convert_hf_to_gguf.py 244 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  155. f"Missing tensors: {missing}")
  156. else:
  157. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  158. f"Missing tensors: {missing}\n"
  159. f"Extra tensors: {extra}")
  160. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  161. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  162. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  163. name: str = gguf.TENSOR_NAMES[key]
  164. if "{bid}" in name:
  165. assert bid is not None
  166. name = name.format(bid=bid)
  167. return name + suffix
  168. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  169. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  170. return False
  171. key_name: str = gguf.TENSOR_NAMES[key]
  172. if "{bid}" in key_name:
  173. if bid is None:
  174. return False
  175. key_name = key_name.format(bid=bid)
  176. else:
  177. if bid is not None:
  178. return False
  179. return name == (key_name + suffix)
  180. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  181. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  182. if new_name is None:
  183. raise ValueError(f"Can not map tensor {name!r}")
  184. return new_name
  185. def set_gguf_parameters(self):
  186. self.gguf_writer.add_block_count(self.block_count)
  187. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  188. self.gguf_writer.add_context_length(n_ctx)
  189. logger.info(f"gguf: context length = {n_ctx}")
  190. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  191. self.gguf_writer.add_embedding_length(n_embd)
  192. logger.info(f"gguf: embedding length = {n_embd}")
  193. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  194. self.gguf_writer.add_feed_forward_length(n_ff)
  195. logger.info(f"gguf: feed forward length = {n_ff}")
  196. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  197. self.gguf_writer.add_head_count(n_head)
  198. logger.info(f"gguf: head count = {n_head}")
  199. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  200. self.gguf_writer.add_head_count_kv(n_head_kv)
  201. logger.info(f"gguf: key-value head count = {n_head_kv}")
  202. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  203. self.gguf_writer.add_rope_freq_base(rope_theta)
  204. logger.info(f"gguf: rope theta = {rope_theta}")
  205. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  206. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  207. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  208. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  209. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  210. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  211. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  212. self.gguf_writer.add_expert_count(n_experts)
  213. logger.info(f"gguf: expert count = {n_experts}")
  214. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  215. self.gguf_writer.add_expert_used_count(n_experts_used)
  216. logger.info(f"gguf: experts used count = {n_experts_used}")
  217. if (head_dim := self.hparams.get("head_dim")) is not None:
  218. self.gguf_writer.add_key_length(head_dim)
  219. self.gguf_writer.add_value_length(head_dim)
  220. self.gguf_writer.add_file_type(self.ftype)
  221. logger.info(f"gguf: file type = {self.ftype}")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.OUTPUT,
  287. )
  288. ):
  289. if self.ftype in (
  290. gguf.LlamaFileType.MOSTLY_TQ1_0,
  291. gguf.LlamaFileType.MOSTLY_TQ2_0,
  292. ):
  293. # TODO: use Q4_K and Q6_K
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  296. if isinstance(data_qtype, bool):
  297. if self.ftype == gguf.LlamaFileType.ALL_F32:
  298. data_qtype = gguf.GGMLQuantizationType.F32
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  300. data_qtype = gguf.GGMLQuantizationType.F16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  302. data_qtype = gguf.GGMLQuantizationType.BF16
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  304. data_qtype = gguf.GGMLQuantizationType.Q8_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  308. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  309. else:
  310. raise ValueError(f"Unknown file type: {self.ftype.name}")
  311. try:
  312. data = gguf.quants.quantize(data, data_qtype)
  313. except gguf.QuantError as e:
  314. logger.warning("%s, %s", e, "falling back to F16")
  315. data_qtype = gguf.GGMLQuantizationType.F16
  316. data = gguf.quants.quantize(data, data_qtype)
  317. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  318. # reverse shape to make it similar to the internal ggml dimension order
  319. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  320. # n_dims is implicit in the shape
  321. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  322. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  323. def set_type(self):
  324. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  325. def prepare_metadata(self, vocab_only: bool):
  326. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  327. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  328. # Fallback to model directory name if metadata name is still missing
  329. if self.metadata.name is None:
  330. self.metadata.name = self.dir_model.name
  331. # Generate parameter weight class (useful for leader boards) if not yet determined
  332. if self.metadata.size_label is None and total_params > 0:
  333. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  334. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  335. output_type: str = self.ftype.name.partition("_")[2]
  336. # Filename Output
  337. if self.fname_out.is_dir():
  338. # Generate default filename based on model specification and available metadata
  339. if not vocab_only:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  341. else:
  342. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  343. # Use the default filename
  344. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  345. else:
  346. # Output path is a custom defined templated filename
  347. # Note: `not is_dir()` is used because `.is_file()` will not detect
  348. # file template strings as it doesn't actually exist as a file
  349. # Process templated file name with the output ftype, useful with the "auto" ftype
  350. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  351. self.set_type()
  352. logger.info("Set meta model")
  353. self.metadata.set_gguf_meta_model(self.gguf_writer)
  354. logger.info("Set model parameters")
  355. self.set_gguf_parameters()
  356. logger.info("Set model tokenizer")
  357. self.set_vocab()
  358. logger.info("Set model quantization version")
  359. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  360. def write(self):
  361. self.prepare_tensors()
  362. self.prepare_metadata(vocab_only=False)
  363. self.gguf_writer.write_header_to_file(path=self.fname_out)
  364. self.gguf_writer.write_kv_data_to_file()
  365. self.gguf_writer.write_tensors_to_file(progress=True)
  366. self.gguf_writer.close()
  367. def write_vocab(self):
  368. if len(self.gguf_writer.tensors) != 1:
  369. raise ValueError('Splitting the vocabulary is not supported')
  370. self.prepare_metadata(vocab_only=True)
  371. self.gguf_writer.write_header_to_file(path=self.fname_out)
  372. self.gguf_writer.write_kv_data_to_file()
  373. self.gguf_writer.close()
  374. @staticmethod
  375. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  376. part_names: list[str] = []
  377. for filename in os.listdir(dir_model):
  378. if filename.startswith(prefix) and filename.endswith(suffix):
  379. part_names.append(filename)
  380. part_names.sort()
  381. return part_names
  382. @staticmethod
  383. def load_hparams(dir_model: Path):
  384. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  385. return json.load(f)
  386. @classmethod
  387. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  388. assert names
  389. def func(modelcls: AnyModel) -> AnyModel:
  390. for name in names:
  391. cls._model_classes[name] = modelcls
  392. return modelcls
  393. return func
  394. @classmethod
  395. def print_registered_models(cls):
  396. for name in sorted(cls._model_classes.keys()):
  397. logger.error(f"- {name}")
  398. @classmethod
  399. def from_model_architecture(cls, arch: str) -> type[Model]:
  400. try:
  401. return cls._model_classes[arch]
  402. except KeyError:
  403. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  404. def does_token_look_special(self, token: str | bytes) -> bool:
  405. if isinstance(token, (bytes, bytearray)):
  406. token_text = token.decode(encoding="utf-8")
  407. elif isinstance(token, memoryview):
  408. token_text = token.tobytes().decode(encoding="utf-8")
  409. else:
  410. token_text = token
  411. # Some models mark some added tokens which ought to be control tokens as not special.
  412. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  413. seems_special = token_text in (
  414. "<pad>", # deepseek-coder
  415. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  416. )
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  418. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  419. # TODO: should these be marked as UNUSED instead? (maybe not)
  420. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  421. return seems_special
  422. # used for GPT-2 BPE and WordPiece vocabs
  423. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  424. tokens: list[str] = []
  425. toktypes: list[int] = []
  426. from transformers import AutoTokenizer
  427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  428. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  429. assert max(tokenizer.vocab.values()) < vocab_size
  430. tokpre = self.get_vocab_base_pre(tokenizer)
  431. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  432. added_vocab = tokenizer.get_added_vocab()
  433. added_tokens_decoder = tokenizer.added_tokens_decoder
  434. for i in range(vocab_size):
  435. if i not in reverse_vocab:
  436. tokens.append(f"[PAD{i}]")
  437. toktypes.append(gguf.TokenType.UNUSED)
  438. else:
  439. token: str = reverse_vocab[i]
  440. if token in added_vocab:
  441. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  442. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  443. if not added_tokens_decoder[i].normalized:
  444. previous_token = token
  445. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  446. if previous_token != token:
  447. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  448. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  449. toktypes.append(gguf.TokenType.CONTROL)
  450. else:
  451. # NOTE: this was added for Gemma.
  452. # Encoding and decoding the tokens above isn't sufficient for this case.
  453. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  454. toktypes.append(gguf.TokenType.USER_DEFINED)
  455. else:
  456. toktypes.append(gguf.TokenType.NORMAL)
  457. tokens.append(token)
  458. return tokens, toktypes, tokpre
  459. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  460. # do not modify it manually!
  461. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  462. # Marker: Start get_vocab_base_pre
  463. def get_vocab_base_pre(self, tokenizer) -> str:
  464. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  465. # is specific for the BPE pre-tokenizer used by the model
  466. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  467. # use in llama.cpp to implement the same pre-tokenizer
  468. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  469. chktok = tokenizer.encode(chktxt)
  470. chkhsh = sha256(str(chktok).encode()).hexdigest()
  471. logger.debug(f"chktok: {chktok}")
  472. logger.debug(f"chkhsh: {chkhsh}")
  473. res = None
  474. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  475. # or pull the latest version of the model from Huggingface
  476. # don't edit the hashes manually!
  477. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  478. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  479. res = "llama-bpe"
  480. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  481. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  482. res = "deepseek-llm"
  483. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  484. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  485. res = "deepseek-coder"
  486. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  487. # ref: https://huggingface.co/tiiuae/falcon-7b
  488. res = "falcon"
  489. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  490. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  491. res = "falcon3"
  492. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  493. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  494. res = "bert-bge"
  495. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  496. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  497. res = "bert-bge-large"
  498. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  499. # ref: https://huggingface.co/mosaicml/mpt-7b
  500. res = "mpt"
  501. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  502. # ref: https://huggingface.co/bigcode/starcoder2-3b
  503. res = "starcoder"
  504. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  505. # ref: https://huggingface.co/openai-community/gpt2
  506. res = "gpt-2"
  507. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  508. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  509. res = "stablelm2"
  510. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  511. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  512. res = "refact"
  513. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  514. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  515. res = "command-r"
  516. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  517. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  518. res = "qwen2"
  519. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  520. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  521. res = "olmo"
  522. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  523. # ref: https://huggingface.co/databricks/dbrx-base
  524. res = "dbrx"
  525. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  526. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  527. res = "jina-v1-en"
  528. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  529. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  530. res = "jina-v2-en"
  531. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  532. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  533. res = "jina-v2-es"
  534. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  535. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  536. res = "jina-v2-de"
  537. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  538. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  539. res = "smaug-bpe"
  540. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  541. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  542. res = "poro-chat"
  543. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  544. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  545. res = "jina-v2-code"
  546. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  547. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  548. res = "chatglm-bpe"
  549. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  550. # ref: https://huggingface.co/LumiOpen/Viking-7B
  551. res = "viking"
  552. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  553. # ref: https://huggingface.co/core42/jais-13b
  554. res = "jais"
  555. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  556. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  557. res = "codeshell"
  558. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  559. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  560. res = "tekken"
  561. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  562. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  563. res = "smollm"
  564. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  565. # ref: https://huggingface.co/bigscience/bloom
  566. res = "bloom"
  567. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  568. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  569. res = "gpt3-finnish"
  570. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  571. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  572. res = "exaone"
  573. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  574. # ref: https://huggingface.co/microsoft/phi-2
  575. res = "phi-2"
  576. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  577. # ref: https://huggingface.co/facebook/chameleon-7b
  578. res = "chameleon"
  579. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  580. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  581. res = "minerva-7b"
  582. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  583. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  584. res = "roberta-bpe"
  585. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  586. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  587. res = "gigachat"
  588. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  589. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  590. res = "megrez"
  591. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  592. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  593. res = "deepseek-v3"
  594. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  595. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  596. res = "deepseek-r1-qwen"
  597. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  598. # ref: https://huggingface.co/Xenova/gpt-4o
  599. res = "gpt-4o"
  600. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  601. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  602. res = "superbpe"
  603. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  604. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  605. res = "trillion"
  606. if res is None:
  607. logger.warning("\n")
  608. logger.warning("**************************************************************************************")
  609. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  610. logger.warning("** There are 2 possible reasons for this:")
  611. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  612. logger.warning("** - the pre-tokenization config has changed upstream")
  613. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  614. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  615. logger.warning("**")
  616. logger.warning(f"** chkhsh: {chkhsh}")
  617. logger.warning("**************************************************************************************")
  618. logger.warning("\n")
  619. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  620. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  621. logger.debug(f"chkhsh: {chkhsh}")
  622. return res
  623. # Marker: End get_vocab_base_pre
  624. def _set_vocab_none(self) -> None:
  625. self.gguf_writer.add_tokenizer_model("none")
  626. def _set_vocab_gpt2(self) -> None:
  627. tokens, toktypes, tokpre = self.get_vocab_base()
  628. self.gguf_writer.add_tokenizer_model("gpt2")
  629. self.gguf_writer.add_tokenizer_pre(tokpre)
  630. self.gguf_writer.add_token_list(tokens)
  631. self.gguf_writer.add_token_types(toktypes)
  632. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  633. special_vocab.add_to_gguf(self.gguf_writer)
  634. def _set_vocab_qwen(self):
  635. dir_model = self.dir_model
  636. hparams = self.hparams
  637. tokens: list[str] = []
  638. toktypes: list[int] = []
  639. from transformers import AutoTokenizer
  640. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  641. vocab_size = hparams["vocab_size"]
  642. assert max(tokenizer.get_vocab().values()) < vocab_size
  643. tokpre = self.get_vocab_base_pre(tokenizer)
  644. merges = []
  645. vocab = {}
  646. mergeable_ranks = tokenizer.mergeable_ranks
  647. for token, rank in mergeable_ranks.items():
  648. vocab[QwenModel.token_bytes_to_string(token)] = rank
  649. if len(token) == 1:
  650. continue
  651. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  652. assert len(merged) == 2
  653. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  654. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  655. added_vocab = tokenizer.special_tokens
  656. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  657. for i in range(vocab_size):
  658. if i not in reverse_vocab:
  659. tokens.append(f"[PAD{i}]")
  660. toktypes.append(gguf.TokenType.UNUSED)
  661. elif reverse_vocab[i] in added_vocab:
  662. tokens.append(reverse_vocab[i])
  663. toktypes.append(gguf.TokenType.CONTROL)
  664. else:
  665. tokens.append(reverse_vocab[i])
  666. toktypes.append(gguf.TokenType.NORMAL)
  667. self.gguf_writer.add_tokenizer_model("gpt2")
  668. self.gguf_writer.add_tokenizer_pre(tokpre)
  669. self.gguf_writer.add_token_list(tokens)
  670. self.gguf_writer.add_token_types(toktypes)
  671. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  672. special_vocab.merges = merges
  673. # only add special tokens when they were not already loaded from config.json
  674. if len(special_vocab.special_token_ids) == 0:
  675. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  676. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  677. # this one is usually not in config.json anyway
  678. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  679. special_vocab.add_to_gguf(self.gguf_writer)
  680. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  681. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  682. self.gguf_writer.add_tokenizer_model("llama")
  683. self.gguf_writer.add_tokenizer_pre("default")
  684. self.gguf_writer.add_token_list(tokens)
  685. self.gguf_writer.add_token_scores(scores)
  686. self.gguf_writer.add_token_types(toktypes)
  687. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  688. special_vocab.add_to_gguf(self.gguf_writer)
  689. def _create_vocab_sentencepiece(self):
  690. from sentencepiece import SentencePieceProcessor
  691. tokenizer_path = self.dir_model / 'tokenizer.model'
  692. if not tokenizer_path.is_file():
  693. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  694. tokenizer = SentencePieceProcessor()
  695. tokenizer.LoadFromFile(str(tokenizer_path))
  696. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  697. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  698. scores: list[float] = [-10000.0] * vocab_size
  699. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  700. for token_id in range(tokenizer.vocab_size()):
  701. piece = tokenizer.IdToPiece(token_id)
  702. text = piece.encode("utf-8")
  703. score = tokenizer.GetScore(token_id)
  704. toktype = SentencePieceTokenTypes.NORMAL
  705. if tokenizer.IsUnknown(token_id):
  706. toktype = SentencePieceTokenTypes.UNKNOWN
  707. elif tokenizer.IsControl(token_id):
  708. toktype = SentencePieceTokenTypes.CONTROL
  709. elif tokenizer.IsUnused(token_id):
  710. toktype = SentencePieceTokenTypes.UNUSED
  711. elif tokenizer.IsByte(token_id):
  712. toktype = SentencePieceTokenTypes.BYTE
  713. tokens[token_id] = text
  714. scores[token_id] = score
  715. toktypes[token_id] = toktype
  716. added_tokens_file = self.dir_model / 'added_tokens.json'
  717. if added_tokens_file.is_file():
  718. with open(added_tokens_file, "r", encoding="utf-8") as f:
  719. added_tokens_json = json.load(f)
  720. for key in added_tokens_json:
  721. token_id = added_tokens_json[key]
  722. if token_id >= vocab_size:
  723. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  724. continue
  725. tokens[token_id] = key.encode("utf-8")
  726. scores[token_id] = -1000.0
  727. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  728. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  729. if tokenizer_config_file.is_file():
