server.cpp 200 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  99. bool return_tokens = false;
  100. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  101. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  102. int32_t n_predict = -1; // new tokens to predict
  103. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  104. int64_t t_max_prompt_ms = -1; // TODO: implement
  105. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  106. std::vector<common_adapter_lora_info> lora;
  107. std::vector<std::string> antiprompt;
  108. std::vector<std::string> response_fields;
  109. bool timings_per_token = false;
  110. bool post_sampling_probs = false;
  111. struct common_params_sampling sampling;
  112. struct common_params_speculative speculative;
  113. // OAI-compat fields
  114. bool verbose = false;
  115. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  116. std::string oaicompat_model;
  117. std::string oaicompat_cmpl_id;
  118. common_chat_syntax oaicompat_chat_syntax;
  119. // Embeddings
  120. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  121. json to_json() const {
  122. std::vector<std::string> samplers;
  123. samplers.reserve(sampling.samplers.size());
  124. for (const auto & sampler : sampling.samplers) {
  125. samplers.emplace_back(common_sampler_type_to_str(sampler));
  126. }
  127. json lora = json::array();
  128. for (size_t i = 0; i < this->lora.size(); ++i) {
  129. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  130. }
  131. auto grammar_triggers = json::array();
  132. for (const auto & trigger : sampling.grammar_triggers) {
  133. server_grammar_trigger ct(std::move(trigger));
  134. grammar_triggers.push_back(ct.to_json());
  135. }
  136. return json {
  137. {"n_predict", n_predict}, // Server configured n_predict
  138. {"seed", sampling.seed},
  139. {"temperature", sampling.temp},
  140. {"dynatemp_range", sampling.dynatemp_range},
  141. {"dynatemp_exponent", sampling.dynatemp_exponent},
  142. {"top_k", sampling.top_k},
  143. {"top_p", sampling.top_p},
  144. {"min_p", sampling.min_p},
  145. {"top_n_sigma", sampling.top_n_sigma},
  146. {"xtc_probability", sampling.xtc_probability},
  147. {"xtc_threshold", sampling.xtc_threshold},
  148. {"typical_p", sampling.typ_p},
  149. {"repeat_last_n", sampling.penalty_last_n},
  150. {"repeat_penalty", sampling.penalty_repeat},
  151. {"presence_penalty", sampling.penalty_present},
  152. {"frequency_penalty", sampling.penalty_freq},
  153. {"dry_multiplier", sampling.dry_multiplier},
  154. {"dry_base", sampling.dry_base},
  155. {"dry_allowed_length", sampling.dry_allowed_length},
  156. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  157. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  158. {"mirostat", sampling.mirostat},
  159. {"mirostat_tau", sampling.mirostat_tau},
  160. {"mirostat_eta", sampling.mirostat_eta},
  161. {"stop", antiprompt},
  162. {"max_tokens", n_predict}, // User configured n_predict
  163. {"n_keep", n_keep},
  164. {"n_discard", n_discard},
  165. {"ignore_eos", sampling.ignore_eos},
  166. {"stream", stream},
  167. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  168. {"n_probs", sampling.n_probs},
  169. {"min_keep", sampling.min_keep},
  170. {"grammar", sampling.grammar},
  171. {"grammar_lazy", sampling.grammar_lazy},
  172. {"grammar_triggers", grammar_triggers},
  173. {"preserved_tokens", sampling.preserved_tokens},
  174. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  175. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  176. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  177. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  178. {"samplers", samplers},
  179. {"speculative.n_max", speculative.n_max},
  180. {"speculative.n_min", speculative.n_min},
  181. {"speculative.p_min", speculative.p_min},
  182. {"timings_per_token", timings_per_token},
  183. {"post_sampling_probs", post_sampling_probs},
  184. {"lora", lora},
  185. };
  186. }
  187. };
  188. struct server_task {
  189. int id = -1; // to be filled by server_queue
  190. int index = -1; // used when there are multiple prompts (batch request)
  191. server_task_type type;
  192. // used by SERVER_TASK_TYPE_CANCEL
  193. int id_target = -1;
  194. // used by SERVER_TASK_TYPE_INFERENCE
  195. slot_params params;
  196. server_tokens prompt_tokens;
  197. int id_selected_slot = -1;
  198. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  199. struct slot_action {
  200. int slot_id;
  201. std::string filename;
  202. std::string filepath;
  203. };
  204. slot_action slot_action;
  205. // used by SERVER_TASK_TYPE_METRICS
  206. bool metrics_reset_bucket = false;
  207. // used by SERVER_TASK_TYPE_SET_LORA
  208. std::vector<common_adapter_lora_info> set_lora;
  209. server_task(server_task_type type) : type(type) {}
  210. static slot_params params_from_json_cmpl(
  211. const llama_context * ctx,
  212. const common_params & params_base,
  213. const json & data) {
  214. const llama_model * model = llama_get_model(ctx);
  215. const llama_vocab * vocab = llama_model_get_vocab(model);
  216. slot_params params;
  217. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  218. slot_params defaults;
  219. defaults.sampling = params_base.sampling;
  220. defaults.speculative = params_base.speculative;
  221. defaults.n_keep = params_base.n_keep;
  222. defaults.antiprompt = params_base.antiprompt;
  223. // enabling this will output extra debug information in the HTTP responses from the server
  224. params.verbose = params_base.verbosity > 9;
  225. params.timings_per_token = json_value(data, "timings_per_token", false);
  226. params.stream = json_value(data, "stream", false);
  227. params.cache_prompt = json_value(data, "cache_prompt", true);
  228. params.return_tokens = json_value(data, "return_tokens", false);
  229. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  230. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  231. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  232. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  233. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  234. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  235. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  236. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  237. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  238. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  239. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  240. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  241. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  242. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  243. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  244. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  245. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  246. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  247. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  248. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  249. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  250. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  251. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  252. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  253. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  254. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  255. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  256. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  257. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  258. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  259. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  260. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  261. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  262. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  263. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  264. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  265. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  266. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  267. // Use OpenAI API logprobs only if n_probs wasn't provided
  268. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  269. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  270. }
  271. if (data.contains("lora")) {
  272. if (data.at("lora").is_array()) {
  273. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  274. } else {
  275. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  276. }
  277. } else {
  278. params.lora = params_base.lora_adapters;
  279. }
  280. // TODO: add more sanity checks for the input parameters
  281. if (params.sampling.penalty_last_n < -1) {
  282. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  283. }
  284. if (params.sampling.dry_penalty_last_n < -1) {
  285. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  286. }
  287. if (params.sampling.penalty_last_n == -1) {
  288. // note: should be the slot's context and not the full context, but it's ok
  289. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  290. }
  291. if (params.sampling.dry_penalty_last_n == -1) {
  292. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  293. }
  294. if (params.sampling.dry_base < 1.0f) {
  295. params.sampling.dry_base = defaults.sampling.dry_base;
  296. }
  297. // sequence breakers for DRY
  298. {
  299. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  300. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  301. if (data.contains("dry_sequence_breakers")) {
  302. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  303. if (params.sampling.dry_sequence_breakers.empty()) {
  304. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  305. }
  306. }
  307. }
  308. // process "json_schema" and "grammar"
  309. if (data.contains("json_schema") && !data.contains("grammar")) {
  310. try {
  311. auto schema = json_value(data, "json_schema", json::object());
  312. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  313. params.sampling.grammar = json_schema_to_grammar(schema);
  314. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  315. } catch (const std::exception & e) {
  316. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  317. }
  318. } else {
  319. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  320. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  321. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  322. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  323. }
  324. {
  325. auto it = data.find("chat_format");
  326. if (it != data.end()) {
  327. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  328. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  329. } else {
  330. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  331. }
  332. common_reasoning_format reasoning_format = params_base.reasoning_format;
  333. if (data.contains("reasoning_format")) {
  334. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  335. }
  336. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  337. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  338. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  339. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  340. }
  341. {
  342. const auto preserved_tokens = data.find("preserved_tokens");
  343. if (preserved_tokens != data.end()) {
  344. for (const auto & t : *preserved_tokens) {
  345. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  346. if (ids.size() == 1) {
  347. SRV_DBG("Preserved token: %d\n", ids[0]);
  348. params.sampling.preserved_tokens.insert(ids[0]);
  349. } else {
  350. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  351. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  352. }
  353. }
  354. }
  355. const auto grammar_triggers = data.find("grammar_triggers");
  356. if (grammar_triggers != data.end()) {
  357. for (const auto & t : *grammar_triggers) {
  358. server_grammar_trigger ct(t);
  359. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  360. const auto & word = ct.value.value;
  361. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  362. if (ids.size() == 1) {
  363. auto token = ids[0];
  364. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  365. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  366. }
  367. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  368. common_grammar_trigger trigger;
  369. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  370. trigger.value = word;
  371. trigger.token = token;
  372. params.sampling.grammar_triggers.push_back(std::move(trigger));
  373. } else {
  374. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  375. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  376. }
  377. } else {
  378. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  379. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  380. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  381. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  382. } else {
  383. throw std::runtime_error("Unknown grammar trigger type");
  384. }
  385. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  386. }
  387. }
  388. }
  389. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  390. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  391. }
  392. }
  393. {
  394. params.sampling.logit_bias.clear();
  395. const auto & logit_bias = data.find("logit_bias");
  396. if (logit_bias != data.end() && logit_bias->is_array()) {
  397. const int n_vocab = llama_vocab_n_tokens(vocab);
  398. for (const auto & el : *logit_bias) {
  399. // TODO: we may want to throw errors here, in case "el" is incorrect
  400. if (el.is_array() && el.size() == 2) {
  401. float bias;
  402. if (el[1].is_number()) {
  403. bias = el[1].get<float>();
  404. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  405. bias = -INFINITY;
  406. } else {
  407. continue;
  408. }
  409. if (el[0].is_number_integer()) {
  410. llama_token tok = el[0].get<llama_token>();
  411. if (tok >= 0 && tok < n_vocab) {
  412. params.sampling.logit_bias.push_back({tok, bias});
  413. }
  414. } else if (el[0].is_string()) {
  415. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  416. for (auto tok : toks) {
  417. params.sampling.logit_bias.push_back({tok, bias});
  418. }
  419. }
  420. }
  421. }
  422. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  423. const int n_vocab = llama_vocab_n_tokens(vocab);
  424. for (const auto & el : logit_bias->items()) {
  425. float bias;
  426. const auto & key = el.key();
  427. const auto & value = el.value();
  428. if (value.is_number()) {
  429. bias = value.get<float>();
  430. } else if (value.is_boolean() && !value.get<bool>()) {
  431. bias = -INFINITY;
  432. } else {
  433. continue;
  434. }
  435. char *end;
  436. llama_token tok = strtol(key.c_str(), &end, 10);
  437. if (*end == 0) {
  438. if (tok >= 0 && tok < n_vocab) {
  439. params.sampling.logit_bias.push_back({tok, bias});
  440. }
  441. } else {
  442. auto toks = common_tokenize(vocab, key, false);
  443. for (auto tok : toks) {
  444. params.sampling.logit_bias.push_back({tok, bias});
  445. }
  446. }
  447. }
  448. }
  449. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  450. if (params.sampling.ignore_eos) {
  451. params.sampling.logit_bias.insert(
  452. params.sampling.logit_bias.end(),
  453. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  454. }
  455. }
  456. {
  457. params.antiprompt.clear();
  458. const auto & stop = data.find("stop");
  459. if (stop != data.end() && stop->is_array()) {
  460. for (const auto & word : *stop) {
  461. if (!word.empty()) {
  462. params.antiprompt.push_back(word);
  463. }
  464. }
  465. }
  466. // set reverse prompt from cli args if not set in the request
  467. if (params.antiprompt.empty()) {
  468. params.antiprompt = defaults.antiprompt;
  469. }
  470. }
  471. {
  472. const auto samplers = data.find("samplers");
  473. if (samplers != data.end()) {
  474. if (samplers->is_array()) {
  475. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  476. } else if (samplers->is_string()){
  477. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  478. }
  479. } else {
  480. params.sampling.samplers = defaults.sampling.samplers;
  481. }
  482. }
  483. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  484. params.oaicompat_model = json_value(data, "model", model_name);
  485. return params;
  486. }
  487. // utility function
  488. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  489. std::unordered_set<int> ids(tasks.size());
  490. for (size_t i = 0; i < tasks.size(); i++) {
  491. ids.insert(tasks[i].id);
  492. }
  493. return ids;
  494. }
  495. };
  496. struct result_timings {
  497. int32_t prompt_n = -1;
  498. double prompt_ms;
  499. double prompt_per_token_ms;
  500. double prompt_per_second;
  501. int32_t predicted_n = -1;
  502. double predicted_ms;
  503. double predicted_per_token_ms;
  504. double predicted_per_second;
  505. // Optional speculative metrics - only included when > 0
  506. int32_t draft_n = 0;
  507. int32_t draft_n_accepted = 0;
  508. json to_json() const {
  509. json base = {
  510. {"prompt_n", prompt_n},
  511. {"prompt_ms", prompt_ms},
  512. {"prompt_per_token_ms", prompt_per_token_ms},
  513. {"prompt_per_second", prompt_per_second},
  514. {"predicted_n", predicted_n},
  515. {"predicted_ms", predicted_ms},
  516. {"predicted_per_token_ms", predicted_per_token_ms},
  517. {"predicted_per_second", predicted_per_second},
  518. };
  519. if (draft_n > 0) {
