ggml.c 645 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_IQ2_XXS] = {
  513. .type_name = "iq2_xxs",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_iq2_xxs),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  518. .from_float = NULL,
  519. .from_float_reference = NULL,
  520. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_IQ2_XS] = {
  524. .type_name = "iq2_xs",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_iq2_xs),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q8_K] = {
  535. .type_name = "q8_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q8_K),
  538. .is_quantized = true,
  539. .from_float = quantize_row_q8_K,
  540. }
  541. };
  542. // For internal test use
  543. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  544. GGML_ASSERT(type < GGML_TYPE_COUNT);
  545. return type_traits[type];
  546. }
  547. //
  548. // simd mappings
  549. //
  550. #if defined(__ARM_NEON)
  551. #if !defined(__aarch64__)
  552. // 64-bit compatibility
  553. inline static float vaddvq_f32(float32x4_t v) {
  554. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  555. }
  556. #endif
  557. #endif
  558. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  559. // we then implement the fundamental computation operations below using only these macros
  560. // adding support for new architectures requires to define the corresponding SIMD macros
  561. //
  562. // GGML_F32_STEP / GGML_F16_STEP
  563. // number of elements to process in a single step
  564. //
  565. // GGML_F32_EPR / GGML_F16_EPR
  566. // number of elements to fit in a single register
  567. //
  568. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  569. #define GGML_SIMD
  570. // F32 NEON
  571. #define GGML_F32_STEP 16
  572. #define GGML_F32_EPR 4
  573. #define GGML_F32x4 float32x4_t
  574. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  575. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  576. #define GGML_F32x4_LOAD vld1q_f32
  577. #define GGML_F32x4_STORE vst1q_f32
  578. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  579. #define GGML_F32x4_ADD vaddq_f32
  580. #define GGML_F32x4_MUL vmulq_f32
  581. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  582. #define GGML_F32x4_REDUCE(res, x) \
  583. { \
  584. int offset = GGML_F32_ARR >> 1; \
  585. for (int i = 0; i < offset; ++i) { \
  586. x[i] = vaddq_f32(x[i], x[offset+i]); \
  587. } \
  588. offset >>= 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  597. }
  598. #define GGML_F32_VEC GGML_F32x4
  599. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  600. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  601. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  602. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  603. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  604. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  605. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  606. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  607. // F16 NEON
  608. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  609. #define GGML_F16_STEP 32
  610. #define GGML_F16_EPR 8
  611. #define GGML_F16x8 float16x8_t
  612. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  613. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  614. #define GGML_F16x8_LOAD vld1q_f16
  615. #define GGML_F16x8_STORE vst1q_f16
  616. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  617. #define GGML_F16x8_ADD vaddq_f16
  618. #define GGML_F16x8_MUL vmulq_f16
  619. #define GGML_F16x8_REDUCE(res, x) \
  620. do { \
  621. int offset = GGML_F16_ARR >> 1; \
  622. for (int i = 0; i < offset; ++i) { \
  623. x[i] = vaddq_f16(x[i], x[offset+i]); \
  624. } \
  625. offset >>= 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  634. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  635. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  636. } while (0)
  637. #define GGML_F16_VEC GGML_F16x8
  638. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  639. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  640. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  641. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  642. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  643. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  644. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  645. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  646. #else
  647. // if FP16 vector arithmetic is not supported, we use FP32 instead
  648. // and take advantage of the vcvt_ functions to convert to/from FP16
  649. #define GGML_F16_STEP 16
  650. #define GGML_F16_EPR 4
  651. #define GGML_F32Cx4 float32x4_t
  652. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  653. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  654. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  655. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  656. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  657. #define GGML_F32Cx4_ADD vaddq_f32
  658. #define GGML_F32Cx4_MUL vmulq_f32
  659. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  660. #define GGML_F16_VEC GGML_F32Cx4
  661. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  662. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  663. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  664. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  665. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  666. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  667. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  668. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  669. #endif
  670. #elif defined(__AVX__)
  671. #define GGML_SIMD
  672. // F32 AVX
  673. #define GGML_F32_STEP 32
  674. #define GGML_F32_EPR 8
  675. #define GGML_F32x8 __m256
  676. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  677. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  678. #define GGML_F32x8_LOAD _mm256_loadu_ps
  679. #define GGML_F32x8_STORE _mm256_storeu_ps
  680. #if defined(__FMA__)
  681. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  682. #else
  683. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  684. #endif
  685. #define GGML_F32x8_ADD _mm256_add_ps
  686. #define GGML_F32x8_MUL _mm256_mul_ps
  687. #define GGML_F32x8_REDUCE(res, x) \
  688. do { \
  689. int offset = GGML_F32_ARR >> 1; \
  690. for (int i = 0; i < offset; ++i) { \
  691. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  692. } \
  693. offset >>= 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  702. _mm256_extractf128_ps(x[0], 1)); \
  703. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  704. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  705. } while (0)
  706. // TODO: is this optimal ?
  707. #define GGML_F32_VEC GGML_F32x8
  708. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  709. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  710. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  711. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  712. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  713. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  714. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  715. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  716. // F16 AVX
  717. #define GGML_F16_STEP 32
  718. #define GGML_F16_EPR 8
  719. // F16 arithmetic is not supported by AVX, so we use F32 instead
  720. #define GGML_F32Cx8 __m256
  721. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  722. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  723. #if defined(__F16C__)
  724. // the _mm256_cvt intrinsics require F16C
  725. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  726. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  727. #else
  728. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  729. float tmp[8];
  730. for (int i = 0; i < 8; i++) {
  731. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  732. }
  733. return _mm256_loadu_ps(tmp);
  734. }
  735. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  736. float arr[8];
  737. _mm256_storeu_ps(arr, y);
  738. for (int i = 0; i < 8; i++)
  739. x[i] = GGML_FP32_TO_FP16(arr[i]);
  740. }
  741. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  742. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  743. #endif
  744. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  745. #define GGML_F32Cx8_ADD _mm256_add_ps
  746. #define GGML_F32Cx8_MUL _mm256_mul_ps
  747. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  748. #define GGML_F16_VEC GGML_F32Cx8
  749. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  750. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  751. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  752. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  753. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  754. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  755. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  756. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  757. #elif defined(__POWER9_VECTOR__)
  758. #define GGML_SIMD
  759. // F32 POWER9
  760. #define GGML_F32_STEP 32
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 vector float
  763. #define GGML_F32x4_ZERO 0.0f
  764. #define GGML_F32x4_SET1 vec_splats
  765. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  766. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  767. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  768. #define GGML_F32x4_ADD vec_add
  769. #define GGML_F32x4_MUL vec_mul
  770. #define GGML_F32x4_REDUCE(res, x) \
  771. { \
  772. int offset = GGML_F32_ARR >> 1; \
  773. for (int i = 0; i < offset; ++i) { \
  774. x[i] = vec_add(x[i], x[offset+i]); \
  775. } \
  776. offset >>= 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. res = vec_extract(x[0], 0) + \
  785. vec_extract(x[0], 1) + \
  786. vec_extract(x[0], 2) + \
  787. vec_extract(x[0], 3); \
  788. }
  789. #define GGML_F32_VEC GGML_F32x4
  790. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  791. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  792. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  793. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  794. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  795. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  796. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  797. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  798. // F16 POWER9
  799. #define GGML_F16_STEP GGML_F32_STEP
  800. #define GGML_F16_EPR GGML_F32_EPR
  801. #define GGML_F16_VEC GGML_F32x4
  802. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  803. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  804. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  805. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  806. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  807. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  808. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  809. vec_extract_fp32_from_shortl(vec_xl(0, p))
  810. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  811. #define GGML_F16_VEC_STORE(p, r, i) \
  812. if (i & 0x1) \
  813. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  814. r[i - GGML_ENDIAN_BYTE(0)]), \
  815. 0, p - GGML_F16_EPR)
  816. #elif defined(__wasm_simd128__)
  817. #define GGML_SIMD
  818. // F32 WASM
  819. #define GGML_F32_STEP 16
  820. #define GGML_F32_EPR 4
  821. #define GGML_F32x4 v128_t
  822. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F32x4_LOAD wasm_v128_load
  825. #define GGML_F32x4_STORE wasm_v128_store
  826. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  827. #define GGML_F32x4_ADD wasm_f32x4_add
  828. #define GGML_F32x4_MUL wasm_f32x4_mul
  829. #define GGML_F32x4_REDUCE(res, x) \
  830. { \
  831. int offset = GGML_F32_ARR >> 1; \
  832. for (int i = 0; i < offset; ++i) { \
  833. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  834. } \
  835. offset >>= 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. res = wasm_f32x4_extract_lane(x[0], 0) + \
  844. wasm_f32x4_extract_lane(x[0], 1) + \
  845. wasm_f32x4_extract_lane(x[0], 2) + \
  846. wasm_f32x4_extract_lane(x[0], 3); \
  847. }
  848. #define GGML_F32_VEC GGML_F32x4
  849. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  850. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  851. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  852. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  853. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  854. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  855. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  856. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  857. // F16 WASM
  858. #define GGML_F16_STEP 16
  859. #define GGML_F16_EPR 4
  860. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  861. float tmp[4];
  862. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  863. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  864. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  865. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  866. return wasm_v128_load(tmp);
  867. }
  868. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  869. float tmp[4];
  870. wasm_v128_store(tmp, x);
  871. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  872. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  873. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  874. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  875. }
  876. #define GGML_F16x4 v128_t
  877. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  878. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  879. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  880. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  881. #define GGML_F16x4_FMA GGML_F32x4_FMA
  882. #define GGML_F16x4_ADD wasm_f32x4_add
  883. #define GGML_F16x4_MUL wasm_f32x4_mul
  884. #define GGML_F16x4_REDUCE(res, x) \
  885. { \
  886. int offset = GGML_F16_ARR >> 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  889. } \
  890. offset >>= 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. res = wasm_f32x4_extract_lane(x[0], 0) + \
  899. wasm_f32x4_extract_lane(x[0], 1) + \
  900. wasm_f32x4_extract_lane(x[0], 2) + \
  901. wasm_f32x4_extract_lane(x[0], 3); \
  902. }
  903. #define GGML_F16_VEC GGML_F16x4
  904. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  905. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  906. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  907. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  908. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  909. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  910. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  911. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  912. #elif defined(__SSE3__)
  913. #define GGML_SIMD
  914. // F32 SSE
  915. #define GGML_F32_STEP 32
  916. #define GGML_F32_EPR 4
  917. #define GGML_F32x4 __m128
  918. #define GGML_F32x4_ZERO _mm_setzero_ps()
  919. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  920. #define GGML_F32x4_LOAD _mm_loadu_ps
  921. #define GGML_F32x4_STORE _mm_storeu_ps
  922. #if defined(__FMA__)
  923. // TODO: Does this work?
  924. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  925. #else
  926. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  927. #endif
  928. #define GGML_F32x4_ADD _mm_add_ps
  929. #define GGML_F32x4_MUL _mm_mul_ps
  930. #define GGML_F32x4_REDUCE(res, x) \
  931. { \
  932. int offset = GGML_F32_ARR >> 1; \
  933. for (int i = 0; i < offset; ++i) { \
  934. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  935. } \
  936. offset >>= 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  945. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  946. }
  947. // TODO: is this optimal ?
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 SSE
  958. #define GGML_F16_STEP 32
  959. #define GGML_F16_EPR 4
  960. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  961. float tmp[4];
  962. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  963. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  964. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  965. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  966. return _mm_loadu_ps(tmp);
  967. }
  968. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  969. float arr[4];
  970. _mm_storeu_ps(arr, y);
  971. x[0] = GGML_FP32_TO_FP16(arr[0]);
  972. x[1] = GGML_FP32_TO_FP16(arr[1]);
  973. x[2] = GGML_FP32_TO_FP16(arr[2]);
  974. x[3] = GGML_FP32_TO_FP16(arr[3]);
  975. }
  976. #define GGML_F32Cx4 __m128
  977. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  978. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  979. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  980. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  981. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  982. #define GGML_F32Cx4_ADD _mm_add_ps
  983. #define GGML_F32Cx4_MUL _mm_mul_ps
  984. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  985. #define GGML_F16_VEC GGML_F32Cx4
  986. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  987. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  988. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  989. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  990. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  991. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  992. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  993. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  994. #endif
  995. // GGML_F32_ARR / GGML_F16_ARR
  996. // number of registers to use per step
  997. #ifdef GGML_SIMD
  998. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  999. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1000. #endif
  1001. //
  1002. // fundamental operations
  1003. //
  1004. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1005. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1006. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1008. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1009. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1010. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1011. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1012. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1013. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1014. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1015. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1016. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1017. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1018. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1019. #ifdef GGML_SIMD
  1020. float sumf = 0.0f;
  1021. const int np = (n & ~(GGML_F32_STEP - 1));
  1022. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1023. GGML_F32_VEC ax[GGML_F32_ARR];
  1024. GGML_F32_VEC ay[GGML_F32_ARR];
  1025. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1026. for (int j = 0; j < GGML_F32_ARR; j++) {
  1027. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1028. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1029. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1030. }
  1031. }
  1032. // reduce sum0..sum3 to sum0
  1033. GGML_F32_VEC_REDUCE(sumf, sum);
  1034. // leftovers
  1035. for (int i = np; i < n; ++i) {
  1036. sumf += x[i]*y[i];
  1037. }
  1038. #else
  1039. // scalar
  1040. ggml_float sumf = 0.0;
  1041. for (int i = 0; i < n; ++i) {
  1042. sumf += (ggml_float)(x[i]*y[i]);
  1043. }
  1044. #endif
  1045. *s = sumf;
  1046. }
  1047. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1048. ggml_float sumf = 0.0;
  1049. #if defined(GGML_SIMD)
  1050. const int np = (n & ~(GGML_F16_STEP - 1));
  1051. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1052. GGML_F16_VEC ax[GGML_F16_ARR];
  1053. GGML_F16_VEC ay[GGML_F16_ARR];
  1054. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1055. for (int j = 0; j < GGML_F16_ARR; j++) {
  1056. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1057. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1058. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1059. }
  1060. }
  1061. // reduce sum0..sum3 to sum0
  1062. GGML_F16_VEC_REDUCE(sumf, sum);
  1063. // leftovers
  1064. for (int i = np; i < n; ++i) {
  1065. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1066. }
  1067. #else
  1068. for (int i = 0; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #endif
  1072. *s = sumf;
  1073. }
  1074. // compute GGML_VEC_DOT_UNROLL dot products at once
  1075. // xs - x row stride in bytes
  1076. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1077. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1078. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1079. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1080. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1081. }
  1082. #if defined(GGML_SIMD)
  1083. const int np = (n & ~(GGML_F16_STEP - 1));
  1084. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1085. GGML_F16_VEC ax[GGML_F16_ARR];
  1086. GGML_F16_VEC ay[GGML_F16_ARR];
  1087. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1088. for (int j = 0; j < GGML_F16_ARR; j++) {
  1089. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1092. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1093. }
  1094. }
  1095. }
  1096. // reduce sum0..sum3 to sum0
  1097. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1098. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1099. }
  1100. // leftovers
  1101. for (int i = np; i < n; ++i) {
  1102. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1103. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1104. }
  1105. }
  1106. #else
  1107. for (int i = 0; i < n; ++i) {
  1108. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1109. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. }
  1112. #endif
  1113. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1114. s[i] = sumf[i];
  1115. }
  1116. }
  1117. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1118. #if defined(GGML_SIMD)
  1119. const int np = (n & ~(GGML_F32_STEP - 1));
  1120. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1121. GGML_F32_VEC ax[GGML_F32_ARR];
  1122. GGML_F32_VEC ay[GGML_F32_ARR];
  1123. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1124. for (int j = 0; j < GGML_F32_ARR; j++) {
  1125. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1126. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1127. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1128. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1129. }
  1130. }
  1131. // leftovers
  1132. for (int i = np; i < n; ++i) {
  1133. y[i] += x[i]*v;
  1134. }
  1135. #else
  1136. // scalar
  1137. for (int i = 0; i < n; ++i) {
  1138. y[i] += x[i]*v;
  1139. }
  1140. #endif
  1141. }
  1142. // xs and vs are byte strides of x and v
  1143. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1144. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1145. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1146. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1147. x[i] = (const float *) ((const char *) xv + i*xs);
  1148. v[i] = (const float *) ((const char *) vv + i*vs);
  1149. }
  1150. #if defined(GGML_SIMD)
  1151. const int np = (n & ~(GGML_F32_STEP - 1));
  1152. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1153. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1154. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1155. }
  1156. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1157. GGML_F32_VEC ay[GGML_F32_ARR];
  1158. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1159. for (int j = 0; j < GGML_F32_ARR; j++) {
  1160. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1161. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1162. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1163. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1164. }
  1165. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1166. }
  1167. }
  1168. // leftovers
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = np; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #else
  1175. // scalar
  1176. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1177. for (int i = 0; i < n; ++i) {
  1178. y[i] += x[k][i]*v[k][0];
  1179. }
  1180. }
  1181. #endif
  1182. }
  1183. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1184. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1185. #if defined(GGML_USE_ACCELERATE)
  1186. vDSP_vsmul(y, 1, &v, y, 1, n);
  1187. #elif defined(GGML_SIMD)
  1188. const int np = (n & ~(GGML_F32_STEP - 1));
  1189. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1190. GGML_F32_VEC ay[GGML_F32_ARR];
  1191. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1192. for (int j = 0; j < GGML_F32_ARR; j++) {
  1193. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1194. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1195. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1196. }
  1197. }
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. y[i] *= v;
  1201. }
  1202. #else
  1203. // scalar
  1204. for (int i = 0; i < n; ++i) {
  1205. y[i] *= v;
  1206. }
  1207. #endif
  1208. }
  1209. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1210. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1211. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1212. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1213. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1214. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1215. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1216. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1217. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1218. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1219. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1220. static const float GELU_COEF_A = 0.044715f;
  1221. static const float GELU_QUICK_COEF = -1.702f;
  1222. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1223. inline static float ggml_gelu_f32(float x) {
  1224. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1225. }
  1226. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1227. const uint16_t * i16 = (const uint16_t *) x;
  1228. for (int i = 0; i < n; ++i) {
  1229. y[i] = ggml_table_gelu_f16[i16[i]];
  1230. }
  1231. }
  1232. #ifdef GGML_GELU_FP16
  1233. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1234. uint16_t t;
  1235. for (int i = 0; i < n; ++i) {
  1236. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1237. memcpy(&t, &fp16, sizeof(uint16_t));
  1238. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1239. }
  1240. }
  1241. #else
  1242. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1243. for (int i = 0; i < n; ++i) {
  1244. y[i] = ggml_gelu_f32(x[i]);
  1245. }
  1246. }
  1247. #endif
  1248. inline static float ggml_gelu_quick_f32(float x) {
  1249. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1250. }
  1251. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1252. // const uint16_t * i16 = (const uint16_t *) x;
  1253. // for (int i = 0; i < n; ++i) {
  1254. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1255. // }
  1256. //}
  1257. #ifdef GGML_GELU_QUICK_FP16
  1258. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1259. uint16_t t;
  1260. for (int i = 0; i < n; ++i) {
  1261. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1262. memcpy(&t, &fp16, sizeof(uint16_t));
  1263. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1264. }
  1265. }
  1266. #else
  1267. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1268. for (int i = 0; i < n; ++i) {
  1269. y[i] = ggml_gelu_quick_f32(x[i]);
  1270. }
  1271. }
  1272. #endif
  1273. // Sigmoid Linear Unit (SiLU) function
  1274. inline static float ggml_silu_f32(float x) {
  1275. return x/(1.0f + expf(-x));
  1276. }
  1277. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1278. // const uint16_t * i16 = (const uint16_t *) x;
  1279. // for (int i = 0; i < n; ++i) {
  1280. // y[i] = ggml_table_silu_f16[i16[i]];
  1281. // }
  1282. //}
  1283. #ifdef GGML_SILU_FP16
  1284. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1285. uint16_t t;
  1286. for (int i = 0; i < n; ++i) {
  1287. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1288. memcpy(&t, &fp16, sizeof(uint16_t));
  1289. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1290. }
  1291. }
  1292. #else
  1293. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1294. for (int i = 0; i < n; ++i) {
  1295. y[i] = ggml_silu_f32(x[i]);
  1296. }
  1297. }
  1298. #endif
  1299. inline static float ggml_silu_backward_f32(float x, float dy) {
  1300. const float s = 1.0f/(1.0f + expf(-x));
  1301. return dy*s*(1.0f + x*(1.0f - s));
  1302. }
  1303. #ifdef GGML_SILU_FP16
  1304. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1305. for (int i = 0; i < n; ++i) {
  1306. // we did not use x[i] to compute forward silu but its f16 equivalent
  1307. // take derivative at f16 of x[i]:
  1308. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1309. float usedx = GGML_FP16_TO_FP32(fp16);
  1310. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1311. }
  1312. }
  1313. #else
  1314. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1315. for (int i = 0; i < n; ++i) {
  1316. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1317. }
  1318. }
  1319. #endif
  1320. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1321. #ifndef GGML_USE_ACCELERATE
  1322. ggml_float sum = 0.0;
  1323. for (int i = 0; i < n; ++i) {
  1324. sum += (ggml_float)x[i];
  1325. }
  1326. *s = sum;
  1327. #else
  1328. vDSP_sve(x, 1, s, n);
  1329. #endif
  1330. }
  1331. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1332. ggml_float sum = 0.0;
  1333. for (int i = 0; i < n; ++i) {
  1334. sum += (ggml_float)x[i];
  1335. }
  1336. *s = sum;
  1337. }
  1338. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1339. float sum = 0.0f;
  1340. for (int i = 0; i < n; ++i) {
  1341. sum += GGML_FP16_TO_FP32(x[i]);
  1342. }
  1343. *s = sum;
  1344. }
  1345. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1346. #ifndef GGML_USE_ACCELERATE
  1347. float max = -INFINITY;
  1348. for (int i = 0; i < n; ++i) {
  1349. max = MAX(max, x[i]);
  1350. }
  1351. *s = max;
  1352. #else
  1353. vDSP_maxv(x, 1, s, n);
  1354. #endif
  1355. }
  1356. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1357. ggml_vec_norm_f32(n, s, x);
  1358. *s = 1.f/(*s);
  1359. }
  1360. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1361. float max = -INFINITY;
  1362. int idx = 0;
  1363. for (int i = 0; i < n; ++i) {
  1364. max = MAX(max, x[i]);
  1365. if (max == x[i]) { idx = i; }
  1366. }
  1367. *s = idx;
  1368. }
  1369. //
  1370. // data types
  1371. //
  1372. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1373. "NONE",
  1374. "DUP",
  1375. "ADD",
  1376. "ADD1",
  1377. "ACC",
  1378. "SUB",
  1379. "MUL",
  1380. "DIV",
  1381. "SQR",
  1382. "SQRT",
  1383. "LOG",
  1384. "SUM",
  1385. "SUM_ROWS",
  1386. "MEAN",
  1387. "ARGMAX",
  1388. "REPEAT",
  1389. "REPEAT_BACK",
  1390. "CONCAT",
  1391. "SILU_BACK",
  1392. "NORM",
  1393. "RMS_NORM",
  1394. "RMS_NORM_BACK",
  1395. "GROUP_NORM",
  1396. "MUL_MAT",
  1397. "MUL_MAT_ID",
  1398. "OUT_PROD",
  1399. "SCALE",
  1400. "SET",
  1401. "CPY",
  1402. "CONT",
  1403. "RESHAPE",
  1404. "VIEW",
  1405. "PERMUTE",
  1406. "TRANSPOSE",
  1407. "GET_ROWS",
  1408. "GET_ROWS_BACK",
  1409. "DIAG",
  1410. "DIAG_MASK_INF",
  1411. "DIAG_MASK_ZERO",
  1412. "SOFT_MAX",
  1413. "SOFT_MAX_BACK",
  1414. "ROPE",
  1415. "ROPE_BACK",
  1416. "ALIBI",
  1417. "CLAMP",
  1418. "CONV_TRANSPOSE_1D",
  1419. "IM2COL",
  1420. "CONV_TRANSPOSE_2D",
  1421. "POOL_1D",
  1422. "POOL_2D",
  1423. "UPSCALE",
  1424. "PAD",
  1425. "ARGSORT",
  1426. "LEAKY_RELU",
  1427. "FLASH_ATTN",
  1428. "FLASH_FF",
  1429. "FLASH_ATTN_BACK",
  1430. "WIN_PART",
  1431. "WIN_UNPART",
  1432. "GET_REL_POS",
  1433. "ADD_REL_POS",
  1434. "UNARY",
  1435. "MAP_UNARY",
  1436. "MAP_BINARY",
  1437. "MAP_CUSTOM1_F32",
  1438. "MAP_CUSTOM2_F32",
  1439. "MAP_CUSTOM3_F32",
  1440. "MAP_CUSTOM1",
  1441. "MAP_CUSTOM2",
  1442. "MAP_CUSTOM3",
  1443. "CROSS_ENTROPY_LOSS",
  1444. "CROSS_ENTROPY_LOSS_BACK",
  1445. };
  1446. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1447. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1448. "none",
  1449. "x",
  1450. "x+y",
  1451. "x+y",
  1452. "view(x,nb,offset)+=y->x",
  1453. "x-y",
  1454. "x*y",
  1455. "x/y",
  1456. "x^2",
  1457. "√x",
  1458. "log(x)",
  1459. "Σx",
  1460. "Σx_k",
  1461. "Σx/n",
  1462. "argmax(x)",
  1463. "repeat(x)",
  1464. "repeat_back(x)",
  1465. "concat(x, y)",
  1466. "silu_back(x)",
  1467. "norm(x)",
  1468. "rms_norm(x)",
  1469. "rms_norm_back(x)",
  1470. "group_norm(x)",
  1471. "X*Y",
  1472. "X[i]*Y",
  1473. "X*Y",
  1474. "x*v",
  1475. "y-\\>view(x)",
  1476. "x-\\>y",
  1477. "cont(x)",
  1478. "reshape(x)",
  1479. "view(x)",
  1480. "permute(x)",
  1481. "transpose(x)",
  1482. "get_rows(x)",
  1483. "get_rows_back(x)",
  1484. "diag(x)",
  1485. "diag_mask_inf(x)",
  1486. "diag_mask_zero(x)",
  1487. "soft_max(x)",
  1488. "soft_max_back(x)",
  1489. "rope(x)",
  1490. "rope_back(x)",
  1491. "alibi(x)",
  1492. "clamp(x)",
  1493. "conv_transpose_1d(x)",
  1494. "im2col(x)",
  1495. "conv_transpose_2d(x)",
  1496. "pool_1d(x)",
  1497. "pool_2d(x)",
  1498. "upscale(x)",
  1499. "pad(x)",
  1500. "argsort(x)",
  1501. "leaky_relu(x)",
  1502. "flash_attn(x)",
  1503. "flash_ff(x)",
  1504. "flash_attn_back(x)",
  1505. "win_part(x)",
  1506. "win_unpart(x)",
  1507. "get_rel_pos(x)",
  1508. "add_rel_pos(x)",
  1509. "unary(x)",
  1510. "f(x)",
  1511. "f(x,y)",
  1512. "custom_f32(x)",
  1513. "custom_f32(x,y)",
  1514. "custom_f32(x,y,z)",
  1515. "custom(x)",
  1516. "custom(x,y)",
  1517. "custom(x,y,z)",
  1518. "cross_entropy_loss(x,y)",
  1519. "cross_entropy_loss_back(x,y)",
  1520. };
  1521. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1522. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1523. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1524. "ABS",
  1525. "SGN",
  1526. "NEG",
  1527. "STEP",
  1528. "TANH",
  1529. "ELU",
  1530. "RELU",
  1531. "GELU",
  1532. "GELU_QUICK",
  1533. "SILU",
  1534. };
  1535. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1536. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1537. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1538. // WARN:
  1539. // Mis-configuration can lead to problem that's hard to reason about:
  1540. // * At best it crash or talks nosense.
  1541. // * At worst it talks slightly difference but hard to perceive.
  1542. //
  1543. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1544. // Take care about compile options (e.g., GGML_USE_xxx).
  1545. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1546. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1547. static void ggml_setup_op_has_task_pass(void) {
  1548. { // INIT
  1549. bool * p = GGML_OP_HAS_INIT;
  1550. p[GGML_OP_ACC ] = true;
  1551. p[GGML_OP_MUL_MAT ] = true;
  1552. p[GGML_OP_MUL_MAT_ID ] = true;
  1553. p[GGML_OP_OUT_PROD ] = true;
  1554. p[GGML_OP_SET ] = true;
  1555. p[GGML_OP_GET_ROWS_BACK ] = true;
  1556. p[GGML_OP_DIAG_MASK_INF ] = true;
  1557. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1558. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1559. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1560. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1561. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1562. p[GGML_OP_ADD_REL_POS ] = true;
  1563. }
  1564. { // FINALIZE
  1565. bool * p = GGML_OP_HAS_FINALIZE;
  1566. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1567. }
  1568. }
  1569. //
  1570. // ggml context
  1571. //
  1572. struct ggml_context {
  1573. size_t mem_size;
  1574. void * mem_buffer;
  1575. bool mem_buffer_owned;
  1576. bool no_alloc;
  1577. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1578. int n_objects;
  1579. struct ggml_object * objects_begin;
  1580. struct ggml_object * objects_end;
  1581. struct ggml_scratch scratch;
  1582. struct ggml_scratch scratch_save;
  1583. };
  1584. struct ggml_context_container {
  1585. bool used;
  1586. struct ggml_context context;
  1587. };
  1588. //
  1589. // NUMA support
  1590. //
  1591. #define GGML_NUMA_MAX_NODES 8
  1592. #define GGML_NUMA_MAX_CPUS 512
  1593. struct ggml_numa_node {
  1594. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1595. uint32_t n_cpus;
  1596. };
  1597. struct ggml_numa_nodes {
  1598. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1599. uint32_t n_nodes;
  1600. uint32_t total_cpus; // hardware threads on system
  1601. };
  1602. //
  1603. // ggml state
  1604. //
  1605. struct ggml_state {
  1606. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1607. struct ggml_numa_nodes numa;
  1608. };
  1609. // global state
  1610. static struct ggml_state g_state;
  1611. static atomic_int g_state_barrier = 0;
  1612. // barrier via spin lock
  1613. inline static void ggml_critical_section_start(void) {
  1614. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1615. while (processing > 0) {
  1616. // wait for other threads to finish
  1617. atomic_fetch_sub(&g_state_barrier, 1);
  1618. sched_yield(); // TODO: reconsider this
  1619. processing = atomic_fetch_add(&g_state_barrier, 1);
  1620. }
  1621. }
  1622. // TODO: make this somehow automatically executed
  1623. // some sort of "sentry" mechanism
  1624. inline static void ggml_critical_section_end(void) {
  1625. atomic_fetch_sub(&g_state_barrier, 1);
  1626. }
  1627. void ggml_numa_init(void) {
  1628. if (g_state.numa.n_nodes > 0) {
  1629. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1630. return;
  1631. }
  1632. #ifdef __linux__
  1633. struct stat st;
  1634. char path[256];
  1635. int rv;
  1636. // enumerate nodes
  1637. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1640. if (stat(path, &st) != 0) { break; }
  1641. ++g_state.numa.n_nodes;
  1642. }
  1643. // enumerate CPUs
  1644. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1645. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1646. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1647. if (stat(path, &st) != 0) { break; }
  1648. ++g_state.numa.total_cpus;
  1649. }
  1650. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1651. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1652. g_state.numa.n_nodes = 0;
  1653. return;
  1654. }
  1655. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1656. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1657. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1658. node->n_cpus = 0;
  1659. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1660. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1661. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1662. if (stat(path, &st) == 0) {
  1663. node->cpus[node->n_cpus++] = c;
  1664. GGML_PRINT_DEBUG(" %u", c);
  1665. }
  1666. }
  1667. GGML_PRINT_DEBUG("\n");
  1668. }
  1669. if (ggml_is_numa()) {
  1670. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1671. if (fptr != NULL) {
  1672. char buf[42];
  1673. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1674. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1675. }
  1676. fclose(fptr);
  1677. }
  1678. }
  1679. #else
  1680. // TODO
  1681. #endif
  1682. }
  1683. bool ggml_is_numa(void) {
  1684. return g_state.numa.n_nodes > 1;
  1685. }
  1686. ////////////////////////////////////////////////////////////////////////////////
  1687. void ggml_print_object(const struct ggml_object * obj) {
  1688. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1689. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1690. }
  1691. void ggml_print_objects(const struct ggml_context * ctx) {
  1692. struct ggml_object * obj = ctx->objects_begin;
  1693. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1694. while (obj != NULL) {
  1695. ggml_print_object(obj);
  1696. obj = obj->next;
  1697. }
  1698. GGML_PRINT("%s: --- end ---\n", __func__);
  1699. }
  1700. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1701. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1702. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1703. }
  1704. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1706. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1707. }
  1708. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1709. size_t nbytes;
  1710. size_t blck_size = ggml_blck_size(tensor->type);
  1711. if (blck_size == 1) {
  1712. nbytes = ggml_type_size(tensor->type);
  1713. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1714. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1715. }
  1716. }
  1717. else {
  1718. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1719. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1720. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1721. }
  1722. }
  1723. return nbytes;
  1724. }
  1725. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1726. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1727. }
  1728. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1729. return type_traits[type].blck_size;
  1730. }
  1731. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1732. return type_traits[type].type_size;
  1733. }
  1734. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1735. assert(ne % ggml_blck_size(type) == 0);
  1736. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1737. }
  1738. double ggml_type_sizef(enum ggml_type type) {
  1739. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1740. }
  1741. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1742. return type_traits[type].type_name;
  1743. }
  1744. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1745. return type_traits[type].is_quantized;
  1746. }
  1747. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1748. return GGML_OP_NAME[op];
  1749. }
  1750. const char * ggml_op_symbol(enum ggml_op op) {
  1751. return GGML_OP_SYMBOL[op];
  1752. }
  1753. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1754. return GGML_UNARY_OP_NAME[op];
  1755. }
  1756. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1757. if (t->op == GGML_OP_UNARY) {
  1758. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1759. return ggml_unary_op_name(uop);
  1760. }
  1761. else {
  1762. return ggml_op_name(t->op);
  1763. }
  1764. }
  1765. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1766. return ggml_type_size(tensor->type);
  1767. }
  1768. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1769. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1770. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1771. }
  1772. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1775. }
  1776. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1778. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1779. }
  1780. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1781. return tensor->ne[3] == 1;
  1782. }
  1783. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1784. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1785. if (tensor->ne[i] > 1) {
  1786. return i + 1;
  1787. }
  1788. }
  1789. return 1;
  1790. }
  1791. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1792. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1793. return (t0->ne[0] == t1->ne[0]) &&
  1794. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1795. (t1->ne[3]%t0->ne[3] == 0);
  1796. }
  1797. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return (t0->ne[1] == t1->ne[1]) &&
  1800. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1801. (t1->ne[3]%t0->ne[3] == 0);
  1802. }
  1803. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1804. enum ggml_type wtype = GGML_TYPE_COUNT;
  1805. switch (ftype) {
  1806. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1807. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1808. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1809. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1810. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1811. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1812. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1813. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1814. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1815. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1816. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1817. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1818. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1819. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1820. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1821. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1822. }
  1823. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1824. return wtype;
  1825. }
  1826. size_t ggml_tensor_overhead(void) {
  1827. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1828. }
  1829. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1830. return tensor->nb[0] > tensor->nb[1];
  1831. }
  1832. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1833. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1834. return
  1835. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1836. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1837. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1838. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1839. }
  1840. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1842. return
  1843. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1844. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1845. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1846. }
  1847. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1848. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1849. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1850. }
  1851. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return
  1854. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1855. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1856. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1857. }
  1858. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1859. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1860. return
  1861. (t0->ne[0] == t1->ne[0] ) &&
  1862. (t0->ne[1] == t1->ne[1] ) &&
  1863. (t0->ne[2] == t1->ne[2] ) &&
  1864. (t0->ne[3] == t1->ne[3] );
  1865. }
  1866. // check if t1 can be represented as a repeatition of t0
  1867. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1869. return
  1870. (t1->ne[0]%t0->ne[0] == 0) &&
  1871. (t1->ne[1]%t0->ne[1] == 0) &&
  1872. (t1->ne[2]%t0->ne[2] == 0) &&
  1873. (t1->ne[3]%t0->ne[3] == 0);
  1874. }
  1875. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1876. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1877. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1878. }
  1879. static inline int ggml_up32(int n) {
  1880. return (n + 31) & ~31;
  1881. }
  1882. //static inline int ggml_up64(int n) {
  1883. // return (n + 63) & ~63;
  1884. //}
  1885. static inline int ggml_up(int n, int m) {
  1886. // assert m is a power of 2
  1887. GGML_ASSERT((m & (m - 1)) == 0);
  1888. return (n + m - 1) & ~(m - 1);
  1889. }
  1890. // assert that pointer is aligned to GGML_MEM_ALIGN
  1891. #define ggml_assert_aligned(ptr) \
  1892. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1893. ////////////////////////////////////////////////////////////////////////////////
  1894. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1895. // make this function thread safe
  1896. ggml_critical_section_start();
  1897. static bool is_first_call = true;
  1898. if (is_first_call) {
  1899. // initialize time system (required on Windows)
  1900. ggml_time_init();
  1901. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1902. {
  1903. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1904. ggml_fp16_t ii;
  1905. for (int i = 0; i < (1 << 16); ++i) {
  1906. uint16_t ui = i;
  1907. memcpy(&ii, &ui, sizeof(ii));
  1908. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1909. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1910. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1911. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1912. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1913. }
  1914. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1915. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1916. }
  1917. // initialize g_state
  1918. {
  1919. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1920. g_state = (struct ggml_state) {
  1921. /*.contexts =*/ { { 0 } },
  1922. /*.numa =*/ {
  1923. .n_nodes = 0,
  1924. .total_cpus = 0,
  1925. },
  1926. };
  1927. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1928. g_state.contexts[i].used = false;
  1929. }
  1930. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1931. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1932. }
  1933. #if defined(GGML_USE_CUBLAS)
  1934. ggml_init_cublas();
  1935. #elif defined(GGML_USE_CLBLAST)
  1936. ggml_cl_init();
  1937. #endif
  1938. ggml_setup_op_has_task_pass();
  1939. is_first_call = false;
  1940. }
  1941. // find non-used context in g_state
  1942. struct ggml_context * ctx = NULL;
  1943. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1944. if (!g_state.contexts[i].used) {
  1945. g_state.contexts[i].used = true;
  1946. ctx = &g_state.contexts[i].context;
  1947. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1948. break;
  1949. }
  1950. }
  1951. if (ctx == NULL) {
  1952. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1953. ggml_critical_section_end();
  1954. return NULL;
  1955. }
  1956. // allow to call ggml_init with 0 size
  1957. if (params.mem_size == 0) {
  1958. params.mem_size = GGML_MEM_ALIGN;
  1959. }
  1960. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1961. *ctx = (struct ggml_context) {
  1962. /*.mem_size =*/ mem_size,
  1963. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1964. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1965. /*.no_alloc =*/ params.no_alloc,
  1966. /*.no_alloc_save =*/ params.no_alloc,
  1967. /*.n_objects =*/ 0,
  1968. /*.objects_begin =*/ NULL,
  1969. /*.objects_end =*/ NULL,
  1970. /*.scratch =*/ { 0, 0, NULL, },
  1971. /*.scratch_save =*/ { 0, 0, NULL, },
  1972. };
  1973. GGML_ASSERT(ctx->mem_buffer != NULL);
  1974. ggml_assert_aligned(ctx->mem_buffer);
  1975. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1976. ggml_critical_section_end();
  1977. return ctx;
  1978. }
  1979. void ggml_free(struct ggml_context * ctx) {
  1980. if (ctx == NULL) {
  1981. return;
  1982. }
  1983. // make this function thread safe
  1984. ggml_critical_section_start();
  1985. bool found = false;
  1986. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1987. if (&g_state.contexts[i].context == ctx) {
  1988. g_state.contexts[i].used = false;
  1989. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1990. __func__, i, ggml_used_mem(ctx));
  1991. if (ctx->mem_buffer_owned) {
  1992. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1993. }
  1994. found = true;
  1995. break;
  1996. }
  1997. }
  1998. if (!found) {
  1999. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2000. }
  2001. ggml_critical_section_end();
  2002. }
  2003. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2004. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2005. }
  2006. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2007. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2008. ctx->scratch = scratch;
  2009. return result;
  2010. }
  2011. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2012. return ctx->no_alloc;
  2013. }
  2014. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2015. ctx->no_alloc = no_alloc;
  2016. }
  2017. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2018. return ctx->mem_buffer;
  2019. }
  2020. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2021. return ctx->mem_size;
  2022. }
  2023. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2024. size_t max_size = 0;
  2025. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2026. max_size = MAX(max_size, ggml_nbytes(tensor));
  2027. }
  2028. return max_size;
  2029. }
  2030. // IMPORTANT:
  2031. // when creating "opt" tensors, always save and load the scratch buffer
  2032. // this is an error prone process, but it is necessary to support inplace
  2033. // operators when using scratch buffers
  2034. // TODO: implement a better way
  2035. static void ggml_scratch_save(struct ggml_context * ctx) {
  2036. // this is needed to allow opt tensors to store their data
  2037. // TODO: again, need to find a better way
  2038. ctx->no_alloc_save = ctx->no_alloc;
  2039. ctx->no_alloc = false;
  2040. ctx->scratch_save = ctx->scratch;
  2041. ctx->scratch.data = NULL;
  2042. }
  2043. static void ggml_scratch_load(struct ggml_context * ctx) {
  2044. ctx->no_alloc = ctx->no_alloc_save;
  2045. ctx->scratch = ctx->scratch_save;
  2046. }
  2047. ////////////////////////////////////////////////////////////////////////////////
  2048. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2049. // always insert objects at the end of the context's memory pool
  2050. struct ggml_object * obj_cur = ctx->objects_end;
  2051. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2052. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2053. const size_t cur_end = cur_offs + cur_size;
  2054. // align to GGML_MEM_ALIGN
  2055. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2056. char * const mem_buffer = ctx->mem_buffer;
  2057. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2058. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2059. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2060. __func__, cur_end + size_needed, ctx->mem_size);
  2061. assert(false);
  2062. return NULL;
  2063. }
  2064. *obj_new = (struct ggml_object) {
  2065. .offs = cur_end + GGML_OBJECT_SIZE,
  2066. .size = size_needed,
  2067. .next = NULL,
  2068. .type = type,
  2069. };
  2070. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2071. if (obj_cur != NULL) {
  2072. obj_cur->next = obj_new;
  2073. } else {
  2074. // this is the first object in this context
  2075. ctx->objects_begin = obj_new;
  2076. }
  2077. ctx->objects_end = obj_new;
  2078. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2079. return obj_new;
  2080. }
  2081. static struct ggml_tensor * ggml_new_tensor_impl(
  2082. struct ggml_context * ctx,
  2083. enum ggml_type type,
  2084. int n_dims,
  2085. const int64_t * ne,
  2086. struct ggml_tensor * view_src,
  2087. size_t view_offs) {
  2088. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2089. // find the base tensor and absolute offset
  2090. if (view_src != NULL && view_src->view_src != NULL) {
  2091. view_offs += view_src->view_offs;
  2092. view_src = view_src->view_src;
  2093. }
  2094. size_t data_size = ggml_row_size(type, ne[0]);
  2095. for (int i = 1; i < n_dims; i++) {
  2096. data_size *= ne[i];
  2097. }
  2098. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2099. void * data = view_src != NULL ? view_src->data : NULL;
  2100. if (data != NULL) {
  2101. data = (char *) data + view_offs;
  2102. }
  2103. size_t obj_alloc_size = 0;
  2104. if (view_src == NULL && !ctx->no_alloc) {
  2105. if (ctx->scratch.data != NULL) {
  2106. // allocate tensor data in the scratch buffer
  2107. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2108. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2109. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2110. assert(false);
  2111. return NULL;
  2112. }
  2113. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2114. ctx->scratch.offs += data_size;
  2115. } else {
  2116. // allocate tensor data in the context's memory pool
  2117. obj_alloc_size = data_size;
  2118. }
  2119. }
  2120. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2121. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2122. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2123. *result = (struct ggml_tensor) {
  2124. /*.type =*/ type,
  2125. /*.backend =*/ GGML_BACKEND_CPU,
  2126. /*.buffer =*/ NULL,
  2127. /*.ne =*/ { 1, 1, 1, 1 },
  2128. /*.nb =*/ { 0, 0, 0, 0 },
  2129. /*.op =*/ GGML_OP_NONE,
  2130. /*.op_params =*/ { 0 },
  2131. /*.is_param =*/ false,
  2132. /*.grad =*/ NULL,
  2133. /*.src =*/ { NULL },
  2134. /*.perf_runs =*/ 0,
  2135. /*.perf_cycles =*/ 0,
  2136. /*.perf_time_us =*/ 0,
  2137. /*.view_src =*/ view_src,
  2138. /*.view_offs =*/ view_offs,
  2139. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2140. /*.name =*/ { 0 },
  2141. /*.extra =*/ NULL,
  2142. /*.padding =*/ { 0 },
  2143. };
  2144. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2145. //ggml_assert_aligned(result->data);
  2146. for (int i = 0; i < n_dims; i++) {
  2147. result->ne[i] = ne[i];
  2148. }
  2149. result->nb[0] = ggml_type_size(type);
  2150. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2151. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2152. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2153. }
  2154. ctx->n_objects++;
  2155. return result;
  2156. }
  2157. struct ggml_tensor * ggml_new_tensor(
  2158. struct ggml_context * ctx,
  2159. enum ggml_type type,
  2160. int n_dims,
  2161. const int64_t * ne) {
  2162. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2163. }
  2164. struct ggml_tensor * ggml_new_tensor_1d(
  2165. struct ggml_context * ctx,
  2166. enum ggml_type type,
  2167. int64_t ne0) {
  2168. return ggml_new_tensor(ctx, type, 1, &ne0);
  2169. }
  2170. struct ggml_tensor * ggml_new_tensor_2d(
  2171. struct ggml_context * ctx,
  2172. enum ggml_type type,
  2173. int64_t ne0,
  2174. int64_t ne1) {
  2175. const int64_t ne[2] = { ne0, ne1 };
  2176. return ggml_new_tensor(ctx, type, 2, ne);
  2177. }
  2178. struct ggml_tensor * ggml_new_tensor_3d(
  2179. struct ggml_context * ctx,
  2180. enum ggml_type type,
  2181. int64_t ne0,
  2182. int64_t ne1,
  2183. int64_t ne2) {
  2184. const int64_t ne[3] = { ne0, ne1, ne2 };
  2185. return ggml_new_tensor(ctx, type, 3, ne);
  2186. }
  2187. struct ggml_tensor * ggml_new_tensor_4d(
  2188. struct ggml_context * ctx,
  2189. enum ggml_type type,
  2190. int64_t ne0,
  2191. int64_t ne1,
  2192. int64_t ne2,
  2193. int64_t ne3) {
  2194. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2195. return ggml_new_tensor(ctx, type, 4, ne);
  2196. }
  2197. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2198. ggml_scratch_save(ctx);
  2199. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2200. ggml_scratch_load(ctx);
  2201. ggml_set_i32(result, value);
  2202. return result;
  2203. }
  2204. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2205. ggml_scratch_save(ctx);
  2206. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2207. ggml_scratch_load(ctx);
  2208. ggml_set_f32(result, value);
  2209. return result;
  2210. }
  2211. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2212. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2213. }
  2214. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2215. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2216. assert(params_size <= GGML_MAX_OP_PARAMS);
  2217. memcpy(tensor->op_params, params, params_size);
  2218. }
  2219. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2220. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2221. return ((const int32_t *)(tensor->op_params))[i];
  2222. }
  2223. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2224. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2225. ((int32_t *)(tensor->op_params))[i] = value;
  2226. }
  2227. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2228. memset(tensor->data, 0, ggml_nbytes(tensor));
  2229. return tensor;
  2230. }
  2231. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2232. const int n = ggml_nrows(tensor);
  2233. const int nc = tensor->ne[0];
  2234. const size_t n1 = tensor->nb[1];
  2235. char * const data = tensor->data;
  2236. switch (tensor->type) {
  2237. case GGML_TYPE_I8:
  2238. {
  2239. assert(tensor->nb[0] == sizeof(int8_t));
  2240. for (int i = 0; i < n; i++) {
  2241. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2242. }
  2243. } break;
  2244. case GGML_TYPE_I16:
  2245. {
  2246. assert(tensor->nb[0] == sizeof(int16_t));
  2247. for (int i = 0; i < n; i++) {
  2248. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2249. }
  2250. } break;
  2251. case GGML_TYPE_I32:
  2252. {
  2253. assert(tensor->nb[0] == sizeof(int32_t));
  2254. for (int i = 0; i < n; i++) {
  2255. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2256. }
  2257. } break;
  2258. case GGML_TYPE_F16:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2263. }
  2264. } break;
  2265. case GGML_TYPE_F32:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(float));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. default:
  2273. {
  2274. GGML_ASSERT(false);
  2275. } break;
  2276. }
  2277. return tensor;
  2278. }
  2279. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2280. const int n = ggml_nrows(tensor);
  2281. const int nc = tensor->ne[0];
  2282. const size_t n1 = tensor->nb[1];
  2283. char * const data = tensor->data;
  2284. switch (tensor->type) {
  2285. case GGML_TYPE_I8:
  2286. {
  2287. assert(tensor->nb[0] == sizeof(int8_t));
  2288. for (int i = 0; i < n; i++) {
  2289. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2290. }
  2291. } break;
  2292. case GGML_TYPE_I16:
  2293. {
  2294. assert(tensor->nb[0] == sizeof(int16_t));
  2295. for (int i = 0; i < n; i++) {
  2296. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2297. }
  2298. } break;
  2299. case GGML_TYPE_I32:
  2300. {
  2301. assert(tensor->nb[0] == sizeof(int32_t));
  2302. for (int i = 0; i < n; i++) {
  2303. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2304. }
  2305. } break;
  2306. case GGML_TYPE_F16:
  2307. {
  2308. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2309. for (int i = 0; i < n; i++) {
  2310. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2311. }
  2312. } break;
  2313. case GGML_TYPE_F32:
  2314. {
  2315. assert(tensor->nb[0] == sizeof(float));
  2316. for (int i = 0; i < n; i++) {
  2317. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2318. }
  2319. } break;
  2320. default:
  2321. {
  2322. GGML_ASSERT(false);
  2323. } break;
  2324. }
  2325. return tensor;
  2326. }
  2327. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2328. const int64_t ne2 = tensor->ne[2];
  2329. const int64_t ne1 = tensor->ne[1];
  2330. const int64_t ne0 = tensor->ne[0];
  2331. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2332. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2333. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2334. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2335. if (i0) {
  2336. * i0 = i0_;
  2337. }
  2338. if (i1) {
  2339. * i1 = i1_;
  2340. }
  2341. if (i2) {
  2342. * i2 = i2_;
  2343. }
  2344. if (i3) {
  2345. * i3 = i3_;
  2346. }
  2347. }
  2348. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2349. if (!ggml_is_contiguous(tensor)) {
  2350. int64_t id[4] = { 0, 0, 0, 0 };
  2351. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2352. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2353. }
  2354. switch (tensor->type) {
  2355. case GGML_TYPE_I8:
  2356. {
  2357. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2358. return ((int8_t *)(tensor->data))[i];
  2359. }
  2360. case GGML_TYPE_I16:
  2361. {
  2362. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2363. return ((int16_t *)(tensor->data))[i];
  2364. }
  2365. case GGML_TYPE_I32:
  2366. {
  2367. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2368. return ((int32_t *)(tensor->data))[i];
  2369. }
  2370. case GGML_TYPE_F16:
  2371. {
  2372. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2373. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2374. }
  2375. case GGML_TYPE_F32:
  2376. {
  2377. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2378. return ((float *)(tensor->data))[i];
  2379. }
  2380. default:
  2381. {
  2382. GGML_ASSERT(false);
  2383. }
  2384. }
  2385. return 0.0f;
  2386. }
  2387. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2388. if (!ggml_is_contiguous(tensor)) {
  2389. int64_t id[4] = { 0, 0, 0, 0 };
  2390. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2391. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2392. return;
  2393. }
  2394. switch (tensor->type) {
  2395. case GGML_TYPE_I8:
  2396. {
  2397. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2398. ((int8_t *)(tensor->data))[i] = value;
  2399. } break;
  2400. case GGML_TYPE_I16:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2403. ((int16_t *)(tensor->data))[i] = value;
  2404. } break;
  2405. case GGML_TYPE_I32:
  2406. {
  2407. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2408. ((int32_t *)(tensor->data))[i] = value;
  2409. } break;
  2410. case GGML_TYPE_F16:
  2411. {
  2412. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2413. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2414. } break;
  2415. case GGML_TYPE_F32:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2418. ((float *)(tensor->data))[i] = value;
  2419. } break;
  2420. default:
  2421. {
  2422. GGML_ASSERT(false);
  2423. } break;
  2424. }
  2425. }
  2426. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2427. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2428. switch (tensor->type) {
  2429. case GGML_TYPE_I8:
  2430. return ((int8_t *) data)[0];
  2431. case GGML_TYPE_I16:
  2432. return ((int16_t *) data)[0];
  2433. case GGML_TYPE_I32:
  2434. return ((int32_t *) data)[0];
  2435. case GGML_TYPE_F16:
  2436. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2437. case GGML_TYPE_F32:
  2438. return ((float *) data)[0];
  2439. default:
  2440. GGML_ASSERT(false);
  2441. }
  2442. return 0.0f;
  2443. }
  2444. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2445. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2446. switch (tensor->type) {
  2447. case GGML_TYPE_I8:
  2448. {
  2449. ((int8_t *)(data))[0] = value;
  2450. } break;
  2451. case GGML_TYPE_I16:
  2452. {
  2453. ((int16_t *)(data))[0] = value;
  2454. } break;
  2455. case GGML_TYPE_I32:
  2456. {
  2457. ((int32_t *)(data))[0] = value;
  2458. } break;
  2459. case GGML_TYPE_F16:
  2460. {
  2461. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2462. } break;
  2463. case GGML_TYPE_F32:
  2464. {
  2465. ((float *)(data))[0] = value;
  2466. } break;
  2467. default:
  2468. {
  2469. GGML_ASSERT(false);
  2470. } break;
  2471. }
  2472. }
  2473. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2474. if (!ggml_is_contiguous(tensor)) {
  2475. int64_t id[4] = { 0, 0, 0, 0 };
  2476. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2477. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2478. }
  2479. switch (tensor->type) {
  2480. case GGML_TYPE_I8:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2483. return ((int8_t *)(tensor->data))[i];
  2484. }
  2485. case GGML_TYPE_I16:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2488. return ((int16_t *)(tensor->data))[i];
  2489. }
  2490. case GGML_TYPE_I32:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2493. return ((int32_t *)(tensor->data))[i];
  2494. }
  2495. case GGML_TYPE_F16:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2498. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2499. }
  2500. case GGML_TYPE_F32:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2503. return ((float *)(tensor->data))[i];
  2504. }
  2505. default:
  2506. {
  2507. GGML_ASSERT(false);
  2508. }
  2509. }
  2510. return 0.0f;
  2511. }
  2512. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2513. if (!ggml_is_contiguous(tensor)) {
  2514. int64_t id[4] = { 0, 0, 0, 0 };
  2515. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2516. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2517. return;
  2518. }
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_I8:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2523. ((int8_t *)(tensor->data))[i] = value;
  2524. } break;