  730. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  731. tokenizer_config_json = json.load(f)
  732. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  733. for token_id, token_data in added_tokens_decoder.items():
  734. token_id = int(token_id)
  735. token: str = token_data["content"]
  736. if token_id >= vocab_size:
  737. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  738. continue
  739. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  740. if tokens[token_id] != token.encode("utf-8"):
  741. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  742. if token_data.get("special") or self.does_token_look_special(token):
  743. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  744. else:
  745. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  746. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  747. scores[token_id] = -1000.0
  748. tokens[token_id] = token.encode("utf-8")
  749. if vocab_size > len(tokens):
  750. pad_count = vocab_size - len(tokens)
  751. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  752. for i in range(1, pad_count + 1):
  753. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  754. scores.append(-1000.0)
  755. toktypes.append(SentencePieceTokenTypes.UNUSED)
  756. return tokens, scores, toktypes
  757. def _set_vocab_llama_hf(self):
  758. vocab = gguf.LlamaHfVocab(self.dir_model)
  759. tokens = []
  760. scores = []
  761. toktypes = []
  762. for text, score, toktype in vocab.all_tokens():
  763. tokens.append(text)
  764. scores.append(score)
  765. toktypes.append(toktype)
  766. assert len(tokens) == vocab.vocab_size
  767. self.gguf_writer.add_tokenizer_model("llama")
  768. self.gguf_writer.add_tokenizer_pre("default")
  769. self.gguf_writer.add_token_list(tokens)
  770. self.gguf_writer.add_token_scores(scores)
  771. self.gguf_writer.add_token_types(toktypes)
  772. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  773. special_vocab.add_to_gguf(self.gguf_writer)
  774. def _set_vocab_rwkv_world(self):
  775. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  776. vocab_size = self.hparams.get("vocab_size", 65536)
  777. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  778. toktypes: list[int] = [gguf.TokenType.CONTROL]
  779. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  780. lines = f.readlines()
  781. for line in lines:
  782. parts = line.split(' ')
  783. assert len(parts) >= 3
  784. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  785. token = token.encode("utf-8") if isinstance(token, str) else token
  786. assert isinstance(token, bytes)
  787. assert len(token) == token_len
  788. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  789. tokens.append(token_text.encode("utf-8"))
  790. toktypes.append(gguf.TokenType.NORMAL)
  791. remainder = vocab_size - len(tokens)
  792. assert remainder >= 0
  793. for i in range(len(tokens), vocab_size):
  794. tokens.append(f"[PAD{i}]".encode("utf-8"))
  795. toktypes.append(gguf.TokenType.UNUSED)
  796. self.gguf_writer.add_tokenizer_model("rwkv")
  797. self.gguf_writer.add_token_list(tokens)
  798. self.gguf_writer.add_token_types(toktypes)
  799. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  800. special_vocab.chat_template = "rwkv-world"
  801. # hack: Add '\n\n' as the EOT token to make it chat normally
  802. special_vocab._set_special_token("eot", 261)
  803. special_vocab.add_to_gguf(self.gguf_writer)
  804. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  805. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  806. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  807. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  808. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  809. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  810. assert field # tokenizer model
  811. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  812. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  813. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  814. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  815. assert field # token list
  816. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  817. if model_name == "llama-spm":
  818. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  819. assert field # token scores
  820. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  821. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  822. assert field # token types
  823. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  824. if model_name != "llama-spm":
  825. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  826. assert field # token merges
  827. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  828. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  829. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  830. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  831. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  832. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  833. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  834. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  835. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  836. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  837. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  838. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  839. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  840. @Model.register("GPTNeoXForCausalLM")
  841. class GPTNeoXModel(Model):
  842. model_arch = gguf.MODEL_ARCH.GPTNEOX
  843. def set_gguf_parameters(self):
  844. block_count = self.hparams["num_hidden_layers"]
  845. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  846. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  847. self.gguf_writer.add_block_count(block_count)
  848. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  849. self.gguf_writer.add_rope_dimension_count(
  850. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  851. )
  852. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  853. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  854. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  855. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  856. del bid # unused
  857. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  858. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  859. tensors: list[tuple[str, Tensor]] = []
  860. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  861. # Map bloom-style qkv_linear to gpt-style qkv_linear
  862. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  863. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  864. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  865. data_torch = torch.cat(
  866. (
  867. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  868. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  869. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  870. ),
  871. dim=0,
  872. )
  873. logger.info("re-format attention.linear_qkv.weight")
  874. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  875. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  876. data_torch = torch.cat(
  877. (
  878. qkv_bias[:, 0, :].reshape((n_embed,)),
  879. qkv_bias[:, 1, :].reshape((n_embed,)),
  880. qkv_bias[:, 2, :].reshape((n_embed,)),
  881. ),
  882. dim=0,
  883. )
  884. logger.info("re-format attention.linear_qkv.bias")
  885. tensors.append((self.map_tensor_name(name), data_torch))
  886. return tensors
  887. @Model.register("BloomForCausalLM", "BloomModel")
  888. class BloomModel(Model):
  889. model_arch = gguf.MODEL_ARCH.BLOOM
  890. def set_gguf_parameters(self):
  891. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  892. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  893. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  894. self.gguf_writer.add_embedding_length(n_embed)
  895. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  896. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  897. self.gguf_writer.add_head_count(n_head)
  898. self.gguf_writer.add_head_count_kv(n_head)
  899. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  900. self.gguf_writer.add_file_type(self.ftype)
  901. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  902. del bid # unused
  903. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  904. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  905. name = re.sub(r'transformer\.', '', name)
  906. tensors: list[tuple[str, Tensor]] = []
  907. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  908. # Map bloom-style qkv_linear to gpt-style qkv_linear
  909. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  910. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  911. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  912. data_torch = torch.cat(
  913. (
  914. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  915. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  916. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  917. ),
  918. dim=0,
  919. )
  920. logger.info("re-format attention.linear_qkv.weight")
  921. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  922. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  923. data_torch = torch.cat(
  924. (
  925. qkv_bias[:, 0, :].reshape((n_embed,)),
  926. qkv_bias[:, 1, :].reshape((n_embed,)),
  927. qkv_bias[:, 2, :].reshape((n_embed,)),
  928. ),
  929. dim=0,
  930. )
  931. logger.info("re-format attention.linear_qkv.bias")
  932. tensors.append((self.map_tensor_name(name), data_torch))
  933. return tensors
  934. @Model.register("MPTForCausalLM")
  935. class MPTModel(Model):
  936. model_arch = gguf.MODEL_ARCH.MPT
  937. def set_vocab(self):
  938. try:
  939. self._set_vocab_gpt2()
  940. except Exception:
  941. # Fallback for SEA-LION model
  942. self._set_vocab_sentencepiece()
  943. self.gguf_writer.add_add_bos_token(False)
  944. self.gguf_writer.add_pad_token_id(3)
  945. self.gguf_writer.add_eos_token_id(1)
  946. self.gguf_writer.add_unk_token_id(0)
  947. def set_gguf_parameters(self):
  948. block_count = self.hparams["n_layers"]
  949. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  950. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  951. self.gguf_writer.add_block_count(block_count)
  952. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  953. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  954. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  955. self.gguf_writer.add_head_count_kv(kv_n_heads)
  956. self.gguf_writer.add_layer_norm_eps(1e-5)
  957. if self.hparams["attn_config"]["clip_qkv"] is not None:
  958. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  959. if self.hparams["attn_config"]["alibi"]:
  960. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  961. else:
  962. self.gguf_writer.add_max_alibi_bias(0.0)
  963. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  964. del bid # unused
  965. if "scales" in name:
  966. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  967. new_name = new_name.replace("scales", "act.scales")
  968. else:
  969. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  970. return [(new_name, data_torch)]
  971. @Model.register("OrionForCausalLM")
  972. class OrionModel(Model):
  973. model_arch = gguf.MODEL_ARCH.ORION
  974. def set_vocab(self):
  975. self._set_vocab_sentencepiece()
  976. def set_gguf_parameters(self):
  977. block_count = self.hparams["num_hidden_layers"]
  978. head_count = self.hparams["num_attention_heads"]
  979. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  980. ctx_length = 0
  981. if "max_sequence_length" in self.hparams:
  982. ctx_length = self.hparams["max_sequence_length"]
  983. elif "max_position_embeddings" in self.hparams:
  984. ctx_length = self.hparams["max_position_embeddings"]
  985. elif "model_max_length" in self.hparams:
  986. ctx_length = self.hparams["model_max_length"]
  987. else:
  988. raise ValueError("gguf: can not find ctx length parameter.")
  989. self.gguf_writer.add_file_type(self.ftype)
  990. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  991. self.gguf_writer.add_context_length(ctx_length)
  992. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  993. self.gguf_writer.add_block_count(block_count)
  994. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  995. self.gguf_writer.add_head_count(head_count)
  996. self.gguf_writer.add_head_count_kv(head_count_kv)
  997. # note: config provides rms norm but it is actually layer norm
  998. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  999. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1000. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1001. class BaichuanModel(Model):
  1002. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1003. def set_vocab(self):
  1004. self._set_vocab_sentencepiece()
  1005. def set_gguf_parameters(self):
  1006. block_count = self.hparams["num_hidden_layers"]
  1007. head_count = self.hparams["num_attention_heads"]
  1008. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1009. ctx_length = 0
  1010. if "max_sequence_length" in self.hparams:
  1011. ctx_length = self.hparams["max_sequence_length"]
  1012. elif "max_position_embeddings" in self.hparams:
  1013. ctx_length = self.hparams["max_position_embeddings"]
  1014. elif "model_max_length" in self.hparams:
  1015. ctx_length = self.hparams["model_max_length"]
  1016. else:
  1017. raise ValueError("gguf: can not find ctx length parameter.")
  1018. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1019. self.gguf_writer.add_context_length(ctx_length)
  1020. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1021. self.gguf_writer.add_block_count(block_count)
  1022. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1023. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1024. self.gguf_writer.add_head_count(head_count)
  1025. self.gguf_writer.add_head_count_kv(head_count_kv)
  1026. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1027. self.gguf_writer.add_file_type(self.ftype)
  1028. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1029. if self.hparams["rope_scaling"].get("type") == "linear":
  1030. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1031. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1032. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1033. head_count = self.hparams["num_attention_heads"]
  1034. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1035. tensors: list[tuple[str, Tensor]] = []
  1036. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1037. logger.info(f"Unpacking and permuting layer {bid}")
  1038. tensors = [
  1039. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1040. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1041. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1042. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1043. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1044. self._reverse_hf_part(data_torch, 2)),
  1045. ]
  1046. else:
  1047. tensors = [(self.map_tensor_name(name), data_torch)]
  1048. return tensors
  1049. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1050. if n_kv_head is not None and n_head != n_kv_head:
  1051. n_head //= n_kv_head
  1052. return (
  1053. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1054. .swapaxes(1, 2)
  1055. .reshape(weights.shape)
  1056. )
  1057. def _reverse_hf_permute_part(
  1058. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1059. ) -> Tensor:
  1060. r = weights.shape[0] // 3
  1061. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1062. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1063. r = weights.shape[0] // 3
  1064. return weights[r * n_part:r * n_part + r, ...]
  1065. @Model.register("XverseForCausalLM")
  1066. class XverseModel(Model):
  1067. model_arch = gguf.MODEL_ARCH.XVERSE
  1068. def set_vocab(self):
  1069. assert (self.dir_model / "tokenizer.json").is_file()
  1070. dir_model = self.dir_model
  1071. hparams = self.hparams
  1072. tokens: list[bytes] = []
  1073. toktypes: list[int] = []
  1074. from transformers import AutoTokenizer
  1075. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1076. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1077. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1078. # because vocab_size is the count of items, and indexes start at 0.
  1079. max_vocab_index = max(tokenizer.get_vocab().values())
  1080. if max_vocab_index >= vocab_size:
  1081. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1082. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1083. added_vocab = tokenizer.get_added_vocab()
  1084. for token_id in range(vocab_size):
  1085. token_text = reverse_vocab[token_id].encode('utf-8')
  1086. # replace "\x00" to string with length > 0
  1087. if token_text == b"\x00":
  1088. toktype = gguf.TokenType.BYTE # special
  1089. token_text = f"<{token_text}>".encode('utf-8')
  1090. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1091. toktype = gguf.TokenType.BYTE # special
  1092. elif reverse_vocab[token_id] in added_vocab:
  1093. if tokenizer.added_tokens_decoder[token_id].special:
  1094. toktype = gguf.TokenType.CONTROL
  1095. else:
  1096. toktype = gguf.TokenType.USER_DEFINED
  1097. else:
  1098. toktype = gguf.TokenType.NORMAL
  1099. tokens.append(token_text)
  1100. toktypes.append(toktype)
  1101. self.gguf_writer.add_tokenizer_model("llama")
  1102. self.gguf_writer.add_tokenizer_pre("default")
  1103. self.gguf_writer.add_token_list(tokens)
  1104. self.gguf_writer.add_token_types(toktypes)
  1105. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1106. special_vocab.add_to_gguf(self.gguf_writer)
  1107. def set_gguf_parameters(self):
  1108. block_count = self.hparams["num_hidden_layers"]
  1109. head_count = self.hparams["num_attention_heads"]
  1110. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1111. ctx_length = 0
  1112. if "max_sequence_length" in self.hparams:
  1113. ctx_length = self.hparams["max_sequence_length"]
  1114. elif "max_position_embeddings" in self.hparams:
  1115. ctx_length = self.hparams["max_position_embeddings"]
  1116. elif "model_max_length" in self.hparams:
  1117. ctx_length = self.hparams["model_max_length"]
  1118. else:
  1119. raise ValueError("gguf: can not find ctx length parameter.")
  1120. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1121. self.gguf_writer.add_context_length(ctx_length)
  1122. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1123. self.gguf_writer.add_block_count(block_count)
  1124. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1125. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1126. self.gguf_writer.add_head_count(head_count)
  1127. self.gguf_writer.add_head_count_kv(head_count_kv)
  1128. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1129. self.gguf_writer.add_file_type(self.ftype)
  1130. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1131. if self.hparams["rope_scaling"].get("type") == "linear":
  1132. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1133. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1134. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1135. del bid # unused
  1136. head_count = self.hparams["num_attention_heads"]
  1137. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1138. # HF models permute some of the tensors, so we need to undo that
  1139. if name.endswith("q_proj.weight"):
  1140. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1141. if name.endswith("k_proj.weight"):
  1142. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1143. return [(self.map_tensor_name(name), data_torch)]
  1144. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1145. if n_kv_head is not None and n_head != n_kv_head:
  1146. n_head //= n_kv_head
  1147. return (
  1148. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1149. .swapaxes(1, 2)
  1150. .reshape(weights.shape)
  1151. )
  1152. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1153. class FalconModel(Model):
  1154. model_arch = gguf.MODEL_ARCH.FALCON
  1155. def set_gguf_parameters(self):
  1156. block_count = self.hparams.get("num_hidden_layers")
  1157. if block_count is None:
  1158. block_count = self.hparams["n_layer"] # old name
  1159. n_head = self.hparams.get("num_attention_heads")
  1160. if n_head is None:
  1161. n_head = self.hparams["n_head"] # old name
  1162. n_head_kv = self.hparams.get("num_kv_heads")
  1163. if n_head_kv is None:
  1164. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1165. self.gguf_writer.add_context_length(2048) # not in config.json
  1166. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1167. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1168. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1169. self.gguf_writer.add_block_count(block_count)
  1170. self.gguf_writer.add_head_count(n_head)
  1171. self.gguf_writer.add_head_count_kv(n_head_kv)
  1172. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1173. self.gguf_writer.add_file_type(self.ftype)
  1174. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1175. del bid # unused
  1176. # QKV tensor transform
  1177. # The original query_key_value tensor contains n_head_kv "kv groups",
  1178. # each consisting of n_head/n_head_kv query weights followed by one key
  1179. # and one value weight (shared by all query heads in the kv group).
  1180. # This layout makes it a big pain to work with in GGML.
  1181. # So we rearrange them here,, so that we have n_head query weights
  1182. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1183. # in contiguous fashion.
  1184. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1185. if "query_key_value" in name:
  1186. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1187. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1188. head_dim = self.hparams["hidden_size"] // n_head
  1189. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1190. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1191. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1192. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1193. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1194. return [(self.map_tensor_name(name), data_torch)]
  1195. @Model.register("GPTBigCodeForCausalLM")
  1196. class StarCoderModel(Model):
  1197. model_arch = gguf.MODEL_ARCH.STARCODER
  1198. def set_gguf_parameters(self):
  1199. block_count = self.hparams["n_layer"]
  1200. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1201. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1202. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1203. self.gguf_writer.add_block_count(block_count)
  1204. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1205. self.gguf_writer.add_head_count_kv(1)
  1206. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1207. self.gguf_writer.add_file_type(self.ftype)
  1208. @Model.register("GPTRefactForCausalLM")
  1209. class RefactModel(Model):
  1210. model_arch = gguf.MODEL_ARCH.REFACT
  1211. def set_vocab(self):
  1212. super().set_vocab()
  1213. # TODO: how to determine special FIM tokens automatically?
  1214. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1215. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1216. special_vocab._set_special_token("prefix", 1)
  1217. special_vocab._set_special_token("suffix", 3)
  1218. special_vocab._set_special_token("middle", 2)
  1219. special_vocab.chat_template = None # do not add it twice
  1220. special_vocab.add_to_gguf(self.gguf_writer)
  1221. def set_gguf_parameters(self):
  1222. hidden_dim = self.hparams["n_embd"]
  1223. inner_dim = 4 * hidden_dim
  1224. hidden_dim = int(2 * inner_dim / 3)
  1225. multiple_of = 256
  1226. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1227. block_count = self.hparams["n_layer"]
  1228. # refact uses Alibi. So this is from config.json which might be used by training.
