test-backend-ops.cpp 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344
  1. #include <ggml.h>
  2. #include <ggml-alloc.h>
  3. #include <ggml-backend.h>
  4. #include <ggml-backend-impl.h>
  5. #include <algorithm>
  6. #include <array>
  7. #include <cfloat>
  8. #include <cstring>
  9. #include <functional>
  10. #include <memory>
  11. #include <random>
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string>
  15. #include <thread>
  16. #include <vector>
  17. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  18. // static RNG initialization (revisit if n_threads stops being constant)
  19. static const size_t n_threads = std::thread::hardware_concurrency();
  20. static std::vector<std::default_random_engine> generators = []() {
  21. std::random_device rd;
  22. std::vector<std::default_random_engine> vec;
  23. vec.reserve(n_threads);
  24. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  25. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  26. return vec;
  27. }();
  28. size_t size = ggml_nelements(tensor);
  29. std::vector<float> data(size);
  30. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  31. std::uniform_real_distribution<float> distribution(min, max);
  32. for (size_t i = start; i < end; i++) {
  33. data[i] = distribution(generators[ith]);
  34. }
  35. };
  36. std::vector<std::thread> threads;
  37. threads.reserve(n_threads);
  38. for (size_t i = 0; i < n_threads; i++) {
  39. size_t start = i*size/n_threads;
  40. size_t end = (i+1)*size/n_threads;
  41. threads.emplace_back(init_thread, i, start, end);
  42. }
  43. for (auto & t : threads) {
  44. t.join();
  45. }
  46. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  47. ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
  48. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  49. GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
  50. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
  51. std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
  52. const float * im = imatrix.data();
  53. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  54. // when the imatrix is optional, we want to test both quantization with and without imatrix
  55. // use one of the random numbers to decide
  56. if (data[0] > 0.5f*(min + max)) {
  57. im = nullptr;
  58. }
  59. }
  60. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
  61. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  62. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  63. // This is going to create some weird integers though.
  64. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  65. } else {
  66. GGML_ASSERT(false);
  67. }
  68. }
  69. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  70. std::vector<float> tv;
  71. tv.reserve(ggml_nelements(t));
  72. std::vector<uint8_t> buf(ggml_nbytes(t));
  73. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  74. ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
  75. size_t bs = ggml_blck_size(t->type);
  76. std::vector<float> vq(ggml_blck_size(t->type));
  77. bool quantized = ggml_is_quantized(t->type);
  78. // access elements by index to avoid gaps in views
  79. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  80. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  81. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  82. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  83. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  84. if (t->type == GGML_TYPE_F16) {
  85. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  86. } else if (t->type == GGML_TYPE_BF16) {
  87. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  88. } else if (t->type == GGML_TYPE_F32) {
  89. tv.push_back(*(float *) &buf[i]);
  90. } else if (t->type == GGML_TYPE_I32) {
  91. tv.push_back((float)*(int32_t *) &buf[i]);
  92. } else if (t->type == GGML_TYPE_I16) {
  93. tv.push_back((float)*(int16_t *) &buf[i]);
  94. } else if (t->type == GGML_TYPE_I8) {
  95. tv.push_back((float)*(int8_t *) &buf[i]);
  96. } else if (quantized) {
  97. tt.to_float(&buf[i], vq.data(), bs);
  98. tv.insert(tv.end(), vq.begin(), vq.end());
  99. } else {
  100. GGML_ASSERT(false);
  101. }
  102. }
  103. }
  104. }
  105. }
  106. return tv;
  107. }
  108. /*
  109. static double cosine_similarity(const float * v1, const float * v2, size_t n) {
  110. double dot = 0.0;
  111. double mag1 = 0.0;
  112. double mag2 = 0.0;
  113. for (size_t i = 0; i < n; i++) {
  114. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  115. return -1.0f;
  116. }
  117. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  118. continue;
  119. }
  120. dot += v1[i]*v2[i];
  121. mag1 += v1[i]*v1[i];
  122. mag2 += v2[i]*v2[i];
  123. }
  124. return dot/sqrt(mag1*mag2);
  125. }
  126. static float distance(const float * v1, const float * v2, size_t n) {
  127. double d = 0.0;
  128. for (size_t i = 0; i < n; i++) {
  129. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  130. return INFINITY;
  131. }
  132. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  133. continue;
  134. }
  135. d += (v1[i] - v2[i])*(v1[i] - v2[i]);
  136. }
  137. return sqrt(d);
  138. }
  139. static float vec_len(const float * v, size_t n) {
  140. double d = 0.0;
  141. for (size_t i = 0; i < n; i++) {
  142. if (std::isnan(v[i])) {
  143. return INFINITY;
  144. }
  145. if (std::isinf(v[i])) {
  146. continue;
  147. }
  148. d += v[i]*v[i];
  149. }
  150. return sqrt(d);
  151. }
  152. */
  153. // normalized mean squared error = mse(a, b) / mse(a, 0)
  154. static double nmse(const float * a, const float * b, size_t n) {
  155. double mse_a_b = 0.0;
  156. double mse_a_0 = 0.0;
  157. for (size_t i = 0; i < n; i++) {
  158. float a_i = a[i];
  159. float b_i = b[i];
  160. mse_a_b += (a_i - b_i) * (a_i - b_i);
  161. mse_a_0 += a_i * a_i;
  162. }
  163. return mse_a_b / mse_a_0;
  164. }
  165. // utils for printing the variables of the test cases
  166. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  167. template<typename T>
  168. static std::string var_to_str(const T & x) {
  169. return std::to_string(x);
  170. }
  171. template<typename T, size_t N>
  172. static std::string var_to_str(const T (&x)[N]) {
  173. std::string s = "[";
  174. for (size_t i = 0; i < N; i++) {
  175. if (i > 0) {
  176. s += ",";
  177. }
  178. s += var_to_str(x[i]);
  179. }
  180. s += "]";
  181. return s;
  182. }
  183. template<typename T, size_t N>
  184. static std::string var_to_str(const std::array<T, N> & x) {
  185. std::string s = "[";
  186. for (size_t i = 0; i < N; i++) {
  187. if (i > 0) {
  188. s += ",";
  189. }
  190. s += var_to_str(x[i]);
  191. }
  192. s += "]";
  193. return s;
  194. }
  195. //static std::string var_to_str(ggml_unary_op unary_op) {
  196. // return ggml_unary_op_name(unary_op);
  197. //}
  198. static std::string var_to_str(ggml_type type) {
  199. return ggml_type_name(type);
  200. }
  201. static std::string var_to_str(ggml_op_pool pool) {
  202. switch (pool) {
  203. case GGML_OP_POOL_AVG: return "avg";
  204. case GGML_OP_POOL_MAX: return "max";
  205. default: return std::to_string(pool);
  206. }
  207. }
  208. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  209. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  210. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  211. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  212. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  213. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  214. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  215. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  216. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  217. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  218. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  219. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  220. #ifdef GGML_USE_SYCL
  221. static bool inline _isinf(float f) {
  222. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  223. }
  224. #else
  225. static bool inline _isinf(float f) { return std::isinf(f); }
  226. #endif
  227. // accept FLT_MAX as infinity
  228. static bool isinf_or_max(float f) {
  229. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  230. }
  231. static bool ggml_is_view_op(enum ggml_op op) {
  232. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  233. }
  234. enum test_mode {
  235. MODE_TEST,
  236. MODE_PERF,
  237. };
  238. struct test_case {
  239. virtual ~test_case() {}
  240. virtual std::string op_desc(ggml_tensor * t) {
  241. return ggml_op_desc(t);
  242. }
  243. virtual std::string vars() {
  244. return "";
  245. }
  246. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  247. virtual double max_nmse_err() {
  248. return 1e-7;
  249. }
  250. virtual void initialize_tensors(ggml_context * ctx) {
  251. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  252. init_tensor_uniform(t);
  253. }
  254. }
  255. virtual size_t op_size(ggml_tensor * t) {
  256. size_t size = ggml_nbytes(t);
  257. // add source tensors