  2525. case GGML_TYPE_I16:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2528. ((int16_t *)(tensor->data))[i] = value;
  2529. } break;
  2530. case GGML_TYPE_I32:
  2531. {
  2532. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2533. ((int32_t *)(tensor->data))[i] = value;
  2534. } break;
  2535. case GGML_TYPE_F16:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2538. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2539. } break;
  2540. case GGML_TYPE_F32:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2543. ((float *)(tensor->data))[i] = value;
  2544. } break;
  2545. default:
  2546. {
  2547. GGML_ASSERT(false);
  2548. } break;
  2549. }
  2550. }
  2551. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2552. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2553. switch (tensor->type) {
  2554. case GGML_TYPE_I8:
  2555. return ((int8_t *) data)[0];
  2556. case GGML_TYPE_I16:
  2557. return ((int16_t *) data)[0];
  2558. case GGML_TYPE_I32:
  2559. return ((int32_t *) data)[0];
  2560. case GGML_TYPE_F16:
  2561. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2562. case GGML_TYPE_F32:
  2563. return ((float *) data)[0];
  2564. default:
  2565. GGML_ASSERT(false);
  2566. }
  2567. return 0.0f;
  2568. }
  2569. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2570. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2571. switch (tensor->type) {
  2572. case GGML_TYPE_I8:
  2573. {
  2574. ((int8_t *)(data))[0] = value;
  2575. } break;
  2576. case GGML_TYPE_I16:
  2577. {
  2578. ((int16_t *)(data))[0] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. ((int32_t *)(data))[0] = value;
  2583. } break;
  2584. case GGML_TYPE_F16:
  2585. {
  2586. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2587. } break;
  2588. case GGML_TYPE_F32:
  2589. {
  2590. ((float *)(data))[0] = value;
  2591. } break;
  2592. default:
  2593. {
  2594. GGML_ASSERT(false);
  2595. } break;
  2596. }
  2597. }
  2598. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2599. return tensor->data;
  2600. }
  2601. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2602. assert(tensor->type == GGML_TYPE_F32);
  2603. return (float *)(tensor->data);
  2604. }
  2605. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2606. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2607. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2608. }
  2609. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2610. return tensor->name;
  2611. }
  2612. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2613. strncpy(tensor->name, name, sizeof(tensor->name));
  2614. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2615. return tensor;
  2616. }
  2617. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2618. va_list args;
  2619. va_start(args, fmt);
  2620. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2621. va_end(args);
  2622. return tensor;
  2623. }
  2624. struct ggml_tensor * ggml_view_tensor(
  2625. struct ggml_context * ctx,
  2626. struct ggml_tensor * src) {
  2627. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2628. ggml_format_name(result, "%s (view)", src->name);
  2629. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2630. result->nb[i] = src->nb[i];
  2631. }
  2632. return result;
  2633. }
  2634. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2635. struct ggml_object * obj = ctx->objects_begin;
  2636. char * const mem_buffer = ctx->mem_buffer;
  2637. while (obj != NULL) {
  2638. if (obj->type == GGML_OBJECT_TENSOR) {
  2639. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2640. }
  2641. obj = obj->next;
  2642. }
  2643. return NULL;
  2644. }
  2645. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2646. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2647. obj = obj->next;
  2648. char * const mem_buffer = ctx->mem_buffer;
  2649. while (obj != NULL) {
  2650. if (obj->type == GGML_OBJECT_TENSOR) {
  2651. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2652. }
  2653. obj = obj->next;
  2654. }
  2655. return NULL;
  2656. }
  2657. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2658. struct ggml_object * obj = ctx->objects_begin;
  2659. char * const mem_buffer = ctx->mem_buffer;
  2660. while (obj != NULL) {
  2661. if (obj->type == GGML_OBJECT_TENSOR) {
  2662. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2663. if (strcmp(cur->name, name) == 0) {
  2664. return cur;
  2665. }
  2666. }
  2667. obj = obj->next;
  2668. }
  2669. return NULL;
  2670. }
  2671. ////////////////////////////////////////////////////////////////////////////////
  2672. // ggml_dup
  2673. static struct ggml_tensor * ggml_dup_impl(
  2674. struct ggml_context * ctx,
  2675. struct ggml_tensor * a,
  2676. bool inplace) {
  2677. bool is_node = false;
  2678. if (!inplace && (a->grad)) {
  2679. is_node = true;
  2680. }
  2681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2682. result->op = GGML_OP_DUP;
  2683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2684. result->src[0] = a;
  2685. return result;
  2686. }
  2687. struct ggml_tensor * ggml_dup(
  2688. struct ggml_context * ctx,
  2689. struct ggml_tensor * a) {
  2690. return ggml_dup_impl(ctx, a, false);
  2691. }
  2692. struct ggml_tensor * ggml_dup_inplace(
  2693. struct ggml_context * ctx,
  2694. struct ggml_tensor * a) {
  2695. return ggml_dup_impl(ctx, a, true);
  2696. }
  2697. // ggml_add
  2698. static struct ggml_tensor * ggml_add_impl(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * a,
  2701. struct ggml_tensor * b,
  2702. bool inplace) {
  2703. GGML_ASSERT(ggml_can_repeat(b, a));
  2704. bool is_node = false;
  2705. if (!inplace && (a->grad || b->grad)) {
  2706. // TODO: support backward pass for broadcasting
  2707. GGML_ASSERT(ggml_are_same_shape(a, b));
  2708. is_node = true;
  2709. }
  2710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2711. result->op = GGML_OP_ADD;
  2712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2713. result->src[0] = a;
  2714. result->src[1] = b;
  2715. return result;
  2716. }
  2717. struct ggml_tensor * ggml_add(
  2718. struct ggml_context * ctx,
  2719. struct ggml_tensor * a,
  2720. struct ggml_tensor * b) {
  2721. return ggml_add_impl(ctx, a, b, false);
  2722. }
  2723. struct ggml_tensor * ggml_add_inplace(
  2724. struct ggml_context * ctx,
  2725. struct ggml_tensor * a,
  2726. struct ggml_tensor * b) {
  2727. return ggml_add_impl(ctx, a, b, true);
  2728. }
  2729. // ggml_add_cast
  2730. static struct ggml_tensor * ggml_add_cast_impl(
  2731. struct ggml_context * ctx,
  2732. struct ggml_tensor * a,
  2733. struct ggml_tensor * b,
  2734. enum ggml_type type) {
  2735. // TODO: support less-strict constraint
  2736. // GGML_ASSERT(ggml_can_repeat(b, a));
  2737. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2738. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2739. bool is_node = false;
  2740. if (a->grad || b->grad) {
  2741. // TODO: support backward pass for broadcasting
  2742. GGML_ASSERT(ggml_are_same_shape(a, b));
  2743. is_node = true;
  2744. }
  2745. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2746. result->op = GGML_OP_ADD;
  2747. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2748. result->src[0] = a;
  2749. result->src[1] = b;
  2750. return result;
  2751. }
  2752. struct ggml_tensor * ggml_add_cast(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b,
  2756. enum ggml_type type) {
  2757. return ggml_add_cast_impl(ctx, a, b, type);
  2758. }
  2759. // ggml_add1
  2760. static struct ggml_tensor * ggml_add1_impl(
  2761. struct ggml_context * ctx,
  2762. struct ggml_tensor * a,
  2763. struct ggml_tensor * b,
  2764. bool inplace) {
  2765. GGML_ASSERT(ggml_is_scalar(b));
  2766. GGML_ASSERT(ggml_is_padded_1d(a));
  2767. bool is_node = false;
  2768. if (a->grad || b->grad) {
  2769. is_node = true;
  2770. }
  2771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2772. result->op = GGML_OP_ADD1;
  2773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2774. result->src[0] = a;
  2775. result->src[1] = b;
  2776. return result;
  2777. }
  2778. struct ggml_tensor * ggml_add1(
  2779. struct ggml_context * ctx,
  2780. struct ggml_tensor * a,
  2781. struct ggml_tensor * b) {
  2782. return ggml_add1_impl(ctx, a, b, false);
  2783. }
  2784. struct ggml_tensor * ggml_add1_inplace(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. struct ggml_tensor * b) {
  2788. return ggml_add1_impl(ctx, a, b, true);
  2789. }
  2790. // ggml_acc
  2791. static struct ggml_tensor * ggml_acc_impl(
  2792. struct ggml_context * ctx,
  2793. struct ggml_tensor * a,
  2794. struct ggml_tensor * b,
  2795. size_t nb1,
  2796. size_t nb2,
  2797. size_t nb3,
  2798. size_t offset,
  2799. bool inplace) {
  2800. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2801. GGML_ASSERT(ggml_is_contiguous(a));
  2802. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2803. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2804. bool is_node = false;
  2805. if (!inplace && (a->grad || b->grad)) {
  2806. is_node = true;
  2807. }
  2808. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2809. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2810. ggml_set_op_params(result, params, sizeof(params));
  2811. result->op = GGML_OP_ACC;
  2812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2813. result->src[0] = a;
  2814. result->src[1] = b;
  2815. return result;
  2816. }
  2817. struct ggml_tensor * ggml_acc(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a,
  2820. struct ggml_tensor * b,
  2821. size_t nb1,
  2822. size_t nb2,
  2823. size_t nb3,
  2824. size_t offset) {
  2825. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2826. }
  2827. struct ggml_tensor * ggml_acc_inplace(
  2828. struct ggml_context * ctx,
  2829. struct ggml_tensor * a,
  2830. struct ggml_tensor * b,
  2831. size_t nb1,
  2832. size_t nb2,
  2833. size_t nb3,
  2834. size_t offset) {
  2835. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2836. }
  2837. // ggml_sub
  2838. static struct ggml_tensor * ggml_sub_impl(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * a,
  2841. struct ggml_tensor * b,
  2842. bool inplace) {
  2843. GGML_ASSERT(ggml_are_same_shape(a, b));
  2844. bool is_node = false;
  2845. if (!inplace && (a->grad || b->grad)) {
  2846. is_node = true;
  2847. }
  2848. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2849. result->op = GGML_OP_SUB;
  2850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2851. result->src[0] = a;
  2852. result->src[1] = b;
  2853. return result;
  2854. }
  2855. struct ggml_tensor * ggml_sub(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * a,
  2858. struct ggml_tensor * b) {
  2859. return ggml_sub_impl(ctx, a, b, false);
  2860. }
  2861. struct ggml_tensor * ggml_sub_inplace(
  2862. struct ggml_context * ctx,
  2863. struct ggml_tensor * a,
  2864. struct ggml_tensor * b) {
  2865. return ggml_sub_impl(ctx, a, b, true);
  2866. }
  2867. // ggml_mul
  2868. static struct ggml_tensor * ggml_mul_impl(
  2869. struct ggml_context * ctx,
  2870. struct ggml_tensor * a,
  2871. struct ggml_tensor * b,
  2872. bool inplace) {
  2873. GGML_ASSERT(ggml_can_repeat(b, a));
  2874. bool is_node = false;
  2875. if (!inplace && (a->grad || b->grad)) {
  2876. // TODO: support backward pass for broadcasting
  2877. GGML_ASSERT(ggml_are_same_shape(a, b));
  2878. is_node = true;
  2879. }
  2880. if (inplace) {
  2881. GGML_ASSERT(!is_node);
  2882. }
  2883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2884. result->op = GGML_OP_MUL;
  2885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2886. result->src[0] = a;
  2887. result->src[1] = b;
  2888. return result;
  2889. }
  2890. struct ggml_tensor * ggml_mul(
  2891. struct ggml_context * ctx,
  2892. struct ggml_tensor * a,
  2893. struct ggml_tensor * b) {
  2894. return ggml_mul_impl(ctx, a, b, false);
  2895. }
  2896. struct ggml_tensor * ggml_mul_inplace(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a,
  2899. struct ggml_tensor * b) {
  2900. return ggml_mul_impl(ctx, a, b, true);
  2901. }
  2902. // ggml_div
  2903. static struct ggml_tensor * ggml_div_impl(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. struct ggml_tensor * b,
  2907. bool inplace) {
  2908. GGML_ASSERT(ggml_can_repeat(b, a));
  2909. bool is_node = false;
  2910. if (!inplace && (a->grad || b->grad)) {
  2911. is_node = true;
  2912. }
  2913. if (inplace) {
  2914. GGML_ASSERT(!is_node);
  2915. }
  2916. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2917. result->op = GGML_OP_DIV;
  2918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2919. result->src[0] = a;
  2920. result->src[1] = b;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_div(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a,
  2926. struct ggml_tensor * b) {
  2927. return ggml_div_impl(ctx, a, b, false);
  2928. }
  2929. struct ggml_tensor * ggml_div_inplace(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a,
  2932. struct ggml_tensor * b) {
  2933. return ggml_div_impl(ctx, a, b, true);
  2934. }
  2935. // ggml_sqr
  2936. static struct ggml_tensor * ggml_sqr_impl(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a,
  2939. bool inplace) {
  2940. bool is_node = false;
  2941. if (!inplace && (a->grad)) {
  2942. is_node = true;
  2943. }
  2944. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2945. result->op = GGML_OP_SQR;
  2946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2947. result->src[0] = a;
  2948. return result;
  2949. }
  2950. struct ggml_tensor * ggml_sqr(
  2951. struct ggml_context * ctx,
  2952. struct ggml_tensor * a) {
  2953. return ggml_sqr_impl(ctx, a, false);
  2954. }
  2955. struct ggml_tensor * ggml_sqr_inplace(
  2956. struct ggml_context * ctx,
  2957. struct ggml_tensor * a) {
  2958. return ggml_sqr_impl(ctx, a, true);
  2959. }
  2960. // ggml_sqrt
  2961. static struct ggml_tensor * ggml_sqrt_impl(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a,
  2964. bool inplace) {
  2965. bool is_node = false;
  2966. if (!inplace && (a->grad)) {
  2967. is_node = true;
  2968. }
  2969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2970. result->op = GGML_OP_SQRT;
  2971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2972. result->src[0] = a;
  2973. return result;
  2974. }
  2975. struct ggml_tensor * ggml_sqrt(
  2976. struct ggml_context * ctx,
  2977. struct ggml_tensor * a) {
  2978. return ggml_sqrt_impl(ctx, a, false);
  2979. }
  2980. struct ggml_tensor * ggml_sqrt_inplace(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a) {
  2983. return ggml_sqrt_impl(ctx, a, true);
  2984. }
  2985. // ggml_log
  2986. static struct ggml_tensor * ggml_log_impl(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a,
  2989. bool inplace) {
  2990. bool is_node = false;
  2991. if (!inplace && (a->grad)) {
  2992. is_node = true;
  2993. }
  2994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2995. result->op = GGML_OP_LOG;
  2996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2997. result->src[0] = a;
  2998. return result;
  2999. }
  3000. struct ggml_tensor * ggml_log(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a) {
  3003. return ggml_log_impl(ctx, a, false);
  3004. }
  3005. struct ggml_tensor * ggml_log_inplace(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_log_impl(ctx, a, true);
  3009. }
  3010. // ggml_sum
  3011. struct ggml_tensor * ggml_sum(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a) {
  3014. bool is_node = false;
  3015. if (a->grad) {
  3016. is_node = true;
  3017. }
  3018. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3019. result->op = GGML_OP_SUM;
  3020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3021. result->src[0] = a;
  3022. return result;
  3023. }
  3024. // ggml_sum_rows
  3025. struct ggml_tensor * ggml_sum_rows(
  3026. struct ggml_context * ctx,
  3027. struct ggml_tensor * a) {
  3028. bool is_node = false;
  3029. if (a->grad) {
  3030. is_node = true;
  3031. }
  3032. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3033. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3034. ne[i] = a->ne[i];
  3035. }
  3036. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3037. result->op = GGML_OP_SUM_ROWS;
  3038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3039. result->src[0] = a;
  3040. return result;
  3041. }
  3042. // ggml_mean
  3043. struct ggml_tensor * ggml_mean(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a) {
  3046. bool is_node = false;
  3047. if (a->grad) {
  3048. GGML_ASSERT(false); // TODO: implement
  3049. is_node = true;
  3050. }
  3051. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3052. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3053. result->op = GGML_OP_MEAN;
  3054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3055. result->src[0] = a;
  3056. return result;
  3057. }
  3058. // ggml_argmax
  3059. struct ggml_tensor * ggml_argmax(
  3060. struct ggml_context * ctx,
  3061. struct ggml_tensor * a) {
  3062. GGML_ASSERT(ggml_is_matrix(a));
  3063. bool is_node = false;
  3064. if (a->grad) {
  3065. GGML_ASSERT(false);
  3066. is_node = true;
  3067. }
  3068. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3069. result->op = GGML_OP_ARGMAX;
  3070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3071. result->src[0] = a;
  3072. return result;
  3073. }
  3074. // ggml_repeat
  3075. struct ggml_tensor * ggml_repeat(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a,
  3078. struct ggml_tensor * b) {
  3079. GGML_ASSERT(ggml_can_repeat(a, b));
  3080. bool is_node = false;
  3081. if (a->grad) {
  3082. is_node = true;
  3083. }
  3084. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3085. result->op = GGML_OP_REPEAT;
  3086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3087. result->src[0] = a;
  3088. return result;
  3089. }
  3090. // ggml_repeat_back
  3091. struct ggml_tensor * ggml_repeat_back(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a,
  3094. struct ggml_tensor * b) {
  3095. GGML_ASSERT(ggml_can_repeat(b, a));
  3096. bool is_node = false;
  3097. if (a->grad) {
  3098. is_node = true;
  3099. }
  3100. if (ggml_are_same_shape(a, b) && !is_node) {
  3101. return a;
  3102. }
  3103. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3104. result->op = GGML_OP_REPEAT_BACK;
  3105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3106. result->src[0] = a;
  3107. return result;
  3108. }
  3109. // ggml_concat
  3110. struct ggml_tensor * ggml_concat(
  3111. struct ggml_context* ctx,
  3112. struct ggml_tensor* a,
  3113. struct ggml_tensor* b) {
  3114. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3115. bool is_node = false;
  3116. if (a->grad || b->grad) {
  3117. is_node = true;
  3118. }
  3119. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3120. result->op = GGML_OP_CONCAT;
  3121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3122. result->src[0] = a;
  3123. result->src[1] = b;
  3124. return result;
  3125. }
  3126. // ggml_abs
  3127. struct ggml_tensor * ggml_abs(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3131. }
  3132. struct ggml_tensor * ggml_abs_inplace(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3136. }
  3137. // ggml_sgn
  3138. struct ggml_tensor * ggml_sgn(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3142. }
  3143. struct ggml_tensor * ggml_sgn_inplace(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a) {
  3146. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3147. }
  3148. // ggml_neg
  3149. struct ggml_tensor * ggml_neg(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a) {
  3152. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3153. }
  3154. struct ggml_tensor * ggml_neg_inplace(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3158. }
  3159. // ggml_step
  3160. struct ggml_tensor * ggml_step(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a) {
  3163. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3164. }
  3165. struct ggml_tensor * ggml_step_inplace(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a) {
  3168. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3169. }
  3170. // ggml_tanh
  3171. struct ggml_tensor * ggml_tanh(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3175. }
  3176. struct ggml_tensor * ggml_tanh_inplace(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a) {
  3179. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3180. }
  3181. // ggml_elu
  3182. struct ggml_tensor * ggml_elu(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a) {
  3185. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3186. }
  3187. struct ggml_tensor * ggml_elu_inplace(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a) {
  3190. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3191. }
  3192. // ggml_relu
  3193. struct ggml_tensor * ggml_relu(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a) {
  3196. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3197. }
  3198. struct ggml_tensor * ggml_relu_inplace(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3202. }
  3203. // ggml_leaky_relu
  3204. struct ggml_tensor * ggml_leaky_relu(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3207. bool is_node = false;
  3208. if (!inplace && (a->grad)) {
  3209. is_node = true;
  3210. }
  3211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3212. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3213. result->op = GGML_OP_LEAKY_RELU;
  3214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3215. result->src[0] = a;
  3216. return result;
  3217. }
  3218. // ggml_gelu
  3219. struct ggml_tensor * ggml_gelu(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3223. }
  3224. struct ggml_tensor * ggml_gelu_inplace(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a) {
  3227. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3228. }
  3229. // ggml_gelu_quick
  3230. struct ggml_tensor * ggml_gelu_quick(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3234. }
  3235. struct ggml_tensor * ggml_gelu_quick_inplace(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a) {
  3238. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3239. }
  3240. // ggml_silu
  3241. struct ggml_tensor * ggml_silu(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3245. }
  3246. struct ggml_tensor * ggml_silu_inplace(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3250. }
  3251. // ggml_silu_back
  3252. struct ggml_tensor * ggml_silu_back(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. struct ggml_tensor * b) {
  3256. bool is_node = false;
  3257. if (a->grad || b->grad) {
  3258. // TODO: implement backward
  3259. is_node = true;
  3260. }
  3261. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3262. result->op = GGML_OP_SILU_BACK;
  3263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3264. result->src[0] = a;
  3265. result->src[1] = b;
  3266. return result;
  3267. }
  3268. // ggml_norm
  3269. static struct ggml_tensor * ggml_norm_impl(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a,
  3272. float eps,
  3273. bool inplace) {
  3274. bool is_node = false;
  3275. if (!inplace && (a->grad)) {
  3276. GGML_ASSERT(false); // TODO: implement backward
  3277. is_node = true;
  3278. }
  3279. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3280. ggml_set_op_params(result, &eps, sizeof(eps));
  3281. result->op = GGML_OP_NORM;
  3282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3283. result->src[0] = a;
  3284. return result;
  3285. }
  3286. struct ggml_tensor * ggml_norm(
  3287. struct ggml_context * ctx,
  3288. struct ggml_tensor * a,
  3289. float eps) {
  3290. return ggml_norm_impl(ctx, a, eps, false);
  3291. }
  3292. struct ggml_tensor * ggml_norm_inplace(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. float eps) {
  3296. return ggml_norm_impl(ctx, a, eps, true);
  3297. }
  3298. // ggml_rms_norm
  3299. static struct ggml_tensor * ggml_rms_norm_impl(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a,
  3302. float eps,
  3303. bool inplace) {
  3304. bool is_node = false;
  3305. if (!inplace && (a->grad)) {
  3306. is_node = true;
  3307. }
  3308. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3309. ggml_set_op_params(result, &eps, sizeof(eps));
  3310. result->op = GGML_OP_RMS_NORM;
  3311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3312. result->src[0] = a;
  3313. return result;
  3314. }
  3315. struct ggml_tensor * ggml_rms_norm(
  3316. struct ggml_context * ctx,
  3317. struct ggml_tensor * a,
  3318. float eps) {
  3319. return ggml_rms_norm_impl(ctx, a, eps, false);
  3320. }
  3321. struct ggml_tensor * ggml_rms_norm_inplace(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. float eps) {
  3325. return ggml_rms_norm_impl(ctx, a, eps, true);
  3326. }
  3327. // ggml_rms_norm_back
  3328. struct ggml_tensor * ggml_rms_norm_back(
  3329. struct ggml_context * ctx,
  3330. struct ggml_tensor * a,
  3331. struct ggml_tensor * b,
  3332. float eps) {
  3333. bool is_node = false;
  3334. if (a->grad) {
  3335. // TODO: implement backward
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3339. ggml_set_op_params(result, &eps, sizeof(eps));
  3340. result->op = GGML_OP_RMS_NORM_BACK;
  3341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3342. result->src[0] = a;
  3343. result->src[1] = b;
  3344. return result;
  3345. }
  3346. // ggml_group_norm
  3347. static struct ggml_tensor * ggml_group_norm_impl(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a,
  3350. int n_groups,
  3351. bool inplace) {
  3352. bool is_node = false;
  3353. if (!inplace && (a->grad)) {
  3354. GGML_ASSERT(false); // TODO: implement backward
  3355. is_node = true;
  3356. }
  3357. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3358. result->op_params[0] = n_groups;
  3359. result->op = GGML_OP_GROUP_NORM;
  3360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3361. result->src[0] = a;
  3362. return result;
  3363. }
  3364. struct ggml_tensor * ggml_group_norm(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a,
  3367. int n_groups) {
  3368. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3369. }
  3370. struct ggml_tensor * ggml_group_norm_inplace(
  3371. struct ggml_context * ctx,
  3372. struct ggml_tensor * a,
  3373. int n_groups) {
  3374. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3375. }
  3376. // ggml_mul_mat
  3377. struct ggml_tensor * ggml_mul_mat(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a,
  3380. struct ggml_tensor * b) {
  3381. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3382. GGML_ASSERT(!ggml_is_transposed(a));
  3383. bool is_node = false;
  3384. if (a->grad || b->grad) {
  3385. is_node = true;
  3386. }
  3387. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3388. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3389. result->op = GGML_OP_MUL_MAT;
  3390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3391. result->src[0] = a;
  3392. result->src[1] = b;
  3393. return result;
  3394. }
  3395. void ggml_mul_mat_set_prec(
  3396. struct ggml_tensor * a,
  3397. enum ggml_prec prec) {
  3398. const int32_t prec_i32 = (int32_t) prec;
  3399. ggml_set_op_params_i32(a, 0, prec_i32);
  3400. }
  3401. // ggml_mul_mat_id
  3402. struct ggml_tensor * ggml_mul_mat_id(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * const as[],
  3405. int n_as,
  3406. struct ggml_tensor * ids,
  3407. int id,
  3408. struct ggml_tensor * b) {
  3409. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3410. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3411. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3412. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3413. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3414. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3415. bool is_node = false;
  3416. if (as[0]->grad || b->grad) {
  3417. is_node = true;
  3418. }
  3419. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3420. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3421. ggml_set_op_params_i32(result, 0, id);
  3422. ggml_set_op_params_i32(result, 1, n_as);
  3423. result->op = GGML_OP_MUL_MAT_ID;
  3424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3425. result->src[0] = ids;
  3426. result->src[1] = b;
  3427. for (int i = 0; i < n_as; i++) {
  3428. struct ggml_tensor * a = as[i];
  3429. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3430. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3431. GGML_ASSERT(!ggml_is_transposed(a));
  3432. result->src[i + 2] = a;
  3433. }
  3434. return result;
  3435. }
  3436. // ggml_out_prod
  3437. struct ggml_tensor * ggml_out_prod(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a,
  3440. struct ggml_tensor * b) {
  3441. GGML_ASSERT(ggml_can_out_prod(a, b));
  3442. GGML_ASSERT(!ggml_is_transposed(a));
  3443. bool is_node = false;
  3444. if (a->grad || b->grad) {
  3445. is_node = true;
  3446. }
  3447. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3448. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3449. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3450. result->op = GGML_OP_OUT_PROD;
  3451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3452. result->src[0] = a;
  3453. result->src[1] = b;
  3454. return result;
  3455. }
  3456. // ggml_scale
  3457. static struct ggml_tensor * ggml_scale_impl(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. float s,
  3461. bool inplace) {
  3462. GGML_ASSERT(ggml_is_padded_1d(a));
  3463. bool is_node = false;
  3464. if (a->grad) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. ggml_set_op_params(result, &s, sizeof(s));
  3469. result->op = GGML_OP_SCALE;
  3470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3471. result->src[0] = a;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_scale(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. float s) {
  3478. return ggml_scale_impl(ctx, a, s, false);
  3479. }
  3480. struct ggml_tensor * ggml_scale_inplace(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. float s) {
  3484. return ggml_scale_impl(ctx, a, s, true);
  3485. }
  3486. // ggml_set
  3487. static struct ggml_tensor * ggml_set_impl(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. size_t nb1,
  3492. size_t nb2,
  3493. size_t nb3,
  3494. size_t offset,
  3495. bool inplace) {
  3496. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3497. bool is_node = false;
  3498. if (a->grad || b->grad) {
  3499. is_node = true;
  3500. }
  3501. // make a view of the destination
  3502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3503. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3504. ggml_set_op_params(result, params, sizeof(params));
  3505. result->op = GGML_OP_SET;
  3506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3507. result->src[0] = a;
  3508. result->src[1] = b;
  3509. return result;
  3510. }
  3511. struct ggml_tensor * ggml_set(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. struct ggml_tensor * b,
  3515. size_t nb1,
  3516. size_t nb2,
  3517. size_t nb3,
  3518. size_t offset) {
  3519. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3520. }
  3521. struct ggml_tensor * ggml_set_inplace(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a,
  3524. struct ggml_tensor * b,
  3525. size_t nb1,
  3526. size_t nb2,
  3527. size_t nb3,
  3528. size_t offset) {
  3529. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3530. }
  3531. struct ggml_tensor * ggml_set_1d(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a,
  3534. struct ggml_tensor * b,
  3535. size_t offset) {
  3536. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3537. }
  3538. struct ggml_tensor * ggml_set_1d_inplace(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b,
  3542. size_t offset) {
  3543. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3544. }
  3545. struct ggml_tensor * ggml_set_2d(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. struct ggml_tensor * b,
  3549. size_t nb1,
  3550. size_t offset) {
  3551. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3552. }
  3553. struct ggml_tensor * ggml_set_2d_inplace(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. struct ggml_tensor * b,
  3557. size_t nb1,
  3558. size_t offset) {
  3559. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3560. }
  3561. // ggml_cpy
  3562. static struct ggml_tensor * ggml_cpy_impl(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a,
  3565. struct ggml_tensor * b) {
  3566. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3567. bool is_node = false;
  3568. if (a->grad || b->grad) {
  3569. // inplace is false and either one have a grad
  3570. is_node = true;
  3571. }
  3572. // make a view of the destination
  3573. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3574. if (strlen(b->name) > 0) {
  3575. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3576. } else {
  3577. ggml_format_name(result, "%s (copy)", a->name);
  3578. }
  3579. result->op = GGML_OP_CPY;
  3580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3581. result->src[0] = a;
  3582. result->src[1] = b;
  3583. return result;
  3584. }
  3585. struct ggml_tensor * ggml_cpy(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a,
  3588. struct ggml_tensor * b) {
  3589. return ggml_cpy_impl(ctx, a, b);
  3590. }
  3591. struct ggml_tensor * ggml_cast(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. enum ggml_type type) {
  3595. bool is_node = false;
  3596. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3597. ggml_format_name(result, "%s (copy)", a->name);
  3598. result->op = GGML_OP_CPY;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src[0] = a;
  3601. result->src[1] = result;
  3602. return result;
  3603. }
  3604. // ggml_cont
  3605. static struct ggml_tensor * ggml_cont_impl(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a) {
  3608. bool is_node = false;
  3609. if (a->grad) {
  3610. is_node = true;
  3611. }
  3612. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3613. ggml_format_name(result, "%s (cont)", a->name);
  3614. result->op = GGML_OP_CONT;
  3615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3616. result->src[0] = a;
  3617. return result;
  3618. }
  3619. struct ggml_tensor * ggml_cont(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_cont_impl(ctx, a);
  3623. }
  3624. // make contiguous, with new shape
  3625. GGML_API struct ggml_tensor * ggml_cont_1d(
  3626. struct ggml_context * ctx,
  3627. struct ggml_tensor * a,
  3628. int64_t ne0) {
  3629. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3630. }
  3631. GGML_API struct ggml_tensor * ggml_cont_2d(
  3632. struct ggml_context * ctx,
  3633. struct ggml_tensor * a,
  3634. int64_t ne0,
  3635. int64_t ne1) {
  3636. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3637. }
  3638. GGML_API struct ggml_tensor * ggml_cont_3d(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a,
  3641. int64_t ne0,
  3642. int64_t ne1,
  3643. int64_t ne2) {
  3644. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3645. }
  3646. struct ggml_tensor * ggml_cont_4d(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. int64_t ne0,
  3650. int64_t ne1,
  3651. int64_t ne2,
  3652. int64_t ne3) {
  3653. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3654. bool is_node = false;
  3655. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3656. ggml_format_name(result, "%s (cont)", a->name);
  3657. result->op = GGML_OP_CONT;
  3658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3659. result->src[0] = a;
  3660. return result;
  3661. }
  3662. // ggml_reshape
  3663. struct ggml_tensor * ggml_reshape(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. struct ggml_tensor * b) {
  3667. GGML_ASSERT(ggml_is_contiguous(a));
  3668. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3669. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3670. bool is_node = false;
  3671. if (a->grad) {
  3672. is_node = true;
  3673. }
  3674. if (b->grad) {
  3675. // gradient propagation is not supported
  3676. //GGML_ASSERT(false);
  3677. }
  3678. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3679. ggml_format_name(result, "%s (reshaped)", a->name);
  3680. result->op = GGML_OP_RESHAPE;
  3681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3682. result->src[0] = a;
  3683. return result;
  3684. }
  3685. struct ggml_tensor * ggml_reshape_1d(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a,
  3688. int64_t ne0) {
  3689. GGML_ASSERT(ggml_is_contiguous(a));
  3690. GGML_ASSERT(ggml_nelements(a) == ne0);
  3691. bool is_node = false;
  3692. if (a->grad) {
  3693. is_node = true;
  3694. }
  3695. const int64_t ne[1] = { ne0 };
  3696. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3697. ggml_format_name(result, "%s (reshaped)", a->name);
  3698. result->op = GGML_OP_RESHAPE;
  3699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3700. result->src[0] = a;
  3701. return result;
  3702. }
  3703. struct ggml_tensor * ggml_reshape_2d(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. int64_t ne0,
  3707. int64_t ne1) {
  3708. GGML_ASSERT(ggml_is_contiguous(a));
  3709. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3710. bool is_node = false;
  3711. if (a->grad) {
  3712. is_node = true;
  3713. }
  3714. const int64_t ne[2] = { ne0, ne1 };
  3715. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3716. ggml_format_name(result, "%s (reshaped)", a->name);
  3717. result->op = GGML_OP_RESHAPE;
  3718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3719. result->src[0] = a;
  3720. return result;
  3721. }
  3722. struct ggml_tensor * ggml_reshape_3d(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. int64_t ne0,
  3726. int64_t ne1,
  3727. int64_t ne2) {
  3728. GGML_ASSERT(ggml_is_contiguous(a));
  3729. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3730. bool is_node = false;
  3731. if (a->grad) {
  3732. is_node = true;
  3733. }
  3734. const int64_t ne[3] = { ne0, ne1, ne2 };
  3735. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3736. ggml_format_name(result, "%s (reshaped)", a->name);
  3737. result->op = GGML_OP_RESHAPE;
  3738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3739. result->src[0] = a;
  3740. return result;
  3741. }
  3742. struct ggml_tensor * ggml_reshape_4d(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a,
  3745. int64_t ne0,
  3746. int64_t ne1,
  3747. int64_t ne2,
  3748. int64_t ne3) {
  3749. GGML_ASSERT(ggml_is_contiguous(a));
  3750. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3751. bool is_node = false;
  3752. if (a->grad) {
  3753. is_node = true;
  3754. }
  3755. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3756. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3757. ggml_format_name(result, "%s (reshaped)", a->name);
  3758. result->op = GGML_OP_RESHAPE;
  3759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3760. result->src[0] = a;
  3761. return result;
  3762. }
  3763. static struct ggml_tensor * ggml_view_impl(
  3764. struct ggml_context * ctx,
  3765. struct ggml_tensor * a,
  3766. int n_dims,
  3767. const int64_t * ne,
  3768. size_t offset) {
  3769. bool is_node = false;
  3770. if (a->grad) {
  3771. is_node = true;
  3772. }
  3773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3774. ggml_format_name(result, "%s (view)", a->name);
  3775. ggml_set_op_params(result, &offset, sizeof(offset));
  3776. result->op = GGML_OP_VIEW;
  3777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3778. result->src[0] = a;
  3779. return result;
  3780. }
  3781. // ggml_view_1d
  3782. struct ggml_tensor * ggml_view_1d(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. int64_t ne0,
  3786. size_t offset) {
  3787. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3788. return result;
  3789. }
  3790. // ggml_view_2d
  3791. struct ggml_tensor * ggml_view_2d(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. int64_t ne0,
  3795. int64_t ne1,
  3796. size_t nb1,
  3797. size_t offset) {
  3798. const int64_t ne[2] = { ne0, ne1 };
  3799. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3800. result->nb[1] = nb1;
  3801. result->nb[2] = result->nb[1]*ne1;
  3802. result->nb[3] = result->nb[2];
  3803. return result;
  3804. }
  3805. // ggml_view_3d
  3806. struct ggml_tensor * ggml_view_3d(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. int64_t ne0,
  3810. int64_t ne1,
  3811. int64_t ne2,
  3812. size_t nb1,
  3813. size_t nb2,
  3814. size_t offset) {
  3815. const int64_t ne[3] = { ne0, ne1, ne2 };
  3816. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3817. result->nb[1] = nb1;
  3818. result->nb[2] = nb2;
  3819. result->nb[3] = result->nb[2]*ne2;
  3820. return result;
  3821. }
  3822. // ggml_view_4d
  3823. struct ggml_tensor * ggml_view_4d(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a,
  3826. int64_t ne0,
  3827. int64_t ne1,
  3828. int64_t ne2,
  3829. int64_t ne3,
  3830. size_t nb1,
  3831. size_t nb2,
  3832. size_t nb3,
  3833. size_t offset) {
  3834. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3835. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3836. result->nb[1] = nb1;
  3837. result->nb[2] = nb2;
  3838. result->nb[3] = nb3;
  3839. return result;
  3840. }
  3841. // ggml_permute
  3842. struct ggml_tensor * ggml_permute(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a,
  3845. int axis0,
  3846. int axis1,
  3847. int axis2,
  3848. int axis3) {
  3849. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3850. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3851. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3852. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3853. GGML_ASSERT(axis0 != axis1);
  3854. GGML_ASSERT(axis0 != axis2);
  3855. GGML_ASSERT(axis0 != axis3);
  3856. GGML_ASSERT(axis1 != axis2);
  3857. GGML_ASSERT(axis1 != axis3);
  3858. GGML_ASSERT(axis2 != axis3);
  3859. bool is_node = false;
  3860. if (a->grad) {
  3861. is_node = true;
  3862. }
  3863. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3864. ggml_format_name(result, "%s (permuted)", a->name);
  3865. int ne[GGML_MAX_DIMS];
  3866. int nb[GGML_MAX_DIMS];
  3867. ne[axis0] = a->ne[0];
  3868. ne[axis1] = a->ne[1];
  3869. ne[axis2] = a->ne[2];
  3870. ne[axis3] = a->ne[3];
  3871. nb[axis0] = a->nb[0];
  3872. nb[axis1] = a->nb[1];
  3873. nb[axis2] = a->nb[2];
  3874. nb[axis3] = a->nb[3];
  3875. result->ne[0] = ne[0];
  3876. result->ne[1] = ne[1];
  3877. result->ne[2] = ne[2];
  3878. result->ne[3] = ne[3];
  3879. result->nb[0] = nb[0];
  3880. result->nb[1] = nb[1];
  3881. result->nb[2] = nb[2];
  3882. result->nb[3] = nb[3];
  3883. result->op = GGML_OP_PERMUTE;
  3884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3885. result->src[0] = a;
  3886. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3887. ggml_set_op_params(result, params, sizeof(params));
  3888. return result;
  3889. }
  3890. // ggml_transpose
  3891. struct ggml_tensor * ggml_transpose(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a) {
  3894. bool is_node = false;
  3895. if (a->grad) {
  3896. is_node = true;
  3897. }
  3898. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3899. ggml_format_name(result, "%s (transposed)", a->name);
  3900. result->ne[0] = a->ne[1];
  3901. result->ne[1] = a->ne[0];
  3902. result->nb[0] = a->nb[1];
  3903. result->nb[1] = a->nb[0];
  3904. result->op = GGML_OP_TRANSPOSE;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. return result;
  3908. }
  3909. // ggml_get_rows
  3910. struct ggml_tensor * ggml_get_rows(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b) {
  3914. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3915. GGML_ASSERT(b->ne[3] == 1);
  3916. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3917. bool is_node = false;
  3918. if (a->grad || b->grad) {
  3919. is_node = true;
  3920. }
  3921. // TODO: implement non F32 return
  3922. enum ggml_type type = GGML_TYPE_F32;
  3923. if (a->type == GGML_TYPE_I32) {
  3924. type = a->type;
  3925. }
  3926. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3927. result->op = GGML_OP_GET_ROWS;
  3928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3929. result->src[0] = a;
  3930. result->src[1] = b;
  3931. return result;
  3932. }
  3933. // ggml_get_rows_back
  3934. struct ggml_tensor * ggml_get_rows_back(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b,
  3938. struct ggml_tensor * c) {
  3939. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3940. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3941. bool is_node = false;
  3942. if (a->grad || b->grad) {
  3943. is_node = true;
  3944. }
  3945. // TODO: implement non F32 return
  3946. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3947. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3948. result->op = GGML_OP_GET_ROWS_BACK;
  3949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3950. result->src[0] = a;
  3951. result->src[1] = b;
  3952. return result;
  3953. }
  3954. // ggml_diag
  3955. struct ggml_tensor * ggml_diag(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a) {
  3958. GGML_ASSERT(a->ne[1] == 1);
  3959. bool is_node = false;
  3960. if (a->grad) {
  3961. is_node = true;
  3962. }
  3963. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3964. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3965. result->op = GGML_OP_DIAG;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src[0] = a;
  3968. return result;
  3969. }
  3970. // ggml_diag_mask_inf
  3971. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. int n_past,
  3975. bool inplace) {
  3976. bool is_node = false;
  3977. if (a->grad) {
  3978. is_node = true;
  3979. }
  3980. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3981. int32_t params[] = { n_past };
  3982. ggml_set_op_params(result, params, sizeof(params));
  3983. result->op = GGML_OP_DIAG_MASK_INF;
  3984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3985. result->src[0] = a;
  3986. return result;
  3987. }
  3988. struct ggml_tensor * ggml_diag_mask_inf(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. int n_past) {
  3992. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3993. }
  3994. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. int n_past) {
  3998. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3999. }
  4000. // ggml_diag_mask_zero
  4001. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. int n_past,
  4005. bool inplace) {
  4006. bool is_node = false;
  4007. if (a->grad) {
  4008. is_node = true;
  4009. }
  4010. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4011. int32_t params[] = { n_past };
  4012. ggml_set_op_params(result, params, sizeof(params));
  4013. result->op = GGML_OP_DIAG_MASK_ZERO;
  4014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4015. result->src[0] = a;
  4016. return result;
  4017. }
  4018. struct ggml_tensor * ggml_diag_mask_zero(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a,
  4021. int n_past) {
  4022. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4023. }
  4024. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4025. struct ggml_context * ctx,
  4026. struct ggml_tensor * a,
  4027. int n_past) {
  4028. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4029. }
  4030. // ggml_soft_max
  4031. static struct ggml_tensor * ggml_soft_max_impl(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * mask,
  4035. float scale,
  4036. bool inplace) {
  4037. GGML_ASSERT(ggml_is_contiguous(a));
  4038. if (mask) {
  4039. GGML_ASSERT(ggml_is_contiguous(mask));
  4040. GGML_ASSERT(mask->ne[2] == 1);
  4041. GGML_ASSERT(mask->ne[3] == 1);
  4042. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4043. }
  4044. bool is_node = false;
  4045. if (a->grad) {
  4046. is_node = true;
  4047. }
  4048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4049. float params[] = { scale };
  4050. ggml_set_op_params(result, params, sizeof(params));
  4051. result->op = GGML_OP_SOFT_MAX;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src[0] = a;
  4054. result->src[1] = mask;
  4055. return result;
  4056. }
  4057. struct ggml_tensor * ggml_soft_max(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a) {
  4060. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4061. }
  4062. struct ggml_tensor * ggml_soft_max_inplace(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a) {
  4065. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4066. }
  4067. struct ggml_tensor * ggml_soft_max_ext(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. struct ggml_tensor * mask,
  4071. float scale) {
  4072. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4073. }
  4074. // ggml_soft_max_back
  4075. static struct ggml_tensor * ggml_soft_max_back_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b,
  4079. bool inplace) {
  4080. bool is_node = false;
  4081. if (a->grad || b->grad) {
  4082. is_node = true; // TODO : implement backward pass
  4083. }
  4084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4085. result->op = GGML_OP_SOFT_MAX_BACK;
  4086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4087. result->src[0] = a;
  4088. result->src[1] = b;
  4089. return result;
  4090. }
  4091. struct ggml_tensor * ggml_soft_max_back(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. struct ggml_tensor * b) {
  4095. return ggml_soft_max_back_impl(ctx, a, b, false);
  4096. }
  4097. struct ggml_tensor * ggml_soft_max_back_inplace(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * b) {
  4101. return ggml_soft_max_back_impl(ctx, a, b, true);
  4102. }
  4103. // ggml_rope
  4104. static struct ggml_tensor * ggml_rope_impl(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a,
  4107. struct ggml_tensor * b,
  4108. int n_dims,
  4109. int mode,
  4110. int n_ctx,
  4111. int n_orig_ctx,
  4112. float freq_base,
  4113. float freq_scale,
  4114. float ext_factor,
  4115. float attn_factor,
  4116. float beta_fast,
  4117. float beta_slow,
  4118. float xpos_base,
  4119. bool xpos_down,
  4120. bool inplace) {
  4121. GGML_ASSERT(ggml_is_vector(b));
  4122. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4123. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4124. bool is_node = false;
  4125. if (a->grad) {
  4126. is_node = true;
  4127. }
  4128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4129. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4130. memcpy(params + 5, &freq_base, sizeof(float));
  4131. memcpy(params + 6, &freq_scale, sizeof(float));
  4132. memcpy(params + 7, &ext_factor, sizeof(float));
  4133. memcpy(params + 8, &attn_factor, sizeof(float));
  4134. memcpy(params + 9, &beta_fast, sizeof(float));
  4135. memcpy(params + 10, &beta_slow, sizeof(float));
  4136. memcpy(params + 11, &xpos_base, sizeof(float));
  4137. memcpy(params + 12, &xpos_down, sizeof(bool));
  4138. ggml_set_op_params(result, params, sizeof(params));
  4139. result->op = GGML_OP_ROPE;
  4140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4141. result->src[0] = a;
  4142. result->src[1] = b;
  4143. return result;
  4144. }
  4145. struct ggml_tensor * ggml_rope(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b,
  4149. int n_dims,
  4150. int mode,
  4151. int n_ctx) {
  4152. return ggml_rope_impl(
  4153. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4154. );
  4155. }
  4156. struct ggml_tensor * ggml_rope_inplace(
  4157. struct ggml_context * ctx,
  4158. struct ggml_tensor * a,
  4159. struct ggml_tensor * b,
  4160. int n_dims,
  4161. int mode,
  4162. int n_ctx) {
  4163. return ggml_rope_impl(
  4164. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4165. );
  4166. }
  4167. struct ggml_tensor * ggml_rope_custom(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. struct ggml_tensor * b,
  4171. int n_dims,
  4172. int mode,
  4173. int n_ctx,
  4174. int n_orig_ctx,
  4175. float freq_base,
  4176. float freq_scale,
  4177. float ext_factor,
  4178. float attn_factor,
  4179. float beta_fast,
  4180. float beta_slow) {
  4181. return ggml_rope_impl(
  4182. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4183. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4184. );
  4185. }
  4186. struct ggml_tensor * ggml_rope_custom_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. int n_dims,
  4191. int mode,
  4192. int n_ctx,
  4193. int n_orig_ctx,
  4194. float freq_base,
  4195. float freq_scale,
  4196. float ext_factor,
  4197. float attn_factor,
  4198. float beta_fast,
  4199. float beta_slow) {
  4200. return ggml_rope_impl(
  4201. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4202. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4203. );
  4204. }
  4205. struct ggml_tensor * ggml_rope_xpos_inplace(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a,
  4208. struct ggml_tensor * b,
  4209. int n_dims,
  4210. float base,
  4211. bool down) {
  4212. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4213. }
  4214. // ggml_rope_back
  4215. struct ggml_tensor * ggml_rope_back(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. int n_dims,
  4220. int mode,
  4221. int n_ctx,
  4222. int n_orig_ctx,
  4223. float freq_base,
  4224. float freq_scale,
  4225. float ext_factor,
  4226. float attn_factor,
  4227. float beta_fast,
  4228. float beta_slow,
  4229. float xpos_base,
  4230. bool xpos_down) {
  4231. GGML_ASSERT(ggml_is_vector(b));
  4232. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4233. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4234. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4235. bool is_node = false;
  4236. if (a->grad) {
  4237. is_node = false; // TODO: implement backward
  4238. }
  4239. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4240. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4241. memcpy(params + 5, &freq_base, sizeof(float));
  4242. memcpy(params + 6, &freq_scale, sizeof(float));
  4243. memcpy(params + 7, &ext_factor, sizeof(float));
  4244. memcpy(params + 8, &attn_factor, sizeof(float));
  4245. memcpy(params + 9, &beta_fast, sizeof(float));
  4246. memcpy(params + 10, &beta_slow, sizeof(float));
  4247. memcpy(params + 11, &xpos_base, sizeof(float));
  4248. memcpy(params + 12, &xpos_down, sizeof(bool));
  4249. ggml_set_op_params(result, params, sizeof(params));
  4250. result->op = GGML_OP_ROPE_BACK;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src[0] = a;
  4253. result->src[1] = b;
  4254. return result;
  4255. }
  4256. // ggml_alibi
  4257. struct ggml_tensor * ggml_alibi(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. int n_past,
  4261. int n_head,
  4262. float bias_max) {
  4263. GGML_ASSERT(n_past >= 0);
  4264. bool is_node = false;
  4265. if (a->grad) {
  4266. GGML_ASSERT(false); // TODO: implement backward
  4267. is_node = true;
  4268. }
  4269. // TODO: when implement backward, fix this:
  4270. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4271. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4272. int32_t op_params[3] = { n_past, n_head };
  4273. memcpy(op_params + 2, &bias_max, sizeof(float));
  4274. ggml_set_op_params(result, op_params, sizeof(op_params));
  4275. result->op = GGML_OP_ALIBI;
  4276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4277. result->src[0] = a;
  4278. return result;
  4279. }
  4280. // ggml_clamp
  4281. struct ggml_tensor * ggml_clamp(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. float min,
  4285. float max) {
  4286. bool is_node = false;
  4287. if (a->grad) {
  4288. GGML_ASSERT(false); // TODO: implement backward
  4289. is_node = true;
  4290. }
  4291. // TODO: when implement backward, fix this:
  4292. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4293. float params[] = { min, max };
  4294. ggml_set_op_params(result, params, sizeof(params));
  4295. result->op = GGML_OP_CLAMP;
  4296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4297. result->src[0] = a;
  4298. return result;
  4299. }
  4300. // ggml_conv_1d
  4301. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4302. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4303. }
  4304. GGML_API struct ggml_tensor * ggml_conv_1d(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int s0,
  4309. int p0,
  4310. int d0) {
  4311. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4312. struct ggml_tensor * result =
  4313. ggml_mul_mat(ctx,
  4314. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4315. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4316. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4317. return result;
  4318. }
  4319. // ggml_conv_1d_ph
  4320. struct ggml_tensor* ggml_conv_1d_ph(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. struct ggml_tensor * b,
  4324. int s,
  4325. int d) {
  4326. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4327. }
  4328. // ggml_conv_transpose_1d
  4329. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4330. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4331. }
  4332. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a,
  4335. struct ggml_tensor * b,
  4336. int s0,
  4337. int p0,
  4338. int d0) {
  4339. GGML_ASSERT(ggml_is_matrix(b));
  4340. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4341. GGML_ASSERT(a->ne[3] == 1);
  4342. GGML_ASSERT(p0 == 0);
  4343. GGML_ASSERT(d0 == 1);
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. GGML_ASSERT(false); // TODO: implement backward
  4347. is_node = true;
  4348. }
  4349. const int64_t ne[4] = {
  4350. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4351. a->ne[1], b->ne[2], 1,
  4352. };
  4353. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4354. int32_t params[] = { s0, p0, d0 };
  4355. ggml_set_op_params(result, params, sizeof(params));
  4356. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4358. result->src[0] = a;
  4359. result->src[1] = b;
  4360. return result;
  4361. }
  4362. // ggml_conv_2d
  4363. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4364. // a: [OC,IC, KH, KW]
  4365. // b: [N, IC, IH, IW]
  4366. // result: [N, OH, OW, IC*KH*KW]
  4367. struct ggml_tensor * ggml_im2col(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b,
  4371. int s0,
  4372. int s1,
  4373. int p0,
  4374. int p1,
  4375. int d0,
  4376. int d1,
  4377. bool is_2D) {
  4378. if(is_2D) {
  4379. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4380. } else {
  4381. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4382. }
  4383. bool is_node = false;
  4384. if (a->grad || b->grad) {
  4385. GGML_ASSERT(false); // TODO: implement backward
  4386. is_node = true;
  4387. }
  4388. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4389. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4390. const int64_t ne[4] = {
  4391. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4392. OW,
  4393. is_2D ? OH : b->ne[2],
  4394. is_2D ? b->ne[3] : 1,
  4395. };
  4396. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4397. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4398. ggml_set_op_params(result, params, sizeof(params));
  4399. result->op = GGML_OP_IM2COL;
  4400. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4401. result->src[0] = a;
  4402. result->src[1] = b;
  4403. return result;
  4404. }
  4405. // a: [OC,IC, KH, KW]
  4406. // b: [N, IC, IH, IW]
  4407. // result: [N, OC, OH, OW]
  4408. struct ggml_tensor * ggml_conv_2d(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. struct ggml_tensor * b,
  4412. int s0,
  4413. int s1,
  4414. int p0,
  4415. int p1,
  4416. int d0,
  4417. int d1) {
  4418. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4419. struct ggml_tensor * result =
  4420. ggml_mul_mat(ctx,
  4421. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4422. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4423. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4424. return result;
  4425. }
  4426. // ggml_conv_2d_sk_p0
  4427. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. struct ggml_tensor * b) {
  4431. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4432. }
  4433. // ggml_conv_2d_s1_ph
  4434. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. struct ggml_tensor * b) {
  4438. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4439. }
  4440. // ggml_conv_transpose_2d_p0
  4441. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4442. return (ins - 1) * s - 2 * p + ks;
  4443. }
  4444. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a,
  4447. struct ggml_tensor * b,
  4448. int stride) {
  4449. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4450. bool is_node = false;
  4451. if (a->grad || b->grad) {
  4452. GGML_ASSERT(false); // TODO: implement backward
  4453. is_node = true;
  4454. }
  4455. const int64_t ne[4] = {
  4456. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4457. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4458. a->ne[2], b->ne[3],
  4459. };
  4460. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4461. ggml_set_op_params_i32(result, 0, stride);
  4462. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4464. result->src[0] = a;
  4465. result->src[1] = b;
  4466. return result;
  4467. }
  4468. // ggml_pool_*
  4469. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4470. return (ins + 2 * p - ks) / s + 1;
  4471. }
  4472. // ggml_pool_1d
  4473. struct ggml_tensor * ggml_pool_1d(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. enum ggml_op_pool op,
  4477. int k0,
  4478. int s0,
  4479. int p0) {
  4480. bool is_node = false;
  4481. if (a->grad) {
  4482. GGML_ASSERT(false); // TODO: implement backward
  4483. is_node = true;
  4484. }
  4485. const int64_t ne[2] = {
  4486. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4487. a->ne[1],
  4488. };
  4489. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4490. int32_t params[] = { op, k0, s0, p0 };
  4491. ggml_set_op_params(result, params, sizeof(params));
  4492. result->op = GGML_OP_POOL_1D;
  4493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4494. result->src[0] = a;
  4495. return result;
  4496. }
  4497. // ggml_pool_2d
  4498. struct ggml_tensor * ggml_pool_2d(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. enum ggml_op_pool op,
  4502. int k0,
  4503. int k1,
  4504. int s0,
  4505. int s1,
  4506. float p0,
  4507. float p1) {
  4508. bool is_node = false;
  4509. if (a->grad) {
  4510. GGML_ASSERT(false); // TODO: implement backward
  4511. is_node = true;
  4512. }
  4513. const int64_t ne[3] = {
  4514. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4515. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4516. a->ne[2],
  4517. };
  4518. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4519. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4520. ggml_set_op_params(result, params, sizeof(params));
  4521. result->op = GGML_OP_POOL_2D;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src[0] = a;
  4524. return result;
  4525. }
  4526. // ggml_upscale
  4527. static struct ggml_tensor * ggml_upscale_impl(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. int scale_factor) {
  4531. bool is_node = false;
  4532. if (a->grad) {
  4533. GGML_ASSERT(false); // TODO: implement backward
  4534. is_node = true;
  4535. }
  4536. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4537. a->ne[0] * scale_factor,
  4538. a->ne[1] * scale_factor,
  4539. a->ne[2], a->ne[3]);
  4540. result->op = GGML_OP_UPSCALE;
  4541. result->op_params[0] = scale_factor;
  4542. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4543. result->src[0] = a;
  4544. return result;
  4545. }
  4546. struct ggml_tensor * ggml_pad(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. int p0, int p1, int p2, int p3) {
  4550. bool is_node = false;
  4551. if (a->grad) {
  4552. GGML_ASSERT(false); // TODO: implement backward
  4553. is_node = true;
  4554. }
  4555. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4556. a->ne[0] + p0,
  4557. a->ne[1] + p1,
  4558. a->ne[2] + p2,
  4559. a->ne[3] + p3);
  4560. result->op = GGML_OP_PAD;
  4561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4562. result->src[0] = a;
  4563. return result;
  4564. }
  4565. struct ggml_tensor * ggml_upscale(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. int scale_factor) {
  4569. return ggml_upscale_impl(ctx, a, scale_factor);
  4570. }
  4571. // ggml_argsort
  4572. struct ggml_tensor * ggml_argsort(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a,
  4575. enum ggml_sort_order order) {
  4576. bool is_node = false;
  4577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4578. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4579. result->op = GGML_OP_ARGSORT;
  4580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4581. result->src[0] = a;
  4582. return result;
  4583. }
  4584. // ggml_top_k
  4585. struct ggml_tensor * ggml_top_k(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. int k) {
  4589. GGML_ASSERT(a->ne[0] >= k);
  4590. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4591. result = ggml_view_4d(ctx, result,
  4592. k, result->ne[1], result->ne[2], result->ne[3],
  4593. result->nb[1], result->nb[2], result->nb[3],
  4594. 0);
  4595. return result;
  4596. }
  4597. // ggml_flash_attn
  4598. struct ggml_tensor * ggml_flash_attn(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * q,
  4601. struct ggml_tensor * k,
  4602. struct ggml_tensor * v,
  4603. bool masked) {
  4604. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4605. // TODO: check if vT can be multiplied by (k*qT)
  4606. bool is_node = false;
  4607. if (q->grad || k->grad || v->grad) {
  4608. is_node = true;
  4609. }
  4610. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4611. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4612. int32_t t = masked ? 1 : 0;
  4613. ggml_set_op_params(result, &t, sizeof(t));
  4614. result->op = GGML_OP_FLASH_ATTN;
  4615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4616. result->src[0] = q;
  4617. result->src[1] = k;
  4618. result->src[2] = v;
  4619. return result;
  4620. }
  4621. // ggml_flash_ff
  4622. struct ggml_tensor * ggml_flash_ff(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. struct ggml_tensor * b0,
  4626. struct ggml_tensor * b1,
  4627. struct ggml_tensor * c0,
  4628. struct ggml_tensor * c1) {
  4629. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4630. // TODO: more checks
  4631. bool is_node = false;
  4632. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4633. is_node = true;
  4634. }
  4635. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4636. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4637. result->op = GGML_OP_FLASH_FF;
  4638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4639. result->src[0] = a;
  4640. result->src[1] = b0;
  4641. result->src[2] = b1;
  4642. result->src[3] = c0;
  4643. result->src[4] = c1;
  4644. return result;
  4645. }
  4646. // ggml_flash_attn_back
  4647. struct ggml_tensor * ggml_flash_attn_back(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * q,
  4650. struct ggml_tensor * k,
  4651. struct ggml_tensor * v,
  4652. struct ggml_tensor * d,
  4653. bool masked) {
  4654. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4655. // TODO: check if vT can be multiplied by (k*qT)
  4656. // d shape [D,N,ne2,ne3]
  4657. // q shape [D,N,ne2,ne3]
  4658. // k shape [D,M,kvne2,ne3]
  4659. // v shape [M,D,kvne2,ne3]
  4660. const int64_t D = q->ne[0];
  4661. const int64_t N = q->ne[1];
  4662. const int64_t M = k->ne[1];
  4663. const int64_t ne2 = q->ne[2];
  4664. const int64_t ne3 = q->ne[3];
  4665. const int64_t kvne2 = k->ne[2];
  4666. GGML_ASSERT(k->ne[0] == D);
  4667. GGML_ASSERT(v->ne[0] == M);
  4668. GGML_ASSERT(v->ne[1] == D);
  4669. GGML_ASSERT(d->ne[0] == D);
  4670. GGML_ASSERT(d->ne[1] == N);
  4671. GGML_ASSERT(k->ne[2] == kvne2);
  4672. GGML_ASSERT(k->ne[3] == ne3);
  4673. GGML_ASSERT(v->ne[2] == kvne2);
  4674. GGML_ASSERT(v->ne[3] == ne3);
  4675. GGML_ASSERT(d->ne[2] == ne2);
  4676. GGML_ASSERT(d->ne[3] == ne3);
  4677. GGML_ASSERT(ne2 % kvne2 == 0);
  4678. bool is_node = false;
  4679. if (q->grad || k->grad || v->grad) {
  4680. // when using this operation (in backwards pass) these grads are set.
  4681. // we don't want to create (big) grad of our result, so is_node is false.
  4682. is_node = false;
  4683. }
  4684. // store gradients of q, k and v as continuous tensors concatenated in result.