  1229. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1230. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1231. self.gguf_writer.add_feed_forward_length(ff_dim)
  1232. self.gguf_writer.add_block_count(block_count)
  1233. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1234. self.gguf_writer.add_head_count_kv(1)
  1235. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1236. self.gguf_writer.add_file_type(self.ftype)
  1237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1238. hidden_dim = self.hparams["n_embd"]
  1239. inner_dim = 4 * hidden_dim
  1240. hidden_dim = int(2 * inner_dim / 3)
  1241. multiple_of = 256
  1242. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1243. n_head = self.hparams["n_head"]
  1244. n_head_kv = 1
  1245. head_dim = self.hparams["n_embd"] // n_head
  1246. tensors: list[tuple[str, Tensor]] = []
  1247. if bid is not None:
  1248. if name == f"transformer.h.{bid}.attn.kv.weight":
  1249. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1250. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1251. elif name == f"transformer.h.{bid}.attn.q.weight":
  1252. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1253. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1254. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1255. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1256. if len(tensors) == 0:
  1257. tensors.append((self.map_tensor_name(name), data_torch))
  1258. return tensors
  1259. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1260. class StableLMModel(Model):
  1261. model_arch = gguf.MODEL_ARCH.STABLELM
  1262. def set_vocab(self):
  1263. if (self.dir_model / "tokenizer.json").is_file():
  1264. self._set_vocab_gpt2()
  1265. else:
  1266. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1267. self._set_vocab_qwen()
  1268. def set_gguf_parameters(self):
  1269. hparams = self.hparams
  1270. block_count = hparams["num_hidden_layers"]
  1271. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1272. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1273. self.gguf_writer.add_block_count(block_count)
  1274. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1275. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1276. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1277. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1278. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1279. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1280. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1281. self.gguf_writer.add_file_type(self.ftype)
  1282. _q_norms: list[dict[str, Tensor]] | None = None
  1283. _k_norms: list[dict[str, Tensor]] | None = None
  1284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1285. n_head = self.hparams["num_attention_heads"]
  1286. n_kv_head = self.hparams["num_key_value_heads"]
  1287. if name.find("q_layernorm.norms") != -1:
  1288. assert bid is not None
  1289. if self._q_norms is None:
  1290. self._q_norms = [{} for _ in range(self.block_count)]
  1291. self._q_norms[bid][name] = data_torch
  1292. if len(self._q_norms[bid]) >= n_head:
  1293. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1294. else:
  1295. return []
  1296. if name.find("k_layernorm.norms") != -1:
  1297. assert bid is not None
  1298. if self._k_norms is None:
  1299. self._k_norms = [{} for _ in range(self.block_count)]
  1300. self._k_norms[bid][name] = data_torch
  1301. if len(self._k_norms[bid]) >= n_kv_head:
  1302. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1303. else:
  1304. return []
  1305. return [(self.map_tensor_name(name), data_torch)]
  1306. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1307. datas: list[Tensor] = []
  1308. # extract the norms in order
  1309. for xid in range(n_head):
  1310. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1311. datas.append(norms[ename])
  1312. del norms[ename]
  1313. data_torch = torch.stack(datas, dim=0)
  1314. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1315. new_name = self.map_tensor_name(merged_name)
  1316. return [(new_name, data_torch)]
  1317. def prepare_tensors(self):
  1318. super().prepare_tensors()
  1319. if self._q_norms is not None or self._k_norms is not None:
  1320. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1321. norms = (
  1322. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1323. ) + (
  1324. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1325. )
  1326. if len(norms) > 0:
  1327. raise ValueError(f"Unprocessed norms: {norms}")
  1328. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1329. class LlamaModel(Model):
  1330. model_arch = gguf.MODEL_ARCH.LLAMA
  1331. def set_vocab(self):
  1332. try:
  1333. self._set_vocab_sentencepiece()
  1334. except FileNotFoundError:
  1335. try:
  1336. self._set_vocab_llama_hf()
  1337. except (FileNotFoundError, TypeError):
  1338. # Llama 3
  1339. self._set_vocab_gpt2()
  1340. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1341. if self.hparams.get("vocab_size", 32000) == 32016:
  1342. special_vocab = gguf.SpecialVocab(
  1343. self.dir_model, load_merges=False,
  1344. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1345. )
  1346. special_vocab._set_special_token("prefix", 32007)
  1347. special_vocab._set_special_token("suffix", 32008)
  1348. special_vocab._set_special_token("middle", 32009)
  1349. special_vocab._set_special_token("eot", 32010)
  1350. special_vocab.add_to_gguf(self.gguf_writer)
  1351. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1352. if tokenizer_config_file.is_file():
  1353. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1354. tokenizer_config_json = json.load(f)
  1355. if "add_prefix_space" in tokenizer_config_json:
  1356. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1357. # Apply to granite small models only
  1358. if self.hparams.get("vocab_size", 32000) == 49152:
  1359. self.gguf_writer.add_add_bos_token(False)
  1360. def set_gguf_parameters(self):
  1361. super().set_gguf_parameters()
  1362. hparams = self.hparams
  1363. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1364. if "head_dim" in hparams:
  1365. rope_dim = hparams["head_dim"]
  1366. else:
  1367. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1368. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1369. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1370. if self.hparams["rope_scaling"].get("type") == "linear":
  1371. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1372. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1373. @staticmethod
  1374. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1375. if n_head_kv is not None and n_head != n_head_kv:
  1376. n_head = n_head_kv
  1377. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1378. .swapaxes(1, 2)
  1379. .reshape(weights.shape))
  1380. _experts: list[dict[str, Tensor]] | None = None
  1381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1382. n_head = self.hparams["num_attention_heads"]
  1383. n_kv_head = self.hparams.get("num_key_value_heads")
  1384. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1385. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1386. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1387. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1388. # process the experts separately
  1389. if name.find("block_sparse_moe.experts") != -1:
  1390. n_experts = self.hparams["num_local_experts"]
  1391. assert bid is not None
  1392. if self._experts is None:
  1393. self._experts = [{} for _ in range(self.block_count)]
  1394. self._experts[bid][name] = data_torch
  1395. if len(self._experts[bid]) >= n_experts * 3:
  1396. tensors: list[tuple[str, Tensor]] = []
  1397. # merge the experts into a single 3d tensor
  1398. for wid in ["w1", "w2", "w3"]:
  1399. datas: list[Tensor] = []
  1400. for xid in range(n_experts):
  1401. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1402. datas.append(self._experts[bid][ename])
  1403. del self._experts[bid][ename]
  1404. data_torch = torch.stack(datas, dim=0)
  1405. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1406. new_name = self.map_tensor_name(merged_name)
  1407. tensors.append((new_name, data_torch))
  1408. return tensors
  1409. else:
  1410. return []
  1411. return [(self.map_tensor_name(name), data_torch)]
  1412. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1413. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1414. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1415. base = self.hparams.get("rope_theta", 10000.0)
  1416. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1417. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1418. factor = rope_scaling.get("factor", 8.0)
  1419. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1420. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1421. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1422. low_freq_wavelen = old_context_len / low_freq_factor
  1423. high_freq_wavelen = old_context_len / high_freq_factor
  1424. assert low_freq_wavelen != high_freq_wavelen
  1425. rope_factors = []
  1426. for freq in freqs:
  1427. wavelen = 2 * math.pi / freq
  1428. if wavelen < high_freq_wavelen:
  1429. rope_factors.append(1)
  1430. elif wavelen > low_freq_wavelen:
  1431. rope_factors.append(factor)
  1432. else:
  1433. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1434. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1435. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1436. def prepare_tensors(self):
  1437. super().prepare_tensors()
  1438. if self._experts is not None:
  1439. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1440. experts = [k for d in self._experts for k in d.keys()]
  1441. if len(experts) > 0:
  1442. raise ValueError(f"Unprocessed experts: {experts}")
  1443. @Model.register("Mistral3ForConditionalGeneration")
  1444. class Mistral3Model(LlamaModel):
  1445. model_arch = gguf.MODEL_ARCH.LLAMA
  1446. # we need to merge the text_config into the root level of hparams
  1447. def __init__(self, *args, **kwargs):
  1448. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  1449. if "text_config" in hparams:
  1450. hparams = {**hparams, **hparams["text_config"]}
  1451. kwargs["hparams"] = hparams
  1452. super().__init__(*args, **kwargs)
  1453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1454. name = name.replace("language_model.", "")
  1455. if "multi_modal_projector" in name or "vision_tower" in name:
  1456. return []
  1457. return super().modify_tensors(data_torch, name, bid)
  1458. @Model.register("DeciLMForCausalLM")
  1459. class DeciModel(Model):
  1460. model_arch = gguf.MODEL_ARCH.DECI
  1461. @staticmethod
  1462. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1463. # DeciLM-specific code
  1464. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1465. return DeciModel._find_multiple(intermediate_size, 256)
  1466. @staticmethod
  1467. def _find_multiple(n: int, k: int) -> int:
  1468. # DeciLM-specific code
  1469. if n % k == 0:
  1470. return n
  1471. return n + k - (n % k)
  1472. def __init__(self, *args, **kwargs):
  1473. super().__init__(*args, **kwargs)
  1474. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1475. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1476. assert self.block_count == len(_block_configs)
  1477. self._num_kv_heads = list()
  1478. self._num_heads = list()
  1479. _ffn_multipliers = list()
  1480. # ***linear attention layer***
  1481. # if n_heads_in_group is None and replace_with_linear is True
  1482. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1483. # ***attention-free layer***
  1484. # if n_heads_in_group is None and replace_with_linear is False
  1485. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1486. # ***normal attention-layer***
  1487. # if n_heads_in_group is not None, then
  1488. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1489. # _num_heads[il] is num_attention_head
  1490. for il in range(len(_block_configs)):
  1491. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1492. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1493. self._num_kv_heads.append(0)
  1494. self._num_heads.append(self.hparams["num_attention_heads"])
  1495. else:
  1496. self._num_kv_heads.append(0)
  1497. self._num_heads.append(0)
  1498. else:
  1499. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1500. self._num_heads.append(self.hparams["num_attention_heads"])
  1501. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1502. assert self.block_count == len(self._num_kv_heads)
  1503. assert self.block_count == len(self._num_heads)
  1504. assert self.block_count == len(_ffn_multipliers)
  1505. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1506. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1507. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1508. self._ffn_dims: list[int] = [
  1509. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1510. for multiplier in _ffn_multipliers
  1511. ]
  1512. def set_vocab(self):
  1513. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1514. # eos_token from '|eot_id|' to '|end_of_text|'
  1515. if self.hparams.get("vocab_size", 128256) == 128256:
  1516. tokens, toktypes, tokpre = self.get_vocab_base()
  1517. self.gguf_writer.add_tokenizer_model("gpt2")
  1518. self.gguf_writer.add_tokenizer_pre(tokpre)
  1519. self.gguf_writer.add_token_list(tokens)
  1520. self.gguf_writer.add_token_types(toktypes)
  1521. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1522. special_vocab.add_to_gguf(self.gguf_writer)
  1523. else:
  1524. # DeciLM-7B
  1525. self._set_vocab_llama_hf()
  1526. def set_gguf_parameters(self):
  1527. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1528. assert self.block_count == len(self._num_kv_heads)
  1529. assert self.block_count == len(self._num_heads)
  1530. assert self.block_count == len(self._ffn_dims)
  1531. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1532. self.gguf_writer.add_rope_freq_base(rope_theta)
  1533. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1534. self.gguf_writer.add_head_count(self._num_heads)
  1535. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1536. self.gguf_writer.add_block_count(self.block_count)
  1537. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1538. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1539. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1540. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1541. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1542. self.gguf_writer.add_file_type(self.ftype)
  1543. else: # DeciLM-7B
  1544. super().set_gguf_parameters()
  1545. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1546. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1547. assert self.block_count == len(self._num_kv_heads)
  1548. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1549. hparams = self.hparams
  1550. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1551. if "head_dim" in hparams:
  1552. rope_dim = hparams["head_dim"]
  1553. else:
  1554. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1555. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1556. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1557. if self.hparams["rope_scaling"].get("type") == "linear":
  1558. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1559. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1560. @staticmethod
  1561. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1562. if n_head_kv is not None and n_head != n_head_kv:
  1563. n_head = n_head_kv
  1564. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1565. .swapaxes(1, 2)
  1566. .reshape(weights.shape))
  1567. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1568. n_head = self.hparams["num_attention_heads"]
  1569. if bid is not None:
  1570. if "num_key_value_heads_per_layer" in self.hparams:
  1571. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1572. elif "block_configs" in self.hparams:
  1573. n_kv_head = self._num_kv_heads[bid]
  1574. n_head = self._num_heads[bid]
  1575. else:
  1576. n_kv_head = self.hparams.get("num_key_value_heads")
  1577. else:
  1578. n_kv_head = self.hparams.get("num_key_value_heads")
  1579. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1580. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1581. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1582. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1583. return [(self.map_tensor_name(name), data_torch)]
  1584. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1585. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1586. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1587. base = self.hparams.get("rope_theta", 10000.0)
  1588. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1589. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1590. factor = rope_scaling.get("factor", 8.0)
  1591. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1592. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1593. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1594. low_freq_wavelen = old_context_len / low_freq_factor
  1595. high_freq_wavelen = old_context_len / high_freq_factor
  1596. assert low_freq_wavelen != high_freq_wavelen
  1597. rope_factors = []
  1598. for freq in freqs:
  1599. wavelen = 2 * math.pi / freq
  1600. if wavelen < high_freq_wavelen:
  1601. rope_factors.append(1)
  1602. elif wavelen > low_freq_wavelen:
  1603. rope_factors.append(factor)
  1604. else:
  1605. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1606. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1607. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1608. def prepare_tensors(self):
  1609. super().prepare_tensors()
  1610. @Model.register("BitnetForCausalLM")
  1611. class BitnetModel(Model):
  1612. model_arch = gguf.MODEL_ARCH.BITNET
  1613. def set_vocab(self):
  1614. self._set_vocab_sentencepiece()
  1615. def set_gguf_parameters(self):
  1616. super().set_gguf_parameters()
  1617. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1618. self.gguf_writer.add_rope_scaling_factor(1.0)
  1619. def weight_quant(self, weight: Tensor) -> Tensor:
  1620. dtype = weight.dtype
  1621. weight = weight.float()
  1622. scale = weight.abs().mean().clamp(min=1e-5)
  1623. iscale = 1 / scale
  1624. # TODO: multiply by the scale directly instead of inverting it twice
  1625. # (this is also unnecessarily doubly inverted upstream)
  1626. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1627. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1628. return result.type(dtype)
  1629. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1630. new_name = self.map_tensor_name(name)
  1631. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1632. gguf.MODEL_TENSOR.ATTN_Q,
  1633. gguf.MODEL_TENSOR.ATTN_K,
  1634. gguf.MODEL_TENSOR.ATTN_V,
  1635. gguf.MODEL_TENSOR.ATTN_OUT,
  1636. gguf.MODEL_TENSOR.FFN_UP,
  1637. gguf.MODEL_TENSOR.FFN_DOWN,
  1638. gguf.MODEL_TENSOR.FFN_GATE,
  1639. ]):
  1640. # transform weight into 1/0/-1 (in fp32)
  1641. data_torch = self.weight_quant(data_torch)
  1642. yield (new_name, data_torch)
  1643. @Model.register("GrokForCausalLM")
  1644. class GrokModel(Model):
  1645. model_arch = gguf.MODEL_ARCH.GROK
  1646. def set_vocab(self):
  1647. self._set_vocab_sentencepiece()
  1648. def __init__(self, *args, **kwargs):
  1649. super().__init__(*args, **kwargs)
  1650. def set_gguf_parameters(self):
  1651. super().set_gguf_parameters()
  1652. _experts: list[dict[str, Tensor]] | None = None
  1653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1654. # process the experts separately
  1655. if name.find(".moe.") != -1:
  1656. n_experts = self.hparams["num_local_experts"]
  1657. assert bid is not None
  1658. if self._experts is None:
  1659. self._experts = [{} for _ in range(self.block_count)]
  1660. self._experts[bid][name] = data_torch
  1661. if len(self._experts[bid]) >= n_experts * 3:
  1662. tensors: list[tuple[str, Tensor]] = []
  1663. # merge the experts into a single 3d tensor
  1664. for wid in ["linear", "linear_1", "linear_v"]:
  1665. datas: list[Tensor] = []
  1666. for xid in range(n_experts):
  1667. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1668. datas.append(self._experts[bid][ename])
  1669. del self._experts[bid][ename]
  1670. data_torch = torch.stack(datas, dim=0)
  1671. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1672. new_name = self.map_tensor_name(merged_name)
  1673. tensors.append((new_name, data_torch))
  1674. return tensors
  1675. else:
  1676. return []
  1677. return [(self.map_tensor_name(name), data_torch)]
  1678. @Model.register("DbrxForCausalLM")
  1679. class DbrxModel(Model):
  1680. model_arch = gguf.MODEL_ARCH.DBRX
  1681. def set_gguf_parameters(self):
  1682. ffn_config = self.hparams["ffn_config"]
  1683. attn_config = self.hparams["attn_config"]
  1684. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1685. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1686. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1687. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1688. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1689. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1690. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1691. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1692. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1693. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1694. self.gguf_writer.add_layer_norm_eps(1e-5)
  1695. self.gguf_writer.add_file_type(self.ftype)
  1696. logger.info(f"gguf: file type = {self.ftype}")
  1697. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1698. del bid # unused
  1699. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1700. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1701. n_embd = self.hparams["d_model"]
  1702. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1703. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1704. # But llama.cpp moe graph works differently
  1705. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1706. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1707. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1708. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1709. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1710. experts = False
  1711. for exp_tensor_name in exp_tensor_names.keys():
  1712. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1713. experts = True
  1714. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1715. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1716. data_torch = data_torch.permute(*permute_tensor)
  1717. break
  1718. # map tensor names
  1719. # In MoE models the ffn tensors are typically most of the model weights,
  1720. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1721. # Every other model has the weight names ending in .weight,
  1722. # let's assume that is the convention which is not the case for dbrx:
  1723. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1724. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1725. return [(new_name, data_torch)]
  1726. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1727. del name, new_name, bid # unused
  1728. return n_dims > 1
  1729. @Model.register("MiniCPMForCausalLM")
  1730. class MiniCPMModel(Model):
  1731. model_arch = gguf.MODEL_ARCH.MINICPM
  1732. def set_gguf_parameters(self):
  1733. super().set_gguf_parameters()
  1734. embedding_scale = float(self.hparams["scale_emb"])
  1735. self.gguf_writer.add_embedding_scale(embedding_scale)
  1736. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1737. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1738. self.gguf_writer.add_residual_scale(residual_scale)
  1739. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1740. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1741. self.gguf_writer.add_logit_scale(logit_scale)
  1742. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1743. if self.hparams.get("rope_scaling") is not None:
  1744. if self.hparams["rope_scaling"].get("type") == "longrope":
  1745. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1746. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1747. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1748. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1749. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1750. if rope_scaling is not None:
  1751. long_factors = rope_scaling.get('long_factor', None)
  1752. short_factors = rope_scaling.get('short_factor', None)
  1753. if long_factors is None or short_factors is None:
  1754. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1755. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1756. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1757. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1758. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1759. def set_vocab(self):
  1760. self._set_vocab_sentencepiece()
  1761. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1762. del bid # unused
  1763. n_head = self.hparams["num_attention_heads"]
  1764. n_kv_head = self.hparams.get("num_key_value_heads")
  1765. # HF models permute some of the tensors, so we need to undo that
  1766. if name.endswith(("q_proj.weight")):
  1767. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1768. if name.endswith(("k_proj.weight")):
  1769. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1770. return [(self.map_tensor_name(name), data_torch)]
  1771. @Model.register("MiniCPM3ForCausalLM")
  1772. class MiniCPM3Model(Model):
  1773. model_arch = gguf.MODEL_ARCH.MINICPM3
  1774. def set_gguf_parameters(self):
  1775. hparams = self.hparams
  1776. self.gguf_writer.add_file_type(self.ftype)
  1777. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1778. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1779. self.gguf_writer.add_block_count(self.block_count)
  1780. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1781. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1782. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1783. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1784. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1785. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1786. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1787. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1788. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1789. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1790. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1791. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1792. if rope_scaling is not None:
  1793. rope_dims = self.hparams["qk_rope_head_dim"]
  1794. long_factors = rope_scaling.get('long_factor', None)
  1795. short_factors = rope_scaling.get('short_factor', None)
  1796. if long_factors is None or short_factors is None:
  1797. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1798. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1799. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1800. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1801. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1802. def set_vocab(self):
  1803. self._set_vocab_sentencepiece()
  1804. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1805. if n_kv_head is not None and n_head != n_kv_head:
  1806. n_head //= n_kv_head
  1807. return (
  1808. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1809. .swapaxes(1, 2)
  1810. .reshape(weights.shape)
  1811. )
  1812. @Model.register("QWenLMHeadModel")
  1813. class QwenModel(Model):
  1814. model_arch = gguf.MODEL_ARCH.QWEN
  1815. @staticmethod
  1816. def token_bytes_to_string(b):
  1817. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1818. byte_encoder = bytes_to_unicode()
  1819. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1820. @staticmethod
  1821. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1822. parts = [bytes([b]) for b in token]
  1823. while True:
  1824. min_idx = None
  1825. min_rank = None
  1826. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1827. rank = mergeable_ranks.get(pair[0] + pair[1])
  1828. if rank is not None and (min_rank is None or rank < min_rank):
  1829. min_idx = i
  1830. min_rank = rank
  1831. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1832. break
  1833. assert min_idx is not None
  1834. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1835. return parts
  1836. def set_vocab(self):
  1837. self._set_vocab_qwen()
  1838. def set_gguf_parameters(self):
  1839. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1840. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1841. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1842. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1843. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1844. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1845. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1846. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1847. self.gguf_writer.add_file_type(self.ftype)
  1848. @Model.register("Qwen2ForCausalLM")
  1849. class Qwen2Model(Model):
  1850. model_arch = gguf.MODEL_ARCH.QWEN2
  1851. def set_vocab(self):
  1852. try:
  1853. self._set_vocab_sentencepiece()
  1854. except FileNotFoundError:
  1855. self._set_vocab_gpt2()
  1856. def set_gguf_parameters(self):
  1857. super().set_gguf_parameters()
  1858. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1859. if self.hparams["rope_scaling"].get("type") == "yarn":
  1860. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1861. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1862. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1863. @Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  1864. class Qwen2VLModel(Model):
  1865. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1866. def set_gguf_parameters(self):
  1867. super().set_gguf_parameters()
  1868. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1869. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1870. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1871. def set_vocab(self):
  1872. try:
  1873. self._set_vocab_sentencepiece()
  1874. except FileNotFoundError:
  1875. self._set_vocab_gpt2()
  1876. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1877. for name, data in super().get_tensors():
  1878. if name.startswith("visual."):
  1879. continue
  1880. yield name, data
  1881. @Model.register("WavTokenizerDec")
  1882. class WavTokenizerDecModel(Model):
  1883. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1884. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1885. del bid # unused
  1886. if \
  1887. name.endswith("codebook.cluster_size") or \
  1888. name.endswith("codebook.embed_avg") or \
  1889. name.endswith("codebook.inited"):
  1890. logger.debug(f"Skipping {name!r}")
  1891. return []
  1892. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1893. return [(self.map_tensor_name(name), data_torch)]
  1894. def set_vocab(self):
  1895. self._set_vocab_none()
  1896. def set_gguf_parameters(self):
  1897. super().set_gguf_parameters()
  1898. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1899. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1900. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1901. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1902. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1903. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1904. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1905. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1906. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1907. self.gguf_writer.add_causal_attention(False)
  1908. @Model.register("Qwen2MoeForCausalLM")
  1909. class Qwen2MoeModel(Model):
  1910. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1911. def set_gguf_parameters(self):
  1912. super().set_gguf_parameters()
  1913. if (n_experts := self.hparams.get("num_experts")) is not None:
  1914. self.gguf_writer.add_expert_count(n_experts)
  1915. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1916. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1917. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1918. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1919. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1920. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1921. _experts: list[dict[str, Tensor]] | None = None
  1922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1923. # process the experts separately
  1924. if name.find("experts") != -1:
  1925. n_experts = self.hparams["num_experts"]
  1926. assert bid is not None
  1927. if self._experts is None:
  1928. self._experts = [{} for _ in range(self.block_count)]
  1929. self._experts[bid][name] = data_torch
  1930. if len(self._experts[bid]) >= n_experts * 3:
  1931. tensors: list[tuple[str, Tensor]] = []
  1932. # merge the experts into a single 3d tensor
  1933. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1934. datas: list[Tensor] = []
  1935. for xid in range(n_experts):
  1936. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1937. datas.append(self._experts[bid][ename])
  1938. del self._experts[bid][ename]
  1939. data_torch = torch.stack(datas, dim=0)
  1940. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1941. new_name = self.map_tensor_name(merged_name)
  1942. tensors.append((new_name, data_torch))
  1943. return tensors
  1944. else:
  1945. return []
  1946. return [(self.map_tensor_name(name), data_torch)]
  1947. def prepare_tensors(self):
  1948. super().prepare_tensors()
  1949. if self._experts is not None:
  1950. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1951. experts = [k for d in self._experts for k in d.keys()]
  1952. if len(experts) > 0:
  1953. raise ValueError(f"Unprocessed experts: {experts}")
  1954. @Model.register("GPT2LMHeadModel")
  1955. class GPT2Model(Model):
  1956. model_arch = gguf.MODEL_ARCH.GPT2
  1957. def set_gguf_parameters(self):
  1958. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1959. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1960. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1961. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1962. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1963. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1964. self.gguf_writer.add_file_type(self.ftype)
  1965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1966. del bid # unused
  1967. tensors: list[tuple[str, Tensor]] = []
  1968. # we don't need these
  1969. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1970. return tensors
  1971. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1972. data_torch = data_torch.transpose(1, 0)
  1973. new_name = self.map_tensor_name(name)
  1974. tensors.append((new_name, data_torch))
  1975. return tensors
  1976. @Model.register("PhiForCausalLM")
  1977. class Phi2Model(Model):
  1978. model_arch = gguf.MODEL_ARCH.PHI2
  1979. def set_gguf_parameters(self):
  1980. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1981. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1982. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1983. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1984. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1985. self.gguf_writer.add_embedding_length(n_embd)
  1986. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1987. self.gguf_writer.add_block_count(block_count)
  1988. self.gguf_writer.add_head_count(n_head)
  1989. self.gguf_writer.add_head_count_kv(n_head)
  1990. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1991. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1992. self.gguf_writer.add_file_type(self.ftype)
  1993. self.gguf_writer.add_add_bos_token(False)
  1994. @Model.register("Phi3ForCausalLM")
  1995. class Phi3MiniModel(Model):
  1996. model_arch = gguf.MODEL_ARCH.PHI3
  1997. def set_vocab(self):
  1998. # Phi-4 model uses GPT2Tokenizer
  1999. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2000. if tokenizer_config_file.is_file():
  2001. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2002. tokenizer_config_json = json.load(f)
  2003. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2004. if tokenizer_class == 'GPT2Tokenizer':
  2005. return self._set_vocab_gpt2()
  2006. from sentencepiece import SentencePieceProcessor
  2007. tokenizer_path = self.dir_model / 'tokenizer.model'
  2008. if not tokenizer_path.is_file():
  2009. raise ValueError(f'Error: Missing {tokenizer_path}')
  2010. tokenizer = SentencePieceProcessor()
  2011. tokenizer.LoadFromFile(str(tokenizer_path))
  2012. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2013. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2014. scores: list[float] = [-10000.0] * vocab_size
  2015. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2016. for token_id in range(tokenizer.vocab_size()):
  2017. piece = tokenizer.IdToPiece(token_id)
  2018. text = piece.encode("utf-8")
  2019. score = tokenizer.GetScore(token_id)
  2020. toktype = SentencePieceTokenTypes.NORMAL
  2021. if tokenizer.IsUnknown(token_id):
  2022. toktype = SentencePieceTokenTypes.UNKNOWN
  2023. elif tokenizer.IsControl(token_id):
  2024. toktype = SentencePieceTokenTypes.CONTROL
  2025. elif tokenizer.IsUnused(token_id):
  2026. toktype = SentencePieceTokenTypes.UNUSED
  2027. elif tokenizer.IsByte(token_id):
  2028. toktype = SentencePieceTokenTypes.BYTE
  2029. tokens[token_id] = text
  2030. scores[token_id] = score
  2031. toktypes[token_id] = toktype
  2032. added_tokens_file = self.dir_model / 'added_tokens.json'
  2033. if added_tokens_file.is_file():
  2034. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2035. added_tokens_json = json.load(f)
  2036. for key in added_tokens_json:
  2037. token_id = added_tokens_json[key]
  2038. if token_id >= vocab_size:
  2039. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2040. continue
  2041. tokens[token_id] = key.encode("utf-8")
  2042. scores[token_id] = -1000.0
  2043. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2044. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2045. if tokenizer_config_file.is_file():
  2046. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2047. tokenizer_config_json = json.load(f)
  2048. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2049. for token_id, foken_data in added_tokens_decoder.items():
  2050. token_id = int(token_id)
  2051. token = foken_data["content"].encode("utf-8")
  2052. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2053. if tokens[token_id] != token:
  2054. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2055. tokens[token_id] = token
  2056. scores[token_id] = -1000.0
  2057. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2058. if foken_data.get("special"):
  2059. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2060. tokenizer_file = self.dir_model / 'tokenizer.json'
  2061. if tokenizer_file.is_file():
  2062. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2063. tokenizer_json = json.load(f)
  2064. added_tokens = tokenizer_json.get("added_tokens", [])
  2065. for foken_data in added_tokens:
  2066. token_id = int(foken_data["id"])
  2067. token = foken_data["content"].encode("utf-8")
  2068. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2069. if tokens[token_id] != token:
  2070. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2071. tokens[token_id] = token
  2072. scores[token_id] = -1000.0
  2073. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2074. if foken_data.get("special"):
  2075. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2076. self.gguf_writer.add_tokenizer_model("llama")
  2077. self.gguf_writer.add_tokenizer_pre("default")
  2078. self.gguf_writer.add_token_list(tokens)
  2079. self.gguf_writer.add_token_scores(scores)
  2080. self.gguf_writer.add_token_types(toktypes)
  2081. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2082. special_vocab.add_to_gguf(self.gguf_writer)
  2083. def set_gguf_parameters(self):
  2084. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2085. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2086. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2087. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2088. rms_eps = self.find_hparam(["rms_norm_eps"])
  2089. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2090. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2091. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2092. rope_dims = int(rot_pct * n_embd) // n_head
  2093. self.gguf_writer.add_context_length(max_pos_embds)
  2094. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2095. self.gguf_writer.add_embedding_length(n_embd)
  2096. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2097. self.gguf_writer.add_block_count(block_count)
  2098. self.gguf_writer.add_head_count(n_head)
  2099. self.gguf_writer.add_head_count_kv(n_head_kv)
  2100. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2101. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2102. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2103. self.gguf_writer.add_file_type(self.ftype)
  2104. sliding_window = self.hparams.get("sliding_window")
  2105. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2106. if sliding_window is None:
  2107. sliding_window = 0
  2108. self.gguf_writer.add_sliding_window(sliding_window)
  2109. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2110. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2111. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2112. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2113. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2114. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2115. rope_dims = int(rot_pct * n_embd) // n_head
  2116. # write rope scaling for long context (128k) model
  2117. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2118. if rope_scaling is None:
  2119. return
  2120. scale = max_pos_embds / orig_max_pos_embds
  2121. rope_scaling_type = rope_scaling.get('type', '').lower()
  2122. if len(rope_scaling_type) == 0:
  2123. raise KeyError('Missing the required key rope_scaling.type')
  2124. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2125. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2126. elif rope_scaling_type == 'yarn':
  2127. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2128. else:
  2129. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2130. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2131. long_factors = rope_scaling.get('long_factor', None)
  2132. short_factors = rope_scaling.get('short_factor', None)
  2133. if long_factors is None or short_factors is None:
  2134. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2135. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2136. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2137. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2138. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2139. @Model.register("PhiMoEForCausalLM")
  2140. class PhiMoeModel(Phi3MiniModel):
  2141. model_arch = gguf.MODEL_ARCH.PHIMOE
  2142. _experts: list[dict[str, Tensor]] | None = None
  2143. def set_gguf_parameters(self):
  2144. super().set_gguf_parameters()
  2145. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2146. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2148. # process the experts separately
  2149. if name.find("block_sparse_moe.experts") != -1:
  2150. n_experts = self.hparams["num_local_experts"]
  2151. assert bid is not None
  2152. if self._experts is None:
  2153. self._experts = [{} for _ in range(self.block_count)]
  2154. self._experts[bid][name] = data_torch
  2155. if len(self._experts[bid]) >= n_experts * 3:
  2156. tensors: list[tuple[str, Tensor]] = []
  2157. # merge the experts into a single 3d tensor
  2158. for w_name in ["w1", "w2", "w3"]:
  2159. datas: list[Tensor] = []
  2160. for xid in range(n_experts):
  2161. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2162. datas.append(self._experts[bid][ename])
  2163. del self._experts[bid][ename]
  2164. data_torch = torch.stack(datas, dim=0)
  2165. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2166. new_name = self.map_tensor_name(merged_name)
  2167. tensors.append((new_name, data_torch))
  2168. return tensors
  2169. else:
  2170. return []
  2171. return [(self.map_tensor_name(name), data_torch)]
  2172. def prepare_tensors(self):
  2173. super().prepare_tensors()
  2174. if self._experts is not None:
  2175. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2176. experts = [k for d in self._experts for k in d.keys()]
  2177. if len(experts) > 0:
  2178. raise ValueError(f"Unprocessed experts: {experts}")
  2179. @Model.register("PlamoForCausalLM")
  2180. class PlamoModel(Model):
  2181. model_arch = gguf.MODEL_ARCH.PLAMO
  2182. def set_vocab(self):
  2183. self._set_vocab_sentencepiece()
  2184. def set_gguf_parameters(self):
  2185. hparams = self.hparams
  2186. block_count = hparams["num_hidden_layers"]
  2187. self.gguf_writer.add_context_length(4096) # not in config.json
  2188. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2189. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2190. self.gguf_writer.add_block_count(block_count)
  2191. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2192. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2193. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2194. self.gguf_writer.add_file_type(self.ftype)
  2195. def shuffle_attn_q_weight(self, data_torch):
  2196. assert data_torch.size() == (5120, 5120)
  2197. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2198. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2199. data_torch = torch.reshape(data_torch, (5120, 5120))
  2200. return data_torch
  2201. def shuffle_attn_output_weight(self, data_torch):
  2202. assert data_torch.size() == (5120, 5120)
  2203. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2204. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2205. data_torch = torch.reshape(data_torch, (5120, 5120))
  2206. return data_torch
  2207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2208. del bid # unused
  2209. new_name = self.map_tensor_name(name)
  2210. # shuffle for broadcasting of gqa in ggml_mul_mat
  2211. if new_name.endswith("attn_q.weight"):
  2212. data_torch = self.shuffle_attn_q_weight(data_torch)
  2213. elif new_name.endswith("attn_output.weight"):
  2214. data_torch = self.shuffle_attn_output_weight(data_torch)
  2215. return [(new_name, data_torch)]
  2216. @Model.register("CodeShellForCausalLM")
  2217. class CodeShellModel(Model):
  2218. model_arch = gguf.MODEL_ARCH.CODESHELL
  2219. def set_gguf_parameters(self):
  2220. block_count = self.hparams["n_layer"]
  2221. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2222. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2223. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2224. self.gguf_writer.add_block_count(block_count)
  2225. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2226. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2227. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2228. self.gguf_writer.add_file_type(self.ftype)
  2229. self.gguf_writer.add_rope_freq_base(10000.0)
  2230. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2231. self.gguf_writer.add_rope_scaling_factor(1.0)
  2232. _has_tok_embd = False
  2233. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2234. del bid # unused
  2235. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2236. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2237. new_name = self.map_tensor_name(name)
  2238. # assuming token_embd.weight is seen before output.weight
  2239. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2240. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2241. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2242. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2243. self.tensor_names.remove("transformer.wte.weight")
  2244. elif new_name == tok_embd_name:
  2245. self._has_tok_embd = True
  2246. return [(new_name, data_torch)]
  2247. @Model.register("InternLM2ForCausalLM")
  2248. class InternLM2Model(Model):
  2249. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2250. def set_vocab(self):
  2251. # (TODO): Is there a better way?
  2252. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2253. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2254. # recognized as an empty string in C++.
  2255. from sentencepiece import SentencePieceProcessor
  2256. from sentencepiece import sentencepiece_model_pb2 as model
  2257. tokenizer_path = self.dir_model / 'tokenizer.model'
  2258. tokens: list[bytes] = []
  2259. scores: list[float] = []
  2260. toktypes: list[int] = []
  2261. if not tokenizer_path.is_file():
  2262. logger.error(f'Error: Missing {tokenizer_path}')
  2263. sys.exit(1)
  2264. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2265. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2266. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2267. tokenizer = SentencePieceProcessor()
  2268. tokenizer.LoadFromFile(str(tokenizer_path))
  2269. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2270. for token_id in range(vocab_size):
  2271. piece = tokenizer.IdToPiece(token_id)
  2272. text = piece.encode("utf-8")
  2273. score = tokenizer.GetScore(token_id)
  2274. if text == b"\x00":
  2275. # (TODO): fixme
  2276. # Hack here and replace the \x00 characters.
  2277. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2278. text = "🐉".encode("utf-8")
  2279. toktype = SentencePieceTokenTypes.NORMAL
  2280. if tokenizer.IsUnknown(token_id):
  2281. toktype = SentencePieceTokenTypes.UNKNOWN
  2282. elif tokenizer.IsControl(token_id):
  2283. toktype = SentencePieceTokenTypes.CONTROL
  2284. elif tokenizer.IsUnused(token_id):
  2285. toktype = SentencePieceTokenTypes.UNUSED
  2286. elif tokenizer.IsByte(token_id):
  2287. toktype = SentencePieceTokenTypes.BYTE
  2288. # take care of ununsed raw token
  2289. if piece.startswith('[UNUSED'):
  2290. toktype = SentencePieceTokenTypes.UNUSED
  2291. tokens.append(text)
  2292. scores.append(score)
  2293. toktypes.append(toktype)
  2294. added_tokens_file = self.dir_model / 'added_tokens.json'
  2295. if added_tokens_file.is_file():
  2296. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2297. added_tokens_json = json.load(f)
  2298. for key in added_tokens_json:
  2299. tokens.append(key.encode("utf-8"))
  2300. scores.append(-1000.0)
  2301. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2302. chat_eos_token = '<|im_end|>'
  2303. chat_eos_token_id = None
  2304. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2305. if tokenizer_config_file.is_file():
  2306. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2307. tokenizer_config_json = json.load(f)
  2308. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2309. for token_id, foken_data in added_tokens_decoder.items():
  2310. token_id = int(token_id)
  2311. token = foken_data["content"]
  2312. if token == chat_eos_token:
  2313. chat_eos_token_id = token_id
  2314. token = token.encode("utf-8")
  2315. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2316. if tokens[token_id] != token:
  2317. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2318. tokens[token_id] = token
  2319. scores[token_id] = -1000.0
  2320. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2321. if foken_data.get("special"):
  2322. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2323. tokenizer_file = self.dir_model / 'tokenizer.json'
  2324. if tokenizer_file.is_file():
  2325. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2326. tokenizer_json = json.load(f)
  2327. added_tokens = tokenizer_json.get("added_tokens", [])
  2328. for foken_data in added_tokens:
  2329. token_id = int(foken_data["id"])
  2330. token = foken_data["content"]
  2331. if token == chat_eos_token:
  2332. chat_eos_token_id = token_id
  2333. token = token.encode("utf-8")
  2334. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2335. if tokens[token_id] != token:
  2336. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2337. tokens[token_id] = token
  2338. scores[token_id] = -1000.0
  2339. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2340. if foken_data.get("special"):
  2341. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2342. self.gguf_writer.add_tokenizer_model("llama")
  2343. self.gguf_writer.add_tokenizer_pre("default")
  2344. self.gguf_writer.add_token_list(tokens)
  2345. self.gguf_writer.add_token_scores(scores)
  2346. self.gguf_writer.add_token_types(toktypes)
  2347. self.gguf_writer.add_add_space_prefix(add_prefix)
  2348. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2349. old_eos = special_vocab.special_token_ids["eos"]
  2350. if chat_eos_token_id is not None:
  2351. # For the chat model, we replace the eos with '<|im_end|>'.