  258. for (int i = 0; i < GGML_MAX_SRC; i++) {
  259. if (t->src[i] != NULL) {
  260. size += ggml_nbytes(t->src[i]);
  261. }
  262. }
  263. return size;
  264. }
  265. ggml_cgraph * gf = nullptr;
  266. static const int sentinel_size = 1024;
  267. test_mode mode;
  268. std::vector<ggml_tensor *> sentinels;
  269. void add_sentinel(ggml_context * ctx) {
  270. if (mode == MODE_PERF) {
  271. return;
  272. }
  273. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  274. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  275. sentinels.push_back(sentinel);
  276. }
  277. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  278. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  279. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  280. add_sentinel(ctx);
  281. return t;
  282. }
  283. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  284. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  285. add_sentinel(ctx);
  286. return t;
  287. }
  288. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  289. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  290. add_sentinel(ctx);
  291. return t;
  292. }
  293. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  294. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  295. add_sentinel(ctx);
  296. return t;
  297. }
  298. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  299. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  300. add_sentinel(ctx);
  301. return t;
  302. }
  303. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  304. mode = MODE_TEST;
  305. ggml_init_params params = {
  306. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  307. /* .mem_base = */ NULL,
  308. /* .no_alloc = */ true,
  309. };
  310. ggml_context * ctx = ggml_init(params);
  311. gf = ggml_new_graph(ctx);
  312. // pre-graph sentinel
  313. add_sentinel(ctx);
  314. ggml_tensor * out = build_graph(ctx);
  315. if (op_name != nullptr && op_desc(out) != op_name) {
  316. //printf(" %s: skipping\n", op_desc(out).c_str());
  317. ggml_free(ctx);
  318. return true;
  319. }
  320. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  321. fflush(stdout);
  322. // check if the backends support the ops
  323. bool supported = true;
  324. for (ggml_backend_t backend : {backend1, backend2}) {
  325. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  326. if (!ggml_backend_supports_op(backend, t)) {
  327. printf("not supported [%s] ", ggml_backend_name(backend));
  328. supported = false;
  329. break;
  330. }
  331. }
  332. }
  333. if (!supported) {
  334. printf("\n");
  335. ggml_free(ctx);
  336. return true;
  337. }
  338. // post-graph sentinel
  339. add_sentinel(ctx);
  340. // allocate
  341. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  342. if (buf == NULL) {
  343. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  344. ggml_free(ctx);
  345. return false;
  346. }
  347. // build graph
  348. ggml_build_forward_expand(gf, out);
  349. // add sentinels as graph nodes so that they are checked in the callback
  350. for (ggml_tensor * sentinel : sentinels) {
  351. gf->nodes[gf->n_nodes++] = sentinel;
  352. }
  353. // randomize tensors
  354. initialize_tensors(ctx);
  355. // compare
  356. struct callback_userdata {
  357. bool ok;
  358. double max_err;
  359. ggml_backend_t backend1;
  360. ggml_backend_t backend2;
  361. };
  362. callback_userdata ud {
  363. true,
  364. max_nmse_err(),
  365. backend1,
  366. backend2
  367. };
  368. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  369. callback_userdata * ud = (callback_userdata *) user_data;
  370. const char * bn1 = ggml_backend_name(ud->backend1);
  371. const char * bn2 = ggml_backend_name(ud->backend2);
  372. if (t1->op == GGML_OP_NONE) {
  373. // sentinels must be unchanged
  374. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  375. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  376. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  377. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  378. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  379. printf("sentinel mismatch: %s ", t1->name);
  380. ud->ok = false;
  381. return true;
  382. }
  383. }
  384. std::vector<float> f1 = tensor_to_float(t1);
  385. std::vector<float> f2 = tensor_to_float(t2);
  386. for (size_t i = 0; i < f1.size(); i++) {
  387. // check for nans
  388. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  389. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  390. ud->ok = false;
  391. return true;
  392. }
  393. // check for infs: both must be inf of the same sign, or both must be finite
  394. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  395. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  396. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  397. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  398. ud->ok = false;
  399. return true;
  400. }
  401. } else {
  402. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  403. ud->ok = false;
  404. return true;
  405. }
  406. }
  407. }
  408. double err = nmse(f1.data(), f2.data(), f1.size());
  409. if (err > ud->max_err) {
  410. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  411. //for (int i = 0; i < (int) f1.size(); i++) {
  412. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  413. //}
  414. //printf("\n");
  415. //exit(1);
  416. ud->ok = false;
  417. }
  418. return true;
  419. GGML_UNUSED(index);
  420. };
  421. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  422. if (!cmp_ok) {
  423. printf("compare failed ");
  424. }
  425. ggml_backend_buffer_free(buf);
  426. ggml_free(ctx);
  427. if (ud.ok && cmp_ok) {
  428. printf("\033[1;32mOK\033[0m\n");
  429. return true;
  430. }
  431. printf("\033[1;31mFAIL\033[0m\n");
  432. return false;
  433. }
  434. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  435. mode = MODE_PERF;
  436. static const size_t graph_nodes = 8192;
  437. ggml_init_params params = {
  438. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  439. /* .mem_base = */ NULL,
  440. /* .no_alloc = */ true,
  441. };
  442. ggml_context * ctx = ggml_init(params);
  443. ggml_tensor * out = build_graph(ctx);
  444. if (op_name != nullptr && op_desc(out) != op_name) {
  445. //printf(" %s: skipping\n", op_desc(out).c_str());
  446. ggml_free(ctx);
  447. return true;
  448. }
  449. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  450. fflush(stdout);
  451. // check if backends support op
  452. if (!ggml_backend_supports_op(backend, out)) {
  453. printf("not supported\n");
  454. ggml_free(ctx);
  455. return true;
  456. }
  457. // align while also leaving some margin for variations in parameters
  458. int align = 20;
  459. int last = (len + align - 1) / align * align;
  460. if (last - len < 5) {
  461. last += align;
  462. }
  463. last = std::max(last, 60);
  464. printf("%*s", last - len, "");
  465. // allocate
  466. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  467. if (buf == NULL) {
  468. printf("failed to allocate tensors\n");
  469. ggml_free(ctx);
  470. return false;
  471. }
  472. // randomize tensors
  473. initialize_tensors(ctx);
  474. // build graph
  475. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  476. ggml_build_forward_expand(gf, out);
  477. // warmup run
  478. ggml_backend_graph_compute(backend, gf);
  479. // duplicate the op
  480. size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
  481. int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
  482. for (int i = 1; i < n_runs; i++) {
  483. gf->nodes[gf->n_nodes++] = out;
  484. }
  485. // calculate memory
  486. size_t mem = n_runs * op_size(out);
  487. auto tensor_op_size = [](ggml_tensor * t) {
  488. size_t size = ggml_nbytes(t);
  489. // add source tensors
  490. for (int i = 0; i < GGML_MAX_SRC; i++) {
  491. if (t->src[i] != NULL) {
  492. size += ggml_nbytes(t->src[i]);
  493. }
  494. }
  495. return size;
  496. };
  497. for (int i = 0; i < gf->n_nodes; i++) {
  498. if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
  499. continue;
  500. }
  501. mem += tensor_op_size(gf->nodes[i]);
  502. }
  503. // run
  504. ggml_backend_synchronize(backend);
  505. int64_t start_time = ggml_time_us();
  506. ggml_backend_graph_compute(backend, gf);
  507. ggml_backend_synchronize(backend);
  508. int64_t end_time = ggml_time_us();
  509. double time_us = end_time - start_time;
  510. printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
  511. n_runs,
  512. time_us / n_runs,
  513. op_size(out) / 1024,
  514. mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
  515. ggml_backend_buffer_free(buf);
  516. ggml_free(ctx);
  517. return true;
  518. }
  519. };
  520. // GGML_OP_UNARY
  521. struct test_unary : public test_case {
  522. const ggml_unary_op op;
  523. const ggml_type type;
  524. const std::array<int64_t, 4> ne;
  525. std::string vars() override {
  526. return VARS_TO_STR2(type, ne);
  527. }
  528. test_unary(ggml_unary_op op,
  529. ggml_type type = GGML_TYPE_F32,
  530. std::array<int64_t, 4> ne = {128, 10, 10, 10})
