml_type type : all_types) {
  3338. const auto nk = ggml_blck_size(type);
  3339. for (int k = 1; k < 4; ++k) {
  3340. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  3341. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  3342. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  3343. }
  3344. }
  3345. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  3346. for (ggml_type type_dst : all_types) {
  3347. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3348. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3349. }
  3350. }
  3351. for (ggml_type type_src : all_types) {
  3352. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3353. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3354. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3355. }
  3356. }
  3357. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3358. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3359. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3360. }
  3361. }
  3362. test_cases.emplace_back(new test_cont());
  3363. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3364. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3365. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3366. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3367. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3368. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3369. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3370. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3371. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3372. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3373. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3374. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3375. }
  3376. };
  3377. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3378. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3379. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3380. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3381. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3382. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3383. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3384. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3385. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3386. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3387. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3388. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3389. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3390. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3391. // stable diffusion
  3392. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3393. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3394. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3395. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3396. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3397. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3398. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3399. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3400. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3401. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3402. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3403. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3404. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3405. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3406. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3407. }
  3408. test_cases.emplace_back(new test_add1());
  3409. test_cases.emplace_back(new test_scale());
  3410. test_cases.emplace_back(new test_silu_back());
  3411. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3412. for (bool v : {false, true}) {
  3413. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3414. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3415. }
  3416. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3417. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3418. }
  3419. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  3420. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3421. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3422. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3423. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3424. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3425. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3426. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3427. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3428. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  3429. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  3430. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  3431. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  3432. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3433. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3434. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3435. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3436. for (ggml_type type_a : all_types) {
  3437. for (int i = 1; i < 10; ++i) {
  3438. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3439. }
  3440. }
  3441. #if 1
  3442. for (ggml_type type_a : base_types) {
  3443. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3444. // test cases without permutation
  3445. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3446. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3447. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3448. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3449. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3450. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3451. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3452. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3453. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3454. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3455. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3456. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3457. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3458. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3459. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3460. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3461. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3462. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3463. // test cases with permutation