  520. base["draft_n"] = draft_n;
  521. base["draft_n_accepted"] = draft_n_accepted;
  522. }
  523. return base;
  524. }
  525. };
  526. struct server_task_result {
  527. int id = -1;
  528. int id_slot = -1;
  529. virtual bool is_error() {
  530. // only used by server_task_result_error
  531. return false;
  532. }
  533. virtual bool is_stop() {
  534. // only used by server_task_result_cmpl_*
  535. return false;
  536. }
  537. virtual int get_index() {
  538. return -1;
  539. }
  540. virtual json to_json() = 0;
  541. virtual ~server_task_result() = default;
  542. };
  543. // using shared_ptr for polymorphism of server_task_result
  544. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  545. inline std::string stop_type_to_str(stop_type type) {
  546. switch (type) {
  547. case STOP_TYPE_EOS: return "eos";
  548. case STOP_TYPE_WORD: return "word";
  549. case STOP_TYPE_LIMIT: return "limit";
  550. default: return "none";
  551. }
  552. }
  553. struct completion_token_output {
  554. llama_token tok;
  555. float prob;
  556. std::string text_to_send;
  557. struct prob_info {
  558. llama_token tok;
  559. std::string txt;
  560. float prob;
  561. };
  562. std::vector<prob_info> probs;
  563. json to_json(bool post_sampling_probs) const {
  564. json probs_for_token = json::array();
  565. for (const auto & p : probs) {
  566. std::string txt(p.txt);
  567. txt.resize(validate_utf8(txt));
  568. probs_for_token.push_back(json {
  569. {"id", p.tok},
  570. {"token", txt},
  571. {"bytes", str_to_bytes(p.txt)},
  572. {
  573. post_sampling_probs ? "prob" : "logprob",
  574. post_sampling_probs ? p.prob : logarithm(p.prob)
  575. },
  576. });
  577. }
  578. return probs_for_token;
  579. }
  580. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  581. json out = json::array();
  582. for (const auto & p : probs) {
  583. std::string txt(p.text_to_send);
  584. txt.resize(validate_utf8(txt));
  585. out.push_back(json {
  586. {"id", p.tok},
  587. {"token", txt},
  588. {"bytes", str_to_bytes(p.text_to_send)},
  589. {
  590. post_sampling_probs ? "prob" : "logprob",
  591. post_sampling_probs ? p.prob : logarithm(p.prob)
  592. },
  593. {
  594. post_sampling_probs ? "top_probs" : "top_logprobs",
  595. p.to_json(post_sampling_probs)
  596. },
  597. });
  598. }
  599. return out;
  600. }
  601. static float logarithm(float x) {
  602. // nlohmann::json converts -inf to null, so we need to prevent that
  603. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  604. }
  605. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  606. std::vector<unsigned char> bytes;
  607. for (unsigned char c : str) {
  608. bytes.push_back(c);
  609. }
  610. return bytes;
  611. }
  612. };
  613. struct server_task_result_cmpl_final : server_task_result {
  614. int index = 0;
  615. std::string content;
  616. llama_tokens tokens;
  617. bool stream;
  618. result_timings timings;
  619. std::string prompt;
  620. bool truncated;
  621. int32_t n_decoded;
  622. int32_t n_prompt_tokens;
  623. int32_t n_tokens_cached;
  624. bool has_new_line;
  625. std::string stopping_word;
  626. stop_type stop = STOP_TYPE_NONE;
  627. bool post_sampling_probs;
  628. std::vector<completion_token_output> probs_output;
  629. std::vector<std::string> response_fields;
  630. slot_params generation_params;
  631. // OAI-compat fields
  632. bool verbose = false;
  633. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  634. std::string oaicompat_model;
  635. std::string oaicompat_cmpl_id;
  636. common_chat_msg oaicompat_msg;
  637. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  638. virtual int get_index() override {
  639. return index;
  640. }
  641. virtual bool is_stop() override {
  642. return true; // in stream mode, final responses are considered stop
  643. }
  644. virtual json to_json() override {
  645. switch (oaicompat) {
  646. case OAICOMPAT_TYPE_NONE:
  647. return to_json_non_oaicompat();
  648. case OAICOMPAT_TYPE_COMPLETION:
  649. return to_json_oaicompat();
  650. case OAICOMPAT_TYPE_CHAT:
  651. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  652. default:
  653. GGML_ASSERT(false && "Invalid oaicompat_type");
  654. }
  655. }
  656. json to_json_non_oaicompat() {
  657. json res = json {
  658. {"index", index},
  659. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  660. {"tokens", stream ? llama_tokens {} : tokens},
  661. {"id_slot", id_slot},
  662. {"stop", true},
  663. {"model", oaicompat_model},
  664. {"tokens_predicted", n_decoded},
  665. {"tokens_evaluated", n_prompt_tokens},
  666. {"generation_settings", generation_params.to_json()},
  667. {"prompt", prompt},
  668. {"has_new_line", has_new_line},
  669. {"truncated", truncated},
  670. {"stop_type", stop_type_to_str(stop)},
  671. {"stopping_word", stopping_word},
  672. {"tokens_cached", n_tokens_cached},
  673. {"timings", timings.to_json()},
  674. };
  675. if (!stream && !probs_output.empty()) {
  676. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  677. }
  678. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  679. }
  680. json to_json_oaicompat() {
  681. std::time_t t = std::time(0);
  682. json logprobs = json(nullptr); // OAI default to null
  683. if (!stream && probs_output.size() > 0) {
  684. logprobs = json{
  685. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  686. };
  687. }
  688. json finish_reason = "length";
  689. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  690. finish_reason = "stop";
  691. }
  692. json res = json {
  693. {"choices", json::array({
  694. json{
  695. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  696. {"index", index},
  697. {"logprobs", logprobs},
  698. {"finish_reason", finish_reason},
  699. }
  700. })},
  701. {"created", t},
  702. {"model", oaicompat_model},
  703. {"system_fingerprint", build_info},
  704. {"object", "text_completion"},
  705. {"usage", json {
  706. {"completion_tokens", n_decoded},
  707. {"prompt_tokens", n_prompt_tokens},
  708. {"total_tokens", n_decoded + n_prompt_tokens}
  709. }},
  710. {"id", oaicompat_cmpl_id}
  711. };
  712. // extra fields for debugging purposes
  713. if (verbose) {
  714. res["__verbose"] = to_json_non_oaicompat();
  715. }
  716. if (timings.prompt_n >= 0) {
  717. res.push_back({"timings", timings.to_json()});
  718. }
  719. return res;
  720. }
  721. json to_json_oaicompat_chat() {
  722. std::string finish_reason = "length";
  723. common_chat_msg msg;
  724. if (!oaicompat_msg.empty()) {
  725. msg = oaicompat_msg;
  726. } else {
  727. msg.role = "assistant";
  728. msg.content = content;
  729. }
  730. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  731. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  732. }
  733. json choice {
  734. {"finish_reason", finish_reason},
  735. {"index", 0},
  736. {"message", msg.to_json_oaicompat<json>()},
  737. };
  738. if (!stream && probs_output.size() > 0) {
  739. choice["logprobs"] = json{
  740. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  741. };
  742. }
  743. std::time_t t = std::time(0);
  744. json res = json {
  745. {"choices", json::array({choice})},
  746. {"created", t},
  747. {"model", oaicompat_model},
  748. {"system_fingerprint", build_info},
  749. {"object", "chat.completion"},
  750. {"usage", json {
  751. {"completion_tokens", n_decoded},
  752. {"prompt_tokens", n_prompt_tokens},
  753. {"total_tokens", n_decoded + n_prompt_tokens}
  754. }},
  755. {"id", oaicompat_cmpl_id}
  756. };
  757. // extra fields for debugging purposes
  758. if (verbose) {
  759. res["__verbose"] = to_json_non_oaicompat();
  760. }
  761. if (timings.prompt_n >= 0) {
  762. res.push_back({"timings", timings.to_json()});
  763. }
  764. return res;
  765. }
  766. json to_json_oaicompat_chat_stream() {
  767. std::time_t t = std::time(0);
  768. std::string finish_reason = "length";
  769. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  770. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  771. }
  772. json deltas = json::array();
  773. for (const auto & diff : oaicompat_msg_diffs) {
  774. deltas.push_back({
  775. {"choices", json::array({
  776. json {
  777. {"finish_reason", nullptr},
  778. {"index", 0},
  779. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  780. },
  781. })},
  782. {"created", t},
  783. {"id", oaicompat_cmpl_id},
  784. {"model", oaicompat_model},
  785. {"system_fingerprint", build_info},
  786. {"object", "chat.completion.chunk"},
  787. });
  788. }
  789. deltas.push_back({
  790. {"choices", json::array({
  791. json {
  792. {"finish_reason", finish_reason},
  793. {"index", 0},
  794. {"delta", json::object()},
  795. },
  796. })},
  797. {"created", t},
  798. {"id", oaicompat_cmpl_id},
  799. {"model", oaicompat_model},
  800. {"system_fingerprint", build_info},
  801. {"object", "chat.completion.chunk"},
  802. {"usage", json {
  803. {"completion_tokens", n_decoded},
  804. {"prompt_tokens", n_prompt_tokens},
  805. {"total_tokens", n_decoded + n_prompt_tokens},
  806. }},
  807. });
  808. if (timings.prompt_n >= 0) {
  809. deltas.back().push_back({"timings", timings.to_json()});
  810. }
  811. // extra fields for debugging purposes
  812. if (verbose && !deltas.empty()) {
  813. deltas.front()["__verbose"] = to_json_non_oaicompat();
  814. }
  815. return deltas;
  816. }
  817. };
  818. struct server_task_result_cmpl_partial : server_task_result {
  819. int index = 0;
  820. std::string content;
  821. llama_tokens tokens;
  822. int32_t n_decoded;
  823. int32_t n_prompt_tokens;
  824. bool post_sampling_probs;
  825. completion_token_output prob_output;
  826. result_timings timings;
  827. // OAI-compat fields
  828. bool verbose = false;
  829. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  830. std::string oaicompat_model;
  831. std::string oaicompat_cmpl_id;
  832. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  833. virtual int get_index() override {
  834. return index;
  835. }
  836. virtual bool is_stop() override {
  837. return false; // in stream mode, partial responses are not considered stop
  838. }
  839. virtual json to_json() override {
  840. switch (oaicompat) {
  841. case OAICOMPAT_TYPE_NONE:
  842. return to_json_non_oaicompat();
  843. case OAICOMPAT_TYPE_COMPLETION:
  844. return to_json_oaicompat();
  845. case OAICOMPAT_TYPE_CHAT:
  846. return to_json_oaicompat_chat();
  847. default:
  848. GGML_ASSERT(false && "Invalid oaicompat_type");
  849. }
  850. }
  851. json to_json_non_oaicompat() {
  852. // non-OAI-compat JSON
  853. json res = json {
  854. {"index", index},
  855. {"content", content},
  856. {"tokens", tokens},
  857. {"stop", false},
  858. {"id_slot", id_slot},
  859. {"tokens_predicted", n_decoded},
  860. {"tokens_evaluated", n_prompt_tokens},
  861. };
  862. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  863. if (timings.prompt_n > 0) {
  864. res.push_back({"timings", timings.to_json()});
  865. }
  866. if (!prob_output.probs.empty()) {
  867. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  868. }
  869. return res;
  870. }
  871. json to_json_oaicompat() {
  872. std::time_t t = std::time(0);
  873. json logprobs = json(nullptr); // OAI default to null
  874. if (prob_output.probs.size() > 0) {
  875. logprobs = json{
  876. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  877. };
  878. }
  879. json res = json {
  880. {"choices", json::array({
  881. json{
  882. {"text", content},
  883. {"index", index},
  884. {"logprobs", logprobs},
  885. {"finish_reason", nullptr},
  886. }
  887. })},
  888. {"created", t},
  889. {"model", oaicompat_model},
  890. {"system_fingerprint", build_info},
  891. {"object", "text_completion"},
  892. {"id", oaicompat_cmpl_id}
  893. };
  894. // extra fields for debugging purposes
  895. if (verbose) {
  896. res["__verbose"] = to_json_non_oaicompat();
  897. }
  898. if (timings.prompt_n >= 0) {
  899. res.push_back({"timings", timings.to_json()});
  900. }
  901. return res;
  902. }
  903. json to_json_oaicompat_chat() {
  904. bool first = n_decoded == 1;
  905. std::time_t t = std::time(0);
  906. json choices;
  907. std::vector<json> deltas;
  908. auto add_delta = [&](const json & delta) {
  909. deltas.push_back({
  910. {"choices", json::array({
  911. json {
  912. {"finish_reason", nullptr},
  913. {"index", 0},
  914. {"delta", delta},
  915. },
  916. })},
  917. {"created", t},
  918. {"id", oaicompat_cmpl_id},
  919. {"model", oaicompat_model},
  920. {"system_fingerprint", build_info},
  921. {"object", "chat.completion.chunk"},
  922. });
  923. };
  924. // We have to send an initial update to conform to openai behavior
  925. if (first) {
  926. add_delta({
  927. {"role", "assistant"},
  928. {"content", nullptr},
  929. });
  930. }
  931. for (const auto & diff : oaicompat_msg_diffs) {
  932. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  933. }
  934. if (!deltas.empty()) {
  935. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  936. if (prob_output.probs.size() > 0) {
  937. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  938. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  939. };
  940. }
  941. if (timings.prompt_n >= 0) {
  942. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  943. }
  944. }
  945. return deltas;
  946. }
  947. };
  948. struct server_task_result_embd : server_task_result {
  949. int index = 0;
  950. std::vector<std::vector<float>> embedding;
  951. int32_t n_tokens;
  952. // OAI-compat fields
  953. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  954. virtual int get_index() override {
  955. return index;
  956. }
  957. virtual json to_json() override {
  958. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  959. ? to_json_oaicompat()
  960. : to_json_non_oaicompat();
  961. }
  962. json to_json_non_oaicompat() {
  963. return json {
  964. {"index", index},
  965. {"embedding", embedding},
  966. };
  967. }
  968. json to_json_oaicompat() {
  969. return json {
  970. {"index", index},
  971. {"embedding", embedding[0]},
  972. {"tokens_evaluated", n_tokens},
  973. };
  974. }
  975. };
  976. struct server_task_result_rerank : server_task_result {
  977. int index = 0;
  978. float score = -1e6;
  979. int32_t n_tokens;
  980. virtual int get_index() override {
  981. return index;
  982. }
  983. virtual json to_json() override {
  984. return json {
  985. {"index", index},
  986. {"score", score},
  987. {"tokens_evaluated", n_tokens},
  988. };
  989. }
  990. };
  991. // this function maybe used outside of server_task_result_error
  992. static json format_error_response(const std::string & message, const enum error_type type) {
  993. std::string type_str;
  994. int code = 500;
  995. switch (type) {
  996. case ERROR_TYPE_INVALID_REQUEST:
  997. type_str = "invalid_request_error";
  998. code = 400;
  999. break;
  1000. case ERROR_TYPE_AUTHENTICATION:
  1001. type_str = "authentication_error";
  1002. code = 401;
  1003. break;
  1004. case ERROR_TYPE_NOT_FOUND:
  1005. type_str = "not_found_error";
  1006. code = 404;
  1007. break;
  1008. case ERROR_TYPE_SERVER:
  1009. type_str = "server_error";
  1010. code = 500;
  1011. break;
  1012. case ERROR_TYPE_PERMISSION:
  1013. type_str = "permission_error";
  1014. code = 403;
  1015. break;
  1016. case ERROR_TYPE_NOT_SUPPORTED:
  1017. type_str = "not_supported_error";
  1018. code = 501;
  1019. break;
  1020. case ERROR_TYPE_UNAVAILABLE:
  1021. type_str = "unavailable_error";
  1022. code = 503;
  1023. break;
  1024. }
  1025. return json {
  1026. {"code", code},
  1027. {"message", message},
  1028. {"type", type_str},
  1029. };
  1030. }
  1031. struct server_task_result_error : server_task_result {
  1032. int index = 0;
  1033. error_type err_type = ERROR_TYPE_SERVER;
  1034. std::string err_msg;
  1035. virtual bool is_error() override {
  1036. return true;
  1037. }
  1038. virtual json to_json() override {
  1039. return format_error_response(err_msg, err_type);
  1040. }
  1041. };
  1042. struct server_task_result_metrics : server_task_result {
  1043. int n_idle_slots;
  1044. int n_processing_slots;
  1045. int n_tasks_deferred;
  1046. int64_t t_start;
  1047. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1048. uint64_t n_prompt_tokens_processed_total = 0;
  1049. uint64_t t_prompt_processing_total = 0;
  1050. uint64_t n_tokens_predicted_total = 0;
  1051. uint64_t t_tokens_generation_total = 0;
  1052. uint64_t n_prompt_tokens_processed = 0;
  1053. uint64_t t_prompt_processing = 0;
  1054. uint64_t n_tokens_predicted = 0;
  1055. uint64_t t_tokens_generation = 0;
  1056. uint64_t n_decode_total = 0;
  1057. uint64_t n_busy_slots_total = 0;
  1058. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1059. // therefore, we use json to temporarily store the slot.to_json() result
  1060. json slots_data = json::array();
  1061. virtual json to_json() override {
  1062. return json {
  1063. { "idle", n_idle_slots },
  1064. { "processing", n_processing_slots },
  1065. { "deferred", n_tasks_deferred },
  1066. { "t_start", t_start },
  1067. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1068. { "t_tokens_generation_total", t_tokens_generation_total },
  1069. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1070. { "t_prompt_processing_total", t_prompt_processing_total },
  1071. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1072. { "t_prompt_processing", t_prompt_processing },