  531. : op(op), type(type), ne(ne) {}
  532. ggml_tensor * build_graph(ggml_context * ctx) override {
  533. ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
  534. ggml_tensor * out = ggml_unary(ctx, in, op);
  535. return out;
  536. }
  537. void initialize_tensors(ggml_context * ctx) override {
  538. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  539. // test extended range of values to check for NaNs in GELU
  540. init_tensor_uniform(t, -150.f, 150.f);
  541. }
  542. }
  543. };
  544. // GGML_OP_GET_ROWS
  545. struct test_get_rows : public test_case {
  546. const ggml_type type;
  547. const int n; // cols
  548. const int m; // rows
  549. const int r; // rows to get
  550. const int b; // batch size
  551. const bool v; // view (non-contiguous src1)
  552. std::string vars() override {
  553. return VARS_TO_STR6(type, n, m, r, b, v);
  554. }
  555. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  556. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  557. ggml_tensor * build_graph(ggml_context * ctx) override {
  558. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  559. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  560. if (v) {
  561. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  562. }
  563. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  564. return out;
  565. }
  566. void initialize_tensors(ggml_context * ctx) override {
  567. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  568. if (t->type == GGML_TYPE_I32) {
  569. if (ggml_is_view_op(t->op)) { continue; }
  570. // rows
  571. std::vector<int> data(r*b);
  572. for (int i = 0; i < r*b; i++) {
  573. data[i] = rand() % m;
  574. }
  575. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  576. } else {
  577. init_tensor_uniform(t);
  578. }
  579. }
  580. }
  581. };
  582. // GGML_OP_REPEAT
  583. struct test_repeat : public test_case {
  584. const ggml_type type;
  585. const std::array<int64_t, 4> ne;
  586. const std::array<int, 4> nr;
  587. std::string vars() override {
  588. return VARS_TO_STR3(type, ne, nr);
  589. }
  590. size_t op_size(ggml_tensor * t) override {
  591. return ggml_nbytes(t) * 2;
  592. }
  593. test_repeat(ggml_type type = GGML_TYPE_F32,
  594. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  595. std::array<int, 4> nr = {2, 2, 2, 2})
  596. : type(type), ne(ne), nr(nr) {}
  597. ggml_tensor * build_graph(ggml_context * ctx) override {
  598. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  599. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  600. ggml_tensor * out = ggml_repeat(ctx, src, target);
  601. return out;
  602. }
  603. };
  604. // GGML_OP_DUP
  605. struct test_dup : public test_case {
  606. const ggml_type type;
  607. const std::array<int64_t, 4> ne;
  608. const std::array<int64_t, 4> permute;
  609. bool _use_permute;
  610. std::string vars() override {
  611. std::string v = VARS_TO_STR2(type, ne);
  612. if (_use_permute) v += "," + VAR_TO_STR(permute);
  613. return v;
  614. }
  615. test_dup(ggml_type type = GGML_TYPE_F32,
  616. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  617. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  618. : type(type), ne(ne), permute(permute),
  619. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  620. ggml_tensor * build_graph(ggml_context * ctx) override {
  621. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  622. if (_use_permute) {
  623. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  624. }
  625. ggml_tensor * out = ggml_dup(ctx, src);
  626. return out;
  627. }
  628. };
  629. // GGML_OP_CPY
  630. struct test_cpy : public test_case {
  631. const ggml_type type_src;
  632. const ggml_type type_dst;
  633. const std::array<int64_t, 4> ne;
  634. std::string vars() override {
  635. return VARS_TO_STR3(type_src, type_dst, ne);
  636. }
  637. size_t op_size(ggml_tensor * t) override {
  638. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  639. }
  640. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  641. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  642. : type_src(type_src), type_dst(type_dst), ne(ne) {}
  643. ggml_tensor * build_graph(ggml_context * ctx) override {
  644. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  645. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
  646. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  647. return out;
  648. }
  649. };
  650. // GGML_OP_CONT
  651. struct test_cont : public test_case {
  652. const ggml_type type;
  653. const std::array<int64_t, 4> ne;
  654. std::string vars() override {
  655. return VARS_TO_STR2(type, ne);
  656. }
  657. test_cont(ggml_type type = GGML_TYPE_F32,
  658. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  659. : type(type), ne(ne) {}
  660. ggml_tensor * build_graph(ggml_context * ctx) override {
  661. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  662. src = ggml_transpose(ctx, src);
  663. ggml_tensor * out = ggml_cont(ctx, src);
  664. return out;
  665. }
  666. };
  667. // GGML_OP_ADD
  668. // GGML_OP_MUL
  669. // GGML_OP_DIV
  670. struct test_bin_bcast : public test_case {
  671. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  672. op_t op;
  673. const ggml_type type;
  674. const std::array<int64_t, 4> ne;
  675. const std::array<int, 4> nr;
  676. std::string vars() override {
  677. return VARS_TO_STR3(type, ne, nr);
  678. }
  679. size_t op_size(ggml_tensor * t) override {
  680. return ggml_nbytes(t) * 3;
  681. }
  682. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  683. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  684. std::array<int, 4> nr = {1, 2, 1, 1})
  685. : op(op), type(type), ne(ne), nr(nr) {}
  686. ggml_tensor * build_graph(ggml_context * ctx) override {
  687. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  688. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  689. ggml_tensor * out = op(ctx, a, b);
  690. return out;
  691. }
  692. void initialize_tensors(ggml_context * ctx) override {
  693. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  694. if (op == ggml_div) {
  695. // avoid division by zero
  696. init_tensor_uniform(t, 1.0f, 2.0f);
  697. } else {
  698. init_tensor_uniform(t);
  699. }
  700. }
  701. }
  702. };
  703. // GGML_OP_SCALE
  704. struct test_scale : public test_case {
  705. const ggml_type type;
  706. const std::array<int64_t, 4> ne;
  707. float scale;
  708. std::string vars() override {
  709. return VARS_TO_STR3(type, ne, scale);
  710. }
  711. test_scale(ggml_type type = GGML_TYPE_F32,
  712. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  713. float scale = 2.0f)
  714. : type(type), ne(ne), scale(scale) {}
  715. ggml_tensor * build_graph(ggml_context * ctx) override {
  716. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  717. ggml_tensor * out = ggml_scale(ctx, a, scale);
  718. return out;
  719. }
  720. };
  721. // GGML_OP_NORM
  722. struct test_norm : public test_case {
  723. const ggml_type type;
  724. const std::array<int64_t, 4> ne;
  725. float eps;
  726. std::string vars() override {
  727. return VARS_TO_STR3(type, ne, eps);
  728. }
  729. test_norm(ggml_type type = GGML_TYPE_F32,
  730. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  731. float eps = 1e-6f)
  732. : type(type), ne(ne), eps(eps) {}
  733. ggml_tensor * build_graph(ggml_context * ctx) override {
  734. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  735. ggml_tensor * out = ggml_norm(ctx, a, eps);
  736. return out;
  737. }
  738. };
  739. // GGML_OP_RMS_NORM
  740. struct test_rms_norm : public test_case {
  741. const ggml_type type;
  742. const std::array<int64_t, 4> ne;
  743. float eps;
  744. std::string vars() override {
  745. return VARS_TO_STR3(type, ne, eps);
  746. }
  747. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  748. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  749. float eps = 1e-6f)
  750. : type(type), ne(ne), eps(eps) {}
  751. ggml_tensor * build_graph(ggml_context * ctx) override {
  752. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  753. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  754. return out;
  755. }
  756. };
  757. // GGML_OP_MUL_MAT
  758. struct test_mul_mat : public test_case {
  759. const ggml_type type_a;
  760. const ggml_type type_b;
  761. const int64_t m;
  762. const int64_t n;
  763. const int64_t k;
  764. const std::array<int64_t, 2> bs; // dims 3 and 4
  765. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  766. std::string vars() override {
  767. return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
  768. }
  769. double max_nmse_err() override {
  770. return 5e-4;
  771. }
  772. size_t op_size(ggml_tensor * t) override {
  773. size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
  774. size_t b = ggml_nbytes(t->src[1]) * m;
  775. size_t c = ggml_nbytes(t);
  776. return a + b + c;
  777. GGML_UNUSED(t);
  778. }
  779. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  780. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  781. std::array<int64_t, 2> bs = {10, 10},