  4685. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4686. const int64_t elem_q = ggml_nelements(q);
  4687. const int64_t elem_k = ggml_nelements(k);
  4688. const int64_t elem_v = ggml_nelements(v);
  4689. enum ggml_type result_type = GGML_TYPE_F32;
  4690. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4691. const size_t tsize = ggml_type_size(result_type);
  4692. const size_t offs_q = 0;
  4693. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4694. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4695. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4696. const size_t nelements = (end + tsize - 1)/tsize;
  4697. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4698. int32_t masked_i = masked ? 1 : 0;
  4699. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4700. result->op = GGML_OP_FLASH_ATTN_BACK;
  4701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4702. result->src[0] = q;
  4703. result->src[1] = k;
  4704. result->src[2] = v;
  4705. result->src[3] = d;
  4706. return result;
  4707. }
  4708. // ggml_win_part
  4709. struct ggml_tensor * ggml_win_part(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. int w) {
  4713. GGML_ASSERT(a->ne[3] == 1);
  4714. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4715. bool is_node = false;
  4716. if (a->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. // padding
  4721. const int px = (w - a->ne[1]%w)%w;
  4722. const int py = (w - a->ne[2]%w)%w;
  4723. const int npx = (px + a->ne[1])/w;
  4724. const int npy = (py + a->ne[2])/w;
  4725. const int np = npx*npy;
  4726. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4727. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4728. int32_t params[] = { npx, npy, w };
  4729. ggml_set_op_params(result, params, sizeof(params));
  4730. result->op = GGML_OP_WIN_PART;
  4731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4732. result->src[0] = a;
  4733. return result;
  4734. }
  4735. // ggml_win_unpart
  4736. struct ggml_tensor * ggml_win_unpart(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. int w0,
  4740. int h0,
  4741. int w) {
  4742. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4743. bool is_node = false;
  4744. if (a->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4749. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4750. int32_t params[] = { w };
  4751. ggml_set_op_params(result, params, sizeof(params));
  4752. result->op = GGML_OP_WIN_UNPART;
  4753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4754. result->src[0] = a;
  4755. return result;
  4756. }
  4757. // ggml_get_rel_pos
  4758. struct ggml_tensor * ggml_get_rel_pos(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a,
  4761. int qh,
  4762. int kh) {
  4763. GGML_ASSERT(qh == kh);
  4764. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4765. bool is_node = false;
  4766. if (a->grad) {
  4767. GGML_ASSERT(false); // TODO: implement backward
  4768. is_node = true;
  4769. }
  4770. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4772. result->op = GGML_OP_GET_REL_POS;
  4773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4774. result->src[0] = a;
  4775. return result;
  4776. }
  4777. // ggml_add_rel_pos
  4778. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * pw,
  4782. struct ggml_tensor * ph,
  4783. bool inplace) {
  4784. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4785. GGML_ASSERT(ggml_is_contiguous(a));
  4786. GGML_ASSERT(ggml_is_contiguous(pw));
  4787. GGML_ASSERT(ggml_is_contiguous(ph));
  4788. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4789. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4790. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4791. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4792. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4793. bool is_node = false;
  4794. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4795. is_node = true;
  4796. }
  4797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4798. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4799. result->op = GGML_OP_ADD_REL_POS;
  4800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4801. result->src[0] = a;
  4802. result->src[1] = pw;
  4803. result->src[2] = ph;
  4804. return result;
  4805. }
  4806. struct ggml_tensor * ggml_add_rel_pos(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. struct ggml_tensor * pw,
  4810. struct ggml_tensor * ph) {
  4811. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4812. }
  4813. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. struct ggml_tensor * pw,
  4817. struct ggml_tensor * ph) {
  4818. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4819. }
  4820. // gmml_unary
  4821. static struct ggml_tensor * ggml_unary_impl(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. enum ggml_unary_op op,
  4825. bool inplace) {
  4826. bool is_node = false;
  4827. if (!inplace && (a->grad)) {
  4828. is_node = true;
  4829. }
  4830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4831. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4832. result->op = GGML_OP_UNARY;
  4833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4834. result->src[0] = a;
  4835. return result;
  4836. }
  4837. struct ggml_tensor * ggml_unary(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. enum ggml_unary_op op) {
  4841. return ggml_unary_impl(ctx, a, op, false);
  4842. }
  4843. struct ggml_tensor * ggml_unary_inplace(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * a,
  4846. enum ggml_unary_op op) {
  4847. return ggml_unary_impl(ctx, a, op, true);
  4848. }
  4849. // ggml_map_unary
  4850. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4851. struct ggml_context * ctx,
  4852. struct ggml_tensor * a,
  4853. const ggml_unary_op_f32_t fun,
  4854. bool inplace) {
  4855. bool is_node = false;
  4856. if (!inplace && a->grad) {
  4857. is_node = true;
  4858. }
  4859. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4860. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4861. result->op = GGML_OP_MAP_UNARY;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. return result;
  4865. }
  4866. struct ggml_tensor * ggml_map_unary_f32(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. const ggml_unary_op_f32_t fun) {
  4870. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4871. }
  4872. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. const ggml_unary_op_f32_t fun) {
  4876. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4877. }
  4878. // ggml_map_binary
  4879. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. struct ggml_tensor * b,
  4883. const ggml_binary_op_f32_t fun,
  4884. bool inplace) {
  4885. GGML_ASSERT(ggml_are_same_shape(a, b));
  4886. bool is_node = false;
  4887. if (!inplace && (a->grad || b->grad)) {
  4888. is_node = true;
  4889. }
  4890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4891. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4892. result->op = GGML_OP_MAP_BINARY;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src[0] = a;
  4895. result->src[1] = b;
  4896. return result;
  4897. }
  4898. struct ggml_tensor * ggml_map_binary_f32(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. struct ggml_tensor * b,
  4902. const ggml_binary_op_f32_t fun) {
  4903. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4904. }
  4905. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. struct ggml_tensor * b,
  4909. const ggml_binary_op_f32_t fun) {
  4910. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4911. }
  4912. // ggml_map_custom1_f32
  4913. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. const ggml_custom1_op_f32_t fun,
  4917. bool inplace) {
  4918. bool is_node = false;
  4919. if (!inplace && a->grad) {
  4920. is_node = true;
  4921. }
  4922. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4923. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4924. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src[0] = a;
  4927. return result;
  4928. }
  4929. struct ggml_tensor * ggml_map_custom1_f32(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. const ggml_custom1_op_f32_t fun) {
  4933. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4934. }
  4935. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a,
  4938. const ggml_custom1_op_f32_t fun) {
  4939. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4940. }
  4941. // ggml_map_custom2_f32
  4942. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a,
  4945. struct ggml_tensor * b,
  4946. const ggml_custom2_op_f32_t fun,
  4947. bool inplace) {
  4948. bool is_node = false;
  4949. if (!inplace && (a->grad || b->grad)) {
  4950. is_node = true;
  4951. }
  4952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4953. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4954. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4956. result->src[0] = a;
  4957. result->src[1] = b;
  4958. return result;
  4959. }
  4960. struct ggml_tensor * ggml_map_custom2_f32(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. struct ggml_tensor * b,
  4964. const ggml_custom2_op_f32_t fun) {
  4965. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4966. }
  4967. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b,
  4971. const ggml_custom2_op_f32_t fun) {
  4972. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4973. }
  4974. // ggml_map_custom3_f32
  4975. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b,
  4979. struct ggml_tensor * c,
  4980. const ggml_custom3_op_f32_t fun,
  4981. bool inplace) {
  4982. bool is_node = false;
  4983. if (!inplace && (a->grad || b->grad || c->grad)) {
  4984. is_node = true;
  4985. }
  4986. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4987. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4988. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4990. result->src[0] = a;
  4991. result->src[1] = b;
  4992. result->src[2] = c;
  4993. return result;
  4994. }
  4995. struct ggml_tensor * ggml_map_custom3_f32(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b,
  4999. struct ggml_tensor * c,
  5000. const ggml_custom3_op_f32_t fun) {
  5001. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5002. }
  5003. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. struct ggml_tensor * b,
  5007. struct ggml_tensor * c,
  5008. const ggml_custom3_op_f32_t fun) {
  5009. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5010. }
  5011. // ggml_map_custom1
  5012. struct ggml_map_custom1_op_params {
  5013. ggml_custom1_op_t fun;
  5014. int n_tasks;
  5015. void * userdata;
  5016. };
  5017. static struct ggml_tensor * ggml_map_custom1_impl(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. const ggml_custom1_op_t fun,
  5021. int n_tasks,
  5022. void * userdata,
  5023. bool inplace) {
  5024. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5025. bool is_node = false;
  5026. if (!inplace && a->grad) {
  5027. is_node = true;
  5028. }
  5029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5030. struct ggml_map_custom1_op_params params = {
  5031. /*.fun =*/ fun,
  5032. /*.n_tasks =*/ n_tasks,
  5033. /*.userdata =*/ userdata
  5034. };
  5035. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5036. result->op = GGML_OP_MAP_CUSTOM1;
  5037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5038. result->src[0] = a;
  5039. return result;
  5040. }
  5041. struct ggml_tensor * ggml_map_custom1(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. const ggml_custom1_op_t fun,
  5045. int n_tasks,
  5046. void * userdata) {
  5047. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5048. }
  5049. struct ggml_tensor * ggml_map_custom1_inplace(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. const ggml_custom1_op_t fun,
  5053. int n_tasks,
  5054. void * userdata) {
  5055. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5056. }
  5057. // ggml_map_custom2
  5058. struct ggml_map_custom2_op_params {
  5059. ggml_custom2_op_t fun;
  5060. int n_tasks;
  5061. void * userdata;
  5062. };
  5063. static struct ggml_tensor * ggml_map_custom2_impl(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. struct ggml_tensor * b,
  5067. const ggml_custom2_op_t fun,
  5068. int n_tasks,
  5069. void * userdata,
  5070. bool inplace) {
  5071. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5072. bool is_node = false;
  5073. if (!inplace && (a->grad || b->grad)) {
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. struct ggml_map_custom2_op_params params = {
  5078. /*.fun =*/ fun,
  5079. /*.n_tasks =*/ n_tasks,
  5080. /*.userdata =*/ userdata
  5081. };
  5082. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5083. result->op = GGML_OP_MAP_CUSTOM2;
  5084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5085. result->src[0] = a;
  5086. result->src[1] = b;
  5087. return result;
  5088. }
  5089. struct ggml_tensor * ggml_map_custom2(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. struct ggml_tensor * b,
  5093. const ggml_custom2_op_t fun,
  5094. int n_tasks,
  5095. void * userdata) {
  5096. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5097. }
  5098. struct ggml_tensor * ggml_map_custom2_inplace(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. struct ggml_tensor * b,
  5102. const ggml_custom2_op_t fun,
  5103. int n_tasks,
  5104. void * userdata) {
  5105. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5106. }
  5107. // ggml_map_custom3
  5108. struct ggml_map_custom3_op_params {
  5109. ggml_custom3_op_t fun;
  5110. int n_tasks;
  5111. void * userdata;
  5112. };
  5113. static struct ggml_tensor * ggml_map_custom3_impl(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. struct ggml_tensor * b,
  5117. struct ggml_tensor * c,
  5118. const ggml_custom3_op_t fun,
  5119. int n_tasks,
  5120. void * userdata,
  5121. bool inplace) {
  5122. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5123. bool is_node = false;
  5124. if (!inplace && (a->grad || b->grad || c->grad)) {
  5125. is_node = true;
  5126. }
  5127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5128. struct ggml_map_custom3_op_params params = {
  5129. /*.fun =*/ fun,
  5130. /*.n_tasks =*/ n_tasks,
  5131. /*.userdata =*/ userdata
  5132. };
  5133. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5134. result->op = GGML_OP_MAP_CUSTOM3;
  5135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5136. result->src[0] = a;
  5137. result->src[1] = b;
  5138. result->src[2] = c;
  5139. return result;
  5140. }
  5141. struct ggml_tensor * ggml_map_custom3(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a,
  5144. struct ggml_tensor * b,
  5145. struct ggml_tensor * c,
  5146. const ggml_custom3_op_t fun,
  5147. int n_tasks,
  5148. void * userdata) {
  5149. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5150. }
  5151. struct ggml_tensor * ggml_map_custom3_inplace(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b,
  5155. struct ggml_tensor * c,
  5156. const ggml_custom3_op_t fun,
  5157. int n_tasks,
  5158. void * userdata) {
  5159. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5160. }
  5161. // ggml_cross_entropy_loss
  5162. struct ggml_tensor * ggml_cross_entropy_loss(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. struct ggml_tensor * b) {
  5166. GGML_ASSERT(ggml_are_same_shape(a, b));
  5167. bool is_node = false;
  5168. if (a->grad || b->grad) {
  5169. is_node = true;
  5170. }
  5171. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5172. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5174. result->src[0] = a;
  5175. result->src[1] = b;
  5176. return result;
  5177. }
  5178. // ggml_cross_entropy_loss_back
  5179. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. struct ggml_tensor * b,
  5183. struct ggml_tensor * c) {
  5184. GGML_ASSERT(ggml_are_same_shape(a, b));
  5185. GGML_ASSERT(ggml_is_scalar(c));
  5186. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5187. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5188. result->grad = NULL;
  5189. result->src[0] = a;
  5190. result->src[1] = b;
  5191. result->src[2] = c;
  5192. return result;
  5193. }
  5194. ////////////////////////////////////////////////////////////////////////////////
  5195. void ggml_set_param(
  5196. struct ggml_context * ctx,
  5197. struct ggml_tensor * tensor) {
  5198. tensor->is_param = true;
  5199. GGML_ASSERT(tensor->grad == NULL);
  5200. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5201. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5202. }
  5203. // ggml_compute_forward_dup
  5204. static void ggml_compute_forward_dup_same_cont(
  5205. const struct ggml_compute_params * params,
  5206. const struct ggml_tensor * src0,
  5207. struct ggml_tensor * dst) {
  5208. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5209. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5210. GGML_ASSERT(src0->type == dst->type);
  5211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5212. return;
  5213. }
  5214. const size_t nb00 = src0->nb[0];
  5215. const size_t nb0 = dst->nb[0];
  5216. const int ith = params->ith; // thread index
  5217. const int nth = params->nth; // number of threads
  5218. // parallelize by elements
  5219. const int ne = ggml_nelements(dst);
  5220. const int dr = (ne + nth - 1) / nth;
  5221. const int ie0 = dr * ith;
  5222. const int ie1 = MIN(ie0 + dr, ne);
  5223. if (ie0 < ie1) {
  5224. memcpy(
  5225. ((char *) dst->data + ie0*nb0),
  5226. ((char *) src0->data + ie0*nb00),
  5227. (ie1 - ie0) * ggml_type_size(src0->type));
  5228. }
  5229. }
  5230. static void ggml_compute_forward_dup_f16(
  5231. const struct ggml_compute_params * params,
  5232. const struct ggml_tensor * src0,
  5233. struct ggml_tensor * dst) {
  5234. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5236. return;
  5237. }
  5238. GGML_TENSOR_UNARY_OP_LOCALS
  5239. const int ith = params->ith; // thread index
  5240. const int nth = params->nth; // number of threads
  5241. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5242. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5243. return;
  5244. }
  5245. // parallelize by rows
  5246. const int nr = ne01;
  5247. // number of rows per thread
  5248. const int dr = (nr + nth - 1) / nth;
  5249. // row range for this thread
  5250. const int ir0 = dr * ith;
  5251. const int ir1 = MIN(ir0 + dr, nr);
  5252. if (src0->type == dst->type &&
  5253. ne00 == ne0 &&
  5254. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5255. // copy by rows
  5256. const size_t rs = ne00*nb00;
  5257. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5258. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5259. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5260. memcpy(
  5261. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5262. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5263. rs);
  5264. }
  5265. }
  5266. }
  5267. return;
  5268. }
  5269. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5270. if (ggml_is_contiguous(dst)) {
  5271. if (nb00 == sizeof(ggml_fp16_t)) {
  5272. if (dst->type == GGML_TYPE_F16) {
  5273. size_t id = 0;
  5274. const size_t rs = ne00 * nb00;
  5275. char * dst_ptr = (char *) dst->data;
  5276. for (int i03 = 0; i03 < ne03; i03++) {
  5277. for (int i02 = 0; i02 < ne02; i02++) {
  5278. id += rs * ir0;
  5279. for (int i01 = ir0; i01 < ir1; i01++) {
  5280. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5281. memcpy(dst_ptr + id, src0_ptr, rs);
  5282. id += rs;
  5283. }
  5284. id += rs * (ne01 - ir1);
  5285. }
  5286. }
  5287. } else if (dst->type == GGML_TYPE_F32) {
  5288. size_t id = 0;
  5289. float * dst_ptr = (float *) dst->data;
  5290. for (int i03 = 0; i03 < ne03; i03++) {
  5291. for (int i02 = 0; i02 < ne02; i02++) {
  5292. id += ne00 * ir0;
  5293. for (int i01 = ir0; i01 < ir1; i01++) {
  5294. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5295. for (int i00 = 0; i00 < ne00; i00++) {
  5296. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5297. id++;
  5298. }
  5299. }
  5300. id += ne00 * (ne01 - ir1);
  5301. }
  5302. }
  5303. } else if (type_traits[dst->type].from_float) {
  5304. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5305. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5306. size_t id = 0;
  5307. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5308. char * dst_ptr = (char *) dst->data;
  5309. for (int i03 = 0; i03 < ne03; i03++) {
  5310. for (int i02 = 0; i02 < ne02; i02++) {
  5311. id += rs * ir0;
  5312. for (int i01 = ir0; i01 < ir1; i01++) {
  5313. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5314. for (int i00 = 0; i00 < ne00; i00++) {
  5315. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5316. }
  5317. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5318. id += rs;
  5319. }
  5320. id += rs * (ne01 - ir1);
  5321. }
  5322. }
  5323. } else {
  5324. GGML_ASSERT(false); // TODO: implement
  5325. }
  5326. } else {
  5327. //printf("%s: this is not optimal - fix me\n", __func__);
  5328. if (dst->type == GGML_TYPE_F32) {
  5329. size_t id = 0;
  5330. float * dst_ptr = (float *) dst->data;
  5331. for (int i03 = 0; i03 < ne03; i03++) {
  5332. for (int i02 = 0; i02 < ne02; i02++) {
  5333. id += ne00 * ir0;
  5334. for (int i01 = ir0; i01 < ir1; i01++) {
  5335. for (int i00 = 0; i00 < ne00; i00++) {
  5336. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5337. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5338. id++;
  5339. }
  5340. }
  5341. id += ne00 * (ne01 - ir1);
  5342. }
  5343. }
  5344. } else if (dst->type == GGML_TYPE_F16) {
  5345. size_t id = 0;
  5346. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5347. for (int i03 = 0; i03 < ne03; i03++) {
  5348. for (int i02 = 0; i02 < ne02; i02++) {
  5349. id += ne00 * ir0;
  5350. for (int i01 = ir0; i01 < ir1; i01++) {
  5351. for (int i00 = 0; i00 < ne00; i00++) {
  5352. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5353. dst_ptr[id] = *src0_ptr;
  5354. id++;
  5355. }
  5356. }
  5357. id += ne00 * (ne01 - ir1);
  5358. }
  5359. }
  5360. } else {
  5361. GGML_ASSERT(false); // TODO: implement
  5362. }
  5363. }
  5364. return;
  5365. }
  5366. // dst counters
  5367. int64_t i10 = 0;
  5368. int64_t i11 = 0;
  5369. int64_t i12 = 0;
  5370. int64_t i13 = 0;
  5371. if (dst->type == GGML_TYPE_F16) {
  5372. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5373. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5374. i10 += ne00 * ir0;
  5375. while (i10 >= ne0) {
  5376. i10 -= ne0;
  5377. if (++i11 == ne1) {
  5378. i11 = 0;
  5379. if (++i12 == ne2) {
  5380. i12 = 0;
  5381. if (++i13 == ne3) {
  5382. i13 = 0;
  5383. }
  5384. }
  5385. }
  5386. }
  5387. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5388. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5389. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5390. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5391. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5392. if (++i10 == ne00) {
  5393. i10 = 0;
  5394. if (++i11 == ne01) {
  5395. i11 = 0;
  5396. if (++i12 == ne02) {
  5397. i12 = 0;
  5398. if (++i13 == ne03) {
  5399. i13 = 0;
  5400. }
  5401. }
  5402. }
  5403. }
  5404. }
  5405. }
  5406. i10 += ne00 * (ne01 - ir1);
  5407. while (i10 >= ne0) {
  5408. i10 -= ne0;
  5409. if (++i11 == ne1) {
  5410. i11 = 0;
  5411. if (++i12 == ne2) {
  5412. i12 = 0;
  5413. if (++i13 == ne3) {
  5414. i13 = 0;
  5415. }
  5416. }
  5417. }
  5418. }
  5419. }
  5420. }
  5421. } else if (dst->type == GGML_TYPE_F32) {
  5422. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5423. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5424. i10 += ne00 * ir0;
  5425. while (i10 >= ne0) {
  5426. i10 -= ne0;
  5427. if (++i11 == ne1) {
  5428. i11 = 0;
  5429. if (++i12 == ne2) {
  5430. i12 = 0;
  5431. if (++i13 == ne3) {
  5432. i13 = 0;
  5433. }
  5434. }
  5435. }
  5436. }
  5437. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5438. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5439. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5440. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5441. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5442. if (++i10 == ne0) {
  5443. i10 = 0;
  5444. if (++i11 == ne1) {
  5445. i11 = 0;
  5446. if (++i12 == ne2) {
  5447. i12 = 0;
  5448. if (++i13 == ne3) {
  5449. i13 = 0;
  5450. }
  5451. }
  5452. }
  5453. }
  5454. }
  5455. }
  5456. i10 += ne00 * (ne01 - ir1);
  5457. while (i10 >= ne0) {
  5458. i10 -= ne0;
  5459. if (++i11 == ne1) {
  5460. i11 = 0;
  5461. if (++i12 == ne2) {
  5462. i12 = 0;
  5463. if (++i13 == ne3) {
  5464. i13 = 0;
  5465. }
  5466. }
  5467. }
  5468. }
  5469. }
  5470. }
  5471. } else {
  5472. GGML_ASSERT(false); // TODO: implement
  5473. }
  5474. }
  5475. static void ggml_compute_forward_dup_f32(
  5476. const struct ggml_compute_params * params,
  5477. const struct ggml_tensor * src0,
  5478. struct ggml_tensor * dst) {
  5479. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5481. return;
  5482. }
  5483. GGML_TENSOR_UNARY_OP_LOCALS
  5484. const int ith = params->ith; // thread index
  5485. const int nth = params->nth; // number of threads
  5486. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5487. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5488. return;
  5489. }
  5490. // parallelize by rows
  5491. const int nr = ne01;
  5492. // number of rows per thread
  5493. const int dr = (nr + nth - 1) / nth;
  5494. // row range for this thread
  5495. const int ir0 = dr * ith;
  5496. const int ir1 = MIN(ir0 + dr, nr);
  5497. if (src0->type == dst->type &&
  5498. ne00 == ne0 &&
  5499. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5500. // copy by rows
  5501. const size_t rs = ne00*nb00;
  5502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5504. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5505. memcpy(
  5506. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5507. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5508. rs);
  5509. }
  5510. }
  5511. }
  5512. return;
  5513. }
  5514. if (ggml_is_contiguous(dst)) {
  5515. // TODO: simplify
  5516. if (nb00 == sizeof(float)) {
  5517. if (dst->type == GGML_TYPE_F32) {
  5518. size_t id = 0;
  5519. const size_t rs = ne00 * nb00;
  5520. char * dst_ptr = (char *) dst->data;
  5521. for (int i03 = 0; i03 < ne03; i03++) {
  5522. for (int i02 = 0; i02 < ne02; i02++) {
  5523. id += rs * ir0;
  5524. for (int i01 = ir0; i01 < ir1; i01++) {
  5525. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5526. memcpy(dst_ptr + id, src0_ptr, rs);
  5527. id += rs;
  5528. }
  5529. id += rs * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else if (type_traits[dst->type].from_float) {
  5533. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5534. size_t id = 0;
  5535. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5536. char * dst_ptr = (char *) dst->data;
  5537. for (int i03 = 0; i03 < ne03; i03++) {
  5538. for (int i02 = 0; i02 < ne02; i02++) {
  5539. id += rs * ir0;
  5540. for (int i01 = ir0; i01 < ir1; i01++) {
  5541. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5542. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5543. id += rs;
  5544. }
  5545. id += rs * (ne01 - ir1);
  5546. }
  5547. }
  5548. } else {
  5549. GGML_ASSERT(false); // TODO: implement
  5550. }
  5551. } else {
  5552. //printf("%s: this is not optimal - fix me\n", __func__);
  5553. if (dst->type == GGML_TYPE_F32) {
  5554. size_t id = 0;
  5555. float * dst_ptr = (float *) dst->data;
  5556. for (int i03 = 0; i03 < ne03; i03++) {
  5557. for (int i02 = 0; i02 < ne02; i02++) {
  5558. id += ne00 * ir0;
  5559. for (int i01 = ir0; i01 < ir1; i01++) {
  5560. for (int i00 = 0; i00 < ne00; i00++) {
  5561. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5562. dst_ptr[id] = *src0_ptr;
  5563. id++;
  5564. }
  5565. }
  5566. id += ne00 * (ne01 - ir1);
  5567. }
  5568. }
  5569. } else if (dst->type == GGML_TYPE_F16) {
  5570. size_t id = 0;
  5571. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5572. for (int i03 = 0; i03 < ne03; i03++) {
  5573. for (int i02 = 0; i02 < ne02; i02++) {
  5574. id += ne00 * ir0;
  5575. for (int i01 = ir0; i01 < ir1; i01++) {
  5576. for (int i00 = 0; i00 < ne00; i00++) {
  5577. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5578. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5579. id++;
  5580. }
  5581. }
  5582. id += ne00 * (ne01 - ir1);
  5583. }
  5584. }
  5585. } else {
  5586. GGML_ASSERT(false); // TODO: implement
  5587. }
  5588. }
  5589. return;
  5590. }
  5591. // dst counters
  5592. int64_t i10 = 0;
  5593. int64_t i11 = 0;
  5594. int64_t i12 = 0;
  5595. int64_t i13 = 0;
  5596. if (dst->type == GGML_TYPE_F32) {
  5597. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5598. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5599. i10 += ne00 * ir0;
  5600. while (i10 >= ne0) {
  5601. i10 -= ne0;
  5602. if (++i11 == ne1) {
  5603. i11 = 0;
  5604. if (++i12 == ne2) {
  5605. i12 = 0;
  5606. if (++i13 == ne3) {
  5607. i13 = 0;
  5608. }
  5609. }
  5610. }
  5611. }
  5612. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5613. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5614. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5615. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5616. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5617. if (++i10 == ne0) {
  5618. i10 = 0;
  5619. if (++i11 == ne1) {
  5620. i11 = 0;
  5621. if (++i12 == ne2) {
  5622. i12 = 0;
  5623. if (++i13 == ne3) {
  5624. i13 = 0;
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. }
  5631. i10 += ne00 * (ne01 - ir1);
  5632. while (i10 >= ne0) {
  5633. i10 -= ne0;
  5634. if (++i11 == ne1) {
  5635. i11 = 0;
  5636. if (++i12 == ne2) {
  5637. i12 = 0;
  5638. if (++i13 == ne3) {
  5639. i13 = 0;
  5640. }
  5641. }
  5642. }
  5643. }
  5644. }
  5645. }
  5646. } else if (dst->type == GGML_TYPE_F16) {
  5647. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5648. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5649. i10 += ne00 * ir0;
  5650. while (i10 >= ne0) {
  5651. i10 -= ne0;
  5652. if (++i11 == ne1) {
  5653. i11 = 0;
  5654. if (++i12 == ne2) {
  5655. i12 = 0;
  5656. if (++i13 == ne3) {
  5657. i13 = 0;
  5658. }
  5659. }
  5660. }
  5661. }
  5662. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5664. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5665. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5666. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5667. if (++i10 == ne0) {
  5668. i10 = 0;
  5669. if (++i11 == ne1) {
  5670. i11 = 0;
  5671. if (++i12 == ne2) {
  5672. i12 = 0;
  5673. if (++i13 == ne3) {
  5674. i13 = 0;
  5675. }
  5676. }
  5677. }
  5678. }
  5679. }
  5680. }
  5681. i10 += ne00 * (ne01 - ir1);
  5682. while (i10 >= ne0) {
  5683. i10 -= ne0;
  5684. if (++i11 == ne1) {
  5685. i11 = 0;
  5686. if (++i12 == ne2) {
  5687. i12 = 0;
  5688. if (++i13 == ne3) {
  5689. i13 = 0;
  5690. }
  5691. }
  5692. }
  5693. }
  5694. }
  5695. }
  5696. } else {
  5697. GGML_ASSERT(false); // TODO: implement
  5698. }
  5699. }
  5700. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5701. static void ggml_compute_forward_dup_bytes(
  5702. const struct ggml_compute_params * params,
  5703. const struct ggml_tensor * src0,
  5704. struct ggml_tensor * dst) {
  5705. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5706. GGML_ASSERT(src0->type == dst->type);
  5707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5708. return;
  5709. }
  5710. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5711. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5712. return;
  5713. }
  5714. GGML_TENSOR_UNARY_OP_LOCALS;
  5715. const size_t type_size = ggml_type_size(src0->type);
  5716. const int ith = params->ith; // thread index
  5717. const int nth = params->nth; // number of threads
  5718. // parallelize by rows
  5719. const int nr = ne01;
  5720. // number of rows per thread
  5721. const int dr = (nr + nth - 1) / nth;
  5722. // row range for this thread
  5723. const int ir0 = dr * ith;
  5724. const int ir1 = MIN(ir0 + dr, nr);
  5725. if (src0->type == dst->type &&
  5726. ne00 == ne0 &&
  5727. nb00 == type_size && nb0 == type_size) {
  5728. // copy by rows
  5729. const size_t rs = ne00 * type_size;
  5730. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5731. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5732. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5733. memcpy(
  5734. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5735. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5736. rs);
  5737. }
  5738. }
  5739. }
  5740. return;
  5741. }
  5742. if (ggml_is_contiguous(dst)) {
  5743. size_t id = 0;
  5744. char * dst_ptr = (char *) dst->data;
  5745. const size_t rs = ne00 * type_size;
  5746. if (nb00 == type_size) {
  5747. // src0 is contigous on first dimension, copy by rows
  5748. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5749. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5750. id += rs * ir0;
  5751. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5752. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5753. memcpy(dst_ptr + id, src0_ptr, rs);
  5754. id += rs;
  5755. }
  5756. id += rs * (ne01 - ir1);
  5757. }
  5758. }
  5759. } else {
  5760. //printf("%s: this is not optimal - fix me\n", __func__);
  5761. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5762. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5763. id += rs * ir0;
  5764. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5765. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5766. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5767. memcpy(dst_ptr + id, src0_ptr, type_size);
  5768. id += type_size;
  5769. }
  5770. }
  5771. id += rs * (ne01 - ir1);
  5772. }
  5773. }
  5774. }
  5775. return;
  5776. }
  5777. // dst counters
  5778. int64_t i10 = 0;
  5779. int64_t i11 = 0;
  5780. int64_t i12 = 0;
  5781. int64_t i13 = 0;
  5782. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5783. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5784. i10 += ne00 * ir0;
  5785. while (i10 >= ne0) {
  5786. i10 -= ne0;
  5787. if (++i11 == ne1) {
  5788. i11 = 0;
  5789. if (++i12 == ne2) {
  5790. i12 = 0;
  5791. if (++i13 == ne3) {
  5792. i13 = 0;
  5793. }
  5794. }
  5795. }
  5796. }
  5797. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5798. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5799. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5800. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5801. memcpy(dst_ptr, src0_ptr, type_size);
  5802. if (++i10 == ne0) {
  5803. i10 = 0;
  5804. if (++i11 == ne1) {
  5805. i11 = 0;
  5806. if (++i12 == ne2) {
  5807. i12 = 0;
  5808. if (++i13 == ne3) {
  5809. i13 = 0;
  5810. }
  5811. }
  5812. }
  5813. }
  5814. }
  5815. }
  5816. i10 += ne00 * (ne01 - ir1);
  5817. while (i10 >= ne0) {
  5818. i10 -= ne0;
  5819. if (++i11 == ne1) {
  5820. i11 = 0;
  5821. if (++i12 == ne2) {
  5822. i12 = 0;
  5823. if (++i13 == ne3) {
  5824. i13 = 0;
  5825. }
  5826. }
  5827. }
  5828. }
  5829. }
  5830. }
  5831. }
  5832. static void ggml_compute_forward_dup(
  5833. const struct ggml_compute_params * params,
  5834. const struct ggml_tensor * src0,
  5835. struct ggml_tensor * dst) {
  5836. if (src0->type == dst->type) {
  5837. ggml_compute_forward_dup_bytes(params, src0, dst);
  5838. return;
  5839. }
  5840. switch (src0->type) {
  5841. case GGML_TYPE_F16:
  5842. {
  5843. ggml_compute_forward_dup_f16(params, src0, dst);
  5844. } break;
  5845. case GGML_TYPE_F32:
  5846. {
  5847. ggml_compute_forward_dup_f32(params, src0, dst);
  5848. } break;
  5849. default:
  5850. {
  5851. GGML_ASSERT(false);
  5852. } break;
  5853. }
  5854. }
  5855. // ggml_compute_forward_add
  5856. static void ggml_compute_forward_add_f32(
  5857. const struct ggml_compute_params * params,
  5858. const struct ggml_tensor * src0,
  5859. const struct ggml_tensor * src1,
  5860. struct ggml_tensor * dst) {
  5861. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5863. return;
  5864. }
  5865. const int ith = params->ith;
  5866. const int nth = params->nth;
  5867. const int nr = ggml_nrows(src0);
  5868. GGML_TENSOR_BINARY_OP_LOCALS
  5869. GGML_ASSERT( nb0 == sizeof(float));
  5870. GGML_ASSERT(nb00 == sizeof(float));
  5871. // rows per thread
  5872. const int dr = (nr + nth - 1)/nth;
  5873. // row range for this thread
  5874. const int ir0 = dr*ith;
  5875. const int ir1 = MIN(ir0 + dr, nr);
  5876. if (nb10 == sizeof(float)) {
  5877. for (int ir = ir0; ir < ir1; ++ir) {
  5878. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5879. const int64_t i03 = ir/(ne02*ne01);
  5880. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5881. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5882. const int64_t i13 = i03 % ne13;
  5883. const int64_t i12 = i02 % ne12;
  5884. const int64_t i11 = i01 % ne11;
  5885. const int64_t nr0 = ne00 / ne10;
  5886. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5887. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5888. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5889. for (int64_t r = 0; r < nr0; ++r) {
  5890. #ifdef GGML_USE_ACCELERATE
  5891. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5892. #else
  5893. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5894. #endif
  5895. }
  5896. }
  5897. } else {
  5898. // src1 is not contiguous
  5899. for (int ir = ir0; ir < ir1; ++ir) {
  5900. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5901. const int64_t i03 = ir/(ne02*ne01);
  5902. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5903. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5904. const int64_t i13 = i03 % ne13;
  5905. const int64_t i12 = i02 % ne12;
  5906. const int64_t i11 = i01 % ne11;
  5907. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5908. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5909. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5910. const int64_t i10 = i0 % ne10;
  5911. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5912. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5913. }
  5914. }
  5915. }
  5916. }
  5917. static void ggml_compute_forward_add_f16_f32(
  5918. const struct ggml_compute_params * params,
  5919. const struct ggml_tensor * src0,
  5920. const struct ggml_tensor * src1,
  5921. struct ggml_tensor * dst) {
  5922. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5924. return;
  5925. }
  5926. const int ith = params->ith;
  5927. const int nth = params->nth;
  5928. const int nr = ggml_nrows(src0);
  5929. GGML_TENSOR_BINARY_OP_LOCALS
  5930. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5931. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5932. if (dst->type == GGML_TYPE_F32) {
  5933. GGML_ASSERT( nb0 == sizeof(float));
  5934. }
  5935. else {
  5936. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5937. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5938. }
  5939. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5940. // rows per thread
  5941. const int dr = (nr + nth - 1)/nth;
  5942. // row range for this thread
  5943. const int ir0 = dr*ith;
  5944. const int ir1 = MIN(ir0 + dr, nr);
  5945. if (nb10 == sizeof(float)) {
  5946. if (dst->type == GGML_TYPE_F16) {
  5947. for (int ir = ir0; ir < ir1; ++ir) {
  5948. // src0, src1 and dst are same shape => same indices
  5949. const int i3 = ir/(ne2*ne1);
  5950. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5951. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5952. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5953. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5954. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5955. for (int i = 0; i < ne0; i++) {
  5956. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5957. }
  5958. }
  5959. } else {
  5960. for (int ir = ir0; ir < ir1; ++ir) {
  5961. // src0, src1 and dst are same shape => same indices
  5962. const int i3 = ir/(ne2*ne1);
  5963. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5964. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5965. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5966. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5967. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5968. for (int i = 0; i < ne0; i++) {
  5969. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5970. }
  5971. }
  5972. }
  5973. }
  5974. else {
  5975. // src1 is not contiguous
  5976. GGML_ASSERT(false);
  5977. }
  5978. }
  5979. static void ggml_compute_forward_add_f16_f16(
  5980. const struct ggml_compute_params * params,
  5981. const struct ggml_tensor * src0,
  5982. const struct ggml_tensor * src1,
  5983. struct ggml_tensor * dst) {
  5984. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5986. return;
  5987. }
  5988. const int ith = params->ith;
  5989. const int nth = params->nth;
  5990. const int nr = ggml_nrows(src0);
  5991. GGML_TENSOR_BINARY_OP_LOCALS
  5992. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5993. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5994. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5995. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5996. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5997. // rows per thread
  5998. const int dr = (nr + nth - 1)/nth;
  5999. // row range for this thread
  6000. const int ir0 = dr*ith;
  6001. const int ir1 = MIN(ir0 + dr, nr);
  6002. if (nb10 == sizeof(ggml_fp16_t)) {
  6003. for (int ir = ir0; ir < ir1; ++ir) {
  6004. // src0, src1 and dst are same shape => same indices
  6005. const int i3 = ir/(ne2*ne1);
  6006. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6007. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6008. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6009. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6010. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6011. for (int i = 0; i < ne0; i++) {
  6012. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6013. }
  6014. }
  6015. }
  6016. else {
  6017. // src1 is not contiguous
  6018. GGML_ASSERT(false);
  6019. }
  6020. }
  6021. static void ggml_compute_forward_add_q_f32(
  6022. const struct ggml_compute_params * params,
  6023. const struct ggml_tensor * src0,
  6024. const struct ggml_tensor * src1,
  6025. struct ggml_tensor * dst) {
  6026. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6028. return;
  6029. }
  6030. const int nr = ggml_nrows(src0);
  6031. GGML_TENSOR_BINARY_OP_LOCALS
  6032. const int ith = params->ith;
  6033. const int nth = params->nth;
  6034. const enum ggml_type type = src0->type;
  6035. const enum ggml_type dtype = dst->type;
  6036. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6037. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6038. // we don't support permuted src0 or src1
  6039. GGML_ASSERT(nb00 == ggml_type_size(type));
  6040. GGML_ASSERT(nb10 == sizeof(float));
  6041. // dst cannot be transposed or permuted
  6042. GGML_ASSERT(nb0 <= nb1);
  6043. GGML_ASSERT(nb1 <= nb2);
  6044. GGML_ASSERT(nb2 <= nb3);
  6045. GGML_ASSERT(ggml_is_quantized(src0->type));
  6046. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6047. // rows per thread
  6048. const int dr = (nr + nth - 1)/nth;
  6049. // row range for this thread
  6050. const int ir0 = dr*ith;
  6051. const int ir1 = MIN(ir0 + dr, nr);
  6052. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6053. for (int ir = ir0; ir < ir1; ++ir) {
  6054. // src0 indices
  6055. const int i03 = ir/(ne02*ne01);
  6056. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6057. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6058. // src1 and dst are same shape as src0 => same indices
  6059. const int i13 = i03;
  6060. const int i12 = i02;
  6061. const int i11 = i01;
  6062. const int i3 = i03;
  6063. const int i2 = i02;
  6064. const int i1 = i01;
  6065. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6066. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6067. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6068. assert(ne00 % 32 == 0);
  6069. // unquantize row from src0 to temp buffer
  6070. dequantize_row_q(src0_row, wdata, ne00);
  6071. // add src1
  6072. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6073. // quantize row to dst
  6074. if (quantize_row_q != NULL) {
  6075. quantize_row_q(wdata, dst_row, ne00);
  6076. } else {
  6077. memcpy(dst_row, wdata, ne0*nb0);
  6078. }
  6079. }
  6080. }
  6081. static void ggml_compute_forward_add(
  6082. const struct ggml_compute_params * params,
  6083. const struct ggml_tensor * src0,
  6084. const struct ggml_tensor * src1,
  6085. struct ggml_tensor * dst) {
  6086. switch (src0->type) {
  6087. case GGML_TYPE_F32:
  6088. {
  6089. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6090. } break;
  6091. case GGML_TYPE_F16:
  6092. {
  6093. if (src1->type == GGML_TYPE_F16) {
  6094. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6095. }
  6096. else if (src1->type == GGML_TYPE_F32) {
  6097. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6098. }
  6099. else {
  6100. GGML_ASSERT(false);
  6101. }
  6102. } break;
  6103. case GGML_TYPE_Q4_0:
  6104. case GGML_TYPE_Q4_1:
  6105. case GGML_TYPE_Q5_0:
  6106. case GGML_TYPE_Q5_1:
  6107. case GGML_TYPE_Q8_0:
  6108. case GGML_TYPE_Q2_K:
  6109. case GGML_TYPE_Q3_K:
  6110. case GGML_TYPE_Q4_K:
  6111. case GGML_TYPE_Q5_K:
  6112. case GGML_TYPE_Q6_K:
  6113. case GGML_TYPE_IQ2_XXS:
  6114. case GGML_TYPE_IQ2_XS:
  6115. {
  6116. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6117. } break;
  6118. default:
  6119. {
  6120. GGML_ASSERT(false);
  6121. } break;
  6122. }
  6123. }
  6124. // ggml_compute_forward_add1
  6125. static void ggml_compute_forward_add1_f32(
  6126. const struct ggml_compute_params * params,
  6127. const struct ggml_tensor * src0,
  6128. const struct ggml_tensor * src1,
  6129. struct ggml_tensor * dst) {
  6130. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6131. GGML_ASSERT(ggml_is_scalar(src1));
  6132. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6133. return;
  6134. }
  6135. const int ith = params->ith;
  6136. const int nth = params->nth;
  6137. const int nr = ggml_nrows(src0);
  6138. GGML_TENSOR_UNARY_OP_LOCALS
  6139. GGML_ASSERT( nb0 == sizeof(float));
  6140. GGML_ASSERT(nb00 == sizeof(float));
  6141. // rows per thread
  6142. const int dr = (nr + nth - 1)/nth;
  6143. // row range for this thread
  6144. const int ir0 = dr*ith;
  6145. const int ir1 = MIN(ir0 + dr, nr);
  6146. for (int ir = ir0; ir < ir1; ++ir) {
  6147. // src0 and dst are same shape => same indices
  6148. const int i3 = ir/(ne2*ne1);
  6149. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6150. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6151. #ifdef GGML_USE_ACCELERATE
  6152. UNUSED(ggml_vec_add1_f32);
  6153. vDSP_vadd(
  6154. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6155. (float *) ((char *) src1->data), 0,
  6156. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6157. ne0);
  6158. #else
  6159. ggml_vec_add1_f32(ne0,
  6160. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6161. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6162. *(float *) src1->data);
  6163. #endif
  6164. }
  6165. }
  6166. static void ggml_compute_forward_add1_f16_f32(
  6167. const struct ggml_compute_params * params,
  6168. const struct ggml_tensor * src0,
  6169. const struct ggml_tensor * src1,
  6170. struct ggml_tensor * dst) {
  6171. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6172. GGML_ASSERT(ggml_is_scalar(src1));
  6173. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6174. return;
  6175. }
  6176. // scalar to add
  6177. const float v = *(float *) src1->data;
  6178. const int ith = params->ith;
  6179. const int nth = params->nth;
  6180. const int nr = ggml_nrows(src0);
  6181. GGML_TENSOR_UNARY_OP_LOCALS
  6182. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6183. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6184. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6185. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6186. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6187. // rows per thread
  6188. const int dr = (nr + nth - 1)/nth;
  6189. // row range for this thread
  6190. const int ir0 = dr*ith;
  6191. const int ir1 = MIN(ir0 + dr, nr);
  6192. for (int ir = ir0; ir < ir1; ++ir) {
  6193. // src0 and dst are same shape => same indices
  6194. const int i3 = ir/(ne2*ne1);
  6195. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6196. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6197. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6198. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6199. for (int i = 0; i < ne0; i++) {
  6200. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6201. }
  6202. }
  6203. }
  6204. static void ggml_compute_forward_add1_f16_f16(
  6205. const struct ggml_compute_params * params,
  6206. const struct ggml_tensor * src0,
  6207. const struct ggml_tensor * src1,
  6208. struct ggml_tensor * dst) {
  6209. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6210. GGML_ASSERT(ggml_is_scalar(src1));
  6211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6212. return;
  6213. }
  6214. // scalar to add
  6215. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6216. const int ith = params->ith;
  6217. const int nth = params->nth;
  6218. const int nr = ggml_nrows(src0);
  6219. GGML_TENSOR_UNARY_OP_LOCALS
  6220. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6221. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6222. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6223. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6224. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6225. // rows per thread
  6226. const int dr = (nr + nth - 1)/nth;
  6227. // row range for this thread
  6228. const int ir0 = dr*ith;
  6229. const int ir1 = MIN(ir0 + dr, nr);
  6230. for (int ir = ir0; ir < ir1; ++ir) {
  6231. // src0 and dst are same shape => same indices
  6232. const int i3 = ir/(ne2*ne1);
  6233. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6234. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6235. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6236. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6237. for (int i = 0; i < ne0; i++) {
  6238. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6239. }
  6240. }
  6241. }
  6242. static void ggml_compute_forward_add1_q_f32(
  6243. const struct ggml_compute_params * params,
  6244. const struct ggml_tensor * src0,
  6245. const struct ggml_tensor * src1,
  6246. struct ggml_tensor * dst) {
  6247. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6248. GGML_ASSERT(ggml_is_scalar(src1));
  6249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6250. return;
  6251. }
  6252. // scalar to add
  6253. const float v = *(float *) src1->data;
  6254. const int ith = params->ith;
  6255. const int nth = params->nth;
  6256. const int nr = ggml_nrows(src0);
  6257. GGML_TENSOR_UNARY_OP_LOCALS
  6258. const enum ggml_type type = src0->type;
  6259. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6260. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6261. // we don't support permuted src0
  6262. GGML_ASSERT(nb00 == ggml_type_size(type));
  6263. // dst cannot be transposed or permuted
  6264. GGML_ASSERT(nb0 <= nb1);
  6265. GGML_ASSERT(nb1 <= nb2);
  6266. GGML_ASSERT(nb2 <= nb3);
  6267. GGML_ASSERT(ggml_is_quantized(src0->type));
  6268. GGML_ASSERT(dst->type == src0->type);
  6269. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6270. // rows per thread
  6271. const int dr = (nr + nth - 1)/nth;
  6272. // row range for this thread
  6273. const int ir0 = dr*ith;
  6274. const int ir1 = MIN(ir0 + dr, nr);
  6275. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6276. for (int ir = ir0; ir < ir1; ++ir) {
  6277. // src0 and dst are same shape => same indices
  6278. const int i3 = ir/(ne2*ne1);
  6279. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6280. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6281. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6282. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6283. assert(ne0 % 32 == 0);
  6284. // unquantize row from src0 to temp buffer
  6285. dequantize_row_q(src0_row, wdata, ne0);
  6286. // add src1
  6287. ggml_vec_acc1_f32(ne0, wdata, v);
  6288. // quantize row to dst
  6289. quantize_row_q(wdata, dst_row, ne0);
  6290. }
  6291. }
  6292. static void ggml_compute_forward_add1(
  6293. const struct ggml_compute_params * params,
  6294. const struct ggml_tensor * src0,
  6295. const struct ggml_tensor * src1,
  6296. struct ggml_tensor * dst) {
  6297. switch (src0->type) {
  6298. case GGML_TYPE_F32:
  6299. {
  6300. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6301. } break;
  6302. case GGML_TYPE_F16:
  6303. {
  6304. if (src1->type == GGML_TYPE_F16) {
  6305. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6306. }
  6307. else if (src1->type == GGML_TYPE_F32) {
  6308. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6309. }
  6310. else {
  6311. GGML_ASSERT(false);
  6312. }
  6313. } break;
  6314. case GGML_TYPE_Q4_0:
  6315. case GGML_TYPE_Q4_1:
  6316. case GGML_TYPE_Q5_0:
  6317. case GGML_TYPE_Q5_1:
  6318. case GGML_TYPE_Q8_0:
  6319. case GGML_TYPE_Q8_1:
  6320. case GGML_TYPE_Q2_K:
  6321. case GGML_TYPE_Q3_K:
  6322. case GGML_TYPE_Q4_K:
  6323. case GGML_TYPE_Q5_K:
  6324. case GGML_TYPE_Q6_K:
  6325. case GGML_TYPE_IQ2_XXS:
  6326. case GGML_TYPE_IQ2_XS:
  6327. {
  6328. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6329. } break;
  6330. default:
  6331. {
  6332. GGML_ASSERT(false);
  6333. } break;
  6334. }
  6335. }
  6336. // ggml_compute_forward_acc
  6337. static void ggml_compute_forward_acc_f32(
  6338. const struct ggml_compute_params * params,
  6339. const struct ggml_tensor * src0,
  6340. const struct ggml_tensor * src1,
  6341. struct ggml_tensor * dst) {
  6342. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6343. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6344. // view src0 and dst with these strides and data offset inbytes during acc
  6345. // nb0 is implicitly element_size because src0 and dst are contiguous
  6346. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6347. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6348. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6349. size_t offset = ((int32_t *) dst->op_params)[3];
  6350. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6351. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6352. // memcpy needs to be synchronized across threads to avoid race conditions.
  6353. // => do it in INIT phase
  6354. memcpy(
  6355. ((char *) dst->data),
  6356. ((char *) src0->data),
  6357. ggml_nbytes(dst));
  6358. }
  6359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6360. return;
  6361. }
  6362. const int ith = params->ith;
  6363. const int nth = params->nth;
  6364. const int nr = ggml_nrows(src1);
  6365. const int nc = src1->ne[0];
  6366. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6367. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6368. // src0 and dst as viewed during acc
  6369. const size_t nb0 = ggml_element_size(src0);
  6370. const size_t nb00 = nb0;
  6371. const size_t nb01 = nb1;
  6372. const size_t nb02 = nb2;
  6373. const size_t nb03 = nb3;
  6374. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6375. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6376. GGML_ASSERT(nb10 == sizeof(float));
  6377. // rows per thread
  6378. const int dr = (nr + nth - 1)/nth;
  6379. // row range for this thread
  6380. const int ir0 = dr*ith;
  6381. const int ir1 = MIN(ir0 + dr, nr);
  6382. for (int ir = ir0; ir < ir1; ++ir) {
  6383. // src0 and dst are viewed with shape of src1 and offset
  6384. // => same indices
  6385. const int i3 = ir/(ne12*ne11);
  6386. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6387. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6388. #ifdef GGML_USE_ACCELERATE
  6389. vDSP_vadd(
  6390. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6391. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6392. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6393. #else
  6394. ggml_vec_add_f32(nc,
  6395. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6396. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6397. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6398. #endif
  6399. }
  6400. }
  6401. static void ggml_compute_forward_acc(
  6402. const struct ggml_compute_params * params,
  6403. const struct ggml_tensor * src0,
  6404. const struct ggml_tensor * src1,
  6405. struct ggml_tensor * dst) {
  6406. switch (src0->type) {
  6407. case GGML_TYPE_F32:
  6408. {
  6409. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6410. } break;
  6411. case GGML_TYPE_F16:
  6412. case GGML_TYPE_Q4_0:
  6413. case GGML_TYPE_Q4_1:
  6414. case GGML_TYPE_Q5_0:
  6415. case GGML_TYPE_Q5_1:
  6416. case GGML_TYPE_Q8_0:
  6417. case GGML_TYPE_Q8_1:
  6418. case GGML_TYPE_Q2_K:
  6419. case GGML_TYPE_Q3_K:
  6420. case GGML_TYPE_Q4_K:
  6421. case GGML_TYPE_Q5_K:
  6422. case GGML_TYPE_Q6_K:
  6423. case GGML_TYPE_IQ2_XXS:
  6424. case GGML_TYPE_IQ2_XS:
  6425. default:
  6426. {
  6427. GGML_ASSERT(false);
  6428. } break;
  6429. }
  6430. }
  6431. // ggml_compute_forward_sub
  6432. static void ggml_compute_forward_sub_f32(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. const struct ggml_tensor * src1,
  6436. struct ggml_tensor * dst) {
  6437. assert(params->ith == 0);
  6438. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6440. return;
  6441. }
  6442. const int nr = ggml_nrows(src0);
  6443. GGML_TENSOR_BINARY_OP_LOCALS
  6444. GGML_ASSERT( nb0 == sizeof(float));
  6445. GGML_ASSERT(nb00 == sizeof(float));
  6446. if (nb10 == sizeof(float)) {
  6447. for (int ir = 0; ir < nr; ++ir) {
  6448. // src0, src1 and dst are same shape => same indices
  6449. const int i3 = ir/(ne2*ne1);
  6450. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6451. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6452. #ifdef GGML_USE_ACCELERATE
  6453. vDSP_vsub(
  6454. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6455. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6456. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6457. ne0);
  6458. #else
  6459. ggml_vec_sub_f32(ne0,
  6460. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6461. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6462. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6463. #endif
  6464. // }
  6465. // }
  6466. }
  6467. } else {
  6468. // src1 is not contiguous
  6469. for (int ir = 0; ir < nr; ++ir) {
  6470. // src0, src1 and dst are same shape => same indices
  6471. const int i3 = ir/(ne2*ne1);
  6472. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6473. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6474. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6475. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6476. for (int i0 = 0; i0 < ne0; i0++) {
  6477. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6478. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6479. }
  6480. }
  6481. }
  6482. }
  6483. static void ggml_compute_forward_sub(
  6484. const struct ggml_compute_params * params,
  6485. const struct ggml_tensor * src0,
  6486. const struct ggml_tensor * src1,
  6487. struct ggml_tensor * dst) {
  6488. switch (src0->type) {
  6489. case GGML_TYPE_F32:
  6490. {
  6491. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6492. } break;
  6493. default:
  6494. {
  6495. GGML_ASSERT(false);
  6496. } break;
  6497. }
  6498. }
  6499. // ggml_compute_forward_mul
  6500. static void ggml_compute_forward_mul_f32(
  6501. const struct ggml_compute_params * params,
  6502. const struct ggml_tensor * src0,
  6503. const struct ggml_tensor * src1,
  6504. struct ggml_tensor * dst) {
  6505. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6507. return;
  6508. }
  6509. const int ith = params->ith;
  6510. const int nth = params->nth;
  6511. #ifdef GGML_USE_CLBLAST
  6512. if (src1->backend == GGML_BACKEND_GPU) {
  6513. // TODO: OpenCL kernel support full broadcast
  6514. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6515. if (ith == 0) {
  6516. ggml_cl_mul(src0, src1, dst);
  6517. }
  6518. return;
  6519. }
  6520. #endif
  6521. const int64_t nr = ggml_nrows(src0);
  6522. GGML_TENSOR_BINARY_OP_LOCALS
  6523. GGML_ASSERT( nb0 == sizeof(float));
  6524. GGML_ASSERT(nb00 == sizeof(float));
  6525. if (nb10 == sizeof(float)) {
  6526. for (int64_t ir = ith; ir < nr; ir += nth) {
  6527. // src0 and dst are same shape => same indices
  6528. const int64_t i03 = ir/(ne02*ne01);
  6529. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6530. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6531. const int64_t i13 = i03 % ne13;
  6532. const int64_t i12 = i02 % ne12;
  6533. const int64_t i11 = i01 % ne11;
  6534. const int64_t nr0 = ne00 / ne10;
  6535. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6536. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6537. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6538. for (int64_t r = 0 ; r < nr0; ++r) {
  6539. #ifdef GGML_USE_ACCELERATE
  6540. UNUSED(ggml_vec_mul_f32);
  6541. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6542. #else
  6543. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6544. #endif
  6545. }
  6546. }
  6547. } else {
  6548. // src1 is not contiguous
  6549. for (int64_t ir = ith; ir < nr; ir += nth) {
  6550. // src0 and dst are same shape => same indices
  6551. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6552. const int64_t i03 = ir/(ne02*ne01);
  6553. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6554. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6555. const int64_t i13 = i03 % ne13;
  6556. const int64_t i12 = i02 % ne12;
  6557. const int64_t i11 = i01 % ne11;
  6558. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6559. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6560. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6561. const int64_t i10 = i0 % ne10;
  6562. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6563. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6564. }
  6565. }
  6566. }
  6567. }
  6568. static void ggml_compute_forward_mul(
  6569. const struct ggml_compute_params * params,
  6570. const struct ggml_tensor * src0,
  6571. const struct ggml_tensor * src1,
  6572. struct ggml_tensor * dst) {
  6573. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6574. switch (src0->type) {
  6575. case GGML_TYPE_F32:
  6576. {
  6577. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6578. } break;
  6579. default:
  6580. {
  6581. GGML_ASSERT(false);
  6582. } break;
  6583. }
  6584. }
  6585. // ggml_compute_forward_div
  6586. static void ggml_compute_forward_div_f32(
  6587. const struct ggml_compute_params * params,
  6588. const struct ggml_tensor * src0,
  6589. const struct ggml_tensor * src1,
  6590. struct ggml_tensor * dst) {
  6591. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6593. return;
  6594. }
  6595. const int ith = params->ith;
  6596. const int nth = params->nth;
  6597. const int64_t nr = ggml_nrows(src0);
  6598. GGML_TENSOR_BINARY_OP_LOCALS
  6599. GGML_ASSERT( nb0 == sizeof(float));
  6600. GGML_ASSERT(nb00 == sizeof(float));
  6601. if (nb10 == sizeof(float)) {
  6602. for (int64_t ir = ith; ir < nr; ir += nth) {
  6603. // src0 and dst are same shape => same indices
  6604. const int64_t i03 = ir/(ne02*ne01);
  6605. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6606. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6607. const int64_t i13 = i03 % ne13;
  6608. const int64_t i12 = i02 % ne12;
  6609. const int64_t i11 = i01 % ne11;
  6610. const int64_t nr0 = ne00 / ne10;
  6611. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6612. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6613. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6614. for (int64_t r = 0; r < nr0; ++r) {
  6615. #ifdef GGML_USE_ACCELERATE
  6616. UNUSED(ggml_vec_div_f32);
  6617. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6618. #else
  6619. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6620. #endif
  6621. }
  6622. }
  6623. } else {
  6624. // src1 is not contiguous
  6625. for (int64_t ir = ith; ir < nr; ir += nth) {
  6626. // src0 and dst are same shape => same indices
  6627. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6628. const int64_t i03 = ir/(ne02*ne01);
  6629. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6630. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6631. const int64_t i13 = i03 % ne13;
  6632. const int64_t i12 = i02 % ne12;
  6633. const int64_t i11 = i01 % ne11;
  6634. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6635. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6636. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6637. const int64_t i10 = i0 % ne10;
  6638. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6639. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6640. }
  6641. }
  6642. }
  6643. }
  6644. static void ggml_compute_forward_div(
  6645. const struct ggml_compute_params * params,
  6646. const struct ggml_tensor * src0,
  6647. const struct ggml_tensor * src1,
  6648. struct ggml_tensor * dst) {
  6649. switch (src0->type) {
  6650. case GGML_TYPE_F32:
  6651. {
  6652. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6653. } break;
  6654. default:
  6655. {
  6656. GGML_ASSERT(false);
  6657. } break;
  6658. }
  6659. }
  6660. // ggml_compute_forward_sqr
  6661. static void ggml_compute_forward_sqr_f32(
  6662. const struct ggml_compute_params * params,
  6663. const struct ggml_tensor * src0,
  6664. struct ggml_tensor * dst) {
  6665. assert(params->ith == 0);
  6666. assert(ggml_are_same_shape(src0, dst));
  6667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6668. return;
  6669. }
  6670. const int n = ggml_nrows(src0);
  6671. const int nc = src0->ne[0];
  6672. assert( dst->nb[0] == sizeof(float));
  6673. assert(src0->nb[0] == sizeof(float));
  6674. for (int i = 0; i < n; i++) {
  6675. ggml_vec_sqr_f32(nc,
  6676. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6677. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6678. }
  6679. }
  6680. static void ggml_compute_forward_sqr(
  6681. const struct ggml_compute_params * params,
  6682. const struct ggml_tensor * src0,
  6683. struct ggml_tensor * dst) {
  6684. switch (src0->type) {
  6685. case GGML_TYPE_F32:
  6686. {
  6687. ggml_compute_forward_sqr_f32(params, src0, dst);
  6688. } break;
  6689. default:
  6690. {
  6691. GGML_ASSERT(false);
  6692. } break;
  6693. }
  6694. }
  6695. // ggml_compute_forward_sqrt
  6696. static void ggml_compute_forward_sqrt_f32(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0,
  6699. struct ggml_tensor * dst) {
  6700. assert(params->ith == 0);
  6701. assert(ggml_are_same_shape(src0, dst));
  6702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6703. return;
  6704. }
  6705. const int n = ggml_nrows(src0);
  6706. const int nc = src0->ne[0];
  6707. assert( dst->nb[0] == sizeof(float));
  6708. assert(src0->nb[0] == sizeof(float));
  6709. for (int i = 0; i < n; i++) {
  6710. ggml_vec_sqrt_f32(nc,
  6711. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6712. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6713. }
  6714. }
  6715. static void ggml_compute_forward_sqrt(
  6716. const struct ggml_compute_params * params,
  6717. const struct ggml_tensor * src0,
  6718. struct ggml_tensor * dst) {
  6719. switch (src0->type) {
  6720. case GGML_TYPE_F32:
  6721. {
  6722. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6723. } break;
  6724. default:
  6725. {
  6726. GGML_ASSERT(false);
  6727. } break;
  6728. }
  6729. }
  6730. // ggml_compute_forward_log
  6731. static void ggml_compute_forward_log_f32(
  6732. const struct ggml_compute_params * params,
  6733. const struct ggml_tensor * src0,
  6734. struct ggml_tensor * dst) {
  6735. GGML_ASSERT(params->ith == 0);
  6736. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6738. return;
  6739. }
  6740. const int n = ggml_nrows(src0);
  6741. const int nc = src0->ne[0];
  6742. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6743. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6744. for (int i = 0; i < n; i++) {
  6745. ggml_vec_log_f32(nc,
  6746. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6747. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6748. }
  6749. }
  6750. static void ggml_compute_forward_log(
  6751. const struct ggml_compute_params * params,
  6752. const struct ggml_tensor * src0,
  6753. struct ggml_tensor * dst) {
  6754. switch (src0->type) {
  6755. case GGML_TYPE_F32:
  6756. {
  6757. ggml_compute_forward_log_f32(params, src0, dst);
  6758. } break;
  6759. default:
  6760. {
  6761. GGML_ASSERT(false);
  6762. } break;
  6763. }
  6764. }
  6765. // ggml_compute_forward_sum
  6766. static void ggml_compute_forward_sum_f32(
  6767. const struct ggml_compute_params * params,
  6768. const struct ggml_tensor * src0,
  6769. struct ggml_tensor * dst) {
  6770. assert(params->ith == 0);
  6771. assert(ggml_is_scalar(dst));
  6772. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6773. return;
  6774. }
  6775. assert(ggml_is_scalar(dst));
  6776. assert(src0->nb[0] == sizeof(float));
  6777. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6778. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6779. ggml_float sum = 0;
  6780. ggml_float row_sum = 0;
  6781. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6782. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6783. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6784. ggml_vec_sum_f32_ggf(ne00,
  6785. &row_sum,
  6786. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6787. sum += row_sum;
  6788. }
  6789. }
  6790. }
  6791. ((float *) dst->data)[0] = sum;
  6792. }
  6793. static void ggml_compute_forward_sum_f16(
  6794. const struct ggml_compute_params * params,
  6795. const struct ggml_tensor * src0,
  6796. struct ggml_tensor * dst) {
  6797. assert(params->ith == 0);
  6798. assert(ggml_is_scalar(dst));
  6799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6800. return;
  6801. }
  6802. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6803. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6804. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6805. float sum = 0;
  6806. float row_sum = 0;
  6807. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6809. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6810. ggml_vec_sum_f16_ggf(ne00,
  6811. &row_sum,
  6812. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6813. sum += row_sum;
  6814. }
  6815. }
  6816. }
  6817. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6818. }
  6819. static void ggml_compute_forward_sum(
  6820. const struct ggml_compute_params * params,
  6821. const struct ggml_tensor * src0,
  6822. struct ggml_tensor * dst) {
  6823. switch (src0->type) {
  6824. case GGML_TYPE_F32:
  6825. {
  6826. ggml_compute_forward_sum_f32(params, src0, dst);
  6827. } break;
  6828. case GGML_TYPE_F16:
  6829. {
  6830. ggml_compute_forward_sum_f16(params, src0, dst);
  6831. } break;
  6832. default:
  6833. {
  6834. GGML_ASSERT(false);
  6835. } break;
  6836. }
  6837. }
  6838. // ggml_compute_forward_sum_rows
  6839. static void ggml_compute_forward_sum_rows_f32(
  6840. const struct ggml_compute_params * params,
  6841. const struct ggml_tensor * src0,
  6842. struct ggml_tensor * dst) {
  6843. GGML_ASSERT(params->ith == 0);
  6844. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6845. return;
  6846. }
  6847. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6848. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6849. GGML_TENSOR_UNARY_OP_LOCALS
  6850. GGML_ASSERT(ne0 == 1);
  6851. GGML_ASSERT(ne1 == ne01);
  6852. GGML_ASSERT(ne2 == ne02);
  6853. GGML_ASSERT(ne3 == ne03);
  6854. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6855. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6856. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6857. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6858. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6859. float row_sum = 0;
  6860. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6861. dst_row[0] = row_sum;
  6862. }
  6863. }
  6864. }
  6865. }
  6866. static void ggml_compute_forward_sum_rows(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. struct ggml_tensor * dst) {
  6870. switch (src0->type) {
  6871. case GGML_TYPE_F32:
  6872. {
  6873. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6874. } break;
  6875. default:
  6876. {
  6877. GGML_ASSERT(false);
  6878. } break;
  6879. }
  6880. }
  6881. // ggml_compute_forward_mean
  6882. static void ggml_compute_forward_mean_f32(
  6883. const struct ggml_compute_params * params,
  6884. const struct ggml_tensor * src0,
  6885. struct ggml_tensor * dst) {
  6886. assert(params->ith == 0);
  6887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6888. return;
  6889. }
  6890. assert(src0->nb[0] == sizeof(float));
  6891. GGML_TENSOR_UNARY_OP_LOCALS
  6892. assert(ne0 == 1);
  6893. assert(ne1 == ne01);
  6894. assert(ne2 == ne02);
  6895. assert(ne3 == ne03);
  6896. UNUSED(ne0);
  6897. UNUSED(ne1);
  6898. UNUSED(ne2);
  6899. UNUSED(ne3);
  6900. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6901. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6902. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6903. ggml_vec_sum_f32(ne00,
  6904. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6905. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6906. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6907. }
  6908. }
  6909. }
  6910. }
  6911. static void ggml_compute_forward_mean(
  6912. const struct ggml_compute_params * params,
  6913. const struct ggml_tensor * src0,
  6914. struct ggml_tensor * dst) {
  6915. switch (src0->type) {
  6916. case GGML_TYPE_F32:
  6917. {
  6918. ggml_compute_forward_mean_f32(params, src0, dst);
  6919. } break;
  6920. default:
  6921. {
  6922. GGML_ASSERT(false);
  6923. } break;
  6924. }
  6925. }
  6926. // ggml_compute_forward_argmax
  6927. static void ggml_compute_forward_argmax_f32(
  6928. const struct ggml_compute_params * params,
  6929. const struct ggml_tensor * src0,
  6930. struct ggml_tensor * dst) {
  6931. assert(params->ith == 0);
  6932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6933. return;
  6934. }
  6935. assert(src0->nb[0] == sizeof(float));
  6936. assert(dst->nb[0] == sizeof(float));
  6937. const int64_t ne00 = src0->ne[0];
  6938. const int64_t ne01 = src0->ne[1];
  6939. const size_t nb01 = src0->nb[1];
  6940. const size_t nb0 = dst->nb[0];
  6941. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6942. float * src = (float *) ((char *) src0->data + i1*nb01);
  6943. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6944. int v = 0;
  6945. ggml_vec_argmax_f32(ne00, &v, src);
  6946. dst_[0] = v;
  6947. }
  6948. }
  6949. static void ggml_compute_forward_argmax(
  6950. const struct ggml_compute_params * params,
  6951. const struct ggml_tensor * src0,
  6952. struct ggml_tensor * dst) {
  6953. switch (src0->type) {
  6954. case GGML_TYPE_F32:
  6955. {
  6956. ggml_compute_forward_argmax_f32(params, src0, dst);
  6957. } break;
  6958. default:
  6959. {
  6960. GGML_ASSERT(false);
  6961. } break;
  6962. }
  6963. }
  6964. // ggml_compute_forward_repeat
  6965. static void ggml_compute_forward_repeat_f32(
  6966. const struct ggml_compute_params * params,
  6967. const struct ggml_tensor * src0,
  6968. struct ggml_tensor * dst) {
  6969. GGML_ASSERT(params->ith == 0);
  6970. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6972. return;
  6973. }
  6974. GGML_TENSOR_UNARY_OP_LOCALS
  6975. // guaranteed to be an integer due to the check in ggml_can_repeat
  6976. const int nr0 = (int)(ne0/ne00);
  6977. const int nr1 = (int)(ne1/ne01);
  6978. const int nr2 = (int)(ne2/ne02);
  6979. const int nr3 = (int)(ne3/ne03);
  6980. // TODO: support for transposed / permuted tensors
  6981. GGML_ASSERT(nb0 == sizeof(float));
  6982. GGML_ASSERT(nb00 == sizeof(float));
  6983. // TODO: maybe this is not optimal?