  1073. { "n_tokens_predicted", n_tokens_predicted },
  1074. { "t_tokens_generation", t_tokens_generation },
  1075. { "n_decode_total", n_decode_total },
  1076. { "n_busy_slots_total", n_busy_slots_total },
  1077. { "slots", slots_data },
  1078. };
  1079. }
  1080. };
  1081. struct server_task_result_slot_save_load : server_task_result {
  1082. std::string filename;
  1083. bool is_save; // true = save, false = load
  1084. size_t n_tokens;
  1085. size_t n_bytes;
  1086. double t_ms;
  1087. virtual json to_json() override {
  1088. if (is_save) {
  1089. return json {
  1090. { "id_slot", id_slot },
  1091. { "filename", filename },
  1092. { "n_saved", n_tokens },
  1093. { "n_written", n_bytes },
  1094. { "timings", {
  1095. { "save_ms", t_ms }
  1096. }},
  1097. };
  1098. } else {
  1099. return json {
  1100. { "id_slot", id_slot },
  1101. { "filename", filename },
  1102. { "n_restored", n_tokens },
  1103. { "n_read", n_bytes },
  1104. { "timings", {
  1105. { "restore_ms", t_ms }
  1106. }},
  1107. };
  1108. }
  1109. }
  1110. };
  1111. struct server_task_result_slot_erase : server_task_result {
  1112. size_t n_erased;
  1113. virtual json to_json() override {
  1114. return json {
  1115. { "id_slot", id_slot },
  1116. { "n_erased", n_erased },
  1117. };
  1118. }
  1119. };
  1120. struct server_task_result_apply_lora : server_task_result {
  1121. virtual json to_json() override {
  1122. return json {{ "success", true }};
  1123. }
  1124. };
  1125. struct server_slot {
  1126. int id;
  1127. int id_task = -1;
  1128. // only used for completion/embedding/infill/rerank
  1129. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1130. llama_batch batch_spec = {};
  1131. llama_context * ctx = nullptr;
  1132. llama_context * ctx_dft = nullptr;
  1133. // multimodal
  1134. mtmd_context * mctx = nullptr;
  1135. common_speculative * spec = nullptr;
  1136. std::vector<common_adapter_lora_info> lora;
  1137. // the index relative to completion multi-task request
  1138. size_t index = 0;
  1139. struct slot_params params;
  1140. slot_state state = SLOT_STATE_IDLE;
  1141. // used to determine the slot that has been used the longest
  1142. int64_t t_last_used = -1;
  1143. // generation props
  1144. int32_t n_ctx = 0; // context size per slot
  1145. int32_t n_past = 0;
  1146. int32_t n_decoded = 0;
  1147. int32_t n_remaining = -1;
  1148. int32_t i_batch = -1;
  1149. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1150. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1151. int32_t n_prompt_tokens = 0;
  1152. int32_t n_prompt_tokens_processed = 0;
  1153. // input prompt tokens
  1154. server_tokens prompt_tokens;
  1155. size_t last_nl_pos = 0;
  1156. std::string generated_text;
  1157. llama_tokens generated_tokens;
  1158. common_chat_msg chat_msg;
  1159. server_tokens cache_tokens;
  1160. std::vector<completion_token_output> generated_token_probs;
  1161. bool has_next_token = true;
  1162. bool has_new_line = false;
  1163. bool truncated = false;
  1164. stop_type stop;
  1165. std::string stopping_word;
  1166. // sampling
  1167. json json_schema;
  1168. struct common_sampler * smpl = nullptr;
  1169. llama_token sampled;
  1170. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1171. std::vector<std::string> generated_tool_call_ids;
  1172. // stats
  1173. size_t n_sent_text = 0; // number of sent text character
  1174. int64_t t_start_process_prompt;
  1175. int64_t t_start_generation;
  1176. double t_prompt_processing; // ms
  1177. double t_token_generation; // ms
  1178. std::function<void(int)> callback_on_release;
  1179. // Speculative decoding stats
  1180. int32_t n_draft_total = 0; // Total draft tokens generated
  1181. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1182. void reset() {
  1183. SLT_DBG(*this, "%s", "\n");
  1184. n_prompt_tokens = 0;
  1185. last_nl_pos = 0;
  1186. generated_text = "";
  1187. has_new_line = false;
  1188. truncated = false;
  1189. stop = STOP_TYPE_NONE;
  1190. stopping_word = "";
  1191. n_past = 0;
  1192. n_sent_text = 0;
  1193. task_type = SERVER_TASK_TYPE_COMPLETION;
  1194. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1195. generated_tokens.clear();
  1196. generated_token_probs.clear();
  1197. chat_msg = {};
  1198. json_schema = json();
  1199. generated_tool_call_ids.clear();
  1200. // clear speculative decoding stats
  1201. n_draft_total = 0;
  1202. n_draft_accepted = 0;
  1203. }
  1204. bool need_embd() const {
  1205. return server_task_type_need_embd(task_type);
  1206. }
  1207. bool need_logits() const {
  1208. return server_task_type_need_logits(task_type);
  1209. }
  1210. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1211. // also we cannot split if the pooling would require any past tokens
  1212. bool can_split() const {
  1213. return
  1214. !need_embd() ||
  1215. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1216. }
  1217. bool can_batch_with(server_slot & other_slot) const {
  1218. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1219. }
  1220. bool has_budget(const common_params & global_params) {
  1221. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1222. return true; // limitless
  1223. }
  1224. n_remaining = -1;
  1225. if (params.n_predict != -1) {
  1226. n_remaining = params.n_predict - n_decoded;
  1227. } else if (global_params.n_predict != -1) {
  1228. n_remaining = global_params.n_predict - n_decoded;
  1229. }
  1230. return n_remaining > 0; // no budget
  1231. }
  1232. bool is_processing() const {
  1233. return state != SLOT_STATE_IDLE;
  1234. }
  1235. bool can_speculate() const {
  1236. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1237. }
  1238. void add_token(const completion_token_output & token) {
  1239. if (!is_processing()) {
  1240. SLT_WRN(*this, "%s", "slot is not processing\n");
  1241. return;
  1242. }
  1243. generated_token_probs.push_back(token);
  1244. }
  1245. void release() {
  1246. if (is_processing()) {
  1247. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1248. t_last_used = ggml_time_us();
  1249. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1250. state = SLOT_STATE_IDLE;
  1251. callback_on_release(id);
  1252. }
  1253. }
  1254. result_timings get_timings() const {
  1255. result_timings timings;
  1256. timings.prompt_n = n_prompt_tokens_processed;
  1257. timings.prompt_ms = t_prompt_processing;
  1258. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1259. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1260. timings.predicted_n = n_decoded;
  1261. timings.predicted_ms = t_token_generation;
  1262. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1263. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1264. // Add speculative metrics
  1265. if (n_draft_total > 0) {
  1266. timings.draft_n = n_draft_total;
  1267. timings.draft_n_accepted = n_draft_accepted;
  1268. }
  1269. return timings;
  1270. }
  1271. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1272. auto previous_msg = chat_msg;
  1273. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1274. auto new_msg = common_chat_parse(
  1275. generated_text,
  1276. /* is_partial= */ stop != STOP_TYPE_EOS,
  1277. params.oaicompat_chat_syntax);
  1278. if (!new_msg.empty()) {
  1279. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1280. chat_msg = new_msg;
  1281. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1282. }
  1283. return chat_msg;
  1284. }
  1285. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1286. size_t stop_pos = std::string::npos;
  1287. for (const std::string & word : params.antiprompt) {
  1288. size_t pos;
  1289. if (is_full_stop) {
  1290. const size_t tmp = word.size() + last_token_size;
  1291. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1292. pos = text.find(word, from_pos);
  1293. } else {
  1294. // otherwise, partial stop
  1295. pos = string_find_partial_stop(text, word);
  1296. }
  1297. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1298. if (is_full_stop) {
  1299. stop = STOP_TYPE_WORD;
  1300. stopping_word = word;
  1301. has_next_token = false;
  1302. }
  1303. stop_pos = pos;
  1304. }
  1305. }
  1306. return stop_pos;
  1307. }
  1308. void print_timings() const {
  1309. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1310. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1311. const double t_gen = t_token_generation / n_decoded;
  1312. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1313. SLT_INF(*this,
  1314. "\n"
  1315. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1316. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1317. " total time = %10.2f ms / %5d tokens\n",
  1318. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1319. t_token_generation, n_decoded, t_gen, n_gen_second,
  1320. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1321. if (n_draft_total > 0) {
  1322. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1323. SLT_INF(*this,
  1324. "\n"
  1325. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1326. draft_ratio, n_draft_accepted, n_draft_total
  1327. );
  1328. }
  1329. }
  1330. json to_json() const {
  1331. return json {
  1332. {"id", id},
  1333. {"id_task", id_task},
  1334. {"n_ctx", n_ctx},
  1335. {"speculative", can_speculate()},
  1336. {"is_processing", is_processing()},
  1337. {"params", params.to_json()},
  1338. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1339. {"next_token",
  1340. {
  1341. {"has_next_token", has_next_token},
  1342. {"has_new_line", has_new_line},
  1343. {"n_remain", n_remaining},
  1344. {"n_decoded", n_decoded},
  1345. {"stopping_word", stopping_word},
  1346. }
  1347. },
  1348. };
  1349. }
  1350. };
  1351. struct server_metrics {
  1352. int64_t t_start = 0;
  1353. uint64_t n_prompt_tokens_processed_total = 0;
  1354. uint64_t t_prompt_processing_total = 0;
  1355. uint64_t n_tokens_predicted_total = 0;
  1356. uint64_t t_tokens_generation_total = 0;
  1357. uint64_t n_prompt_tokens_processed = 0;
  1358. uint64_t t_prompt_processing = 0;
  1359. uint64_t n_tokens_predicted = 0;
  1360. uint64_t t_tokens_generation = 0;
  1361. uint64_t n_decode_total = 0;
  1362. uint64_t n_busy_slots_total = 0;
  1363. void init() {
  1364. t_start = ggml_time_us();
  1365. }
  1366. void on_prompt_eval(const server_slot & slot) {
  1367. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1368. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1369. t_prompt_processing += slot.t_prompt_processing;
  1370. t_prompt_processing_total += slot.t_prompt_processing;
  1371. }
  1372. void on_prediction(const server_slot & slot) {
  1373. n_tokens_predicted_total += slot.n_decoded;
  1374. n_tokens_predicted += slot.n_decoded;
  1375. t_tokens_generation += slot.t_token_generation;
  1376. t_tokens_generation_total += slot.t_token_generation;
  1377. }
  1378. void on_decoded(const std::vector<server_slot> & slots) {
  1379. n_decode_total++;
  1380. for (const auto & slot : slots) {
  1381. if (slot.is_processing()) {
  1382. n_busy_slots_total++;
  1383. }
  1384. }
  1385. }
  1386. void reset_bucket() {
  1387. n_prompt_tokens_processed = 0;
  1388. t_prompt_processing = 0;
  1389. n_tokens_predicted = 0;
  1390. t_tokens_generation = 0;
  1391. }
  1392. };
  1393. struct server_queue {
  1394. int id = 0;
  1395. bool running;
  1396. // queues
  1397. std::deque<server_task> queue_tasks;
  1398. std::deque<server_task> queue_tasks_deferred;
  1399. std::mutex mutex_tasks;
  1400. std::condition_variable condition_tasks;
  1401. // callback functions
  1402. std::function<void(server_task &&)> callback_new_task;
  1403. std::function<void(void)> callback_update_slots;
  1404. // Add a new task to the end of the queue
  1405. int post(server_task && task, bool front = false) {
  1406. std::unique_lock<std::mutex> lock(mutex_tasks);
  1407. GGML_ASSERT(task.id != -1);
  1408. // if this is cancel task make sure to clean up pending tasks
  1409. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1410. cleanup_pending_task(task.id_target);
  1411. }
  1412. const int task_id = task.id;
  1413. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1414. if (front) {
  1415. queue_tasks.push_front(std::move(task));
  1416. } else {
  1417. queue_tasks.push_back(std::move(task));
  1418. }
  1419. condition_tasks.notify_one();
  1420. return task_id;
  1421. }
  1422. // multi-task version of post()
  1423. int post(std::vector<server_task> && tasks, bool front = false) {
  1424. std::unique_lock<std::mutex> lock(mutex_tasks);
  1425. for (auto & task : tasks) {
  1426. if (task.id == -1) {
  1427. task.id = id++;
  1428. }
  1429. // if this is cancel task make sure to clean up pending tasks
  1430. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1431. cleanup_pending_task(task.id_target);
  1432. }
  1433. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1434. if (front) {
  1435. queue_tasks.push_front(std::move(task));
  1436. } else {
  1437. queue_tasks.push_back(std::move(task));
  1438. }
  1439. }
  1440. condition_tasks.notify_one();
  1441. return 0;
  1442. }
  1443. // Add a new task, but defer until one slot is available
  1444. void defer(server_task && task) {
  1445. std::unique_lock<std::mutex> lock(mutex_tasks);
  1446. QUE_DBG("defer task, id = %d\n", task.id);
  1447. queue_tasks_deferred.push_back(std::move(task));
  1448. condition_tasks.notify_one();
  1449. }
  1450. // Get the next id for creating a new task
  1451. int get_new_id() {
  1452. std::unique_lock<std::mutex> lock(mutex_tasks);
  1453. int new_id = id++;
  1454. return new_id;
  1455. }
  1456. // Register function to process a new task
  1457. void on_new_task(std::function<void(server_task &&)> callback) {
  1458. callback_new_task = std::move(callback);
  1459. }
  1460. // Register the function to be called when all slots data is ready to be processed
  1461. void on_update_slots(std::function<void(void)> callback) {
  1462. callback_update_slots = std::move(callback);
  1463. }
  1464. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1465. void pop_deferred_task() {
  1466. std::unique_lock<std::mutex> lock(mutex_tasks);
  1467. if (!queue_tasks_deferred.empty()) {
  1468. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1469. queue_tasks_deferred.pop_front();
  1470. }
  1471. condition_tasks.notify_one();
  1472. }
  1473. // end the start_loop routine
  1474. void terminate() {
  1475. std::unique_lock<std::mutex> lock(mutex_tasks);
  1476. running = false;
  1477. condition_tasks.notify_all();
  1478. }
  1479. /**
  1480. * Main loop consists of these steps:
  1481. * - Wait until a new task arrives
  1482. * - Process the task (i.e. maybe copy data into slot)
  1483. * - Check if multitask is finished
  1484. * - Update all slots
  1485. */
  1486. void start_loop() {
  1487. running = true;
  1488. while (true) {
  1489. QUE_DBG("%s", "processing new tasks\n");
  1490. while (true) {
  1491. std::unique_lock<std::mutex> lock(mutex_tasks);
  1492. if (!running) {
  1493. QUE_DBG("%s", "terminate\n");
  1494. return;
  1495. }
  1496. if (queue_tasks.empty()) {
  1497. lock.unlock();
  1498. break;
  1499. }
  1500. server_task task = std::move(queue_tasks.front());
  1501. queue_tasks.pop_front();
  1502. lock.unlock();
  1503. QUE_DBG("processing task, id = %d\n", task.id);
  1504. callback_new_task(std::move(task));
  1505. }
  1506. // all tasks in the current loop is processed, slots data is now ready
  1507. QUE_DBG("%s", "update slots\n");
  1508. callback_update_slots();
  1509. QUE_DBG("%s", "waiting for new tasks\n");
  1510. {
  1511. std::unique_lock<std::mutex> lock(mutex_tasks);
  1512. if (!running) {
  1513. QUE_DBG("%s", "terminate\n");
  1514. return;
  1515. }
  1516. if (queue_tasks.empty()) {
  1517. condition_tasks.wait(lock, [&]{
  1518. return (!queue_tasks.empty() || !running);
  1519. });
  1520. }
  1521. }
  1522. }
  1523. }
  1524. private:
  1525. void cleanup_pending_task(int id_target) {
  1526. // no need lock because this is called exclusively by post()
  1527. auto rm_func = [id_target](const server_task & task) {
  1528. return task.id_target == id_target;
  1529. };
  1530. queue_tasks.erase(
  1531. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1532. queue_tasks.end());
  1533. queue_tasks_deferred.erase(
  1534. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1535. queue_tasks_deferred.end());
  1536. }
  1537. };
  1538. struct server_response {
  1539. bool running = true;
  1540. // for keeping track of all tasks waiting for the result
  1541. std::unordered_set<int> waiting_task_ids;
  1542. // the main result queue (using ptr for polymorphism)
  1543. std::vector<server_task_result_ptr> queue_results;
  1544. std::mutex mutex_results;
  1545. std::condition_variable condition_results;
  1546. // add the id_task to the list of tasks waiting for response
  1547. void add_waiting_task_id(int id_task) {
  1548. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1549. std::unique_lock<std::mutex> lock(mutex_results);
  1550. waiting_task_ids.insert(id_task);
  1551. }
  1552. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1553. std::unique_lock<std::mutex> lock(mutex_results);
  1554. for (const auto & task : tasks) {
  1555. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1556. waiting_task_ids.insert(task.id);
  1557. }
  1558. }
  1559. // when the request is finished, we can remove task associated with it