  782. std::array<int64_t, 2> nr = {2, 2})
  783. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
  784. ggml_tensor * build_graph(ggml_context * ctx) override {
  785. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  786. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
  787. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  788. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  789. return out;
  790. }
  791. };
  792. // GGML_OP_MUL_MAT_ID
  793. struct test_mul_mat_id : public test_case {
  794. const ggml_type type_a;
  795. const ggml_type type_b;
  796. const int n_mats;
  797. const int n_used;
  798. const bool b; // brodcast b matrix
  799. const int64_t m;
  800. const int64_t n;
  801. const int64_t k;
  802. std::string vars() override {
  803. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  804. }
  805. double max_nmse_err() override {
  806. return 5e-4;
  807. }
  808. size_t op_size(ggml_tensor * t) override {
  809. size_t a = ggml_nbytes(t->src[2]) * n;
  810. size_t b = ggml_nbytes(t->src[1]) * m;
  811. size_t c = ggml_nbytes(t);
  812. return a + b + c;
  813. GGML_UNUSED(t);
  814. }
  815. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  816. int n_mats = 8, int n_used = 2, bool b = false,
  817. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  818. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  819. m(m), n(n), k(k) {
  820. GGML_ASSERT(n_used <= n_mats);
  821. }
  822. ggml_tensor * build_graph(ggml_context * ctx) override {
  823. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  824. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  825. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  826. if (n_used != n_mats) {
  827. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  828. }
  829. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  830. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  831. return out;
  832. }
  833. void initialize_tensors(ggml_context * ctx) override {
  834. std::random_device rd;
  835. std::default_random_engine rng(rd());
  836. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  837. if (t->type == GGML_TYPE_I32) {
  838. if (ggml_is_view_op(t->op)) { continue; }
  839. // ids
  840. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  841. std::vector<int32_t> data(t->ne[0]);
  842. for (int i = 0; i < t->ne[0]; i++) {
  843. data[i] = i % n_mats;
  844. }
  845. std::shuffle(data.begin(), data.end(), rng);
  846. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  847. }
  848. } else {
  849. init_tensor_uniform(t);
  850. }
  851. }
  852. }
  853. };
  854. // GGML_OP_SQR
  855. struct test_sqr : public test_case {
  856. const ggml_type type;
  857. const std::array<int64_t, 4> ne;
  858. std::string vars() override {
  859. return VARS_TO_STR2(type, ne);
  860. }
  861. test_sqr(ggml_type type = GGML_TYPE_F32,
  862. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  863. : type(type), ne(ne) {}
  864. ggml_tensor * build_graph(ggml_context * ctx) override {
  865. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  866. ggml_tensor * out = ggml_sqr(ctx, a);
  867. return out;
  868. }
  869. };
  870. // GGML_OP_CLAMP
  871. struct test_clamp : public test_case {
  872. const ggml_type type;
  873. const std::array<int64_t, 4> ne;
  874. float min;
  875. float max;
  876. std::string vars() override {
  877. return VARS_TO_STR4(type, ne, min, max);
  878. }
  879. test_clamp(ggml_type type = GGML_TYPE_F32,
  880. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  881. float min = -0.5f, float max = 0.5f)
  882. : type(type), ne(ne), min(min), max(max) {}
  883. ggml_tensor * build_graph(ggml_context * ctx) override {
  884. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  885. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  886. return out;
  887. }
  888. };
  889. // GGML_OP_DIAG_MASK_INF
  890. struct test_diag_mask_inf : public test_case {
  891. const ggml_type type;
  892. const std::array<int64_t, 4> ne;
  893. const int n_past;
  894. std::string vars() override {
  895. return VARS_TO_STR3(type, ne, n_past);
  896. }
  897. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  898. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  899. int n_past = 5)
  900. : type(type), ne(ne), n_past(n_past) {}
  901. ggml_tensor * build_graph(ggml_context * ctx) override {
  902. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  903. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  904. return out;
  905. }
  906. };
  907. // GGML_OP_SOFT_MAX
  908. struct test_soft_max : public test_case {
  909. const ggml_type type;
  910. const std::array<int64_t, 4> ne;
  911. const bool mask;
  912. const float scale;
  913. const float max_bias;
  914. std::string vars() override {
  915. return VARS_TO_STR5(type, ne, mask, scale, max_bias);
  916. }
  917. // the 1024 test with bias occasionally fails:
  918. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  919. virtual double max_nmse_err() override {
  920. return 1e-6;
  921. }
  922. test_soft_max(ggml_type type = GGML_TYPE_F32,
  923. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  924. bool mask = false,
  925. float scale = 1.0f,
  926. float max_bias = 0.0f)
  927. : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
  928. ggml_tensor * build_graph(ggml_context * ctx) override {
  929. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  930. ggml_tensor * mask = nullptr;
  931. if (this->mask) {
  932. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
  933. }
  934. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  935. return out;
  936. }
  937. };
  938. // GGML_OP_ROPE
  939. struct test_rope : public test_case {
  940. const ggml_type type;
  941. const std::array<int64_t, 4> ne;
  942. int n_dims;
  943. int mode;
  944. int n_ctx;
  945. std::string vars() override {
  946. return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
  947. }
  948. test_rope(ggml_type type = GGML_TYPE_F32,
  949. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  950. int n_dims = 10, int mode = 0, int n_ctx = 512)
  951. : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
  952. ggml_tensor * build_graph(ggml_context * ctx) override {
  953. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  954. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  955. ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
  956. return out;
  957. }
  958. void initialize_tensors(ggml_context * ctx) override {
  959. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  960. if (t->type == GGML_TYPE_I32) {
  961. // pos
  962. std::vector<int> data(ne[2]);
  963. for (int i = 0; i < ne[2]; i++) {
  964. data[i] = rand() % n_ctx;
  965. }
  966. ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
  967. } else {
  968. init_tensor_uniform(t);
  969. }
  970. }
  971. }
  972. };
  973. // GGML_OP_POOL2D
  974. struct test_pool2d : public test_case {
  975. enum ggml_op_pool pool_type;
  976. const ggml_type type_input;
  977. const std::array<int64_t, 4> ne_input;
  978. // kernel size
  979. const int k0;
  980. const int k1;
  981. // stride
  982. const int s0;
  983. const int s1;
  984. // padding
  985. const int p0;
  986. const int p1;
  987. std::string vars() override {
  988. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  989. }
  990. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  991. ggml_type type_input = GGML_TYPE_F32,
  992. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  993. int k0 = 3, int k1 = 3,
  994. int s0 = 1, int s1 = 1,
  995. int p0 = 1, int p1 = 1)
  996. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  997. ggml_tensor * build_graph(ggml_context * ctx) override {
  998. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  999. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  1000. return out;
  1001. }
  1002. };
  1003. // GGML_OP_IM2COL
  1004. struct test_im2col : public test_case {
  1005. const ggml_type type_input;
  1006. const ggml_type type_kernel;
  1007. const ggml_type dst_type;
  1008. const std::array<int64_t, 4> ne_input;
  1009. const std::array<int64_t, 4> ne_kernel;
  1010. // stride
  1011. const int s0;
  1012. const int s1;
  1013. // padding
  1014. const int p0;
  1015. const int p1;
  1016. // dilatation
  1017. const int d0;
  1018. const int d1;
  1019. // mode
  1020. const bool is_2D;
  1021. std::string vars() override {
  1022. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  1023. }
  1024. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  1025. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  1026. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  1027. int s0 = 1, int s1 = 1,
  1028. int p0 = 1, int p1 = 1,
  1029. int d0 = 1, int d1 = 1,
  1030. bool is_2D = true)
  1031. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  1032. ggml_tensor * build_graph(ggml_context * ctx) override {