  6984. for (int i3 = 0; i3 < nr3; i3++) {
  6985. for (int k3 = 0; k3 < ne03; k3++) {
  6986. for (int i2 = 0; i2 < nr2; i2++) {
  6987. for (int k2 = 0; k2 < ne02; k2++) {
  6988. for (int i1 = 0; i1 < nr1; i1++) {
  6989. for (int k1 = 0; k1 < ne01; k1++) {
  6990. for (int i0 = 0; i0 < nr0; i0++) {
  6991. ggml_vec_cpy_f32(ne00,
  6992. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6993. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6994. }
  6995. }
  6996. }
  6997. }
  6998. }
  6999. }
  7000. }
  7001. }
  7002. static void ggml_compute_forward_repeat_f16(
  7003. const struct ggml_compute_params * params,
  7004. const struct ggml_tensor * src0,
  7005. struct ggml_tensor * dst) {
  7006. GGML_ASSERT(params->ith == 0);
  7007. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7009. return;
  7010. }
  7011. GGML_TENSOR_UNARY_OP_LOCALS
  7012. // guaranteed to be an integer due to the check in ggml_can_repeat
  7013. const int nr0 = (int)(ne0/ne00);
  7014. const int nr1 = (int)(ne1/ne01);
  7015. const int nr2 = (int)(ne2/ne02);
  7016. const int nr3 = (int)(ne3/ne03);
  7017. // TODO: support for transposed / permuted tensors
  7018. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7019. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7020. // TODO: maybe this is not optimal?
  7021. for (int i3 = 0; i3 < nr3; i3++) {
  7022. for (int k3 = 0; k3 < ne03; k3++) {
  7023. for (int i2 = 0; i2 < nr2; i2++) {
  7024. for (int k2 = 0; k2 < ne02; k2++) {
  7025. for (int i1 = 0; i1 < nr1; i1++) {
  7026. for (int k1 = 0; k1 < ne01; k1++) {
  7027. for (int i0 = 0; i0 < nr0; i0++) {
  7028. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7029. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7030. // ggml_vec_cpy_f16(ne00, y, x)
  7031. for (int i = 0; i < ne00; ++i) {
  7032. y[i] = x[i];
  7033. }
  7034. }
  7035. }
  7036. }
  7037. }
  7038. }
  7039. }
  7040. }
  7041. }
  7042. static void ggml_compute_forward_repeat(
  7043. const struct ggml_compute_params * params,
  7044. const struct ggml_tensor * src0,
  7045. struct ggml_tensor * dst) {
  7046. switch (src0->type) {
  7047. case GGML_TYPE_F16:
  7048. case GGML_TYPE_I16:
  7049. {
  7050. ggml_compute_forward_repeat_f16(params, src0, dst);
  7051. } break;
  7052. case GGML_TYPE_F32:
  7053. case GGML_TYPE_I32:
  7054. {
  7055. ggml_compute_forward_repeat_f32(params, src0, dst);
  7056. } break;
  7057. default:
  7058. {
  7059. GGML_ASSERT(false);
  7060. } break;
  7061. }
  7062. }
  7063. // ggml_compute_forward_repeat_back
  7064. static void ggml_compute_forward_repeat_back_f32(
  7065. const struct ggml_compute_params * params,
  7066. const struct ggml_tensor * src0,
  7067. struct ggml_tensor * dst) {
  7068. GGML_ASSERT(params->ith == 0);
  7069. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7071. return;
  7072. }
  7073. GGML_TENSOR_UNARY_OP_LOCALS
  7074. // guaranteed to be an integer due to the check in ggml_can_repeat
  7075. const int nr0 = (int)(ne00/ne0);
  7076. const int nr1 = (int)(ne01/ne1);
  7077. const int nr2 = (int)(ne02/ne2);
  7078. const int nr3 = (int)(ne03/ne3);
  7079. // TODO: support for transposed / permuted tensors
  7080. GGML_ASSERT(nb0 == sizeof(float));
  7081. GGML_ASSERT(nb00 == sizeof(float));
  7082. if (ggml_is_contiguous(dst)) {
  7083. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7084. } else {
  7085. for (int k3 = 0; k3 < ne3; k3++) {
  7086. for (int k2 = 0; k2 < ne2; k2++) {
  7087. for (int k1 = 0; k1 < ne1; k1++) {
  7088. ggml_vec_set_f32(ne0,
  7089. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7090. 0);
  7091. }
  7092. }
  7093. }
  7094. }
  7095. // TODO: maybe this is not optimal?
  7096. for (int i3 = 0; i3 < nr3; i3++) {
  7097. for (int k3 = 0; k3 < ne3; k3++) {
  7098. for (int i2 = 0; i2 < nr2; i2++) {
  7099. for (int k2 = 0; k2 < ne2; k2++) {
  7100. for (int i1 = 0; i1 < nr1; i1++) {
  7101. for (int k1 = 0; k1 < ne1; k1++) {
  7102. for (int i0 = 0; i0 < nr0; i0++) {
  7103. ggml_vec_acc_f32(ne0,
  7104. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7105. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7106. }
  7107. }
  7108. }
  7109. }
  7110. }
  7111. }
  7112. }
  7113. }
  7114. static void ggml_compute_forward_repeat_back(
  7115. const struct ggml_compute_params * params,
  7116. const struct ggml_tensor * src0,
  7117. struct ggml_tensor * dst) {
  7118. switch (src0->type) {
  7119. case GGML_TYPE_F32:
  7120. {
  7121. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7122. } break;
  7123. default:
  7124. {
  7125. GGML_ASSERT(false);
  7126. } break;
  7127. }
  7128. }
  7129. // ggml_compute_forward_concat
  7130. static void ggml_compute_forward_concat_f32(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. const struct ggml_tensor * src1,
  7134. struct ggml_tensor * dst) {
  7135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7136. return;
  7137. }
  7138. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7139. const int ith = params->ith;
  7140. const int nth = params->nth;
  7141. GGML_TENSOR_BINARY_OP_LOCALS
  7142. // TODO: support for transposed / permuted tensors
  7143. GGML_ASSERT(nb0 == sizeof(float));
  7144. GGML_ASSERT(nb00 == sizeof(float));
  7145. GGML_ASSERT(nb10 == sizeof(float));
  7146. for (int i3 = 0; i3 < ne3; i3++) {
  7147. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7148. if (i2 < ne02) { // src0
  7149. for (int i1 = 0; i1 < ne1; i1++) {
  7150. for (int i0 = 0; i0 < ne0; i0++) {
  7151. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7152. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7153. *y = *x;
  7154. }
  7155. }
  7156. } // src1
  7157. else {
  7158. for (int i1 = 0; i1 < ne1; i1++) {
  7159. for (int i0 = 0; i0 < ne0; i0++) {
  7160. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7161. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7162. *y = *x;
  7163. }
  7164. }
  7165. }
  7166. }
  7167. }
  7168. }
  7169. static void ggml_compute_forward_concat(
  7170. const struct ggml_compute_params* params,
  7171. const struct ggml_tensor* src0,
  7172. const struct ggml_tensor* src1,
  7173. struct ggml_tensor* dst) {
  7174. switch (src0->type) {
  7175. case GGML_TYPE_F32:
  7176. case GGML_TYPE_I32:
  7177. {
  7178. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7179. } break;
  7180. default:
  7181. {
  7182. GGML_ASSERT(false);
  7183. } break;
  7184. }
  7185. }
  7186. // ggml_compute_forward_abs
  7187. static void ggml_compute_forward_abs_f32(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. struct ggml_tensor * dst) {
  7191. assert(params->ith == 0);
  7192. assert(ggml_are_same_shape(src0, dst));
  7193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7194. return;
  7195. }
  7196. const int n = ggml_nrows(src0);
  7197. const int nc = src0->ne[0];
  7198. assert(dst->nb[0] == sizeof(float));
  7199. assert(src0->nb[0] == sizeof(float));
  7200. for (int i = 0; i < n; i++) {
  7201. ggml_vec_abs_f32(nc,
  7202. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7203. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7204. }
  7205. }
  7206. static void ggml_compute_forward_abs(
  7207. const struct ggml_compute_params * params,
  7208. const struct ggml_tensor * src0,
  7209. struct ggml_tensor * dst) {
  7210. switch (src0->type) {
  7211. case GGML_TYPE_F32:
  7212. {
  7213. ggml_compute_forward_abs_f32(params, src0, dst);
  7214. } break;
  7215. default:
  7216. {
  7217. GGML_ASSERT(false);
  7218. } break;
  7219. }
  7220. }
  7221. // ggml_compute_forward_sgn
  7222. static void ggml_compute_forward_sgn_f32(
  7223. const struct ggml_compute_params * params,
  7224. const struct ggml_tensor * src0,
  7225. struct ggml_tensor * dst) {
  7226. assert(params->ith == 0);
  7227. assert(ggml_are_same_shape(src0, dst));
  7228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7229. return;
  7230. }
  7231. const int n = ggml_nrows(src0);
  7232. const int nc = src0->ne[0];
  7233. assert(dst->nb[0] == sizeof(float));
  7234. assert(src0->nb[0] == sizeof(float));
  7235. for (int i = 0; i < n; i++) {
  7236. ggml_vec_sgn_f32(nc,
  7237. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7238. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7239. }
  7240. }
  7241. static void ggml_compute_forward_sgn(
  7242. const struct ggml_compute_params * params,
  7243. const struct ggml_tensor * src0,
  7244. struct ggml_tensor * dst) {
  7245. switch (src0->type) {
  7246. case GGML_TYPE_F32:
  7247. {
  7248. ggml_compute_forward_sgn_f32(params, src0, dst);
  7249. } break;
  7250. default:
  7251. {
  7252. GGML_ASSERT(false);
  7253. } break;
  7254. }
  7255. }
  7256. // ggml_compute_forward_neg
  7257. static void ggml_compute_forward_neg_f32(
  7258. const struct ggml_compute_params * params,
  7259. const struct ggml_tensor * src0,
  7260. struct ggml_tensor * dst) {
  7261. assert(params->ith == 0);
  7262. assert(ggml_are_same_shape(src0, dst));
  7263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7264. return;
  7265. }
  7266. const int n = ggml_nrows(src0);
  7267. const int nc = src0->ne[0];
  7268. assert(dst->nb[0] == sizeof(float));
  7269. assert(src0->nb[0] == sizeof(float));
  7270. for (int i = 0; i < n; i++) {
  7271. ggml_vec_neg_f32(nc,
  7272. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7273. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7274. }
  7275. }
  7276. static void ggml_compute_forward_neg(
  7277. const struct ggml_compute_params * params,
  7278. const struct ggml_tensor * src0,
  7279. struct ggml_tensor * dst) {
  7280. switch (src0->type) {
  7281. case GGML_TYPE_F32:
  7282. {
  7283. ggml_compute_forward_neg_f32(params, src0, dst);
  7284. } break;
  7285. default:
  7286. {
  7287. GGML_ASSERT(false);
  7288. } break;
  7289. }
  7290. }
  7291. // ggml_compute_forward_step
  7292. static void ggml_compute_forward_step_f32(
  7293. const struct ggml_compute_params * params,
  7294. const struct ggml_tensor * src0,
  7295. struct ggml_tensor * dst) {
  7296. assert(params->ith == 0);
  7297. assert(ggml_are_same_shape(src0, dst));
  7298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7299. return;
  7300. }
  7301. const int n = ggml_nrows(src0);
  7302. const int nc = src0->ne[0];
  7303. assert(dst->nb[0] == sizeof(float));
  7304. assert(src0->nb[0] == sizeof(float));
  7305. for (int i = 0; i < n; i++) {
  7306. ggml_vec_step_f32(nc,
  7307. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7308. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7309. }
  7310. }
  7311. static void ggml_compute_forward_step(
  7312. const struct ggml_compute_params * params,
  7313. const struct ggml_tensor * src0,
  7314. struct ggml_tensor * dst) {
  7315. switch (src0->type) {
  7316. case GGML_TYPE_F32:
  7317. {
  7318. ggml_compute_forward_step_f32(params, src0, dst);
  7319. } break;
  7320. default:
  7321. {
  7322. GGML_ASSERT(false);
  7323. } break;
  7324. }
  7325. }
  7326. // ggml_compute_forward_tanh
  7327. static void ggml_compute_forward_tanh_f32(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * src0,
  7330. struct ggml_tensor * dst) {
  7331. assert(params->ith == 0);
  7332. assert(ggml_are_same_shape(src0, dst));
  7333. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7334. return;
  7335. }
  7336. const int n = ggml_nrows(src0);
  7337. const int nc = src0->ne[0];
  7338. assert(dst->nb[0] == sizeof(float));
  7339. assert(src0->nb[0] == sizeof(float));
  7340. for (int i = 0; i < n; i++) {
  7341. ggml_vec_tanh_f32(nc,
  7342. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7343. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7344. }
  7345. }
  7346. static void ggml_compute_forward_tanh(
  7347. const struct ggml_compute_params * params,
  7348. const struct ggml_tensor * src0,
  7349. struct ggml_tensor * dst) {
  7350. switch (src0->type) {
  7351. case GGML_TYPE_F32:
  7352. {
  7353. ggml_compute_forward_tanh_f32(params, src0, dst);
  7354. } break;
  7355. default:
  7356. {
  7357. GGML_ASSERT(false);
  7358. } break;
  7359. }
  7360. }
  7361. // ggml_compute_forward_elu
  7362. static void ggml_compute_forward_elu_f32(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. struct ggml_tensor * dst) {
  7366. assert(params->ith == 0);
  7367. assert(ggml_are_same_shape(src0, dst));
  7368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7369. return;
  7370. }
  7371. const int n = ggml_nrows(src0);
  7372. const int nc = src0->ne[0];
  7373. assert(dst->nb[0] == sizeof(float));
  7374. assert(src0->nb[0] == sizeof(float));
  7375. for (int i = 0; i < n; i++) {
  7376. ggml_vec_elu_f32(nc,
  7377. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7378. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7379. }
  7380. }
  7381. static void ggml_compute_forward_elu(
  7382. const struct ggml_compute_params * params,
  7383. const struct ggml_tensor * src0,
  7384. struct ggml_tensor * dst) {
  7385. switch (src0->type) {
  7386. case GGML_TYPE_F32:
  7387. {
  7388. ggml_compute_forward_elu_f32(params, src0, dst);
  7389. } break;
  7390. default:
  7391. {
  7392. GGML_ASSERT(false);
  7393. } break;
  7394. }
  7395. }
  7396. // ggml_compute_forward_relu
  7397. static void ggml_compute_forward_relu_f32(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. assert(params->ith == 0);
  7402. assert(ggml_are_same_shape(src0, dst));
  7403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7404. return;
  7405. }
  7406. const int n = ggml_nrows(src0);
  7407. const int nc = src0->ne[0];
  7408. assert(dst->nb[0] == sizeof(float));
  7409. assert(src0->nb[0] == sizeof(float));
  7410. for (int i = 0; i < n; i++) {
  7411. ggml_vec_relu_f32(nc,
  7412. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7413. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7414. }
  7415. }
  7416. static void ggml_compute_forward_relu(
  7417. const struct ggml_compute_params * params,
  7418. const struct ggml_tensor * src0,
  7419. struct ggml_tensor * dst) {
  7420. switch (src0->type) {
  7421. case GGML_TYPE_F32:
  7422. {
  7423. ggml_compute_forward_relu_f32(params, src0, dst);
  7424. } break;
  7425. default:
  7426. {
  7427. GGML_ASSERT(false);
  7428. } break;
  7429. }
  7430. }
  7431. // ggml_compute_forward_gelu
  7432. static void ggml_compute_forward_gelu_f32(
  7433. const struct ggml_compute_params * params,
  7434. const struct ggml_tensor * src0,
  7435. struct ggml_tensor * dst) {
  7436. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7437. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7438. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7440. return;
  7441. }
  7442. const int ith = params->ith;
  7443. const int nth = params->nth;
  7444. const int nc = src0->ne[0];
  7445. const int nr = ggml_nrows(src0);
  7446. // rows per thread
  7447. const int dr = (nr + nth - 1)/nth;
  7448. // row range for this thread
  7449. const int ir0 = dr*ith;
  7450. const int ir1 = MIN(ir0 + dr, nr);
  7451. for (int i1 = ir0; i1 < ir1; i1++) {
  7452. ggml_vec_gelu_f32(nc,
  7453. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7454. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7455. #ifndef NDEBUG
  7456. for (int k = 0; k < nc; k++) {
  7457. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7458. UNUSED(x);
  7459. assert(!isnan(x));
  7460. assert(!isinf(x));
  7461. }
  7462. #endif
  7463. }
  7464. }
  7465. static void ggml_compute_forward_gelu(
  7466. const struct ggml_compute_params * params,
  7467. const struct ggml_tensor * src0,
  7468. struct ggml_tensor * dst) {
  7469. switch (src0->type) {
  7470. case GGML_TYPE_F32:
  7471. {
  7472. ggml_compute_forward_gelu_f32(params, src0, dst);
  7473. } break;
  7474. default:
  7475. {
  7476. GGML_ASSERT(false);
  7477. } break;
  7478. }
  7479. }
  7480. // ggml_compute_forward_gelu_quick
  7481. static void ggml_compute_forward_gelu_quick_f32(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. struct ggml_tensor * dst) {
  7485. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7486. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7487. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7489. return;
  7490. }
  7491. const int ith = params->ith;
  7492. const int nth = params->nth;
  7493. const int nc = src0->ne[0];
  7494. const int nr = ggml_nrows(src0);
  7495. // rows per thread
  7496. const int dr = (nr + nth - 1)/nth;
  7497. // row range for this thread
  7498. const int ir0 = dr*ith;
  7499. const int ir1 = MIN(ir0 + dr, nr);
  7500. for (int i1 = ir0; i1 < ir1; i1++) {
  7501. ggml_vec_gelu_quick_f32(nc,
  7502. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7503. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7504. #ifndef NDEBUG
  7505. for (int k = 0; k < nc; k++) {
  7506. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7507. UNUSED(x);
  7508. assert(!isnan(x));
  7509. assert(!isinf(x));
  7510. }
  7511. #endif
  7512. }
  7513. }
  7514. static void ggml_compute_forward_gelu_quick(
  7515. const struct ggml_compute_params * params,
  7516. const struct ggml_tensor * src0,
  7517. struct ggml_tensor * dst) {
  7518. switch (src0->type) {
  7519. case GGML_TYPE_F32:
  7520. {
  7521. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7522. } break;
  7523. default:
  7524. {
  7525. GGML_ASSERT(false);
  7526. } break;
  7527. }
  7528. }
  7529. // ggml_compute_forward_silu
  7530. static void ggml_compute_forward_silu_f32(
  7531. const struct ggml_compute_params * params,
  7532. const struct ggml_tensor * src0,
  7533. struct ggml_tensor * dst) {
  7534. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7535. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7536. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7538. return;
  7539. }
  7540. const int ith = params->ith;
  7541. const int nth = params->nth;
  7542. const int nc = src0->ne[0];
  7543. const int nr = ggml_nrows(src0);
  7544. // rows per thread
  7545. const int dr = (nr + nth - 1)/nth;
  7546. // row range for this thread
  7547. const int ir0 = dr*ith;
  7548. const int ir1 = MIN(ir0 + dr, nr);
  7549. for (int i1 = ir0; i1 < ir1; i1++) {
  7550. ggml_vec_silu_f32(nc,
  7551. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7552. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7553. #ifndef NDEBUG
  7554. for (int k = 0; k < nc; k++) {
  7555. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7556. UNUSED(x);
  7557. assert(!isnan(x));
  7558. assert(!isinf(x));
  7559. }
  7560. #endif
  7561. }
  7562. }
  7563. static void ggml_compute_forward_silu(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. struct ggml_tensor * dst) {
  7567. switch (src0->type) {
  7568. case GGML_TYPE_F32:
  7569. {
  7570. ggml_compute_forward_silu_f32(params, src0, dst);
  7571. } break;
  7572. default:
  7573. {
  7574. GGML_ASSERT(false);
  7575. } break;
  7576. }
  7577. }
  7578. // ggml_compute_forward_leaky_relu
  7579. static void ggml_compute_forward_leaky_relu_f32(
  7580. const struct ggml_compute_params * params,
  7581. const struct ggml_tensor * src0,
  7582. struct ggml_tensor * dst) {
  7583. assert(params->ith == 0);
  7584. assert(ggml_are_same_shape(src0, dst));
  7585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7586. return;
  7587. }
  7588. const int n = ggml_nrows(src0);
  7589. const int nc = src0->ne[0];
  7590. float negative_slope;
  7591. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7592. assert(dst->nb[0] == sizeof(float));
  7593. assert(src0->nb[0] == sizeof(float));
  7594. for (int i = 0; i < n; i++) {
  7595. ggml_vec_leaky_relu_f32(nc,
  7596. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7597. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7598. }
  7599. }
  7600. static void ggml_compute_forward_leaky_relu(
  7601. const struct ggml_compute_params * params,
  7602. const struct ggml_tensor * src0,
  7603. struct ggml_tensor * dst) {
  7604. switch (src0->type) {
  7605. case GGML_TYPE_F32:
  7606. {
  7607. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7608. } break;
  7609. default:
  7610. {
  7611. GGML_ASSERT(false);
  7612. } break;
  7613. }
  7614. }
  7615. // ggml_compute_forward_silu_back
  7616. static void ggml_compute_forward_silu_back_f32(
  7617. const struct ggml_compute_params * params,
  7618. const struct ggml_tensor * src0,
  7619. const struct ggml_tensor * grad,
  7620. struct ggml_tensor * dst) {
  7621. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7622. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7623. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7624. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7625. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7627. return;
  7628. }
  7629. const int ith = params->ith;
  7630. const int nth = params->nth;
  7631. const int nc = src0->ne[0];
  7632. const int nr = ggml_nrows(src0);
  7633. // rows per thread
  7634. const int dr = (nr + nth - 1)/nth;
  7635. // row range for this thread
  7636. const int ir0 = dr*ith;
  7637. const int ir1 = MIN(ir0 + dr, nr);
  7638. for (int i1 = ir0; i1 < ir1; i1++) {
  7639. ggml_vec_silu_backward_f32(nc,
  7640. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7641. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7642. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7643. #ifndef NDEBUG
  7644. for (int k = 0; k < nc; k++) {
  7645. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7646. UNUSED(x);
  7647. assert(!isnan(x));
  7648. assert(!isinf(x));
  7649. }
  7650. #endif
  7651. }
  7652. }
  7653. static void ggml_compute_forward_silu_back(
  7654. const struct ggml_compute_params * params,
  7655. const struct ggml_tensor * src0,
  7656. const struct ggml_tensor * grad,
  7657. struct ggml_tensor * dst) {
  7658. switch (src0->type) {
  7659. case GGML_TYPE_F32:
  7660. {
  7661. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7662. } break;
  7663. default:
  7664. {
  7665. GGML_ASSERT(false);
  7666. } break;
  7667. }
  7668. }
  7669. // ggml_compute_forward_norm
  7670. static void ggml_compute_forward_norm_f32(
  7671. const struct ggml_compute_params * params,
  7672. const struct ggml_tensor * src0,
  7673. struct ggml_tensor * dst) {
  7674. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7676. return;
  7677. }
  7678. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7679. const int ith = params->ith;
  7680. const int nth = params->nth;
  7681. GGML_TENSOR_UNARY_OP_LOCALS
  7682. float eps;
  7683. memcpy(&eps, dst->op_params, sizeof(float));
  7684. GGML_ASSERT(eps > 0.0f);
  7685. // TODO: optimize
  7686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7688. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7689. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7690. ggml_float sum = 0.0;
  7691. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7692. sum += (ggml_float)x[i00];
  7693. }
  7694. float mean = sum/ne00;
  7695. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7696. ggml_float sum2 = 0.0;
  7697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7698. float v = x[i00] - mean;
  7699. y[i00] = v;
  7700. sum2 += (ggml_float)(v*v);
  7701. }
  7702. float variance = sum2/ne00;
  7703. const float scale = 1.0f/sqrtf(variance + eps);
  7704. ggml_vec_scale_f32(ne00, y, scale);
  7705. }
  7706. }
  7707. }
  7708. }
  7709. static void ggml_compute_forward_norm(
  7710. const struct ggml_compute_params * params,
  7711. const struct ggml_tensor * src0,
  7712. struct ggml_tensor * dst) {
  7713. switch (src0->type) {
  7714. case GGML_TYPE_F32:
  7715. {
  7716. ggml_compute_forward_norm_f32(params, src0, dst);
  7717. } break;
  7718. default:
  7719. {
  7720. GGML_ASSERT(false);
  7721. } break;
  7722. }
  7723. }
  7724. // ggml_compute_forward_group_rms_norm
  7725. static void ggml_compute_forward_rms_norm_f32(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. struct ggml_tensor * dst) {
  7729. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7731. return;
  7732. }
  7733. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7734. const int ith = params->ith;
  7735. const int nth = params->nth;
  7736. GGML_TENSOR_UNARY_OP_LOCALS
  7737. float eps;
  7738. memcpy(&eps, dst->op_params, sizeof(float));
  7739. GGML_ASSERT(eps > 0.0f);
  7740. // TODO: optimize
  7741. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7742. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7743. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7744. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7745. ggml_float sum = 0.0;
  7746. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7747. sum += (ggml_float)(x[i00] * x[i00]);
  7748. }
  7749. const float mean = sum/ne00;
  7750. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7751. memcpy(y, x, ne00 * sizeof(float));
  7752. // for (int i00 = 0; i00 < ne00; i00++) {
  7753. // y[i00] = x[i00];
  7754. // }
  7755. const float scale = 1.0f/sqrtf(mean + eps);
  7756. ggml_vec_scale_f32(ne00, y, scale);
  7757. }
  7758. }
  7759. }
  7760. }
  7761. static void ggml_compute_forward_rms_norm(
  7762. const struct ggml_compute_params * params,
  7763. const struct ggml_tensor * src0,
  7764. struct ggml_tensor * dst) {
  7765. switch (src0->type) {
  7766. case GGML_TYPE_F32:
  7767. {
  7768. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7769. } break;
  7770. default:
  7771. {
  7772. GGML_ASSERT(false);
  7773. } break;
  7774. }
  7775. }
  7776. static void ggml_compute_forward_rms_norm_back_f32(
  7777. const struct ggml_compute_params * params,
  7778. const struct ggml_tensor * src0,
  7779. const struct ggml_tensor * src1,
  7780. struct ggml_tensor * dst) {
  7781. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7783. return;
  7784. }
  7785. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7786. const int ith = params->ith;
  7787. const int nth = params->nth;
  7788. GGML_TENSOR_BINARY_OP_LOCALS
  7789. float eps;
  7790. memcpy(&eps, dst->op_params, sizeof(float));
  7791. // TODO: optimize
  7792. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7793. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7794. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7795. // src1 is same shape as src0 => same indices
  7796. const int64_t i11 = i01;
  7797. const int64_t i12 = i02;
  7798. const int64_t i13 = i03;
  7799. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7800. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7801. ggml_float sum_xx = 0.0;
  7802. ggml_float sum_xdz = 0.0;
  7803. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7804. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7805. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7806. }
  7807. //const float mean = (float)(sum_xx)/ne00;
  7808. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7809. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7810. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7811. // we could cache rms from forward pass to improve performance.
  7812. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7813. //const float rms = sqrtf(mean_eps);
  7814. const float rrms = 1.0f / sqrtf(mean_eps);
  7815. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7816. {
  7817. // z = rms_norm(x)
  7818. //
  7819. // rms_norm(src0) =
  7820. // scale(
  7821. // src0,
  7822. // div(
  7823. // 1,
  7824. // sqrt(
  7825. // add(
  7826. // scale(
  7827. // sum(
  7828. // sqr(
  7829. // src0)),
  7830. // (1.0/N)),
  7831. // eps))));
  7832. // postorder:
  7833. // ## op args grad
  7834. // 00 param src0 grad[#00]
  7835. // 01 const 1
  7836. // 02 sqr (#00) grad[#02]
  7837. // 03 sum (#02) grad[#03]
  7838. // 04 const 1/N
  7839. // 05 scale (#03, #04) grad[#05]
  7840. // 06 const eps
  7841. // 07 add (#05, #06) grad[#07]
  7842. // 08 sqrt (#07) grad[#08]
  7843. // 09 div (#01,#08) grad[#09]
  7844. // 10 scale (#00,#09) grad[#10]
  7845. //
  7846. // backward pass, given grad[#10]
  7847. // #10: scale
  7848. // grad[#00] += scale(grad[#10],#09)
  7849. // grad[#09] += sum(mul(grad[#10],#00))
  7850. // #09: div
  7851. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7852. // #08: sqrt
  7853. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7854. // #07: add
  7855. // grad[#05] += grad[#07]
  7856. // #05: scale
  7857. // grad[#03] += scale(grad[#05],#04)
  7858. // #03: sum
  7859. // grad[#02] += repeat(grad[#03], #02)
  7860. // #02:
  7861. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7862. //
  7863. // substitute and simplify:
  7864. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7865. // grad[#02] = repeat(grad[#03], #02)
  7866. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7867. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7868. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7869. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7870. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7871. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7872. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7873. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7874. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7875. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7876. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7877. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7878. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7879. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7880. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7881. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7882. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7883. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7884. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7885. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7886. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7887. // a = b*c + d*e
  7888. // a = b*c*f/f + d*e*f/f
  7889. // a = (b*c*f + d*e*f)*(1/f)
  7890. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7891. // a = (b + d*e/c)*c
  7892. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7893. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7894. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7895. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7896. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7897. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7898. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7899. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7900. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7901. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7902. }
  7903. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7904. // post-order:
  7905. // dx := x
  7906. // dx := scale(dx,-mean_xdz/mean_eps)
  7907. // dx := add(dx, dz)
  7908. // dx := scale(dx, rrms)
  7909. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7910. ggml_vec_cpy_f32 (ne00, dx, x);
  7911. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7912. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7913. ggml_vec_acc_f32 (ne00, dx, dz);
  7914. ggml_vec_scale_f32(ne00, dx, rrms);
  7915. }
  7916. }
  7917. }
  7918. }
  7919. static void ggml_compute_forward_rms_norm_back(
  7920. const struct ggml_compute_params * params,
  7921. const struct ggml_tensor * src0,
  7922. const struct ggml_tensor * src1,
  7923. struct ggml_tensor * dst) {
  7924. switch (src0->type) {
  7925. case GGML_TYPE_F32:
  7926. {
  7927. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7928. } break;
  7929. default:
  7930. {
  7931. GGML_ASSERT(false);
  7932. } break;
  7933. }
  7934. }
  7935. // ggml_compute_forward_group_norm
  7936. static void ggml_compute_forward_group_norm_f32(
  7937. const struct ggml_compute_params * params,
  7938. const struct ggml_tensor * src0,
  7939. struct ggml_tensor * dst) {
  7940. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7942. return;
  7943. }
  7944. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7945. const int ith = params->ith;
  7946. const int nth = params->nth;
  7947. GGML_TENSOR_UNARY_OP_LOCALS
  7948. const float eps = 1e-6f; // TODO: make this a parameter
  7949. // TODO: optimize
  7950. int n_channels = src0->ne[2];
  7951. int n_groups = dst->op_params[0];
  7952. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7953. for (int i = ith; i < n_groups; i+=nth) {
  7954. int start = i * n_channels_per_group;
  7955. int end = start + n_channels_per_group;
  7956. if (end > n_channels) {
  7957. end = n_channels;
  7958. }
  7959. int step = end - start;
  7960. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7961. ggml_float sum = 0.0;
  7962. for (int64_t i02 = start; i02 < end; i02++) {
  7963. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7964. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7965. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7966. sum += (ggml_float)x[i00];
  7967. }
  7968. }
  7969. }
  7970. float mean = sum / (ne00 * ne01 * step);
  7971. ggml_float sum2 = 0.0;
  7972. for (int64_t i02 = start; i02 < end; i02++) {
  7973. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7974. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7975. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7976. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7977. float v = x[i00] - mean;
  7978. y[i00] = v;
  7979. sum2 += (ggml_float)(v * v);
  7980. }
  7981. }
  7982. }
  7983. float variance = sum2 / (ne00 * ne01 * step);
  7984. const float scale = 1.0f / sqrtf(variance + eps);
  7985. for (int64_t i02 = start; i02 < end; i02++) {
  7986. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7987. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7988. ggml_vec_scale_f32(ne00, y, scale);
  7989. }
  7990. }
  7991. }
  7992. }
  7993. }
  7994. static void ggml_compute_forward_group_norm(
  7995. const struct ggml_compute_params * params,
  7996. const struct ggml_tensor * src0,
  7997. struct ggml_tensor * dst) {
  7998. switch (src0->type) {
  7999. case GGML_TYPE_F32:
  8000. {
  8001. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8002. } break;
  8003. default:
  8004. {
  8005. GGML_ASSERT(false);
  8006. } break;
  8007. }
  8008. }
  8009. // ggml_compute_forward_mul_mat
  8010. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8011. // helper function to determine if it is better to use BLAS or not
  8012. // for large matrices, BLAS is faster
  8013. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8014. const struct ggml_tensor * src0 = dst->src[0];
  8015. const struct ggml_tensor * src1 = dst->src[1];
  8016. //const int64_t ne00 = src0->ne[0];
  8017. //const int64_t ne01 = src0->ne[1];
  8018. const int64_t ne10 = src1->ne[0];
  8019. const int64_t ne0 = dst->ne[0];
  8020. const int64_t ne1 = dst->ne[1];
  8021. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8022. // all the experts for each batch element and the processing would become incredibly slow
  8023. // TODO: find the optimal values for these
  8024. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8025. ggml_is_contiguous(src0) &&
  8026. ggml_is_contiguous(src1) &&
  8027. //src0->type == GGML_TYPE_F32 &&
  8028. src1->type == GGML_TYPE_F32 &&
  8029. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8030. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8031. return true;
  8032. }
  8033. return false;
  8034. }
  8035. #endif
  8036. static void ggml_compute_forward_mul_mat(
  8037. const struct ggml_compute_params * params,
  8038. const struct ggml_tensor * src0,
  8039. const struct ggml_tensor * src1,
  8040. struct ggml_tensor * dst) {
  8041. int64_t t0 = ggml_perf_time_us();
  8042. UNUSED(t0);
  8043. GGML_TENSOR_BINARY_OP_LOCALS
  8044. const int ith = params->ith;
  8045. const int nth = params->nth;
  8046. const enum ggml_type type = src0->type;
  8047. const bool src1_cont = ggml_is_contiguous(src1);
  8048. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8049. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8050. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8051. GGML_ASSERT(ne0 == ne01);
  8052. GGML_ASSERT(ne1 == ne11);
  8053. GGML_ASSERT(ne2 == ne12);
  8054. GGML_ASSERT(ne3 == ne13);
  8055. // we don't support permuted src0 or src1
  8056. GGML_ASSERT(nb00 == ggml_type_size(type));
  8057. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8058. // dst cannot be transposed or permuted
  8059. GGML_ASSERT(nb0 == sizeof(float));
  8060. GGML_ASSERT(nb0 <= nb1);
  8061. GGML_ASSERT(nb1 <= nb2);
  8062. GGML_ASSERT(nb2 <= nb3);
  8063. // broadcast factors
  8064. const int64_t r2 = ne12/ne02;
  8065. const int64_t r3 = ne13/ne03;
  8066. // nb01 >= nb00 - src0 is not transposed
  8067. // compute by src0 rows
  8068. #if defined(GGML_USE_CLBLAST)
  8069. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8070. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8071. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8072. }
  8073. return;
  8074. }
  8075. #endif
  8076. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8077. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8078. if (params->ith != 0) {
  8079. return;
  8080. }
  8081. if (params->type == GGML_TASK_INIT) {
  8082. return;
  8083. }
  8084. if (params->type == GGML_TASK_FINALIZE) {
  8085. return;
  8086. }
  8087. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8088. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8089. // broadcast src0 into src1 across 2nd,3rd dimension
  8090. const int64_t i03 = i13/r3;
  8091. const int64_t i02 = i12/r2;
  8092. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8093. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8094. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8095. if (type != GGML_TYPE_F32) {
  8096. float * const wdata = params->wdata;
  8097. ggml_to_float_t const to_float = type_traits[type].to_float;
  8098. size_t id = 0;
  8099. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8100. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8101. id += ne00;
  8102. }
  8103. assert(id*sizeof(float) <= params->wsize);
  8104. x = wdata;
  8105. }
  8106. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8107. ne1, ne01, ne10,
  8108. 1.0f, y, ne10,
  8109. x, ne00,
  8110. 0.0f, d, ne01);
  8111. }
  8112. }
  8113. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8114. return;
  8115. }
  8116. #endif
  8117. if (params->type == GGML_TASK_INIT) {
  8118. if (src1->type != vec_dot_type) {
  8119. char * wdata = params->wdata;
  8120. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8121. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8122. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8123. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8124. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8125. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8126. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8127. wdata += row_size;
  8128. }
  8129. }
  8130. }
  8131. }
  8132. return;
  8133. }
  8134. if (params->type == GGML_TASK_FINALIZE) {
  8135. return;
  8136. }
  8137. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8138. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8139. const int64_t nr0 = ne01; // src0 rows
  8140. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8141. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8142. // distribute the thread work across the inner or outer loop based on which one is larger
  8143. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8144. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8145. const int64_t ith0 = ith % nth0;
  8146. const int64_t ith1 = ith / nth0;
  8147. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8148. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8149. const int64_t ir010 = dr0*ith0;
  8150. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8151. const int64_t ir110 = dr1*ith1;
  8152. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8153. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8154. // threads with no work simply yield (not sure if it helps)
  8155. if (ir010 >= ir011 || ir110 >= ir111) {
  8156. sched_yield();
  8157. return;
  8158. }
  8159. assert(ne12 % ne02 == 0);
  8160. assert(ne13 % ne03 == 0);
  8161. // block-tiling attempt
  8162. const int64_t blck_0 = 16;
  8163. const int64_t blck_1 = 16;
  8164. // attempt to reduce false-sharing (does not seem to make a difference)
  8165. float tmp[16];
  8166. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8167. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8168. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8169. const int64_t i13 = (ir1/(ne12*ne1));
  8170. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8171. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8172. // broadcast src0 into src1
  8173. const int64_t i03 = i13/r3;
  8174. const int64_t i02 = i12/r2;
  8175. const int64_t i1 = i11;
  8176. const int64_t i2 = i12;
  8177. const int64_t i3 = i13;
  8178. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8179. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8180. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8181. // the original src1 data pointer, so we should index using the indices directly
  8182. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8183. const char * src1_col = (const char *) wdata +
  8184. (src1_cont || src1->type != vec_dot_type
  8185. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8186. : (i11*nb11 + i12*nb12 + i13*nb13));
  8187. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8188. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8189. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8190. //}
  8191. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8192. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8193. }
  8194. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8195. }
  8196. }
  8197. }
  8198. }
  8199. // ggml_compute_forward_mul_mat_id
  8200. static void ggml_compute_forward_mul_mat_id(
  8201. const struct ggml_compute_params * params,
  8202. const struct ggml_tensor * ids,
  8203. const struct ggml_tensor * src1,
  8204. struct ggml_tensor * dst) {
  8205. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8206. GGML_TENSOR_BINARY_OP_LOCALS
  8207. const int ith = params->ith;
  8208. const int nth = params->nth;
  8209. const enum ggml_type type = src0->type;
  8210. const bool src1_cont = ggml_is_contiguous(src1);
  8211. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8212. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8213. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8214. GGML_ASSERT(ne0 == ne01);
  8215. GGML_ASSERT(ne1 == ne11);
  8216. GGML_ASSERT(ne2 == ne12);
  8217. GGML_ASSERT(ne3 == ne13);
  8218. // we don't support permuted src0 or src1
  8219. GGML_ASSERT(nb00 == ggml_type_size(type));
  8220. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8221. // dst cannot be transposed or permuted
  8222. GGML_ASSERT(nb0 == sizeof(float));
  8223. GGML_ASSERT(nb0 <= nb1);
  8224. GGML_ASSERT(nb1 <= nb2);
  8225. GGML_ASSERT(nb2 <= nb3);
  8226. // broadcast factors
  8227. const int64_t r2 = ne12/ne02;
  8228. const int64_t r3 = ne13/ne03;
  8229. // row groups
  8230. const int id = ggml_get_op_params_i32(dst, 0);
  8231. const int n_as = ggml_get_op_params_i32(dst, 1);
  8232. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8233. (char *) params->wdata :
  8234. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8235. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8236. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8237. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8238. if (params->type == GGML_TASK_INIT) {
  8239. char * wdata = params->wdata;
  8240. if (src1->type != vec_dot_type) {
  8241. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8242. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8243. assert(src1->type == GGML_TYPE_F32);
  8244. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8245. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8246. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8247. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8248. wdata += row_size;
  8249. }
  8250. }
  8251. }
  8252. }
  8253. // initialize matrix_row_counts
  8254. GGML_ASSERT(wdata == wdata_src1_end);
  8255. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8256. // group rows by src0 matrix
  8257. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8258. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8259. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8260. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8261. matrix_row_counts[row_id] += 1;
  8262. }
  8263. return;
  8264. }
  8265. if (params->type == GGML_TASK_FINALIZE) {
  8266. return;
  8267. }
  8268. // compute each matrix multiplication in sequence
  8269. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8270. const int64_t cne1 = matrix_row_counts[cur_a];
  8271. if (cne1 == 0) {
  8272. continue;
  8273. }
  8274. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8275. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8276. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8277. const int64_t nr0 = ne01; // src0 rows
  8278. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8279. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8280. // distribute the thread work across the inner or outer loop based on which one is larger
  8281. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8282. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8283. const int64_t ith0 = ith % nth0;
  8284. const int64_t ith1 = ith / nth0;
  8285. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8286. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8287. const int64_t ir010 = dr0*ith0;
  8288. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8289. const int64_t ir110 = dr1*ith1;
  8290. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8291. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8292. // threads with no work simply yield (not sure if it helps)
  8293. if (ir010 >= ir011 || ir110 >= ir111) {
  8294. sched_yield();
  8295. continue;
  8296. }
  8297. assert(ne12 % ne02 == 0);
  8298. assert(ne13 % ne03 == 0);
  8299. // block-tiling attempt
  8300. const int64_t blck_0 = 16;
  8301. const int64_t blck_1 = 16;
  8302. // attempt to reduce false-sharing (does not seem to make a difference)
  8303. float tmp[16];
  8304. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8305. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8306. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8307. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8308. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8309. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8310. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8311. // broadcast src0 into src1
  8312. const int64_t i03 = i13/r3;
  8313. const int64_t i02 = i12/r2;
  8314. const int64_t i1 = i11;
  8315. const int64_t i2 = i12;
  8316. const int64_t i3 = i13;
  8317. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8318. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8319. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8320. // the original src1 data pointer, so we should index using the indices directly
  8321. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8322. const char * src1_col = (const char *) wdata +
  8323. (src1_cont || src1->type != vec_dot_type
  8324. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8325. : (i11*nb11 + i12*nb12 + i13*nb13));
  8326. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8327. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8328. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8329. //}
  8330. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8331. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8332. }
  8333. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8334. }
  8335. }
  8336. }
  8337. }
  8338. #undef MMID_MATRIX_ROW
  8339. }
  8340. // ggml_compute_forward_out_prod
  8341. static void ggml_compute_forward_out_prod_f32(
  8342. const struct ggml_compute_params * params,
  8343. const struct ggml_tensor * src0,
  8344. const struct ggml_tensor * src1,
  8345. struct ggml_tensor * dst) {
  8346. // int64_t t0 = ggml_perf_time_us();
  8347. // UNUSED(t0);
  8348. GGML_TENSOR_BINARY_OP_LOCALS
  8349. const int ith = params->ith;
  8350. const int nth = params->nth;
  8351. GGML_ASSERT(ne0 == ne00);
  8352. GGML_ASSERT(ne1 == ne10);
  8353. GGML_ASSERT(ne2 == ne02);
  8354. GGML_ASSERT(ne02 == ne12);
  8355. GGML_ASSERT(ne3 == ne13);
  8356. GGML_ASSERT(ne03 == ne13);
  8357. // we don't support permuted src0 or src1
  8358. GGML_ASSERT(nb00 == sizeof(float));
  8359. // dst cannot be transposed or permuted
  8360. GGML_ASSERT(nb0 == sizeof(float));
  8361. // GGML_ASSERT(nb0 <= nb1);
  8362. // GGML_ASSERT(nb1 <= nb2);
  8363. // GGML_ASSERT(nb2 <= nb3);
  8364. // nb01 >= nb00 - src0 is not transposed
  8365. // compute by src0 rows
  8366. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8367. // TODO: #if defined(GGML_USE_CLBLAST)
  8368. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8369. bool use_blas = ggml_is_matrix(src0) &&
  8370. ggml_is_matrix(src1) &&
  8371. ggml_is_contiguous(src0) &&
  8372. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8373. #endif
  8374. if (params->type == GGML_TASK_INIT) {
  8375. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8376. if (use_blas) {
  8377. return;
  8378. }
  8379. #endif
  8380. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8381. return;
  8382. }
  8383. if (params->type == GGML_TASK_FINALIZE) {
  8384. return;
  8385. }
  8386. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8387. if (use_blas) {
  8388. if (params->ith != 0) { // All threads other than the first do no work.
  8389. return;
  8390. }
  8391. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8392. // src0: (k,n)
  8393. // src1: (k,m)
  8394. // dst: (m,n)
  8395. //
  8396. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8397. // Also expressed as (major,minor)
  8398. // a: (m,k): so src1 transposed
  8399. // b: (k,n): so src0
  8400. // c: (m,n)
  8401. //
  8402. // However, if ggml_is_transposed(src1) is true, then
  8403. // src1->data already contains a transposed version, so sgemm mustn't
  8404. // transpose it further.
  8405. int n = src0->ne[0];
  8406. int k = src0->ne[1];
  8407. int m = src1->ne[0];
  8408. int transposeA, lda;
  8409. if (!ggml_is_transposed(src1)) {
  8410. transposeA = CblasTrans;
  8411. lda = m;
  8412. } else {
  8413. transposeA = CblasNoTrans;
  8414. lda = k;
  8415. }
  8416. float * a = (float *) ((char *) src1->data);
  8417. float * b = (float *) ((char *) src0->data);
  8418. float * c = (float *) ((char *) dst->data);
  8419. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8420. return;
  8421. }
  8422. #endif
  8423. // dst[:,:,:,:] = 0
  8424. // for i2,i3:
  8425. // for i1:
  8426. // for i01:
  8427. // for i0:
  8428. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8429. // parallelize by last three dimensions
  8430. // total rows in dst
  8431. const int64_t nr = ne1*ne2*ne3;
  8432. // rows per thread
  8433. const int64_t dr = (nr + nth - 1)/nth;
  8434. // row range for this thread
  8435. const int64_t ir0 = dr*ith;
  8436. const int64_t ir1 = MIN(ir0 + dr, nr);
  8437. // block-tiling attempt
  8438. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8439. const int64_t blck_1 = 16;
  8440. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8441. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8442. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8443. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8444. for (int64_t ir = bir; ir < bir1; ++ir) {
  8445. // dst indices
  8446. const int64_t i3 = ir/(ne2*ne1);
  8447. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8448. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8449. const int64_t i02 = i2;
  8450. const int64_t i03 = i3;
  8451. //const int64_t i10 = i1;
  8452. const int64_t i12 = i2;
  8453. const int64_t i13 = i3;
  8454. #if GGML_VEC_MAD_UNROLL > 2
  8455. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8456. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8457. const int64_t i11 = i01;
  8458. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8459. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8460. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8461. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8462. }
  8463. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8464. const int64_t i11 = i01;
  8465. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8466. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8467. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8468. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8469. }
  8470. #else
  8471. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8472. const int64_t i11 = i01;
  8473. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8474. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8475. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8476. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8477. }
  8478. #endif
  8479. }
  8480. }
  8481. }
  8482. //int64_t t1 = ggml_perf_time_us();
  8483. //static int64_t acc = 0;
  8484. //acc += t1 - t0;
  8485. //if (t1 - t0 > 10) {
  8486. // printf("\n");
  8487. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8488. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8489. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8490. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8491. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8492. //}
  8493. }
  8494. static void ggml_compute_forward_out_prod_q_f32(
  8495. const struct ggml_compute_params * params,
  8496. const struct ggml_tensor * src0,
  8497. const struct ggml_tensor * src1,
  8498. struct ggml_tensor * dst) {
  8499. // int64_t t0 = ggml_perf_time_us();
  8500. // UNUSED(t0);
  8501. GGML_TENSOR_BINARY_OP_LOCALS;
  8502. const int ith = params->ith;
  8503. const int nth = params->nth;
  8504. const enum ggml_type type = src0->type;
  8505. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8506. GGML_ASSERT(ne02 == ne12);
  8507. GGML_ASSERT(ne03 == ne13);
  8508. GGML_ASSERT(ne2 == ne12);
  8509. GGML_ASSERT(ne3 == ne13);
  8510. // we don't support permuted src0 dim0
  8511. GGML_ASSERT(nb00 == ggml_type_size(type));
  8512. // dst dim0 cannot be transposed or permuted
  8513. GGML_ASSERT(nb0 == sizeof(float));
  8514. // GGML_ASSERT(nb0 <= nb1);
  8515. // GGML_ASSERT(nb1 <= nb2);
  8516. // GGML_ASSERT(nb2 <= nb3);
  8517. GGML_ASSERT(ne0 == ne00);
  8518. GGML_ASSERT(ne1 == ne10);
  8519. GGML_ASSERT(ne2 == ne02);
  8520. GGML_ASSERT(ne3 == ne03);
  8521. // nb01 >= nb00 - src0 is not transposed
  8522. // compute by src0 rows
  8523. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8524. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8525. if (params->type == GGML_TASK_INIT) {
  8526. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8527. return;
  8528. }
  8529. if (params->type == GGML_TASK_FINALIZE) {
  8530. return;
  8531. }
  8532. // parallelize by last three dimensions
  8533. // total rows in dst
  8534. const int64_t nr = ne1*ne2*ne3;
  8535. // rows per thread
  8536. const int64_t dr = (nr + nth - 1)/nth;
  8537. // row range for this thread
  8538. const int64_t ir0 = dr*ith;
  8539. const int64_t ir1 = MIN(ir0 + dr, nr);
  8540. // dst[:,:,:,:] = 0
  8541. // for i2,i3:
  8542. // for i1:
  8543. // for i01:
  8544. // for i0:
  8545. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8546. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8547. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8548. // dst indices
  8549. const int64_t i3 = ir/(ne2*ne1);
  8550. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8551. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8552. const int64_t i02 = i2;
  8553. const int64_t i03 = i3;
  8554. //const int64_t i10 = i1;
  8555. const int64_t i12 = i2;
  8556. const int64_t i13 = i3;
  8557. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8558. const int64_t i11 = i01;
  8559. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8560. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8561. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8562. dequantize_row_q(s0, wdata, ne0);
  8563. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8564. }
  8565. }
  8566. //int64_t t1 = ggml_perf_time_us();
  8567. //static int64_t acc = 0;
  8568. //acc += t1 - t0;
  8569. //if (t1 - t0 > 10) {
  8570. // printf("\n");
  8571. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8572. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8573. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8574. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8575. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8576. //}
  8577. }
  8578. static void ggml_compute_forward_out_prod(
  8579. const struct ggml_compute_params * params,
  8580. const struct ggml_tensor * src0,
  8581. const struct ggml_tensor * src1,
  8582. struct ggml_tensor * dst) {
  8583. switch (src0->type) {
  8584. case GGML_TYPE_Q4_0:
  8585. case GGML_TYPE_Q4_1:
  8586. case GGML_TYPE_Q5_0:
  8587. case GGML_TYPE_Q5_1:
  8588. case GGML_TYPE_Q8_0:
  8589. case GGML_TYPE_Q2_K:
  8590. case GGML_TYPE_Q3_K:
  8591. case GGML_TYPE_Q4_K:
  8592. case GGML_TYPE_Q5_K:
  8593. case GGML_TYPE_Q6_K:
  8594. case GGML_TYPE_IQ2_XXS:
  8595. case GGML_TYPE_IQ2_XS:
  8596. {
  8597. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8598. } break;
  8599. case GGML_TYPE_F16:
  8600. {
  8601. GGML_ASSERT(false); // todo
  8602. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8603. } break;
  8604. case GGML_TYPE_F32:
  8605. {
  8606. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8607. } break;
  8608. default:
  8609. {
  8610. GGML_ASSERT(false);
  8611. } break;
  8612. }
  8613. }
  8614. // ggml_compute_forward_scale
  8615. static void ggml_compute_forward_scale_f32(
  8616. const struct ggml_compute_params * params,
  8617. const struct ggml_tensor * src0,
  8618. struct ggml_tensor * dst) {
  8619. GGML_ASSERT(ggml_is_contiguous(src0));
  8620. GGML_ASSERT(ggml_is_contiguous(dst));
  8621. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8623. return;
  8624. }
  8625. // scale factor
  8626. float v;
  8627. memcpy(&v, dst->op_params, sizeof(float));
  8628. const int ith = params->ith;
  8629. const int nth = params->nth;
  8630. const int nc = src0->ne[0];
  8631. const int nr = ggml_nrows(src0);
  8632. // rows per thread
  8633. const int dr = (nr + nth - 1)/nth;
  8634. // row range for this thread
  8635. const int ir0 = dr*ith;
  8636. const int ir1 = MIN(ir0 + dr, nr);
  8637. const size_t nb01 = src0->nb[1];
  8638. const size_t nb1 = dst->nb[1];
  8639. for (int i1 = ir0; i1 < ir1; i1++) {
  8640. if (dst->data != src0->data) {
  8641. // src0 is same shape as dst => same indices
  8642. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8643. }
  8644. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8645. }
  8646. }
  8647. static void ggml_compute_forward_scale(
  8648. const struct ggml_compute_params * params,
  8649. const struct ggml_tensor * src0,
  8650. struct ggml_tensor * dst) {
  8651. switch (src0->type) {
  8652. case GGML_TYPE_F32:
  8653. {
  8654. ggml_compute_forward_scale_f32(params, src0, dst);
  8655. } break;
  8656. default:
  8657. {
  8658. GGML_ASSERT(false);
  8659. } break;
  8660. }
  8661. }
  8662. // ggml_compute_forward_set
  8663. static void ggml_compute_forward_set_f32(
  8664. const struct ggml_compute_params * params,
  8665. const struct ggml_tensor * src0,
  8666. const struct ggml_tensor * src1,
  8667. struct ggml_tensor * dst) {
  8668. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8669. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8670. // view src0 and dst with these strides and data offset inbytes during set
  8671. // nb0 is implicitly element_size because src0 and dst are contiguous
  8672. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8673. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8674. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8675. size_t offset = ((int32_t *) dst->op_params)[3];
  8676. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8677. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8678. // memcpy needs to be synchronized across threads to avoid race conditions.