  1560. void remove_waiting_task_id(int id_task) {
  1561. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1562. std::unique_lock<std::mutex> lock(mutex_results);
  1563. waiting_task_ids.erase(id_task);
  1564. // make sure to clean up all pending results
  1565. queue_results.erase(
  1566. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1567. return res->id == id_task;
  1568. }),
  1569. queue_results.end());
  1570. }
  1571. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1572. std::unique_lock<std::mutex> lock(mutex_results);
  1573. for (const auto & id_task : id_tasks) {
  1574. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1575. waiting_task_ids.erase(id_task);
  1576. }
  1577. }
  1578. // This function blocks the thread until there is a response for one of the id_tasks
  1579. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1580. while (true) {
  1581. std::unique_lock<std::mutex> lock(mutex_results);
  1582. condition_results.wait(lock, [&]{
  1583. if (!running) {
  1584. SRV_DBG("%s : queue result stop\n", __func__);
  1585. std::terminate(); // we cannot return here since the caller is HTTP code
  1586. }
  1587. return !queue_results.empty();
  1588. });
  1589. for (size_t i = 0; i < queue_results.size(); i++) {
  1590. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1591. server_task_result_ptr res = std::move(queue_results[i]);
  1592. queue_results.erase(queue_results.begin() + i);
  1593. return res;
  1594. }
  1595. }
  1596. }
  1597. // should never reach here
  1598. }
  1599. // same as recv(), but have timeout in seconds
  1600. // if timeout is reached, nullptr is returned
  1601. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1602. while (true) {
  1603. std::unique_lock<std::mutex> lock(mutex_results);
  1604. for (int i = 0; i < (int) queue_results.size(); i++) {
  1605. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1606. server_task_result_ptr res = std::move(queue_results[i]);
  1607. queue_results.erase(queue_results.begin() + i);
  1608. return res;
  1609. }
  1610. }
  1611. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1612. if (!running) {
  1613. SRV_DBG("%s : queue result stop\n", __func__);
  1614. std::terminate(); // we cannot return here since the caller is HTTP code
  1615. }
  1616. if (cr_res == std::cv_status::timeout) {
  1617. return nullptr;
  1618. }
  1619. }
  1620. // should never reach here
  1621. }
  1622. // single-task version of recv()
  1623. server_task_result_ptr recv(int id_task) {
  1624. std::unordered_set<int> id_tasks = {id_task};
  1625. return recv(id_tasks);
  1626. }
  1627. // Send a new result to a waiting id_task
  1628. void send(server_task_result_ptr && result) {
  1629. SRV_DBG("sending result for task id = %d\n", result->id);
  1630. std::unique_lock<std::mutex> lock(mutex_results);
  1631. for (const auto & id_task : waiting_task_ids) {
  1632. if (result->id == id_task) {
  1633. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1634. queue_results.emplace_back(std::move(result));
  1635. condition_results.notify_all();
  1636. return;
  1637. }
  1638. }
  1639. }
  1640. // terminate the waiting loop
  1641. void terminate() {
  1642. running = false;
  1643. condition_results.notify_all();
  1644. }
  1645. };
  1646. struct server_context {
  1647. common_params params_base;
  1648. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1649. common_init_result llama_init;
  1650. common_init_result llama_init_dft;
  1651. llama_model * model = nullptr;
  1652. llama_context * ctx = nullptr;
  1653. // multimodal
  1654. mtmd_context * mctx = nullptr;
  1655. const llama_vocab * vocab = nullptr;
  1656. bool vocab_dft_compatible = true;
  1657. llama_model * model_dft = nullptr;
  1658. llama_context_params cparams_dft;
  1659. llama_batch batch {};
  1660. bool clean_kv_cache = true;
  1661. bool add_bos_token = true;
  1662. int32_t n_ctx; // total context for all clients / slots
  1663. // slots / clients
  1664. std::vector<server_slot> slots;
  1665. json default_generation_settings_for_props;
  1666. server_queue queue_tasks;
  1667. server_response queue_results;
  1668. server_metrics metrics;
  1669. // Necessary similarity of prompt for slot selection
  1670. float slot_prompt_similarity = 0.0f;
  1671. common_chat_templates_ptr chat_templates;
  1672. oaicompat_parser_options oai_parser_opt;
  1673. ~server_context() {
  1674. mtmd_free(mctx);
  1675. // Clear any sampling context
  1676. for (server_slot & slot : slots) {
  1677. common_sampler_free(slot.smpl);
  1678. slot.smpl = nullptr;
  1679. llama_free(slot.ctx_dft);
  1680. slot.ctx_dft = nullptr;
  1681. common_speculative_free(slot.spec);
  1682. slot.spec = nullptr;
  1683. llama_batch_free(slot.batch_spec);
  1684. }
  1685. llama_batch_free(batch);
  1686. }
  1687. bool load_model(const common_params & params) {
  1688. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1689. params_base = params;
  1690. llama_init = common_init_from_params(params_base);
  1691. model = llama_init.model.get();
  1692. ctx = llama_init.context.get();
  1693. if (model == nullptr) {
  1694. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1695. return false;
  1696. }
  1697. vocab = llama_model_get_vocab(model);
  1698. n_ctx = llama_n_ctx(ctx);
  1699. add_bos_token = llama_vocab_get_add_bos(vocab);
  1700. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1701. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1702. auto params_dft = params_base;
  1703. params_dft.devices = params_base.speculative.devices;
  1704. params_dft.model = params_base.speculative.model;
  1705. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1706. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1707. params_dft.n_parallel = 1;
  1708. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1709. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1710. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  1711. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  1712. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  1713. llama_init_dft = common_init_from_params(params_dft);
  1714. model_dft = llama_init_dft.model.get();
  1715. if (model_dft == nullptr) {
  1716. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1717. return false;
  1718. }
  1719. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  1720. if (!vocab_dft_compatible) {
  1721. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1722. }
  1723. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1724. cparams_dft = common_context_params_to_llama(params_dft);
  1725. cparams_dft.n_batch = n_ctx_dft;
  1726. // the context is not needed - we will create one for each slot
  1727. llama_init_dft.context.reset();
  1728. }
  1729. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1730. try {
  1731. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1732. } catch (const std::exception & e) {
  1733. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1734. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1735. chat_templates = common_chat_templates_init(model, "chatml");
  1736. }
  1737. std::string & mmproj_path = params_base.mmproj.path;
  1738. if (!mmproj_path.empty()) {
  1739. mtmd_context_params mparams = mtmd_context_params_default();
  1740. mparams.use_gpu = params_base.mmproj_use_gpu;
  1741. mparams.print_timings = false;
  1742. mparams.n_threads = params_base.cpuparams.n_threads;
  1743. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1744. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1745. if (mctx == nullptr) {
  1746. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1747. return false;
  1748. }
  1749. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1750. if (params_base.ctx_shift) {
  1751. params_base.ctx_shift = false;
  1752. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1753. }
  1754. if (params_base.n_cache_reuse) {
  1755. params_base.n_cache_reuse = 0;
  1756. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1757. }
  1758. if (!params_base.speculative.model.path.empty()) {
  1759. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1760. return false;
  1761. }
  1762. }
  1763. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1764. if (params_base.ctx_shift) {
  1765. params_base.ctx_shift = false;
  1766. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1767. }
  1768. if (params_base.n_cache_reuse) {
  1769. params_base.n_cache_reuse = 0;
  1770. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1771. }
  1772. }
  1773. return true;
  1774. }
  1775. void init() {
  1776. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1777. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1778. for (int i = 0; i < params_base.n_parallel; i++) {
  1779. server_slot slot;
  1780. slot.id = i;
  1781. slot.ctx = ctx;
  1782. slot.n_ctx = n_ctx_slot;
  1783. slot.n_predict = params_base.n_predict;
  1784. slot.mctx = mctx;
  1785. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1786. if (model_dft) {
  1787. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1788. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1789. if (slot.ctx_dft == nullptr) {
  1790. SRV_ERR("%s", "failed to create draft context\n");
  1791. return;
  1792. }
  1793. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  1794. if (slot.spec == nullptr) {
  1795. SRV_ERR("%s", "failed to create speculator\n");
  1796. return;
  1797. }
  1798. for (auto &pair : params_base.speculative.replacements) {
  1799. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  1800. }
  1801. }
  1802. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1803. slot.params.sampling = params_base.sampling;
  1804. slot.params.n_keep = params_base.n_keep;
  1805. slot.callback_on_release = [this](int) {
  1806. queue_tasks.pop_deferred_task();
  1807. };
  1808. slot.reset();
  1809. slots.push_back(std::move(slot));
  1810. }
  1811. default_generation_settings_for_props = slots[0].to_json();
  1812. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1813. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1814. {
  1815. const int32_t n_batch = llama_n_batch(ctx);
  1816. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1817. }
  1818. metrics.init();
  1819. oai_parser_opt = {
  1820. /* use_jinja */ params_base.use_jinja,
  1821. /* prefill_assistant */ params_base.prefill_assistant,
  1822. /* reasoning_format */ params_base.reasoning_format,
  1823. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1824. /* common_chat_templates */ chat_templates.get(),
  1825. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1826. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1827. /* enable_thinking */ params_base.reasoning_budget != 0,
  1828. };
  1829. }
  1830. server_slot * get_slot_by_id(int id) {
  1831. for (server_slot & slot : slots) {
  1832. if (slot.id == id) {
  1833. return &slot;
  1834. }
  1835. }
  1836. return nullptr;
  1837. }
  1838. server_slot * get_available_slot(const server_task & task) {
  1839. server_slot * ret = nullptr;
  1840. // find the slot that has at least n% prompt similarity
  1841. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1842. int lcs_len = 0;
  1843. float similarity = 0;
  1844. for (server_slot & slot : slots) {
  1845. // skip the slot if it is not available
  1846. if (slot.is_processing()) {
  1847. continue;
  1848. }
  1849. // skip the slot if it does not contains cached tokens
  1850. if (slot.cache_tokens.empty()) {
  1851. continue;
  1852. }
  1853. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1854. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1855. // fraction of the common subsequence length compared to the current slot's prompt length
  1856. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1857. // select the current slot if the criteria match
  1858. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1859. lcs_len = cur_lcs_len;
  1860. similarity = cur_similarity;
  1861. ret = &slot;
  1862. }
  1863. }
  1864. if (ret != nullptr) {
  1865. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1866. }
  1867. }
  1868. // find the slot that has been least recently used
  1869. if (ret == nullptr) {
  1870. int64_t t_last = -1;
  1871. for (server_slot & slot : slots) {
  1872. // skip the slot if it is not available
  1873. if (slot.is_processing()) {
  1874. continue;
  1875. }
  1876. // select the current slot if the criteria match
  1877. if (!ret || slot.t_last_used <= t_last) {
  1878. t_last = slot.t_last_used;
  1879. ret = &slot;
  1880. }
  1881. }
  1882. if (ret != nullptr) {
  1883. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1884. }
  1885. }
  1886. return ret;
  1887. }
  1888. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1889. slot.reset();
  1890. slot.id_task = task.id;
  1891. slot.index = task.index;
  1892. slot.task_type = task.type;
  1893. slot.params = std::move(task.params);
  1894. slot.prompt_tokens = std::move(task.prompt_tokens);
  1895. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1896. // if lora is changed, we cannot reuse cached tokens
  1897. slot.cache_tokens.clear();
  1898. slot.lora = slot.params.lora;
  1899. }
  1900. if (!slot.prompt_tokens.validate(ctx)) {
  1901. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1902. return false;
  1903. }
  1904. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1905. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1906. // Might be better to reject the request with a 400 ?
  1907. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1908. slot.params.n_predict = slot.n_predict;
  1909. }
  1910. {
  1911. if (slot.smpl != nullptr) {
  1912. common_sampler_free(slot.smpl);
  1913. }
  1914. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1915. if (slot.smpl == nullptr) {
  1916. // for now, the only error that may happen here is invalid grammar
  1917. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1918. return false;
  1919. }
  1920. }
  1921. if (slot.ctx_dft) {
  1922. llama_batch_free(slot.batch_spec);
  1923. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1924. }
  1925. slot.state = SLOT_STATE_STARTED;
  1926. SLT_INF(slot, "%s", "processing task\n");
  1927. return true;
  1928. }
  1929. void kv_cache_clear() {
  1930. SRV_DBG("%s", "clearing KV cache\n");
  1931. // clear the entire KV cache
  1932. llama_memory_clear(llama_get_memory(ctx), true);
  1933. clean_kv_cache = false;
  1934. }
  1935. bool process_token(completion_token_output & result, server_slot & slot) {
  1936. // remember which tokens were sampled - used for repetition penalties during sampling
  1937. const std::string token_str = result.text_to_send;
  1938. slot.sampled = result.tok;
  1939. slot.generated_text += token_str;
  1940. if (slot.params.return_tokens) {
  1941. slot.generated_tokens.push_back(result.tok);
  1942. }
  1943. slot.has_next_token = true;
  1944. // check if there is incomplete UTF-8 character at the end
  1945. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1946. // search stop word and delete it
  1947. if (!incomplete) {
  1948. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1949. const std::string str_test = slot.generated_text.substr(pos);
  1950. bool send_text = true;
  1951. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1952. if (stop_pos != std::string::npos) {
  1953. slot.generated_text.erase(
  1954. slot.generated_text.begin() + pos + stop_pos,
  1955. slot.generated_text.end());
  1956. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1957. } else if (slot.has_next_token) {
  1958. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1959. send_text = stop_pos == std::string::npos;
  1960. }
  1961. // check if there is any token to predict
  1962. if (send_text) {
  1963. // no send the stop word in the response
  1964. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1965. slot.n_sent_text += result.text_to_send.size();
  1966. // add the token to slot queue and cache
  1967. } else {
  1968. result.text_to_send = "";
  1969. }
  1970. slot.add_token(result);
  1971. if (slot.params.stream) {
  1972. send_partial_response(slot, result);
  1973. }
  1974. }
  1975. if (incomplete) {
  1976. slot.has_next_token = true;
  1977. }
  1978. // if context shifting is disabled, make sure that we don't run out of context
  1979. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  1980. slot.stop = STOP_TYPE_LIMIT;
  1981. slot.has_next_token = false;
  1982. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  1983. }
  1984. // check the limits
  1985. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1986. slot.stop = STOP_TYPE_LIMIT;
  1987. slot.has_next_token = false;
  1988. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1989. }
  1990. if (slot.has_new_line) {
  1991. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1992. if (slot.params.n_indent > 0) {
  1993. // check the current indentation
  1994. // TODO: improve by not doing it more than once for each new line
  1995. if (slot.last_nl_pos > 0) {
  1996. size_t pos = slot.last_nl_pos;
  1997. int n_indent = 0;
  1998. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1999. n_indent++;
  2000. pos++;
  2001. }
  2002. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  2003. slot.stop = STOP_TYPE_LIMIT;
  2004. slot.has_next_token = false;
  2005. // cut the last line
  2006. slot.generated_text.erase(pos, std::string::npos);
  2007. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2008. }
  2009. }