  1033. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1034. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  1035. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  1036. return out;
  1037. }
  1038. };
  1039. // GGML_OP_CONCAT
  1040. struct test_concat : public test_case {
  1041. const ggml_type type;
  1042. const std::array<int64_t, 4> ne;
  1043. const int64_t b_ne2;
  1044. std::string vars() override {
  1045. return VARS_TO_STR3(type, ne, b_ne2);
  1046. }
  1047. test_concat(ggml_type type = GGML_TYPE_F32,
  1048. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1049. int64_t b_ne2 = 10)
  1050. : type(type), ne(ne), b_ne2(b_ne2) {}
  1051. ggml_tensor * build_graph(ggml_context * ctx) override {
  1052. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1053. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
  1054. ggml_tensor * out = ggml_concat(ctx, a, b);
  1055. return out;
  1056. }
  1057. };
  1058. // GGML_OP_ARGSORT
  1059. struct test_argsort : public test_case {
  1060. const ggml_type type;
  1061. const std::array<int64_t, 4> ne;
  1062. ggml_sort_order order;
  1063. std::string vars() override {
  1064. return VARS_TO_STR3(type, ne, order);
  1065. }
  1066. test_argsort(ggml_type type = GGML_TYPE_F32,
  1067. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  1068. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  1069. : type(type), ne(ne), order(order) {}
  1070. ggml_tensor * build_graph(ggml_context * ctx) override {
  1071. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1072. ggml_tensor * out = ggml_argsort(ctx, a, order);
  1073. return out;
  1074. }
  1075. void initialize_tensors(ggml_context * ctx) override {
  1076. std::random_device rd;
  1077. std::default_random_engine rng(rd());
  1078. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1079. if (t->type == GGML_TYPE_I32) {
  1080. // indices
  1081. std::vector<int> data(ggml_nelements(t));
  1082. for (int i = 0; i < ggml_nelements(t); i++) {
  1083. data[i] = rand();
  1084. }
  1085. std::shuffle(data.begin(), data.end(), rng);
  1086. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  1087. } else if (t->type == GGML_TYPE_F32) {
  1088. // initialize with unique values to avoid ties
  1089. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1090. std::vector<float> data(t->ne[0]);
  1091. for (int i = 0; i < t->ne[0]; i++) {
  1092. data[i] = i;
  1093. }
  1094. std::shuffle(data.begin(), data.end(), rng);
  1095. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1096. }
  1097. } else {
  1098. GGML_ASSERT(false);
  1099. }
  1100. }
  1101. }
  1102. };
  1103. // GGML_OP_SUM_ROWS
  1104. struct test_sum_rows : public test_case {
  1105. const ggml_type type;
  1106. const std::array<int64_t, 4> ne;
  1107. std::string vars() override {
  1108. return VARS_TO_STR2(type, ne);
  1109. }
  1110. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  1111. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  1112. : type(type), ne(ne) {}
  1113. ggml_tensor * build_graph(ggml_context * ctx) override {
  1114. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1115. ggml_tensor * out = ggml_sum_rows(ctx, a);
  1116. return out;
  1117. }
  1118. };
  1119. // GGML_OP_UPSCALE
  1120. struct test_upscale : public test_case {
  1121. const ggml_type type;
  1122. const std::array<int64_t, 4> ne;
  1123. const int32_t scale_factor;
  1124. const bool transpose;
  1125. std::string vars() override {
  1126. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  1127. }
  1128. test_upscale(ggml_type type = GGML_TYPE_F32,
  1129. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  1130. int32_t scale_factor = 2, bool transpose = false)
  1131. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  1132. ggml_tensor * build_graph(ggml_context * ctx) override {
  1133. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1134. if (transpose) a = ggml_transpose(ctx, a);
  1135. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  1136. return out;
  1137. }
  1138. };
  1139. // GGML_OP_UPSCALE (ext)
  1140. struct test_upscale_ext : public test_case {
  1141. const ggml_type type;
  1142. const std::array<int64_t, 4> ne;
  1143. const std::array<int64_t, 4> ne_tgt;
  1144. std::string vars() override {
  1145. return VARS_TO_STR3(type, ne, ne_tgt);
  1146. }
  1147. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  1148. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  1149. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  1150. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  1151. ggml_tensor * build_graph(ggml_context * ctx) override {
  1152. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1153. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  1154. return out;
  1155. }
  1156. };
  1157. // GGML_OP_GROUP_NORM
  1158. struct test_group_norm : public test_case {
  1159. const ggml_type type;
  1160. const std::array<int64_t, 4> ne;
  1161. const int32_t num_groups;
  1162. std::string vars() override {
  1163. return VARS_TO_STR3(type, ne, num_groups);
  1164. }
  1165. test_group_norm(ggml_type type = GGML_TYPE_F32,
  1166. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  1167. int32_t num_groups = 32)
  1168. : type(type), ne(ne), num_groups(num_groups) {}
  1169. ggml_tensor * build_graph(ggml_context * ctx) override {
  1170. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1171. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
  1172. return out;
  1173. }
  1174. };
  1175. // GGML_OP_ACC
  1176. struct test_acc : public test_case {
  1177. const ggml_type type;
  1178. const std::array<int64_t, 4> ne_a;
  1179. const std::array<int64_t, 4> ne_b;
  1180. std::string vars() override {
  1181. return VARS_TO_STR3(type, ne_a, ne_b);
  1182. }
  1183. test_acc(ggml_type type = GGML_TYPE_F32,
  1184. std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
  1185. std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
  1186. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1187. ggml_tensor * build_graph(ggml_context * ctx) override {
  1188. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1189. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1190. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  1191. return out;
  1192. }
  1193. };
  1194. // GGML_OP_PAD
  1195. struct test_pad : public test_case {
  1196. const ggml_type type;
  1197. const std::array<int64_t, 4> ne_a;
  1198. const int pad_0;
  1199. const int pad_1;
  1200. std::string vars() override {
  1201. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  1202. }
  1203. test_pad(ggml_type type = GGML_TYPE_F32,
  1204. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  1205. int pad_0 = 1, int pad_1 = 1)
  1206. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  1207. ggml_tensor * build_graph(ggml_context * ctx) override {
  1208. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1209. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  1210. return out;
  1211. }
  1212. };
  1213. // GGML_OP_ARANGE
  1214. struct test_arange : public test_case {
  1215. const ggml_type type;
  1216. const float start;
  1217. const float stop;
  1218. const float step;
  1219. std::string vars() override {
  1220. return VARS_TO_STR4(type, start, stop, step);
  1221. }
  1222. test_arange(ggml_type type = GGML_TYPE_F32,
  1223. float start = 0.f, float stop = 10.f, float step = 1.f)
  1224. : type(type), start(start), stop(stop), step(step) {}
  1225. ggml_tensor * build_graph(ggml_context * ctx) override {
  1226. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  1227. return out;
  1228. }
  1229. };
  1230. // GGML_OP_TIMESTEP_EMBEDDING
  1231. struct test_timestep_embedding : public test_case {
  1232. const ggml_type type;
  1233. const std::array<int64_t, 4> ne_a;
  1234. const int dim;
  1235. const int max_period;
  1236. std::string vars() override {
  1237. return VARS_TO_STR4(type, ne_a, dim, max_period);
  1238. }
  1239. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  1240. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  1241. int dim = 320, int max_period=10000)
  1242. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  1243. ggml_tensor * build_graph(ggml_context * ctx) override {
  1244. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1245. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  1246. return out;
  1247. }
  1248. };
  1249. // GGML_OP_LEAKY_RELU
  1250. struct test_leaky_relu : public test_case {
  1251. const ggml_type type;
  1252. const std::array<int64_t, 4> ne_a;
  1253. const float negative_slope;
  1254. std::string vars() override {
  1255. return VARS_TO_STR3(type, ne_a, negative_slope);
  1256. }
  1257. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  1258. std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
  1259. float negative_slope = 0.1f)
  1260. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  1261. ggml_tensor * build_graph(ggml_context * ctx) override {
  1262. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1263. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  1264. return out;
  1265. }
  1266. };