  8679. // => do it in INIT phase
  8680. memcpy(
  8681. ((char *) dst->data),
  8682. ((char *) src0->data),
  8683. ggml_nbytes(dst));
  8684. }
  8685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8686. return;
  8687. }
  8688. const int ith = params->ith;
  8689. const int nth = params->nth;
  8690. const int nr = ggml_nrows(src1);
  8691. const int nc = src1->ne[0];
  8692. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8693. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8694. // src0 and dst as viewed during set
  8695. const size_t nb0 = ggml_element_size(src0);
  8696. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8697. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8698. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8699. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8700. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8701. GGML_ASSERT(nb10 == sizeof(float));
  8702. // rows per thread
  8703. const int dr = (nr + nth - 1)/nth;
  8704. // row range for this thread
  8705. const int ir0 = dr*ith;
  8706. const int ir1 = MIN(ir0 + dr, nr);
  8707. for (int ir = ir0; ir < ir1; ++ir) {
  8708. // src0 and dst are viewed with shape of src1 and offset
  8709. // => same indices
  8710. const int i3 = ir/(ne12*ne11);
  8711. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8712. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8713. ggml_vec_cpy_f32(nc,
  8714. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8715. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8716. }
  8717. }
  8718. static void ggml_compute_forward_set(
  8719. const struct ggml_compute_params * params,
  8720. const struct ggml_tensor * src0,
  8721. const struct ggml_tensor * src1,
  8722. struct ggml_tensor * dst) {
  8723. switch (src0->type) {
  8724. case GGML_TYPE_F32:
  8725. {
  8726. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8727. } break;
  8728. case GGML_TYPE_F16:
  8729. case GGML_TYPE_Q4_0:
  8730. case GGML_TYPE_Q4_1:
  8731. case GGML_TYPE_Q5_0:
  8732. case GGML_TYPE_Q5_1:
  8733. case GGML_TYPE_Q8_0:
  8734. case GGML_TYPE_Q8_1:
  8735. case GGML_TYPE_Q2_K:
  8736. case GGML_TYPE_Q3_K:
  8737. case GGML_TYPE_Q4_K:
  8738. case GGML_TYPE_Q5_K:
  8739. case GGML_TYPE_Q6_K:
  8740. case GGML_TYPE_IQ2_XXS:
  8741. case GGML_TYPE_IQ2_XS:
  8742. default:
  8743. {
  8744. GGML_ASSERT(false);
  8745. } break;
  8746. }
  8747. }
  8748. // ggml_compute_forward_cpy
  8749. static void ggml_compute_forward_cpy(
  8750. const struct ggml_compute_params * params,
  8751. const struct ggml_tensor * src0,
  8752. struct ggml_tensor * dst) {
  8753. ggml_compute_forward_dup(params, src0, dst);
  8754. }
  8755. // ggml_compute_forward_cont
  8756. static void ggml_compute_forward_cont(
  8757. const struct ggml_compute_params * params,
  8758. const struct ggml_tensor * src0,
  8759. struct ggml_tensor * dst) {
  8760. ggml_compute_forward_dup(params, src0, dst);
  8761. }
  8762. // ggml_compute_forward_reshape
  8763. static void ggml_compute_forward_reshape(
  8764. const struct ggml_compute_params * params,
  8765. const struct ggml_tensor * src0,
  8766. struct ggml_tensor * dst) {
  8767. // NOP
  8768. UNUSED(params);
  8769. UNUSED(src0);
  8770. UNUSED(dst);
  8771. }
  8772. // ggml_compute_forward_view
  8773. static void ggml_compute_forward_view(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0) {
  8776. // NOP
  8777. UNUSED(params);
  8778. UNUSED(src0);
  8779. }
  8780. // ggml_compute_forward_permute
  8781. static void ggml_compute_forward_permute(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0) {
  8784. // NOP
  8785. UNUSED(params);
  8786. UNUSED(src0);
  8787. }
  8788. // ggml_compute_forward_transpose
  8789. static void ggml_compute_forward_transpose(
  8790. const struct ggml_compute_params * params,
  8791. const struct ggml_tensor * src0) {
  8792. // NOP
  8793. UNUSED(params);
  8794. UNUSED(src0);
  8795. }
  8796. // ggml_compute_forward_get_rows
  8797. static void ggml_compute_forward_get_rows_q(
  8798. const struct ggml_compute_params * params,
  8799. const struct ggml_tensor * src0,
  8800. const struct ggml_tensor * src1,
  8801. struct ggml_tensor * dst) {
  8802. assert(params->ith == 0);
  8803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8804. return;
  8805. }
  8806. GGML_TENSOR_BINARY_OP_LOCALS
  8807. const int64_t nc = ne00;
  8808. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8809. const enum ggml_type type = src0->type;
  8810. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8811. assert(ne0 == nc);
  8812. assert(ne02 == ne11);
  8813. assert(nb00 == ggml_type_size(type));
  8814. assert(ggml_nrows(dst) == nr);
  8815. // TODO: multi-thread
  8816. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8817. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8818. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8819. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8820. dequantize_row_q(
  8821. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8822. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8823. }
  8824. }
  8825. }
  8826. }
  8827. static void ggml_compute_forward_get_rows_f16(
  8828. const struct ggml_compute_params * params,
  8829. const struct ggml_tensor * src0,
  8830. const struct ggml_tensor * src1,
  8831. struct ggml_tensor * dst) {
  8832. assert(params->ith == 0);
  8833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8834. return;
  8835. }
  8836. GGML_TENSOR_BINARY_OP_LOCALS
  8837. const int64_t nc = ne00;
  8838. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8839. assert(ne0 == nc);
  8840. assert(ne02 == ne11);
  8841. assert(nb00 == sizeof(ggml_fp16_t));
  8842. assert(ggml_nrows(dst) == nr);
  8843. // TODO: multi-thread
  8844. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8845. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8846. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8847. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8848. ggml_fp16_to_fp32_row(
  8849. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8850. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8851. }
  8852. }
  8853. }
  8854. }
  8855. static void ggml_compute_forward_get_rows_f32(
  8856. const struct ggml_compute_params * params,
  8857. const struct ggml_tensor * src0,
  8858. const struct ggml_tensor * src1,
  8859. struct ggml_tensor * dst) {
  8860. assert(params->ith == 0);
  8861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8862. return;
  8863. }
  8864. GGML_TENSOR_BINARY_OP_LOCALS
  8865. const int64_t nc = ne00;
  8866. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8867. assert(ne0 == nc);
  8868. assert(ne02 == ne11);
  8869. assert(nb00 == sizeof(float));
  8870. assert(ggml_nrows(dst) == nr);
  8871. // TODO: multi-thread
  8872. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8873. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8874. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8875. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8876. ggml_vec_cpy_f32(nc,
  8877. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8878. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8879. }
  8880. }
  8881. }
  8882. }
  8883. static void ggml_compute_forward_get_rows(
  8884. const struct ggml_compute_params * params,
  8885. const struct ggml_tensor * src0,
  8886. const struct ggml_tensor * src1,
  8887. struct ggml_tensor * dst) {
  8888. switch (src0->type) {
  8889. case GGML_TYPE_Q4_0:
  8890. case GGML_TYPE_Q4_1:
  8891. case GGML_TYPE_Q5_0:
  8892. case GGML_TYPE_Q5_1:
  8893. case GGML_TYPE_Q8_0:
  8894. case GGML_TYPE_Q8_1:
  8895. case GGML_TYPE_Q2_K:
  8896. case GGML_TYPE_Q3_K:
  8897. case GGML_TYPE_Q4_K:
  8898. case GGML_TYPE_Q5_K:
  8899. case GGML_TYPE_Q6_K:
  8900. case GGML_TYPE_IQ2_XXS:
  8901. case GGML_TYPE_IQ2_XS:
  8902. {
  8903. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8904. } break;
  8905. case GGML_TYPE_F16:
  8906. {
  8907. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8908. } break;
  8909. case GGML_TYPE_F32:
  8910. case GGML_TYPE_I32:
  8911. {
  8912. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8913. } break;
  8914. default:
  8915. {
  8916. GGML_ASSERT(false);
  8917. } break;
  8918. }
  8919. //static bool first = true;
  8920. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8921. //if (first) {
  8922. // first = false;
  8923. //} else {
  8924. // for (int k = 0; k < dst->ne[1]; ++k) {
  8925. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8926. // for (int i = 0; i < 16; ++i) {
  8927. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8928. // }
  8929. // printf("\n");
  8930. // }
  8931. // printf("\n");
  8932. // }
  8933. // printf("\n");
  8934. // exit(0);
  8935. //}
  8936. }
  8937. // ggml_compute_forward_get_rows_back
  8938. static void ggml_compute_forward_get_rows_back_f32_f16(
  8939. const struct ggml_compute_params * params,
  8940. const struct ggml_tensor * src0,
  8941. const struct ggml_tensor * src1,
  8942. struct ggml_tensor * dst) {
  8943. GGML_ASSERT(params->ith == 0);
  8944. GGML_ASSERT(ggml_is_contiguous(dst));
  8945. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8946. if (params->type == GGML_TASK_INIT) {
  8947. memset(dst->data, 0, ggml_nbytes(dst));
  8948. }
  8949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8950. return;
  8951. }
  8952. const int nc = src0->ne[0];
  8953. const int nr = ggml_nelements(src1);
  8954. GGML_ASSERT( dst->ne[0] == nc);
  8955. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8956. for (int i = 0; i < nr; ++i) {
  8957. const int r = ((int32_t *) src1->data)[i];
  8958. for (int j = 0; j < nc; ++j) {
  8959. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8960. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8961. }
  8962. }
  8963. }
  8964. static void ggml_compute_forward_get_rows_back_f32(
  8965. const struct ggml_compute_params * params,
  8966. const struct ggml_tensor * src0,
  8967. const struct ggml_tensor * src1,
  8968. struct ggml_tensor * dst) {
  8969. GGML_ASSERT(params->ith == 0);
  8970. GGML_ASSERT(ggml_is_contiguous(dst));
  8971. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8972. if (params->type == GGML_TASK_INIT) {
  8973. memset(dst->data, 0, ggml_nbytes(dst));
  8974. }
  8975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8976. return;
  8977. }
  8978. const int nc = src0->ne[0];
  8979. const int nr = ggml_nelements(src1);
  8980. GGML_ASSERT( dst->ne[0] == nc);
  8981. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8982. for (int i = 0; i < nr; ++i) {
  8983. const int r = ((int32_t *) src1->data)[i];
  8984. ggml_vec_add_f32(nc,
  8985. (float *) ((char *) dst->data + r*dst->nb[1]),
  8986. (float *) ((char *) dst->data + r*dst->nb[1]),
  8987. (float *) ((char *) src0->data + i*src0->nb[1]));
  8988. }
  8989. }
  8990. static void ggml_compute_forward_get_rows_back(
  8991. const struct ggml_compute_params * params,
  8992. const struct ggml_tensor * src0,
  8993. const struct ggml_tensor * src1,
  8994. struct ggml_tensor * dst) {
  8995. switch (src0->type) {
  8996. case GGML_TYPE_F16:
  8997. {
  8998. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8999. } break;
  9000. case GGML_TYPE_F32:
  9001. {
  9002. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9003. } break;
  9004. default:
  9005. {
  9006. GGML_ASSERT(false);
  9007. } break;
  9008. }
  9009. //static bool first = true;
  9010. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9011. //if (first) {
  9012. // first = false;
  9013. //} else {
  9014. // for (int k = 0; k < dst->ne[1]; ++k) {
  9015. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9016. // for (int i = 0; i < 16; ++i) {
  9017. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9018. // }
  9019. // printf("\n");
  9020. // }
  9021. // printf("\n");
  9022. // }
  9023. // printf("\n");
  9024. // exit(0);
  9025. //}
  9026. }
  9027. // ggml_compute_forward_diag
  9028. static void ggml_compute_forward_diag_f32(
  9029. const struct ggml_compute_params * params,
  9030. const struct ggml_tensor * src0,
  9031. struct ggml_tensor * dst) {
  9032. GGML_ASSERT(params->ith == 0);
  9033. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9034. return;
  9035. }
  9036. // TODO: handle transposed/permuted matrices
  9037. GGML_TENSOR_UNARY_OP_LOCALS
  9038. GGML_ASSERT(ne00 == ne0);
  9039. GGML_ASSERT(ne00 == ne1);
  9040. GGML_ASSERT(ne01 == 1);
  9041. GGML_ASSERT(ne02 == ne2);
  9042. GGML_ASSERT(ne03 == ne3);
  9043. GGML_ASSERT(nb00 == sizeof(float));
  9044. GGML_ASSERT(nb0 == sizeof(float));
  9045. for (int i3 = 0; i3 < ne3; i3++) {
  9046. for (int i2 = 0; i2 < ne2; i2++) {
  9047. for (int i1 = 0; i1 < ne1; i1++) {
  9048. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9049. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9050. for (int i0 = 0; i0 < i1; i0++) {
  9051. d[i0] = 0;
  9052. }
  9053. d[i1] = s[i1];
  9054. for (int i0 = i1+1; i0 < ne0; i0++) {
  9055. d[i0] = 0;
  9056. }
  9057. }
  9058. }
  9059. }
  9060. }
  9061. static void ggml_compute_forward_diag(
  9062. const struct ggml_compute_params * params,
  9063. const struct ggml_tensor * src0,
  9064. struct ggml_tensor * dst) {
  9065. switch (src0->type) {
  9066. case GGML_TYPE_F32:
  9067. {
  9068. ggml_compute_forward_diag_f32(params, src0, dst);
  9069. } break;
  9070. default:
  9071. {
  9072. GGML_ASSERT(false);
  9073. } break;
  9074. }
  9075. }
  9076. // ggml_compute_forward_diag_mask_inf
  9077. static void ggml_compute_forward_diag_mask_f32(
  9078. const struct ggml_compute_params * params,
  9079. const struct ggml_tensor * src0,
  9080. struct ggml_tensor * dst,
  9081. const float value) {
  9082. const int ith = params->ith;
  9083. const int nth = params->nth;
  9084. const int n_past = ((int32_t *) dst->op_params)[0];
  9085. const bool inplace = src0->data == dst->data;
  9086. GGML_ASSERT(n_past >= 0);
  9087. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9088. // memcpy needs to be synchronized across threads to avoid race conditions.
  9089. // => do it in INIT phase
  9090. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9091. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9092. memcpy(
  9093. ((char *) dst->data),
  9094. ((char *) src0->data),
  9095. ggml_nbytes(dst));
  9096. }
  9097. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9098. return;
  9099. }
  9100. // TODO: handle transposed/permuted matrices
  9101. const int n = ggml_nrows(src0);
  9102. const int nc = src0->ne[0];
  9103. const int nr = src0->ne[1];
  9104. const int nz = n/nr;
  9105. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9106. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9107. for (int k = 0; k < nz; k++) {
  9108. for (int j = ith; j < nr; j += nth) {
  9109. for (int i = n_past; i < nc; i++) {
  9110. if (i > n_past + j) {
  9111. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9112. }
  9113. }
  9114. }
  9115. }
  9116. }
  9117. static void ggml_compute_forward_diag_mask_inf(
  9118. const struct ggml_compute_params * params,
  9119. const struct ggml_tensor * src0,
  9120. struct ggml_tensor * dst) {
  9121. switch (src0->type) {
  9122. case GGML_TYPE_F32:
  9123. {
  9124. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9125. } break;
  9126. default:
  9127. {
  9128. GGML_ASSERT(false);
  9129. } break;
  9130. }
  9131. }
  9132. static void ggml_compute_forward_diag_mask_zero(
  9133. const struct ggml_compute_params * params,
  9134. const struct ggml_tensor * src0,
  9135. struct ggml_tensor * dst) {
  9136. switch (src0->type) {
  9137. case GGML_TYPE_F32:
  9138. {
  9139. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9140. } break;
  9141. default:
  9142. {
  9143. GGML_ASSERT(false);
  9144. } break;
  9145. }
  9146. }
  9147. // ggml_compute_forward_soft_max
  9148. static void ggml_compute_forward_soft_max_f32(
  9149. const struct ggml_compute_params * params,
  9150. const struct ggml_tensor * src0,
  9151. const struct ggml_tensor * src1,
  9152. struct ggml_tensor * dst) {
  9153. assert(ggml_is_contiguous(dst));
  9154. assert(ggml_are_same_shape(src0, dst));
  9155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9156. return;
  9157. }
  9158. float scale = 1.0f;
  9159. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9160. // TODO: handle transposed/permuted matrices
  9161. const int ith = params->ith;
  9162. const int nth = params->nth;
  9163. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9164. const int nc = src0->ne[0];
  9165. const int nr = ggml_nrows(src0);
  9166. // rows per thread
  9167. const int dr = (nr + nth - 1)/nth;
  9168. // row range for this thread
  9169. const int ir0 = dr*ith;
  9170. const int ir1 = MIN(ir0 + dr, nr);
  9171. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9172. for (int i1 = ir0; i1 < ir1; i1++) {
  9173. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9174. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9175. // broadcast the mask across rows
  9176. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9177. ggml_vec_cpy_f32 (nc, wp, sp);
  9178. ggml_vec_scale_f32(nc, wp, scale);
  9179. if (mp) {
  9180. ggml_vec_acc_f32(nc, wp, mp);
  9181. }
  9182. #ifndef NDEBUG
  9183. for (int i = 0; i < nc; ++i) {
  9184. //printf("p[%d] = %f\n", i, p[i]);
  9185. assert(!isnan(wp[i]));
  9186. }
  9187. #endif
  9188. float max = -INFINITY;
  9189. ggml_vec_max_f32(nc, &max, wp);
  9190. ggml_float sum = 0.0;
  9191. uint16_t scvt;
  9192. for (int i = 0; i < nc; i++) {
  9193. if (wp[i] == -INFINITY) {
  9194. dp[i] = 0.0f;
  9195. } else {
  9196. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9197. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9198. memcpy(&scvt, &s, sizeof(scvt));
  9199. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9200. sum += (ggml_float)val;
  9201. dp[i] = val;
  9202. }
  9203. }
  9204. assert(sum > 0.0);
  9205. sum = 1.0/sum;
  9206. ggml_vec_scale_f32(nc, dp, sum);
  9207. #ifndef NDEBUG
  9208. for (int i = 0; i < nc; ++i) {
  9209. assert(!isnan(dp[i]));
  9210. assert(!isinf(dp[i]));
  9211. }
  9212. #endif
  9213. }
  9214. }
  9215. static void ggml_compute_forward_soft_max(
  9216. const struct ggml_compute_params * params,
  9217. const struct ggml_tensor * src0,
  9218. const struct ggml_tensor * src1,
  9219. struct ggml_tensor * dst) {
  9220. switch (src0->type) {
  9221. case GGML_TYPE_F32:
  9222. {
  9223. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9224. } break;
  9225. default:
  9226. {
  9227. GGML_ASSERT(false);
  9228. } break;
  9229. }
  9230. }
  9231. // ggml_compute_forward_soft_max_back
  9232. static void ggml_compute_forward_soft_max_back_f32(
  9233. const struct ggml_compute_params * params,
  9234. const struct ggml_tensor * src0,
  9235. const struct ggml_tensor * src1,
  9236. struct ggml_tensor * dst) {
  9237. GGML_ASSERT(ggml_is_contiguous(src0));
  9238. GGML_ASSERT(ggml_is_contiguous(src1));
  9239. GGML_ASSERT(ggml_is_contiguous(dst));
  9240. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9241. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9243. return;
  9244. }
  9245. // TODO: handle transposed/permuted matrices
  9246. const int ith = params->ith;
  9247. const int nth = params->nth;
  9248. const int nc = src0->ne[0];
  9249. const int nr = ggml_nrows(src0);
  9250. // rows per thread
  9251. const int dr = (nr + nth - 1)/nth;
  9252. // row range for this thread
  9253. const int ir0 = dr*ith;
  9254. const int ir1 = MIN(ir0 + dr, nr);
  9255. for (int i1 = ir0; i1 < ir1; i1++) {
  9256. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9257. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9258. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9259. #ifndef NDEBUG
  9260. for (int i = 0; i < nc; ++i) {
  9261. //printf("p[%d] = %f\n", i, p[i]);
  9262. assert(!isnan(dy[i]));
  9263. assert(!isnan(y[i]));
  9264. }
  9265. #endif
  9266. // Jii = yi - yi*yi
  9267. // Jij = -yi*yj
  9268. // J = diag(y)-y.T*y
  9269. // dx = J * dy
  9270. // dxk = sum_i(Jki * dyi)
  9271. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9272. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9273. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9274. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9275. // dxk = -yk * dot(y, dy) + yk*dyk
  9276. // dxk = yk * (- dot(y, dy) + dyk)
  9277. // dxk = yk * (dyk - dot(y, dy))
  9278. //
  9279. // post-order:
  9280. // dot_y_dy := dot(y, dy)
  9281. // dx := dy
  9282. // dx := dx - dot_y_dy
  9283. // dx := dx * y
  9284. // linear runtime, no additional memory
  9285. float dot_y_dy = 0;
  9286. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9287. ggml_vec_cpy_f32 (nc, dx, dy);
  9288. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9289. ggml_vec_mul_f32 (nc, dx, dx, y);
  9290. #ifndef NDEBUG
  9291. for (int i = 0; i < nc; ++i) {
  9292. assert(!isnan(dx[i]));
  9293. assert(!isinf(dx[i]));
  9294. }
  9295. #endif
  9296. }
  9297. }
  9298. static void ggml_compute_forward_soft_max_back(
  9299. const struct ggml_compute_params * params,
  9300. const struct ggml_tensor * src0,
  9301. const struct ggml_tensor * src1,
  9302. struct ggml_tensor * dst) {
  9303. switch (src0->type) {
  9304. case GGML_TYPE_F32:
  9305. {
  9306. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9307. } break;
  9308. default:
  9309. {
  9310. GGML_ASSERT(false);
  9311. } break;
  9312. }
  9313. }
  9314. // ggml_compute_forward_alibi
  9315. static void ggml_compute_forward_alibi_f32(
  9316. const struct ggml_compute_params * params,
  9317. const struct ggml_tensor * src0,
  9318. struct ggml_tensor * dst) {
  9319. assert(params->ith == 0);
  9320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9321. return;
  9322. }
  9323. //const int n_past = ((int32_t *) dst->op_params)[0];
  9324. const int n_head = ((int32_t *) dst->op_params)[1];
  9325. float max_bias;
  9326. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9327. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9328. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9329. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9330. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9331. const int64_t n = ggml_nrows(src0);
  9332. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9333. const size_t nb0 = src0->nb[0];
  9334. const size_t nb1 = src0->nb[1];
  9335. const size_t nb2 = src0->nb[2];
  9336. //const int nb3 = src0->nb[3];
  9337. GGML_ASSERT(nb0 == sizeof(float));
  9338. GGML_ASSERT(n_head == ne2);
  9339. // add alibi to src0 (KQ_scaled)
  9340. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9341. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9342. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9343. for (int64_t i = 0; i < ne0; i++) {
  9344. for (int64_t j = 0; j < ne1; j++) {
  9345. for (int64_t k = 0; k < ne2_ne3; k++) {
  9346. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9347. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9348. // TODO: k*nb2 or k*nb3
  9349. float m_k;
  9350. if (k < n_heads_log2_floor) {
  9351. m_k = powf(m0, k + 1);
  9352. } else {
  9353. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9354. }
  9355. pdst[0] = i * m_k + src[0];
  9356. }
  9357. }
  9358. }
  9359. }
  9360. static void ggml_compute_forward_alibi_f16(
  9361. const struct ggml_compute_params * params,
  9362. const struct ggml_tensor * src0,
  9363. struct ggml_tensor * dst) {
  9364. assert(params->ith == 0);
  9365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9366. return;
  9367. }
  9368. //const int n_past = ((int32_t *) dst->op_params)[0];
  9369. const int n_head = ((int32_t *) dst->op_params)[1];
  9370. float max_bias;
  9371. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9372. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9373. const int ne1 = src0->ne[1]; // seq_len_without_past
  9374. const int ne2 = src0->ne[2]; // n_head -> this is k
  9375. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9376. const int n = ggml_nrows(src0);
  9377. const int ne2_ne3 = n/ne1; // ne2*ne3
  9378. const int nb0 = src0->nb[0];
  9379. const int nb1 = src0->nb[1];
  9380. const int nb2 = src0->nb[2];
  9381. //const int nb3 = src0->nb[3];
  9382. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9383. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9384. GGML_ASSERT(n_head == ne2);
  9385. // add alibi to src0 (KQ_scaled)
  9386. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9387. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9388. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9389. for (int i = 0; i < ne0; i++) {
  9390. for (int j = 0; j < ne1; j++) {
  9391. for (int k = 0; k < ne2_ne3; k++) {
  9392. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9393. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9394. // TODO: k*nb2 or k*nb3
  9395. float m_k;
  9396. if (k < n_heads_log2_floor) {
  9397. m_k = powf(m0, k + 1);
  9398. } else {
  9399. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9400. }
  9401. // we return F32
  9402. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9403. }
  9404. }
  9405. }
  9406. }
  9407. static void ggml_compute_forward_alibi(
  9408. const struct ggml_compute_params * params,
  9409. const struct ggml_tensor * src0,
  9410. struct ggml_tensor * dst) {
  9411. switch (src0->type) {
  9412. case GGML_TYPE_F16:
  9413. {
  9414. ggml_compute_forward_alibi_f16(params, src0, dst);
  9415. } break;
  9416. case GGML_TYPE_F32:
  9417. {
  9418. ggml_compute_forward_alibi_f32(params, src0, dst);
  9419. } break;
  9420. case GGML_TYPE_Q4_0:
  9421. case GGML_TYPE_Q4_1:
  9422. case GGML_TYPE_Q5_0:
  9423. case GGML_TYPE_Q5_1:
  9424. case GGML_TYPE_Q8_0:
  9425. case GGML_TYPE_Q8_1:
  9426. case GGML_TYPE_Q2_K:
  9427. case GGML_TYPE_Q3_K:
  9428. case GGML_TYPE_Q4_K:
  9429. case GGML_TYPE_Q5_K:
  9430. case GGML_TYPE_Q6_K:
  9431. case GGML_TYPE_IQ2_XXS:
  9432. case GGML_TYPE_IQ2_XS:
  9433. case GGML_TYPE_Q8_K:
  9434. case GGML_TYPE_I8:
  9435. case GGML_TYPE_I16:
  9436. case GGML_TYPE_I32:
  9437. case GGML_TYPE_COUNT:
  9438. {
  9439. GGML_ASSERT(false);
  9440. } break;
  9441. }
  9442. }
  9443. // ggml_compute_forward_clamp
  9444. static void ggml_compute_forward_clamp_f32(
  9445. const struct ggml_compute_params * params,
  9446. const struct ggml_tensor * src0,
  9447. struct ggml_tensor * dst) {
  9448. assert(params->ith == 0);
  9449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9450. return;
  9451. }
  9452. float min;
  9453. float max;
  9454. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9455. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9456. const int ith = params->ith;
  9457. const int nth = params->nth;
  9458. const int n = ggml_nrows(src0);
  9459. const int nc = src0->ne[0];
  9460. const size_t nb00 = src0->nb[0];
  9461. const size_t nb01 = src0->nb[1];
  9462. const size_t nb0 = dst->nb[0];
  9463. const size_t nb1 = dst->nb[1];
  9464. GGML_ASSERT( nb0 == sizeof(float));
  9465. GGML_ASSERT(nb00 == sizeof(float));
  9466. for (int j = ith; j < n; j += nth) {
  9467. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9468. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9469. for (int i = 0; i < nc; i++) {
  9470. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9471. }
  9472. }
  9473. }
  9474. static void ggml_compute_forward_clamp(
  9475. const struct ggml_compute_params * params,
  9476. const struct ggml_tensor * src0,
  9477. struct ggml_tensor * dst) {
  9478. switch (src0->type) {
  9479. case GGML_TYPE_F32:
  9480. {
  9481. ggml_compute_forward_clamp_f32(params, src0, dst);
  9482. } break;
  9483. case GGML_TYPE_F16:
  9484. case GGML_TYPE_Q4_0:
  9485. case GGML_TYPE_Q4_1:
  9486. case GGML_TYPE_Q5_0:
  9487. case GGML_TYPE_Q5_1:
  9488. case GGML_TYPE_Q8_0:
  9489. case GGML_TYPE_Q8_1:
  9490. case GGML_TYPE_Q2_K:
  9491. case GGML_TYPE_Q3_K:
  9492. case GGML_TYPE_Q4_K:
  9493. case GGML_TYPE_Q5_K:
  9494. case GGML_TYPE_Q6_K:
  9495. case GGML_TYPE_IQ2_XXS:
  9496. case GGML_TYPE_IQ2_XS:
  9497. case GGML_TYPE_Q8_K:
  9498. case GGML_TYPE_I8:
  9499. case GGML_TYPE_I16:
  9500. case GGML_TYPE_I32:
  9501. case GGML_TYPE_COUNT:
  9502. {
  9503. GGML_ASSERT(false);
  9504. } break;
  9505. }
  9506. }
  9507. // ggml_compute_forward_rope
  9508. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9509. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9510. return 1 - MIN(1, MAX(0, y));
  9511. }
  9512. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9513. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9514. static void rope_yarn(
  9515. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9516. float * cos_theta, float * sin_theta
  9517. ) {
  9518. // Get n-d rotational scaling corrected for extrapolation
  9519. float theta_interp = freq_scale * theta_extrap;
  9520. float theta = theta_interp;
  9521. if (ext_factor != 0.0f) {
  9522. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9523. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9524. // Get n-d magnitude scaling corrected for interpolation
  9525. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9526. }
  9527. *cos_theta = cosf(theta) * mscale;
  9528. *sin_theta = sinf(theta) * mscale;
  9529. }
  9530. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9531. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9532. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9533. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9534. }
  9535. static void ggml_rope_cache_init(
  9536. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9537. float * cache, float sin_sign, float theta_scale
  9538. ) {
  9539. float theta = theta_base;
  9540. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9541. rope_yarn(
  9542. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9543. );
  9544. cache[i0 + 1] *= sin_sign;
  9545. theta *= theta_scale;
  9546. }
  9547. }
  9548. GGML_CALL void ggml_rope_yarn_corr_dims(
  9549. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9550. ) {
  9551. // start and end correction dims
  9552. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9553. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9554. }
  9555. static void ggml_compute_forward_rope_f32(
  9556. const struct ggml_compute_params * params,
  9557. const struct ggml_tensor * src0,
  9558. const struct ggml_tensor * src1,
  9559. struct ggml_tensor * dst,
  9560. const bool forward) {
  9561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9562. return;
  9563. }
  9564. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9565. // these two only relevant for xPos RoPE:
  9566. float xpos_base;
  9567. bool xpos_down;
  9568. //const int n_past = ((int32_t *) dst->op_params)[0];
  9569. const int n_dims = ((int32_t *) dst->op_params)[1];
  9570. const int mode = ((int32_t *) dst->op_params)[2];
  9571. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9572. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9573. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9574. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9575. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9576. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9577. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9578. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9579. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9580. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9581. GGML_TENSOR_UNARY_OP_LOCALS
  9582. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9583. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9584. GGML_ASSERT(nb00 == sizeof(float));
  9585. const int ith = params->ith;
  9586. const int nth = params->nth;
  9587. const int nr = ggml_nrows(dst);
  9588. GGML_ASSERT(n_dims <= ne0);
  9589. GGML_ASSERT(n_dims % 2 == 0);
  9590. // rows per thread
  9591. const int dr = (nr + nth - 1)/nth;
  9592. // row range for this thread
  9593. const int ir0 = dr*ith;
  9594. const int ir1 = MIN(ir0 + dr, nr);
  9595. // row index used to determine which thread to use
  9596. int ir = 0;
  9597. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9598. const float inv_ndims = -1.f/n_dims;
  9599. float corr_dims[2];
  9600. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9601. const bool is_neox = mode & 2;
  9602. const bool is_glm = mode & 4;
  9603. // backward process uses inverse rotation by cos and sin.
  9604. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9605. // this essentially just switches the sign of sin.
  9606. const float sin_sign = forward ? 1.0f : -1.0f;
  9607. const int32_t * pos = (const int32_t *) src1->data;
  9608. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9609. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9610. const int64_t p = pos[i2];
  9611. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9612. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9613. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9614. }
  9615. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9616. if (ir++ < ir0) continue;
  9617. if (ir > ir1) break;
  9618. float theta_base = (float)p;
  9619. if (is_glm) {
  9620. theta_base = MIN(p, n_ctx - 2);
  9621. float block_theta = MAX(p - (n_ctx - 2), 0);
  9622. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9623. const float cos_theta = cosf(theta_base);
  9624. const float sin_theta = sinf(theta_base) * sin_sign;
  9625. const float cos_block_theta = cosf(block_theta);
  9626. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9627. theta_base *= theta_scale;
  9628. block_theta *= theta_scale;
  9629. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9630. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9631. const float x0 = src[0];
  9632. const float x1 = src[n_dims/2];
  9633. const float x2 = src[n_dims];
  9634. const float x3 = src[n_dims/2*3];
  9635. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9636. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9637. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9638. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9639. }
  9640. } else if (!is_neox) {
  9641. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9642. const float cos_theta = cache[i0 + 0];
  9643. const float sin_theta = cache[i0 + 1];
  9644. // zeta scaling for xPos only:
  9645. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9646. if (xpos_down) zeta = 1.0f / zeta;
  9647. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9648. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9649. const float x0 = src[0];
  9650. const float x1 = src[1];
  9651. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9652. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9653. }
  9654. } else {
  9655. // TODO: this might be wrong for ne0 != n_dims - need double check
  9656. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9657. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9658. theta_base *= freq_scale;
  9659. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9660. if (ic < n_dims) {
  9661. const int64_t ib = 0;
  9662. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9663. float cur_rot = inv_ndims * ic - ib;
  9664. float cos_theta, sin_theta;
  9665. rope_yarn(
  9666. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9667. &cos_theta, &sin_theta
  9668. );
  9669. sin_theta *= sin_sign;
  9670. theta_base *= theta_scale;
  9671. const int64_t i0 = ib*n_dims + ic/2;
  9672. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9673. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9674. const float x0 = src[0];
  9675. const float x1 = src[n_dims/2];
  9676. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9677. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9678. } else {
  9679. const int64_t i0 = ic;
  9680. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9681. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9682. dst_data[0] = src[0];
  9683. dst_data[1] = src[1];
  9684. }
  9685. }
  9686. }
  9687. }
  9688. }
  9689. }
  9690. }
  9691. static void ggml_compute_forward_rope_f16(
  9692. const struct ggml_compute_params * params,
  9693. const struct ggml_tensor * src0,
  9694. const struct ggml_tensor * src1,
  9695. struct ggml_tensor * dst,
  9696. const bool forward) {
  9697. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9698. return;
  9699. }
  9700. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9701. //const int n_past = ((int32_t *) dst->op_params)[0];
  9702. const int n_dims = ((int32_t *) dst->op_params)[1];
  9703. const int mode = ((int32_t *) dst->op_params)[2];
  9704. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9705. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9706. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9707. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9708. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9709. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9710. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9711. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9712. GGML_TENSOR_UNARY_OP_LOCALS
  9713. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9714. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9715. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9716. const int ith = params->ith;
  9717. const int nth = params->nth;
  9718. const int nr = ggml_nrows(dst);
  9719. GGML_ASSERT(n_dims <= ne0);
  9720. GGML_ASSERT(n_dims % 2 == 0);
  9721. // rows per thread
  9722. const int dr = (nr + nth - 1)/nth;
  9723. // row range for this thread
  9724. const int ir0 = dr*ith;
  9725. const int ir1 = MIN(ir0 + dr, nr);
  9726. // row index used to determine which thread to use
  9727. int ir = 0;
  9728. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9729. const float inv_ndims = -1.f/n_dims;
  9730. float corr_dims[2];
  9731. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9732. const bool is_neox = mode & 2;
  9733. const bool is_glm = mode & 4;
  9734. // backward process uses inverse rotation by cos and sin.
  9735. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9736. // this essentially just switches the sign of sin.
  9737. const float sin_sign = forward ? 1.0f : -1.0f;
  9738. const int32_t * pos = (const int32_t *) src1->data;
  9739. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9740. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9741. const int64_t p = pos[i2];
  9742. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9743. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9744. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9745. }
  9746. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9747. if (ir++ < ir0) continue;
  9748. if (ir > ir1) break;
  9749. float theta_base = (float)p;
  9750. if (is_glm) {
  9751. theta_base = MIN(p, n_ctx - 2);
  9752. float block_theta = MAX(p - (n_ctx - 2), 0);
  9753. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9754. const float cos_theta = cosf(theta_base);
  9755. const float sin_theta = sinf(theta_base) * sin_sign;
  9756. const float cos_block_theta = cosf(block_theta);
  9757. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9758. theta_base *= theta_scale;
  9759. block_theta *= theta_scale;
  9760. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9761. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9762. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9763. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9764. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9765. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9766. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9767. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9768. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9769. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9770. }
  9771. } else if (!is_neox) {
  9772. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9773. const float cos_theta = cache[i0 + 0];
  9774. const float sin_theta = cache[i0 + 1];
  9775. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9776. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9777. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9778. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9779. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9780. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9781. }
  9782. } else {
  9783. // TODO: this might be wrong for ne0 != n_dims - need double check
  9784. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9785. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9786. theta_base *= freq_scale;
  9787. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9788. if (ic < n_dims) {
  9789. const int64_t ib = 0;
  9790. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9791. float cur_rot = inv_ndims * ic - ib;
  9792. float cos_theta, sin_theta;
  9793. rope_yarn(
  9794. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9795. &cos_theta, &sin_theta
  9796. );
  9797. sin_theta *= sin_sign;
  9798. theta_base *= theta_scale;
  9799. const int64_t i0 = ib*n_dims + ic/2;
  9800. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9801. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9802. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9803. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9804. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9805. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9806. } else {
  9807. const int64_t i0 = ic;
  9808. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9809. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9810. dst_data[0] = src[0];
  9811. dst_data[1] = src[1];
  9812. }
  9813. }
  9814. }
  9815. }
  9816. }
  9817. }
  9818. }
  9819. static void ggml_compute_forward_rope(
  9820. const struct ggml_compute_params * params,
  9821. const struct ggml_tensor * src0,
  9822. const struct ggml_tensor * src1,
  9823. struct ggml_tensor * dst) {
  9824. switch (src0->type) {
  9825. case GGML_TYPE_F16:
  9826. {
  9827. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9828. } break;
  9829. case GGML_TYPE_F32:
  9830. {
  9831. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9832. } break;
  9833. default:
  9834. {
  9835. GGML_ASSERT(false);
  9836. } break;
  9837. }
  9838. }
  9839. // ggml_compute_forward_rope_back
  9840. static void ggml_compute_forward_rope_back(
  9841. const struct ggml_compute_params * params,
  9842. const struct ggml_tensor * src0,
  9843. const struct ggml_tensor * src1,
  9844. struct ggml_tensor * dst) {
  9845. switch (src0->type) {
  9846. case GGML_TYPE_F16:
  9847. {
  9848. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9849. } break;
  9850. case GGML_TYPE_F32:
  9851. {
  9852. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9853. } break;
  9854. default:
  9855. {
  9856. GGML_ASSERT(false);
  9857. } break;
  9858. }
  9859. }
  9860. // ggml_compute_forward_conv_transpose_1d
  9861. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9862. const struct ggml_compute_params * params,
  9863. const struct ggml_tensor * src0,
  9864. const struct ggml_tensor * src1,
  9865. struct ggml_tensor * dst) {
  9866. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9867. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9868. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9869. int64_t t0 = ggml_perf_time_us();
  9870. UNUSED(t0);
  9871. GGML_TENSOR_BINARY_OP_LOCALS
  9872. const int ith = params->ith;
  9873. const int nth = params->nth;
  9874. const int nk = ne00*ne01*ne02;
  9875. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9876. GGML_ASSERT(nb10 == sizeof(float));
  9877. if (params->type == GGML_TASK_INIT) {
  9878. memset(params->wdata, 0, params->wsize);
  9879. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9880. {
  9881. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9882. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9883. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9884. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9885. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9886. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9887. dst_data[i00*ne02 + i02] = src[i00];
  9888. }
  9889. }
  9890. }
  9891. }
  9892. // permute source data (src1) from (L x Cin) to (Cin x L)
  9893. {
  9894. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9895. ggml_fp16_t * dst_data = wdata;
  9896. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9897. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9898. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9899. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9900. }
  9901. }
  9902. }
  9903. // need to zero dst since we are accumulating into it
  9904. memset(dst->data, 0, ggml_nbytes(dst));
  9905. return;
  9906. }
  9907. if (params->type == GGML_TASK_FINALIZE) {
  9908. return;
  9909. }
  9910. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9911. // total rows in dst
  9912. const int nr = ne1;
  9913. // rows per thread
  9914. const int dr = (nr + nth - 1)/nth;
  9915. // row range for this thread
  9916. const int ir0 = dr*ith;
  9917. const int ir1 = MIN(ir0 + dr, nr);
  9918. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9919. ggml_fp16_t * const wdata_src = wdata + nk;
  9920. for (int i1 = ir0; i1 < ir1; i1++) {
  9921. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9922. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9923. for (int i10 = 0; i10 < ne10; i10++) {
  9924. const int i1n = i10*ne11;
  9925. for (int i00 = 0; i00 < ne00; i00++) {
  9926. float v = 0;
  9927. ggml_vec_dot_f16(ne02, &v,
  9928. (ggml_fp16_t *) wdata_src + i1n,
  9929. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9930. dst_data[i10*s0 + i00] += v;
  9931. }
  9932. }
  9933. }
  9934. }
  9935. static void ggml_compute_forward_conv_transpose_1d_f32(
  9936. const struct ggml_compute_params * params,
  9937. const struct ggml_tensor * src0,
  9938. const struct ggml_tensor * src1,
  9939. struct ggml_tensor * dst) {
  9940. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9941. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9942. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9943. int64_t t0 = ggml_perf_time_us();
  9944. UNUSED(t0);
  9945. GGML_TENSOR_BINARY_OP_LOCALS
  9946. const int ith = params->ith;
  9947. const int nth = params->nth;
  9948. const int nk = ne00*ne01*ne02;
  9949. GGML_ASSERT(nb00 == sizeof(float));
  9950. GGML_ASSERT(nb10 == sizeof(float));
  9951. if (params->type == GGML_TASK_INIT) {
  9952. memset(params->wdata, 0, params->wsize);
  9953. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9954. {
  9955. float * const wdata = (float *) params->wdata + 0;
  9956. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9957. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9958. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9959. float * dst_data = wdata + i01*ne00*ne02;
  9960. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9961. dst_data[i00*ne02 + i02] = src[i00];
  9962. }
  9963. }
  9964. }
  9965. }
  9966. // prepare source data (src1)
  9967. {
  9968. float * const wdata = (float *) params->wdata + nk;
  9969. float * dst_data = wdata;
  9970. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9971. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9972. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9973. dst_data[i10*ne11 + i11] = src[i10];
  9974. }
  9975. }
  9976. }
  9977. // need to zero dst since we are accumulating into it
  9978. memset(dst->data, 0, ggml_nbytes(dst));
  9979. return;
  9980. }
  9981. if (params->type == GGML_TASK_FINALIZE) {
  9982. return;
  9983. }
  9984. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9985. // total rows in dst
  9986. const int nr = ne1;
  9987. // rows per thread
  9988. const int dr = (nr + nth - 1)/nth;
  9989. // row range for this thread
  9990. const int ir0 = dr*ith;
  9991. const int ir1 = MIN(ir0 + dr, nr);
  9992. float * const wdata = (float *) params->wdata + 0;
  9993. float * const wdata_src = wdata + nk;
  9994. for (int i1 = ir0; i1 < ir1; i1++) {
  9995. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9996. float * wdata_kernel = wdata + i1*ne02*ne00;
  9997. for (int i10 = 0; i10 < ne10; i10++) {
  9998. const int i1n = i10*ne11;
  9999. for (int i00 = 0; i00 < ne00; i00++) {
  10000. float v = 0;
  10001. ggml_vec_dot_f32(ne02, &v,
  10002. wdata_src + i1n,
  10003. wdata_kernel + i00*ne02);
  10004. dst_data[i10*s0 + i00] += v;
  10005. }
  10006. }
  10007. }
  10008. }
  10009. static void ggml_compute_forward_conv_transpose_1d(
  10010. const struct ggml_compute_params * params,
  10011. const struct ggml_tensor * src0,
  10012. const struct ggml_tensor * src1,
  10013. struct ggml_tensor * dst) {
  10014. switch (src0->type) {
  10015. case GGML_TYPE_F16:
  10016. {
  10017. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10018. } break;
  10019. case GGML_TYPE_F32:
  10020. {
  10021. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10022. } break;
  10023. default:
  10024. {
  10025. GGML_ASSERT(false);
  10026. } break;
  10027. }
  10028. }
  10029. // src0: kernel [OC, IC, KH, KW]
  10030. // src1: image [N, IC, IH, IW]
  10031. // dst: result [N, OH, OW, IC*KH*KW]
  10032. static void ggml_compute_forward_im2col_f16(
  10033. const struct ggml_compute_params * params,
  10034. const struct ggml_tensor * src0,
  10035. const struct ggml_tensor * src1,
  10036. struct ggml_tensor * dst) {
  10037. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10038. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10039. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10040. int64_t t0 = ggml_perf_time_us();
  10041. UNUSED(t0);
  10042. GGML_TENSOR_BINARY_OP_LOCALS;
  10043. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10044. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10045. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10046. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10047. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10048. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10049. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10050. const int ith = params->ith;
  10051. const int nth = params->nth;
  10052. const int64_t N = is_2D ? ne13 : ne12;
  10053. const int64_t IC = is_2D ? ne12 : ne11;
  10054. const int64_t IH = is_2D ? ne11 : 1;
  10055. const int64_t IW = ne10;
  10056. const int64_t KH = is_2D ? ne01 : 1;
  10057. const int64_t KW = ne00;
  10058. const int64_t OH = is_2D ? ne2 : 1;
  10059. const int64_t OW = ne1;
  10060. int ofs0 = is_2D ? nb13 : nb12;
  10061. int ofs1 = is_2D ? nb12 : nb11;
  10062. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10063. GGML_ASSERT(nb10 == sizeof(float));
  10064. if (params->type == GGML_TASK_INIT) {
  10065. return;
  10066. }
  10067. if (params->type == GGML_TASK_FINALIZE) {
  10068. return;
  10069. }
  10070. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10071. {
  10072. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10073. for (int64_t in = 0; in < N; in++) {
  10074. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10075. for (int64_t iow = 0; iow < OW; iow++) {
  10076. for (int64_t iic = ith; iic < IC; iic += nth) {
  10077. // micro kernel
  10078. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10079. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10080. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10081. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10082. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10083. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10084. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10085. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10086. } else {
  10087. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10088. }
  10089. }
  10090. }
  10091. }
  10092. }
  10093. }
  10094. }
  10095. }
  10096. }
  10097. static void ggml_compute_forward_im2col(
  10098. const struct ggml_compute_params * params,
  10099. const struct ggml_tensor * src0,
  10100. const struct ggml_tensor * src1,
  10101. struct ggml_tensor * dst) {
  10102. switch (src0->type) {
  10103. case GGML_TYPE_F16:
  10104. {
  10105. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10106. } break;
  10107. case GGML_TYPE_F32:
  10108. {
  10109. GGML_ASSERT(false);
  10110. } break;
  10111. default:
  10112. {
  10113. GGML_ASSERT(false);
  10114. } break;
  10115. }
  10116. }
  10117. // ggml_compute_forward_conv_transpose_2d
  10118. static void ggml_compute_forward_conv_transpose_2d(
  10119. const struct ggml_compute_params * params,
  10120. const struct ggml_tensor * src0,
  10121. const struct ggml_tensor * src1,
  10122. struct ggml_tensor * dst) {
  10123. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10124. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10125. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10126. int64_t t0 = ggml_perf_time_us();
  10127. UNUSED(t0);
  10128. GGML_TENSOR_BINARY_OP_LOCALS
  10129. const int ith = params->ith;
  10130. const int nth = params->nth;
  10131. const int nk = ne00*ne01*ne02*ne03;
  10132. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10133. GGML_ASSERT(nb10 == sizeof(float));
  10134. if (params->type == GGML_TASK_INIT) {
  10135. memset(params->wdata, 0, params->wsize);
  10136. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10137. {
  10138. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10139. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10140. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10141. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10142. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10143. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10144. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10145. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10146. }
  10147. }
  10148. }
  10149. }
  10150. }
  10151. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10152. {
  10153. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10154. for (int i12 = 0; i12 < ne12; i12++) {
  10155. for (int i11 = 0; i11 < ne11; i11++) {
  10156. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10157. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10158. for (int i10 = 0; i10 < ne10; i10++) {
  10159. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10160. }
  10161. }
  10162. }
  10163. }
  10164. memset(dst->data, 0, ggml_nbytes(dst));
  10165. return;
  10166. }
  10167. if (params->type == GGML_TASK_FINALIZE) {
  10168. return;
  10169. }
  10170. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10171. // total patches in dst
  10172. const int np = ne2;
  10173. // patches per thread
  10174. const int dp = (np + nth - 1)/nth;
  10175. // patch range for this thread
  10176. const int ip0 = dp*ith;
  10177. const int ip1 = MIN(ip0 + dp, np);
  10178. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10179. ggml_fp16_t * const wdata_src = wdata + nk;
  10180. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10181. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10182. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10183. for (int i11 = 0; i11 < ne11; i11++) {
  10184. for (int i10 = 0; i10 < ne10; i10++) {
  10185. const int i1n = i11*ne10*ne12 + i10*ne12;
  10186. for (int i01 = 0; i01 < ne01; i01++) {
  10187. for (int i00 = 0; i00 < ne00; i00++) {
  10188. float v = 0;
  10189. ggml_vec_dot_f16(ne03, &v,
  10190. wdata_src + i1n,
  10191. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10192. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10193. }
  10194. }
  10195. }
  10196. }
  10197. }
  10198. }
  10199. // ggml_compute_forward_pool_1d_sk_p0
  10200. static void ggml_compute_forward_pool_1d_sk_p0(
  10201. const struct ggml_compute_params * params,
  10202. const enum ggml_op_pool op,
  10203. const struct ggml_tensor * src,
  10204. const int k,
  10205. struct ggml_tensor * dst) {
  10206. assert(src->type == GGML_TYPE_F32);
  10207. assert(params->ith == 0);
  10208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10209. return;
  10210. }
  10211. const char * cdata = (const char *)src->data;
  10212. const char * const data_end = cdata + ggml_nbytes(src);
  10213. float * drow = (float *)dst->data;
  10214. const int64_t rs = dst->ne[0];
  10215. while (cdata < data_end) {
  10216. const float * const srow = (const float *)cdata;
  10217. int j = 0;
  10218. for (int64_t i = 0; i < rs; ++i) {
  10219. switch (op) {
  10220. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10221. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10222. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10223. }
  10224. for (int ki = 0; ki < k; ++ki) {
  10225. switch (op) {
  10226. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10227. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10228. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10229. }
  10230. ++j;
  10231. }
  10232. switch (op) {
  10233. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10234. case GGML_OP_POOL_MAX: break;
  10235. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10236. }
  10237. }
  10238. cdata += src->nb[1];
  10239. drow += rs;
  10240. }
  10241. }
  10242. // ggml_compute_forward_pool_1d
  10243. static void ggml_compute_forward_pool_1d(
  10244. const struct ggml_compute_params * params,
  10245. const struct ggml_tensor * src0,
  10246. struct ggml_tensor * dst) {
  10247. const int32_t * opts = (const int32_t *)dst->op_params;
  10248. enum ggml_op_pool op = opts[0];
  10249. const int k0 = opts[1];
  10250. const int s0 = opts[2];
  10251. const int p0 = opts[3];
  10252. GGML_ASSERT(p0 == 0); // padding not supported
  10253. GGML_ASSERT(k0 == s0); // only s = k supported
  10254. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10255. }
  10256. // ggml_compute_forward_pool_2d
  10257. static void ggml_compute_forward_pool_2d(
  10258. const struct ggml_compute_params * params,
  10259. const struct ggml_tensor * src,
  10260. struct ggml_tensor * dst) {
  10261. assert(src->type == GGML_TYPE_F32);
  10262. assert(params->ith == 0);
  10263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10264. return;
  10265. }
  10266. const int32_t * opts = (const int32_t *)dst->op_params;
  10267. enum ggml_op_pool op = opts[0];
  10268. const int k0 = opts[1];
  10269. const int k1 = opts[2];
  10270. const int s0 = opts[3];
  10271. const int s1 = opts[4];
  10272. const int p0 = opts[5];
  10273. const int p1 = opts[6];
  10274. const char * cdata = (const char*)src->data;
  10275. const char * const data_end = cdata + ggml_nbytes(src);
  10276. const int64_t px = dst->ne[0];
  10277. const int64_t py = dst->ne[1];
  10278. const int64_t pa = px * py;
  10279. float * dplane = (float *)dst->data;
  10280. const int ka = k0 * k1;
  10281. const int offset0 = -p0;
  10282. const int offset1 = -p1;
  10283. while (cdata < data_end) {
  10284. for (int oy = 0; oy < py; ++oy) {
  10285. float * const drow = dplane + oy * px;
  10286. for (int ox = 0; ox < px; ++ox) {
  10287. float * const out = drow + ox;
  10288. switch (op) {
  10289. case GGML_OP_POOL_AVG: *out = 0; break;
  10290. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10291. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10292. }
  10293. const int ix = offset0 + ox * s0;
  10294. const int iy = offset1 + oy * s1;
  10295. for (int ky = 0; ky < k1; ++ky) {
  10296. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10297. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10298. for (int kx = 0; kx < k0; ++kx) {
  10299. int j = ix + kx;
  10300. if (j < 0 || j >= src->ne[0]) continue;
  10301. switch (op) {
  10302. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10303. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10304. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10305. }
  10306. }
  10307. }
  10308. switch (op) {
  10309. case GGML_OP_POOL_AVG: *out /= ka; break;
  10310. case GGML_OP_POOL_MAX: break;
  10311. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10312. }
  10313. }
  10314. }
  10315. cdata += src->nb[2];
  10316. dplane += pa;
  10317. }
  10318. }
  10319. // ggml_compute_forward_upscale
  10320. static void ggml_compute_forward_upscale_f32(
  10321. const struct ggml_compute_params * params,
  10322. const struct ggml_tensor * src0,
  10323. struct ggml_tensor * dst) {
  10324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10325. return;
  10326. }
  10327. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10328. const int ith = params->ith;
  10329. const int nth = params->nth;
  10330. GGML_TENSOR_UNARY_OP_LOCALS
  10331. const int scale_factor = dst->op_params[0];
  10332. // TODO: optimize
  10333. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10334. const int64_t i03 = i3;
  10335. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10336. const int64_t i02 = i2;
  10337. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10338. const int64_t i01 = i1 / scale_factor;
  10339. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10340. const int64_t i00 = i0 / scale_factor;
  10341. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10342. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10343. *y = *x;
  10344. }
  10345. }
  10346. }
  10347. }
  10348. }
  10349. static void ggml_compute_forward_upscale(
  10350. const struct ggml_compute_params * params,
  10351. const struct ggml_tensor * src0,
  10352. struct ggml_tensor * dst) {
  10353. switch (src0->type) {
  10354. case GGML_TYPE_F32:
  10355. {
  10356. ggml_compute_forward_upscale_f32(params, src0, dst);
  10357. } break;
  10358. default:
  10359. {
  10360. GGML_ASSERT(false);
  10361. } break;
  10362. }
  10363. }
  10364. // ggml_compute_forward_pad
  10365. static void ggml_compute_forward_pad_f32(
  10366. const struct ggml_compute_params * params,
  10367. const struct ggml_tensor * src0,
  10368. struct ggml_tensor * dst) {
  10369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10370. return;
  10371. }
  10372. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10373. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10374. const int ith = params->ith;
  10375. const int nth = params->nth;
  10376. GGML_TENSOR_UNARY_OP_LOCALS
  10377. float * dst_ptr = (float *) dst->data;
  10378. // TODO: optimize
  10379. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10380. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10381. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10382. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10383. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10384. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10385. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10386. dst_ptr[dst_idx] = *src_ptr;
  10387. } else {
  10388. dst_ptr[dst_idx] = 0;
  10389. }
  10390. }
  10391. }
  10392. }
  10393. }
  10394. }
  10395. static void ggml_compute_forward_pad(
  10396. const struct ggml_compute_params * params,
  10397. const struct ggml_tensor * src0,
  10398. struct ggml_tensor * dst) {
  10399. switch (src0->type) {
  10400. case GGML_TYPE_F32:
  10401. {
  10402. ggml_compute_forward_pad_f32(params, src0, dst);
  10403. } break;
  10404. default:
  10405. {
  10406. GGML_ASSERT(false);
  10407. } break;
  10408. }
  10409. }
  10410. // ggml_compute_forward_argsort
  10411. static void ggml_compute_forward_argsort_f32(
  10412. const struct ggml_compute_params * params,
  10413. const struct ggml_tensor * src0,
  10414. struct ggml_tensor * dst) {
  10415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10416. return;
  10417. }
  10418. GGML_TENSOR_UNARY_OP_LOCALS
  10419. GGML_ASSERT(nb0 == sizeof(float));
  10420. const int ith = params->ith;
  10421. const int nth = params->nth;
  10422. const int64_t nr = ggml_nrows(src0);
  10423. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10424. for (int64_t i = ith; i < nr; i += nth) {
  10425. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10426. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10427. for (int64_t j = 0; j < ne0; j++) {
  10428. dst_data[j] = j;
  10429. }
  10430. // C doesn't have a functional sort, so we do a bubble sort instead
  10431. for (int64_t j = 0; j < ne0; j++) {
  10432. for (int64_t k = j + 1; k < ne0; k++) {
  10433. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10434. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10435. int32_t tmp = dst_data[j];
  10436. dst_data[j] = dst_data[k];
  10437. dst_data[k] = tmp;
  10438. }
  10439. }
  10440. }
  10441. }
  10442. }
  10443. static void ggml_compute_forward_argsort(
  10444. const struct ggml_compute_params * params,
  10445. const struct ggml_tensor * src0,
  10446. struct ggml_tensor * dst) {
  10447. switch (src0->type) {
  10448. case GGML_TYPE_F32:
  10449. {
  10450. ggml_compute_forward_argsort_f32(params, src0, dst);
  10451. } break;
  10452. default:
  10453. {
  10454. GGML_ASSERT(false);
  10455. } break;
  10456. }
  10457. }
  10458. // ggml_compute_forward_flash_attn
  10459. static void ggml_compute_forward_flash_attn_f32(
  10460. const struct ggml_compute_params * params,
  10461. const struct ggml_tensor * q,
  10462. const struct ggml_tensor * k,
  10463. const struct ggml_tensor * v,
  10464. const bool masked,
  10465. struct ggml_tensor * dst) {
  10466. int64_t t0 = ggml_perf_time_us();
  10467. UNUSED(t0);
  10468. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10469. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10470. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10471. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10472. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10473. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10474. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10475. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10476. const int ith = params->ith;
  10477. const int nth = params->nth;
  10478. const int64_t D = neq0;
  10479. const int64_t N = neq1;
  10480. const int64_t P = nek1 - N;
  10481. const int64_t M = P + N;
  10482. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10483. GGML_ASSERT(ne0 == D);
  10484. GGML_ASSERT(ne1 == N);
  10485. GGML_ASSERT(P >= 0);
  10486. GGML_ASSERT(nbq0 == sizeof(float));
  10487. GGML_ASSERT(nbk0 == sizeof(float));
  10488. GGML_ASSERT(nbv0 == sizeof(float));
  10489. GGML_ASSERT(neq0 == D);
  10490. GGML_ASSERT(nek0 == D);
  10491. GGML_ASSERT(nev1 == D);
  10492. GGML_ASSERT(neq1 == N);
  10493. GGML_ASSERT(nek1 == N + P);
  10494. GGML_ASSERT(nev1 == D);
  10495. // dst cannot be transposed or permuted
  10496. GGML_ASSERT(nb0 == sizeof(float));
  10497. GGML_ASSERT(nb0 <= nb1);
  10498. GGML_ASSERT(nb1 <= nb2);
  10499. GGML_ASSERT(nb2 <= nb3);
  10500. if (params->type == GGML_TASK_INIT) {
  10501. return;
  10502. }
  10503. if (params->type == GGML_TASK_FINALIZE) {
  10504. return;
  10505. }
  10506. // parallelize by q rows using ggml_vec_dot_f32
  10507. // total rows in q
  10508. const int nr = neq1*neq2*neq3;
  10509. // rows per thread
  10510. const int dr = (nr + nth - 1)/nth;
  10511. // row range for this thread
  10512. const int ir0 = dr*ith;
  10513. const int ir1 = MIN(ir0 + dr, nr);
  10514. const float scale = 1.0f/sqrtf(D);
  10515. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10516. for (int ir = ir0; ir < ir1; ++ir) {
  10517. // q indices
  10518. const int iq3 = ir/(neq2*neq1);
  10519. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10520. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10521. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10522. for (int i = M; i < Mup; ++i) {
  10523. S[i] = -INFINITY;
  10524. }
  10525. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10526. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10527. // k indices
  10528. const int ik3 = iq3;
  10529. const int ik2 = iq2 % nek2;
  10530. const int ik1 = ic;
  10531. // S indices
  10532. const int i1 = ik1;
  10533. ggml_vec_dot_f32(neq0,
  10534. S + i1,
  10535. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10536. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10537. }
  10538. // scale
  10539. ggml_vec_scale_f32(masked_begin, S, scale);
  10540. for (int64_t i = masked_begin; i < M; i++) {
  10541. S[i] = -INFINITY;
  10542. }
  10543. // softmax
  10544. // exclude known -INF S[..] values from max and loop
  10545. // dont forget to set their SW values to zero
  10546. {
  10547. float max = -INFINITY;
  10548. ggml_vec_max_f32(masked_begin, &max, S);
  10549. ggml_float sum = 0.0;
  10550. {
  10551. #ifdef GGML_SOFT_MAX_ACCELERATE
  10552. max = -max;
  10553. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10554. vvexpf(S, S, &Mup);
  10555. ggml_vec_sum_f32(Mup, &sum, S);
  10556. #else
  10557. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10558. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10559. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10560. if (i >= masked_begin) {
  10561. break;
  10562. }
  10563. float * SS = S + i;
  10564. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10565. if (i + j >= masked_begin) {
  10566. break;
  10567. } else if (SS[j] == -INFINITY) {
  10568. SS[j] = 0.0f;
  10569. } else {
  10570. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10571. const float val = expf(SS[j] - max);
  10572. #else
  10573. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10574. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10575. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10576. #endif
  10577. sump[j] += (ggml_float)val;
  10578. SS[j] = val;
  10579. }
  10580. }
  10581. }
  10582. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10583. sum += sump[i];
  10584. }
  10585. #endif
  10586. }
  10587. assert(sum > 0.0);
  10588. sum = 1.0/sum;
  10589. ggml_vec_scale_f32(masked_begin, S, sum);
  10590. #ifndef NDEBUG
  10591. for (int i = 0; i < masked_begin; ++i) {
  10592. assert(!isnan(S[i]));
  10593. assert(!isinf(S[i]));
  10594. }
  10595. #endif
  10596. }
  10597. for (int64_t ic = 0; ic < nev1; ++ic) {
  10598. // dst indices
  10599. const int i1 = iq1;
  10600. const int i2 = iq2;
  10601. const int i3 = iq3;
  10602. // v indices
  10603. const int iv2 = iq2 % nev2;
  10604. const int iv3 = iq3;
  10605. ggml_vec_dot_f32(masked_begin,
  10606. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10607. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10608. S);
  10609. }
  10610. }
  10611. }
  10612. static void ggml_compute_forward_flash_attn_f16(
  10613. const struct ggml_compute_params * params,
  10614. const struct ggml_tensor * q,
  10615. const struct ggml_tensor * k,
  10616. const struct ggml_tensor * v,
  10617. const bool masked,
  10618. struct ggml_tensor * dst) {
  10619. int64_t t0 = ggml_perf_time_us();
  10620. UNUSED(t0);
  10621. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10622. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10623. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10624. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10625. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10626. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10627. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10628. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10629. const int ith = params->ith;
  10630. const int nth = params->nth;
  10631. const int64_t D = neq0;
  10632. const int64_t N = neq1;
  10633. const int64_t P = nek1 - N;
  10634. const int64_t M = P + N;
  10635. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10636. GGML_ASSERT(ne0 == D);
  10637. GGML_ASSERT(ne1 == N);
  10638. GGML_ASSERT(P >= 0);
  10639. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10640. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10641. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10642. GGML_ASSERT(neq0 == D);
  10643. GGML_ASSERT(nek0 == D);
  10644. GGML_ASSERT(nev1 == D);
  10645. GGML_ASSERT(neq1 == N);
  10646. GGML_ASSERT(nek1 == N + P);
  10647. GGML_ASSERT(nev1 == D);
  10648. // dst cannot be transposed or permuted
  10649. GGML_ASSERT(nb0 == sizeof(float));
  10650. GGML_ASSERT(nb0 <= nb1);
  10651. GGML_ASSERT(nb1 <= nb2);
  10652. GGML_ASSERT(nb2 <= nb3);
  10653. if (params->type == GGML_TASK_INIT) {
  10654. return;
  10655. }
  10656. if (params->type == GGML_TASK_FINALIZE) {
  10657. return;
  10658. }
  10659. // parallelize by q rows using ggml_vec_dot_f32
  10660. // total rows in q
  10661. const int nr = neq1*neq2*neq3;
  10662. // rows per thread
  10663. const int dr = (nr + nth - 1)/nth;
  10664. // row range for this thread
  10665. const int ir0 = dr*ith;
  10666. const int ir1 = MIN(ir0 + dr, nr);
  10667. const float scale = 1.0f/sqrtf(D);
  10668. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10669. for (int ir = ir0; ir < ir1; ++ir) {
  10670. // q indices
  10671. const int iq3 = ir/(neq2*neq1);
  10672. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10673. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10674. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10675. for (int i = M; i < Mup; ++i) {
  10676. S[i] = -INFINITY;
  10677. }
  10678. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10679. for (int64_t ic = 0; ic < nek1; ++ic) {
  10680. // k indices
  10681. const int ik3 = iq3;
  10682. const int ik2 = iq2 % nek2;
  10683. const int ik1 = ic;
  10684. // S indices
  10685. const int i1 = ik1;
  10686. ggml_vec_dot_f16(neq0,
  10687. S + i1,
  10688. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10689. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10690. }
  10691. } else {
  10692. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10693. // k indices
  10694. const int ik3 = iq3;
  10695. const int ik2 = iq2 % nek2;
  10696. const int ik1 = ic;
  10697. // S indices
  10698. const int i1 = ik1;
  10699. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10700. S + i1,
  10701. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10702. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10703. }
  10704. }
  10705. // scale
  10706. ggml_vec_scale_f32(nek1, S, scale);
  10707. if (masked) {
  10708. for (int64_t i = P; i < M; i++) {
  10709. if (i > P + iq1) {
  10710. S[i] = -INFINITY;
  10711. }
  10712. }
  10713. }
  10714. // softmax
  10715. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10716. // dont forget to set their S values to zero
  10717. {
  10718. float max = -INFINITY;
  10719. ggml_vec_max_f32(M, &max, S);
  10720. ggml_float sum = 0.0;
  10721. {
  10722. #ifdef GGML_SOFT_MAX_ACCELERATE
  10723. max = -max;
  10724. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10725. vvexpf(S, S, &Mup);
  10726. ggml_vec_sum_f32(Mup, &sum, S);
  10727. #else
  10728. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10729. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10730. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10731. float * SS = S + i;
  10732. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10733. if (SS[j] == -INFINITY) {
  10734. SS[j] = 0.0f;
  10735. } else {
  10736. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10737. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10738. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10739. sump[j] += (ggml_float)val;
  10740. SS[j] = val;
  10741. }
  10742. }
  10743. }
  10744. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10745. sum += sump[i];
  10746. }
  10747. #endif
  10748. }
  10749. assert(sum > 0.0);
  10750. sum = 1.0/sum;
  10751. ggml_vec_scale_f32(M, S, sum);
  10752. #ifndef NDEBUG
  10753. for (int i = 0; i < M; ++i) {
  10754. assert(!isnan(S[i]));
  10755. assert(!isinf(S[i]));
  10756. }
  10757. #endif
  10758. }
  10759. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10760. for (int64_t i = 0; i < M; i++) {
  10761. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10762. }
  10763. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10764. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10765. for (int64_t ic = 0; ic < nev1; ++ic) {
  10766. // dst indices
  10767. const int i1 = iq1;
  10768. const int i2 = iq2;
  10769. const int i3 = iq3;
  10770. // v indices
  10771. const int iv2 = iq2 % nev2;
  10772. const int iv3 = iq3;
  10773. ggml_vec_dot_f16(nev0,
  10774. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10775. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10776. S16);
  10777. }
  10778. } else {
  10779. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10780. // dst indices
  10781. const int i1 = iq1;
  10782. const int i2 = iq2;
  10783. const int i3 = iq3;
  10784. // v indices
  10785. const int iv2 = iq2 % nev2;
  10786. const int iv3 = iq3;
  10787. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10788. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10789. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10790. S16);
  10791. }
  10792. }
  10793. }
  10794. }
  10795. static void ggml_compute_forward_flash_attn(
  10796. const struct ggml_compute_params * params,
  10797. const struct ggml_tensor * q,
  10798. const struct ggml_tensor * k,
  10799. const struct ggml_tensor * v,
  10800. const bool masked,
  10801. struct ggml_tensor * dst) {
  10802. switch (q->type) {
  10803. case GGML_TYPE_F16:
  10804. {
  10805. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10806. } break;
  10807. case GGML_TYPE_F32:
  10808. {
  10809. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10810. } break;
  10811. default:
  10812. {
  10813. GGML_ASSERT(false);
  10814. } break;
  10815. }
  10816. }
  10817. // ggml_compute_forward_flash_ff
  10818. static void ggml_compute_forward_flash_ff_f16(
  10819. const struct ggml_compute_params * params,
  10820. const struct ggml_tensor * a, // F16
  10821. const struct ggml_tensor * b0, // F16 fc_w
  10822. const struct ggml_tensor * b1, // F32 fc_b
  10823. const struct ggml_tensor * c0, // F16 proj_w
  10824. const struct ggml_tensor * c1, // F32 proj_b
  10825. struct ggml_tensor * dst) {
  10826. int64_t t0 = ggml_perf_time_us();
  10827. UNUSED(t0);
  10828. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10829. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10830. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10831. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10832. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10833. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10834. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10835. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10836. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10837. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10838. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10839. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10840. const int ith = params->ith;
  10841. const int nth = params->nth;
  10842. const int64_t D = nea0;
  10843. //const int64_t N = nea1;
  10844. const int64_t M = neb01;
  10845. GGML_ASSERT(ne0 == nea0);
  10846. GGML_ASSERT(ne1 == nea1);
  10847. GGML_ASSERT(ne2 == nea2);
  10848. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10849. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10850. GGML_ASSERT(nbb10 == sizeof(float));
  10851. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10852. GGML_ASSERT(nbc10 == sizeof(float));
  10853. GGML_ASSERT(neb00 == D);
  10854. GGML_ASSERT(neb01 == M);
  10855. GGML_ASSERT(neb10 == M);
  10856. GGML_ASSERT(neb11 == 1);
  10857. GGML_ASSERT(nec00 == M);
  10858. GGML_ASSERT(nec01 == D);
  10859. GGML_ASSERT(nec10 == D);
  10860. GGML_ASSERT(nec11 == 1);
  10861. // dst cannot be transposed or permuted
  10862. GGML_ASSERT(nb0 == sizeof(float));
  10863. GGML_ASSERT(nb0 <= nb1);
  10864. GGML_ASSERT(nb1 <= nb2);
  10865. GGML_ASSERT(nb2 <= nb3);
  10866. if (params->type == GGML_TASK_INIT) {
  10867. return;
  10868. }
  10869. if (params->type == GGML_TASK_FINALIZE) {
  10870. return;
  10871. }
  10872. // parallelize by a rows using ggml_vec_dot_f32
  10873. // total rows in a
  10874. const int nr = nea1*nea2*nea3;
  10875. // rows per thread
  10876. const int dr = (nr + nth - 1)/nth;
  10877. // row range for this thread
  10878. const int ir0 = dr*ith;
  10879. const int ir1 = MIN(ir0 + dr, nr);
  10880. for (int ir = ir0; ir < ir1; ++ir) {
  10881. // a indices
  10882. const int ia3 = ir/(nea2*nea1);
  10883. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10884. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10885. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10886. for (int64_t ic = 0; ic < neb01; ++ic) {
  10887. // b0 indices
  10888. const int ib03 = ia3;
  10889. const int ib02 = ia2;
  10890. const int ib01 = ic;
  10891. // S indices
  10892. const int i1 = ib01;
  10893. ggml_vec_dot_f16(nea0,
  10894. S + i1,
  10895. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10896. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10897. }
  10898. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10899. //ggml_vec_gelu_f32(neb01, S, S);
  10900. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10901. for (int64_t i = 0; i < M; i++) {
  10902. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10903. }
  10904. ggml_vec_gelu_f16(neb01, S16, S16);
  10905. {
  10906. // dst indices
  10907. const int i1 = ia1;
  10908. const int i2 = ia2;
  10909. const int i3 = ia3;
  10910. for (int64_t ic = 0; ic < nec01; ++ic) {
  10911. ggml_vec_dot_f16(neb01,
  10912. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10913. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10914. S16);
  10915. }
  10916. ggml_vec_add_f32(nec01,
  10917. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10918. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10919. (float *) c1->data);
  10920. }
  10921. }
  10922. }
  10923. static void ggml_compute_forward_flash_ff(
  10924. const struct ggml_compute_params * params,
  10925. const struct ggml_tensor * a,
  10926. const struct ggml_tensor * b0,
  10927. const struct ggml_tensor * b1,
  10928. const struct ggml_tensor * c0,
  10929. const struct ggml_tensor * c1,
  10930. struct ggml_tensor * dst) {
  10931. switch (b0->type) {
  10932. case GGML_TYPE_F16:
  10933. {
  10934. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10935. } break;
  10936. case GGML_TYPE_F32:
  10937. {
  10938. GGML_ASSERT(false); // TODO
  10939. } break;
  10940. default:
  10941. {
  10942. GGML_ASSERT(false);
  10943. } break;
  10944. }
  10945. }
  10946. // ggml_compute_forward_flash_attn_back
  10947. static void ggml_compute_forward_flash_attn_back_f32(
  10948. const struct ggml_compute_params * params,
  10949. const struct ggml_tensor * q,
  10950. const struct ggml_tensor * k,
  10951. const struct ggml_tensor * v,
  10952. const struct ggml_tensor * d,
  10953. const bool masked,
  10954. struct ggml_tensor * dst) {
  10955. int64_t t0 = ggml_perf_time_us();
  10956. UNUSED(t0);
  10957. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10958. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10959. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10960. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10961. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10962. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10963. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10964. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10965. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10966. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10967. const int ith = params->ith;
  10968. const int nth = params->nth;
  10969. const int64_t D = neq0;
  10970. const int64_t N = neq1;
  10971. const int64_t P = nek1 - N;
  10972. const int64_t M = P + N;
  10973. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10974. const int mxDM = MAX(D, Mup);
  10975. // GGML_ASSERT(ne0 == D);
  10976. // GGML_ASSERT(ne1 == N);
  10977. GGML_ASSERT(P >= 0);
  10978. GGML_ASSERT(nbq0 == sizeof(float));
  10979. GGML_ASSERT(nbk0 == sizeof(float));
  10980. GGML_ASSERT(nbv0 == sizeof(float));
  10981. GGML_ASSERT(neq0 == D);
  10982. GGML_ASSERT(nek0 == D);
  10983. GGML_ASSERT(nev1 == D);
  10984. GGML_ASSERT(ned0 == D);
  10985. GGML_ASSERT(neq1 == N);
  10986. GGML_ASSERT(nek1 == N + P);
  10987. GGML_ASSERT(nev1 == D);
  10988. GGML_ASSERT(ned1 == N);
  10989. // dst cannot be transposed or permuted
  10990. GGML_ASSERT(nb0 == sizeof(float));
  10991. GGML_ASSERT(nb0 <= nb1);
  10992. GGML_ASSERT(nb1 <= nb2);
  10993. GGML_ASSERT(nb2 <= nb3);
  10994. if (params->type == GGML_TASK_INIT) {
  10995. if (ith == 0) {
  10996. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10997. }
  10998. return;
  10999. }
  11000. if (params->type == GGML_TASK_FINALIZE) {
  11001. return;
  11002. }
  11003. const int64_t elem_q = ggml_nelements(q);
  11004. const int64_t elem_k = ggml_nelements(k);
  11005. enum ggml_type result_type = dst->type;
  11006. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11007. const size_t tsize = ggml_type_size(result_type);
  11008. const size_t offs_q = 0;
  11009. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11010. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11011. void * grad_q = (char *) dst->data;
  11012. void * grad_k = (char *) dst->data + offs_k;
  11013. void * grad_v = (char *) dst->data + offs_v;
  11014. const size_t nbgq1 = nb0*neq0;
  11015. const size_t nbgq2 = nb0*neq0*neq1;
  11016. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11017. const size_t nbgk1 = nb0*nek0;
  11018. const size_t nbgk2 = nb0*nek0*nek1;
  11019. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11020. const size_t nbgv1 = nb0*nev0;
  11021. const size_t nbgv2 = nb0*nev0*nev1;
  11022. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11023. // parallelize by k rows using ggml_vec_dot_f32
  11024. // total rows in k
  11025. const int nr = nek2*nek3;
  11026. // rows per thread
  11027. const int dr = (nr + nth - 1)/nth;
  11028. // row range for this thread
  11029. const int ir0 = dr*ith;
  11030. const int ir1 = MIN(ir0 + dr, nr);
  11031. const float scale = 1.0f/sqrtf(D);
  11032. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11033. // how often k2 (and v2) is repeated in q2
  11034. int nrep = neq2/nek2;
  11035. for (int ir = ir0; ir < ir1; ++ir) {
  11036. // q indices
  11037. const int ik3 = ir/(nek2);
  11038. const int ik2 = ir - ik3*nek2;
  11039. const int iq3 = ik3;
  11040. const int id3 = ik3;
  11041. const int iv3 = ik3;
  11042. const int iv2 = ik2;
  11043. for (int irep = 0; irep < nrep; ++irep) {
  11044. const int iq2 = ik2 + irep*nek2;
  11045. const int id2 = iq2;
  11046. // (ik2 + irep*nek2) % nek2 == ik2
  11047. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11048. const int id1 = iq1;
  11049. // not sure about CACHE_LINE_SIZE_F32..