  2010. // find the next new line
  2011. {
  2012. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2013. if (pos != std::string::npos) {
  2014. slot.last_nl_pos = pos + 1;
  2015. }
  2016. }
  2017. }
  2018. }
  2019. // check if there is a new line in the generated text
  2020. if (result.text_to_send.find('\n') != std::string::npos) {
  2021. slot.has_new_line = true;
  2022. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2023. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  2024. slot.stop = STOP_TYPE_LIMIT;
  2025. slot.has_next_token = false;
  2026. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  2027. }
  2028. }
  2029. // if context shift is disabled, we stop when it reaches the context limit
  2030. if (slot.n_past >= slot.n_ctx) {
  2031. slot.truncated = true;
  2032. slot.stop = STOP_TYPE_LIMIT;
  2033. slot.has_next_token = false;
  2034. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2035. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  2036. }
  2037. if (llama_vocab_is_eog(vocab, result.tok)) {
  2038. slot.stop = STOP_TYPE_EOS;
  2039. slot.has_next_token = false;
  2040. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2041. }
  2042. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2043. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2044. slot.truncated = true;
  2045. slot.stop = STOP_TYPE_LIMIT;
  2046. slot.has_next_token = false; // stop prediction
  2047. SLT_WRN(slot,
  2048. "n_predict (%d) is set for infinite generation. "
  2049. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2050. slot.params.n_predict, n_ctx_train);
  2051. }
  2052. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2053. return slot.has_next_token; // continue
  2054. }
  2055. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  2056. size_t n_probs = slot.params.sampling.n_probs;
  2057. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2058. if (post_sampling) {
  2059. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2060. const size_t max_probs = cur_p->size;
  2061. // set probability for sampled token
  2062. for (size_t i = 0; i < max_probs; i++) {
  2063. if (cur_p->data[i].id == result.tok) {
  2064. result.prob = cur_p->data[i].p;
  2065. break;
  2066. }
  2067. }
  2068. // set probability for top n_probs tokens
  2069. result.probs.reserve(max_probs);
  2070. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2071. result.probs.push_back({
  2072. cur_p->data[i].id,
  2073. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2074. cur_p->data[i].p
  2075. });
  2076. }
  2077. } else {
  2078. // TODO: optimize this with min-p optimization
  2079. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2080. // set probability for sampled token
  2081. for (size_t i = 0; i < n_vocab; i++) {
  2082. // set probability for sampled token
  2083. if (cur[i].id == result.tok) {
  2084. result.prob = cur[i].p;
  2085. break;
  2086. }
  2087. }
  2088. // set probability for top n_probs tokens
  2089. result.probs.reserve(n_probs);
  2090. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2091. result.probs.push_back({
  2092. cur[i].id,
  2093. common_token_to_piece(ctx, cur[i].id, special),
  2094. cur[i].p
  2095. });
  2096. }
  2097. }
  2098. }
  2099. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2100. send_error(task.id, error, type);
  2101. }
  2102. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2103. send_error(slot.id_task, error, type);
  2104. }
  2105. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2106. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2107. auto res = std::make_unique<server_task_result_error>();
  2108. res->id = id_task;
  2109. res->err_type = type;
  2110. res->err_msg = error;
  2111. queue_results.send(std::move(res));
  2112. }
  2113. // if multimodal is enabled, send an error and return false
  2114. bool ensure_no_mtmd(const int id_task) {
  2115. if (mctx) {
  2116. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2117. return false;
  2118. }
  2119. return true;
  2120. }
  2121. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2122. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2123. res->id = slot.id_task;
  2124. res->index = slot.index;
  2125. res->content = tkn.text_to_send;
  2126. res->tokens = { tkn.tok };
  2127. res->n_decoded = slot.n_decoded;
  2128. res->n_prompt_tokens = slot.n_prompt_tokens;
  2129. res->post_sampling_probs = slot.params.post_sampling_probs;
  2130. res->verbose = slot.params.verbose;
  2131. res->oaicompat = slot.params.oaicompat;
  2132. res->oaicompat_model = slot.params.oaicompat_model;
  2133. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2134. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2135. // populate res.probs_output
  2136. if (slot.params.sampling.n_probs > 0) {
  2137. res->prob_output = tkn; // copy the token probs
  2138. }
  2139. // populate timings if this is final response or timings_per_token is enabled
  2140. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2141. res->timings = slot.get_timings();
  2142. }
  2143. queue_results.send(std::move(res));
  2144. }
  2145. void send_final_response(server_slot & slot) {
  2146. auto res = std::make_unique<server_task_result_cmpl_final>();
  2147. res->id = slot.id_task;
  2148. res->id_slot = slot.id;
  2149. res->index = slot.index;
  2150. res->content = slot.generated_text;
  2151. res->tokens = std::move(slot.generated_tokens);
  2152. res->timings = slot.get_timings();
  2153. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2154. res->response_fields = std::move(slot.params.response_fields);
  2155. res->truncated = slot.truncated;
  2156. res->n_decoded = slot.n_decoded;
  2157. res->n_prompt_tokens = slot.n_prompt_tokens;
  2158. res->n_tokens_cached = slot.n_past;
  2159. res->has_new_line = slot.has_new_line;
  2160. res->stopping_word = slot.stopping_word;
  2161. res->stop = slot.stop;
  2162. res->post_sampling_probs = slot.params.post_sampling_probs;
  2163. res->verbose = slot.params.verbose;
  2164. res->stream = slot.params.stream;
  2165. res->oaicompat = slot.params.oaicompat;
  2166. res->oaicompat_model = slot.params.oaicompat_model;
  2167. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2168. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2169. // populate res.probs_output
  2170. if (slot.params.sampling.n_probs > 0) {
  2171. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2172. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2173. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2174. res->probs_output = std::vector<completion_token_output>(
  2175. slot.generated_token_probs.begin(),
  2176. slot.generated_token_probs.end() - safe_offset);
  2177. } else {
  2178. res->probs_output = std::vector<completion_token_output>(
  2179. slot.generated_token_probs.begin(),
  2180. slot.generated_token_probs.end());
  2181. }
  2182. }
  2183. res->generation_params = slot.params; // copy the parameters
  2184. queue_results.send(std::move(res));
  2185. }
  2186. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2187. auto res = std::make_unique<server_task_result_embd>();
  2188. res->id = slot.id_task;
  2189. res->index = slot.index;
  2190. res->n_tokens = slot.n_prompt_tokens;
  2191. res->oaicompat = slot.params.oaicompat;
  2192. const int n_embd = llama_model_n_embd(model);
  2193. std::vector<float> embd_res(n_embd, 0.0f);
  2194. for (int i = 0; i < batch.n_tokens; ++i) {
  2195. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2196. continue;
  2197. }
  2198. const float * embd = nullptr;
  2199. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2200. embd = llama_get_embeddings_ith(ctx, i);
  2201. } else {
  2202. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2203. }
  2204. if (embd == nullptr) {
  2205. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2206. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2207. continue;
  2208. }
  2209. // normalize only when there is pooling
  2210. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2211. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2212. res->embedding.push_back(embd_res);
  2213. break;
  2214. } else {
  2215. res->embedding.emplace_back(embd, embd + n_embd);
  2216. }
  2217. }
  2218. SLT_DBG(slot, "%s", "sending embeddings\n");
  2219. queue_results.send(std::move(res));
  2220. }
  2221. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2222. auto res = std::make_unique<server_task_result_rerank>();
  2223. res->id = slot.id_task;
  2224. res->index = slot.index;
  2225. res->n_tokens = slot.n_prompt_tokens;
  2226. for (int i = 0; i < batch.n_tokens; ++i) {
  2227. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2228. continue;
  2229. }
  2230. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2231. if (embd == NULL) {
  2232. embd = llama_get_embeddings_ith(ctx, i);
  2233. }
  2234. if (embd == NULL) {
  2235. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2236. res->score = -1e6;
  2237. continue;
  2238. }
  2239. res->score = embd[0];
  2240. }
  2241. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2242. queue_results.send(std::move(res));
  2243. }
  2244. //
  2245. // Functions to create new task(s) and receive result(s)
  2246. //
  2247. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2248. std::vector<server_task> cancel_tasks;
  2249. cancel_tasks.reserve(id_tasks.size());
  2250. for (const auto & id_task : id_tasks) {
  2251. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2252. server_task task(SERVER_TASK_TYPE_CANCEL);
  2253. task.id_target = id_task;
  2254. queue_results.remove_waiting_task_id(id_task);
  2255. cancel_tasks.push_back(std::move(task));
  2256. }
  2257. // push to beginning of the queue, so it has highest priority
  2258. queue_tasks.post(std::move(cancel_tasks), true);
  2259. }
  2260. // receive the results from task(s)
  2261. void receive_multi_results(
  2262. const std::unordered_set<int> & id_tasks,
  2263. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2264. const std::function<void(json)> & error_handler,
  2265. const std::function<bool()> & is_connection_closed) {
  2266. std::vector<server_task_result_ptr> results(id_tasks.size());
  2267. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2268. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2269. if (is_connection_closed()) {
  2270. cancel_tasks(id_tasks);
  2271. return;
  2272. }
  2273. if (result == nullptr) {
  2274. i--; // retry
  2275. continue;
  2276. }
  2277. if (result->is_error()) {
  2278. error_handler(result->to_json());
  2279. cancel_tasks(id_tasks);
  2280. return;
  2281. }
  2282. GGML_ASSERT(
  2283. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2284. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2285. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2286. );
  2287. const size_t idx = result->get_index();
  2288. GGML_ASSERT(idx < results.size() && "index out of range");
  2289. results[idx] = std::move(result);
  2290. }
  2291. result_handler(results);
  2292. }
  2293. // receive the results from task(s), in stream mode
  2294. void receive_cmpl_results_stream(
  2295. const std::unordered_set<int> & id_tasks,
  2296. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2297. const std::function<void(json)> & error_handler,
  2298. const std::function<bool()> & is_connection_closed) {
  2299. size_t n_finished = 0;
  2300. while (true) {
  2301. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2302. if (is_connection_closed()) {
  2303. cancel_tasks(id_tasks);
  2304. return;
  2305. }
  2306. if (result == nullptr) {
  2307. continue; // retry
  2308. }
  2309. if (result->is_error()) {
  2310. error_handler(result->to_json());
  2311. cancel_tasks(id_tasks);
  2312. return;
  2313. }
  2314. GGML_ASSERT(
  2315. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2316. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2317. );
  2318. if (!result_handler(result)) {
  2319. cancel_tasks(id_tasks);
  2320. break;
  2321. }
  2322. if (result->is_stop()) {
  2323. if (++n_finished == id_tasks.size()) {
  2324. break;
  2325. }
  2326. }
  2327. }
  2328. }
  2329. //
  2330. // Functions to process the task
  2331. //
  2332. void process_single_task(server_task && task) {
  2333. switch (task.type) {
  2334. case SERVER_TASK_TYPE_COMPLETION:
  2335. case SERVER_TASK_TYPE_INFILL:
  2336. case SERVER_TASK_TYPE_EMBEDDING:
  2337. case SERVER_TASK_TYPE_RERANK:
  2338. {
  2339. const int id_slot = task.id_selected_slot;
  2340. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2341. if (slot == nullptr) {
  2342. // if no slot is available, we defer this task for processing later
  2343. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2344. queue_tasks.defer(std::move(task));
  2345. break;
  2346. }
  2347. if (slot->is_processing()) {
  2348. // if requested slot is unavailable, we defer this task for processing later
  2349. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2350. queue_tasks.defer(std::move(task));
  2351. break;
  2352. }
  2353. if (!launch_slot_with_task(*slot, std::move(task))) {
  2354. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2355. break;
  2356. }
  2357. } break;
  2358. case SERVER_TASK_TYPE_CANCEL:
  2359. {
  2360. // release slot linked with the task id
  2361. for (auto & slot : slots) {
  2362. if (slot.id_task == task.id_target) {
  2363. slot.release();
  2364. break;
  2365. }
  2366. }
  2367. } break;
  2368. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2369. {
  2370. // do nothing
  2371. } break;
  2372. case SERVER_TASK_TYPE_METRICS:
  2373. {
  2374. json slots_data = json::array();
  2375. int n_idle_slots = 0;
  2376. int n_processing_slots = 0;
  2377. for (server_slot & slot : slots) {
  2378. json slot_data = slot.to_json();
  2379. if (slot.is_processing()) {
  2380. n_processing_slots++;
  2381. } else {
  2382. n_idle_slots++;
  2383. }
  2384. slots_data.push_back(slot_data);
  2385. }
  2386. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2387. auto res = std::make_unique<server_task_result_metrics>();
  2388. res->id = task.id;
  2389. res->slots_data = std::move(slots_data);
  2390. res->n_idle_slots = n_idle_slots;
  2391. res->n_processing_slots = n_processing_slots;
  2392. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2393. res->t_start = metrics.t_start;
  2394. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2395. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2396. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2397. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2398. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2399. res->t_prompt_processing = metrics.t_prompt_processing;
  2400. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2401. res->t_tokens_generation = metrics.t_tokens_generation;
  2402. res->n_decode_total = metrics.n_decode_total;
  2403. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2404. if (task.metrics_reset_bucket) {
  2405. metrics.reset_bucket();
  2406. }
  2407. queue_results.send(std::move(res));
  2408. } break;
  2409. case SERVER_TASK_TYPE_SLOT_SAVE:
  2410. {
  2411. if (!ensure_no_mtmd(task.id)) {
  2412. break;
  2413. }
  2414. int id_slot = task.slot_action.slot_id;
  2415. server_slot * slot = get_slot_by_id(id_slot);
  2416. if (slot == nullptr) {
  2417. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2418. break;
  2419. }
  2420. if (slot->is_processing()) {
  2421. // if requested slot is unavailable, we defer this task for processing later
  2422. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2423. queue_tasks.defer(std::move(task));
  2424. break;
  2425. }
  2426. const size_t token_count = slot->cache_tokens.size();
  2427. const int64_t t_start = ggml_time_us();
  2428. std::string filename = task.slot_action.filename;
  2429. std::string filepath = task.slot_action.filepath;
  2430. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2431. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2432. const int64_t t_end = ggml_time_us();
  2433. const double t_save_ms = (t_end - t_start) / 1000.0;
  2434. auto res = std::make_unique<server_task_result_slot_save_load>();
  2435. res->id = task.id;
  2436. res->id_slot = id_slot;
  2437. res->filename = filename;
  2438. res->is_save = true;
  2439. res->n_tokens = token_count;
  2440. res->n_bytes = nwrite;
  2441. res->t_ms = t_save_ms;
  2442. queue_results.send(std::move(res));
  2443. } break;
  2444. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2445. {
  2446. if (!ensure_no_mtmd(task.id)) break;
  2447. int id_slot = task.slot_action.slot_id;
  2448. server_slot * slot = get_slot_by_id(id_slot);
  2449. if (slot == nullptr) {
  2450. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2451. break;
  2452. }
  2453. if (slot->is_processing()) {
  2454. // if requested slot is unavailable, we defer this task for processing later
  2455. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2456. queue_tasks.defer(std::move(task));
  2457. break;
  2458. }
  2459. const int64_t t_start = ggml_time_us();
  2460. std::string filename = task.slot_action.filename;
  2461. std::string filepath = task.slot_action.filepath;
  2462. llama_tokens tokens;
  2463. tokens.resize(slot->n_ctx);
  2464. size_t token_count = 0;
  2465. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2466. if (nread == 0) {
  2467. slot->cache_tokens.clear(); // KV may already been invalidated?