  2352. # TODO: this is a hack, should be fixed
  2353. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2354. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2355. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2356. " in chat mode so that the conversation can end normally.")
  2357. special_vocab.add_to_gguf(self.gguf_writer)
  2358. def set_gguf_parameters(self):
  2359. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2360. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2361. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2362. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2363. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2364. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2365. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2366. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2367. self.gguf_writer.add_file_type(self.ftype)
  2368. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2369. if self.hparams["rope_scaling"].get("type") == "linear":
  2370. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2371. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2372. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2373. num_heads = self.hparams["num_attention_heads"]
  2374. num_kv_heads = self.hparams["num_key_value_heads"]
  2375. n_embd = self.hparams["hidden_size"]
  2376. q_per_kv = num_heads // num_kv_heads
  2377. head_dim = n_embd // num_heads
  2378. num_groups = num_heads // q_per_kv
  2379. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2380. qkv = data_torch
  2381. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2382. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2383. # The model weights of q and k equire additional reshape.
  2384. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2385. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2386. v = v.reshape((-1, v.shape[-1]))
  2387. return [
  2388. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2389. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2390. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2391. ]
  2392. else:
  2393. return [(self.map_tensor_name(name), data_torch)]
  2394. @Model.register("InternLM3ForCausalLM")
  2395. class InternLM3Model(Model):
  2396. model_arch = gguf.MODEL_ARCH.LLAMA
  2397. def set_vocab(self):
  2398. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2399. self.gguf_writer.add_tokenizer_model("llama")
  2400. self.gguf_writer.add_tokenizer_pre("default")
  2401. self.gguf_writer.add_token_list(tokens)
  2402. self.gguf_writer.add_token_scores(scores)
  2403. self.gguf_writer.add_token_types(toktypes)
  2404. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2405. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2406. if tokenizer_config_file.is_file():
  2407. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2408. tokenizer_config_json = json.load(f)
  2409. if "add_prefix_space" in tokenizer_config_json:
  2410. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2411. if "added_tokens_decoder" in tokenizer_config_json:
  2412. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2413. if token_data.get("special"):
  2414. token_id = int(token_id)
  2415. token = token_data["content"]
  2416. special_vocab._set_special_token(token, token_id)
  2417. # update eos token
  2418. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2419. special_vocab.special_token_ids["eos"] = token_id
  2420. special_vocab.add_to_gguf(self.gguf_writer)
  2421. def set_gguf_parameters(self):
  2422. super().set_gguf_parameters()
  2423. hparams = self.hparams
  2424. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2425. if "head_dim" in hparams:
  2426. rope_dim = hparams["head_dim"]
  2427. else:
  2428. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2429. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2430. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2431. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2432. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2433. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2435. n_head = self.hparams["num_attention_heads"]
  2436. n_kv_head = self.hparams.get("num_key_value_heads")
  2437. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2438. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2439. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2440. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2441. return [(self.map_tensor_name(name), data_torch)]
  2442. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2443. class BertModel(Model):
  2444. model_arch = gguf.MODEL_ARCH.BERT
  2445. def __init__(self, *args, **kwargs):
  2446. super().__init__(*args, **kwargs)
  2447. self.vocab_size = None
  2448. def set_gguf_parameters(self):
  2449. super().set_gguf_parameters()
  2450. self.gguf_writer.add_causal_attention(False)
  2451. # get pooling path
  2452. pooling_path = None
  2453. module_path = self.dir_model / "modules.json"
  2454. if module_path.is_file():
  2455. with open(module_path, encoding="utf-8") as f:
  2456. modules = json.load(f)
  2457. for mod in modules:
  2458. if mod["type"] == "sentence_transformers.models.Pooling":
  2459. pooling_path = mod["path"]
  2460. break
  2461. # get pooling type
  2462. if pooling_path is not None:
  2463. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2464. pooling = json.load(f)
  2465. if pooling["pooling_mode_mean_tokens"]:
  2466. pooling_type = gguf.PoolingType.MEAN
  2467. elif pooling["pooling_mode_cls_token"]:
  2468. pooling_type = gguf.PoolingType.CLS
  2469. else:
  2470. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2471. self.gguf_writer.add_pooling_type(pooling_type)
  2472. def set_vocab(self):
  2473. tokens, toktypes, tokpre = self.get_vocab_base()
  2474. self.vocab_size = len(tokens)
  2475. # we need this to validate the size of the token_type embeddings
  2476. # though currently we are passing all zeros to the token_type embeddings
  2477. # "Sequence A" or "Sequence B"
  2478. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2479. # convert to phantom space vocab
  2480. def phantom(tok):
  2481. if tok.startswith("[") and tok.endswith("]"):
  2482. return tok
  2483. if tok.startswith("##"):
  2484. return tok[2:]
  2485. return "\u2581" + tok
  2486. tokens = list(map(phantom, tokens))
  2487. # add vocab to gguf
  2488. self.gguf_writer.add_tokenizer_model("bert")
  2489. self.gguf_writer.add_tokenizer_pre(tokpre)
  2490. self.gguf_writer.add_token_list(tokens)
  2491. self.gguf_writer.add_token_types(toktypes)
  2492. # handle special tokens
  2493. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2494. special_vocab.add_to_gguf(self.gguf_writer)
  2495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2496. del bid # unused
  2497. if name.startswith("bert."):
  2498. name = name[5:]
  2499. if name.endswith(".gamma"):
  2500. name = name[:-6] + ".weight"
  2501. if name.endswith(".beta"):
  2502. name = name[:-5] + ".bias"
  2503. # we are only using BERT for embeddings so we don't need the pooling layer
  2504. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2505. return [] # we don't need these
  2506. if name.startswith("cls.predictions"):
  2507. return []
  2508. if name.startswith("cls.seq_relationship"):
  2509. return []
  2510. return [(self.map_tensor_name(name), data_torch)]
  2511. @Model.register("RobertaModel")
  2512. class RobertaModel(BertModel):
  2513. model_arch = gguf.MODEL_ARCH.BERT
  2514. def __init__(self, *args, **kwargs):
  2515. super().__init__(*args, **kwargs)
  2516. # we need the pad_token_id to know how to chop down position_embd matrix
  2517. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2518. self._position_offset = 1 + pad_token_id
  2519. if "max_position_embeddings" in self.hparams:
  2520. self.hparams["max_position_embeddings"] -= self._position_offset
  2521. else:
  2522. self._position_offset = None
  2523. def set_vocab(self):
  2524. """Support BPE tokenizers for roberta models"""
  2525. bpe_tok_path = self.dir_model / "tokenizer.json"
  2526. if bpe_tok_path.exists():
  2527. self._set_vocab_gpt2()
  2528. self.gguf_writer.add_add_bos_token(True)
  2529. self.gguf_writer.add_add_eos_token(True)
  2530. # we need this to validate the size of the token_type embeddings
  2531. # though currently we are passing all zeros to the token_type embeddings
  2532. # "Sequence A" or "Sequence B"
  2533. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2534. else:
  2535. return super().set_vocab()
  2536. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2537. # if name starts with "roberta.", remove the prefix
  2538. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2539. if name.startswith("roberta."):
  2540. name = name[8:]
  2541. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2542. if name == "embeddings.position_embeddings.weight":
  2543. if self._position_offset is not None:
  2544. data_torch = data_torch[self._position_offset:,:]
  2545. return super().modify_tensors(data_torch, name, bid)
  2546. @Model.register("NomicBertModel")
  2547. class NomicBertModel(BertModel):
  2548. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2549. def __init__(self, *args, **kwargs):
  2550. super().__init__(*args, **kwargs)
  2551. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2552. self.hparams["n_ctx"] = 2048
  2553. # SwigLU activation
  2554. assert self.hparams["activation_function"] == "swiglu"
  2555. # this doesn't do anything in the HF version
  2556. assert self.hparams["causal"] is False
  2557. # no bias tensors
  2558. assert self.hparams["qkv_proj_bias"] is False
  2559. assert self.hparams["mlp_fc1_bias"] is False
  2560. assert self.hparams["mlp_fc2_bias"] is False
  2561. # norm at end of layer
  2562. assert self.hparams["prenorm"] is False
  2563. # standard RoPE
  2564. assert self.hparams["rotary_emb_fraction"] == 1.0
  2565. assert self.hparams["rotary_emb_interleaved"] is False
  2566. assert self.hparams["rotary_emb_scale_base"] is None
  2567. def set_gguf_parameters(self):
  2568. super().set_gguf_parameters()
  2569. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2570. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2571. class XLMRobertaModel(BertModel):
  2572. model_arch = gguf.MODEL_ARCH.BERT
  2573. def __init__(self, *args, **kwargs):
  2574. super().__init__(*args, **kwargs)
  2575. # we need the pad_token_id to know how to chop down position_embd matrix
  2576. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2577. self._position_offset = 1 + pad_token_id
  2578. if "max_position_embeddings" in self.hparams:
  2579. self.hparams["max_position_embeddings"] -= self._position_offset
  2580. else:
  2581. self._position_offset = None
  2582. def set_vocab(self):
  2583. # to avoid TypeError: Descriptors cannot be created directly
  2584. # exception when importing sentencepiece_model_pb2
  2585. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2586. from sentencepiece import SentencePieceProcessor
  2587. from sentencepiece import sentencepiece_model_pb2 as model
  2588. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2589. if not tokenizer_path.is_file():
  2590. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2591. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2592. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2593. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2594. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2595. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2596. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2597. tokenizer = SentencePieceProcessor()
  2598. tokenizer.LoadFromFile(str(tokenizer_path))
  2599. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2600. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2601. scores: list[float] = [-10000.0] * vocab_size
  2602. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2603. for token_id in range(tokenizer.vocab_size()):
  2604. piece = tokenizer.IdToPiece(token_id)
  2605. text = piece.encode("utf-8")
  2606. score = tokenizer.GetScore(token_id)
  2607. toktype = SentencePieceTokenTypes.NORMAL
  2608. if tokenizer.IsUnknown(token_id):
  2609. toktype = SentencePieceTokenTypes.UNKNOWN
  2610. elif tokenizer.IsControl(token_id):
  2611. toktype = SentencePieceTokenTypes.CONTROL
  2612. elif tokenizer.IsUnused(token_id):
  2613. toktype = SentencePieceTokenTypes.UNUSED
  2614. elif tokenizer.IsByte(token_id):
  2615. toktype = SentencePieceTokenTypes.BYTE
  2616. tokens[token_id] = text
  2617. scores[token_id] = score
  2618. toktypes[token_id] = toktype
  2619. if vocab_size > len(tokens):
  2620. pad_count = vocab_size - len(tokens)
  2621. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2622. for i in range(1, pad_count + 1):
  2623. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2624. scores.append(-1000.0)
  2625. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2626. # realign tokens (see HF tokenizer code)
  2627. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2628. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2629. toktypes = [
  2630. SentencePieceTokenTypes.CONTROL,
  2631. SentencePieceTokenTypes.CONTROL,
  2632. SentencePieceTokenTypes.CONTROL,
  2633. SentencePieceTokenTypes.UNKNOWN,
  2634. ] + toktypes[3:-1]
  2635. self.gguf_writer.add_tokenizer_model("t5")
  2636. self.gguf_writer.add_tokenizer_pre("default")
  2637. self.gguf_writer.add_token_list(tokens)
  2638. self.gguf_writer.add_token_scores(scores)
  2639. self.gguf_writer.add_token_types(toktypes)
  2640. self.gguf_writer.add_add_space_prefix(add_prefix)
  2641. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2642. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2643. if precompiled_charsmap:
  2644. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2645. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2646. special_vocab.add_to_gguf(self.gguf_writer)
  2647. self.gguf_writer.add_add_bos_token(True)
  2648. self.gguf_writer.add_add_eos_token(True)
  2649. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2650. # if name starts with "roberta.", remove the prefix
  2651. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2652. if name.startswith("roberta."):
  2653. name = name[8:]
  2654. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2655. if name == "embeddings.position_embeddings.weight":
  2656. if self._position_offset is not None:
  2657. data_torch = data_torch[self._position_offset:,:]
  2658. return super().modify_tensors(data_torch, name, bid)
  2659. @Model.register("GemmaForCausalLM")
  2660. class GemmaModel(Model):
  2661. model_arch = gguf.MODEL_ARCH.GEMMA
  2662. def set_vocab(self):
  2663. self._set_vocab_sentencepiece()
  2664. # TODO: these special tokens should be exported only for the CodeGemma family
  2665. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2666. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2667. special_vocab._set_special_token("prefix", 67)
  2668. special_vocab._set_special_token("suffix", 69)
  2669. special_vocab._set_special_token("middle", 68)
  2670. special_vocab._set_special_token("fsep", 70)
  2671. special_vocab._set_special_token("eot", 107)
  2672. special_vocab.chat_template = None # do not add it twice
  2673. special_vocab.add_to_gguf(self.gguf_writer)
  2674. self.gguf_writer.add_add_space_prefix(False)
  2675. def set_gguf_parameters(self):
  2676. hparams = self.hparams
  2677. block_count = hparams["num_hidden_layers"]
  2678. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2679. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2680. self.gguf_writer.add_block_count(block_count)
  2681. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2682. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2683. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2684. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2685. self.gguf_writer.add_key_length(hparams["head_dim"])
  2686. self.gguf_writer.add_value_length(hparams["head_dim"])
  2687. self.gguf_writer.add_file_type(self.ftype)
  2688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2689. del bid # unused
  2690. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2691. # To prevent errors, skip loading lm_head.weight.
  2692. if name == "lm_head.weight":
  2693. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2694. return []
  2695. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2696. if name.endswith("norm.weight"):
  2697. data_torch = data_torch + 1
  2698. return [(self.map_tensor_name(name), data_torch)]
  2699. @Model.register("Gemma2ForCausalLM")
  2700. class Gemma2Model(Model):
  2701. model_arch = gguf.MODEL_ARCH.GEMMA2
  2702. def set_vocab(self):
  2703. self._set_vocab_sentencepiece()
  2704. self.gguf_writer.add_add_space_prefix(False)
  2705. def set_gguf_parameters(self):
  2706. hparams = self.hparams
  2707. block_count = hparams["num_hidden_layers"]
  2708. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2709. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2710. self.gguf_writer.add_block_count(block_count)
  2711. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2712. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2713. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2714. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2715. self.gguf_writer.add_key_length(hparams["head_dim"])
  2716. self.gguf_writer.add_value_length(hparams["head_dim"])
  2717. self.gguf_writer.add_file_type(self.ftype)
  2718. self.gguf_writer.add_attn_logit_softcapping(
  2719. self.hparams["attn_logit_softcapping"]
  2720. )
  2721. self.gguf_writer.add_final_logit_softcapping(
  2722. self.hparams["final_logit_softcapping"]
  2723. )
  2724. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2726. del bid # unused
  2727. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2728. # To prevent errors, skip loading lm_head.weight.