  1267. // GGML_OP_FLASH_ATTN_EXT
  1268. struct test_flash_attn_ext : public test_case {
  1269. const int64_t hs; // head size
  1270. const int64_t nh; // num heads
  1271. const int64_t kv; // kv size
  1272. const int64_t nb; // batch size
  1273. const bool mask; // use mask
  1274. const float max_bias; // ALiBi
  1275. std::string vars() override {
  1276. return VARS_TO_STR6(hs, nh, kv, nb, mask, max_bias);
  1277. }
  1278. double max_nmse_err() override {
  1279. return 5e-4;
  1280. }
  1281. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f)
  1282. : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias) {}
  1283. ggml_tensor * build_graph(ggml_context * ctx) override {
  1284. ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
  1285. ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
  1286. ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
  1287. ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
  1288. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
  1289. return out;
  1290. }
  1291. };
  1292. enum llm_norm_type {
  1293. LLM_NORM,
  1294. LLM_NORM_RMS,
  1295. };
  1296. struct llama_hparams {
  1297. uint32_t n_vocab;
  1298. uint32_t n_embd;
  1299. uint32_t n_head;
  1300. uint32_t n_head_kv;
  1301. static constexpr uint32_t n_layer = 1;
  1302. uint32_t n_rot;
  1303. uint32_t n_embd_head; // dimension of values (d_v)
  1304. uint32_t n_ff;
  1305. float f_norm_eps;
  1306. float f_norm_rms_eps;
  1307. // cparams
  1308. static constexpr uint32_t n_ctx = 512; // user-specified context size
  1309. static constexpr uint32_t n_orig_ctx = n_ctx;
  1310. // batch
  1311. int32_t n_tokens;
  1312. // llm_build_context
  1313. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  1314. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  1315. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  1316. return n_embd_head * n_head_kv;
  1317. }
  1318. };
  1319. // LLM base class
  1320. struct test_llm : public test_case {
  1321. llama_hparams hp;
  1322. protected:
  1323. test_llm(llama_hparams hp)
  1324. : hp(std::move(hp)) {
  1325. }
  1326. public:
  1327. struct ggml_tensor * llm_build_norm(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * cur,
  1330. struct ggml_tensor * mw,
  1331. struct ggml_tensor * mb,
  1332. llm_norm_type type) {
  1333. switch (type) {
  1334. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  1335. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  1336. }
  1337. cur = ggml_mul(ctx, cur, mw);
  1338. if (mb) {
  1339. cur = ggml_add(ctx, cur, mb);
  1340. }
  1341. return cur;
  1342. }
  1343. void llm_build_kv_store(
  1344. struct ggml_context * ctx,
  1345. struct ggml_tensor * k_l,
  1346. struct ggml_tensor * v_l,
  1347. struct ggml_tensor * k_cur,
  1348. struct ggml_tensor * v_cur) {
  1349. // compute the transposed [n_tokens, n_embd] V matrix
  1350. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  1351. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  1352. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  1353. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  1354. ( hp.n_ctx)*ggml_element_size(v_l),
  1355. (hp.kv_head)*ggml_element_size(v_l));
  1356. // important: storing RoPE-ed version of K in the KV cache!
  1357. ggml_cpy(ctx, k_cur, k_cache_view);
  1358. ggml_cpy(ctx, v_cur_t, v_cache_view);
  1359. }
  1360. struct ggml_tensor * llm_build_kqv(
  1361. struct ggml_context * ctx,
  1362. struct ggml_tensor * k_l,
  1363. struct ggml_tensor * v_l,
  1364. struct ggml_tensor * q_cur,
  1365. struct ggml_tensor * kq_mask,
  1366. float kq_scale) {
  1367. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  1368. struct ggml_tensor * k =
  1369. ggml_view_3d(ctx, k_l,
  1370. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  1371. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  1372. ggml_row_size(k_l->type, hp.n_embd_head),
  1373. 0);
  1374. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  1375. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  1376. // split cached v into n_head heads
  1377. struct ggml_tensor * v =
  1378. ggml_view_3d(ctx, v_l,
  1379. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  1380. ggml_element_size(v_l)*hp.n_ctx,
  1381. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  1382. 0);
  1383. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  1384. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  1385. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  1386. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1387. cur = ggml_mul_mat(ctx, wo, cur);
  1388. return cur;
  1389. }
  1390. void initialize_tensors(ggml_context * ctx) override {
  1391. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1392. if (t->type == GGML_TYPE_I32) {
  1393. // pos
  1394. std::vector<int> data(hp.n_tokens);
  1395. for (int i = 0; i < hp.n_tokens; i++) {
  1396. data[i] = rand() % hp.n_ctx;
  1397. }
  1398. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  1399. } else {
  1400. init_tensor_uniform(t);
  1401. }
  1402. }
  1403. }
  1404. };
  1405. // Llama
  1406. struct test_llama : public test_llm {
  1407. static constexpr float freq_base = 10000.0f;
  1408. static constexpr float freq_scale = 1.0f;
  1409. static constexpr float ext_factor = 0.0f;
  1410. static constexpr float attn_factor = 1.0f;
  1411. static constexpr float beta_fast = 32.0f;
  1412. static constexpr float beta_slow = 1.0f;
  1413. std::string op_desc(ggml_tensor * t) override {
  1414. GGML_UNUSED(t);
  1415. return "LLAMA";
  1416. }
  1417. std::string vars() override {
  1418. auto n_tokens = hp.n_tokens;
  1419. return VARS_TO_STR1(n_tokens);
  1420. }
  1421. double max_nmse_err() override {
  1422. return 2e-3;
  1423. }
  1424. test_llama(int n_tokens = 1)
  1425. : test_llm({
  1426. /*n_vocab =*/ 32000,
  1427. /*n_embd =*/ 3200,
  1428. /*n_head =*/ 32,
  1429. /*n_head_kv =*/ 32,
  1430. /*n_rot =*/ 100,
  1431. /*n_embd_head =*/ 100,
  1432. /*n_ff =*/ 8640,
  1433. /*f_norm_eps =*/ 0.f,
  1434. /*f_norm_rms_eps =*/ 1e-5f,
  1435. /*n_tokens =*/ n_tokens,
  1436. }) {
  1437. }
  1438. ggml_tensor * build_graph(ggml_context * ctx) override {
  1439. struct ggml_tensor * cur;
  1440. struct ggml_tensor * inpL;
  1441. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1442. // inp_pos - contains the positions
  1443. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1444. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1445. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1446. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1447. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1448. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1449. struct ggml_tensor * inpSA = inpL;
  1450. // norm
  1451. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1452. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  1453. // self-attention
  1454. {
  1455. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1456. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1457. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1458. // compute Q and K and RoPE them
  1459. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  1460. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  1461. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  1462. Qcur = ggml_rope_custom(
  1463. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
  1464. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1465. ext_factor, attn_factor, beta_fast, beta_slow
  1466. );
  1467. Kcur = ggml_rope_custom(
  1468. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
  1469. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1470. ext_factor, attn_factor, beta_fast, beta_slow
  1471. );
  1472. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1473. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1474. }
  1475. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  1476. // feed-forward network
  1477. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1478. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  1479. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1480. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1481. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1482. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  1483. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  1484. cur = ggml_silu(ctx, cur);
  1485. cur = ggml_mul(ctx, cur, tmp);
  1486. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1487. cur = ggml_add(ctx, cur, ffn_inp);
  1488. // input for next layer
  1489. inpL = cur;
  1490. }
  1491. cur = inpL;
  1492. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1493. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  1494. // lm_head
  1495. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  1496. cur = ggml_mul_mat(ctx, output, cur);
  1497. return cur;
  1498. }
  1499. };
  1500. // Falcon
  1501. struct test_falcon : public test_llm {
  1502. static constexpr float freq_base = 10000.0f;
  1503. static constexpr float freq_scale = 1.0f;