  2468. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2469. break;
  2470. }
  2471. tokens.resize(token_count);
  2472. slot->cache_tokens.clear();
  2473. slot->cache_tokens.insert(tokens);
  2474. const int64_t t_end = ggml_time_us();
  2475. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2476. auto res = std::make_unique<server_task_result_slot_save_load>();
  2477. res->id = task.id;
  2478. res->id_slot = id_slot;
  2479. res->filename = filename;
  2480. res->is_save = false;
  2481. res->n_tokens = token_count;
  2482. res->n_bytes = nread;
  2483. res->t_ms = t_restore_ms;
  2484. queue_results.send(std::move(res));
  2485. } break;
  2486. case SERVER_TASK_TYPE_SLOT_ERASE:
  2487. {
  2488. if (!ensure_no_mtmd(task.id)) break;
  2489. int id_slot = task.slot_action.slot_id;
  2490. server_slot * slot = get_slot_by_id(id_slot);
  2491. if (slot == nullptr) {
  2492. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2493. break;
  2494. }
  2495. if (slot->is_processing()) {
  2496. // if requested slot is unavailable, we defer this task for processing later
  2497. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2498. queue_tasks.defer(std::move(task));
  2499. break;
  2500. }
  2501. // Erase token cache
  2502. const size_t n_erased = slot->cache_tokens.size();
  2503. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2504. slot->cache_tokens.clear();
  2505. auto res = std::make_unique<server_task_result_slot_erase>();
  2506. res->id = task.id;
  2507. res->id_slot = id_slot;
  2508. res->n_erased = n_erased;
  2509. queue_results.send(std::move(res));
  2510. } break;
  2511. case SERVER_TASK_TYPE_SET_LORA:
  2512. {
  2513. params_base.lora_adapters = std::move(task.set_lora);
  2514. auto res = std::make_unique<server_task_result_apply_lora>();
  2515. res->id = task.id;
  2516. queue_results.send(std::move(res));
  2517. } break;
  2518. }
  2519. }
  2520. void update_slots() {
  2521. // check if all slots are idle
  2522. {
  2523. bool all_idle = true;
  2524. for (auto & slot : slots) {
  2525. if (slot.is_processing()) {
  2526. all_idle = false;
  2527. break;
  2528. }
  2529. }
  2530. if (all_idle) {
  2531. SRV_INF("%s", "all slots are idle\n");
  2532. if (clean_kv_cache) {
  2533. kv_cache_clear();
  2534. }
  2535. return;
  2536. }
  2537. }
  2538. {
  2539. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2540. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2541. task.id = queue_tasks.get_new_id();
  2542. queue_tasks.post(std::move(task));
  2543. }
  2544. // apply context-shift if needed
  2545. // TODO: simplify and improve
  2546. for (server_slot & slot : slots) {
  2547. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2548. if (!params_base.ctx_shift) {
  2549. // this check is redundant (for good)
  2550. // we should never get here, because generation should already stopped in process_token()
  2551. slot.release();
  2552. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2553. continue;
  2554. }
  2555. if (mctx) {
  2556. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2557. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2558. GGML_ABORT("not supported by multimodal");
  2559. }
  2560. // Shift context
  2561. const int n_keep = slot.params.n_keep + add_bos_token;
  2562. const int n_left = slot.n_past - n_keep;
  2563. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2564. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2565. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2566. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2567. // add generated tokens to cache
  2568. {
  2569. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2570. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2571. new_tokens[i - n_discard] = new_tokens[i];
  2572. }
  2573. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2574. slot.cache_tokens.clear();
  2575. slot.cache_tokens.insert(new_tokens);
  2576. }
  2577. slot.n_past -= n_discard;
  2578. slot.truncated = true;
  2579. }
  2580. }
  2581. // start populating the batch for this iteration
  2582. common_batch_clear(batch);
  2583. // track if given slot can be batched with slots already in the batch
  2584. server_slot * slot_batched = nullptr;
  2585. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2586. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2587. };
  2588. // frist, add sampled tokens from any ongoing sequences
  2589. for (auto & slot : slots) {
  2590. if (slot.state != SLOT_STATE_GENERATING) {
  2591. continue;
  2592. }
  2593. // check if we can batch this slot with the previous one
  2594. if (!slot_batched) {
  2595. slot_batched = &slot;
  2596. } else if (!slot_batched->can_batch_with(slot)) {
  2597. continue;
  2598. }
  2599. slot.i_batch = batch.n_tokens;
  2600. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2601. slot.n_past += 1;
  2602. slot.cache_tokens.push_back(slot.sampled);
  2603. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2604. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2605. }
  2606. // process in chunks of params.n_batch
  2607. int32_t n_batch = llama_n_batch(ctx);
  2608. int32_t n_ubatch = llama_n_ubatch(ctx);
  2609. // next, batch any pending prompts without exceeding n_batch
  2610. if (params_base.cont_batching || batch.n_tokens == 0) {
  2611. for (auto & slot : slots) {
  2612. // check if we can batch this slot with the previous one
  2613. if (slot.is_processing()) {
  2614. if (!slot_batched) {
  2615. slot_batched = &slot;
  2616. } else if (!slot_batched->can_batch_with(slot)) {
  2617. continue;
  2618. }
  2619. }
  2620. // this slot still has a prompt to be processed
  2621. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2622. auto & prompt_tokens = slot.prompt_tokens;
  2623. // TODO: maybe move branch to outside of this loop in the future
  2624. if (slot.state == SLOT_STATE_STARTED) {
  2625. slot.t_start_process_prompt = ggml_time_us();
  2626. slot.t_start_generation = 0;
  2627. slot.n_past = 0;
  2628. slot.n_prompt_tokens = prompt_tokens.size();
  2629. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2630. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2631. // print prompt tokens (for debugging)
  2632. /*if (1) {
  2633. // first 16 tokens (avoid flooding logs)
  2634. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2635. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2636. }
  2637. } else {
  2638. // all
  2639. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2640. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2641. }
  2642. }*/
  2643. // empty prompt passed -> release the slot and send empty response
  2644. if (prompt_tokens.empty()) {
  2645. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2646. slot.release();
  2647. slot.print_timings();
  2648. send_final_response(slot);
  2649. continue;
  2650. }
  2651. // TODO: support memory-less logits computation
  2652. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2653. slot.release();
  2654. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2655. continue;
  2656. }
  2657. if (!slot.can_split()) {
  2658. if (slot.n_prompt_tokens > n_ubatch) {
  2659. slot.release();
  2660. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2661. continue;
  2662. }
  2663. if (slot.n_prompt_tokens > slot.n_ctx) {
  2664. slot.release();
  2665. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2666. continue;
  2667. }
  2668. } else {
  2669. if (!params_base.ctx_shift) {
  2670. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2671. // TODO: there should be a separate parameter that control prompt truncation
  2672. // context shift should be applied only during the generation phase
  2673. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2674. slot.release();
  2675. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2676. continue;
  2677. }
  2678. }
  2679. if (slot.params.n_keep < 0) {
  2680. slot.params.n_keep = slot.n_prompt_tokens;
  2681. }
  2682. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2683. // if input prompt is too big, truncate it
  2684. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2685. if (mctx) {
  2686. // we should never reach this
  2687. GGML_ABORT("not supported by multimodal");
  2688. }
  2689. const int n_left = slot.n_ctx - slot.params.n_keep;
  2690. const int n_block_size = n_left / 2;
  2691. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2692. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2693. llama_tokens new_tokens(
  2694. curr_tokens.begin(),
  2695. curr_tokens.begin() + slot.params.n_keep);
  2696. new_tokens.insert(
  2697. new_tokens.end(),
  2698. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2699. curr_tokens.end());
  2700. prompt_tokens.clear();
  2701. prompt_tokens.insert(new_tokens);
  2702. slot.truncated = true;
  2703. slot.n_prompt_tokens = prompt_tokens.size();
  2704. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2705. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2706. }
  2707. if (slot.params.cache_prompt) {
  2708. // reuse any previously computed tokens that are common with the new prompt
  2709. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2710. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2711. if (params_base.n_cache_reuse > 0) {
  2712. size_t head_c = slot.n_past; // cache
  2713. size_t head_p = slot.n_past; // current prompt
  2714. if (mctx) {
  2715. // we should never reach this
  2716. GGML_ABORT("not supported by multimodal");
  2717. }
  2718. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2719. while (head_c < slot.cache_tokens.size() &&
  2720. head_p < prompt_tokens.size()) {
  2721. size_t n_match = 0;
  2722. while (head_c + n_match < slot.cache_tokens.size() &&
  2723. head_p + n_match < prompt_tokens.size() &&
  2724. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2725. n_match++;
  2726. }
  2727. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2728. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2729. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2730. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2731. //}
  2732. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2733. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2734. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2735. for (size_t i = 0; i < n_match; i++) {
  2736. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2737. slot.n_past++;
  2738. }
  2739. head_c += n_match;
  2740. head_p += n_match;
  2741. } else {
  2742. head_c += 1;
  2743. }
  2744. }
  2745. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2746. }
  2747. } else {
  2748. // if we don't cache the prompt, we have to remove the entire KV cache
  2749. slot.n_past = 0;
  2750. }
  2751. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2752. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2753. if (pos_min == -1) {
  2754. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2755. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2756. }
  2757. const auto n_swa = llama_model_n_swa(model);
  2758. if (pos_min > std::max(0, slot.n_past - n_swa)) {
  2759. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2760. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2761. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2762. slot.n_past = 0;
  2763. }
  2764. }
  2765. }
  2766. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2767. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2768. slot.n_past--;
  2769. }
  2770. slot.n_prompt_tokens_processed = 0;
  2771. }
  2772. if (!slot.can_split()) {
  2773. // cannot fit the prompt in the current batch - will try next iter
  2774. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2775. continue;
  2776. }
  2777. }
  2778. // keep only the common part
  2779. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  2780. // could not partially delete (likely using a non-Transformer model)
  2781. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2782. // there is no common part left
  2783. slot.n_past = 0;
  2784. }
  2785. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2786. // remove the non-common part from the cache
  2787. slot.cache_tokens.keep_first(slot.n_past);
  2788. // check if we should process the image
  2789. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2790. // process the image
  2791. int32_t new_n_past;
  2792. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2793. int32_t n_pos = new_n_past - slot.n_past;
  2794. if (res != 0) {
  2795. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2796. slot.release();
  2797. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2798. continue;
  2799. }
  2800. // add the image chunk to cache
  2801. {
  2802. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2803. slot.cache_tokens.push_back(chunk.get()); // copy
  2804. }
  2805. slot.n_past += n_pos;
  2806. slot.n_prompt_tokens_processed += n_pos;
  2807. }
  2808. // add prompt tokens for processing in the current batch
  2809. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2810. // get next token to process
  2811. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2812. if (cur_tok == LLAMA_TOKEN_NULL) {
  2813. break; // end of text chunk
  2814. }
  2815. // embedding requires all tokens in the batch to be output
  2816. const bool need_embd = server_task_type_need_embd(slot.task_type);
  2817. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2818. slot.cache_tokens.push_back(cur_tok);
  2819. slot.n_prompt_tokens_processed++;
  2820. slot.n_past++;
  2821. }
  2822. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2823. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2824. // entire prompt has been processed
  2825. if (slot.n_past == slot.n_prompt_tokens) {
  2826. slot.state = SLOT_STATE_DONE_PROMPT;
  2827. GGML_ASSERT(batch.n_tokens > 0);
  2828. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2829. common_sampler_reset(slot.smpl);
  2830. // Process all prompt tokens through sampler system
  2831. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2832. llama_token id = slot.prompt_tokens[i];
  2833. if (id != LLAMA_TOKEN_NULL) {
  2834. common_sampler_accept(slot.smpl, id, false);
  2835. }
  2836. }
  2837. // extract the logits only for the last token
  2838. batch.logits[batch.n_tokens - 1] = true;
  2839. slot.n_decoded = 0;
  2840. slot.i_batch = batch.n_tokens - 1;
  2841. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2842. }
  2843. }
  2844. if (batch.n_tokens >= n_batch) {
  2845. break;
  2846. }
  2847. }
  2848. }
  2849. if (batch.n_tokens == 0) {
  2850. SRV_WRN("%s", "no tokens to decode\n");
  2851. return;
  2852. }
  2853. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2854. if (slot_batched) {
  2855. // apply lora, only need to do it once per batch
  2856. common_set_adapter_lora(ctx, slot_batched->lora);
  2857. llama_set_embeddings(ctx, slot_batched->need_embd());
  2858. }
  2859. int32_t i_next = 0;
  2860. // process the created batch of tokens
  2861. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2862. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2863. llama_batch batch_view = {
  2864. n_tokens,
  2865. batch.token + i,
  2866. nullptr,
  2867. batch.pos + i,
  2868. batch.n_seq_id + i,
  2869. batch.seq_id + i,
  2870. batch.logits + i,
  2871. };
  2872. const int ret = llama_decode(ctx, batch_view);
  2873. metrics.on_decoded(slots);
  2874. if (ret != 0) {
  2875. {
  2876. std::string err;
  2877. if (n_batch == 1 && ret == 1) {
  2878. err = "Context size has been exceeded.";
  2879. }
  2880. if (ret == -1) {
  2881. err = "Invalid input batch.";
  2882. }
  2883. if (ret < -1) {
  2884. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  2885. err = "Compute error.";
  2886. }
  2887. // TODO: handle ret == 2 (abort) when we start aborting
  2888. if (!err.empty()) {
  2889. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2890. for (auto & slot : slots) {
  2891. slot.release();
  2892. send_error(slot, err);
  2893. }
  2894. break;
  2895. }
  2896. }
  2897. // retry with half the batch size to try to find a free slot in the KV cache
  2898. n_batch /= 2;
  2899. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2900. continue; // continue loop of n_batch
  2901. }
  2902. // move the head of the batch forward with the number of tokens we just processed
  2903. i_next = i + n_tokens;
  2904. // on successful decode, restore the original batch size
  2905. n_batch = llama_n_batch(ctx);
  2906. for (auto & slot : slots) {
  2907. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2908. continue; // continue loop of slots
  2909. }
  2910. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2911. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2912. // prompt evaluated for embedding
  2913. send_embedding(slot, batch_view);
  2914. slot.release();
  2915. slot.i_batch = -1;
  2916. continue; // continue loop of slots
  2917. }
  2918. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2919. send_rerank(slot, batch_view);
  2920. slot.release();
  2921. slot.i_batch = -1;
  2922. continue; // continue loop of slots
  2923. }
  2924. // prompt evaluated for next-token prediction
  2925. slot.state = SLOT_STATE_GENERATING;
  2926. } else if (slot.state != SLOT_STATE_GENERATING) {
  2927. continue; // continue loop of slots
  2928. }
  2929. const int tok_idx = slot.i_batch - i;
  2930. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2931. slot.i_batch = -1;
  2932. common_sampler_accept(slot.smpl, id, true);
  2933. slot.n_decoded += 1;
  2934. const int64_t t_current = ggml_time_us();
  2935. if (slot.n_decoded == 1) {
  2936. slot.t_start_generation = t_current;
  2937. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2938. metrics.on_prompt_eval(slot);
  2939. }
  2940. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2941. completion_token_output result;
  2942. result.tok = id;
  2943. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2944. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2945. if (slot.params.sampling.n_probs > 0) {
  2946. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2947. }
  2948. if (!process_token(result, slot)) {
  2949. // release slot because of stop condition
  2950. slot.release();
  2951. slot.print_timings();
  2952. send_final_response(slot);
  2953. metrics.on_prediction(slot);
  2954. continue;
  2955. }
  2956. }
  2957. // do speculative decoding
  2958. for (auto & slot : slots) {
  2959. if (!slot.is_processing() || !slot.can_speculate()) {
  2960. continue;
  2961. }
  2962. if (slot.state != SLOT_STATE_GENERATING) {
  2963. continue;
  2964. }
  2965. if (mctx) {
  2966. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  2967. GGML_ABORT("not supported by multimodal");
  2968. }
  2969. // determine the max draft that fits the current slot state
  2970. int n_draft_max = slot.params.speculative.n_max;
  2971. // note: n_past is not yet increased for the `id` token sampled above
  2972. // also, need to leave space for 1 extra token to allow context shifts
  2973. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2974. if (slot.n_remaining > 0) {
  2975. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2976. }
  2977. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2978. if (n_draft_max < slot.params.speculative.n_min) {
  2979. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2980. continue;
  2981. }
  2982. llama_token id = slot.sampled;
  2983. struct common_speculative_params params_spec;
  2984. params_spec.n_draft = n_draft_max;
  2985. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2986. params_spec.p_min = slot.params.speculative.p_min;
  2987. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  2988. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  2989. // ignore small drafts
  2990. if (slot.params.speculative.n_min > (int) draft.size()) {
  2991. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2992. continue;
  2993. }
  2994. // keep track of total number of drafted tokens tested
  2995. slot.n_draft_total += draft.size();
  2996. // construct the speculation batch
  2997. common_batch_clear(slot.batch_spec);
  2998. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2999. for (size_t i = 0; i < draft.size(); ++i) {
  3000. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  3001. }
  3002. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3003. llama_decode(ctx, slot.batch_spec);
  3004. // the accepted tokens from the speculation
  3005. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3006. slot.n_past += ids.size();
  3007. slot.n_decoded += ids.size();
  3008. // update how many tokens out of those tested were accepted
  3009. slot.n_draft_accepted += ids.size() - 1;
  3010. slot.cache_tokens.push_back(id);
  3011. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  3012. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  3013. for (size_t i = 0; i < ids.size(); ++i) {
  3014. completion_token_output result;
  3015. result.tok = ids[i];
  3016. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3017. result.prob = 1.0f; // set later
  3018. // TODO: set result.probs
  3019. if (!process_token(result, slot)) {
  3020. // release slot because of stop condition
  3021. slot.release();
  3022. slot.print_timings();
  3023. send_final_response(slot);
  3024. metrics.on_prediction(slot);
  3025. break;
  3026. }
  3027. }
  3028. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  3029. }
  3030. }
  3031. SRV_DBG("%s", "run slots completed\n");
  3032. }
  3033. json model_meta() const {
  3034. return json {
  3035. {"vocab_type", llama_vocab_type (vocab)},
  3036. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3037. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3038. {"n_embd", llama_model_n_embd (model)},
  3039. {"n_params", llama_model_n_params (model)},
  3040. {"size", llama_model_size (model)},
  3041. };
  3042. }
  3043. };