  11050. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11051. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11052. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11053. for (int i = M; i < Mup; ++i) {
  11054. S[i] = -INFINITY;
  11055. }
  11056. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11057. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11058. // k indices
  11059. const int ik1 = ic;
  11060. // S indices
  11061. const int i1 = ik1;
  11062. ggml_vec_dot_f32(neq0,
  11063. S + i1,
  11064. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11065. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11066. }
  11067. // scale
  11068. ggml_vec_scale_f32(masked_begin, S, scale);
  11069. for (int64_t i = masked_begin; i < M; i++) {
  11070. S[i] = -INFINITY;
  11071. }
  11072. // softmax
  11073. // exclude known -INF S[..] values from max and loop
  11074. // dont forget to set their SM values to zero
  11075. {
  11076. float max = -INFINITY;
  11077. ggml_vec_max_f32(masked_begin, &max, S);
  11078. ggml_float sum = 0.0;
  11079. {
  11080. #ifdef GGML_SOFT_MAX_ACCELERATE
  11081. max = -max;
  11082. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11083. vvexpf(SM, SM, &Mup);
  11084. ggml_vec_sum_f32(Mup, &sum, SM);
  11085. #else
  11086. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11087. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11088. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11089. if (i >= masked_begin) {
  11090. break;
  11091. }
  11092. float * SR = S + i;
  11093. float * SW = SM + i;
  11094. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11095. if (i + j >= masked_begin) {
  11096. break;
  11097. } else if (SR[j] == -INFINITY) {
  11098. SW[j] = 0.0f;
  11099. } else {
  11100. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11101. const float val = expf(SR[j] - max);
  11102. #else
  11103. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11104. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11105. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11106. #endif
  11107. sump[j] += (ggml_float)val;
  11108. SW[j] = val;
  11109. }
  11110. }
  11111. }
  11112. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11113. sum += sump[i];
  11114. }
  11115. #endif
  11116. }
  11117. assert(sum > 0.0);
  11118. sum = 1.0/sum;
  11119. ggml_vec_scale_f32(masked_begin, SM, sum);
  11120. }
  11121. // step-by-step explanation
  11122. {
  11123. // forward-process shape grads from backward process
  11124. // parallel_for ik2,ik3:
  11125. // for irep:
  11126. // iq2 = ik2 + irep*nek2
  11127. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11128. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11129. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11130. // for iq1:
  11131. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11132. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11133. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11134. // S0 = -Inf [D,1,1,1]
  11135. // ~S1[i] = dot(kcur[:D,i], qcur)
  11136. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11137. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11138. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11139. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11140. // ~S5[i] = dot(vcur[:,i], S4)
  11141. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11142. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11143. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11144. // dst backward-/ grad[dst] = d
  11145. //
  11146. // output gradients with their dependencies:
  11147. //
  11148. // grad[kcur] = grad[S1].T @ qcur
  11149. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11150. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11151. // grad[S4] = grad[S5] @ vcur
  11152. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11153. // grad[qcur] = grad[S1] @ kcur
  11154. // grad[vcur] = grad[S5].T @ S4
  11155. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11156. //
  11157. // in post-order:
  11158. //
  11159. // S1 = qcur @ kcur.T
  11160. // S2 = S1 * scale
  11161. // S3 = diag_mask_inf(S2, P)
  11162. // S4 = softmax(S3)
  11163. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11164. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11165. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11166. // grad[qcur] = grad[S1] @ kcur
  11167. // grad[kcur] = grad[S1].T @ qcur
  11168. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11169. //
  11170. // using less variables (SM=S4):
  11171. //
  11172. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11173. // SM = softmax(S)
  11174. // S = d[:D,iq1,iq2,iq3] @ vcur
  11175. // dot_SM_gradSM = dot(SM, S)
  11176. // S = SM * (S - dot(SM, S))
  11177. // S = diag_mask_zero(S, P) * scale
  11178. //
  11179. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11180. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11181. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11182. }
  11183. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11184. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11185. // for ic:
  11186. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11187. // exclude known future zero S[..] values from operation
  11188. ggml_vec_set_f32(masked_begin, S, 0);
  11189. for (int64_t ic = 0; ic < D; ++ic) {
  11190. ggml_vec_mad_f32(masked_begin,
  11191. S,
  11192. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11193. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11194. }
  11195. // S = SM * (S - dot(SM, S))
  11196. float dot_SM_gradSM = 0;
  11197. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11198. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11199. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11200. // S = diag_mask_zero(S, P) * scale
  11201. // already done by above ggml_vec_set_f32
  11202. // exclude known zero S[..] values from operation
  11203. ggml_vec_scale_f32(masked_begin, S, scale);
  11204. // S shape [M,1]
  11205. // SM shape [M,1]
  11206. // kcur shape [D,M]
  11207. // qcur shape [D,1]
  11208. // vcur shape [M,D]
  11209. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11210. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11211. // for ic:
  11212. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11213. // exclude known zero S[..] values from loop
  11214. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11215. ggml_vec_mad_f32(D,
  11216. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11217. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11218. S[ic]);
  11219. }
  11220. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11221. // for ic:
  11222. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11223. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11224. // exclude known zero S[..] values from loop
  11225. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11226. ggml_vec_mad_f32(D,
  11227. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11228. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11229. S[ic]);
  11230. }
  11231. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11232. // for ic:
  11233. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11234. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11235. // exclude known zero SM[..] values from mad
  11236. for (int64_t ic = 0; ic < D; ++ic) {
  11237. ggml_vec_mad_f32(masked_begin,
  11238. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11239. SM,
  11240. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11241. }
  11242. }
  11243. }
  11244. }
  11245. }
  11246. static void ggml_compute_forward_flash_attn_back(
  11247. const struct ggml_compute_params * params,
  11248. const struct ggml_tensor * q,
  11249. const struct ggml_tensor * k,
  11250. const struct ggml_tensor * v,
  11251. const struct ggml_tensor * d,
  11252. const bool masked,
  11253. struct ggml_tensor * dst) {
  11254. switch (q->type) {
  11255. case GGML_TYPE_F32:
  11256. {
  11257. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11258. } break;
  11259. default:
  11260. {
  11261. GGML_ASSERT(false);
  11262. } break;
  11263. }
  11264. }
  11265. // ggml_compute_forward_win_part
  11266. static void ggml_compute_forward_win_part_f32(
  11267. const struct ggml_compute_params * params,
  11268. const struct ggml_tensor * src0,
  11269. struct ggml_tensor * dst) {
  11270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11271. return;
  11272. }
  11273. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11274. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11275. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11276. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11277. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11278. assert(ne00 == ne0);
  11279. assert(ne3 == nep0*nep1);
  11280. // TODO: optimize / multi-thread
  11281. for (int py = 0; py < nep1; ++py) {
  11282. for (int px = 0; px < nep0; ++px) {
  11283. const int64_t i3 = py*nep0 + px;
  11284. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11285. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11286. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11287. const int64_t i02 = py*w + i2;
  11288. const int64_t i01 = px*w + i1;
  11289. const int64_t i00 = i0;
  11290. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11291. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11292. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11293. ((float *) dst->data)[i] = 0.0f;
  11294. } else {
  11295. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11296. }
  11297. }
  11298. }
  11299. }
  11300. }
  11301. }
  11302. }
  11303. static void ggml_compute_forward_win_part(
  11304. const struct ggml_compute_params * params,
  11305. const struct ggml_tensor * src0,
  11306. struct ggml_tensor * dst) {
  11307. switch (src0->type) {
  11308. case GGML_TYPE_F32:
  11309. {
  11310. ggml_compute_forward_win_part_f32(params, src0, dst);
  11311. } break;
  11312. default:
  11313. {
  11314. GGML_ASSERT(false);
  11315. } break;
  11316. }
  11317. }
  11318. // ggml_compute_forward_win_unpart
  11319. static void ggml_compute_forward_win_unpart_f32(
  11320. const struct ggml_compute_params * params,
  11321. const struct ggml_tensor * src0,
  11322. struct ggml_tensor * dst) {
  11323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11324. return;
  11325. }
  11326. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11327. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11328. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11329. // padding
  11330. const int px = (w - ne1%w)%w;
  11331. //const int py = (w - ne2%w)%w;
  11332. const int npx = (px + ne1)/w;
  11333. //const int npy = (py + ne2)/w;
  11334. assert(ne0 == ne00);
  11335. // TODO: optimize / multi-thread
  11336. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11337. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11338. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11339. const int ip2 = i2/w;
  11340. const int ip1 = i1/w;
  11341. const int64_t i02 = i2%w;
  11342. const int64_t i01 = i1%w;
  11343. const int64_t i00 = i0;
  11344. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11345. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11346. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11347. }
  11348. }
  11349. }
  11350. }
  11351. static void ggml_compute_forward_win_unpart(
  11352. const struct ggml_compute_params * params,
  11353. const struct ggml_tensor * src0,
  11354. struct ggml_tensor * dst) {
  11355. switch (src0->type) {
  11356. case GGML_TYPE_F32:
  11357. {
  11358. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11359. } break;
  11360. default:
  11361. {
  11362. GGML_ASSERT(false);
  11363. } break;
  11364. }
  11365. }
  11366. //gmml_compute_forward_unary
  11367. static void ggml_compute_forward_unary(
  11368. const struct ggml_compute_params * params,
  11369. const struct ggml_tensor * src0,
  11370. struct ggml_tensor * dst) {
  11371. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11372. switch (op) {
  11373. case GGML_UNARY_OP_ABS:
  11374. {
  11375. ggml_compute_forward_abs(params, src0, dst);
  11376. } break;
  11377. case GGML_UNARY_OP_SGN:
  11378. {
  11379. ggml_compute_forward_sgn(params, src0, dst);
  11380. } break;
  11381. case GGML_UNARY_OP_NEG:
  11382. {
  11383. ggml_compute_forward_neg(params, src0, dst);
  11384. } break;
  11385. case GGML_UNARY_OP_STEP:
  11386. {
  11387. ggml_compute_forward_step(params, src0, dst);
  11388. } break;
  11389. case GGML_UNARY_OP_TANH:
  11390. {
  11391. ggml_compute_forward_tanh(params, src0, dst);
  11392. } break;
  11393. case GGML_UNARY_OP_ELU:
  11394. {
  11395. ggml_compute_forward_elu(params, src0, dst);
  11396. } break;
  11397. case GGML_UNARY_OP_RELU:
  11398. {
  11399. ggml_compute_forward_relu(params, src0, dst);
  11400. } break;
  11401. case GGML_UNARY_OP_GELU:
  11402. {
  11403. ggml_compute_forward_gelu(params, src0, dst);
  11404. } break;
  11405. case GGML_UNARY_OP_GELU_QUICK:
  11406. {
  11407. ggml_compute_forward_gelu_quick(params, src0, dst);
  11408. } break;
  11409. case GGML_UNARY_OP_SILU:
  11410. {
  11411. ggml_compute_forward_silu(params, src0, dst);
  11412. } break;
  11413. default:
  11414. {
  11415. GGML_ASSERT(false);
  11416. } break;
  11417. }
  11418. }
  11419. // ggml_compute_forward_get_rel_pos
  11420. static void ggml_compute_forward_get_rel_pos_f16(
  11421. const struct ggml_compute_params * params,
  11422. const struct ggml_tensor * src0,
  11423. struct ggml_tensor * dst) {
  11424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11425. return;
  11426. }
  11427. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11428. GGML_TENSOR_UNARY_OP_LOCALS
  11429. const int64_t w = ne1;
  11430. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11431. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11432. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11433. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11434. const int64_t pos = (w - i1 - 1) + i2;
  11435. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11436. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11437. }
  11438. }
  11439. }
  11440. }
  11441. static void ggml_compute_forward_get_rel_pos(
  11442. const struct ggml_compute_params * params,
  11443. const struct ggml_tensor * src0,
  11444. struct ggml_tensor * dst) {
  11445. switch (src0->type) {
  11446. case GGML_TYPE_F16:
  11447. {
  11448. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11449. } break;
  11450. default:
  11451. {
  11452. GGML_ASSERT(false);
  11453. } break;
  11454. }
  11455. }
  11456. // ggml_compute_forward_add_rel_pos
  11457. static void ggml_compute_forward_add_rel_pos_f32(
  11458. const struct ggml_compute_params * params,
  11459. const struct ggml_tensor * src0,
  11460. const struct ggml_tensor * src1,
  11461. const struct ggml_tensor * src2,
  11462. struct ggml_tensor * dst) {
  11463. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11464. if (!inplace && params->type == GGML_TASK_INIT) {
  11465. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11466. return;
  11467. }
  11468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11469. return;
  11470. }
  11471. int64_t t0 = ggml_perf_time_us();
  11472. UNUSED(t0);
  11473. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11474. float * src1_data = (float *) src1->data;
  11475. float * src2_data = (float *) src2->data;
  11476. float * dst_data = (float *) dst->data;
  11477. const int64_t ne10 = src1->ne[0];
  11478. const int64_t ne11 = src1->ne[1];
  11479. const int64_t ne12 = src1->ne[2];
  11480. const int64_t ne13 = src1->ne[3];
  11481. const int ith = params->ith;
  11482. const int nth = params->nth;
  11483. // total patches in dst
  11484. const int np = ne13;
  11485. // patches per thread
  11486. const int dp = (np + nth - 1)/nth;
  11487. // patch range for this thread
  11488. const int ip0 = dp*ith;
  11489. const int ip1 = MIN(ip0 + dp, np);
  11490. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11491. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11492. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11493. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11494. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11495. const int64_t jp0 = jp1 + i10;
  11496. const float src1_e = src1_data[jp0];
  11497. const float src2_e = src2_data[jp0];
  11498. const int64_t jdh = jp0 * ne10;
  11499. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11500. for (int64_t j = 0; j < ne10; ++j) {
  11501. dst_data[jdh + j ] += src2_e;
  11502. dst_data[jdw + j*ne10] += src1_e;
  11503. }
  11504. }
  11505. }
  11506. }
  11507. }
  11508. }
  11509. static void ggml_compute_forward_add_rel_pos(
  11510. const struct ggml_compute_params * params,
  11511. const struct ggml_tensor * src0,
  11512. const struct ggml_tensor * src1,
  11513. const struct ggml_tensor * src2,
  11514. struct ggml_tensor * dst) {
  11515. switch (src0->type) {
  11516. case GGML_TYPE_F32:
  11517. {
  11518. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11519. } break;
  11520. default:
  11521. {
  11522. GGML_ASSERT(false);
  11523. } break;
  11524. }
  11525. }
  11526. // ggml_compute_forward_map_unary
  11527. static void ggml_compute_forward_map_unary_f32(
  11528. const struct ggml_compute_params * params,
  11529. const struct ggml_tensor * src0,
  11530. struct ggml_tensor * dst,
  11531. const ggml_unary_op_f32_t fun) {
  11532. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11534. return;
  11535. }
  11536. const int n = ggml_nrows(src0);
  11537. const int nc = src0->ne[0];
  11538. assert( dst->nb[0] == sizeof(float));
  11539. assert(src0->nb[0] == sizeof(float));
  11540. for (int i = 0; i < n; i++) {
  11541. fun(nc,
  11542. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11543. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11544. }
  11545. }
  11546. static void ggml_compute_forward_map_unary(
  11547. const struct ggml_compute_params * params,
  11548. const struct ggml_tensor * src0,
  11549. struct ggml_tensor * dst,
  11550. const ggml_unary_op_f32_t fun) {
  11551. switch (src0->type) {
  11552. case GGML_TYPE_F32:
  11553. {
  11554. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11555. } break;
  11556. default:
  11557. {
  11558. GGML_ASSERT(false);
  11559. } break;
  11560. }
  11561. }
  11562. // ggml_compute_forward_map_binary
  11563. static void ggml_compute_forward_map_binary_f32(
  11564. const struct ggml_compute_params * params,
  11565. const struct ggml_tensor * src0,
  11566. const struct ggml_tensor * src1,
  11567. struct ggml_tensor * dst,
  11568. const ggml_binary_op_f32_t fun) {
  11569. assert(params->ith == 0);
  11570. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11572. return;
  11573. }
  11574. const int n = ggml_nrows(src0);
  11575. const int nc = src0->ne[0];
  11576. assert( dst->nb[0] == sizeof(float));
  11577. assert(src0->nb[0] == sizeof(float));
  11578. assert(src1->nb[0] == sizeof(float));
  11579. for (int i = 0; i < n; i++) {
  11580. fun(nc,
  11581. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11582. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11583. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11584. }
  11585. }
  11586. static void ggml_compute_forward_map_binary(
  11587. const struct ggml_compute_params * params,
  11588. const struct ggml_tensor * src0,
  11589. const struct ggml_tensor * src1,
  11590. struct ggml_tensor * dst,
  11591. const ggml_binary_op_f32_t fun) {
  11592. switch (src0->type) {
  11593. case GGML_TYPE_F32:
  11594. {
  11595. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11596. } break;
  11597. default:
  11598. {
  11599. GGML_ASSERT(false);
  11600. } break;
  11601. }
  11602. }
  11603. // ggml_compute_forward_map_custom1
  11604. static void ggml_compute_forward_map_custom1_f32(
  11605. const struct ggml_compute_params * params,
  11606. const struct ggml_tensor * a,
  11607. struct ggml_tensor * dst,
  11608. const ggml_custom1_op_f32_t fun) {
  11609. assert(params->ith == 0);
  11610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11611. return;
  11612. }
  11613. fun(dst, a);
  11614. }
  11615. // ggml_compute_forward_map_custom2
  11616. static void ggml_compute_forward_map_custom2_f32(
  11617. const struct ggml_compute_params * params,
  11618. const struct ggml_tensor * a,
  11619. const struct ggml_tensor * b,
  11620. struct ggml_tensor * dst,
  11621. const ggml_custom2_op_f32_t fun) {
  11622. assert(params->ith == 0);
  11623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11624. return;
  11625. }
  11626. fun(dst, a, b);
  11627. }
  11628. // ggml_compute_forward_map_custom3
  11629. static void ggml_compute_forward_map_custom3_f32(
  11630. const struct ggml_compute_params * params,
  11631. const struct ggml_tensor * a,
  11632. const struct ggml_tensor * b,
  11633. const struct ggml_tensor * c,
  11634. struct ggml_tensor * dst,
  11635. const ggml_custom3_op_f32_t fun) {
  11636. assert(params->ith == 0);
  11637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11638. return;
  11639. }
  11640. fun(dst, a, b, c);
  11641. }
  11642. // ggml_compute_forward_map_custom1
  11643. static void ggml_compute_forward_map_custom1(
  11644. const struct ggml_compute_params * params,
  11645. const struct ggml_tensor * a,
  11646. struct ggml_tensor * dst) {
  11647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11648. return;
  11649. }
  11650. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11651. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11652. }
  11653. // ggml_compute_forward_map_custom2
  11654. static void ggml_compute_forward_map_custom2(
  11655. const struct ggml_compute_params * params,
  11656. const struct ggml_tensor * a,
  11657. const struct ggml_tensor * b,
  11658. struct ggml_tensor * dst) {
  11659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11660. return;
  11661. }
  11662. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11663. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11664. }
  11665. // ggml_compute_forward_map_custom3
  11666. static void ggml_compute_forward_map_custom3(
  11667. const struct ggml_compute_params * params,
  11668. const struct ggml_tensor * a,
  11669. const struct ggml_tensor * b,
  11670. const struct ggml_tensor * c,
  11671. struct ggml_tensor * dst) {
  11672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11673. return;
  11674. }
  11675. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11676. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11677. }
  11678. // ggml_compute_forward_cross_entropy_loss
  11679. static void ggml_compute_forward_cross_entropy_loss_f32(
  11680. const struct ggml_compute_params * params,
  11681. const struct ggml_tensor * src0,
  11682. const struct ggml_tensor * src1,
  11683. struct ggml_tensor * dst) {
  11684. GGML_ASSERT(ggml_is_contiguous(src0));
  11685. GGML_ASSERT(ggml_is_contiguous(src1));
  11686. GGML_ASSERT(ggml_is_scalar(dst));
  11687. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11688. const int ith = params->ith;
  11689. const int nth = params->nth;
  11690. float * sums = (float *) params->wdata;
  11691. // TODO: handle transposed/permuted matrices
  11692. const int nc = src0->ne[0];
  11693. const int nr = ggml_nrows(src0);
  11694. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11695. if (params->type == GGML_TASK_INIT) {
  11696. if (ith == 0) {
  11697. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11698. }
  11699. return;
  11700. }
  11701. if (params->type == GGML_TASK_FINALIZE) {
  11702. if (ith == 0) {
  11703. float * dp = (float *) dst->data;
  11704. ggml_vec_sum_f32(nth, dp, sums);
  11705. dp[0] *= -1.0f / (float) nr;
  11706. }
  11707. return;
  11708. }
  11709. const double eps = 1e-9;
  11710. // rows per thread
  11711. const int dr = (nr + nth - 1)/nth;
  11712. // row range for this thread
  11713. const int ir0 = dr*ith;
  11714. const int ir1 = MIN(ir0 + dr, nr);
  11715. for (int i1 = ir0; i1 < ir1; i1++) {
  11716. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11717. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11718. float * st = ((float *) params->wdata) + nth + ith*nc;
  11719. #ifndef NDEBUG
  11720. for (int i = 0; i < nc; ++i) {
  11721. //printf("p[%d] = %f\n", i, p[i]);
  11722. assert(!isnan(s0[i]));
  11723. assert(!isnan(s1[i]));
  11724. }
  11725. #endif
  11726. // soft_max
  11727. ggml_float sum = 0.0;
  11728. {
  11729. float max = -INFINITY;
  11730. ggml_vec_max_f32(nc, &max, s0);
  11731. uint16_t scvt; UNUSED(scvt);
  11732. for (int i = 0; i < nc; i++) {
  11733. if (s0[i] == -INFINITY) {
  11734. st[i] = 0.0f;
  11735. } else {
  11736. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11737. const float s = s0[i] - max;
  11738. const float val = expf(s);
  11739. #else
  11740. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11741. memcpy(&scvt, &s, sizeof(scvt));
  11742. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11743. #endif
  11744. sum += (ggml_float)val;
  11745. st[i] = val;
  11746. }
  11747. }
  11748. assert(sum > 0.0);
  11749. // sum = 1.0/sum;
  11750. }
  11751. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11752. sum = (1.0 - eps) / sum;
  11753. ggml_vec_scale_f32(nc, st, sum);
  11754. ggml_vec_add1_f32(nc, st, st, eps);
  11755. ggml_vec_log_f32(nc, st, st);
  11756. ggml_vec_mul_f32(nc, st, st, s1);
  11757. float st_sum = 0;
  11758. ggml_vec_sum_f32(nc, &st_sum, st);
  11759. sums[ith] += st_sum;
  11760. #ifndef NDEBUG
  11761. for (int i = 0; i < nc; ++i) {
  11762. assert(!isnan(st[i]));
  11763. assert(!isinf(st[i]));
  11764. }
  11765. #endif
  11766. }
  11767. }
  11768. static void ggml_compute_forward_cross_entropy_loss(
  11769. const struct ggml_compute_params * params,
  11770. const struct ggml_tensor * src0,
  11771. const struct ggml_tensor * src1,
  11772. struct ggml_tensor * dst) {
  11773. switch (src0->type) {
  11774. case GGML_TYPE_F32:
  11775. {
  11776. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11777. } break;
  11778. default:
  11779. {
  11780. GGML_ASSERT(false);
  11781. } break;
  11782. }
  11783. }
  11784. // ggml_compute_forward_cross_entropy_loss_back
  11785. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11786. const struct ggml_compute_params * params,
  11787. const struct ggml_tensor * src0,
  11788. const struct ggml_tensor * src1,
  11789. const struct ggml_tensor * opt0,
  11790. struct ggml_tensor * dst) {
  11791. GGML_ASSERT(ggml_is_contiguous(dst));
  11792. GGML_ASSERT(ggml_is_contiguous(src0));
  11793. GGML_ASSERT(ggml_is_contiguous(src1));
  11794. GGML_ASSERT(ggml_is_contiguous(opt0));
  11795. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11796. const int64_t ith = params->ith;
  11797. const int64_t nth = params->nth;
  11798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11799. return;
  11800. }
  11801. const double eps = 1e-9;
  11802. // TODO: handle transposed/permuted matrices
  11803. const int64_t nc = src0->ne[0];
  11804. const int64_t nr = ggml_nrows(src0);
  11805. // rows per thread
  11806. const int64_t dr = (nr + nth - 1)/nth;
  11807. // row range for this thread
  11808. const int64_t ir0 = dr*ith;
  11809. const int64_t ir1 = MIN(ir0 + dr, nr);
  11810. float * d = (float *) opt0->data;
  11811. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11812. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11813. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11814. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11815. #ifndef NDEBUG
  11816. for (int i = 0; i < nc; ++i) {
  11817. //printf("p[%d] = %f\n", i, p[i]);
  11818. assert(!isnan(s0[i]));
  11819. assert(!isnan(s1[i]));
  11820. }
  11821. #endif
  11822. // soft_max
  11823. ggml_float sum = 0.0;
  11824. {
  11825. float max = -INFINITY;
  11826. ggml_vec_max_f32(nc, &max, s0);
  11827. uint16_t scvt; UNUSED(scvt);
  11828. for (int i = 0; i < nc; i++) {
  11829. if (s0[i] == -INFINITY) {
  11830. ds0[i] = 0.0f;
  11831. } else {
  11832. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11833. const float s = s0[i] - max;
  11834. const float val = expf(s);
  11835. #else
  11836. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11837. memcpy(&scvt, &s, sizeof(scvt));
  11838. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11839. #endif
  11840. sum += (ggml_float)val;
  11841. ds0[i] = val;
  11842. }
  11843. }
  11844. assert(sum > 0.0);
  11845. sum = (1.0 - eps)/sum;
  11846. }
  11847. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11848. ggml_vec_scale_f32(nc, ds0, sum);
  11849. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11850. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11851. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11852. #ifndef NDEBUG
  11853. for (int i = 0; i < nc; ++i) {
  11854. assert(!isnan(ds0[i]));
  11855. assert(!isinf(ds0[i]));
  11856. }
  11857. #endif
  11858. }
  11859. }
  11860. static void ggml_compute_forward_cross_entropy_loss_back(
  11861. const struct ggml_compute_params * params,
  11862. const struct ggml_tensor * src0,
  11863. const struct ggml_tensor * src1,
  11864. const struct ggml_tensor * opt0,
  11865. struct ggml_tensor * dst) {
  11866. switch (src0->type) {
  11867. case GGML_TYPE_F32:
  11868. {
  11869. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11870. } break;
  11871. default:
  11872. {
  11873. GGML_ASSERT(false);
  11874. } break;
  11875. }
  11876. }
  11877. /////////////////////////////////
  11878. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11879. GGML_ASSERT(params);
  11880. if (tensor->op == GGML_OP_NONE) {
  11881. return;
  11882. }
  11883. #ifdef GGML_USE_CUBLAS
  11884. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11885. if (skip_cpu) {
  11886. return;
  11887. }
  11888. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11889. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11890. #endif // GGML_USE_CUBLAS
  11891. switch (tensor->op) {
  11892. case GGML_OP_DUP:
  11893. {
  11894. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11895. } break;
  11896. case GGML_OP_ADD:
  11897. {
  11898. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11899. } break;
  11900. case GGML_OP_ADD1:
  11901. {
  11902. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11903. } break;
  11904. case GGML_OP_ACC:
  11905. {
  11906. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11907. } break;
  11908. case GGML_OP_SUB:
  11909. {
  11910. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11911. } break;
  11912. case GGML_OP_MUL:
  11913. {
  11914. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11915. } break;
  11916. case GGML_OP_DIV:
  11917. {
  11918. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11919. } break;
  11920. case GGML_OP_SQR:
  11921. {
  11922. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11923. } break;
  11924. case GGML_OP_SQRT:
  11925. {
  11926. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11927. } break;
  11928. case GGML_OP_LOG:
  11929. {
  11930. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11931. } break;
  11932. case GGML_OP_SUM:
  11933. {
  11934. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11935. } break;
  11936. case GGML_OP_SUM_ROWS:
  11937. {
  11938. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11939. } break;
  11940. case GGML_OP_MEAN:
  11941. {
  11942. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11943. } break;
  11944. case GGML_OP_ARGMAX:
  11945. {
  11946. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11947. } break;
  11948. case GGML_OP_REPEAT:
  11949. {
  11950. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11951. } break;
  11952. case GGML_OP_REPEAT_BACK:
  11953. {
  11954. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11955. } break;
  11956. case GGML_OP_CONCAT:
  11957. {
  11958. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11959. } break;
  11960. case GGML_OP_SILU_BACK:
  11961. {
  11962. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11963. } break;
  11964. case GGML_OP_NORM:
  11965. {
  11966. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11967. } break;
  11968. case GGML_OP_RMS_NORM:
  11969. {
  11970. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11971. } break;
  11972. case GGML_OP_RMS_NORM_BACK:
  11973. {
  11974. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11975. } break;
  11976. case GGML_OP_GROUP_NORM:
  11977. {
  11978. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11979. } break;
  11980. case GGML_OP_MUL_MAT:
  11981. {
  11982. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11983. } break;
  11984. case GGML_OP_MUL_MAT_ID:
  11985. {
  11986. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11987. } break;
  11988. case GGML_OP_OUT_PROD:
  11989. {
  11990. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11991. } break;
  11992. case GGML_OP_SCALE:
  11993. {
  11994. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11995. } break;
  11996. case GGML_OP_SET:
  11997. {
  11998. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11999. } break;
  12000. case GGML_OP_CPY:
  12001. {
  12002. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12003. } break;
  12004. case GGML_OP_CONT:
  12005. {
  12006. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12007. } break;
  12008. case GGML_OP_RESHAPE:
  12009. {
  12010. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12011. } break;
  12012. case GGML_OP_VIEW:
  12013. {
  12014. ggml_compute_forward_view(params, tensor->src[0]);
  12015. } break;
  12016. case GGML_OP_PERMUTE:
  12017. {
  12018. ggml_compute_forward_permute(params, tensor->src[0]);
  12019. } break;
  12020. case GGML_OP_TRANSPOSE:
  12021. {
  12022. ggml_compute_forward_transpose(params, tensor->src[0]);
  12023. } break;
  12024. case GGML_OP_GET_ROWS:
  12025. {
  12026. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12027. } break;
  12028. case GGML_OP_GET_ROWS_BACK:
  12029. {
  12030. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12031. } break;
  12032. case GGML_OP_DIAG:
  12033. {
  12034. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12035. } break;
  12036. case GGML_OP_DIAG_MASK_INF:
  12037. {
  12038. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12039. } break;
  12040. case GGML_OP_DIAG_MASK_ZERO:
  12041. {
  12042. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12043. } break;
  12044. case GGML_OP_SOFT_MAX:
  12045. {
  12046. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12047. } break;
  12048. case GGML_OP_SOFT_MAX_BACK:
  12049. {
  12050. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12051. } break;
  12052. case GGML_OP_ROPE:
  12053. {
  12054. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12055. } break;
  12056. case GGML_OP_ROPE_BACK:
  12057. {
  12058. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12059. } break;
  12060. case GGML_OP_ALIBI:
  12061. {
  12062. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12063. } break;
  12064. case GGML_OP_CLAMP:
  12065. {
  12066. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12067. } break;
  12068. case GGML_OP_CONV_TRANSPOSE_1D:
  12069. {
  12070. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12071. } break;
  12072. case GGML_OP_IM2COL:
  12073. {
  12074. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12075. } break;
  12076. case GGML_OP_CONV_TRANSPOSE_2D:
  12077. {
  12078. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12079. } break;
  12080. case GGML_OP_POOL_1D:
  12081. {
  12082. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12083. } break;
  12084. case GGML_OP_POOL_2D:
  12085. {
  12086. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12087. } break;
  12088. case GGML_OP_UPSCALE:
  12089. {
  12090. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12091. } break;
  12092. case GGML_OP_PAD:
  12093. {
  12094. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12095. } break;
  12096. case GGML_OP_ARGSORT:
  12097. {
  12098. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12099. } break;
  12100. case GGML_OP_LEAKY_RELU:
  12101. {
  12102. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12103. } break;
  12104. case GGML_OP_FLASH_ATTN:
  12105. {
  12106. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12107. GGML_ASSERT(t == 0 || t == 1);
  12108. const bool masked = t != 0;
  12109. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12110. } break;
  12111. case GGML_OP_FLASH_FF:
  12112. {
  12113. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12114. } break;
  12115. case GGML_OP_FLASH_ATTN_BACK:
  12116. {
  12117. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12118. GGML_ASSERT(t == 0 || t == 1);
  12119. bool masked = t != 0;
  12120. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12121. } break;
  12122. case GGML_OP_WIN_PART:
  12123. {
  12124. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12125. } break;
  12126. case GGML_OP_WIN_UNPART:
  12127. {
  12128. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12129. } break;
  12130. case GGML_OP_UNARY:
  12131. {
  12132. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12133. } break;
  12134. case GGML_OP_GET_REL_POS:
  12135. {
  12136. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12137. } break;
  12138. case GGML_OP_ADD_REL_POS:
  12139. {
  12140. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12141. } break;
  12142. case GGML_OP_MAP_UNARY:
  12143. {
  12144. ggml_unary_op_f32_t fun;
  12145. memcpy(&fun, tensor->op_params, sizeof(fun));
  12146. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12147. }
  12148. break;
  12149. case GGML_OP_MAP_BINARY:
  12150. {
  12151. ggml_binary_op_f32_t fun;
  12152. memcpy(&fun, tensor->op_params, sizeof(fun));
  12153. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12154. }
  12155. break;
  12156. case GGML_OP_MAP_CUSTOM1_F32:
  12157. {
  12158. ggml_custom1_op_f32_t fun;
  12159. memcpy(&fun, tensor->op_params, sizeof(fun));
  12160. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12161. }
  12162. break;
  12163. case GGML_OP_MAP_CUSTOM2_F32:
  12164. {
  12165. ggml_custom2_op_f32_t fun;
  12166. memcpy(&fun, tensor->op_params, sizeof(fun));
  12167. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12168. }
  12169. break;
  12170. case GGML_OP_MAP_CUSTOM3_F32:
  12171. {
  12172. ggml_custom3_op_f32_t fun;
  12173. memcpy(&fun, tensor->op_params, sizeof(fun));
  12174. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12175. }
  12176. break;
  12177. case GGML_OP_MAP_CUSTOM1:
  12178. {
  12179. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12180. }
  12181. break;
  12182. case GGML_OP_MAP_CUSTOM2:
  12183. {
  12184. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12185. }
  12186. break;
  12187. case GGML_OP_MAP_CUSTOM3:
  12188. {
  12189. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12190. }
  12191. break;
  12192. case GGML_OP_CROSS_ENTROPY_LOSS:
  12193. {
  12194. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12195. }
  12196. break;
  12197. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12198. {
  12199. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12200. }
  12201. break;
  12202. case GGML_OP_NONE:
  12203. {
  12204. // nop
  12205. } break;
  12206. case GGML_OP_COUNT:
  12207. {
  12208. GGML_ASSERT(false);
  12209. } break;
  12210. }
  12211. }
  12212. ////////////////////////////////////////////////////////////////////////////////
  12213. static size_t ggml_hash_size(size_t min_sz) {
  12214. // next primes after powers of two
  12215. static const size_t primes[] = {
  12216. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12217. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12218. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12219. 16777259, 33554467, 67108879, 134217757, 268435459,
  12220. 536870923, 1073741827, 2147483659
  12221. };
  12222. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12223. // find the smallest prime that is larger or equal to min_sz
  12224. size_t l = 0;
  12225. size_t r = n_primes;
  12226. while (l < r) {
  12227. size_t m = (l + r)/2;
  12228. if (primes[m] < min_sz) {
  12229. l = m + 1;
  12230. } else {
  12231. r = m;
  12232. }
  12233. }
  12234. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12235. return sz;
  12236. }
  12237. static size_t ggml_hash(const void * p) {
  12238. return (size_t)p;
  12239. }
  12240. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12241. size_t h = ggml_hash(key) % hash_set.size;
  12242. // linear probing
  12243. size_t i = h;
  12244. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12245. i = (i + 1) % hash_set.size;
  12246. if (i == h) {
  12247. // visited all hash table entries -> not found
  12248. return GGML_HASHTABLE_FULL;
  12249. }
  12250. }
  12251. return i;
  12252. }
  12253. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12254. size_t i = ggml_hash_find(hash_set, key);
  12255. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12256. }
  12257. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12258. size_t i = ggml_hash_find(hash_set, key);
  12259. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12260. if (hash_set.keys[i] == key) {
  12261. return GGML_HASHTABLE_ALREADY_EXISTS;
  12262. }
  12263. // insert
  12264. GGML_ASSERT(hash_set.keys[i] == NULL);
  12265. hash_set.keys[i] = key;
  12266. return i;
  12267. }
  12268. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12269. size_t i = ggml_hash_find(hash_set, key);
  12270. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12271. hash_set.keys[i] = key;
  12272. return i;
  12273. }
  12274. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12275. size = ggml_hash_size(size);
  12276. struct ggml_hash_set result;
  12277. result.size = size;
  12278. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12279. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12280. return result;
  12281. }
  12282. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12283. free(hash_set.keys);
  12284. }
  12285. struct hash_map {
  12286. struct ggml_hash_set set;
  12287. struct ggml_tensor ** vals;
  12288. };
  12289. static struct hash_map * ggml_new_hash_map(size_t size) {
  12290. struct hash_map * result = malloc(sizeof(struct hash_map));
  12291. result->set = ggml_hash_set_new(size);
  12292. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12293. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12294. return result;
  12295. }
  12296. static void ggml_hash_map_free(struct hash_map * map) {
  12297. ggml_hash_set_free(map->set);
  12298. free(map->vals);
  12299. free(map);
  12300. }
  12301. // gradient checkpointing
  12302. static struct ggml_tensor * ggml_recompute_graph_node(
  12303. struct ggml_context * ctx,
  12304. struct ggml_cgraph * graph,
  12305. struct hash_map * replacements,
  12306. struct ggml_tensor * node) {
  12307. if (node == NULL) {
  12308. return NULL;
  12309. }
  12310. if (node->is_param) {
  12311. return node;
  12312. }
  12313. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12314. return node;
  12315. }
  12316. int count_children = 0;
  12317. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12318. if (node->src[k]) {
  12319. ++count_children;
  12320. }
  12321. }
  12322. if (count_children == 0) {
  12323. return node;
  12324. }
  12325. size_t i = ggml_hash_find(replacements->set, node);
  12326. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12327. if (replacements->set.keys[i] == node) {
  12328. return replacements->vals[i];
  12329. }
  12330. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12331. // insert clone into replacements
  12332. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12333. replacements->set.keys[i] = node;
  12334. replacements->vals[i] = clone;
  12335. clone->op = node->op;
  12336. clone->grad = node->grad;
  12337. clone->is_param = node->is_param;
  12338. clone->extra = node->extra;
  12339. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12340. clone->nb[k] = node->nb[k];
  12341. }
  12342. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12343. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12344. }
  12345. if (node->view_src != NULL) {
  12346. clone->data = (node->view_src->data == NULL)
  12347. ? NULL // view_src not yet allocated
  12348. : (char *) node->view_src->data // view_src already allocated
  12349. + node->view_offs;
  12350. clone->view_src = node->view_src;
  12351. clone->view_offs = node->view_offs;
  12352. }
  12353. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12354. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12355. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12356. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12357. return clone;
  12358. }
  12359. void ggml_build_backward_gradient_checkpointing(
  12360. struct ggml_context * ctx,
  12361. struct ggml_cgraph * gf,
  12362. struct ggml_cgraph * gb,
  12363. struct ggml_cgraph * gb_tmp,
  12364. struct ggml_tensor * * checkpoints,
  12365. int n_checkpoints) {
  12366. ggml_graph_cpy(gf, gb_tmp);
  12367. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12368. if (n_checkpoints <= 0) {
  12369. ggml_graph_cpy(gb_tmp, gb);
  12370. return;
  12371. }
  12372. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12373. // insert checkpoints in replacements
  12374. for (int i = 0; i < n_checkpoints; ++i) {
  12375. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12376. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12377. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12378. replacements->set.keys[k] = checkpoints[i];
  12379. replacements->vals[k] = checkpoints[i];
  12380. }
  12381. ggml_graph_cpy(gf, gb);
  12382. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12383. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12384. // by recomputing them from checkpoints
  12385. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12386. struct ggml_tensor * node = gb_tmp->nodes[i];
  12387. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12388. // insert new tensors recomputing src, reusing already made replacements,
  12389. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12390. // recurse for input tensors,
  12391. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12392. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12393. }
  12394. // insert rewritten backward node with replacements made into resulting backward graph gb
  12395. ggml_build_forward_expand(gb, node);
  12396. }
  12397. ggml_hash_map_free(replacements);
  12398. }
  12399. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12400. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12401. if (ggml_hash_contains(zero_table, a)) {
  12402. return b;
  12403. } else {
  12404. return ggml_add_impl(ctx, a, b, false);
  12405. }
  12406. }
  12407. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12408. if (ggml_hash_contains(zero_table, a)) {
  12409. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12410. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12411. } else {
  12412. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12413. }
  12414. }
  12415. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12416. if (ggml_hash_contains(zero_table, a)) {
  12417. return ggml_repeat(ctx, b, a);
  12418. } else {
  12419. return ggml_add1_impl(ctx, a, b, false);
  12420. }
  12421. }
  12422. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12423. if (ggml_hash_contains(zero_table, a)) {
  12424. return ggml_neg(ctx, b);
  12425. } else {
  12426. return ggml_sub_impl(ctx, a, b, false);
  12427. }
  12428. }
  12429. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12430. struct ggml_tensor * src0 = tensor->src[0];
  12431. struct ggml_tensor * src1 = tensor->src[1];
  12432. switch (tensor->op) {
  12433. case GGML_OP_DUP:
  12434. {
  12435. if (src0->grad) {
  12436. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12437. }
  12438. } break;
  12439. case GGML_OP_ADD:
  12440. {
  12441. if (src0->grad) {
  12442. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12443. }
  12444. if (src1->grad) {
  12445. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12446. }
  12447. } break;
  12448. case GGML_OP_ADD1:
  12449. {
  12450. if (src0->grad) {
  12451. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12452. }
  12453. if (src1->grad) {
  12454. src1->grad = ggml_add_or_set(ctx,
  12455. src1->grad,
  12456. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12457. zero_table);
  12458. }
  12459. } break;
  12460. case GGML_OP_ACC:
  12461. {
  12462. if (src0->grad) {
  12463. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12464. }
  12465. if (src1->grad) {
  12466. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12467. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12468. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12469. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12470. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12471. tensor->grad,
  12472. src1->grad->ne[0],
  12473. src1->grad->ne[1],
  12474. src1->grad->ne[2],
  12475. src1->grad->ne[3],
  12476. nb1, nb2, nb3, offset);
  12477. src1->grad =
  12478. ggml_add_or_set(ctx,
  12479. src1->grad,
  12480. ggml_reshape(ctx,
  12481. ggml_cont(ctx, tensor_grad_view),
  12482. src1->grad),
  12483. zero_table);
  12484. }
  12485. } break;
  12486. case GGML_OP_SUB:
  12487. {
  12488. if (src0->grad) {
  12489. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12490. }
  12491. if (src1->grad) {
  12492. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12493. }
  12494. } break;
  12495. case GGML_OP_MUL:
  12496. {
  12497. if (src0->grad) {
  12498. src0->grad =
  12499. ggml_add_or_set(ctx,
  12500. src0->grad,
  12501. ggml_mul(ctx, src1, tensor->grad),
  12502. zero_table);
  12503. }
  12504. if (src1->grad) {
  12505. src1->grad =
  12506. ggml_add_or_set(ctx,
  12507. src1->grad,
  12508. ggml_mul(ctx, src0, tensor->grad),
  12509. zero_table);
  12510. }
  12511. } break;
  12512. case GGML_OP_DIV:
  12513. {
  12514. if (src0->grad) {
  12515. src0->grad =
  12516. ggml_add_or_set(ctx,
  12517. src0->grad,
  12518. ggml_div(ctx, tensor->grad, src1),
  12519. zero_table);
  12520. }
  12521. if (src1->grad) {
  12522. src1->grad =
  12523. ggml_sub_or_set(ctx,
  12524. src1->grad,
  12525. ggml_mul(ctx,
  12526. tensor->grad,
  12527. ggml_div(ctx, tensor, src1)),
  12528. zero_table);
  12529. }
  12530. } break;
  12531. case GGML_OP_SQR:
  12532. {
  12533. if (src0->grad) {
  12534. src0->grad =
  12535. ggml_add_or_set(ctx,
  12536. src0->grad,
  12537. ggml_scale(ctx,
  12538. ggml_mul(ctx, src0, tensor->grad),
  12539. 2.0f),
  12540. zero_table);
  12541. }
  12542. } break;
  12543. case GGML_OP_SQRT:
  12544. {
  12545. if (src0->grad) {
  12546. src0->grad =
  12547. ggml_add_or_set(ctx,
  12548. src0->grad,
  12549. ggml_scale(ctx,
  12550. ggml_div(ctx,
  12551. tensor->grad,
  12552. tensor),
  12553. 0.5f),
  12554. zero_table);
  12555. }
  12556. } break;
  12557. case GGML_OP_LOG:
  12558. {
  12559. if (src0->grad) {
  12560. src0->grad =
  12561. ggml_add_or_set(ctx,
  12562. src0->grad,
  12563. ggml_div(ctx,
  12564. tensor->grad,
  12565. src0),
  12566. zero_table);
  12567. }
  12568. } break;
  12569. case GGML_OP_SUM:
  12570. {
  12571. if (src0->grad) {
  12572. src0->grad =
  12573. ggml_add1_or_set(ctx,
  12574. src0->grad,
  12575. tensor->grad,
  12576. zero_table);
  12577. }
  12578. } break;
  12579. case GGML_OP_SUM_ROWS:
  12580. {
  12581. if (src0->grad) {
  12582. src0->grad =
  12583. ggml_add_or_set(ctx,
  12584. src0->grad,
  12585. ggml_repeat(ctx,
  12586. tensor->grad,
  12587. src0->grad),
  12588. zero_table);
  12589. }
  12590. } break;
  12591. case GGML_OP_MEAN:
  12592. case GGML_OP_ARGMAX:
  12593. {