  2729. if name == "lm_head.weight":
  2730. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2731. return []
  2732. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2733. if name.endswith("norm.weight"):
  2734. data_torch = data_torch + 1
  2735. return [(self.map_tensor_name(name), data_torch)]
  2736. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2737. class Gemma3Model(Model):
  2738. model_arch = gguf.MODEL_ARCH.GEMMA3
  2739. has_vision: bool = False
  2740. # we need to merge the text_config into the root level of hparams
  2741. def __init__(self, *args, **kwargs):
  2742. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  2743. if "text_config" in hparams:
  2744. hparams = {**hparams, **hparams["text_config"]}
  2745. kwargs["hparams"] = hparams
  2746. super().__init__(*args, **kwargs)
  2747. if "vision_config" in hparams:
  2748. logger.info("Has vision encoder, but it will be ignored")
  2749. self.has_vision = True
  2750. def write(self):
  2751. super().write()
  2752. if self.has_vision:
  2753. logger.info("NOTE: this script only convert the language model to GGUF")
  2754. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2755. def set_vocab(self):
  2756. self._set_vocab_sentencepiece()
  2757. self.gguf_writer.add_add_space_prefix(False)
  2758. def set_gguf_parameters(self):
  2759. hparams = self.hparams
  2760. block_count = hparams["num_hidden_layers"]
  2761. # some default values are not specified in the hparams
  2762. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2763. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2764. self.gguf_writer.add_block_count(block_count)
  2765. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2766. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2767. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2768. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2769. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2770. self.gguf_writer.add_file_type(self.ftype)
  2771. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2772. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2773. assert hparams.get("attn_logit_softcapping") is None
  2774. assert hparams.get("final_logit_softcapping") is None
  2775. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2776. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2777. if hparams.get("rope_scaling") is not None:
  2778. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2779. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2780. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2781. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2783. del bid # unused
  2784. if name.startswith("language_model."):
  2785. name = name.replace("language_model.", "")
  2786. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2787. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2788. # ignore vision tensors
  2789. return []
  2790. # remove OOV (out-of-vocabulary) rows in token_embd
  2791. if "embed_tokens.weight" in name:
  2792. vocab = self._create_vocab_sentencepiece()
  2793. tokens = vocab[0]
  2794. data_torch = data_torch[:len(tokens)]
  2795. # ref code in Gemma3RMSNorm
  2796. # output = output * (1.0 + self.weight.float())
  2797. if name.endswith("norm.weight"):
  2798. data_torch = data_torch + 1
  2799. return [(self.map_tensor_name(name), data_torch)]
  2800. @Model.register("Starcoder2ForCausalLM")
  2801. class StarCoder2Model(Model):
  2802. model_arch = gguf.MODEL_ARCH.STARCODER2
  2803. @Model.register("Rwkv6ForCausalLM")
  2804. class Rwkv6Model(Model):
  2805. model_arch = gguf.MODEL_ARCH.RWKV6
  2806. def set_vocab(self):
  2807. self._set_vocab_rwkv_world()
  2808. def set_gguf_parameters(self):
  2809. block_count = self.hparams["num_hidden_layers"]
  2810. head_size = self.hparams["head_size"]
  2811. hidden_size = self.hparams["hidden_size"]
  2812. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2813. rescale_every_n_layers = self.hparams["rescale_every"]
  2814. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2815. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2816. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2817. # RWKV isn't context limited
  2818. self.gguf_writer.add_context_length(1048576)
  2819. self.gguf_writer.add_embedding_length(hidden_size)
  2820. self.gguf_writer.add_block_count(block_count)
  2821. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2822. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2823. self.gguf_writer.add_wkv_head_size(head_size)
  2824. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2825. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2826. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2827. self.gguf_writer.add_file_type(self.ftype)
  2828. # required by llama.cpp, unused
  2829. self.gguf_writer.add_head_count(0)
  2830. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2832. new_name = self.map_tensor_name(name)
  2833. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2834. new_name += ".weight"
  2835. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2836. data_torch = data_torch.transpose(0, 1)
  2837. if new_name.endswith("time_mix_w2.weight"):
  2838. data_torch = data_torch.permute(0, 2, 1)
  2839. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2840. data_torch = data_torch.squeeze()
  2841. try:
  2842. rescale_every_n_layers = self.hparams["rescale_every"]
  2843. if rescale_every_n_layers > 0:
  2844. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2845. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2846. except KeyError:
  2847. pass
  2848. # concat time_mix_lerp weights to reduce some cpu overhead
  2849. # also reduces the number of tensors in the model
  2850. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2851. try:
  2852. self.lerp_weights[bid][new_name] = data_torch
  2853. except KeyError:
  2854. self.lerp_weights[bid] = {new_name: data_torch}
  2855. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2856. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2857. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2858. yield (new_name, data)
  2859. return
  2860. yield (new_name, data_torch)
  2861. @Model.register("RWKV6Qwen2ForCausalLM")
  2862. class RWKV6Qwen2Model(Rwkv6Model):
  2863. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2864. def set_vocab(self):
  2865. try:
  2866. self._set_vocab_sentencepiece()
  2867. except FileNotFoundError:
  2868. self._set_vocab_gpt2()
  2869. def set_gguf_parameters(self):
  2870. block_count = self.hparams["num_hidden_layers"]
  2871. num_attention_heads = self.hparams["num_attention_heads"]
  2872. num_key_value_heads = self.hparams["num_key_value_heads"]
  2873. hidden_size = self.hparams["hidden_size"]
  2874. head_size = hidden_size // num_attention_heads
  2875. rms_norm_eps = self.hparams["rms_norm_eps"]
  2876. intermediate_size = self.hparams["intermediate_size"]
  2877. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2878. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2879. # RWKV isn't context limited
  2880. self.gguf_writer.add_context_length(1048576)
  2881. self.gguf_writer.add_embedding_length(hidden_size)
  2882. self.gguf_writer.add_block_count(block_count)
  2883. self.gguf_writer.add_wkv_head_size(head_size)
  2884. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2885. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2886. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2887. self.gguf_writer.add_file_type(self.ftype)
  2888. # special parameters for time_mixing in RWKV6QWEN2
  2889. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2890. self.gguf_writer.add_token_shift_count(1)
  2891. # RWKV6QWEN2 use grouped key/value like GQA
  2892. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2893. # required by llama.cpp, unused
  2894. self.gguf_writer.add_head_count(0)
  2895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2896. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2897. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2898. data = data.view(5, -1, data.shape[-1])
  2899. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2900. # permute them here to avoid code changes
  2901. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2902. if "w2" in new_name:
  2903. data = data.view(5, -1, data.shape[-1])
  2904. yield (new_name, data)
  2905. continue
  2906. yield (new_name, data)
  2907. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2908. class Rwkv7Model(Model):
  2909. model_arch = gguf.MODEL_ARCH.RWKV7
  2910. def set_vocab(self):
  2911. self._set_vocab_rwkv_world()
  2912. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2913. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2914. def set_gguf_parameters(self):
  2915. block_count = self.hparams["num_hidden_layers"]
  2916. try:
  2917. head_size = self.hparams["head_size"]
  2918. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2919. except KeyError:
  2920. head_size = self.hparams["head_dim"]
  2921. layer_norm_eps = self.hparams["norm_eps"]
  2922. hidden_size = self.hparams["hidden_size"]
  2923. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2924. # ICLR: In-Context-Learning-Rate
  2925. try:
  2926. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2927. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2928. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2929. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2930. except KeyError:
  2931. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2932. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2933. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2934. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2935. # RWKV isn't context limited
  2936. self.gguf_writer.add_context_length(1048576)
  2937. self.gguf_writer.add_embedding_length(hidden_size)
  2938. self.gguf_writer.add_block_count(block_count)
  2939. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2940. self.gguf_writer.add_wkv_head_size(head_size)
  2941. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  2942. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  2943. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  2944. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  2945. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2946. self.gguf_writer.add_file_type(self.ftype)
  2947. # required by llama.cpp, unused
  2948. self.gguf_writer.add_head_count(0)
  2949. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2950. lora_needs_transpose: bool = True
  2951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2952. # unify tensor names here to make life easier
  2953. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  2954. name = name.replace("self_attn", "attention").replace("attn", "attention")
  2955. name = name.replace("time_mixer.", "")
  2956. # lora layer names in fla-hub's impl
  2957. if "_lora.lora" in name:
  2958. self.lora_needs_transpose = False
  2959. name = name.replace("_lora.lora.0.weight", "1.weight")
  2960. name = name.replace("_lora.lora.2.weight", "2.weight")
  2961. name = name.replace("_lora.lora.2.bias", "0.weight")
  2962. name = name.replace("feed_forward_norm", "ln2")
  2963. name = name.replace("g_norm", "ln_x")
  2964. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  2965. # some models have dummy v0/v1/v2 on first layer while others don't
  2966. # ignore them all since they are not used
  2967. return
  2968. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  2969. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  2970. if bid is not None and "attention.x_" in name:
  2971. if "attention.x_x" in name:
  2972. # already concatenated
  2973. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2974. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  2975. yield (new_name, data)
  2976. else:
  2977. try:
  2978. self.lerp_weights[bid][name] = data_torch
  2979. except KeyError:
  2980. self.lerp_weights[bid] = {name: data_torch}
  2981. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  2982. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2983. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  2984. yield (new_name, data)
  2985. return
  2986. else:
  2987. data_torch = data_torch.squeeze()
  2988. new_name = self.map_tensor_name(name)
  2989. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2990. new_name += ".weight"
  2991. if self.lora_needs_transpose and any(
  2992. new_name.endswith(t) for t in [
  2993. "time_mix_w1.weight", "time_mix_w2.weight",
  2994. "time_mix_a1.weight", "time_mix_a2.weight",
  2995. "time_mix_v1.weight", "time_mix_v2.weight",
  2996. "time_mix_g1.weight", "time_mix_g2.weight",
  2997. ]
  2998. ):
  2999. data_torch = data_torch.transpose(0, 1)
  3000. if 'r_k' in new_name:
  3001. data_torch = data_torch.flatten()
  3002. if bid == 0 and "time_mix_a" in new_name:
  3003. # dummy v0/v1/v2 on first layer
  3004. # easist way to make llama happy
  3005. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3006. yield (new_name, data_torch)
  3007. @Model.register("RwkvHybridForCausalLM")
  3008. class ARwkv7Model(Rwkv7Model):
  3009. model_arch = gguf.MODEL_ARCH.ARWKV7
  3010. def set_vocab(self):
  3011. try:
  3012. self._set_vocab_sentencepiece()
  3013. except FileNotFoundError:
  3014. self._set_vocab_gpt2()
  3015. def set_gguf_parameters(self):
  3016. block_count = self.hparams["num_hidden_layers"]
  3017. hidden_size = self.hparams["hidden_size"]
  3018. head_size = self.hparams["head_size"]
  3019. rms_norm_eps = self.hparams["rms_norm_eps"]
  3020. intermediate_size = self.hparams["intermediate_size"]
  3021. wkv_has_gate = self.hparams["wkv_has_gate"]
  3022. assert self.hparams["wkv_version"] == 7
  3023. # ICLR: In-Context-Learning-Rate
  3024. lora_rank_decay = 64
  3025. lora_rank_iclr = 64
  3026. lora_rank_value_residual_mix = 32
  3027. lora_rank_gate = 128 if wkv_has_gate else 0
  3028. # RWKV isn't context limited
  3029. self.gguf_writer.add_context_length(1048576)
  3030. self.gguf_writer.add_embedding_length(hidden_size)
  3031. self.gguf_writer.add_block_count(block_count)
  3032. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3033. self.gguf_writer.add_wkv_head_size(head_size)
  3034. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3035. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3036. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3037. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3038. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3039. self.gguf_writer.add_file_type(self.ftype)
  3040. self.gguf_writer.add_token_shift_count(1)
  3041. # required by llama.cpp, unused
  3042. self.gguf_writer.add_head_count(0)
  3043. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3044. class MambaModel(Model):
  3045. model_arch = gguf.MODEL_ARCH.MAMBA
  3046. def set_vocab(self):
  3047. vocab_size = self.hparams["vocab_size"]
  3048. # Round vocab size to next multiple of 8
  3049. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3050. # pad using ceiling division
  3051. # ref: https://stackoverflow.com/a/17511341/22827863
  3052. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3053. self.hparams["vocab_size"] = vocab_size
  3054. if (self.dir_model / "tokenizer.json").is_file():
  3055. self._set_vocab_gpt2()
  3056. elif (self.dir_model / "tokenizer.model").is_file():
  3057. self._set_vocab_sentencepiece()
  3058. else:
  3059. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3060. self._set_vocab_builtin("gpt-neox", vocab_size)
  3061. def set_gguf_parameters(self):
  3062. d_model = self.find_hparam(["hidden_size", "d_model"])
  3063. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3064. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3065. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3066. # ceiling division
  3067. # ref: https://stackoverflow.com/a/17511341/22827863
  3068. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3069. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3070. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3071. use_dt_b_c_norm = False
  3072. # For falconmamba we do apply RMS norm on B / DT and C layers
  3073. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3074. use_dt_b_c_norm = True
  3075. # Fail early for models which don't have a block expansion factor of 2
  3076. assert d_inner == 2 * d_model
  3077. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3078. self.gguf_writer.add_embedding_length(d_model)
  3079. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3080. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3081. self.gguf_writer.add_block_count(self.block_count)
  3082. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3083. self.gguf_writer.add_ssm_inner_size(d_inner)
  3084. self.gguf_writer.add_ssm_state_size(d_state)
  3085. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3086. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3087. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3088. self.gguf_writer.add_file_type(self.ftype)
  3089. _tok_embd = None
  3090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3091. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3092. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3093. new_name = self.map_tensor_name(name)
  3094. if name.endswith(".A_log"):
  3095. logger.debug("A_log --> A ==> " + new_name)
  3096. data_torch = -torch.exp(data_torch)
  3097. # [4 1 8192 1] -> [4 8192 1 1]
  3098. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3099. data_torch = data_torch.squeeze()
  3100. # assuming token_embd.weight is seen before output.weight
  3101. if self._tok_embd is not None and new_name == output_name:
  3102. if torch.equal(self._tok_embd, data_torch):
  3103. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3104. return []
  3105. elif new_name == tok_embd_name:
  3106. self._tok_embd = data_torch
  3107. return [(new_name, data_torch)]
  3108. @Model.register("CohereForCausalLM")
  3109. class CommandR2Model(Model):
  3110. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3111. def __init__(self, *args, **kwargs):
  3112. super().__init__(*args, **kwargs)
  3113. # max_position_embeddings = 8192 in config.json but model was actually
  3114. # trained on 128k context length
  3115. # aya-23 models don't have model_max_length specified
  3116. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3117. def set_gguf_parameters(self):
  3118. super().set_gguf_parameters()
  3119. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3120. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3121. @Model.register("Cohere2ForCausalLM")
  3122. class Cohere2Model(Model):
  3123. model_arch = gguf.MODEL_ARCH.COHERE2
  3124. def set_gguf_parameters(self):
  3125. super().set_gguf_parameters()
  3126. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3127. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3128. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3129. rotary_pct = self.hparams["rotary_pct"]
  3130. hidden_size = self.hparams["hidden_size"]
  3131. num_attention_heads = self.hparams["num_attention_heads"]
  3132. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3133. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3134. @Model.register("OlmoForCausalLM")
  3135. @Model.register("OLMoForCausalLM")
  3136. class OlmoModel(Model):
  3137. model_arch = gguf.MODEL_ARCH.OLMO
  3138. def set_gguf_parameters(self):
  3139. super().set_gguf_parameters()
  3140. self.gguf_writer.add_layer_norm_eps(1e-5)
  3141. clip_qkv = self.hparams.get("clip_qkv")
  3142. if clip_qkv is not None:
  3143. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3144. # Same as super class, but permuting q_proj, k_proj
  3145. # Copied from: LlamaModel
  3146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3147. del bid # unused
  3148. n_head = self.hparams["num_attention_heads"]
  3149. n_kv_head = self.hparams.get("num_key_value_heads")
  3150. if name.endswith("q_proj.weight"):
  3151. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3152. if name.endswith("k_proj.weight"):
  3153. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3154. return [(self.map_tensor_name(name), data_torch)]
  3155. @Model.register("Olmo2ForCausalLM")
  3156. class Olmo2Model(Model):
  3157. model_arch = gguf.MODEL_ARCH.OLMO2
  3158. @Model.register("OlmoeForCausalLM")
  3159. class OlmoeModel(Model):
  3160. model_arch = gguf.MODEL_ARCH.OLMOE
  3161. def set_gguf_parameters(self):
  3162. super().set_gguf_parameters()
  3163. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3164. if (n_experts := self.hparams.get("num_experts")) is not None:
  3165. self.gguf_writer.add_expert_count(n_experts)
  3166. _experts: list[dict[str, Tensor]] | None = None
  3167. # Copied from: Qwen2MoeModel
  3168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3169. # process the experts separately
  3170. if name.find("experts") != -1:
  3171. n_experts = self.hparams["num_experts"]
  3172. assert bid is not None
  3173. if self._experts is None:
  3174. self._experts = [{} for _ in range(self.block_count)]
  3175. self._experts[bid][name] = data_torch
  3176. if len(self._experts[bid]) >= n_experts * 3:
  3177. tensors: list[tuple[str, Tensor]] = []
  3178. # merge the experts into a single 3d tensor
  3179. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3180. datas: list[Tensor] = []
  3181. for xid in range(n_experts):
  3182. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3183. datas.append(self._experts[bid][ename])
  3184. del self._experts[bid][ename]
  3185. data_torch = torch.stack(datas, dim=0)
  3186. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3187. new_name = self.map_tensor_name(merged_name)
  3188. tensors.append((new_name, data_torch))
  3189. return tensors
  3190. else:
  3191. return []
  3192. return [(self.map_tensor_name(name), data_torch)]
  3193. # Copied from: Qwen2MoeModel
  3194. def prepare_tensors(self):
  3195. super().prepare_tensors()
  3196. if self._experts is not None:
  3197. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3198. experts = [k for d in self._experts for k in d.keys()]
  3199. if len(experts) > 0:
  3200. raise ValueError(f"Unprocessed experts: {experts}")
  3201. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3202. class JinaBertV2Model(BertModel):
  3203. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3204. def __init__(self, *args, **kwargs):
  3205. super().__init__(*args, **kwargs)
  3206. self.intermediate_size = self.hparams["intermediate_size"]
  3207. def get_tensors(self):
  3208. for name, data in super().get_tensors():
  3209. if 'gated_layer' in name:
  3210. d1 = data[:self.intermediate_size, :]
  3211. name1 = name.replace('gated_layers', 'gated_layers_w')
  3212. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3213. d2 = data[self.intermediate_size:, :]
  3214. name2 = name.replace('gated_layers', 'gated_layers_v')
  3215. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3216. yield name1, d1
  3217. yield name2, d2
  3218. continue
  3219. yield name, data
  3220. def set_vocab(self):
  3221. tokenizer_class = 'BertTokenizer'
  3222. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3223. tokenizer_class = json.load(f)['tokenizer_class']
  3224. if tokenizer_class == 'BertTokenizer':
  3225. super().set_vocab()
  3226. elif tokenizer_class == 'RobertaTokenizer':
  3227. self._set_vocab_gpt2()
  3228. self.gguf_writer.add_token_type_count(2)
  3229. else:
  3230. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3231. self.gguf_writer.add_add_bos_token(True)
  3232. self.gguf_writer.add_add_eos_token(True)
  3233. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3234. # if name starts with "bert.", remove the prefix
  3235. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3236. if name.startswith("bert."):
  3237. name = name[5:]
  3238. return super().modify_tensors(data_torch, name, bid)
  3239. @Model.register("OpenELMForCausalLM")
  3240. class OpenELMModel(Model):
  3241. model_arch = gguf.MODEL_ARCH.OPENELM
  3242. @staticmethod
  3243. def _make_divisible(v: float | int, divisor: int) -> int:
  3244. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3245. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3246. # Make sure that round down does not go down by more than 10%.
  3247. if new_v < 0.9 * v:
  3248. new_v += divisor
  3249. return new_v
  3250. def __init__(self, *args, **kwargs):
  3251. super().__init__(*args, **kwargs)
  3252. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3253. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3254. self._n_embd: int = self.hparams["model_dim"]
  3255. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3256. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3257. self._ffn_dims: list[int] = [
  3258. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3259. for multiplier in ffn_multipliers
  3260. ]
  3261. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3262. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3263. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3264. def set_vocab(self):
  3265. try:
  3266. self._set_vocab_sentencepiece()
  3267. except FileNotFoundError:
  3268. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3269. def set_gguf_parameters(self):
  3270. n_embd = self._n_embd
  3271. head_dim = self.hparams["head_dim"]
  3272. rot_pct = 1.0
  3273. assert self.block_count == len(self._num_kv_heads)
  3274. assert self.block_count == len(self._num_query_heads)
  3275. assert self.block_count == len(self._ffn_dims)
  3276. self.gguf_writer.add_block_count(self.block_count)
  3277. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3278. self.gguf_writer.add_embedding_length(n_embd)
  3279. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3280. self.gguf_writer.add_head_count(self._num_query_heads)
  3281. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3282. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3283. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3284. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3285. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3286. self.gguf_writer.add_key_length(head_dim)
  3287. self.gguf_writer.add_value_length(head_dim)
  3288. self.gguf_writer.add_file_type(self.ftype)
  3289. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3290. if "n_layers" in keys:
  3291. return self.hparams["num_transformer_layers"]
  3292. return super().find_hparam(keys, optional)
  3293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3294. # split ff
  3295. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3296. ff_dim = self._ffn_dims[bid]
  3297. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3298. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3299. return
  3300. yield (self.map_tensor_name(name), data_torch)
  3301. @Model.register("ArcticForCausalLM")
  3302. class ArcticModel(Model):
  3303. model_arch = gguf.MODEL_ARCH.ARCTIC
  3304. def set_vocab(self):
  3305. # The reason for using a custom implementation here is that the
  3306. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3307. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3308. from sentencepiece import SentencePieceProcessor
  3309. tokenizer_path = self.dir_model / 'tokenizer.model'
  3310. if not tokenizer_path.is_file():
  3311. logger.error(f'Error: Missing {tokenizer_path}')
  3312. sys.exit(1)
  3313. # Read the whole vocabulary from the tokenizer.model file
  3314. tokenizer = SentencePieceProcessor()
  3315. tokenizer.LoadFromFile(str(tokenizer_path))
  3316. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3317. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3318. scores: list[float] = [-10000.0] * vocab_size
  3319. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3320. for token_id in range(tokenizer.vocab_size()):
  3321. piece = tokenizer.IdToPiece(token_id)
  3322. text = piece.encode("utf-8")
  3323. score = tokenizer.GetScore(token_id)
  3324. toktype = SentencePieceTokenTypes.NORMAL
  3325. if tokenizer.IsUnknown(token_id):
  3326. toktype = SentencePieceTokenTypes.UNKNOWN
  3327. elif tokenizer.IsControl(token_id):
  3328. toktype = SentencePieceTokenTypes.CONTROL
  3329. elif tokenizer.IsUnused(token_id):
  3330. toktype = SentencePieceTokenTypes.UNUSED
  3331. elif tokenizer.IsByte(token_id):
  3332. toktype = SentencePieceTokenTypes.BYTE
  3333. tokens[token_id] = text
  3334. scores[token_id] = score
  3335. toktypes[token_id] = toktype
  3336. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3337. # of information about added/redefined tokens and modify them accordingly.