  1504. static constexpr float ext_factor = 0.0f;
  1505. static constexpr float attn_factor = 1.0f;
  1506. static constexpr float beta_fast = 32.0f;
  1507. static constexpr float beta_slow = 1.0f;
  1508. std::string op_desc(ggml_tensor * t) override {
  1509. GGML_UNUSED(t);
  1510. return "FALCON";
  1511. }
  1512. std::string vars() override {
  1513. auto n_tokens = hp.n_tokens;
  1514. return VARS_TO_STR1(n_tokens);
  1515. }
  1516. double max_nmse_err() override {
  1517. return 2e-3;
  1518. }
  1519. test_falcon(int n_tokens = 1)
  1520. : test_llm({
  1521. /*n_vocab =*/ 32000,
  1522. /*n_embd =*/ 3200,
  1523. /*n_head =*/ 50,
  1524. /*n_head_kv =*/ 1,
  1525. /*n_rot =*/ 64,
  1526. /*n_embd_head =*/ 64,
  1527. /*n_ff =*/ 8640,
  1528. /*f_norm_eps =*/ 1e-5f,
  1529. /*f_norm_rms_eps =*/ 0.f,
  1530. /*n_tokens =*/ n_tokens,
  1531. }) {
  1532. }
  1533. ggml_tensor * build_graph(ggml_context * ctx) override {
  1534. struct ggml_tensor * cur;
  1535. struct ggml_tensor * inpL;
  1536. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1537. // inp_pos - contains the positions
  1538. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1539. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1540. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1541. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1542. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1543. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1544. // norm
  1545. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1546. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1547. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  1548. // self-attention
  1549. {
  1550. cur = attn_norm;
  1551. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  1552. cur = ggml_mul_mat(ctx, wqkv, cur);
  1553. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  1554. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  1555. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  1556. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  1557. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  1558. // using mode = 2 for neox mode
  1559. Qcur = ggml_rope_custom(
  1560. ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1561. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1562. );
  1563. Kcur = ggml_rope_custom(
  1564. ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1565. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1566. );
  1567. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1568. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1569. }
  1570. struct ggml_tensor * ffn_inp = cur;
  1571. // feed forward
  1572. {
  1573. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1574. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1575. cur = attn_norm;
  1576. cur = ggml_mul_mat(ctx, ffn_up, cur);
  1577. cur = ggml_gelu(ctx, cur);
  1578. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1579. }
  1580. cur = ggml_add(ctx, cur, ffn_inp);
  1581. cur = ggml_add(ctx, cur, inpL);
  1582. // input for next layer
  1583. inpL = cur;
  1584. }
  1585. cur = inpL;
  1586. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1587. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1588. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  1589. // lm_head
  1590. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  1591. cur = ggml_mul_mat(ctx, output, cur);
  1592. return cur;
  1593. }
  1594. };
  1595. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  1596. std::vector<std::unique_ptr<test_case>> test_cases;
  1597. std::default_random_engine rng(0);
  1598. const ggml_type all_types[] = {
  1599. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  1600. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  1601. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1602. GGML_TYPE_Q8_0,
  1603. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1604. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  1605. GGML_TYPE_Q6_K,
  1606. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1607. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1608. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1609. };
  1610. const ggml_type base_types[] = {
  1611. GGML_TYPE_F32, GGML_TYPE_F16,
  1612. GGML_TYPE_Q4_0,
  1613. GGML_TYPE_Q4_K,
  1614. GGML_TYPE_IQ2_XXS
  1615. };
  1616. const ggml_type other_types[] = {
  1617. GGML_TYPE_Q4_1,
  1618. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1619. GGML_TYPE_Q8_0,
  1620. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1621. GGML_TYPE_Q5_K,
  1622. GGML_TYPE_Q6_K,
  1623. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1624. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1625. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1626. };
  1627. // unary ops
  1628. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  1629. test_cases.emplace_back(new test_unary((ggml_unary_op) op));
  1630. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }));
  1631. }
  1632. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  1633. for (ggml_type type : all_types) {
  1634. for (int b : {1, 7}) {
  1635. for (bool v : {false, true}) {
  1636. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  1637. }
  1638. }
  1639. }
  1640. for (int b : {1, 7}) {
  1641. for (bool v : {false, true}) {
  1642. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  1643. }
  1644. }
  1645. for (ggml_type type_input : {GGML_TYPE_F32}) {
  1646. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  1647. for (int k0 : {1, 3}) {
  1648. for (int k1 : {1, 3}) {
  1649. for (int s0 : {1, 2}) {
  1650. for (int s1 : {1, 2}) {
  1651. for (int p0 : {0, 1}) {
  1652. for (int p1 : {0, 1}) {
  1653. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  1654. }
  1655. }
  1656. }
  1657. }
  1658. }
  1659. }
  1660. }
  1661. }
  1662. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  1663. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  1664. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
  1665. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1666. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
  1667. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
  1668. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1669. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1670. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1671. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  1672. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  1673. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  1674. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  1675. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  1676. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  1677. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  1678. for (ggml_type type_dst : all_types) {
  1679. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  1680. }
  1681. }
  1682. test_cases.emplace_back(new test_cont());
  1683. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  1684. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  1685. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  1686. }
  1687. };
  1688. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  1689. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  1690. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  1691. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
  1692. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
  1693. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
  1694. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
  1695. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
  1696. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
  1697. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
  1698. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
  1699. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
  1700. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
  1701. // stable diffusion
  1702. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  1703. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  1704. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  1705. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  1706. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  1707. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  1708. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  1709. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  1710. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  1711. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  1712. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  1713. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  1714. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  1715. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  1716. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  1717. test_cases.emplace_back(new test_scale());
  1718. for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