  12594. GGML_ASSERT(false); // TODO: implement
  12595. } break;
  12596. case GGML_OP_REPEAT:
  12597. {
  12598. // necessary for llama
  12599. if (src0->grad) {
  12600. src0->grad = ggml_add_or_set(ctx,
  12601. src0->grad,
  12602. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12603. zero_table);
  12604. }
  12605. } break;
  12606. case GGML_OP_REPEAT_BACK:
  12607. {
  12608. if (src0->grad) {
  12609. // TODO: test this
  12610. src0->grad = ggml_add_or_set(ctx,
  12611. src0->grad,
  12612. ggml_repeat(ctx, tensor->grad, src0->grad),
  12613. zero_table);
  12614. }
  12615. } break;
  12616. case GGML_OP_CONCAT:
  12617. {
  12618. GGML_ASSERT(false); // TODO: implement
  12619. } break;
  12620. case GGML_OP_SILU_BACK:
  12621. {
  12622. GGML_ASSERT(false); // TODO: not implemented
  12623. } break;
  12624. case GGML_OP_NORM:
  12625. {
  12626. GGML_ASSERT(false); // TODO: not implemented
  12627. } break;
  12628. case GGML_OP_RMS_NORM:
  12629. {
  12630. // necessary for llama
  12631. if (src0->grad) {
  12632. float eps;
  12633. memcpy(&eps, tensor->op_params, sizeof(float));
  12634. src0->grad = ggml_add_or_set(ctx,
  12635. src0->grad,
  12636. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12637. zero_table);
  12638. }
  12639. } break;
  12640. case GGML_OP_RMS_NORM_BACK:
  12641. {
  12642. GGML_ASSERT(false); // TODO: not implemented
  12643. } break;
  12644. case GGML_OP_GROUP_NORM:
  12645. {
  12646. GGML_ASSERT(false); // TODO: not implemented
  12647. } break;
  12648. case GGML_OP_MUL_MAT:
  12649. {
  12650. // https://cs231n.github.io/optimization-2/#staged
  12651. // # forward pass
  12652. // s0 = np.random.randn(5, 10)
  12653. // s1 = np.random.randn(10, 3)
  12654. // t = s0.dot(s1)
  12655. // # now suppose we had the gradient on t from above in the circuit
  12656. // dt = np.random.randn(*t.shape) # same shape as t
  12657. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12658. // ds1 = t.T.dot(dt)
  12659. // tensor.shape [m,p,qq,rr]
  12660. // src0.shape [n,m,q1,r1]
  12661. // src1.shape [n,p,qq,rr]
  12662. // necessary for llama
  12663. if (src0->grad) {
  12664. struct ggml_tensor * s1_tg =
  12665. ggml_out_prod(ctx, // [n,m,qq,rr]
  12666. src1, // [n,p,qq,rr]
  12667. tensor->grad); // [m,p,qq,rr]
  12668. const int64_t qq = s1_tg->ne[2];
  12669. const int64_t rr = s1_tg->ne[3];
  12670. const int64_t q1 = src0->ne[2];
  12671. const int64_t r1 = src0->ne[3];
  12672. const bool ne2_broadcasted = qq > q1;
  12673. const bool ne3_broadcasted = rr > r1;
  12674. if (ne2_broadcasted || ne3_broadcasted) {
  12675. // sum broadcast repetitions of s1_tg into shape of src0
  12676. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12677. }
  12678. src0->grad =
  12679. ggml_add_or_set(ctx,
  12680. src0->grad, // [n,m,q1,r1]
  12681. s1_tg, // [n,m,q1,r1]
  12682. zero_table);
  12683. }
  12684. if (src1->grad) {
  12685. src1->grad =
  12686. ggml_add_or_set(ctx,
  12687. src1->grad, // [n,p,qq,rr]
  12688. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12689. // ggml_cont(ctx, // [m,n,q1,r1]
  12690. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12691. // tensor->grad), // [m,p,qq,rr]
  12692. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12693. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12694. // // and then use ggml_out_prod
  12695. ggml_out_prod(ctx, // [n,p,qq,rr]
  12696. src0, // [n,m,q1,r1]
  12697. ggml_transpose(ctx, // [p,m,qq,rr]
  12698. tensor->grad)), // [m,p,qq,rr]
  12699. zero_table);
  12700. }
  12701. } break;
  12702. case GGML_OP_MUL_MAT_ID:
  12703. {
  12704. GGML_ASSERT(false); // TODO: not implemented
  12705. } break;
  12706. case GGML_OP_OUT_PROD:
  12707. {
  12708. GGML_ASSERT(false); // TODO: not implemented
  12709. } break;
  12710. case GGML_OP_SCALE:
  12711. {
  12712. // necessary for llama
  12713. if (src0->grad) {
  12714. float s;
  12715. memcpy(&s, tensor->op_params, sizeof(float));
  12716. src0->grad =
  12717. ggml_add_or_set(ctx,
  12718. src0->grad,
  12719. ggml_scale_impl(ctx, tensor->grad, s, false),
  12720. zero_table);
  12721. }
  12722. } break;
  12723. case GGML_OP_SET:
  12724. {
  12725. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12726. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12727. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12728. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12729. struct ggml_tensor * tensor_grad_view = NULL;
  12730. if (src0->grad || src1->grad) {
  12731. GGML_ASSERT(src0->type == tensor->type);
  12732. GGML_ASSERT(tensor->grad->type == tensor->type);
  12733. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12734. tensor_grad_view = ggml_view_4d(ctx,
  12735. tensor->grad,
  12736. src1->grad->ne[0],
  12737. src1->grad->ne[1],
  12738. src1->grad->ne[2],
  12739. src1->grad->ne[3],
  12740. nb1, nb2, nb3, offset);
  12741. }
  12742. if (src0->grad) {
  12743. src0->grad = ggml_add_or_set(ctx,
  12744. src0->grad,
  12745. ggml_acc_impl(ctx,
  12746. tensor->grad,
  12747. ggml_neg(ctx, tensor_grad_view),
  12748. nb1, nb2, nb3, offset, false),
  12749. zero_table);
  12750. }
  12751. if (src1->grad) {
  12752. src1->grad =
  12753. ggml_add_or_set(ctx,
  12754. src1->grad,
  12755. ggml_reshape(ctx,
  12756. ggml_cont(ctx, tensor_grad_view),
  12757. src1->grad),
  12758. zero_table);
  12759. }
  12760. } break;
  12761. case GGML_OP_CPY:
  12762. {
  12763. // necessary for llama
  12764. // cpy overwrites value of src1 by src0 and returns view(src1)
  12765. // the overwriting is mathematically equivalent to:
  12766. // tensor = src0 * 1 + src1 * 0
  12767. if (src0->grad) {
  12768. // dsrc0 = dtensor * 1
  12769. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12770. }
  12771. if (src1->grad) {
  12772. // dsrc1 = dtensor * 0 -> noop
  12773. }
  12774. } break;
  12775. case GGML_OP_CONT:
  12776. {
  12777. // same as cpy
  12778. if (src0->grad) {
  12779. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12780. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12781. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12782. }
  12783. } break;
  12784. case GGML_OP_RESHAPE:
  12785. {
  12786. // necessary for llama
  12787. if (src0->grad) {
  12788. src0->grad =
  12789. ggml_add_or_set(ctx, src0->grad,
  12790. ggml_reshape(ctx,
  12791. ggml_is_contiguous(tensor->grad)
  12792. ? tensor->grad
  12793. : ggml_cont(ctx, tensor->grad),
  12794. src0->grad),
  12795. zero_table);
  12796. }
  12797. } break;
  12798. case GGML_OP_VIEW:
  12799. {
  12800. // necessary for llama
  12801. if (src0->grad) {
  12802. size_t offset;
  12803. memcpy(&offset, tensor->op_params, sizeof(offset));
  12804. size_t nb1 = tensor->nb[1];
  12805. size_t nb2 = tensor->nb[2];
  12806. size_t nb3 = tensor->nb[3];
  12807. if (src0->type != src0->grad->type) {
  12808. // gradient is typically F32, but src0 could be other type
  12809. size_t ng = ggml_element_size(src0->grad);
  12810. size_t n0 = ggml_element_size(src0);
  12811. GGML_ASSERT(offset % n0 == 0);
  12812. GGML_ASSERT(nb1 % n0 == 0);
  12813. GGML_ASSERT(nb2 % n0 == 0);
  12814. GGML_ASSERT(nb3 % n0 == 0);
  12815. offset = (offset / n0) * ng;
  12816. nb1 = (nb1 / n0) * ng;
  12817. nb2 = (nb2 / n0) * ng;
  12818. nb3 = (nb3 / n0) * ng;
  12819. }
  12820. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12821. }
  12822. } break;
  12823. case GGML_OP_PERMUTE:
  12824. {
  12825. // necessary for llama
  12826. if (src0->grad) {
  12827. int32_t * axes = (int32_t *) tensor->op_params;
  12828. int axis0 = axes[0] & 0x3;
  12829. int axis1 = axes[1] & 0x3;
  12830. int axis2 = axes[2] & 0x3;
  12831. int axis3 = axes[3] & 0x3;
  12832. int axes_backward[4] = {0,0,0,0};
  12833. axes_backward[axis0] = 0;
  12834. axes_backward[axis1] = 1;
  12835. axes_backward[axis2] = 2;
  12836. axes_backward[axis3] = 3;
  12837. src0->grad =
  12838. ggml_add_or_set(ctx, src0->grad,
  12839. ggml_permute(ctx,
  12840. tensor->grad,
  12841. axes_backward[0],
  12842. axes_backward[1],
  12843. axes_backward[2],
  12844. axes_backward[3]),
  12845. zero_table);
  12846. }
  12847. } break;
  12848. case GGML_OP_TRANSPOSE:
  12849. {
  12850. // necessary for llama
  12851. if (src0->grad) {
  12852. src0->grad =
  12853. ggml_add_or_set(ctx, src0->grad,
  12854. ggml_transpose(ctx, tensor->grad),
  12855. zero_table);
  12856. }
  12857. } break;
  12858. case GGML_OP_GET_ROWS:
  12859. {
  12860. // necessary for llama (only for tokenizer)
  12861. if (src0->grad) {
  12862. src0->grad =
  12863. ggml_add_or_set(ctx, src0->grad,
  12864. // last ggml_get_rows_back argument src0->grad is only
  12865. // necessary to setup correct output shape
  12866. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12867. zero_table);
  12868. }
  12869. if (src1->grad) {
  12870. // noop
  12871. }
  12872. } break;
  12873. case GGML_OP_GET_ROWS_BACK:
  12874. {
  12875. GGML_ASSERT(false); // TODO: not implemented
  12876. } break;
  12877. case GGML_OP_DIAG:
  12878. {
  12879. GGML_ASSERT(false); // TODO: not implemented
  12880. } break;
  12881. case GGML_OP_DIAG_MASK_INF:
  12882. {
  12883. // necessary for llama
  12884. if (src0->grad) {
  12885. const int n_past = ((int32_t *) tensor->op_params)[0];
  12886. src0->grad =
  12887. ggml_add_or_set(ctx, src0->grad,
  12888. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12889. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12890. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12891. zero_table);
  12892. }
  12893. } break;
  12894. case GGML_OP_DIAG_MASK_ZERO:
  12895. {
  12896. // necessary for llama
  12897. if (src0->grad) {
  12898. const int n_past = ((int32_t *) tensor->op_params)[0];
  12899. src0->grad =
  12900. ggml_add_or_set(ctx, src0->grad,
  12901. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12902. zero_table);
  12903. }
  12904. } break;
  12905. case GGML_OP_SOFT_MAX:
  12906. {
  12907. // necessary for llama
  12908. if (src0->grad) {
  12909. src0->grad =
  12910. ggml_add_or_set(ctx, src0->grad,
  12911. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12912. zero_table);
  12913. }
  12914. } break;
  12915. case GGML_OP_SOFT_MAX_BACK:
  12916. {
  12917. GGML_ASSERT(false); // TODO: not implemented
  12918. } break;
  12919. case GGML_OP_ROPE:
  12920. {
  12921. // necessary for llama
  12922. if (src0->grad) {
  12923. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12924. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12925. const int mode = ((int32_t *) tensor->op_params)[2];
  12926. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12927. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12928. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12929. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12930. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12931. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12932. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12933. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12934. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12935. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12936. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12937. src0->grad = ggml_add_or_set(ctx,
  12938. src0->grad,
  12939. ggml_rope_back(ctx,
  12940. tensor->grad,
  12941. src1,
  12942. n_dims,
  12943. mode,
  12944. n_ctx,
  12945. n_orig_ctx,
  12946. freq_base,
  12947. freq_scale,
  12948. ext_factor,
  12949. attn_factor,
  12950. beta_fast,
  12951. beta_slow,
  12952. xpos_base,
  12953. xpos_down),
  12954. zero_table);
  12955. }
  12956. } break;
  12957. case GGML_OP_ROPE_BACK:
  12958. {
  12959. if (src0->grad) {
  12960. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12961. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12962. const int mode = ((int32_t *) tensor->op_params)[2];
  12963. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12964. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12965. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12966. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12967. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12968. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12969. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12970. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12971. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12972. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12973. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12974. src0->grad = ggml_add_or_set(ctx,
  12975. src0->grad,
  12976. ggml_rope_impl(ctx,
  12977. tensor->grad,
  12978. src1,
  12979. n_dims,
  12980. mode,
  12981. n_ctx,
  12982. n_orig_ctx,
  12983. freq_base,
  12984. freq_scale,
  12985. ext_factor,
  12986. attn_factor,
  12987. beta_fast,
  12988. beta_slow,
  12989. xpos_base,
  12990. xpos_down,
  12991. false),
  12992. zero_table);
  12993. }
  12994. } break;
  12995. case GGML_OP_ALIBI:
  12996. {
  12997. GGML_ASSERT(false); // TODO: not implemented
  12998. } break;
  12999. case GGML_OP_CLAMP:
  13000. {
  13001. GGML_ASSERT(false); // TODO: not implemented
  13002. } break;
  13003. case GGML_OP_CONV_TRANSPOSE_1D:
  13004. {
  13005. GGML_ASSERT(false); // TODO: not implemented
  13006. } break;
  13007. case GGML_OP_IM2COL:
  13008. {
  13009. GGML_ASSERT(false); // TODO: not implemented
  13010. } break;
  13011. case GGML_OP_CONV_TRANSPOSE_2D:
  13012. {
  13013. GGML_ASSERT(false); // TODO: not implemented
  13014. } break;
  13015. case GGML_OP_POOL_1D:
  13016. {
  13017. GGML_ASSERT(false); // TODO: not implemented
  13018. } break;
  13019. case GGML_OP_POOL_2D:
  13020. {
  13021. GGML_ASSERT(false); // TODO: not implemented
  13022. } break;
  13023. case GGML_OP_UPSCALE:
  13024. {
  13025. GGML_ASSERT(false); // TODO: not implemented
  13026. } break;
  13027. case GGML_OP_PAD:
  13028. {
  13029. GGML_ASSERT(false); // TODO: not implemented
  13030. } break;
  13031. case GGML_OP_ARGSORT:
  13032. {
  13033. GGML_ASSERT(false); // TODO: not implemented
  13034. } break;
  13035. case GGML_OP_LEAKY_RELU:
  13036. {
  13037. GGML_ASSERT(false); // TODO: not implemented
  13038. } break;
  13039. case GGML_OP_FLASH_ATTN:
  13040. {
  13041. struct ggml_tensor * flash_grad = NULL;
  13042. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13043. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13044. GGML_ASSERT(t == 0 || t == 1);
  13045. bool masked = t != 0;
  13046. flash_grad =
  13047. ggml_flash_attn_back(ctx,
  13048. src0,
  13049. src1,
  13050. tensor->src[2],
  13051. tensor->grad,
  13052. masked);
  13053. }
  13054. struct ggml_tensor * src2 = tensor->src[2];
  13055. const int64_t elem_q = ggml_nelements(src0);
  13056. const int64_t elem_k = ggml_nelements(src1);
  13057. const int64_t elem_v = ggml_nelements(src2);
  13058. enum ggml_type result_type = flash_grad->type;
  13059. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13060. const size_t tsize = ggml_type_size(result_type);
  13061. const size_t offs_q = 0;
  13062. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13063. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13064. if (src0->grad) {
  13065. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13066. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13067. src0->grad = ggml_add_or_set(ctx,
  13068. src0->grad,
  13069. grad_q,
  13070. zero_table);
  13071. }
  13072. if (src1->grad) {
  13073. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13074. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13075. src1->grad = ggml_add_or_set(ctx,
  13076. src1->grad,
  13077. grad_k,
  13078. zero_table);
  13079. }
  13080. if (src2->grad) {
  13081. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13082. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13083. src2->grad = ggml_add_or_set(ctx,
  13084. src2->grad,
  13085. grad_v,
  13086. zero_table);
  13087. }
  13088. } break;
  13089. case GGML_OP_FLASH_FF:
  13090. {
  13091. GGML_ASSERT(false); // not supported
  13092. } break;
  13093. case GGML_OP_FLASH_ATTN_BACK:
  13094. {
  13095. GGML_ASSERT(false); // not supported
  13096. } break;
  13097. case GGML_OP_WIN_PART:
  13098. case GGML_OP_WIN_UNPART:
  13099. case GGML_OP_UNARY:
  13100. {
  13101. switch (ggml_get_unary_op(tensor)) {
  13102. case GGML_UNARY_OP_ABS:
  13103. {
  13104. if (src0->grad) {
  13105. src0->grad =
  13106. ggml_add_or_set(ctx,
  13107. src0->grad,
  13108. ggml_mul(ctx,
  13109. ggml_sgn(ctx, src0),
  13110. tensor->grad),
  13111. zero_table);
  13112. }
  13113. } break;
  13114. case GGML_UNARY_OP_SGN:
  13115. {
  13116. if (src0->grad) {
  13117. // noop
  13118. }
  13119. } break;
  13120. case GGML_UNARY_OP_NEG:
  13121. {
  13122. if (src0->grad) {
  13123. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13124. }
  13125. } break;
  13126. case GGML_UNARY_OP_STEP:
  13127. {
  13128. if (src0->grad) {
  13129. // noop
  13130. }
  13131. } break;
  13132. case GGML_UNARY_OP_TANH:
  13133. {
  13134. GGML_ASSERT(false); // TODO: not implemented
  13135. } break;
  13136. case GGML_UNARY_OP_ELU:
  13137. {
  13138. GGML_ASSERT(false); // TODO: not implemented
  13139. } break;
  13140. case GGML_UNARY_OP_RELU:
  13141. {
  13142. if (src0->grad) {
  13143. src0->grad = ggml_add_or_set(ctx,
  13144. src0->grad,
  13145. ggml_mul(ctx,
  13146. ggml_step(ctx, src0),
  13147. tensor->grad),
  13148. zero_table);
  13149. }
  13150. } break;
  13151. case GGML_UNARY_OP_GELU:
  13152. {
  13153. GGML_ASSERT(false); // TODO: not implemented
  13154. } break;
  13155. case GGML_UNARY_OP_GELU_QUICK:
  13156. {
  13157. GGML_ASSERT(false); // TODO: not implemented
  13158. } break;
  13159. case GGML_UNARY_OP_SILU:
  13160. {
  13161. // necessary for llama
  13162. if (src0->grad) {
  13163. src0->grad = ggml_add_or_set(ctx,
  13164. src0->grad,
  13165. ggml_silu_back(ctx, src0, tensor->grad),
  13166. zero_table);
  13167. }
  13168. } break;
  13169. default:
  13170. GGML_ASSERT(false);
  13171. }
  13172. } break;
  13173. case GGML_OP_GET_REL_POS:
  13174. case GGML_OP_ADD_REL_POS:
  13175. case GGML_OP_MAP_UNARY:
  13176. case GGML_OP_MAP_BINARY:
  13177. case GGML_OP_MAP_CUSTOM1_F32:
  13178. case GGML_OP_MAP_CUSTOM2_F32:
  13179. case GGML_OP_MAP_CUSTOM3_F32:
  13180. case GGML_OP_MAP_CUSTOM1:
  13181. case GGML_OP_MAP_CUSTOM2:
  13182. case GGML_OP_MAP_CUSTOM3:
  13183. {
  13184. GGML_ASSERT(false); // not supported
  13185. } break;
  13186. case GGML_OP_CROSS_ENTROPY_LOSS:
  13187. {
  13188. if (src0->grad) {
  13189. src0->grad = ggml_add_or_set(ctx,
  13190. src0->grad,
  13191. ggml_cross_entropy_loss_back(ctx,
  13192. src0,
  13193. src1,
  13194. tensor->grad),
  13195. zero_table);
  13196. }
  13197. } break;
  13198. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13199. {
  13200. GGML_ASSERT(false); // not supported
  13201. } break;
  13202. case GGML_OP_NONE:
  13203. {
  13204. // nop
  13205. } break;
  13206. case GGML_OP_COUNT:
  13207. {
  13208. GGML_ASSERT(false);
  13209. } break;
  13210. }
  13211. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13212. if (tensor->src[i] && tensor->src[i]->grad) {
  13213. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13214. }
  13215. }
  13216. }
  13217. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13218. if (node->grad == NULL) {
  13219. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13220. // it can also happen during forward pass, if the user performs computations with constants
  13221. if (node->op != GGML_OP_NONE) {
  13222. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13223. }
  13224. }
  13225. // check if already visited
  13226. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13227. return;
  13228. }
  13229. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13230. const int k =
  13231. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13232. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13233. /* unknown order, just fall back to using i*/ i;
  13234. if (node->src[k]) {
  13235. ggml_visit_parents(cgraph, node->src[k]);
  13236. }
  13237. }
  13238. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13239. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13240. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13241. if (strlen(node->name) == 0) {
  13242. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13243. }
  13244. cgraph->leafs[cgraph->n_leafs] = node;
  13245. cgraph->n_leafs++;
  13246. } else {
  13247. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13248. if (strlen(node->name) == 0) {
  13249. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13250. }
  13251. cgraph->nodes[cgraph->n_nodes] = node;
  13252. if (cgraph->grads) {
  13253. cgraph->grads[cgraph->n_nodes] = node->grad;
  13254. }
  13255. cgraph->n_nodes++;
  13256. }
  13257. }
  13258. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13259. if (!expand) {
  13260. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13261. ggml_graph_clear(cgraph);
  13262. }
  13263. const int n0 = cgraph->n_nodes;
  13264. UNUSED(n0);
  13265. ggml_visit_parents(cgraph, tensor);
  13266. const int n_new = cgraph->n_nodes - n0;
  13267. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13268. if (n_new > 0) {
  13269. // the last added node should always be starting point
  13270. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13271. }
  13272. }
  13273. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13274. ggml_build_forward_impl(cgraph, tensor, true);
  13275. }
  13276. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13277. GGML_ASSERT(gf->n_nodes > 0);
  13278. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13279. if (keep) {
  13280. for (int i = 0; i < gf->n_nodes; i++) {
  13281. struct ggml_tensor * node = gf->nodes[i];
  13282. if (node->grad) {
  13283. node->grad = ggml_dup_tensor(ctx, node);
  13284. gf->grads[i] = node->grad;
  13285. }
  13286. }
  13287. }
  13288. // remember original gradients which start with zero values
  13289. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13290. for (int i = 0; i < gf->n_nodes; i++) {
  13291. if (gf->grads[i]) {
  13292. ggml_hash_insert(zero_table, gf->grads[i]);
  13293. }
  13294. }
  13295. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13296. struct ggml_tensor * node = gf->nodes[i];
  13297. // inplace operations to add gradients are not created by ggml_compute_backward
  13298. // use allocator to automatically make inplace operations
  13299. if (node->grad) {
  13300. ggml_compute_backward(ctx, node, zero_table);
  13301. }
  13302. }
  13303. for (int i = 0; i < gf->n_nodes; i++) {
  13304. struct ggml_tensor * node = gf->nodes[i];
  13305. if (node->is_param) {
  13306. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13307. ggml_build_forward_expand(gb, node->grad);
  13308. }
  13309. }
  13310. ggml_hash_set_free(zero_table);
  13311. }
  13312. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13313. size_t nbytes = sizeof(struct ggml_cgraph);
  13314. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13315. if (grads) {
  13316. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13317. }
  13318. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13319. return nbytes;
  13320. }
  13321. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13322. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13323. }
  13324. size_t ggml_graph_overhead(void) {
  13325. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13326. }
  13327. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13328. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13329. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13330. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13331. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13332. size_t hash_size = ggml_hash_size(size * 2);
  13333. struct ggml_tensor ** nodes_ptr = data_start;
  13334. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13335. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13336. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13337. // check that we allocated the correct amount of memory
  13338. assert(obj_size == (size_t) (
  13339. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13340. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13341. *cgraph = (struct ggml_cgraph) {
  13342. /*.size =*/ size,
  13343. /*.n_nodes =*/ 0,
  13344. /*.n_leafs =*/ 0,
  13345. /*.nodes =*/ nodes_ptr,
  13346. /*.grads =*/ grads_ptr,
  13347. /*.leafs =*/ leafs_ptr,
  13348. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13349. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13350. /*.perf_runs =*/ 0,
  13351. /*.perf_cycles =*/ 0,
  13352. /*.perf_time_us =*/ 0,
  13353. };
  13354. return cgraph;
  13355. }
  13356. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13357. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13358. }
  13359. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13360. struct ggml_cgraph cgraph = {
  13361. /*.size =*/ 0,
  13362. /*.n_nodes =*/ i1 - i0,
  13363. /*.n_leafs =*/ 0,
  13364. /*.nodes =*/ cgraph0->nodes + i0,
  13365. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13366. /*.leafs =*/ NULL,
  13367. /*.hash_table =*/ { 0, NULL },
  13368. /*.order =*/ cgraph0->order,
  13369. /*.perf_runs =*/ 0,
  13370. /*.perf_cycles =*/ 0,
  13371. /*.perf_time_us =*/ 0,
  13372. };
  13373. return cgraph;
  13374. }
  13375. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13376. GGML_ASSERT(dst->size >= src->n_leafs);
  13377. GGML_ASSERT(dst->size >= src->n_nodes);
  13378. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13379. dst->n_leafs = src->n_leafs;
  13380. dst->n_nodes = src->n_nodes;
  13381. dst->order = src->order;
  13382. for (int i = 0; i < src->n_leafs; ++i) {
  13383. dst->leafs[i] = src->leafs[i];
  13384. }
  13385. for (int i = 0; i < src->n_nodes; ++i) {
  13386. dst->nodes[i] = src->nodes[i];
  13387. }
  13388. if (src->grads) {
  13389. GGML_ASSERT(dst->grads != NULL);
  13390. for (int i = 0; i < src->n_nodes; ++i) {
  13391. dst->grads[i] = src->grads[i];
  13392. }
  13393. }
  13394. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13395. if (src->visited_hash_table.keys[i]) {
  13396. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13397. }
  13398. }
  13399. }
  13400. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13401. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13402. ggml_graph_cpy(cgraph, result);
  13403. return result;
  13404. }
  13405. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13406. GGML_ASSERT(cgraph->grads != NULL);
  13407. for (int i = 0; i < cgraph->n_nodes; i++) {
  13408. struct ggml_tensor * grad = cgraph->grads[i];
  13409. if (grad) {
  13410. ggml_set_zero(grad);
  13411. }
  13412. }
  13413. }
  13414. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13415. cgraph->n_leafs = 0;
  13416. cgraph->n_nodes = 0;
  13417. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13418. }
  13419. //
  13420. // thread data
  13421. //
  13422. // synchronization is done via busy loops
  13423. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13424. //
  13425. #ifdef __APPLE__
  13426. //#include <os/lock.h>
  13427. //
  13428. //typedef os_unfair_lock ggml_lock_t;
  13429. //
  13430. //#define ggml_lock_init(x) UNUSED(x)
  13431. //#define ggml_lock_destroy(x) UNUSED(x)
  13432. //#define ggml_lock_lock os_unfair_lock_lock
  13433. //#define ggml_lock_unlock os_unfair_lock_unlock
  13434. //
  13435. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13436. typedef int ggml_lock_t;
  13437. #define ggml_lock_init(x) UNUSED(x)
  13438. #define ggml_lock_destroy(x) UNUSED(x)
  13439. #define ggml_lock_lock(x) UNUSED(x)
  13440. #define ggml_lock_unlock(x) UNUSED(x)
  13441. #define GGML_LOCK_INITIALIZER 0
  13442. typedef pthread_t ggml_thread_t;
  13443. #define ggml_thread_create pthread_create
  13444. #define ggml_thread_join pthread_join
  13445. #else
  13446. //typedef pthread_spinlock_t ggml_lock_t;
  13447. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13448. //#define ggml_lock_destroy pthread_spin_destroy
  13449. //#define ggml_lock_lock pthread_spin_lock
  13450. //#define ggml_lock_unlock pthread_spin_unlock
  13451. typedef int ggml_lock_t;
  13452. #define ggml_lock_init(x) UNUSED(x)
  13453. #define ggml_lock_destroy(x) UNUSED(x)
  13454. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13455. #define ggml_lock_lock(x) _mm_pause()
  13456. #else
  13457. #define ggml_lock_lock(x) UNUSED(x)
  13458. #endif
  13459. #define ggml_lock_unlock(x) UNUSED(x)
  13460. #define GGML_LOCK_INITIALIZER 0
  13461. typedef pthread_t ggml_thread_t;
  13462. #define ggml_thread_create pthread_create
  13463. #define ggml_thread_join pthread_join
  13464. #endif
  13465. // Android's libc implementation "bionic" does not support setting affinity
  13466. #if defined(__linux__) && !defined(__BIONIC__)
  13467. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13468. if (!ggml_is_numa()) {
  13469. return;
  13470. }
  13471. // run thread on node_num thread_n / (threads per node)
  13472. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13473. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13474. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13475. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13476. CPU_ZERO_S(setsize, cpus);
  13477. for (size_t i = 0; i < node->n_cpus; ++i) {
  13478. CPU_SET_S(node->cpus[i], setsize, cpus);
  13479. }
  13480. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13481. if (rv) {
  13482. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13483. strerror(rv));
  13484. }
  13485. CPU_FREE(cpus);
  13486. }
  13487. static void clear_numa_thread_affinity(void) {
  13488. if (!ggml_is_numa()) {
  13489. return;
  13490. }
  13491. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13492. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13493. CPU_ZERO_S(setsize, cpus);
  13494. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13495. CPU_SET_S(i, setsize, cpus);
  13496. }
  13497. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13498. if (rv) {
  13499. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13500. strerror(rv));
  13501. }
  13502. CPU_FREE(cpus);
  13503. }
  13504. #else
  13505. // TODO: Windows etc.
  13506. // (the linux implementation may also work on BSD, someone should test)
  13507. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13508. static void clear_numa_thread_affinity(void) {}
  13509. #endif
  13510. struct ggml_compute_state_shared {
  13511. const struct ggml_cgraph * cgraph;
  13512. const struct ggml_cplan * cplan;
  13513. int64_t perf_node_start_cycles;
  13514. int64_t perf_node_start_time_us;
  13515. const int n_threads;
  13516. // synchronization primitives
  13517. atomic_int n_active; // num active threads
  13518. atomic_int node_n; // active graph node
  13519. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13520. void * abort_callback_data;
  13521. };
  13522. struct ggml_compute_state {
  13523. ggml_thread_t thrd;
  13524. int ith;
  13525. struct ggml_compute_state_shared * shared;
  13526. };
  13527. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13528. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13529. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13530. node->perf_runs++;
  13531. node->perf_cycles += cycles_cur;
  13532. node->perf_time_us += time_us_cur;
  13533. }
  13534. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13535. int n_tasks = 0;
  13536. switch (node->op) {
  13537. case GGML_OP_CPY:
  13538. case GGML_OP_DUP:
  13539. case GGML_OP_ADD:
  13540. case GGML_OP_ADD1:
  13541. case GGML_OP_ACC:
  13542. {
  13543. n_tasks = n_threads;
  13544. } break;
  13545. case GGML_OP_SUB:
  13546. case GGML_OP_SQR:
  13547. case GGML_OP_SQRT:
  13548. case GGML_OP_LOG:
  13549. case GGML_OP_SUM:
  13550. case GGML_OP_SUM_ROWS:
  13551. case GGML_OP_MEAN:
  13552. case GGML_OP_ARGMAX:
  13553. case GGML_OP_REPEAT:
  13554. case GGML_OP_REPEAT_BACK:
  13555. case GGML_OP_LEAKY_RELU:
  13556. {
  13557. n_tasks = 1;
  13558. } break;
  13559. case GGML_OP_UNARY:
  13560. switch (ggml_get_unary_op(node)) {
  13561. case GGML_UNARY_OP_ABS:
  13562. case GGML_UNARY_OP_SGN:
  13563. case GGML_UNARY_OP_NEG:
  13564. case GGML_UNARY_OP_STEP:
  13565. case GGML_UNARY_OP_TANH:
  13566. case GGML_UNARY_OP_ELU:
  13567. case GGML_UNARY_OP_RELU:
  13568. {
  13569. n_tasks = 1;
  13570. } break;
  13571. case GGML_UNARY_OP_GELU:
  13572. case GGML_UNARY_OP_GELU_QUICK:
  13573. case GGML_UNARY_OP_SILU:
  13574. {
  13575. n_tasks = n_threads;
  13576. } break;
  13577. default:
  13578. GGML_ASSERT(false);
  13579. }
  13580. break;
  13581. case GGML_OP_SILU_BACK:
  13582. case GGML_OP_MUL:
  13583. case GGML_OP_DIV:
  13584. case GGML_OP_NORM:
  13585. case GGML_OP_RMS_NORM:
  13586. case GGML_OP_RMS_NORM_BACK:
  13587. case GGML_OP_GROUP_NORM:
  13588. case GGML_OP_CONCAT:
  13589. {
  13590. n_tasks = n_threads;
  13591. } break;
  13592. case GGML_OP_MUL_MAT:
  13593. {
  13594. n_tasks = n_threads;
  13595. // TODO: use different scheduling for different matrix sizes
  13596. //const int nr0 = ggml_nrows(node->src[0]);
  13597. //const int nr1 = ggml_nrows(node->src[1]);
  13598. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13599. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13600. } break;
  13601. case GGML_OP_MUL_MAT_ID:
  13602. {
  13603. n_tasks = n_threads;
  13604. } break;
  13605. case GGML_OP_OUT_PROD:
  13606. {
  13607. n_tasks = n_threads;
  13608. } break;
  13609. case GGML_OP_SCALE:
  13610. case GGML_OP_SET:
  13611. case GGML_OP_CONT:
  13612. case GGML_OP_RESHAPE:
  13613. case GGML_OP_VIEW:
  13614. case GGML_OP_PERMUTE:
  13615. case GGML_OP_TRANSPOSE:
  13616. case GGML_OP_GET_ROWS:
  13617. case GGML_OP_GET_ROWS_BACK:
  13618. case GGML_OP_DIAG:
  13619. {
  13620. n_tasks = 1;
  13621. } break;
  13622. case GGML_OP_DIAG_MASK_ZERO:
  13623. case GGML_OP_DIAG_MASK_INF:
  13624. case GGML_OP_SOFT_MAX_BACK:
  13625. case GGML_OP_ROPE:
  13626. case GGML_OP_ROPE_BACK:
  13627. case GGML_OP_ADD_REL_POS:
  13628. {
  13629. n_tasks = n_threads;
  13630. } break;
  13631. case GGML_OP_ALIBI:
  13632. {
  13633. n_tasks = 1; //TODO
  13634. } break;
  13635. case GGML_OP_CLAMP:
  13636. {
  13637. n_tasks = 1; //TODO
  13638. } break;
  13639. case GGML_OP_SOFT_MAX:
  13640. {
  13641. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13642. } break;
  13643. case GGML_OP_CONV_TRANSPOSE_1D:
  13644. {
  13645. n_tasks = n_threads;
  13646. } break;
  13647. case GGML_OP_IM2COL:
  13648. {
  13649. n_tasks = n_threads;
  13650. } break;
  13651. case GGML_OP_CONV_TRANSPOSE_2D:
  13652. {
  13653. n_tasks = n_threads;
  13654. } break;
  13655. case GGML_OP_POOL_1D:
  13656. case GGML_OP_POOL_2D:
  13657. {
  13658. n_tasks = 1;
  13659. } break;
  13660. case GGML_OP_UPSCALE:
  13661. {
  13662. n_tasks = n_threads;
  13663. } break;
  13664. case GGML_OP_PAD:
  13665. {
  13666. n_tasks = n_threads;
  13667. } break;
  13668. case GGML_OP_ARGSORT:
  13669. {
  13670. n_tasks = n_threads;
  13671. } break;
  13672. case GGML_OP_FLASH_ATTN:
  13673. {
  13674. n_tasks = n_threads;
  13675. } break;
  13676. case GGML_OP_FLASH_FF:
  13677. {
  13678. n_tasks = n_threads;
  13679. } break;
  13680. case GGML_OP_FLASH_ATTN_BACK:
  13681. {
  13682. n_tasks = n_threads;
  13683. } break;
  13684. case GGML_OP_WIN_PART:
  13685. case GGML_OP_WIN_UNPART:
  13686. case GGML_OP_GET_REL_POS:
  13687. case GGML_OP_MAP_UNARY:
  13688. case GGML_OP_MAP_BINARY:
  13689. case GGML_OP_MAP_CUSTOM1_F32:
  13690. case GGML_OP_MAP_CUSTOM2_F32:
  13691. case GGML_OP_MAP_CUSTOM3_F32:
  13692. {
  13693. n_tasks = 1;
  13694. } break;
  13695. case GGML_OP_MAP_CUSTOM1:
  13696. {
  13697. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13698. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13699. n_tasks = n_threads;
  13700. } else {
  13701. n_tasks = MIN(p->n_tasks, n_threads);
  13702. }
  13703. } break;
  13704. case GGML_OP_MAP_CUSTOM2:
  13705. {
  13706. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13707. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13708. n_tasks = n_threads;
  13709. } else {
  13710. n_tasks = MIN(p->n_tasks, n_threads);
  13711. }
  13712. } break;
  13713. case GGML_OP_MAP_CUSTOM3:
  13714. {
  13715. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13716. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13717. n_tasks = n_threads;
  13718. } else {
  13719. n_tasks = MIN(p->n_tasks, n_threads);
  13720. }
  13721. } break;
  13722. case GGML_OP_CROSS_ENTROPY_LOSS:
  13723. {
  13724. n_tasks = n_threads;
  13725. } break;
  13726. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13727. {
  13728. n_tasks = n_threads;
  13729. } break;
  13730. case GGML_OP_NONE:
  13731. {
  13732. n_tasks = 1;
  13733. } break;
  13734. case GGML_OP_COUNT:
  13735. {
  13736. GGML_ASSERT(false);
  13737. } break;
  13738. default:
  13739. {
  13740. fprintf(stderr, "%s: op not implemented: ", __func__);
  13741. if (node->op < GGML_OP_COUNT) {
  13742. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13743. } else {
  13744. fprintf(stderr, "%d\n", node->op);
  13745. }
  13746. GGML_ASSERT(false);
  13747. } break;
  13748. }
  13749. assert(n_tasks > 0);
  13750. return n_tasks;
  13751. }
  13752. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13753. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13754. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13755. const struct ggml_cplan * cplan = state->shared->cplan;
  13756. const int n_threads = state->shared->n_threads;
  13757. set_numa_thread_affinity(state->ith, n_threads);
  13758. int node_n = -1;
  13759. while (true) {
  13760. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13761. state->shared->node_n += 1;
  13762. return (thread_ret_t) GGML_EXIT_ABORTED;
  13763. }
  13764. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13765. // all other threads are finished and spinning
  13766. // do finalize and init here so we don't have synchronize again
  13767. struct ggml_compute_params params = {
  13768. /*.type =*/ GGML_TASK_FINALIZE,
  13769. /*.ith =*/ 0,
  13770. /*.nth =*/ 0,
  13771. /*.wsize =*/ cplan->work_size,
  13772. /*.wdata =*/ cplan->work_data,
  13773. };
  13774. if (node_n != -1) {
  13775. /* FINALIZE */
  13776. struct ggml_tensor * node = cgraph->nodes[node_n];
  13777. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13778. params.nth = ggml_get_n_tasks(node, n_threads);
  13779. ggml_compute_forward(&params, node);
  13780. }
  13781. ggml_graph_compute_perf_stats_node(node, state->shared);
  13782. }
  13783. // distribute new work or execute it direct if 1T
  13784. while (++node_n < cgraph->n_nodes) {
  13785. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13786. struct ggml_tensor * node = cgraph->nodes[node_n];
  13787. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13788. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13789. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13790. params.nth = n_tasks;
  13791. /* INIT */
  13792. if (GGML_OP_HAS_INIT[node->op]) {
  13793. params.type = GGML_TASK_INIT;
  13794. ggml_compute_forward(&params, node);
  13795. }
  13796. if (n_tasks == 1) {
  13797. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13798. // they do something more efficient than spinning (?)
  13799. params.type = GGML_TASK_COMPUTE;
  13800. ggml_compute_forward(&params, node);
  13801. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13802. params.type = GGML_TASK_FINALIZE;
  13803. ggml_compute_forward(&params, node);
  13804. }
  13805. ggml_graph_compute_perf_stats_node(node, state->shared);
  13806. } else {
  13807. break;
  13808. }
  13809. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13810. break;
  13811. }
  13812. }
  13813. atomic_store(&state->shared->n_active, n_threads);
  13814. atomic_store(&state->shared->node_n, node_n);
  13815. } else {
  13816. // wait for other threads to finish
  13817. const int last = node_n;
  13818. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13819. while (true) {
  13820. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13821. // depending on the workload and the operating system.
  13822. // since it is not clear what is the best approach, it should potentially become user-configurable
  13823. // ref: https://github.com/ggerganov/ggml/issues/291
  13824. // UPD: adding the do_yield flag seems to resolve the issue universally
  13825. if (do_yield) {
  13826. sched_yield();
  13827. }
  13828. node_n = atomic_load(&state->shared->node_n);
  13829. if (node_n != last) break;
  13830. };
  13831. }
  13832. // check if we should stop
  13833. if (node_n >= cgraph->n_nodes) break;
  13834. /* COMPUTE */
  13835. struct ggml_tensor * node = cgraph->nodes[node_n];
  13836. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13837. struct ggml_compute_params params = {
  13838. /*.type =*/ GGML_TASK_COMPUTE,
  13839. /*.ith =*/ state->ith,
  13840. /*.nth =*/ n_tasks,
  13841. /*.wsize =*/ cplan->work_size,
  13842. /*.wdata =*/ cplan->work_data,
  13843. };
  13844. if (state->ith < n_tasks) {
  13845. ggml_compute_forward(&params, node);
  13846. }
  13847. }
  13848. return GGML_EXIT_SUCCESS;
  13849. }
  13850. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  13851. if (n_threads <= 0) {
  13852. n_threads = GGML_DEFAULT_N_THREADS;
  13853. }
  13854. size_t work_size = 0;
  13855. struct ggml_cplan cplan;
  13856. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13857. // thread scheduling for the different operations + work buffer size estimation
  13858. for (int i = 0; i < cgraph->n_nodes; i++) {
  13859. struct ggml_tensor * node = cgraph->nodes[i];
  13860. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13861. size_t cur = 0;
  13862. switch (node->op) {
  13863. case GGML_OP_CPY:
  13864. case GGML_OP_DUP:
  13865. {
  13866. if (ggml_is_quantized(node->type)) {
  13867. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13868. }
  13869. } break;
  13870. case GGML_OP_ADD:
  13871. case GGML_OP_ADD1:
  13872. {
  13873. if (ggml_is_quantized(node->src[0]->type)) {
  13874. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13875. }
  13876. } break;
  13877. case GGML_OP_ACC:
  13878. {
  13879. if (ggml_is_quantized(node->src[0]->type)) {
  13880. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13881. }
  13882. } break;
  13883. case GGML_OP_MUL_MAT:
  13884. {
  13885. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13886. #if defined(GGML_USE_CLBLAST)
  13887. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13888. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13889. } else
  13890. #endif
  13891. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13892. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13893. if (node->src[0]->type != GGML_TYPE_F32) {
  13894. // here we need memory just for single 2D matrix from src0
  13895. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13896. }
  13897. } else
  13898. #endif
  13899. if (node->src[1]->type != vec_dot_type) {
  13900. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13901. }
  13902. } break;
  13903. case GGML_OP_MUL_MAT_ID:
  13904. {
  13905. cur = 0;
  13906. const struct ggml_tensor * src0 = node->src[2];
  13907. const struct ggml_tensor * src1 = node->src[1];
  13908. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13909. if (src1->type != vec_dot_type) {
  13910. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13911. }
  13912. const int n_as = ggml_get_op_params_i32(node, 1);
  13913. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  13914. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13915. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13916. } break;
  13917. case GGML_OP_OUT_PROD:
  13918. {
  13919. if (ggml_is_quantized(node->src[0]->type)) {
  13920. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13921. }
  13922. } break;
  13923. case GGML_OP_SOFT_MAX:
  13924. case GGML_OP_ROPE:
  13925. {
  13926. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13927. } break;
  13928. case GGML_OP_CONV_TRANSPOSE_1D:
  13929. {
  13930. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13931. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13932. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13933. const int64_t ne00 = node->src[0]->ne[0]; // K
  13934. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13935. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13936. const int64_t ne10 = node->src[1]->ne[0]; // L
  13937. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13938. if (node->src[0]->type == GGML_TYPE_F16 &&
  13939. node->src[1]->type == GGML_TYPE_F32) {
  13940. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13941. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13942. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13943. node->src[1]->type == GGML_TYPE_F32) {
  13944. cur += sizeof(float)*ne00*ne01*ne02;
  13945. cur += sizeof(float)*ne10*ne11;
  13946. } else {
  13947. GGML_ASSERT(false);
  13948. }
  13949. } break;
  13950. case GGML_OP_CONV_TRANSPOSE_2D:
  13951. {
  13952. const int64_t ne00 = node->src[0]->ne[0]; // W
  13953. const int64_t ne01 = node->src[0]->ne[1]; // H
  13954. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13955. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13956. const int64_t ne10 = node->src[1]->ne[0]; // W
  13957. const int64_t ne11 = node->src[1]->ne[1]; // H
  13958. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13959. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13960. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13961. } break;
  13962. case GGML_OP_FLASH_ATTN:
  13963. {
  13964. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13965. if (node->src[1]->type == GGML_TYPE_F32) {
  13966. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13967. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13968. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13969. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13970. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13971. }
  13972. } break;
  13973. case GGML_OP_FLASH_FF:
  13974. {
  13975. if (node->src[1]->type == GGML_TYPE_F32) {
  13976. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13977. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13978. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13979. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13980. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13981. }
  13982. } break;
  13983. case GGML_OP_FLASH_ATTN_BACK:
  13984. {
  13985. const int64_t D = node->src[0]->ne[0];
  13986. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13987. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13988. if (node->src[1]->type == GGML_TYPE_F32) {
  13989. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13990. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13991. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13992. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13993. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13994. }
  13995. } break;
  13996. case GGML_OP_CROSS_ENTROPY_LOSS:
  13997. {
  13998. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13999. } break;
  14000. case GGML_OP_COUNT:
  14001. {
  14002. GGML_ASSERT(false);
  14003. } break;
  14004. default:
  14005. break;
  14006. }
  14007. work_size = MAX(work_size, cur);
  14008. }
  14009. if (work_size > 0) {
  14010. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14011. }
  14012. cplan.n_threads = n_threads;
  14013. cplan.work_size = work_size;
  14014. cplan.work_data = NULL;
  14015. return cplan;
  14016. }
  14017. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14018. {
  14019. GGML_ASSERT(cplan);
  14020. GGML_ASSERT(cplan->n_threads > 0);
  14021. if (cplan->work_size > 0) {
  14022. GGML_ASSERT(cplan->work_data);
  14023. }
  14024. }
  14025. const int n_threads = cplan->n_threads;
  14026. struct ggml_compute_state_shared state_shared = {
  14027. /*.cgraph =*/ cgraph,
  14028. /*.cgraph_plan =*/ cplan,
  14029. /*.perf_node_start_cycles =*/ 0,
  14030. /*.perf_node_start_time_us =*/ 0,
  14031. /*.n_threads =*/ n_threads,
  14032. /*.n_active =*/ n_threads,
  14033. /*.node_n =*/ -1,
  14034. /*.abort_callback =*/ NULL,
  14035. /*.abort_callback_data =*/ NULL,
  14036. };
  14037. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14038. // create thread pool
  14039. if (n_threads > 1) {
  14040. for (int j = 1; j < n_threads; ++j) {
  14041. workers[j] = (struct ggml_compute_state) {
  14042. .thrd = 0,
  14043. .ith = j,
  14044. .shared = &state_shared,
  14045. };
  14046. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14047. GGML_ASSERT(rc == 0);
  14048. UNUSED(rc);
  14049. }
  14050. }
  14051. workers[0].ith = 0;
  14052. workers[0].shared = &state_shared;
  14053. const int64_t perf_start_cycles = ggml_perf_cycles();
  14054. const int64_t perf_start_time_us = ggml_perf_time_us();
  14055. // this is a work thread too
  14056. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14057. // don't leave affinity set on the main thread
  14058. clear_numa_thread_affinity();
  14059. // join or kill thread pool
  14060. if (n_threads > 1) {
  14061. for (int j = 1; j < n_threads; j++) {
  14062. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14063. GGML_ASSERT(rc == 0);
  14064. }
  14065. }
  14066. // performance stats (graph)
  14067. {
  14068. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14069. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14070. cgraph->perf_runs++;
  14071. cgraph->perf_cycles += perf_cycles_cur;
  14072. cgraph->perf_time_us += perf_time_us_cur;
  14073. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14074. __func__, cgraph->perf_runs,
  14075. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14076. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14077. (double) perf_time_us_cur / 1000.0,
  14078. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14079. }
  14080. return compute_status;
  14081. }
  14082. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14083. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14084. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14085. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14086. ggml_graph_compute(cgraph, &cplan);
  14087. }
  14088. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14089. for (int i = 0; i < cgraph->n_leafs; i++) {
  14090. struct ggml_tensor * leaf = cgraph->leafs[i];
  14091. if (strcmp(leaf->name, name) == 0) {
  14092. return leaf;
  14093. }
  14094. }
  14095. for (int i = 0; i < cgraph->n_nodes; i++) {
  14096. struct ggml_tensor * node = cgraph->nodes[i];
  14097. if (strcmp(node->name, name) == 0) {
  14098. return node;
  14099. }
  14100. }
  14101. return NULL;
  14102. }
  14103. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14104. const int64_t * ne = tensor->ne;
  14105. const size_t * nb = tensor->nb;
  14106. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14107. ggml_type_name(tensor->type),
  14108. ggml_op_name (tensor->op),
  14109. ggml_n_dims(tensor),
  14110. ne[0], ne[1], ne[2], ne[3],
  14111. nb[0], nb[1], nb[2], nb[3],
  14112. tensor->data,
  14113. tensor->name);
  14114. }
  14115. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14116. const int64_t * ne = tensor->ne;
  14117. const size_t * nb = tensor->nb;
  14118. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14119. arg,
  14120. ggml_type_name(tensor->type),
  14121. ggml_op_name (tensor->op),
  14122. ggml_n_dims(tensor),
  14123. ne[0], ne[1], ne[2], ne[3],
  14124. nb[0], nb[1], nb[2], nb[3],
  14125. tensor->data,
  14126. tensor->name);
  14127. }
  14128. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14129. uint64_t size_eval = 0;
  14130. // compute size of intermediate results
  14131. // TODO: does not take into account scratch buffers !!!!