  3338. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3339. if tokenizer_config_file.is_file():
  3340. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3341. tokenizer_config_json = json.load(f)
  3342. if "added_tokens_decoder" in tokenizer_config_json:
  3343. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3344. for token_id, token_json in added_tokens_decoder.items():
  3345. token_id = int(token_id)
  3346. if token_id >= vocab_size:
  3347. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3348. continue
  3349. token_content = token_json["content"]
  3350. token_type = SentencePieceTokenTypes.USER_DEFINED
  3351. token_score = -10000.0
  3352. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3353. # Set the score to 0.0 as in the original tokenizer.model
  3354. if ("special" in token_json) and token_json["special"]:
  3355. if token_content == tokenizer_config_json["unk_token"]:
  3356. token_type = SentencePieceTokenTypes.UNKNOWN
  3357. else:
  3358. token_type = SentencePieceTokenTypes.CONTROL
  3359. token_score = 0.0
  3360. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3361. tokens[token_id] = token_content.encode("utf-8")
  3362. toktypes[token_id] = token_type
  3363. scores[token_id] = token_score
  3364. self.gguf_writer.add_tokenizer_model("llama")
  3365. self.gguf_writer.add_tokenizer_pre("default")
  3366. self.gguf_writer.add_token_list(tokens)
  3367. self.gguf_writer.add_token_scores(scores)
  3368. self.gguf_writer.add_token_types(toktypes)
  3369. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3370. special_vocab.add_to_gguf(self.gguf_writer)
  3371. def set_gguf_parameters(self):
  3372. super().set_gguf_parameters()
  3373. hparams = self.hparams
  3374. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3375. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3376. _experts: list[dict[str, Tensor]] | None = None
  3377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3378. n_head = self.hparams["num_attention_heads"]
  3379. n_kv_head = self.hparams.get("num_key_value_heads")
  3380. if name.endswith("q_proj.weight"):
  3381. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3382. if name.endswith("k_proj.weight"):
  3383. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3384. # process the experts separately
  3385. if name.find("block_sparse_moe.experts") != -1:
  3386. n_experts = self.hparams["num_local_experts"]
  3387. assert bid is not None
  3388. if self._experts is None:
  3389. self._experts = [{} for _ in range(self.block_count)]
  3390. self._experts[bid][name] = data_torch
  3391. if len(self._experts[bid]) >= n_experts * 3:
  3392. tensors: list[tuple[str, Tensor]] = []
  3393. # merge the experts into a single 3d tensor
  3394. for wid in ["w1", "w2", "w3"]:
  3395. datas: list[Tensor] = []
  3396. for xid in range(n_experts):
  3397. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3398. datas.append(self._experts[bid][ename])
  3399. del self._experts[bid][ename]
  3400. data_torch = torch.stack(datas, dim=0)
  3401. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3402. new_name = self.map_tensor_name(merged_name)
  3403. tensors.append((new_name, data_torch))
  3404. return tensors
  3405. else:
  3406. return []
  3407. return [(self.map_tensor_name(name), data_torch)]
  3408. def prepare_tensors(self):
  3409. super().prepare_tensors()
  3410. if self._experts is not None:
  3411. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3412. experts = [k for d in self._experts for k in d.keys()]
  3413. if len(experts) > 0:
  3414. raise ValueError(f"Unprocessed experts: {experts}")
  3415. @Model.register("DeepseekForCausalLM")
  3416. class DeepseekModel(Model):
  3417. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3418. def set_vocab(self):
  3419. try:
  3420. self._set_vocab_sentencepiece()
  3421. except FileNotFoundError:
  3422. self._set_vocab_gpt2()
  3423. def set_gguf_parameters(self):
  3424. super().set_gguf_parameters()
  3425. hparams = self.hparams
  3426. if "head_dim" in hparams:
  3427. rope_dim = hparams["head_dim"]
  3428. else:
  3429. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3430. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3431. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3432. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3433. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3434. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3435. self.gguf_writer.add_expert_weights_scale(1.0)
  3436. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3437. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3438. _experts: list[dict[str, Tensor]] | None = None
  3439. @staticmethod
  3440. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3441. if n_head_kv is not None and n_head != n_head_kv:
  3442. n_head = n_head_kv
  3443. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3444. .swapaxes(1, 2)
  3445. .reshape(weights.shape))
  3446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3447. n_head = self.hparams["num_attention_heads"]
  3448. n_kv_head = self.hparams.get("num_key_value_heads")
  3449. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3450. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3451. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3452. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3453. # process the experts separately
  3454. if name.find("mlp.experts") != -1:
  3455. n_experts = self.hparams["n_routed_experts"]
  3456. assert bid is not None
  3457. if self._experts is None:
  3458. self._experts = [{} for _ in range(self.block_count)]
  3459. self._experts[bid][name] = data_torch
  3460. if len(self._experts[bid]) >= n_experts * 3:
  3461. tensors: list[tuple[str, Tensor]] = []
  3462. # merge the experts into a single 3d tensor
  3463. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3464. datas: list[Tensor] = []
  3465. for xid in range(n_experts):
  3466. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3467. datas.append(self._experts[bid][ename])
  3468. del self._experts[bid][ename]
  3469. data_torch = torch.stack(datas, dim=0)
  3470. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3471. new_name = self.map_tensor_name(merged_name)
  3472. tensors.append((new_name, data_torch))
  3473. return tensors
  3474. else:
  3475. return []
  3476. return [(self.map_tensor_name(name), data_torch)]
  3477. def prepare_tensors(self):
  3478. super().prepare_tensors()
  3479. if self._experts is not None:
  3480. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3481. experts = [k for d in self._experts for k in d.keys()]
  3482. if len(experts) > 0:
  3483. raise ValueError(f"Unprocessed experts: {experts}")
  3484. @Model.register("DeepseekV2ForCausalLM")
  3485. @Model.register("DeepseekV3ForCausalLM")
  3486. class DeepseekV2Model(Model):
  3487. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3488. def set_vocab(self):
  3489. self._set_vocab_gpt2()
  3490. def set_gguf_parameters(self):
  3491. super().set_gguf_parameters()
  3492. hparams = self.hparams
  3493. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3494. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3495. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3496. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3497. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3498. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3499. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3500. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3501. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3502. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3503. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3504. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3505. if hparams["scoring_func"] == "sigmoid":
  3506. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3507. elif hparams["scoring_func"] == "softmax":
  3508. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3509. else:
  3510. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3511. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3512. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3513. if self.hparams["rope_scaling"].get("type") == "yarn":
  3514. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3515. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3516. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3517. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3518. _experts: list[dict[str, Tensor]] | None = None
  3519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3520. # rename e_score_correction_bias tensors
  3521. if name.endswith("e_score_correction_bias"):
  3522. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3523. # skip Multi-Token Prediction (MTP) layers
  3524. block_count = self.hparams["num_hidden_layers"]
  3525. match = re.match(r"model.layers.(\d+)", name)
  3526. if match and int(match.group(1)) >= block_count:
  3527. return []
  3528. # process the experts separately
  3529. if name.find("mlp.experts") != -1:
  3530. n_experts = self.hparams["n_routed_experts"]
  3531. assert bid is not None
  3532. if self._experts is None:
  3533. self._experts = [{} for _ in range(self.block_count)]
  3534. self._experts[bid][name] = data_torch
  3535. if len(self._experts[bid]) >= n_experts * 3:
  3536. tensors: list[tuple[str, Tensor]] = []
  3537. # merge the experts into a single 3d tensor
  3538. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3539. datas: list[Tensor] = []
  3540. for xid in range(n_experts):
  3541. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3542. datas.append(self._experts[bid][ename])
  3543. del self._experts[bid][ename]
  3544. data_torch = torch.stack(datas, dim=0)
  3545. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3546. new_name = self.map_tensor_name(merged_name)
  3547. tensors.append((new_name, data_torch))
  3548. return tensors
  3549. else:
  3550. return []
  3551. return [(self.map_tensor_name(name), data_torch)]
  3552. def prepare_tensors(self):
  3553. super().prepare_tensors()
  3554. if self._experts is not None:
  3555. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3556. experts = [k for d in self._experts for k in d.keys()]
  3557. if len(experts) > 0:
  3558. raise ValueError(f"Unprocessed experts: {experts}")
  3559. @Model.register("PLMForCausalLM")
  3560. class PLMModel(Model):
  3561. model_arch = gguf.MODEL_ARCH.PLM
  3562. def set_vocab(self):
  3563. self._set_vocab_gpt2()
  3564. def set_gguf_parameters(self):
  3565. super().set_gguf_parameters()
  3566. hparams = self.hparams
  3567. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3568. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3569. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3570. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3571. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3572. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3573. return [(self.map_tensor_name(name), data_torch)]
  3574. def prepare_tensors(self):
  3575. super().prepare_tensors()
  3576. @Model.register("T5WithLMHeadModel")
  3577. @Model.register("T5ForConditionalGeneration")
  3578. @Model.register("MT5ForConditionalGeneration")
  3579. @Model.register("UMT5ForConditionalGeneration")
  3580. class T5Model(Model):
  3581. model_arch = gguf.MODEL_ARCH.T5
  3582. def __init__(self, *args, **kwargs):
  3583. super().__init__(*args, **kwargs)
  3584. self.shared_token_embeddings_found = False
  3585. def set_vocab(self):
  3586. # to avoid TypeError: Descriptors cannot be created directly
  3587. # exception when importing sentencepiece_model_pb2
  3588. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3589. from sentencepiece import SentencePieceProcessor
  3590. from sentencepiece import sentencepiece_model_pb2 as model
  3591. tokenizer_path = self.dir_model / 'tokenizer.model'
  3592. # many older models use spiece.model tokenizer model filename
  3593. if not tokenizer_path.is_file():
  3594. tokenizer_path = self.dir_model / 'spiece.model'
  3595. if not tokenizer_path.is_file():
  3596. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3597. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3598. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3599. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3600. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3601. # assure the tokenizer model file name is correct
  3602. assert tokenizer_path.name == 'tokenizer.model'
  3603. return self._set_vocab_sentencepiece()
  3604. else:
  3605. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3606. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3607. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3608. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3609. tokenizer = SentencePieceProcessor()
  3610. tokenizer.LoadFromFile(str(tokenizer_path))
  3611. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3612. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3613. scores: list[float] = [-10000.0] * vocab_size
  3614. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3615. for token_id in range(tokenizer.vocab_size()):
  3616. piece = tokenizer.IdToPiece(token_id)
  3617. text = piece.encode("utf-8")
  3618. score = tokenizer.GetScore(token_id)
  3619. toktype = SentencePieceTokenTypes.NORMAL
  3620. if tokenizer.IsUnknown(token_id):
  3621. toktype = SentencePieceTokenTypes.UNKNOWN
  3622. elif tokenizer.IsControl(token_id):
  3623. toktype = SentencePieceTokenTypes.CONTROL
  3624. elif tokenizer.IsUnused(token_id):
  3625. toktype = SentencePieceTokenTypes.UNUSED
  3626. elif tokenizer.IsByte(token_id):
  3627. toktype = SentencePieceTokenTypes.BYTE
  3628. tokens[token_id] = text
  3629. scores[token_id] = score
  3630. toktypes[token_id] = toktype
  3631. added_tokens_file = self.dir_model / 'added_tokens.json'
  3632. if added_tokens_file.is_file():
  3633. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3634. added_tokens_json = json.load(f)
  3635. for key in added_tokens_json:
  3636. token_id = added_tokens_json[key]
  3637. if token_id >= vocab_size:
  3638. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3639. continue
  3640. tokens[token_id] = key.encode("utf-8")
  3641. scores[token_id] = -1000.0
  3642. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3643. if vocab_size > len(tokens):
  3644. pad_count = vocab_size - len(tokens)
  3645. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3646. for i in range(1, pad_count + 1):
  3647. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3648. scores.append(-1000.0)
  3649. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3650. self.gguf_writer.add_tokenizer_model("t5")
  3651. self.gguf_writer.add_tokenizer_pre("default")
  3652. self.gguf_writer.add_token_list(tokens)
  3653. self.gguf_writer.add_token_scores(scores)
  3654. self.gguf_writer.add_token_types(toktypes)
  3655. self.gguf_writer.add_add_space_prefix(add_prefix)
  3656. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3657. if precompiled_charsmap:
  3658. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3659. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3660. special_vocab.add_to_gguf(self.gguf_writer)
  3661. self.gguf_writer.add_add_bos_token(False)
  3662. self.gguf_writer.add_add_eos_token(True)
  3663. def set_gguf_parameters(self):
  3664. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3665. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3666. n_ctx = 512
  3667. self.gguf_writer.add_context_length(n_ctx)
  3668. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3669. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3670. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3671. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3672. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3673. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3674. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3675. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3676. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3677. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3678. self.gguf_writer.add_file_type(self.ftype)
  3679. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3680. del bid # unused
  3681. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3682. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3683. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3684. # and decoder and ignore the remaining ones.
  3685. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3686. if not self.shared_token_embeddings_found:
  3687. name = "shared.weight"
  3688. self.shared_token_embeddings_found = True
  3689. else:
  3690. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3691. return []
  3692. return [(self.map_tensor_name(name), data_torch)]
  3693. @Model.register("T5EncoderModel")
  3694. class T5EncoderModel(Model):
  3695. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3696. def __init__(self, *args, **kwargs):
  3697. super().__init__(*args, **kwargs)
  3698. self.shared_token_embeddings_found = False
  3699. def set_vocab(self):
  3700. # to avoid TypeError: Descriptors cannot be created directly
  3701. # exception when importing sentencepiece_model_pb2
  3702. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3703. from sentencepiece import SentencePieceProcessor
  3704. from sentencepiece import sentencepiece_model_pb2 as model
  3705. tokenizer_path = self.dir_model / 'tokenizer.model'
  3706. # many older models use spiece.model tokenizer model filename
  3707. if not tokenizer_path.is_file():
  3708. tokenizer_path = self.dir_model / 'spiece.model'
  3709. if not tokenizer_path.is_file():
  3710. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3711. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3712. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3713. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3714. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3715. # assure the tokenizer model file name is correct
  3716. assert tokenizer_path.name == 'tokenizer.model'
  3717. return self._set_vocab_sentencepiece()
  3718. else:
  3719. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3720. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3721. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3722. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3723. tokenizer = SentencePieceProcessor()
  3724. tokenizer.LoadFromFile(str(tokenizer_path))
  3725. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3726. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3727. scores: list[float] = [-10000.0] * vocab_size
  3728. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3729. for token_id in range(tokenizer.vocab_size()):
  3730. piece = tokenizer.IdToPiece(token_id)
  3731. text = piece.encode("utf-8")
  3732. score = tokenizer.GetScore(token_id)
  3733. toktype = SentencePieceTokenTypes.NORMAL
  3734. if tokenizer.IsUnknown(token_id):
  3735. toktype = SentencePieceTokenTypes.UNKNOWN
  3736. elif tokenizer.IsControl(token_id):
  3737. toktype = SentencePieceTokenTypes.CONTROL
  3738. elif tokenizer.IsUnused(token_id):
  3739. toktype = SentencePieceTokenTypes.UNUSED
  3740. elif tokenizer.IsByte(token_id):
  3741. toktype = SentencePieceTokenTypes.BYTE
  3742. tokens[token_id] = text
  3743. scores[token_id] = score
  3744. toktypes[token_id] = toktype
  3745. added_tokens_file = self.dir_model / 'added_tokens.json'
  3746. if added_tokens_file.is_file():
  3747. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3748. added_tokens_json = json.load(f)
  3749. for key in added_tokens_json:
  3750. token_id = added_tokens_json[key]
  3751. if token_id >= vocab_size:
  3752. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3753. continue
  3754. tokens[token_id] = key.encode("utf-8")
  3755. scores[token_id] = -1000.0
  3756. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3757. if vocab_size > len(tokens):
  3758. pad_count = vocab_size - len(tokens)
  3759. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3760. for i in range(1, pad_count + 1):
  3761. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3762. scores.append(-1000.0)
  3763. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3764. self.gguf_writer.add_tokenizer_model("t5")
  3765. self.gguf_writer.add_tokenizer_pre("default")
  3766. self.gguf_writer.add_token_list(tokens)
  3767. self.gguf_writer.add_token_scores(scores)
  3768. self.gguf_writer.add_token_types(toktypes)
  3769. self.gguf_writer.add_add_space_prefix(add_prefix)
  3770. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3771. if precompiled_charsmap:
  3772. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3773. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3774. special_vocab.add_to_gguf(self.gguf_writer)
  3775. self.gguf_writer.add_add_bos_token(False)
  3776. self.gguf_writer.add_add_eos_token(True)
  3777. def set_gguf_parameters(self):
  3778. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3779. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3780. n_ctx = 512
  3781. self.gguf_writer.add_context_length(n_ctx)
  3782. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3783. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3784. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3785. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3786. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3787. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3788. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3789. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3790. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3791. self.gguf_writer.add_file_type(self.ftype)
  3792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3793. del bid # unused
  3794. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3795. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3796. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3797. # and decoder and ignore the remaining ones.