  3464. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3465. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3466. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3467. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3468. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3469. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3470. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3471. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3472. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3473. // test cases with large ne00/ne10 to cover stream-k fixup
  3474. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  3475. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  3476. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  3477. }
  3478. }
  3479. for (ggml_type type_a : other_types) {
  3480. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3481. if (ggml_blck_size(type_a) != 256) {
  3482. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3483. }
  3484. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3485. }
  3486. }
  3487. #else
  3488. // m = a rows
  3489. // n = b rows
  3490. // k = cols
  3491. std::uniform_int_distribution<> dist_m(1, 128);
  3492. std::uniform_int_distribution<> dist_n(16, 128);
  3493. std::uniform_int_distribution<> dist_k(1, 16);
  3494. for (int i = 0; i < 1000; i++) {
  3495. for (ggml_type type_a : all_types) {
  3496. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3497. int m = dist_m(rng);
  3498. int n = dist_n(rng);
  3499. int k = dist_k(rng) * ggml_blck_size(type_a);
  3500. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3501. }
  3502. }
  3503. }
  3504. #endif
  3505. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3506. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3507. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3508. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3509. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3510. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3511. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  3512. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  3513. for (auto bs : {1,2,4,8}) {
  3514. for (auto nr : {1,4}) {
  3515. for (uint32_t m = 0; m < 2; ++m) {
  3516. for (uint32_t k = 0; k < 2; ++k) {
  3517. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
  3518. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
  3519. }
  3520. }
  3521. }
  3522. }
  3523. // sycl backend will limit task global_range < MAX_INT
  3524. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3525. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3526. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3527. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3528. for (ggml_type type_a : base_types) {
  3529. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3530. for (int n_mats : {4, 8}) {
  3531. for (int n_used : {1, 2, 4}) {
  3532. for (bool b : {false, true}) {
  3533. for (int n : {1, 32, 129}) {
  3534. int m = 512;
  3535. int k = 256;
  3536. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3537. }
  3538. }
  3539. }
  3540. }
  3541. }
  3542. }
  3543. for (ggml_type type_a : other_types) {
  3544. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3545. for (int n_mats : {4}) {
  3546. for (int n_used : {2}) {
  3547. for (bool b : {false}) {
  3548. for (int n : {1, 32}) {
  3549. int m = 512;
  3550. int k = 256;
  3551. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3552. }
  3553. }
  3554. }
  3555. }
  3556. }
  3557. }
  3558. for (ggml_type type_a : base_types) {
  3559. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3560. for (int n : {1, 16}) {
  3561. for (int k : {1, 16}) {
  3562. for (int bs2 : {1, 3}) {
  3563. for (int bs3 : {1, 3}) {
  3564. for (int nr2 : {1, 2}) {
  3565. for (int nr3 : {1, 2}) {
  3566. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3567. }
  3568. }
  3569. }
  3570. }
  3571. }
  3572. }
  3573. }
  3574. }
  3575. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3576. test_cases.emplace_back(new test_sqr(type));
  3577. test_cases.emplace_back(new test_sqrt(type));
  3578. test_cases.emplace_back(new test_log(type));
  3579. test_cases.emplace_back(new test_sin(type));
  3580. test_cases.emplace_back(new test_cos(type));
  3581. test_cases.emplace_back(new test_clamp(type));
  3582. }
  3583. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3584. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3585. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3586. #if 0
  3587. std::uniform_int_distribution<> dist_ne1(1, 50);
  3588. int exponent = 1;
  3589. while (exponent < (1 << 17)) {
  3590. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3591. for (int n = 0; n < 10; ++n) {
  3592. int64_t ne0 = dist_ne0(rng);
  3593. int64_t ne1 = dist_ne1(rng);
  3594. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3595. }
  3596. exponent <<= 1;
  3597. }
  3598. #endif
  3599. for (bool mask : {false, true}) {
  3600. for (float max_bias : {0.0f, 8.0f}) {
  3601. if (!mask && max_bias > 0.0f) continue;
  3602. for (float scale : {1.0f, 0.1f}) {
  3603. for (int64_t ne0 : {16, 1024}) {
  3604. for (int64_t ne1 : {16, 1024}) {
  3605. if (mask) {
  3606. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3607. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3608. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3609. }
  3610. } else {
  3611. /* The precision of mask here doesn't matter as boolean mask is false */
  3612. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3613. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3614. }
  3615. }
  3616. }
  3617. }
  3618. }
  3619. }
  3620. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3621. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3622. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3623. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3624. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3625. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3626. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3627. for (float max_bias : {0.0f, 8.0f}) {