  3044. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3045. // skip GH copilot requests when using default port
  3046. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3047. return;
  3048. }
  3049. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3050. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3051. SRV_DBG("request: %s\n", req.body.c_str());
  3052. SRV_DBG("response: %s\n", res.body.c_str());
  3053. }
  3054. std::function<void(int)> shutdown_handler;
  3055. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3056. inline void signal_handler(int signal) {
  3057. if (is_terminating.test_and_set()) {
  3058. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3059. // this is for better developer experience, we can remove when the server is stable enough
  3060. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3061. exit(1);
  3062. }
  3063. shutdown_handler(signal);
  3064. }
  3065. int main(int argc, char ** argv) {
  3066. // own arguments required by this example
  3067. common_params params;
  3068. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3069. return 1;
  3070. }
  3071. common_init();
  3072. // struct that contains llama context and inference
  3073. server_context ctx_server;
  3074. llama_backend_init();
  3075. llama_numa_init(params.numa);
  3076. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3077. LOG_INF("\n");
  3078. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3079. LOG_INF("\n");
  3080. std::unique_ptr<httplib::Server> svr;
  3081. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3082. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3083. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3084. svr.reset(
  3085. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3086. );
  3087. } else {
  3088. LOG_INF("Running without SSL\n");
  3089. svr.reset(new httplib::Server());
  3090. }
  3091. #else
  3092. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3093. LOG_ERR("Server is built without SSL support\n");
  3094. return 1;
  3095. }
  3096. svr.reset(new httplib::Server());
  3097. #endif
  3098. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3099. svr->set_default_headers({{"Server", "llama.cpp"}});
  3100. svr->set_logger(log_server_request);
  3101. auto res_error = [](httplib::Response & res, const json & error_data) {
  3102. json final_response {{"error", error_data}};
  3103. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3104. res.status = json_value(error_data, "code", 500);
  3105. };
  3106. auto res_ok = [](httplib::Response & res, const json & data) {
  3107. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3108. res.status = 200;
  3109. };
  3110. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3111. std::string message;
  3112. try {
  3113. std::rethrow_exception(ep);
  3114. } catch (const std::exception & e) {
  3115. message = e.what();
  3116. } catch (...) {
  3117. message = "Unknown Exception";
  3118. }
  3119. try {
  3120. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3121. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3122. res_error(res, formatted_error);
  3123. } catch (const std::exception & e) {
  3124. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3125. }
  3126. });
  3127. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3128. if (res.status == 404) {
  3129. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3130. }
  3131. // for other error codes, we skip processing here because it's already done by res_error()
  3132. });
  3133. // set timeouts and change hostname and port
  3134. svr->set_read_timeout (params.timeout_read);
  3135. svr->set_write_timeout(params.timeout_write);
  3136. std::unordered_map<std::string, std::string> log_data;
  3137. log_data["hostname"] = params.hostname;
  3138. log_data["port"] = std::to_string(params.port);
  3139. if (params.api_keys.size() == 1) {
  3140. auto key = params.api_keys[0];
  3141. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3142. } else if (params.api_keys.size() > 1) {
  3143. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3144. }
  3145. // Necessary similarity of prompt for slot selection
  3146. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3147. //
  3148. // Middlewares
  3149. //
  3150. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3151. static const std::unordered_set<std::string> public_endpoints = {
  3152. "/health",
  3153. "/models",
  3154. "/v1/models",
  3155. "/api/tags"
  3156. };
  3157. // If API key is not set, skip validation
  3158. if (params.api_keys.empty()) {
  3159. return true;
  3160. }
  3161. // If path is public or is static file, skip validation
  3162. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3163. return true;
  3164. }
  3165. // Check for API key in the header
  3166. auto auth_header = req.get_header_value("Authorization");
  3167. std::string prefix = "Bearer ";
  3168. if (auth_header.substr(0, prefix.size()) == prefix) {
  3169. std::string received_api_key = auth_header.substr(prefix.size());
  3170. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3171. return true; // API key is valid
  3172. }
  3173. }
  3174. // API key is invalid or not provided
  3175. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3176. LOG_WRN("Unauthorized: Invalid API Key\n");
  3177. return false;
  3178. };
  3179. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3180. server_state current_state = state.load();
  3181. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3182. auto tmp = string_split<std::string>(req.path, '.');
  3183. if (req.path == "/" || tmp.back() == "html") {
  3184. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3185. res.status = 503;
  3186. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3187. // allow the models endpoint to be accessed during loading
  3188. return true;
  3189. } else {
  3190. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3191. }
  3192. return false;
  3193. }
  3194. return true;
  3195. };
  3196. // register server middlewares
  3197. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3198. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3199. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3200. if (req.method == "OPTIONS") {
  3201. res.set_header("Access-Control-Allow-Credentials", "true");
  3202. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3203. res.set_header("Access-Control-Allow-Headers", "*");
  3204. res.set_content("", "text/html"); // blank response, no data
  3205. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3206. }
  3207. if (!middleware_server_state(req, res)) {
  3208. return httplib::Server::HandlerResponse::Handled;
  3209. }
  3210. if (!middleware_validate_api_key(req, res)) {
  3211. return httplib::Server::HandlerResponse::Handled;
  3212. }
  3213. return httplib::Server::HandlerResponse::Unhandled;
  3214. });
  3215. //
  3216. // Route handlers (or controllers)
  3217. //
  3218. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3219. // error and loading states are handled by middleware
  3220. json health = {{"status", "ok"}};
  3221. res_ok(res, health);
  3222. };
  3223. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3224. if (!params.endpoint_slots) {
  3225. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3226. return;
  3227. }
  3228. // request slots data using task queue
  3229. int task_id = ctx_server.queue_tasks.get_new_id();
  3230. {
  3231. server_task task(SERVER_TASK_TYPE_METRICS);
  3232. task.id = task_id;
  3233. ctx_server.queue_results.add_waiting_task_id(task_id);
  3234. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3235. }
  3236. // get the result
  3237. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3238. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3239. if (result->is_error()) {
  3240. res_error(res, result->to_json());
  3241. return;
  3242. }
  3243. // TODO: get rid of this dynamic_cast
  3244. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3245. GGML_ASSERT(res_metrics != nullptr);
  3246. // optionally return "fail_on_no_slot" error
  3247. if (req.has_param("fail_on_no_slot")) {
  3248. if (res_metrics->n_idle_slots == 0) {
  3249. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3250. return;
  3251. }
  3252. }
  3253. res_ok(res, res_metrics->slots_data);
  3254. };
  3255. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3256. if (!params.endpoint_metrics) {
  3257. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3258. return;
  3259. }
  3260. // request slots data using task queue
  3261. int task_id = ctx_server.queue_tasks.get_new_id();
  3262. {
  3263. server_task task(SERVER_TASK_TYPE_METRICS);
  3264. task.id = task_id;
  3265. ctx_server.queue_results.add_waiting_task_id(task_id);
  3266. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3267. }
  3268. // get the result
  3269. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3270. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3271. if (result->is_error()) {
  3272. res_error(res, result->to_json());
  3273. return;
  3274. }
  3275. // TODO: get rid of this dynamic_cast
  3276. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3277. GGML_ASSERT(res_metrics != nullptr);
  3278. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3279. json all_metrics_def = json {
  3280. {"counter", {{
  3281. {"name", "prompt_tokens_total"},
  3282. {"help", "Number of prompt tokens processed."},
  3283. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3284. }, {
  3285. {"name", "prompt_seconds_total"},
  3286. {"help", "Prompt process time"},
  3287. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3288. }, {
  3289. {"name", "tokens_predicted_total"},
  3290. {"help", "Number of generation tokens processed."},
  3291. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3292. }, {
  3293. {"name", "tokens_predicted_seconds_total"},
  3294. {"help", "Predict process time"},
  3295. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3296. }, {
  3297. {"name", "n_decode_total"},
  3298. {"help", "Total number of llama_decode() calls"},
  3299. {"value", res_metrics->n_decode_total}
  3300. }, {
  3301. {"name", "n_busy_slots_per_decode"},
  3302. {"help", "Average number of busy slots per llama_decode() call"},
  3303. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3304. }}},
  3305. {"gauge", {{
  3306. {"name", "prompt_tokens_seconds"},
  3307. {"help", "Average prompt throughput in tokens/s."},
  3308. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3309. },{
  3310. {"name", "predicted_tokens_seconds"},
  3311. {"help", "Average generation throughput in tokens/s."},
  3312. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3313. },{
  3314. {"name", "requests_processing"},
  3315. {"help", "Number of requests processing."},
  3316. {"value", (uint64_t) res_metrics->n_processing_slots}
  3317. },{
  3318. {"name", "requests_deferred"},
  3319. {"help", "Number of requests deferred."},
  3320. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3321. }}}
  3322. };
  3323. std::stringstream prometheus;
  3324. for (const auto & el : all_metrics_def.items()) {
  3325. const auto & type = el.key();
  3326. const auto & metrics_def = el.value();
  3327. for (const auto & metric_def : metrics_def) {
  3328. const std::string name = metric_def.at("name");
  3329. const std::string help = metric_def.at("help");
  3330. auto value = json_value(metric_def, "value", 0.);
  3331. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3332. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3333. << "llamacpp:" << name << " " << value << "\n";
  3334. }
  3335. }
  3336. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3337. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3338. res.status = 200; // HTTP OK
  3339. };
  3340. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3341. json request_data = json::parse(req.body);
  3342. std::string filename = request_data.at("filename");
  3343. if (!fs_validate_filename(filename)) {
  3344. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3345. return;
  3346. }
  3347. std::string filepath = params.slot_save_path + filename;
  3348. int task_id = ctx_server.queue_tasks.get_new_id();
  3349. {
  3350. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3351. task.id = task_id;
  3352. task.slot_action.slot_id = id_slot;
  3353. task.slot_action.filename = filename;
  3354. task.slot_action.filepath = filepath;
  3355. ctx_server.queue_results.add_waiting_task_id(task_id);
  3356. ctx_server.queue_tasks.post(std::move(task));
  3357. }
  3358. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3359. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3360. if (result->is_error()) {
  3361. res_error(res, result->to_json());
  3362. return;
  3363. }
  3364. res_ok(res, result->to_json());
  3365. };
  3366. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3367. json request_data = json::parse(req.body);
  3368. std::string filename = request_data.at("filename");
  3369. if (!fs_validate_filename(filename)) {
  3370. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3371. return;
  3372. }
  3373. std::string filepath = params.slot_save_path + filename;
  3374. int task_id = ctx_server.queue_tasks.get_new_id();
  3375. {
  3376. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3377. task.id = task_id;
  3378. task.slot_action.slot_id = id_slot;
  3379. task.slot_action.filename = filename;
  3380. task.slot_action.filepath = filepath;
  3381. ctx_server.queue_results.add_waiting_task_id(task_id);
  3382. ctx_server.queue_tasks.post(std::move(task));
  3383. }
  3384. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3385. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3386. if (result->is_error()) {
  3387. res_error(res, result->to_json());
  3388. return;
  3389. }
  3390. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3391. res_ok(res, result->to_json());
  3392. };
  3393. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3394. int task_id = ctx_server.queue_tasks.get_new_id();
  3395. {
  3396. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3397. task.id = task_id;
  3398. task.slot_action.slot_id = id_slot;
  3399. ctx_server.queue_results.add_waiting_task_id(task_id);
  3400. ctx_server.queue_tasks.post(std::move(task));
  3401. }
  3402. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3403. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3404. if (result->is_error()) {
  3405. res_error(res, result->to_json());
  3406. return;
  3407. }
  3408. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3409. res_ok(res, result->to_json());
  3410. };
  3411. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3412. if (params.slot_save_path.empty()) {
  3413. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3414. return;
  3415. }
  3416. std::string id_slot_str = req.path_params.at("id_slot");
  3417. int id_slot;
  3418. try {
  3419. id_slot = std::stoi(id_slot_str);
  3420. } catch (const std::exception &) {
  3421. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3422. return;
  3423. }
  3424. std::string action = req.get_param_value("action");
  3425. if (action == "save") {
  3426. handle_slots_save(req, res, id_slot);
  3427. } else if (action == "restore") {
  3428. handle_slots_restore(req, res, id_slot);
  3429. } else if (action == "erase") {
  3430. handle_slots_erase(req, res, id_slot);
  3431. } else {
  3432. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3433. }
  3434. };
  3435. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3436. // this endpoint is publicly available, please only return what is safe to be exposed
  3437. json data = {
  3438. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3439. { "total_slots", ctx_server.params_base.n_parallel },
  3440. { "model_path", ctx_server.params_base.model.path },
  3441. { "modalities", json{
  3442. {"vision", ctx_server.oai_parser_opt.allow_image},
  3443. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3444. } },
  3445. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3446. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3447. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3448. { "build_info", build_info },
  3449. };
  3450. if (ctx_server.params_base.use_jinja) {
  3451. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3452. data["chat_template_tool_use"] = tool_use_src;
  3453. }
  3454. }
  3455. res_ok(res, data);
  3456. };
  3457. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3458. if (!ctx_server.params_base.endpoint_props) {
  3459. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3460. return;
  3461. }
  3462. json data = json::parse(req.body);
  3463. // update any props here
  3464. res_ok(res, {{ "success", true }});
  3465. };
  3466. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3467. json data = {
  3468. {
  3469. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3470. },
  3471. {
  3472. "model_info", {
  3473. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3474. }
  3475. },
  3476. {"modelfile", ""},
  3477. {"parameters", ""},
  3478. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3479. {"details", {
  3480. {"parent_model", ""},
  3481. {"format", "gguf"},
  3482. {"family", ""},
  3483. {"families", {""}},
  3484. {"parameter_size", ""},
  3485. {"quantization_level", ""}
  3486. }},
  3487. {"model_info", ""},
  3488. {"capabilities", {"completion"}}
  3489. };
  3490. res_ok(res, data);
  3491. };
  3492. // handle completion-like requests (completion, chat, infill)
  3493. // we can optionally provide a custom format for partial results and final results
  3494. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3495. server_task_type type,
  3496. json & data,
  3497. const std::vector<raw_buffer> & files,
  3498. const std::function<bool()> & is_connection_closed,
  3499. httplib::Response & res,
  3500. oaicompat_type oaicompat) -> void {
  3501. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3502. auto completion_id = gen_chatcmplid();
  3503. std::unordered_set<int> task_ids;
  3504. try {
  3505. std::vector<server_task> tasks;
  3506. const auto & prompt = data.at("prompt");
  3507. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3508. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3509. // process files
  3510. mtmd::bitmaps bitmaps;
  3511. const bool has_mtmd = ctx_server.mctx != nullptr;
  3512. {
  3513. if (!has_mtmd && !files.empty()) {
  3514. throw std::runtime_error("This server does not support multimodal");
  3515. }
  3516. for (auto & file : files) {
  3517. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
  3518. if (!bmp.ptr) {
  3519. throw std::runtime_error("Failed to load image or audio file");
  3520. }
  3521. // calculate bitmap hash (for KV caching)
  3522. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3523. bmp.set_id(hash.c_str());
  3524. bitmaps.entries.push_back(std::move(bmp));
  3525. }
  3526. }
  3527. // process prompt
  3528. std::vector<server_tokens> inputs;
  3529. if (oaicompat && has_mtmd) {
  3530. // multimodal
  3531. std::string prompt_str = prompt.get<std::string>();
  3532. mtmd_input_text inp_txt = {
  3533. prompt_str.c_str(),
  3534. /* add_special */ true,
  3535. /* parse_special */ true,
  3536. };
  3537. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3538. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3539. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3540. chunks.ptr.get(),
  3541. &inp_txt,
  3542. bitmaps_c_ptr.data(),
  3543. bitmaps_c_ptr.size());
  3544. if (tokenized != 0) {
  3545. throw std::runtime_error("Failed to tokenize prompt");
  3546. }
  3547. server_tokens tmp(chunks, true);
  3548. inputs.push_back(std::move(tmp));
  3549. } else {
  3550. // non-multimodal version
  3551. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3552. for (auto & p : tokenized_prompts) {
  3553. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3554. inputs.push_back(std::move(tmp));
  3555. }
  3556. }
  3557. tasks.reserve(inputs.size());
  3558. for (size_t i = 0; i < inputs.size(); i++) {
  3559. server_task task = server_task(type);
  3560. task.id = ctx_server.queue_tasks.get_new_id();
  3561. task.index = i;
  3562. task.prompt_tokens = std::move(inputs[i]);
  3563. task.params = server_task::params_from_json_cmpl(
  3564. ctx_server.ctx,
  3565. ctx_server.params_base,
  3566. data);
  3567. task.id_selected_slot = json_value(data, "id_slot", -1);
  3568. // OAI-compat
  3569. task.params.oaicompat = oaicompat;
  3570. task.params.oaicompat_cmpl_id = completion_id;
  3571. // oaicompat_model is already populated by params_from_json_cmpl
  3572. tasks.push_back(std::move(task));
  3573. }
  3574. task_ids = server_task::get_list_id(tasks);
  3575. ctx_server.queue_results.add_waiting_tasks(tasks);
  3576. ctx_server.queue_tasks.post(std::move(tasks));
  3577. } catch (const std::exception & e) {
  3578. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3579. return;
  3580. }
  3581. bool stream = json_value(data, "stream", false);
  3582. if (!stream) {
  3583. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3584. if (results.size() == 1) {
  3585. // single result
  3586. res_ok(res, results[0]->to_json());
  3587. } else {
  3588. // multiple results (multitask)
  3589. json arr = json::array();
  3590. for (auto & res : results) {
  3591. arr.push_back(res->to_json());
  3592. }
  3593. res_ok(res, arr);
  3594. }
  3595. }, [&](const json & error_data) {
  3596. res_error(res, error_data);
  3597. }, is_connection_closed);
  3598. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3599. } else {
  3600. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3601. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3602. json res_json = result->to_json();
  3603. if (res_json.is_array()) {
  3604. for (const auto & res : res_json) {
  3605. if (!server_sent_event(sink, "data", res)) {