  3798. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3799. if not self.shared_token_embeddings_found:
  3800. name = "shared.weight"
  3801. self.shared_token_embeddings_found = True
  3802. else:
  3803. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3804. return []
  3805. return [(self.map_tensor_name(name), data_torch)]
  3806. @Model.register("JAISLMHeadModel")
  3807. class JaisModel(Model):
  3808. model_arch = gguf.MODEL_ARCH.JAIS
  3809. def __init__(self, *args, **kwargs):
  3810. super().__init__(*args, **kwargs)
  3811. # SwigLU activation
  3812. assert self.hparams["activation_function"] == "swiglu"
  3813. # ALiBi position embedding
  3814. assert self.hparams["position_embedding_type"] == "alibi"
  3815. # Embeddings scale
  3816. self.embeddings_scale = 1.0
  3817. if 'mup_embeddings_scale' in self.hparams:
  3818. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3819. elif 'embeddings_scale' in self.hparams:
  3820. self.embeddings_scale = self.hparams['embeddings_scale']
  3821. else:
  3822. assert False
  3823. self.width_scale = 1.0
  3824. if 'mup_output_alpha' in self.hparams:
  3825. assert 'mup_width_scale' in self.hparams
  3826. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3827. elif 'width_scale' in self.hparams:
  3828. self.width_scale = self.hparams['width_scale']
  3829. else:
  3830. assert False
  3831. self.max_alibi_bias = 8.0
  3832. def set_vocab(self):
  3833. self._set_vocab_gpt2()
  3834. def set_gguf_parameters(self):
  3835. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3836. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3837. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3838. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3839. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3840. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3841. self.gguf_writer.add_file_type(self.ftype)
  3842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3843. del bid # unused
  3844. tensors: list[tuple[str, Tensor]] = []
  3845. # we don't need these
  3846. if name.endswith((".attn.bias")):
  3847. return tensors
  3848. if name.endswith(("relative_pe.slopes")):
  3849. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3850. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3851. # but Jais's PyTorch model simply precalculates the slope values and places them
  3852. # in relative_pes.slopes
  3853. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3854. first_val = float(data_torch[0].item())
  3855. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3856. return tensors
  3857. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3858. data_torch = data_torch.transpose(1, 0)
  3859. new_name = self.map_tensor_name(name)
  3860. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3861. tensors.append((new_name, data_torch * self.embeddings_scale))
  3862. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3863. tensors.append((new_name, data_torch * self.width_scale))
  3864. else:
  3865. tensors.append((new_name, data_torch))
  3866. return tensors
  3867. def prepare_tensors(self):
  3868. super().prepare_tensors()
  3869. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3870. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3871. class ChatGLMModel(Model):
  3872. model_arch = gguf.MODEL_ARCH.CHATGLM
  3873. def set_vocab_chatglm3(self):
  3874. dir_model = self.dir_model
  3875. hparams = self.hparams
  3876. tokens: list[bytes] = []
  3877. toktypes: list[int] = []
  3878. scores: list[float] = []
  3879. from transformers import AutoTokenizer
  3880. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3881. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3882. assert max(tokenizer.get_vocab().values()) < vocab_size
  3883. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3884. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3885. for token_id in range(vocab_size):
  3886. piece = tokenizer._convert_id_to_token(token_id)
  3887. if token_id == 0:
  3888. piece = "<unk>"
  3889. elif token_id == 1:
  3890. piece = "<bos>"
  3891. elif token_id == 2:
  3892. piece = "<eos>"
  3893. text = piece.encode("utf-8")
  3894. score = 0.0
  3895. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3896. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3897. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3898. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3899. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3900. if piece in special_tokens:
  3901. toktype = SentencePieceTokenTypes.CONTROL
  3902. elif len(piece) == 0:
  3903. text = f"[PAD{token_id}]".encode("utf-8")
  3904. toktype = SentencePieceTokenTypes.UNUSED
  3905. else:
  3906. toktype = SentencePieceTokenTypes.USER_DEFINED
  3907. tokens.append(text)
  3908. scores.append(score)
  3909. toktypes.append(toktype)
  3910. continue
  3911. toktype = SentencePieceTokenTypes.NORMAL
  3912. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3913. toktype = SentencePieceTokenTypes.UNKNOWN
  3914. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3915. toktype = SentencePieceTokenTypes.CONTROL
  3916. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3917. toktype = SentencePieceTokenTypes.UNUSED
  3918. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3919. toktype = SentencePieceTokenTypes.BYTE
  3920. tokens.append(text)
  3921. scores.append(score)
  3922. toktypes.append(toktype)
  3923. self.gguf_writer.add_tokenizer_model("llama")
  3924. # glm3 needs prefix and suffix formatted as:
  3925. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3926. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3927. self.gguf_writer.add_token_list(tokens)
  3928. self.gguf_writer.add_token_scores(scores)
  3929. self.gguf_writer.add_token_types(toktypes)
  3930. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3931. special_vocab.add_to_gguf(self.gguf_writer)
  3932. @staticmethod
  3933. def token_bytes_to_string(b):
  3934. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3935. byte_encoder = bytes_to_unicode()
  3936. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3937. @staticmethod
  3938. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3939. parts = [bytes([b]) for b in token]
  3940. while True:
  3941. min_idx = None
  3942. min_rank = None
  3943. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3944. rank = mergeable_ranks.get(pair[0] + pair[1])
  3945. if rank is not None and (min_rank is None or rank < min_rank):
  3946. min_idx = i
  3947. min_rank = rank
  3948. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3949. break
  3950. assert min_idx is not None
  3951. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3952. return parts
  3953. def set_vocab(self):
  3954. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3955. self.set_vocab_chatglm3()
  3956. return
  3957. dir_model = self.dir_model
  3958. hparams = self.hparams
  3959. tokens: list[str] = []
  3960. toktypes: list[int] = []
  3961. from transformers import AutoTokenizer
  3962. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3963. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3964. assert max(tokenizer.get_vocab().values()) < vocab_size
  3965. tokens, toktypes, tokpre = self.get_vocab_base()
  3966. self.gguf_writer.add_tokenizer_model("gpt2")
  3967. self.gguf_writer.add_tokenizer_pre(tokpre)
  3968. self.gguf_writer.add_token_list(tokens)
  3969. self.gguf_writer.add_token_types(toktypes)
  3970. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3971. # only add special tokens when they were not already loaded from config.json
  3972. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3973. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3974. # this one is usually not in config.json anyway
  3975. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3976. special_vocab.add_to_gguf(self.gguf_writer)
  3977. def set_gguf_parameters(self):
  3978. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3979. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3980. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3981. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3982. self.gguf_writer.add_embedding_length(n_embed)
  3983. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3984. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3985. self.gguf_writer.add_head_count(n_head)
  3986. self.gguf_writer.add_head_count_kv(n_head_kv)
  3987. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3988. self.gguf_writer.add_file_type(self.ftype)
  3989. if "attention_dim" in self.hparams:
  3990. rope_dim = self.hparams["attention_dim"]
  3991. else:
  3992. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3993. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3994. self.gguf_writer.add_add_bos_token(False)
  3995. rope_freq = 10000
  3996. if "rope_ratio" in self.hparams:
  3997. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3998. self.gguf_writer.add_rope_freq_base(rope_freq)
  3999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4000. del bid # unused
  4001. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4002. return []
  4003. name = name.removeprefix("transformer.")
  4004. return [(self.map_tensor_name(name), data_torch)]
  4005. @Model.register("NemotronForCausalLM")
  4006. class NemotronModel(Model):
  4007. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4008. def set_vocab(self):
  4009. self._set_vocab_sentencepiece()
  4010. self.gguf_writer.add_pad_token_id(0)
  4011. self.gguf_writer.add_unk_token_id(1)
  4012. def set_gguf_parameters(self):
  4013. super().set_gguf_parameters()
  4014. hparams = self.hparams
  4015. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4016. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4017. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4018. # * Partial RoPE
  4019. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4020. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4021. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4022. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4023. # * RopeScaling for Nemotron
  4024. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4026. else:
  4027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4028. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4030. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4031. # model.layers.{l}.input_layernorm.weight
  4032. # model.layers.{l}.post_attention_layernorm.weight
  4033. # model.norm.weight
  4034. if name.endswith("norm.weight"):
  4035. data_torch = data_torch + 1
  4036. return [(self.map_tensor_name(name), data_torch)]
  4037. @Model.register("ExaoneForCausalLM")
  4038. class ExaoneModel(Model):
  4039. model_arch = gguf.MODEL_ARCH.EXAONE
  4040. def set_gguf_parameters(self):
  4041. hparams = self.hparams
  4042. assert (hparams["activation_function"] == "silu")
  4043. max_position_embeddings = hparams["max_position_embeddings"]
  4044. embed_dim = hparams["hidden_size"]
  4045. num_heads = hparams["num_attention_heads"]
  4046. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4047. layer_norm_eps = hparams["layer_norm_epsilon"]
  4048. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4049. num_layers = hparams["num_layers"]
  4050. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4051. # attention_dropout_rate = hparams["attention_dropout"]
  4052. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4053. # embed_dropout_rate = hparams["embed_dropout"]
  4054. self.gguf_writer.add_embedding_length(embed_dim)
  4055. self.gguf_writer.add_head_count(num_heads)
  4056. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4057. self.gguf_writer.add_context_length(max_position_embeddings)
  4058. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4059. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4060. self.gguf_writer.add_block_count(num_layers)
  4061. self.gguf_writer.add_file_type(self.ftype)
  4062. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4063. self.gguf_writer.add_rope_freq_base(rope_theta)
  4064. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4065. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4066. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4067. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4068. if hparams["rope_scaling"].get("type") == "linear":
  4069. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4070. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4071. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4072. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4073. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4074. base = self.hparams.get("rope_theta", 10000.0)
  4075. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4076. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4077. factor = rope_scaling.get("factor", 8.0)
  4078. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4079. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4080. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4081. low_freq_wavelen = old_context_len / low_freq_factor
  4082. high_freq_wavelen = old_context_len / high_freq_factor
  4083. assert low_freq_wavelen != high_freq_wavelen
  4084. rope_factors = []
  4085. for freq in freqs:
  4086. wavelen = 2 * math.pi / freq
  4087. if wavelen < high_freq_wavelen:
  4088. rope_factors.append(1)
  4089. elif wavelen > low_freq_wavelen:
  4090. rope_factors.append(factor)
  4091. else:
  4092. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4093. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4094. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4095. @Model.register("GraniteForCausalLM")
  4096. class GraniteModel(LlamaModel):
  4097. """Conversion for IBM's GraniteForCausalLM"""
  4098. model_arch = gguf.MODEL_ARCH.GRANITE
  4099. def set_gguf_parameters(self):
  4100. """Granite uses standard llama parameters with the following differences:
  4101. - No head_dim support
  4102. - New multiplier params:
  4103. - attention_scale
  4104. - embedding_scale
  4105. - residual_scale
  4106. - logits_scaling
  4107. """
  4108. if head_dim := self.hparams.pop("head_dim", None):
  4109. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4110. super().set_gguf_parameters()
  4111. # NOTE: Convert _multiplier params to _scale params for naming
  4112. # consistency
  4113. if attention_scale := self.hparams.get("attention_multiplier"):
  4114. self.gguf_writer.add_attention_scale(attention_scale)
  4115. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4116. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4117. self.gguf_writer.add_embedding_scale(embedding_scale)
  4118. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4119. if residual_scale := self.hparams.get("residual_multiplier"):
  4120. self.gguf_writer.add_residual_scale(residual_scale)
  4121. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4122. if logits_scale := self.hparams.get("logits_scaling"):
  4123. self.gguf_writer.add_logit_scale(logits_scale)
  4124. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4125. @Model.register("GraniteMoeForCausalLM")
  4126. class GraniteMoeModel(GraniteModel):
  4127. """Conversion for IBM's GraniteMoeForCausalLM"""
  4128. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4130. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4131. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4132. the hidden size that is then split during forward. To keep compatibility
  4133. with existing mixtral support, we pull them apart here.
  4134. """
  4135. if name.endswith("block_sparse_moe.input_linear.weight"):
  4136. ffn_dim = self.hparams["intermediate_size"]
  4137. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4138. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4139. return [
  4140. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4141. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4142. ]
  4143. return super().modify_tensors(data_torch, name, bid)
  4144. @Model.register("ChameleonForConditionalGeneration")
  4145. @Model.register("ChameleonForCausalLM") # obsolete
  4146. class ChameleonModel(Model):
  4147. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4148. def set_gguf_parameters(self):
  4149. super().set_gguf_parameters()
  4150. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4151. def set_vocab(self):
  4152. self._set_vocab_gpt2()
  4153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4154. # ignore image tokenizer for now
  4155. # TODO: remove this once image support is implemented for Chameleon
  4156. if name.startswith("model.vqmodel"):
  4157. return []
  4158. n_head = self.hparams["num_attention_heads"]
  4159. n_kv_head = self.hparams.get("num_key_value_heads")
  4160. hidden_dim = self.hparams.get("hidden_size")
  4161. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4162. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4163. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4164. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4165. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4166. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4167. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4168. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4169. return [(self.map_tensor_name(name), data_torch)]
  4170. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4171. @staticmethod
  4172. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4173. head_dim = hidden_dim // n_heads
  4174. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4175. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4176. return data_torch
  4177. ###### CONVERSION LOGIC ######
  4178. # tree of lazy tensors
  4179. class LazyTorchTensor(gguf.LazyBase):
  4180. _tensor_type = torch.Tensor
  4181. # to keep the type-checker happy
  4182. dtype: torch.dtype
  4183. shape: torch.Size
  4184. # only used when converting a torch.Tensor to a np.ndarray
  4185. _dtype_map: dict[torch.dtype, type] = {
  4186. torch.float16: np.float16,
  4187. torch.float32: np.float32,
  4188. }
  4189. # used for safetensors slices
  4190. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4191. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4192. _dtype_str_map: dict[str, torch.dtype] = {
  4193. "F64": torch.float64,
  4194. "F32": torch.float32,
  4195. "BF16": torch.bfloat16,
  4196. "F16": torch.float16,
  4197. # "U64": torch.uint64,
  4198. "I64": torch.int64,
  4199. # "U32": torch.uint32,
  4200. "I32": torch.int32,
  4201. # "U16": torch.uint16,
  4202. "I16": torch.int16,
  4203. "U8": torch.uint8,
  4204. "I8": torch.int8,
  4205. "BOOL": torch.bool,
  4206. "F8_E4M3": torch.float8_e4m3fn,
  4207. "F8_E5M2": torch.float8_e5m2,
  4208. }
  4209. def numpy(self) -> gguf.LazyNumpyTensor:
  4210. dtype = self._dtype_map[self.dtype]
  4211. return gguf.LazyNumpyTensor(
  4212. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4213. args=(self,),
  4214. func=(lambda s: s.numpy())
  4215. )
  4216. @classmethod
  4217. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4218. return torch.empty(size=shape, dtype=dtype, device="meta")
  4219. @classmethod
  4220. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4221. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4222. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4223. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4224. return cast(torch.Tensor, lazy)
  4225. @classmethod
  4226. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4227. del types # unused
  4228. if kwargs is None:
  4229. kwargs = {}
  4230. if func is torch.Tensor.numpy:
  4231. return args[0].numpy()
  4232. return cls._wrap_fn(func)(*args, **kwargs)
  4233. def parse_args() -> argparse.Namespace:
  4234. parser = argparse.ArgumentParser(
  4235. description="Convert a huggingface model to a GGML compatible file")
  4236. parser.add_argument(
  4237. "--vocab-only", action="store_true",
  4238. help="extract only the vocab",
  4239. )
  4240. parser.add_argument(
  4241. "--outfile", type=Path,
  4242. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4243. )
  4244. parser.add_argument(
  4245. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4246. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4247. )
  4248. parser.add_argument(
  4249. "--bigendian", action="store_true",
  4250. help="model is executed on big endian machine",
  4251. )
  4252. parser.add_argument(
  4253. "model", type=Path,
  4254. help="directory containing model file",
  4255. nargs="?",
  4256. )
  4257. parser.add_argument(
  4258. "--use-temp-file", action="store_true",
  4259. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4260. )
  4261. parser.add_argument(
  4262. "--no-lazy", action="store_true",
  4263. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4264. )
  4265. parser.add_argument(
  4266. "--model-name", type=str, default=None,
  4267. help="name of the model",
  4268. )
  4269. parser.add_argument(
  4270. "--verbose", action="store_true",
  4271. help="increase output verbosity",
  4272. )
  4273. parser.add_argument(
  4274. "--split-max-tensors", type=int, default=0,
  4275. help="max tensors in each split",
  4276. )
  4277. parser.add_argument(
  4278. "--split-max-size", type=str, default="0",
  4279. help="max size per split N(M|G)",
  4280. )
  4281. parser.add_argument(
  4282. "--dry-run", action="store_true",
  4283. help="only print out a split plan and exit, without writing any new files",
  4284. )
  4285. parser.add_argument(
  4286. "--no-tensor-first-split", action="store_true",
  4287. help="do not add tensors to the first split (disabled by default)"
  4288. )
  4289. parser.add_argument(
  4290. "--metadata", type=Path,
  4291. help="Specify the path for an authorship metadata override file"
  4292. )
  4293. parser.add_argument(
  4294. "--print-supported-models", action="store_true",
  4295. help="Print the supported models"
  4296. )
  4297. args = parser.parse_args()
  4298. if not args.print_supported_models and args.model is None:
  4299. parser.error("the following arguments are required: model")
  4300. return args
  4301. def split_str_to_n_bytes(split_str: str) -> int:
  4302. if split_str.endswith("K"):
  4303. n = int(split_str[:-1]) * 1000
  4304. elif split_str.endswith("M"):
  4305. n = int(split_str[:-1]) * 1000 * 1000
  4306. elif split_str.endswith("G"):
  4307. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4308. elif split_str.isnumeric():
  4309. n = int(split_str)
  4310. else:
  4311. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4312. if n < 0:
  4313. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4314. return n
  4315. def main() -> None:
  4316. args = parse_args()
  4317. if args.print_supported_models:
  4318. logger.error("Supported models:")
  4319. Model.print_registered_models()
  4320. sys.exit(0)
  4321. if args.verbose:
  4322. logging.basicConfig(level=logging.DEBUG)
  4323. else:
  4324. logging.basicConfig(level=logging.INFO)
  4325. dir_model = args.model
  4326. if not dir_model.is_dir():
  4327. logger.error(f'Error: {args.model} is not a directory')
  4328. sys.exit(1)
  4329. ftype_map: dict[str, gguf.LlamaFileType] = {
  4330. "f32": gguf.LlamaFileType.ALL_F32,
  4331. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4332. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4333. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4334. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4335. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4336. "auto": gguf.LlamaFileType.GUESSED,
  4337. }
  4338. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4339. if args.use_temp_file and is_split:
  4340. logger.error("Error: Cannot use temp file when splitting")
  4341. sys.exit(1)
  4342. if args.outfile is not None:
  4343. fname_out = args.outfile
  4344. else:
  4345. fname_out = dir_model
  4346. logger.info(f"Loading model: {dir_model.name}")
  4347. hparams = Model.load_hparams(dir_model)
  4348. with torch.inference_mode():
  4349. output_type = ftype_map[args.outtype]
  4350. model_architecture = hparams["architectures"][0]
  4351. try:
  4352. model_class = Model.from_model_architecture(model_architecture)
  4353. except NotImplementedError:
  4354. logger.error(f"Model {model_architecture} is not supported")
  4355. sys.exit(1)
  4356. model_instance = model_class(dir_model, output_type, fname_out,
  4357. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4358. eager=args.no_lazy,
  4359. metadata_override=args.metadata, model_name=args.model_name,
  4360. split_max_tensors=args.split_max_tensors,
  4361. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4362. small_first_shard=args.no_tensor_first_split)
  4363. if args.vocab_only:
  4364. logger.info("Exporting model vocab...")
  4365. model_instance.write_vocab()
  4366. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4367. else:
  4368. logger.info("Exporting model...")
  4369. model_instance.write()
  4370. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4371. logger.info(f"Model successfully exported to {out_path}")
  4372. if __name__ == '__main__':
  4373. main()