  1719. test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1720. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1721. }
  1722. for (ggml_type type_a : base_types) {
  1723. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1724. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1725. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  1726. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  1727. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  1728. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  1729. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  1730. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  1731. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  1732. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  1733. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  1734. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  1735. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  1736. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  1737. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  1738. }
  1739. }
  1740. for (ggml_type type_a : other_types) {
  1741. for (ggml_type type_b : {GGML_TYPE_F32}) {
  1742. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1743. }
  1744. }
  1745. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  1746. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  1747. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  1748. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  1749. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  1750. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  1751. for (ggml_type type_a : base_types) {
  1752. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1753. for (int n_mats : {4, 8}) {
  1754. for (int n_used : {1, 2, 4}) {
  1755. for (bool b : {false, true}) {
  1756. for (int n : {1, 32}) {
  1757. int m = 512;
  1758. int k = 256;
  1759. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1760. }
  1761. }
  1762. }
  1763. }
  1764. }
  1765. }
  1766. for (ggml_type type_a : other_types) {
  1767. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1768. for (int n_mats : {4}) {
  1769. for (int n_used : {2}) {
  1770. for (bool b : {false}) {
  1771. for (int n : {1}) {
  1772. int m = 512;
  1773. int k = 256;
  1774. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1775. }
  1776. }
  1777. }
  1778. }
  1779. }
  1780. }
  1781. test_cases.emplace_back(new test_sqr());
  1782. test_cases.emplace_back(new test_clamp());
  1783. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  1784. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
  1785. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
  1786. #if 0
  1787. std::uniform_int_distribution<> dist_ne1(1, 50);
  1788. int exponent = 1;
  1789. while (exponent < (1 << 17)) {
  1790. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  1791. for (int n = 0; n < 10; ++n) {
  1792. int64_t ne0 = dist_ne0(rng);
  1793. int64_t ne1 = dist_ne1(rng);
  1794. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  1795. }
  1796. exponent <<= 1;
  1797. }
  1798. #endif
  1799. for (bool mask : {false, true}) {
  1800. for (float max_bias : {0.0f, 8.0f}) {
  1801. if (!mask && max_bias > 0.0f) continue;
  1802. for (float scale : {1.0f, 0.1f}) {
  1803. for (int64_t ne0 : {16, 1024}) {
  1804. for (int64_t ne1 : {16, 1024}) {
  1805. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
  1806. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
  1807. }
  1808. }
  1809. }
  1810. }
  1811. }
  1812. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
  1813. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
  1814. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
  1815. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1816. test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
  1817. test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
  1818. test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
  1819. test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
  1820. test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1821. test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1822. test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1823. test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1824. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
  1825. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
  1826. }
  1827. test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
  1828. test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
  1829. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  1830. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  1831. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  1832. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  1833. }
  1834. test_cases.emplace_back(new test_sum_rows());
  1835. test_cases.emplace_back(new test_upscale());
  1836. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  1837. test_cases.emplace_back(new test_upscale_ext());
  1838. test_cases.emplace_back(new test_group_norm());
  1839. test_cases.emplace_back(new test_acc());
  1840. test_cases.emplace_back(new test_pad());
  1841. test_cases.emplace_back(new test_arange());
  1842. test_cases.emplace_back(new test_timestep_embedding());
  1843. test_cases.emplace_back(new test_leaky_relu());
  1844. for (int hs : { 64, 80, 128, 256, }) {
  1845. for (bool mask : { true, false } ) {
  1846. for (float max_bias : { 0.0f, 8.0f }) {
  1847. if (!mask && max_bias > 0.0f) continue;
  1848. for (int nh : { 32, }) {
  1849. for (int kv : { 512, 1024, }) {
  1850. for (int nb : { 1, 2, 4, 8, }) {
  1851. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias));
  1852. }
  1853. }
  1854. }
  1855. }
  1856. }
  1857. }
  1858. // these tests are disabled to save execution time, but they can be handy for debugging
  1859. #if 0
  1860. test_cases.emplace_back(new test_llama(1));
  1861. test_cases.emplace_back(new test_llama(2));
  1862. test_cases.emplace_back(new test_falcon(1));
  1863. test_cases.emplace_back(new test_falcon(2));
  1864. #endif
  1865. // run tests
  1866. if (mode == MODE_TEST) {
  1867. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  1868. size_t n_ok = 0;
  1869. for (auto & test : test_cases) {
  1870. if (test->eval(backend, backend_cpu, op_name)) {
  1871. n_ok++;
  1872. }
  1873. }
  1874. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  1875. ggml_backend_free(backend_cpu);
  1876. return n_ok == test_cases.size();
  1877. }
  1878. if (mode == MODE_PERF) {
  1879. for (auto & test : test_cases) {
  1880. test->eval_perf(backend, op_name);
  1881. }
  1882. return true;
  1883. }
  1884. GGML_ASSERT(false);
  1885. return false;
  1886. }
  1887. static void usage(char ** argv) {
  1888. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  1889. printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
  1890. printf(" op names are as given by ggml_op_desc()\n");
  1891. }
  1892. int main(int argc, char ** argv) {
  1893. test_mode mode = MODE_TEST;
  1894. const char * op_name_filter = NULL;
  1895. const char * backend_filter = NULL;
  1896. for (int i = 1; i < argc; i++) {
  1897. if (strcmp(argv[i], "test") == 0) {
  1898. mode = MODE_TEST;
  1899. } else if (strcmp(argv[i], "perf") == 0) {
  1900. mode = MODE_PERF;
  1901. } else if (strcmp(argv[i], "-o") == 0) {
  1902. if (i + 1 < argc) {
  1903. op_name_filter = argv[++i];
  1904. } else {
  1905. usage(argv);
  1906. return 1;
  1907. }
  1908. } else if (strcmp(argv[i], "-b") == 0) {
  1909. if (i + 1 < argc) {
  1910. backend_filter = argv[++i];
  1911. } else {
  1912. usage(argv);
  1913. return 1;
  1914. }
  1915. } else {
  1916. usage(argv);
  1917. return 1;
  1918. }
  1919. }
  1920. // enumerate backends
  1921. printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
  1922. size_t n_ok = 0;
  1923. for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
  1924. printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
  1925. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
  1926. printf(" Skipping\n");
  1927. n_ok++;
  1928. continue;
  1929. }
  1930. ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
  1931. GGML_ASSERT(backend != NULL);
  1932. if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
  1933. printf(" Skipping CPU backend\n");
  1934. ggml_backend_free(backend);
  1935. n_ok++;
  1936. continue;
  1937. }
  1938. printf(" Backend name: %s\n", ggml_backend_name(backend));
  1939. bool ok = test_backend(backend, mode, op_name_filter);
  1940. printf(" Backend %s: ", ggml_backend_name(backend));
  1941. if (ok) {
  1942. printf("\033[1;32mOK\033[0m\n");
  1943. n_ok++;
  1944. } else {
  1945. printf("\033[1;31mFAIL\033[0m\n");
  1946. }
  1947. printf("\n");
  1948. ggml_backend_free(backend);
  1949. }
  1950. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
  1951. if (n_ok != ggml_backend_reg_get_count()) {
  1952. printf("\033[1;31mFAIL\033[0m\n");
  1953. return 1;
  1954. }
  1955. ggml_quantize_free();
  1956. printf("\033[1;32mOK\033[0m\n");
  1957. return 0;
  1958. }