  3606. // sending failed (HTTP connection closed), cancel the generation
  3607. return false;
  3608. }
  3609. }
  3610. return true;
  3611. } else {
  3612. return server_sent_event(sink, "data", res_json);
  3613. }
  3614. }, [&](const json & error_data) {
  3615. server_sent_event(sink, "error", error_data);
  3616. }, [&sink]() {
  3617. // note: do not use req.is_connection_closed here because req is already destroyed
  3618. return !sink.is_writable();
  3619. });
  3620. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3621. static const std::string ev_done = "data: [DONE]\n\n";
  3622. sink.write(ev_done.data(), ev_done.size());
  3623. }
  3624. sink.done();
  3625. return false;
  3626. };
  3627. auto on_complete = [task_ids, &ctx_server] (bool) {
  3628. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3629. };
  3630. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3631. }
  3632. };
  3633. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3634. json data = json::parse(req.body);
  3635. std::vector<raw_buffer> files; // dummy
  3636. handle_completions_impl(
  3637. SERVER_TASK_TYPE_COMPLETION,
  3638. data,
  3639. files,
  3640. req.is_connection_closed,
  3641. res,
  3642. OAICOMPAT_TYPE_NONE);
  3643. };
  3644. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3645. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3646. std::vector<raw_buffer> files; // dummy
  3647. handle_completions_impl(
  3648. SERVER_TASK_TYPE_COMPLETION,
  3649. data,
  3650. files,
  3651. req.is_connection_closed,
  3652. res,
  3653. OAICOMPAT_TYPE_COMPLETION);
  3654. };
  3655. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3656. // check model compatibility
  3657. std::string err;
  3658. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3659. err += "prefix token is missing. ";
  3660. }
  3661. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3662. err += "suffix token is missing. ";
  3663. }
  3664. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3665. err += "middle token is missing. ";
  3666. }
  3667. if (!err.empty()) {
  3668. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3669. return;
  3670. }
  3671. json data = json::parse(req.body);
  3672. // validate input
  3673. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3674. // prompt is optional
  3675. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3676. }
  3677. if (!data.contains("input_prefix")) {
  3678. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3679. }
  3680. if (!data.contains("input_suffix")) {
  3681. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3682. }
  3683. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3684. // input_extra is optional
  3685. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3686. return;
  3687. }
  3688. json input_extra = json_value(data, "input_extra", json::array());
  3689. for (const auto & chunk : input_extra) {
  3690. // { "text": string, "filename": string }
  3691. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3692. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3693. return;
  3694. }
  3695. // filename is optional
  3696. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3697. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3698. return;
  3699. }
  3700. }
  3701. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3702. std::string prompt = json_value(data, "prompt", std::string());
  3703. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3704. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3705. data["prompt"] = format_infill(
  3706. ctx_server.vocab,
  3707. data.at("input_prefix"),
  3708. data.at("input_suffix"),
  3709. data.at("input_extra"),
  3710. ctx_server.params_base.n_batch,
  3711. ctx_server.params_base.n_predict,
  3712. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3713. ctx_server.params_base.spm_infill,
  3714. tokenized_prompts[0]
  3715. );
  3716. std::vector<raw_buffer> files; // dummy
  3717. handle_completions_impl(
  3718. SERVER_TASK_TYPE_INFILL,
  3719. data,
  3720. files,
  3721. req.is_connection_closed,
  3722. res,
  3723. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3724. };
  3725. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3726. LOG_DBG("request: %s\n", req.body.c_str());
  3727. auto body = json::parse(req.body);
  3728. std::vector<raw_buffer> files;
  3729. json data = oaicompat_chat_params_parse(
  3730. body,
  3731. ctx_server.oai_parser_opt,
  3732. files);
  3733. handle_completions_impl(
  3734. SERVER_TASK_TYPE_COMPLETION,
  3735. data,
  3736. files,
  3737. req.is_connection_closed,
  3738. res,
  3739. OAICOMPAT_TYPE_CHAT);
  3740. };
  3741. // same with handle_chat_completions, but without inference part
  3742. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3743. auto body = json::parse(req.body);
  3744. std::vector<raw_buffer> files; // dummy, unused
  3745. json data = oaicompat_chat_params_parse(
  3746. body,
  3747. ctx_server.oai_parser_opt,
  3748. files);
  3749. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3750. };
  3751. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3752. server_state current_state = state.load();
  3753. json model_meta = nullptr;
  3754. if (current_state == SERVER_STATE_READY) {
  3755. model_meta = ctx_server.model_meta();
  3756. }
  3757. json models = {
  3758. {"models", {
  3759. {
  3760. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3761. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3762. {"modified_at", ""},
  3763. {"size", ""},
  3764. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3765. {"type", "model"},
  3766. {"description", ""},
  3767. {"tags", {""}},
  3768. {"capabilities", {"completion"}},
  3769. {"parameters", ""},
  3770. {"details", {
  3771. {"parent_model", ""},
  3772. {"format", "gguf"},
  3773. {"family", ""},
  3774. {"families", {""}},
  3775. {"parameter_size", ""},
  3776. {"quantization_level", ""}
  3777. }}
  3778. }
  3779. }},
  3780. {"object", "list"},
  3781. {"data", {
  3782. {
  3783. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3784. {"object", "model"},
  3785. {"created", std::time(0)},
  3786. {"owned_by", "llamacpp"},
  3787. {"meta", model_meta},
  3788. },
  3789. }}
  3790. };
  3791. res_ok(res, models);
  3792. };
  3793. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3794. const json body = json::parse(req.body);
  3795. json tokens_response = json::array();
  3796. if (body.count("content") != 0) {
  3797. const bool add_special = json_value(body, "add_special", false);
  3798. const bool parse_special = json_value(body, "parse_special", true);
  3799. const bool with_pieces = json_value(body, "with_pieces", false);
  3800. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  3801. if (with_pieces) {
  3802. for (const auto& token : tokens) {
  3803. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3804. json piece_json;
  3805. // Check if the piece is valid UTF-8
  3806. if (is_valid_utf8(piece)) {
  3807. piece_json = piece;
  3808. } else {
  3809. // If not valid UTF-8, store as array of byte values
  3810. piece_json = json::array();
  3811. for (unsigned char c : piece) {
  3812. piece_json.push_back(static_cast<int>(c));
  3813. }
  3814. }
  3815. tokens_response.push_back({
  3816. {"id", token},
  3817. {"piece", piece_json}
  3818. });
  3819. }
  3820. } else {
  3821. tokens_response = tokens;
  3822. }
  3823. }
  3824. const json data = format_tokenizer_response(tokens_response);
  3825. res_ok(res, data);
  3826. };
  3827. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3828. const json body = json::parse(req.body);
  3829. std::string content;
  3830. if (body.count("tokens") != 0) {
  3831. const llama_tokens tokens = body.at("tokens");
  3832. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3833. }
  3834. const json data = format_detokenized_response(content);
  3835. res_ok(res, data);
  3836. };
  3837. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3838. if (!ctx_server.params_base.embedding) {
  3839. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3840. return;
  3841. }
  3842. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3843. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3844. return;
  3845. }
  3846. const json body = json::parse(req.body);
  3847. // for the shape of input/content, see tokenize_input_prompts()
  3848. json prompt;
  3849. if (body.count("input") != 0) {
  3850. prompt = body.at("input");
  3851. } else if (body.contains("content")) {
  3852. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3853. prompt = body.at("content");
  3854. } else {
  3855. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3856. return;
  3857. }
  3858. bool use_base64 = false;
  3859. if (body.count("encoding_format") != 0) {
  3860. const std::string& format = body.at("encoding_format");
  3861. if (format == "base64") {
  3862. use_base64 = true;
  3863. } else if (format != "float") {
  3864. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3865. return;
  3866. }
  3867. }
  3868. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3869. for (const auto & tokens : tokenized_prompts) {
  3870. // this check is necessary for models that do not add BOS token to the input
  3871. if (tokens.empty()) {
  3872. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3873. return;
  3874. }
  3875. }
  3876. int embd_normalize = 2; // default to Euclidean/L2 norm
  3877. if (body.count("embd_normalize") != 0) {
  3878. embd_normalize = body.at("embd_normalize");
  3879. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3880. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  3881. }
  3882. }
  3883. // create and queue the task
  3884. json responses = json::array();
  3885. bool error = false;
  3886. std::unordered_set<int> task_ids;
  3887. {
  3888. std::vector<server_task> tasks;
  3889. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3890. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3891. task.id = ctx_server.queue_tasks.get_new_id();
  3892. task.index = i;
  3893. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3894. // OAI-compat
  3895. task.params.oaicompat = oaicompat;
  3896. task.params.embd_normalize = embd_normalize;
  3897. tasks.push_back(std::move(task));
  3898. }
  3899. task_ids = server_task::get_list_id(tasks);
  3900. ctx_server.queue_results.add_waiting_tasks(tasks);
  3901. ctx_server.queue_tasks.post(std::move(tasks));
  3902. }
  3903. // get the result
  3904. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3905. for (auto & res : results) {
  3906. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3907. responses.push_back(res->to_json());
  3908. }
  3909. }, [&](const json & error_data) {
  3910. res_error(res, error_data);
  3911. error = true;
  3912. }, req.is_connection_closed);
  3913. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3914. if (error) {
  3915. return;
  3916. }
  3917. // write JSON response
  3918. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3919. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3920. : json(responses);
  3921. res_ok(res, root);
  3922. };
  3923. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3924. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3925. };
  3926. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3927. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3928. };
  3929. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3930. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  3931. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  3932. return;
  3933. }
  3934. const json body = json::parse(req.body);
  3935. // TODO: implement
  3936. //int top_n = 1;
  3937. //if (body.count("top_n") != 1) {
  3938. // top_n = body.at("top_n");
  3939. //} else {
  3940. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3941. // return;
  3942. //}
  3943. // if true, use TEI API format, otherwise use Jina API format
  3944. // Jina: https://jina.ai/reranker/
  3945. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3946. bool is_tei_format = body.contains("texts");
  3947. json query;
  3948. if (body.count("query") == 1) {
  3949. query = body.at("query");
  3950. if (!query.is_string()) {
  3951. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3952. return;
  3953. }
  3954. } else {
  3955. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3956. return;
  3957. }
  3958. std::vector<std::string> documents = json_value(body, "documents",
  3959. json_value(body, "texts", std::vector<std::string>()));
  3960. if (documents.empty()) {
  3961. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3962. return;
  3963. }
  3964. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3965. // create and queue the task
  3966. json responses = json::array();
  3967. bool error = false;
  3968. std::unordered_set<int> task_ids;
  3969. {
  3970. std::vector<server_task> tasks;
  3971. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3972. tasks.reserve(tokenized_docs.size());
  3973. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3974. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3975. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3976. task.id = ctx_server.queue_tasks.get_new_id();
  3977. task.index = i;
  3978. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  3979. tasks.push_back(std::move(task));
  3980. }
  3981. task_ids = server_task::get_list_id(tasks);
  3982. ctx_server.queue_results.add_waiting_tasks(tasks);
  3983. ctx_server.queue_tasks.post(std::move(tasks));
  3984. }
  3985. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3986. for (auto & res : results) {
  3987. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3988. responses.push_back(res->to_json());
  3989. }
  3990. }, [&](const json & error_data) {
  3991. res_error(res, error_data);
  3992. error = true;
  3993. }, req.is_connection_closed);
  3994. if (error) {
  3995. return;
  3996. }
  3997. // write JSON response
  3998. json root = format_response_rerank(
  3999. body,
  4000. responses,
  4001. is_tei_format,
  4002. documents);
  4003. res_ok(res, root);
  4004. };
  4005. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4006. json result = json::array();
  4007. const auto & loras = ctx_server.params_base.lora_adapters;
  4008. for (size_t i = 0; i < loras.size(); ++i) {
  4009. auto & lora = loras[i];
  4010. result.push_back({
  4011. {"id", i},
  4012. {"path", lora.path},
  4013. {"scale", lora.scale},
  4014. });
  4015. }
  4016. res_ok(res, result);
  4017. res.status = 200; // HTTP OK
  4018. };
  4019. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4020. const json body = json::parse(req.body);
  4021. if (!body.is_array()) {
  4022. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4023. return;
  4024. }
  4025. int task_id = ctx_server.queue_tasks.get_new_id();
  4026. {
  4027. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4028. task.id = task_id;
  4029. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4030. ctx_server.queue_results.add_waiting_task_id(task_id);
  4031. ctx_server.queue_tasks.post(std::move(task));
  4032. }
  4033. // get the result
  4034. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4035. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4036. if (result->is_error()) {
  4037. res_error(res, result->to_json());
  4038. return;
  4039. }
  4040. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4041. res_ok(res, result->to_json());
  4042. };
  4043. //
  4044. // Router
  4045. //
  4046. if (!params.webui) {
  4047. LOG_INF("Web UI is disabled\n");
  4048. } else {
  4049. // register static assets routes
  4050. if (!params.public_path.empty()) {
  4051. // Set the base directory for serving static files
  4052. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4053. if (!is_found) {
  4054. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4055. return 1;
  4056. }
  4057. } else {
  4058. // using embedded static index.html
  4059. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4060. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4061. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4062. } else {
  4063. res.set_header("Content-Encoding", "gzip");
  4064. // COEP and COOP headers, required by pyodide (python interpreter)
  4065. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4066. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4067. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4068. }
  4069. return false;
  4070. });
  4071. }
  4072. }
  4073. // register API routes
  4074. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4075. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4076. svr->Get (params.api_prefix + "/props", handle_props);
  4077. svr->Post(params.api_prefix + "/props", handle_props_change);
  4078. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4079. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4080. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4081. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4082. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4083. svr->Post(params.api_prefix + "/completions", handle_completions);
  4084. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4085. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4086. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4087. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4088. svr->Post(params.api_prefix + "/infill", handle_infill);
  4089. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4090. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4091. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4092. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4093. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4094. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4095. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4096. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4097. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4098. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4099. // LoRA adapters hotswap
  4100. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4101. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4102. // Save & load slots
  4103. svr->Get (params.api_prefix + "/slots", handle_slots);
  4104. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4105. //
  4106. // Start the server
  4107. //
  4108. if (params.n_threads_http < 1) {
  4109. // +2 threads for monitoring endpoints
  4110. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4111. }
  4112. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4113. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4114. // clean up function, to be called before exit
  4115. auto clean_up = [&svr, &ctx_server]() {
  4116. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4117. svr->stop();
  4118. ctx_server.queue_results.terminate();
  4119. llama_backend_free();
  4120. };
  4121. bool was_bound = false;
  4122. bool is_sock = false;
  4123. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4124. is_sock = true;
  4125. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4126. svr->set_address_family(AF_UNIX);
  4127. // bind_to_port requires a second arg, any value other than 0 should
  4128. // simply get ignored
  4129. was_bound = svr->bind_to_port(params.hostname, 8080);
  4130. } else {
  4131. LOG_INF("%s: binding port with default address family\n", __func__);
  4132. // bind HTTP listen port
  4133. if (params.port == 0) {
  4134. int bound_port = svr->bind_to_any_port(params.hostname);
  4135. if ((was_bound = (bound_port >= 0))) {
  4136. params.port = bound_port;
  4137. }
  4138. } else {
  4139. was_bound = svr->bind_to_port(params.hostname, params.port);
  4140. }
  4141. }
  4142. if (!was_bound) {
  4143. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4144. clean_up();
  4145. return 1;
  4146. }
  4147. // run the HTTP server in a thread
  4148. std::thread t([&]() { svr->listen_after_bind(); });
  4149. svr->wait_until_ready();
  4150. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4151. // load the model
  4152. LOG_INF("%s: loading model\n", __func__);
  4153. if (!ctx_server.load_model(params)) {
  4154. clean_up();
  4155. t.join();
  4156. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4157. return 1;
  4158. }
  4159. ctx_server.init();
  4160. state.store(SERVER_STATE_READY);
  4161. LOG_INF("%s: model loaded\n", __func__);
  4162. // print sample chat example to make it clear which template is used
  4163. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4164. common_chat_templates_source(ctx_server.chat_templates.get()),
  4165. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  4166. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4167. ctx_server.process_single_task(std::move(task));
  4168. });
  4169. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4170. ctx_server.update_slots();
  4171. });
  4172. shutdown_handler = [&](int) {
  4173. // this will unblock start_loop()
  4174. ctx_server.queue_tasks.terminate();
  4175. };
  4176. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4177. struct sigaction sigint_action;
  4178. sigint_action.sa_handler = signal_handler;
  4179. sigemptyset (&sigint_action.sa_mask);
  4180. sigint_action.sa_flags = 0;
  4181. sigaction(SIGINT, &sigint_action, NULL);
  4182. sigaction(SIGTERM, &sigint_action, NULL);
  4183. #elif defined (_WIN32)
  4184. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4185. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4186. };
  4187. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4188. #endif
  4189. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4190. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4191. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4192. // this call blocks the main thread until queue_tasks.terminate() is called
  4193. ctx_server.queue_tasks.start_loop();
  4194. clean_up();
  4195. t.join();
  4196. return 0;
  4197. }