  3628. for (float scale : {1.0f, 0.1f}) {
  3629. for (int64_t ne0 : {16, 1024}) {
  3630. for (int64_t ne1 : {16, 1024}) {
  3631. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3632. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3633. }
  3634. }
  3635. }
  3636. }
  3637. for (bool fw : {true, false}) { // fw == forward
  3638. bool all = true;
  3639. for (float v : { 0, 1 }) {
  3640. for (float fs : { 1.0f, 1.4245f }) {
  3641. for (float ef : { 0.0f, 0.7465f }) {
  3642. for (float af : { 1.0f, 1.4245f }) {
  3643. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3644. for (bool ff : {false, true}) { // freq_factors
  3645. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3646. if (all) {
  3647. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3648. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3649. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3650. }
  3651. if (all) {
  3652. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3653. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3654. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3655. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3656. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3657. }
  3658. if (all) {
  3659. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3660. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3661. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3662. }
  3663. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3664. }
  3665. }
  3666. all = false;
  3667. }
  3668. }
  3669. }
  3670. }
  3671. }
  3672. for (int v : { 0, 1, 2, 3 }) {
  3673. for (int dim : { 0, 1, 2, 3, }) {
  3674. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3675. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3676. }
  3677. }
  3678. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3679. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3680. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3681. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3682. }
  3683. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  3684. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  3685. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  3686. test_cases.emplace_back(new test_upscale_ext(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  3687. }
  3688. test_cases.emplace_back(new test_sum());
  3689. test_cases.emplace_back(new test_sum_rows());
  3690. test_cases.emplace_back(new test_mean());
  3691. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3692. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3693. test_cases.emplace_back(new test_acc());
  3694. test_cases.emplace_back(new test_pad());
  3695. test_cases.emplace_back(new test_pad_reflect_1d());
  3696. test_cases.emplace_back(new test_arange());
  3697. test_cases.emplace_back(new test_timestep_embedding());
  3698. test_cases.emplace_back(new test_leaky_relu());
  3699. for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
  3700. for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
  3701. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  3702. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  3703. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  3704. for (bool mask : { true, false } ) {
  3705. for (float max_bias : { 0.0f, 8.0f }) {
  3706. if (!mask && max_bias > 0.0f) continue;
  3707. for (float logit_softcap : {0.0f, 10.0f}) {
  3708. if (hsk != 128 && logit_softcap != 0.0f) continue;
  3709. for (int nh : { 4, }) {
  3710. for (int nr : { 1, 4, 16 }) {
  3711. if (nr == 16 && hsk != 128) continue;
  3712. for (int kv : { 512, 1024, }) {
  3713. if (nr != 1 && kv != 512) continue;
  3714. for (int nb : { 1, 3, 32, 35, }) {
  3715. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  3716. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  3717. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3718. test_cases.emplace_back(new test_flash_attn_ext(
  3719. hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  3720. // run fewer test cases permuted
  3721. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3722. test_cases.emplace_back(new test_flash_attn_ext(
  3723. hsk, hsv, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  3724. }
  3725. }
  3726. }
  3727. }
  3728. }
  3729. }
  3730. }
  3731. }
  3732. }
  3733. }
  3734. }
  3735. }
  3736. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3737. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3738. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3739. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3740. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3741. // these tests are disabled to save execution time, but they can be handy for debugging
  3742. #if 0
  3743. test_cases.emplace_back(new test_llama(1));
  3744. test_cases.emplace_back(new test_llama(2));
  3745. test_cases.emplace_back(new test_falcon(1));
  3746. test_cases.emplace_back(new test_falcon(2));
  3747. #endif
  3748. return test_cases;
  3749. }
  3750. // Test cases for performance evaluation: should be representative of real-world use cases
  3751. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3752. std::vector<std::unique_ptr<test_case>> test_cases;
  3753. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3754. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3755. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3756. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3757. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3758. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3759. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3760. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3761. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3762. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3763. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3764. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3765. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3766. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3767. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3768. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  3769. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  3770. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3771. for (ggml_type type_a : all_types) {
  3772. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3773. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3774. }
  3775. }
  3776. }
  3777. for (int K : {3, 5}) {
  3778. for (int IC : {256, 2560}) {
  3779. for (int IW_IH : {32, 64, 256}) {
  3780. if (IC == 2560 && IW_IH == 256) {
  3781. // too big
  3782. continue;
  3783. }
  3784. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3785. }
  3786. }
  3787. }
  3788. for (int kv : { 4096, 8192, 16384, }) {
  3789. for (int hs : { 64, 128, }) {
  3790. for (int nr : { 1, 4, }) {
  3791. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, nr, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  3792. }
  3793. }
  3794. }
  3795. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  3796. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  3797. return test_cases;
  3798. }
  3799. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  3800. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  3801. if (params_filter == nullptr) {
  3802. return;
  3803. }
  3804. std::regex params_filter_regex(params_filter);
  3805. for (auto it = test_cases.begin(); it != test_cases.end();) {
  3806. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  3807. it = test_cases.erase(it);
  3808. continue;
  3809. }
  3810. it++;
  3811. }
  3812. };
  3813. if (mode == MODE_TEST) {
  3814. auto test_cases = make_test_cases_eval();
  3815. filter_test_cases(test_cases, params_filter);
  3816. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3817. if (backend_cpu == NULL) {
  3818. printf(" Failed to initialize CPU backend\n");
  3819. return false;
  3820. }
  3821. size_t n_ok = 0;
  3822. for (auto & test : test_cases) {
  3823. if (test->eval(backend, backend_cpu, op_name)) {
  3824. n_ok++;
  3825. }
  3826. }
  3827. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3828. ggml_backend_free(backend_cpu);
  3829. return n_ok == test_cases.size();
  3830. }
  3831. if (mode == MODE_GRAD) {
  3832. auto test_cases = make_test_cases_eval();
  3833. filter_test_cases(test_cases, params_filter);
  3834. size_t n_ok = 0;
  3835. for (auto & test : test_cases) {
  3836. if (test->eval_grad(backend, op_name)) {
  3837. n_ok++;
  3838. }
  3839. }
  3840. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3841. return n_ok == test_cases.size();
  3842. }
  3843. if (mode == MODE_PERF) {
  3844. auto test_cases = make_test_cases_perf();
  3845. filter_test_cases(test_cases, params_filter);
  3846. for (auto & test : test_cases) {
  3847. test->eval_perf(backend, op_name);
  3848. }
  3849. return true;
  3850. }
  3851. GGML_ABORT("fatal error");
  3852. }
  3853. static void usage(char ** argv) {
  3854. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  3855. printf(" valid modes:\n");
  3856. printf(" - test (default, compare with CPU backend for correctness)\n");
  3857. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3858. printf(" - perf (performance evaluation)\n");
  3859. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3860. }
  3861. int main(int argc, char ** argv) {
  3862. test_mode mode = MODE_TEST;
  3863. const char * op_name_filter = nullptr;
  3864. const char * backend_filter = nullptr;
  3865. const char * params_filter = nullptr;
  3866. for (int i = 1; i < argc; i++) {
  3867. if (strcmp(argv[i], "test") == 0) {
  3868. mode = MODE_TEST;
  3869. } else if (strcmp(argv[i], "perf") == 0) {
  3870. mode = MODE_PERF;
  3871. } else if (strcmp(argv[i], "grad") == 0) {
  3872. mode = MODE_GRAD;
  3873. } else if (strcmp(argv[i], "-o") == 0) {
  3874. if (i + 1 < argc) {
  3875. op_name_filter = argv[++i];
  3876. } else {
  3877. usage(argv);
  3878. return 1;
  3879. }
  3880. } else if (strcmp(argv[i], "-b") == 0) {
  3881. if (i + 1 < argc) {
  3882. backend_filter = argv[++i];
  3883. } else {
  3884. usage(argv);
  3885. return 1;
  3886. }
  3887. } else if (strcmp(argv[i], "-p") == 0) {
  3888. if (i + 1 < argc) {
  3889. params_filter = argv[++i];
  3890. } else {
  3891. usage(argv);
  3892. return 1;
  3893. }
  3894. } else {
  3895. usage(argv);
  3896. return 1;
  3897. }
  3898. }
  3899. // load and enumerate backends
  3900. ggml_backend_load_all();
  3901. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3902. size_t n_ok = 0;
  3903. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3904. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3905. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3906. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3907. printf(" Skipping\n");
  3908. n_ok++;
  3909. continue;
  3910. }
  3911. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3912. printf(" Skipping CPU backend\n");
  3913. n_ok++;
  3914. continue;
  3915. }
  3916. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3917. GGML_ASSERT(backend != NULL);
  3918. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3919. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3920. if (ggml_backend_set_n_threads_fn) {
  3921. // TODO: better value for n_threads
  3922. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3923. }
  3924. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3925. size_t free, total; // NOLINT
  3926. ggml_backend_dev_memory(dev, &free, &total);
  3927. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3928. printf("\n");
  3929. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  3930. printf(" Backend %s: ", ggml_backend_name(backend));
  3931. if (ok) {
  3932. printf("\033[1;32mOK\033[0m\n");
  3933. n_ok++;
  3934. } else {
  3935. printf("\033[1;31mFAIL\033[0m\n");
  3936. }
  3937. printf("\n");
  3938. ggml_backend_free(backend);
  3939. }
  3940. ggml_quantize_free();
  3941. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3942. if (n_ok != ggml_backend_dev_count()) {
  3943. printf("\033[1;31mFAIL\033[0m\n");
  3944. return 1;
  3945. }
  3946. printf("\033[1;32mOK\033[0m\n");
  3947. return 0;
  3948. }