  14132. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14133. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14134. }
  14135. // print
  14136. {
  14137. FILE * fout = stdout;
  14138. fprintf(fout, "\n");
  14139. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14140. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14141. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14142. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14143. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14144. // header
  14145. fprintf(fout, "\n");
  14146. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14147. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14148. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14149. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14150. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14151. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14152. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14153. }
  14154. // header
  14155. fprintf(fout, "\n");
  14156. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14157. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14158. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14159. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14160. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14161. if (cgraph->nodes[i]->src[j]) {
  14162. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14163. }
  14164. }
  14165. fprintf(fout, "\n");
  14166. }
  14167. fprintf(fout, "\n");
  14168. }
  14169. // write binary data
  14170. {
  14171. FILE * fout = fopen(fname, "wb");
  14172. if (!fout) {
  14173. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14174. return;
  14175. }
  14176. // header
  14177. {
  14178. const uint32_t magic = GGML_FILE_MAGIC;
  14179. const uint32_t version = GGML_FILE_VERSION;
  14180. const uint32_t n_leafs = cgraph->n_leafs;
  14181. const uint32_t n_nodes = cgraph->n_nodes;
  14182. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14183. fwrite(&version, sizeof(uint32_t), 1, fout);
  14184. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14185. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14186. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14187. }
  14188. // leafs
  14189. {
  14190. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14191. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14192. const uint32_t type = tensor->type;
  14193. const uint32_t op = tensor->op;
  14194. fwrite(&type, sizeof(uint32_t), 1, fout);
  14195. fwrite(&op, sizeof(uint32_t), 1, fout);
  14196. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14197. const uint64_t ne = tensor->ne[j];
  14198. const uint64_t nb = tensor->nb[j];
  14199. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14200. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14201. }
  14202. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14203. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14204. // dump the data
  14205. // TODO: pad this to 32 byte boundary
  14206. {
  14207. const size_t size = ggml_nbytes(tensor);
  14208. fwrite(tensor->data, sizeof(char), size, fout);
  14209. }
  14210. }
  14211. }
  14212. // nodes
  14213. {
  14214. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14215. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14216. const uint32_t type = tensor->type;
  14217. const uint32_t op = tensor->op;
  14218. fwrite(&type, sizeof(uint32_t), 1, fout);
  14219. fwrite(&op, sizeof(uint32_t), 1, fout);
  14220. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14221. const uint64_t ne = tensor->ne[j];
  14222. const uint64_t nb = tensor->nb[j];
  14223. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14224. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14225. }
  14226. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14227. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14228. // output the op arguments
  14229. {
  14230. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14231. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14232. args[j] = tensor->src[j];
  14233. }
  14234. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14235. if (args[j]) {
  14236. int32_t idx = -1;
  14237. // check if leaf
  14238. {
  14239. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14240. if (args[j] == cgraph->leafs[k]) {
  14241. idx = k;
  14242. break;
  14243. }
  14244. }
  14245. }
  14246. // check if node
  14247. if (idx == -1) {
  14248. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14249. if (args[j] == cgraph->nodes[k]) {
  14250. idx = cgraph->n_leafs + k;
  14251. break;
  14252. }
  14253. }
  14254. }
  14255. if (idx == -1) {
  14256. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14257. fclose(fout);
  14258. return;
  14259. }
  14260. fwrite(&idx, sizeof(int32_t), 1, fout);
  14261. } else {
  14262. const int32_t nul = -1;
  14263. fwrite(&nul, sizeof(int32_t), 1, fout);
  14264. }
  14265. }
  14266. }
  14267. }
  14268. }
  14269. fclose(fout);
  14270. }
  14271. }
  14272. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14273. assert(*ctx_data == NULL);
  14274. assert(*ctx_eval == NULL);
  14275. struct ggml_cgraph * result = NULL;
  14276. struct ggml_tensor * data = NULL;
  14277. // read file into data
  14278. {
  14279. FILE * fin = fopen(fname, "rb");
  14280. if (!fin) {
  14281. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14282. return result;
  14283. }
  14284. size_t fsize = 0;
  14285. fseek(fin, 0, SEEK_END);
  14286. fsize = ftell(fin);
  14287. fseek(fin, 0, SEEK_SET);
  14288. // create the data context
  14289. {
  14290. const size_t overhead = 1*ggml_tensor_overhead();
  14291. struct ggml_init_params params = {
  14292. .mem_size = fsize + overhead,
  14293. .mem_buffer = NULL,
  14294. .no_alloc = false,
  14295. };
  14296. *ctx_data = ggml_init(params);
  14297. if (!*ctx_data) {
  14298. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14299. fclose(fin);
  14300. return result;
  14301. }
  14302. }
  14303. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14304. {
  14305. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14306. if (ret != fsize) {
  14307. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14308. fclose(fin);
  14309. return result;
  14310. }
  14311. }
  14312. fclose(fin);
  14313. }
  14314. // populate result
  14315. {
  14316. char * ptr = (char *) data->data;
  14317. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14318. if (magic != GGML_FILE_MAGIC) {
  14319. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14320. return result;
  14321. }
  14322. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14323. if (version != GGML_FILE_VERSION) {
  14324. fprintf(stderr, "%s: invalid version number\n", __func__);
  14325. return result;
  14326. }
  14327. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14328. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14329. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14330. const int graph_size = MAX(n_leafs, n_nodes);
  14331. // create the data context
  14332. {
  14333. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14334. struct ggml_init_params params = {
  14335. .mem_size = size_eval + overhead,
  14336. .mem_buffer = NULL,
  14337. .no_alloc = true,
  14338. };
  14339. *ctx_eval = ggml_init(params);
  14340. if (!*ctx_eval) {
  14341. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14342. return result;
  14343. }
  14344. }
  14345. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14346. result->n_leafs = n_leafs;
  14347. result->n_nodes = n_nodes;
  14348. // leafs
  14349. {
  14350. uint32_t type;
  14351. uint32_t op;
  14352. for (uint32_t i = 0; i < n_leafs; ++i) {
  14353. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14354. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14355. int64_t ne[GGML_MAX_DIMS];
  14356. size_t nb[GGML_MAX_DIMS];
  14357. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14358. uint64_t ne_cur;
  14359. uint64_t nb_cur;
  14360. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14361. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14362. ne[j] = ne_cur;
  14363. nb[j] = nb_cur;
  14364. }
  14365. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14366. tensor->op = (enum ggml_op) op;
  14367. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14368. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14369. tensor->data = (void *) ptr;
  14370. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14371. tensor->nb[j] = nb[j];
  14372. }
  14373. result->leafs[i] = tensor;
  14374. ptr += ggml_nbytes(tensor);
  14375. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14376. }
  14377. }
  14378. ggml_set_no_alloc(*ctx_eval, false);
  14379. // nodes
  14380. {
  14381. uint32_t type;
  14382. uint32_t op;
  14383. for (uint32_t i = 0; i < n_nodes; ++i) {
  14384. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14385. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14386. enum ggml_op eop = (enum ggml_op) op;
  14387. int64_t ne[GGML_MAX_DIMS];
  14388. size_t nb[GGML_MAX_DIMS];
  14389. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14390. uint64_t ne_cur;
  14391. uint64_t nb_cur;
  14392. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14393. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14394. ne[j] = ne_cur;
  14395. nb[j] = nb_cur;
  14396. }
  14397. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14398. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14399. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14400. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14401. // parse args
  14402. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14403. const int32_t arg_idx = ptr_arg_idx[j];
  14404. if (arg_idx == -1) {
  14405. continue;
  14406. }
  14407. if (arg_idx < result->n_leafs) {
  14408. args[j] = result->leafs[arg_idx];
  14409. } else {
  14410. args[j] = result->nodes[arg_idx - result->n_leafs];
  14411. }
  14412. }
  14413. // create the tensor
  14414. // "view" operations are handled differently
  14415. // TODO: handle inplace ops - currently a copy is always made
  14416. struct ggml_tensor * tensor = NULL;
  14417. switch (eop) {
  14418. // TODO: implement other view ops
  14419. case GGML_OP_RESHAPE:
  14420. {
  14421. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14422. } break;
  14423. case GGML_OP_VIEW:
  14424. {
  14425. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14426. size_t offs;
  14427. memcpy(&offs, ptr_op_params, sizeof(offs));
  14428. tensor->data = ((char *) tensor->data) + offs;
  14429. } break;
  14430. case GGML_OP_TRANSPOSE:
  14431. {
  14432. tensor = ggml_transpose(*ctx_eval, args[0]);
  14433. } break;
  14434. case GGML_OP_PERMUTE:
  14435. {
  14436. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14437. } break;
  14438. default:
  14439. {
  14440. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14441. tensor->op = eop;
  14442. } break;
  14443. }
  14444. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14445. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14446. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14447. tensor->nb[j] = nb[j];
  14448. }
  14449. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14450. tensor->src[j] = args[j];
  14451. }
  14452. result->nodes[i] = tensor;
  14453. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14454. }
  14455. }
  14456. }
  14457. return result;
  14458. }
  14459. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14460. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14461. GGML_PRINT("=== GRAPH ===\n");
  14462. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14463. for (int i = 0; i < cgraph->n_nodes; i++) {
  14464. struct ggml_tensor * node = cgraph->nodes[i];
  14465. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14466. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14467. i,
  14468. node->ne[0], node->ne[1], node->ne[2],
  14469. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14470. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14471. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14472. (double) node->perf_time_us / 1000.0,
  14473. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14474. }
  14475. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14476. for (int i = 0; i < cgraph->n_leafs; i++) {
  14477. struct ggml_tensor * node = cgraph->leafs[i];
  14478. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14479. i,
  14480. node->ne[0], node->ne[1],
  14481. ggml_op_name(node->op),
  14482. ggml_get_name(node));
  14483. }
  14484. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14485. if (perf_total_per_op_us[i] == 0) {
  14486. continue;
  14487. }
  14488. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14489. }
  14490. GGML_PRINT("========================================\n");
  14491. }
  14492. // check if node is part of the graph
  14493. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14494. if (cgraph == NULL) {
  14495. return true;
  14496. }
  14497. for (int i = 0; i < cgraph->n_nodes; i++) {
  14498. if (cgraph->nodes[i] == node) {
  14499. return true;
  14500. }
  14501. }
  14502. return false;
  14503. }
  14504. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14505. for (int i = 0; i < cgraph->n_nodes; i++) {
  14506. struct ggml_tensor * parent = cgraph->nodes[i];
  14507. if (parent->grad == node) {
  14508. return parent;
  14509. }
  14510. }
  14511. return NULL;
  14512. }
  14513. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14514. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14515. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14516. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14517. gparent0 ? (void *) gparent0 : (void *) parent,
  14518. gparent0 ? "g" : "x",
  14519. gparent ? (void *) gparent : (void *) node,
  14520. gparent ? "g" : "x",
  14521. gparent ? "empty" : "vee",
  14522. gparent ? "dashed" : "solid",
  14523. label);
  14524. }
  14525. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14526. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14527. (void *) parent, "x",
  14528. (void *) node, "x",
  14529. label);
  14530. }
  14531. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14532. char color[16];
  14533. FILE * fp = fopen(filename, "w");
  14534. GGML_ASSERT(fp);
  14535. fprintf(fp, "digraph G {\n");
  14536. fprintf(fp, " newrank = true;\n");
  14537. fprintf(fp, " rankdir = LR;\n");
  14538. for (int i = 0; i < gb->n_nodes; i++) {
  14539. struct ggml_tensor * node = gb->nodes[i];
  14540. if (ggml_graph_get_parent(gb, node) != NULL) {
  14541. continue;
  14542. }
  14543. if (node->is_param) {
  14544. snprintf(color, sizeof(color), "yellow");
  14545. } else if (node->grad) {
  14546. if (ggml_graph_find(gf, node)) {
  14547. snprintf(color, sizeof(color), "green");
  14548. } else {
  14549. snprintf(color, sizeof(color), "lightblue");
  14550. }
  14551. } else {
  14552. snprintf(color, sizeof(color), "white");
  14553. }
  14554. fprintf(fp, " \"%p\" [ "
  14555. "style = filled; fillcolor = %s; shape = record; "
  14556. "label=\"",
  14557. (void *) node, color);
  14558. if (strlen(node->name) > 0) {
  14559. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14560. } else {
  14561. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14562. }
  14563. if (ggml_is_matrix(node)) {
  14564. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14565. } else {
  14566. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14567. }
  14568. if (node->grad) {
  14569. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14570. } else {
  14571. fprintf(fp, "\"; ]\n");
  14572. }
  14573. }
  14574. for (int i = 0; i < gb->n_leafs; i++) {
  14575. struct ggml_tensor * node = gb->leafs[i];
  14576. snprintf(color, sizeof(color), "pink");
  14577. fprintf(fp, " \"%p\" [ "
  14578. "style = filled; fillcolor = %s; shape = record; "
  14579. "label=\"<x>",
  14580. (void *) node, color);
  14581. if (strlen(node->name) > 0) {
  14582. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14583. } else {
  14584. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14585. }
  14586. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14587. if (ggml_nelements(node) < 5) {
  14588. fprintf(fp, " | (");
  14589. for (int j = 0; j < ggml_nelements(node); j++) {
  14590. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14591. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14592. }
  14593. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14594. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14595. }
  14596. else {
  14597. fprintf(fp, "#");
  14598. }
  14599. if (j < ggml_nelements(node) - 1) {
  14600. fprintf(fp, ", ");
  14601. }
  14602. }
  14603. fprintf(fp, ")");
  14604. }
  14605. fprintf(fp, "\"; ]\n");
  14606. }
  14607. for (int i = 0; i < gb->n_nodes; i++) {
  14608. struct ggml_tensor * node = gb->nodes[i];
  14609. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14610. if (node->src[j]) {
  14611. char label[16];
  14612. snprintf(label, sizeof(label), "src %d", j);
  14613. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14614. }
  14615. }
  14616. }
  14617. for (int i = 0; i < gb->n_leafs; i++) {
  14618. struct ggml_tensor * node = gb->leafs[i];
  14619. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14620. if (node->src[j]) {
  14621. char label[16];
  14622. snprintf(label, sizeof(label), "src %d", j);
  14623. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14624. }
  14625. }
  14626. }
  14627. fprintf(fp, "}\n");
  14628. fclose(fp);
  14629. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14630. }
  14631. ////////////////////////////////////////////////////////////////////////////////
  14632. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14633. int i = 0;
  14634. for (int p = 0; p < np; ++p) {
  14635. const int64_t ne = ggml_nelements(ps[p]) ;
  14636. // TODO: add function to set tensor from array
  14637. for (int64_t j = 0; j < ne; ++j) {
  14638. ggml_set_f32_1d(ps[p], j, x[i++]);
  14639. }
  14640. }
  14641. }
  14642. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14643. int i = 0;
  14644. for (int p = 0; p < np; ++p) {
  14645. const int64_t ne = ggml_nelements(ps[p]) ;
  14646. // TODO: add function to get all elements at once
  14647. for (int64_t j = 0; j < ne; ++j) {
  14648. x[i++] = ggml_get_f32_1d(ps[p], j);
  14649. }
  14650. }
  14651. }
  14652. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14653. int64_t i = 0;
  14654. for (int p = 0; p < np; ++p) {
  14655. const int64_t ne = ggml_nelements(ps[p]) ;
  14656. // TODO: add function to get all elements at once
  14657. for (int64_t j = 0; j < ne; ++j) {
  14658. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14659. }
  14660. }
  14661. }
  14662. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14663. int64_t i = 0;
  14664. for (int p = 0; p < np; ++p) {
  14665. const int64_t ne = ggml_nelements(ps[p]) ;
  14666. // TODO: add function to get all elements at once
  14667. for (int64_t j = 0; j < ne; ++j) {
  14668. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14669. }
  14670. }
  14671. }
  14672. //
  14673. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14674. //
  14675. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14676. //
  14677. static enum ggml_opt_result ggml_opt_adam(
  14678. struct ggml_context * ctx,
  14679. struct ggml_opt_context * opt,
  14680. struct ggml_opt_params params,
  14681. struct ggml_tensor * f,
  14682. struct ggml_cgraph * gf,
  14683. struct ggml_cgraph * gb,
  14684. ggml_opt_callback callback,
  14685. void * callback_data) {
  14686. GGML_ASSERT(ggml_is_scalar(f));
  14687. // these will store the parameters we want to optimize
  14688. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14689. int np = 0;
  14690. int64_t nx = 0;
  14691. for (int i = 0; i < gf->n_nodes; ++i) {
  14692. if (gf->nodes[i]->is_param) {
  14693. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14694. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14695. ps[np++] = gf->nodes[i];
  14696. nx += ggml_nelements(gf->nodes[i]);
  14697. }
  14698. }
  14699. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14700. int iter = opt->iter;
  14701. ggml_opt_init(opt->ctx, opt, params, nx);
  14702. opt->iter = iter;
  14703. }
  14704. // constants
  14705. float sched = params.adam.sched;
  14706. const float alpha = params.adam.alpha;
  14707. const float decay = params.adam.decay * alpha;
  14708. const float beta1 = params.adam.beta1;
  14709. const float beta2 = params.adam.beta2;
  14710. const float eps = params.adam.eps;
  14711. const float gclip = params.adam.gclip;
  14712. const int decay_min_ndim = params.adam.decay_min_ndim;
  14713. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14714. const float accum_norm = 1.0f / (float) n_accum;
  14715. float * g = opt->adam.g->data; // gradients
  14716. float * m = opt->adam.m->data; // first moment
  14717. float * v = opt->adam.v->data; // second moment
  14718. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14719. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14720. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14721. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14722. bool cancel = false;
  14723. // compute the function value
  14724. float fx = 0;
  14725. ggml_set_zero(opt->adam.g);
  14726. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14727. if (callback) {
  14728. callback(callback_data, accum_step, &sched, &cancel);
  14729. if (cancel) {
  14730. return GGML_OPT_CANCEL;
  14731. }
  14732. }
  14733. // ggml_graph_reset (gf);
  14734. ggml_set_f32 (f->grad, 1.0f);
  14735. ggml_graph_compute(gb, &cplan);
  14736. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14737. fx += ggml_get_f32_1d(f, 0);
  14738. }
  14739. fx *= accum_norm;
  14740. opt->adam.fx_prev = fx;
  14741. opt->adam.fx_best = opt->adam.fx_prev;
  14742. if (pf) {
  14743. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14744. }
  14745. opt->loss_before = opt->adam.fx_prev;
  14746. opt->loss_after = opt->adam.fx_prev;
  14747. // initialize
  14748. if (opt->just_initialized) {
  14749. opt->adam.n_no_improvement = 0;
  14750. opt->just_initialized = false;
  14751. }
  14752. float * fx_best = &opt->adam.fx_best;
  14753. float * fx_prev = &opt->adam.fx_prev;
  14754. int * n_no_improvement = &opt->adam.n_no_improvement;
  14755. int iter0 = opt->iter;
  14756. // run the optimizer
  14757. for (int t = 0; t < params.adam.n_iter; ++t) {
  14758. opt->iter = iter0 + t + 1;
  14759. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14760. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14761. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14762. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14763. for (int i = 0; i < np; ++i) {
  14764. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14765. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14766. }
  14767. const int64_t t_start_wall = ggml_time_us();
  14768. const int64_t t_start_cpu = ggml_cycles();
  14769. UNUSED(t_start_wall);
  14770. UNUSED(t_start_cpu);
  14771. {
  14772. float gnorm = 1.0f;
  14773. if (gclip > 0.0f) {
  14774. // gradient clipping
  14775. ggml_float sum = 0.0;
  14776. for (int64_t i = 0; i < nx; ++i) {
  14777. sum += (ggml_float)(g[i]*g[i]);
  14778. }
  14779. ggml_float norm = sqrt(sum);
  14780. if (norm > (ggml_float) gclip) {
  14781. gnorm = (float) ((ggml_float) gclip / norm);
  14782. }
  14783. }
  14784. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14785. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14786. int64_t i = 0;
  14787. for (int p = 0; p < np; ++p) {
  14788. const int64_t ne = ggml_nelements(ps[p]);
  14789. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14790. for (int64_t j = 0; j < ne; ++j) {
  14791. float x = ggml_get_f32_1d(ps[p], j);
  14792. float g_ = g[i]*gnorm;
  14793. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14794. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14795. float mh = m[i]*beta1h;
  14796. float vh = v[i]*beta2h;
  14797. vh = sqrtf(vh) + eps;
  14798. x = x*(1.0f - p_decay) - mh/vh;
  14799. ggml_set_f32_1d(ps[p], j, x);
  14800. ++i;
  14801. }
  14802. }
  14803. }
  14804. fx = 0;
  14805. ggml_set_zero(opt->adam.g);
  14806. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14807. if (callback) {
  14808. callback(callback_data, accum_step, &sched, &cancel);
  14809. if (cancel) {
  14810. return GGML_OPT_CANCEL;;
  14811. }
  14812. }
  14813. // ggml_graph_reset (gf);
  14814. ggml_set_f32 (f->grad, 1.0f);
  14815. ggml_graph_compute(gb, &cplan);
  14816. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14817. fx += ggml_get_f32_1d(f, 0);
  14818. }
  14819. fx *= accum_norm;
  14820. opt->loss_after = fx;
  14821. // check convergence
  14822. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14823. GGML_PRINT_DEBUG("converged\n");
  14824. return GGML_OPT_OK;
  14825. }
  14826. // delta-based convergence test
  14827. if (pf != NULL) {
  14828. // need at least params.past iterations to start checking for convergence
  14829. if (params.past <= iter0 + t) {
  14830. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14831. if (fabsf(rate) < params.delta) {
  14832. return GGML_OPT_OK;
  14833. }
  14834. }
  14835. pf[(iter0 + t)%params.past] = fx;
  14836. }
  14837. // check for improvement
  14838. if (params.max_no_improvement > 0) {
  14839. if (fx_best[0] > fx) {
  14840. fx_best[0] = fx;
  14841. n_no_improvement[0] = 0;
  14842. } else {
  14843. ++n_no_improvement[0];
  14844. if (n_no_improvement[0] >= params.max_no_improvement) {
  14845. return GGML_OPT_OK;
  14846. }
  14847. }
  14848. }
  14849. fx_prev[0] = fx;
  14850. {
  14851. const int64_t t_end_cpu = ggml_cycles();
  14852. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14853. UNUSED(t_end_cpu);
  14854. const int64_t t_end_wall = ggml_time_us();
  14855. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14856. UNUSED(t_end_wall);
  14857. }
  14858. }
  14859. return GGML_OPT_DID_NOT_CONVERGE;
  14860. }
  14861. //
  14862. // L-BFGS
  14863. //
  14864. // the L-BFGS implementation below is based on the following implementation:
  14865. //
  14866. // https://github.com/chokkan/liblbfgs
  14867. //
  14868. struct ggml_lbfgs_iteration_data {
  14869. float alpha;
  14870. float ys;
  14871. float * s;
  14872. float * y;
  14873. };
  14874. static enum ggml_opt_result linesearch_backtracking(
  14875. const struct ggml_opt_params * params,
  14876. int nx,
  14877. float * x,
  14878. float * fx,
  14879. float * g,
  14880. float * d,
  14881. float * step,
  14882. const float * xp,
  14883. struct ggml_tensor * f,
  14884. struct ggml_cgraph * gb,
  14885. struct ggml_cplan * cplan,
  14886. const int np,
  14887. struct ggml_tensor * ps[],
  14888. bool * cancel,
  14889. ggml_opt_callback callback,
  14890. void * callback_data) {
  14891. int count = 0;
  14892. float width = 0.0f;
  14893. float dg = 0.0f;
  14894. float finit = 0.0f;
  14895. float dginit = 0.0f;
  14896. float dgtest = 0.0f;
  14897. const float dec = 0.5f;
  14898. const float inc = 2.1f;
  14899. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14900. const float accum_norm = 1.0f / (float) n_accum;
  14901. if (*step <= 0.f) {
  14902. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14903. }
  14904. // compute the initial gradient in the search direction
  14905. ggml_vec_dot_f32(nx, &dginit, g, d);
  14906. // make sure that d points to a descent direction
  14907. if (0 < dginit) {
  14908. return GGML_LINESEARCH_FAIL;
  14909. }
  14910. // initialize local variables
  14911. finit = *fx;
  14912. dgtest = params->lbfgs.ftol*dginit;
  14913. while (true) {
  14914. ggml_vec_cpy_f32(nx, x, xp);
  14915. ggml_vec_mad_f32(nx, x, d, *step);
  14916. // evaluate the function and gradient values
  14917. {
  14918. ggml_opt_set_params(np, ps, x);
  14919. *fx = 0;
  14920. memset(g, 0, sizeof(float)*nx);
  14921. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14922. if (callback) {
  14923. // LBFG-S does not support learning rate -> ignore learning schedule
  14924. float sched = 0;
  14925. callback(callback_data, accum_step, &sched, cancel);
  14926. if (*cancel) {
  14927. return GGML_OPT_CANCEL;
  14928. }
  14929. }
  14930. // ggml_graph_reset (gf);
  14931. ggml_set_f32 (f->grad, 1.0f);
  14932. ggml_graph_compute(gb, cplan);
  14933. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14934. *fx += ggml_get_f32_1d(f, 0);
  14935. }
  14936. *fx *= accum_norm;
  14937. }
  14938. ++count;
  14939. if (*fx > finit + (*step)*dgtest) {
  14940. width = dec;
  14941. } else {
  14942. // Armijo condition is satisfied
  14943. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14944. return count;
  14945. }
  14946. ggml_vec_dot_f32(nx, &dg, g, d);
  14947. // check the Wolfe condition
  14948. if (dg < params->lbfgs.wolfe * dginit) {
  14949. width = inc;
  14950. } else {
  14951. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14952. // regular Wolfe conditions
  14953. return count;
  14954. }
  14955. if(dg > -params->lbfgs.wolfe*dginit) {
  14956. width = dec;
  14957. } else {
  14958. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14959. return count;
  14960. }
  14961. }
  14962. }
  14963. if (*step < params->lbfgs.min_step) {
  14964. return GGML_LINESEARCH_MINIMUM_STEP;
  14965. }
  14966. if (*step > params->lbfgs.max_step) {
  14967. return GGML_LINESEARCH_MAXIMUM_STEP;
  14968. }
  14969. if (params->lbfgs.max_linesearch <= count) {
  14970. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14971. }
  14972. (*step) *= width;
  14973. }
  14974. GGML_UNREACHABLE();
  14975. }
  14976. static enum ggml_opt_result ggml_opt_lbfgs(
  14977. struct ggml_context * ctx,
  14978. struct ggml_opt_context * opt,
  14979. struct ggml_opt_params params,
  14980. struct ggml_tensor * f,
  14981. struct ggml_cgraph * gf,
  14982. struct ggml_cgraph * gb,
  14983. ggml_opt_callback callback,
  14984. void * callback_data) {
  14985. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14986. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14987. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14988. return GGML_OPT_INVALID_WOLFE;
  14989. }
  14990. }
  14991. const int m = params.lbfgs.m;
  14992. // these will store the parameters we want to optimize
  14993. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14994. int np = 0;
  14995. int nx = 0;
  14996. for (int i = 0; i < gf->n_nodes; ++i) {
  14997. if (gf->nodes[i]->is_param) {
  14998. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14999. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15000. ps[np++] = gf->nodes[i];
  15001. nx += ggml_nelements(gf->nodes[i]);
  15002. }
  15003. }
  15004. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15005. int iter = opt->iter;
  15006. ggml_opt_init(ctx, opt, params, nx);
  15007. opt->iter = iter;
  15008. }
  15009. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15010. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15011. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15012. float * x = opt->lbfgs.x->data; // current parameters
  15013. float * xp = opt->lbfgs.xp->data; // previous parameters
  15014. float * g = opt->lbfgs.g->data; // current gradient
  15015. float * gp = opt->lbfgs.gp->data; // previous gradient
  15016. float * d = opt->lbfgs.d->data; // search direction
  15017. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15018. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15019. const float accum_norm = 1.0f / (float) n_accum;
  15020. float fx = 0.0f; // cost function value
  15021. float xnorm = 0.0f; // ||x||
  15022. float gnorm = 0.0f; // ||g||
  15023. // initialize x from the graph nodes
  15024. ggml_opt_get_params(np, ps, x);
  15025. // the L-BFGS memory
  15026. float * lm_alpha = opt->lbfgs.lmal->data;
  15027. float * lm_ys = opt->lbfgs.lmys->data;
  15028. float * lm_s = opt->lbfgs.lms->data;
  15029. float * lm_y = opt->lbfgs.lmy->data;
  15030. bool cancel = false;
  15031. // evaluate the function value and its gradient
  15032. {
  15033. ggml_opt_set_params(np, ps, x);
  15034. fx = 0;
  15035. memset(g, 0, sizeof(float)*nx);
  15036. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15037. if (callback) {
  15038. // LBFG-S does not support learning rate -> ignore learning schedule
  15039. float sched = 0;
  15040. callback(callback_data, accum_step, &sched, &cancel);
  15041. if (cancel) {
  15042. return GGML_OPT_CANCEL;
  15043. }
  15044. }
  15045. // ggml_graph_reset (gf);
  15046. ggml_set_f32 (f->grad, 1.0f);
  15047. ggml_graph_compute(gb, &cplan);
  15048. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15049. fx += ggml_get_f32_1d(f, 0);
  15050. }
  15051. fx *= accum_norm;
  15052. opt->loss_before = fx;
  15053. opt->loss_after = fx;
  15054. }
  15055. // search direction = -gradient
  15056. ggml_vec_neg_f32(nx, d, g);
  15057. // ||x||, ||g||
  15058. ggml_vec_norm_f32(nx, &xnorm, x);
  15059. ggml_vec_norm_f32(nx, &gnorm, g);
  15060. if (xnorm < 1.0f) {
  15061. xnorm = 1.0f;
  15062. }
  15063. // already optimized
  15064. if (gnorm/xnorm <= params.lbfgs.eps) {
  15065. return GGML_OPT_OK;
  15066. }
  15067. if (opt->just_initialized) {
  15068. if (pf) {
  15069. pf[0] = fx;
  15070. }
  15071. opt->lbfgs.fx_best = fx;
  15072. // initial step
  15073. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15074. opt->lbfgs.j = 0;
  15075. opt->lbfgs.k = 1;
  15076. opt->lbfgs.end = 0;
  15077. opt->lbfgs.n_no_improvement = 0;
  15078. opt->just_initialized = false;
  15079. }
  15080. float * fx_best = &opt->lbfgs.fx_best;
  15081. float * step = &opt->lbfgs.step;
  15082. int * j = &opt->lbfgs.j;
  15083. int * k = &opt->lbfgs.k;
  15084. int * end = &opt->lbfgs.end;
  15085. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15086. int ls = 0;
  15087. int bound = 0;
  15088. float ys = 0.0f;
  15089. float yy = 0.0f;
  15090. float beta = 0.0f;
  15091. int it = 0;
  15092. while (true) {
  15093. // store the current position and gradient vectors
  15094. ggml_vec_cpy_f32(nx, xp, x);
  15095. ggml_vec_cpy_f32(nx, gp, g);
  15096. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15097. // to determine if the optimization should be cancelled
  15098. // this is a simple change, but not doing this atm, since I don't have a nice
  15099. // way to test and don't want to break something with so many changes lined up
  15100. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15101. if (cancel) {
  15102. return GGML_OPT_CANCEL;
  15103. }
  15104. if (ls < 0) {
  15105. // linesearch failed - go back to the previous point and return
  15106. ggml_vec_cpy_f32(nx, x, xp);
  15107. ggml_vec_cpy_f32(nx, g, gp);
  15108. return ls;
  15109. }
  15110. opt->loss_after = fx;
  15111. ggml_vec_norm_f32(nx, &xnorm, x);
  15112. ggml_vec_norm_f32(nx, &gnorm, g);
  15113. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15114. if (xnorm < 1.0f) {
  15115. xnorm = 1.0f;
  15116. }
  15117. if (gnorm/xnorm <= params.lbfgs.eps) {
  15118. // converged
  15119. return GGML_OPT_OK;
  15120. }
  15121. // delta-based convergence test
  15122. if (pf != NULL) {
  15123. // need at least params.past iterations to start checking for convergence
  15124. if (params.past <= k[0]) {
  15125. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15126. if (fabsf(rate) < params.delta) {
  15127. return GGML_OPT_OK;
  15128. }
  15129. }
  15130. pf[k[0]%params.past] = fx;
  15131. }
  15132. // check for improvement
  15133. if (params.max_no_improvement > 0) {
  15134. if (fx < fx_best[0]) {
  15135. fx_best[0] = fx;
  15136. n_no_improvement[0] = 0;
  15137. } else {
  15138. n_no_improvement[0]++;
  15139. if (n_no_improvement[0] >= params.max_no_improvement) {
  15140. return GGML_OPT_OK;
  15141. }
  15142. }
  15143. }
  15144. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15145. // reached the maximum number of iterations
  15146. return GGML_OPT_DID_NOT_CONVERGE;
  15147. }
  15148. // update vectors s and y:
  15149. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15150. // y_{k+1} = g_{k+1} - g_{k}.
  15151. //
  15152. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15153. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15154. // compute scalars ys and yy:
  15155. // ys = y^t \cdot s -> 1 / \rho.
  15156. // yy = y^t \cdot y.
  15157. //
  15158. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15159. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15160. lm_ys[end[0]] = ys;
  15161. // find new search direction
  15162. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15163. bound = (m <= k[0]) ? m : k[0];
  15164. k[0]++;
  15165. it++;
  15166. end[0] = (end[0] + 1)%m;
  15167. // initialize search direction with -g
  15168. ggml_vec_neg_f32(nx, d, g);
  15169. j[0] = end[0];
  15170. for (int i = 0; i < bound; ++i) {
  15171. j[0] = (j[0] + m - 1) % m;
  15172. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15173. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15174. lm_alpha[j[0]] /= lm_ys[j[0]];
  15175. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15176. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15177. }
  15178. ggml_vec_scale_f32(nx, d, ys/yy);
  15179. for (int i = 0; i < bound; ++i) {
  15180. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15181. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15182. beta /= lm_ys[j[0]];
  15183. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15184. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15185. j[0] = (j[0] + 1)%m;
  15186. }
  15187. step[0] = 1.0;
  15188. }
  15189. GGML_UNREACHABLE();
  15190. }
  15191. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15192. struct ggml_opt_params result;
  15193. switch (type) {
  15194. case GGML_OPT_ADAM:
  15195. {
  15196. result = (struct ggml_opt_params) {
  15197. .type = GGML_OPT_ADAM,
  15198. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15199. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15200. .past = 0,
  15201. .delta = 1e-5f,
  15202. .max_no_improvement = 100,
  15203. .print_forward_graph = true,
  15204. .print_backward_graph = true,
  15205. .n_gradient_accumulation = 1,
  15206. .adam = {
  15207. .n_iter = 10000,
  15208. .sched = 1.000f,
  15209. .decay = 0.0f,
  15210. .decay_min_ndim = 2,
  15211. .alpha = 0.001f,
  15212. .beta1 = 0.9f,
  15213. .beta2 = 0.999f,
  15214. .eps = 1e-8f,
  15215. .eps_f = 1e-5f,
  15216. .eps_g = 1e-3f,
  15217. .gclip = 0.0f,
  15218. },
  15219. };
  15220. } break;
  15221. case GGML_OPT_LBFGS:
  15222. {
  15223. result = (struct ggml_opt_params) {
  15224. .type = GGML_OPT_LBFGS,
  15225. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15226. .n_threads = 1,
  15227. .past = 0,
  15228. .delta = 1e-5f,
  15229. .max_no_improvement = 0,
  15230. .print_forward_graph = true,
  15231. .print_backward_graph = true,
  15232. .n_gradient_accumulation = 1,
  15233. .lbfgs = {
  15234. .m = 6,
  15235. .n_iter = 100,
  15236. .max_linesearch = 20,
  15237. .eps = 1e-5f,
  15238. .ftol = 1e-4f,
  15239. .wolfe = 0.9f,
  15240. .min_step = 1e-20f,
  15241. .max_step = 1e+20f,
  15242. .linesearch = GGML_LINESEARCH_DEFAULT,
  15243. },
  15244. };
  15245. } break;
  15246. }
  15247. return result;
  15248. }
  15249. GGML_API void ggml_opt_init(
  15250. struct ggml_context * ctx,
  15251. struct ggml_opt_context * opt,
  15252. struct ggml_opt_params params,
  15253. int64_t nx) {
  15254. opt->ctx = ctx;
  15255. opt->params = params;
  15256. opt->iter = 0;
  15257. opt->nx = nx;
  15258. opt->just_initialized = true;
  15259. if (opt->ctx == NULL) {
  15260. struct ggml_init_params ctx_opt_params;
  15261. if (opt->params.type == GGML_OPT_ADAM) {
  15262. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15263. if (opt->params.past > 0) {
  15264. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15265. }
  15266. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15267. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15268. if (opt->params.past > 0) {
  15269. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15270. }
  15271. }
  15272. ctx_opt_params.mem_buffer = NULL;
  15273. ctx_opt_params.no_alloc = false;
  15274. opt->ctx = ggml_init(ctx_opt_params);
  15275. }
  15276. switch (opt->params.type) {
  15277. case GGML_OPT_ADAM:
  15278. {
  15279. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15280. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15281. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15282. opt->adam.pf = params.past > 0
  15283. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15284. : NULL;
  15285. ggml_set_zero(opt->adam.m);
  15286. ggml_set_zero(opt->adam.v);
  15287. if (opt->adam.pf) {
  15288. ggml_set_zero(opt->adam.pf);
  15289. }
  15290. } break;
  15291. case GGML_OPT_LBFGS:
  15292. {
  15293. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15294. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15295. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15296. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15297. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15298. opt->lbfgs.pf = params.past > 0
  15299. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15300. : NULL;
  15301. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15302. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15303. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15304. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15305. ggml_set_zero(opt->lbfgs.x);
  15306. ggml_set_zero(opt->lbfgs.xp);
  15307. ggml_set_zero(opt->lbfgs.g);
  15308. ggml_set_zero(opt->lbfgs.gp);
  15309. ggml_set_zero(opt->lbfgs.d);
  15310. if (opt->lbfgs.pf) {
  15311. ggml_set_zero(opt->lbfgs.pf);
  15312. }
  15313. ggml_set_zero(opt->lbfgs.lmal);
  15314. ggml_set_zero(opt->lbfgs.lmys);
  15315. ggml_set_zero(opt->lbfgs.lms);
  15316. ggml_set_zero(opt->lbfgs.lmy);
  15317. } break;
  15318. }
  15319. }
  15320. enum ggml_opt_result ggml_opt(
  15321. struct ggml_context * ctx,
  15322. struct ggml_opt_params params,
  15323. struct ggml_tensor * f) {
  15324. bool free_ctx = false;
  15325. if (ctx == NULL) {
  15326. struct ggml_init_params params_ctx = {
  15327. .mem_size = 16*1024*1024,
  15328. .mem_buffer = NULL,
  15329. .no_alloc = false,
  15330. };
  15331. ctx = ggml_init(params_ctx);
  15332. if (ctx == NULL) {
  15333. return GGML_OPT_NO_CONTEXT;
  15334. }
  15335. free_ctx = true;
  15336. }
  15337. enum ggml_opt_result result = GGML_OPT_OK;
  15338. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15339. ggml_opt_init(ctx, opt, params, 0);
  15340. result = ggml_opt_resume(ctx, opt, f);
  15341. if (free_ctx) {
  15342. ggml_free(ctx);
  15343. }
  15344. return result;
  15345. }
  15346. enum ggml_opt_result ggml_opt_resume(
  15347. struct ggml_context * ctx,
  15348. struct ggml_opt_context * opt,
  15349. struct ggml_tensor * f) {
  15350. // build forward + backward compute graphs
  15351. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15352. ggml_build_forward_expand(gf, f);
  15353. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15354. ggml_build_backward_expand(ctx, gf, gb, true);
  15355. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15356. }
  15357. enum ggml_opt_result ggml_opt_resume_g(
  15358. struct ggml_context * ctx,
  15359. struct ggml_opt_context * opt,
  15360. struct ggml_tensor * f,
  15361. struct ggml_cgraph * gf,
  15362. struct ggml_cgraph * gb,
  15363. ggml_opt_callback callback,
  15364. void * callback_data) {
  15365. // build forward + backward compute graphs
  15366. enum ggml_opt_result result = GGML_OPT_OK;
  15367. switch (opt->params.type) {
  15368. case GGML_OPT_ADAM:
  15369. {
  15370. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15371. } break;
  15372. case GGML_OPT_LBFGS:
  15373. {
  15374. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15375. } break;
  15376. }
  15377. if (opt->params.print_forward_graph) {
  15378. ggml_graph_print (gf);
  15379. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15380. }
  15381. if (opt->params.print_backward_graph) {
  15382. ggml_graph_print (gb);
  15383. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15384. }
  15385. return result;
  15386. }
  15387. ////////////////////////////////////////////////////////////////////////////////
  15388. void ggml_quantize_init(enum ggml_type type) {
  15389. ggml_critical_section_start();
  15390. switch (type) {
  15391. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15392. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15393. default: // nothing
  15394. break;
  15395. }
  15396. ggml_critical_section_end();
  15397. }
  15398. void ggml_quantize_free(void) {
  15399. ggml_critical_section_start();
  15400. iq2xs_free_impl(256);
  15401. iq2xs_free_impl(512);
  15402. ggml_critical_section_end();
  15403. }
  15404. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15405. assert(k % QK4_0 == 0);
  15406. const int nb = k / QK4_0;
  15407. for (int b = 0; b < n; b += k) {
  15408. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15409. quantize_row_q4_0_reference(src + b, y, k);
  15410. for (int i = 0; i < nb; i++) {
  15411. for (int j = 0; j < QK4_0; j += 2) {
  15412. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15413. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15414. hist[vi0]++;
  15415. hist[vi1]++;
  15416. }
  15417. }
  15418. }
  15419. return (n/QK4_0*sizeof(block_q4_0));
  15420. }
  15421. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15422. assert(k % QK4_1 == 0);
  15423. const int nb = k / QK4_1;
  15424. for (int b = 0; b < n; b += k) {
  15425. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15426. quantize_row_q4_1_reference(src + b, y, k);
  15427. for (int i = 0; i < nb; i++) {
  15428. for (int j = 0; j < QK4_1; j += 2) {
  15429. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15430. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15431. hist[vi0]++;
  15432. hist[vi1]++;
  15433. }
  15434. }
  15435. }
  15436. return (n/QK4_1*sizeof(block_q4_1));
  15437. }
  15438. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15439. assert(k % QK5_0 == 0);
  15440. const int nb = k / QK5_0;
  15441. for (int b = 0; b < n; b += k) {
  15442. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15443. quantize_row_q5_0_reference(src + b, y, k);
  15444. for (int i = 0; i < nb; i++) {
  15445. uint32_t qh;
  15446. memcpy(&qh, &y[i].qh, sizeof(qh));
  15447. for (int j = 0; j < QK5_0; j += 2) {
  15448. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15449. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15450. // cast to 16 bins
  15451. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15452. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15453. hist[vi0]++;
  15454. hist[vi1]++;
  15455. }
  15456. }
  15457. }
  15458. return (n/QK5_0*sizeof(block_q5_0));
  15459. }
  15460. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15461. assert(k % QK5_1 == 0);
  15462. const int nb = k / QK5_1;
  15463. for (int b = 0; b < n; b += k) {
  15464. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15465. quantize_row_q5_1_reference(src + b, y, k);
  15466. for (int i = 0; i < nb; i++) {
  15467. uint32_t qh;
  15468. memcpy(&qh, &y[i].qh, sizeof(qh));
  15469. for (int j = 0; j < QK5_1; j += 2) {
  15470. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15471. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15472. // cast to 16 bins
  15473. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15474. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15475. hist[vi0]++;
  15476. hist[vi1]++;
  15477. }
  15478. }
  15479. }
  15480. return (n/QK5_1*sizeof(block_q5_1));
  15481. }
  15482. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15483. assert(k % QK8_0 == 0);
  15484. const int nb = k / QK8_0;
  15485. for (int b = 0; b < n; b += k) {
  15486. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15487. quantize_row_q8_0_reference(src + b, y, k);
  15488. for (int i = 0; i < nb; i++) {
  15489. for (int j = 0; j < QK8_0; ++j) {
  15490. const int8_t vi = y[i].qs[j];
  15491. hist[vi/16 + 8]++;
  15492. }
  15493. }
  15494. }
  15495. return (n/QK8_0*sizeof(block_q8_0));
  15496. }
  15497. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15498. return
  15499. type == GGML_TYPE_IQ2_XXS ||
  15500. type == GGML_TYPE_IQ2_XS;
  15501. }
  15502. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15503. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15504. ggml_quantize_init(type); // this is noop if already initialized
  15505. size_t result = 0;
  15506. int n = nrows * n_per_row;
  15507. switch (type) {
  15508. case GGML_TYPE_Q4_0:
  15509. {
  15510. GGML_ASSERT(start % QK4_0 == 0);
  15511. GGML_ASSERT(start % n_per_row == 0);
  15512. size_t start_row = start / n_per_row;
  15513. size_t row_size = ggml_row_size(type, n_per_row);
  15514. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15515. GGML_ASSERT(result == row_size * nrows);
  15516. } break;
  15517. case GGML_TYPE_Q4_1:
  15518. {
  15519. GGML_ASSERT(start % QK4_1 == 0);
  15520. GGML_ASSERT(start % n_per_row == 0);
  15521. size_t start_row = start / n_per_row;
  15522. size_t row_size = ggml_row_size(type, n_per_row);
  15523. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15524. GGML_ASSERT(result == row_size * nrows);
  15525. } break;
  15526. case GGML_TYPE_Q5_0:
  15527. {
  15528. GGML_ASSERT(start % QK5_0 == 0);
  15529. GGML_ASSERT(start % n_per_row == 0);
  15530. size_t start_row = start / n_per_row;
  15531. size_t row_size = ggml_row_size(type, n_per_row);
  15532. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15533. GGML_ASSERT(result == row_size * nrows);
  15534. } break;
  15535. case GGML_TYPE_Q5_1:
  15536. {
  15537. GGML_ASSERT(start % QK5_1 == 0);
  15538. GGML_ASSERT(start % n_per_row == 0);
  15539. size_t start_row = start / n_per_row;
  15540. size_t row_size = ggml_row_size(type, n_per_row);
  15541. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15542. GGML_ASSERT(result == row_size * nrows);
  15543. } break;
  15544. case GGML_TYPE_Q8_0:
  15545. {
  15546. GGML_ASSERT(start % QK8_0 == 0);
  15547. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15548. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15549. } break;
  15550. case GGML_TYPE_Q2_K:
  15551. {
  15552. GGML_ASSERT(start % QK_K == 0);
  15553. GGML_ASSERT(start % n_per_row == 0);
  15554. size_t start_row = start / n_per_row;
  15555. size_t row_size = ggml_row_size(type, n_per_row);
  15556. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15557. GGML_ASSERT(result == row_size * nrows);
  15558. } break;
  15559. case GGML_TYPE_Q3_K:
  15560. {
  15561. GGML_ASSERT(start % QK_K == 0);
  15562. GGML_ASSERT(start % n_per_row == 0);
  15563. size_t start_row = start / n_per_row;
  15564. size_t row_size = ggml_row_size(type, n_per_row);
  15565. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15566. GGML_ASSERT(result == row_size * nrows);
  15567. } break;
  15568. case GGML_TYPE_Q4_K:
  15569. {
  15570. GGML_ASSERT(start % QK_K == 0);
  15571. GGML_ASSERT(start % n_per_row == 0);
  15572. size_t start_row = start / n_per_row;
  15573. size_t row_size = ggml_row_size(type, n_per_row);
  15574. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15575. GGML_ASSERT(result == row_size * nrows);
  15576. } break;
  15577. case GGML_TYPE_Q5_K:
  15578. {
  15579. GGML_ASSERT(start % QK_K == 0);
  15580. GGML_ASSERT(start % n_per_row == 0);
  15581. size_t start_row = start / n_per_row;
  15582. size_t row_size = ggml_row_size(type, n_per_row);
  15583. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15584. GGML_ASSERT(result == row_size * nrows);
  15585. } break;
  15586. case GGML_TYPE_Q6_K:
  15587. {
  15588. GGML_ASSERT(start % QK_K == 0);
  15589. GGML_ASSERT(start % n_per_row == 0);
  15590. size_t start_row = start / n_per_row;
  15591. size_t row_size = ggml_row_size(type, n_per_row);
  15592. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15593. GGML_ASSERT(result == row_size * nrows);
  15594. } break;
  15595. case GGML_TYPE_IQ2_XXS:
  15596. {
  15597. GGML_ASSERT(start % QK_K == 0);
  15598. GGML_ASSERT(start % n_per_row == 0);
  15599. GGML_ASSERT(imatrix);
  15600. size_t start_row = start / n_per_row;
  15601. size_t row_size = ggml_row_size(type, n_per_row);
  15602. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15603. GGML_ASSERT(result == row_size * nrows);
  15604. } break;
  15605. case GGML_TYPE_IQ2_XS:
  15606. {
  15607. GGML_ASSERT(start % QK_K == 0);
  15608. GGML_ASSERT(start % n_per_row == 0);
  15609. GGML_ASSERT(imatrix);
  15610. size_t start_row = start / n_per_row;
  15611. size_t row_size = ggml_row_size(type, n_per_row);
  15612. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15613. GGML_ASSERT(result == row_size * nrows);
  15614. } break;
  15615. case GGML_TYPE_F16:
  15616. {
  15617. size_t elemsize = sizeof(ggml_fp16_t);
  15618. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15619. result = n * elemsize;
  15620. } break;
  15621. case GGML_TYPE_F32:
  15622. {
  15623. size_t elemsize = sizeof(float);
  15624. result = n * elemsize;
  15625. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15626. } break;
  15627. default:
  15628. assert(false);
  15629. }
  15630. return result;
  15631. }
  15632. ////////////////////////////////////////////////////////////////////////////////
  15633. struct gguf_str {
  15634. uint64_t n; // GGUFv2
  15635. char * data;
  15636. };
  15637. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15638. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15639. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15640. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15641. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15642. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15643. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15644. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15645. [GGUF_TYPE_BOOL] = sizeof(bool),
  15646. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15647. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15648. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15649. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15650. [GGUF_TYPE_ARRAY] = 0, // undefined
  15651. };
  15652. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15653. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15654. [GGUF_TYPE_UINT8] = "u8",
  15655. [GGUF_TYPE_INT8] = "i8",
  15656. [GGUF_TYPE_UINT16] = "u16",
  15657. [GGUF_TYPE_INT16] = "i16",
  15658. [GGUF_TYPE_UINT32] = "u32",
  15659. [GGUF_TYPE_INT32] = "i32",
  15660. [GGUF_TYPE_FLOAT32] = "f32",
  15661. [GGUF_TYPE_BOOL] = "bool",
  15662. [GGUF_TYPE_STRING] = "str",
  15663. [GGUF_TYPE_ARRAY] = "arr",
  15664. [GGUF_TYPE_UINT64] = "u64",
  15665. [GGUF_TYPE_INT64] = "i64",
  15666. [GGUF_TYPE_FLOAT64] = "f64",
  15667. };
  15668. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15669. union gguf_value {
  15670. uint8_t uint8;
  15671. int8_t int8;
  15672. uint16_t uint16;
  15673. int16_t int16;
  15674. uint32_t uint32;
  15675. int32_t int32;
  15676. float float32;
  15677. uint64_t uint64;
  15678. int64_t int64;
  15679. double float64;
  15680. bool bool_;
  15681. struct gguf_str str;
  15682. struct {
  15683. enum gguf_type type;
  15684. uint64_t n; // GGUFv2
  15685. void * data;
  15686. } arr;
  15687. };
  15688. struct gguf_kv {
  15689. struct gguf_str key;
  15690. enum gguf_type type;
  15691. union gguf_value value;
  15692. };
  15693. struct gguf_header {
  15694. char magic[4];
  15695. uint32_t version;
  15696. uint64_t n_tensors; // GGUFv2
  15697. uint64_t n_kv; // GGUFv2
  15698. };
  15699. struct gguf_tensor_info {
  15700. struct gguf_str name;
  15701. uint32_t n_dims;
  15702. uint64_t ne[GGML_MAX_DIMS];
  15703. enum ggml_type type;
  15704. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15705. // for writing API
  15706. const void * data;
  15707. size_t size;
  15708. };
  15709. struct gguf_context {
  15710. struct gguf_header header;
  15711. struct gguf_kv * kv;
  15712. struct gguf_tensor_info * infos;
  15713. size_t alignment;
  15714. size_t offset; // offset of `data` from beginning of file
  15715. size_t size; // size of `data` in bytes
  15716. //uint8_t * padding;
  15717. void * data;
  15718. };
  15719. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15720. const size_t n = fread(dst, 1, size, file);
  15721. *offset += n;
  15722. return n == size;
  15723. }
  15724. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15725. p->n = 0;
  15726. p->data = NULL;
  15727. bool ok = true;
  15728. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15729. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15730. return ok;
  15731. }
  15732. struct gguf_context * gguf_init_empty(void) {
  15733. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15734. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15735. ctx->header.version = GGUF_VERSION;
  15736. ctx->header.n_tensors = 0;
  15737. ctx->header.n_kv = 0;
  15738. ctx->kv = NULL;
  15739. ctx->infos = NULL;
  15740. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15741. ctx->offset = 0;
  15742. ctx->size = 0;
  15743. ctx->data = NULL;
  15744. return ctx;
  15745. }
  15746. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15747. FILE * file = fopen(fname, "rb");
  15748. if (!file) {
  15749. return NULL;
  15750. }
  15751. // offset from start of file
  15752. size_t offset = 0;
  15753. char magic[4];
  15754. // check the magic before making allocations
  15755. {
  15756. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15757. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15758. if (magic[i] != GGUF_MAGIC[i]) {
  15759. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15760. fclose(file);
  15761. return NULL;
  15762. }
  15763. }
  15764. }
  15765. bool ok = true;
  15766. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15767. // read the header
  15768. {
  15769. strncpy(ctx->header.magic, magic, 4);
  15770. ctx->kv = NULL;
  15771. ctx->infos = NULL;
  15772. ctx->data = NULL;
  15773. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15774. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15775. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15776. if (ctx->header.version == 1) {
  15777. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15778. fclose(file);
  15779. gguf_free(ctx);
  15780. return NULL;
  15781. }
  15782. if (!ok) {
  15783. fprintf(stderr, "%s: failed to read header\n", __func__);
  15784. fclose(file);
  15785. gguf_free(ctx);
  15786. return NULL;
  15787. }
  15788. }
  15789. // read the kv pairs
  15790. {
  15791. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15792. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15793. struct gguf_kv * kv = &ctx->kv[i];
  15794. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15795. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15796. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15797. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15798. switch (kv->type) {
  15799. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15800. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15801. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15802. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15803. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15804. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15805. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15806. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15807. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15808. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15809. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15810. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15811. case GGUF_TYPE_ARRAY:
  15812. {
  15813. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15814. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15815. switch (kv->value.arr.type) {
  15816. case GGUF_TYPE_UINT8:
  15817. case GGUF_TYPE_INT8:
  15818. case GGUF_TYPE_UINT16:
  15819. case GGUF_TYPE_INT16:
  15820. case GGUF_TYPE_UINT32:
  15821. case GGUF_TYPE_INT32:
  15822. case GGUF_TYPE_FLOAT32:
  15823. case GGUF_TYPE_UINT64:
  15824. case GGUF_TYPE_INT64:
  15825. case GGUF_TYPE_FLOAT64:
  15826. case GGUF_TYPE_BOOL:
  15827. {
  15828. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15829. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15830. } break;
  15831. case GGUF_TYPE_STRING:
  15832. {
  15833. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15834. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15835. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15836. }
  15837. } break;
  15838. case GGUF_TYPE_ARRAY:
  15839. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15840. }
  15841. } break;
  15842. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15843. }
  15844. if (!ok) {
  15845. break;
  15846. }
  15847. }
  15848. if (!ok) {
  15849. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15850. fclose(file);
  15851. gguf_free(ctx);
  15852. return NULL;
  15853. }
  15854. }
  15855. // read the tensor infos
  15856. {
  15857. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15858. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15859. struct gguf_tensor_info * info = &ctx->infos[i];
  15860. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15861. info->ne[j] = 1;
  15862. }
  15863. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15864. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15865. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15866. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15867. }
  15868. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15869. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15870. if (!ok) {
  15871. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15872. fclose(file);
  15873. gguf_free(ctx);
  15874. return NULL;
  15875. }
  15876. }
  15877. }
  15878. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15879. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15880. if (alignment_idx != -1) {
  15881. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15882. }
  15883. // we require the data section to be aligned, so take into account any padding
  15884. {
  15885. const size_t offset_pad = offset % ctx->alignment;
  15886. if (offset_pad != 0) {
  15887. offset += ctx->alignment - offset_pad;
  15888. fseek(file, offset, SEEK_SET);
  15889. }
  15890. }
  15891. // store the current file offset - this is where the data section starts
  15892. ctx->offset = offset;
  15893. // compute the total size of the data section, taking into account the alignment
  15894. {
  15895. ctx->size = 0;
  15896. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15897. struct gguf_tensor_info * info = &ctx->infos[i];
  15898. const int64_t ne =
  15899. (int64_t) info->ne[0] *
  15900. (int64_t) info->ne[1] *
  15901. (int64_t) info->ne[2] *
  15902. (int64_t) info->ne[3];
  15903. if (ne % ggml_blck_size(info->type) != 0) {
  15904. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15905. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  15906. fclose(file);
  15907. gguf_free(ctx);
  15908. return NULL;
  15909. }
  15910. const size_t size_cur = ggml_row_size(info->type, ne);
  15911. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15912. }
  15913. }
  15914. // load the tensor data only if requested
  15915. if (params.ctx != NULL) {
  15916. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15917. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15918. // the ggml_tensor structs to the appropriate locations in the binary blob
  15919. // compute the exact size needed for the new ggml_context
  15920. const size_t mem_size =
  15921. params.no_alloc ?
  15922. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15923. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15924. struct ggml_init_params pdata = {
  15925. .mem_size = mem_size,
  15926. .mem_buffer = NULL,
  15927. .no_alloc = params.no_alloc,
  15928. };
  15929. *params.ctx = ggml_init(pdata);
  15930. struct ggml_context * ctx_data = *params.ctx;
  15931. struct ggml_tensor * data = NULL;
  15932. if (!params.no_alloc) {
  15933. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15934. ok = ok && data != NULL;
  15935. // read the binary blob with the tensor data
  15936. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15937. if (!ok) {
  15938. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15939. fclose(file);
  15940. ggml_free(ctx_data);
  15941. gguf_free(ctx);
  15942. return NULL;
  15943. }
  15944. ctx->data = data->data;
  15945. }
  15946. ggml_set_no_alloc(ctx_data, true);
  15947. // create the tensors
  15948. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15949. const int64_t ne[GGML_MAX_DIMS] = {
  15950. ctx->infos[i].ne[0],
  15951. ctx->infos[i].ne[1],
  15952. ctx->infos[i].ne[2],
  15953. ctx->infos[i].ne[3],
  15954. };
  15955. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15956. ok = ok && cur != NULL;
  15957. ggml_set_name(cur, ctx->infos[i].name.data);
  15958. if (!ok) {
  15959. break;
  15960. }
  15961. // point the data member to the appropriate location in the binary blob using the tensor infos
  15962. if (!params.no_alloc) {
  15963. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15964. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15965. }
  15966. }
  15967. if (!ok) {
  15968. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15969. fclose(file);
  15970. ggml_free(ctx_data);
  15971. gguf_free(ctx);
  15972. return NULL;
  15973. }
  15974. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15975. }
  15976. fclose(file);
  15977. return ctx;
  15978. }
  15979. void gguf_free(struct gguf_context * ctx) {
  15980. if (ctx == NULL) {
  15981. return;
  15982. }
  15983. if (ctx->kv) {
  15984. // free string memory - not great..
  15985. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15986. struct gguf_kv * kv = &ctx->kv[i];
  15987. if (kv->key.data) {
  15988. free(kv->key.data);
  15989. }
  15990. if (kv->type == GGUF_TYPE_STRING) {
  15991. if (kv->value.str.data) {
  15992. free(kv->value.str.data);
  15993. }
  15994. }
  15995. if (kv->type == GGUF_TYPE_ARRAY) {
  15996. if (kv->value.arr.data) {
  15997. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15998. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15999. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16000. if (str->data) {
  16001. free(str->data);
  16002. }
  16003. }
  16004. }
  16005. free(kv->value.arr.data);
  16006. }
  16007. }
  16008. }
  16009. free(ctx->kv);
  16010. }
  16011. if (ctx->infos) {
  16012. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16013. struct gguf_tensor_info * info = &ctx->infos[i];
  16014. if (info->name.data) {
  16015. free(info->name.data);
  16016. }
  16017. }
  16018. free(ctx->infos);
  16019. }
  16020. GGML_ALIGNED_FREE(ctx);
  16021. }
  16022. const char * gguf_type_name(enum gguf_type type) {
  16023. return GGUF_TYPE_NAME[type];
  16024. }
  16025. int gguf_get_version(const struct gguf_context * ctx) {
  16026. return ctx->header.version;
  16027. }
  16028. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16029. return ctx->alignment;
  16030. }
  16031. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16032. return ctx->offset;
  16033. }
  16034. void * gguf_get_data(const struct gguf_context * ctx) {
  16035. return ctx->data;
  16036. }
  16037. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16038. return ctx->header.n_kv;
  16039. }
  16040. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16041. // return -1 if key not found
  16042. int keyfound = -1;
  16043. const int n_kv = gguf_get_n_kv(ctx);
  16044. for (int i = 0; i < n_kv; ++i) {
  16045. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16046. keyfound = i;
  16047. break;
  16048. }
  16049. }
  16050. return keyfound;
  16051. }
  16052. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16053. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16054. return ctx->kv[key_id].key.data;
  16055. }
  16056. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16057. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16058. return ctx->kv[key_id].type;
  16059. }
  16060. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16061. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16062. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16063. return ctx->kv[key_id].value.arr.type;
  16064. }
  16065. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16066. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16067. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16068. return ctx->kv[key_id].value.arr.data;
  16069. }
  16070. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16071. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16072. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16073. struct gguf_kv * kv = &ctx->kv[key_id];
  16074. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16075. return str->data;
  16076. }
  16077. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16078. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16079. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16080. return ctx->kv[key_id].value.arr.n;
  16081. }
  16082. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16083. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16084. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16085. return ctx->kv[key_id].value.uint8;
  16086. }
  16087. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16088. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16089. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16090. return ctx->kv[key_id].value.int8;
  16091. }
  16092. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16093. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16094. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16095. return ctx->kv[key_id].value.uint16;
  16096. }
  16097. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16098. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16099. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16100. return ctx->kv[key_id].value.int16;
  16101. }
  16102. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16103. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16104. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16105. return ctx->kv[key_id].value.uint32;
  16106. }
  16107. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16108. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16109. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16110. return ctx->kv[key_id].value.int32;
  16111. }
  16112. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16113. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16114. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16115. return ctx->kv[key_id].value.float32;
  16116. }
  16117. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16118. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16119. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16120. return ctx->kv[key_id].value.uint64;
  16121. }
  16122. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16123. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16124. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16125. return ctx->kv[key_id].value.int64;
  16126. }
  16127. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16128. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16129. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16130. return ctx->kv[key_id].value.float64;
  16131. }
  16132. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16133. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16134. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16135. return ctx->kv[key_id].value.bool_;
  16136. }
  16137. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16138. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16139. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16140. return ctx->kv[key_id].value.str.data;
  16141. }
  16142. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16143. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16144. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16145. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16146. return &ctx->kv[key_id].value;
  16147. }
  16148. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16149. return ctx->header.n_tensors;
  16150. }
  16151. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16152. // return -1 if tensor not found
  16153. int tensorfound = -1;
  16154. const int n_tensors = gguf_get_n_tensors(ctx);
  16155. for (int i = 0; i < n_tensors; ++i) {
  16156. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16157. tensorfound = i;
  16158. break;
  16159. }
  16160. }
  16161. return tensorfound;
  16162. }
  16163. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16164. return ctx->infos[i].offset;
  16165. }
  16166. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16167. return ctx->infos[i].name.data;
  16168. }
  16169. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16170. return ctx->infos[i].type;
  16171. }
  16172. // returns the index
  16173. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16174. const int idx = gguf_find_key(ctx, key);
  16175. if (idx >= 0) {
  16176. return idx;
  16177. }
  16178. const int n_kv = gguf_get_n_kv(ctx);
  16179. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16180. ctx->kv[n_kv].key.n = strlen(key);
  16181. ctx->kv[n_kv].key.data = strdup(key);
  16182. ctx->header.n_kv++;
  16183. return n_kv;
  16184. }
  16185. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16186. const int idx = gguf_get_or_add_key(ctx, key);
  16187. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16188. ctx->kv[idx].value.uint8 = val;
  16189. }
  16190. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16191. const int idx = gguf_get_or_add_key(ctx, key);
  16192. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16193. ctx->kv[idx].value.int8 = val;
  16194. }
  16195. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16196. const int idx = gguf_get_or_add_key(ctx, key);
  16197. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16198. ctx->kv[idx].value.uint16 = val;
  16199. }
  16200. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16201. const int idx = gguf_get_or_add_key(ctx, key);
  16202. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16203. ctx->kv[idx].value.int16 = val;
  16204. }
  16205. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16206. const int idx = gguf_get_or_add_key(ctx, key);
  16207. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16208. ctx->kv[idx].value.uint32 = val;
  16209. }
  16210. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16211. const int idx = gguf_get_or_add_key(ctx, key);
  16212. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16213. ctx->kv[idx].value.int32 = val;
  16214. }
  16215. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16216. const int idx = gguf_get_or_add_key(ctx, key);
  16217. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16218. ctx->kv[idx].value.float32 = val;
  16219. }
  16220. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16221. const int idx = gguf_get_or_add_key(ctx, key);
  16222. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16223. ctx->kv[idx].value.uint64 = val;
  16224. }
  16225. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16226. const int idx = gguf_get_or_add_key(ctx, key);
  16227. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16228. ctx->kv[idx].value.int64 = val;
  16229. }
  16230. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16231. const int idx = gguf_get_or_add_key(ctx, key);
  16232. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16233. ctx->kv[idx].value.float64 = val;
  16234. }
  16235. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16236. const int idx = gguf_get_or_add_key(ctx, key);
  16237. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16238. ctx->kv[idx].value.bool_ = val;
  16239. }
  16240. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16241. const int idx = gguf_get_or_add_key(ctx, key);
  16242. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16243. ctx->kv[idx].value.str.n = strlen(val);
  16244. ctx->kv[idx].value.str.data = strdup(val);
  16245. }
  16246. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16247. const int idx = gguf_get_or_add_key(ctx, key);
  16248. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16249. ctx->kv[idx].value.arr.type = type;
  16250. ctx->kv[idx].value.arr.n = n;
  16251. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16252. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16253. }
  16254. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16255. const int idx = gguf_get_or_add_key(ctx, key);
  16256. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16257. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16258. ctx->kv[idx].value.arr.n = n;
  16259. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16260. for (int i = 0; i < n; i++) {
  16261. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16262. str->n = strlen(data[i]);
  16263. str->data = strdup(data[i]);
  16264. }
  16265. }
  16266. // set or add KV pairs from another context
  16267. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16268. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16269. switch (src->kv[i].type) {
  16270. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16271. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16272. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16273. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16274. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16275. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16276. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16277. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16278. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16279. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16280. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16281. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16282. case GGUF_TYPE_ARRAY:
  16283. {
  16284. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16285. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16286. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16287. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16288. }
  16289. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16290. free((void *)data);
  16291. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16292. GGML_ASSERT(false && "nested arrays not supported");
  16293. } else {
  16294. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16295. }
  16296. } break;
  16297. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16298. }
  16299. }
  16300. }
  16301. void gguf_add_tensor(
  16302. struct gguf_context * ctx,
  16303. const struct ggml_tensor * tensor) {
  16304. const int idx = ctx->header.n_tensors;
  16305. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16306. ctx->infos[idx].name.n = strlen(tensor->name);
  16307. ctx->infos[idx].name.data = strdup(tensor->name);
  16308. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16309. ctx->infos[idx].ne[i] = 1;
  16310. }
  16311. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16312. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16313. ctx->infos[idx].ne[i] = tensor->ne[i];
  16314. }
  16315. ctx->infos[idx].type = tensor->type;
  16316. ctx->infos[idx].offset = 0;
  16317. ctx->infos[idx].data = tensor->data;
  16318. ctx->infos[idx].size = ggml_nbytes(tensor);
  16319. if (ctx->header.n_tensors > 0) {
  16320. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16321. }
  16322. ctx->header.n_tensors++;
  16323. }
  16324. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16325. const int idx = gguf_find_tensor(ctx, name);
  16326. if (idx < 0) {
  16327. GGML_ASSERT(false && "tensor not found");
  16328. }
  16329. ctx->infos[idx].type = type;
  16330. }
  16331. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16332. const int idx = gguf_find_tensor(ctx, name);
  16333. if (idx < 0) {
  16334. GGML_ASSERT(false && "tensor not found");
  16335. }
  16336. ctx->infos[idx].data = data;
  16337. ctx->infos[idx].size = size;
  16338. // update offsets
  16339. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16340. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16341. }
  16342. }
  16343. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16344. // fwrite(&val->n, sizeof(val->n), 1, file);
  16345. // fwrite(val->data, sizeof(char), val->n, file);
  16346. //}
  16347. //
  16348. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16349. // fwrite(val, sizeof(char), size, file);
  16350. //}
  16351. struct gguf_buf {
  16352. void * data;
  16353. size_t size;
  16354. size_t offset;
  16355. };
  16356. static struct gguf_buf gguf_buf_init(size_t size) {
  16357. struct gguf_buf buf = {
  16358. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16359. /*buf.size =*/ size,
  16360. /*buf.offset =*/ 0,
  16361. };
  16362. return buf;
  16363. }
  16364. static void gguf_buf_free(struct gguf_buf buf) {
  16365. if (buf.data) {
  16366. free(buf.data);
  16367. }
  16368. }
  16369. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16370. if (buf->offset + size > buf->size) {
  16371. buf->size = 1.5*(buf->offset + size);
  16372. if (buf->data) {
  16373. buf->data = realloc(buf->data, buf->size);
  16374. }
  16375. }
  16376. }
  16377. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16378. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16379. if (buf->data) {
  16380. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16381. }
  16382. buf->offset += sizeof(val->n);
  16383. if (buf->data) {
  16384. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16385. }
  16386. buf->offset += val->n;
  16387. }
  16388. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16389. gguf_buf_grow(buf, el_size);
  16390. if (buf->data) {
  16391. memcpy((char *) buf->data + buf->offset, val, el_size);
  16392. }
  16393. buf->offset += el_size;
  16394. }
  16395. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16396. // write header
  16397. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16398. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16399. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16400. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16401. // write key-value pairs
  16402. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16403. struct gguf_kv * kv = &ctx->kv[i];
  16404. gguf_bwrite_str(buf, &kv->key);
  16405. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16406. switch (kv->type) {
  16407. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16408. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16409. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16410. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16411. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16412. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16413. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16414. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16415. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16416. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16417. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16418. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16419. case GGUF_TYPE_ARRAY:
  16420. {
  16421. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16422. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16423. switch (kv->value.arr.type) {
  16424. case GGUF_TYPE_UINT8:
  16425. case GGUF_TYPE_INT8:
  16426. case GGUF_TYPE_UINT16:
  16427. case GGUF_TYPE_INT16:
  16428. case GGUF_TYPE_UINT32:
  16429. case GGUF_TYPE_INT32:
  16430. case GGUF_TYPE_FLOAT32:
  16431. case GGUF_TYPE_UINT64:
  16432. case GGUF_TYPE_INT64:
  16433. case GGUF_TYPE_FLOAT64:
  16434. case GGUF_TYPE_BOOL:
  16435. {
  16436. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16437. } break;
  16438. case GGUF_TYPE_STRING:
  16439. {
  16440. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16441. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16442. }
  16443. } break;
  16444. case GGUF_TYPE_ARRAY:
  16445. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16446. }
  16447. } break;
  16448. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16449. }
  16450. }
  16451. // write tensor infos
  16452. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16453. struct gguf_tensor_info * info = &ctx->infos[i];
  16454. gguf_bwrite_str(buf, &info->name);
  16455. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16456. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16457. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16458. }
  16459. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16460. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16461. }
  16462. // we require the data section to be aligned, so take into account any padding
  16463. {
  16464. const size_t offset = buf->offset;
  16465. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16466. if (offset_pad != offset) {
  16467. uint8_t pad = 0;
  16468. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16469. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16470. }
  16471. }
  16472. }
  16473. if (only_meta) {
  16474. return;
  16475. }
  16476. size_t offset = 0;
  16477. // write tensor data
  16478. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16479. struct gguf_tensor_info * info = &ctx->infos[i];
  16480. const size_t size = info->size;
  16481. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16482. gguf_bwrite_el(buf, info->data, size);
  16483. if (size_pad != size) {
  16484. uint8_t pad = 0;
  16485. for (size_t j = 0; j < size_pad - size; ++j) {
  16486. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16487. }
  16488. }
  16489. GGML_ASSERT(offset == info->offset);
  16490. offset += size_pad;
  16491. }
  16492. }
  16493. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16494. FILE * file = fopen(fname, "wb");
  16495. if (!file) {
  16496. GGML_ASSERT(false && "failed to open file for writing");
  16497. }
  16498. struct gguf_buf buf = gguf_buf_init(16*1024);
  16499. gguf_write_to_buf(ctx, &buf, only_meta);
  16500. fwrite(buf.data, 1, buf.offset, file);
  16501. gguf_buf_free(buf);
  16502. fclose(file);
  16503. }
  16504. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16505. // no allocs - only compute size
  16506. struct gguf_buf buf = gguf_buf_init(0);
  16507. gguf_write_to_buf(ctx, &buf, true);
  16508. return buf.offset;
  16509. }
  16510. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16511. struct gguf_buf buf = gguf_buf_init(16*1024);
  16512. gguf_write_to_buf(ctx, &buf, true);
  16513. memcpy(data, buf.data, buf.offset);
  16514. gguf_buf_free(buf);
  16515. }
  16516. ////////////////////////////////////////////////////////////////////////////////
  16517. int ggml_cpu_has_avx(void) {
  16518. #if defined(__AVX__)
  16519. return 1;
  16520. #else
  16521. return 0;
  16522. #endif
  16523. }
  16524. int ggml_cpu_has_avx_vnni(void) {
  16525. #if defined(__AVXVNNI__)
  16526. return 1;
  16527. #else
  16528. return 0;
  16529. #endif
  16530. }
  16531. int ggml_cpu_has_avx2(void) {
  16532. #if defined(__AVX2__)
  16533. return 1;
  16534. #else
  16535. return 0;
  16536. #endif
  16537. }
  16538. int ggml_cpu_has_avx512(void) {
  16539. #if defined(__AVX512F__)
  16540. return 1;
  16541. #else
  16542. return 0;
  16543. #endif
  16544. }
  16545. int ggml_cpu_has_avx512_vbmi(void) {
  16546. #if defined(__AVX512VBMI__)
  16547. return 1;
  16548. #else
  16549. return 0;
  16550. #endif
  16551. }
  16552. int ggml_cpu_has_avx512_vnni(void) {
  16553. #if defined(__AVX512VNNI__)
  16554. return 1;
  16555. #else
  16556. return 0;
  16557. #endif
  16558. }
  16559. int ggml_cpu_has_fma(void) {
  16560. #if defined(__FMA__)
  16561. return 1;
  16562. #else
  16563. return 0;
  16564. #endif
  16565. }
  16566. int ggml_cpu_has_neon(void) {
  16567. #if defined(__ARM_NEON)
  16568. return 1;
  16569. #else
  16570. return 0;
  16571. #endif
  16572. }
  16573. int ggml_cpu_has_arm_fma(void) {
  16574. #if defined(__ARM_FEATURE_FMA)
  16575. return 1;
  16576. #else
  16577. return 0;
  16578. #endif
  16579. }
  16580. int ggml_cpu_has_metal(void) {
  16581. #if defined(GGML_USE_METAL)
  16582. return 1;
  16583. #else
  16584. return 0;
  16585. #endif
  16586. }
  16587. int ggml_cpu_has_f16c(void) {
  16588. #if defined(__F16C__)
  16589. return 1;
  16590. #else
  16591. return 0;
  16592. #endif
  16593. }
  16594. int ggml_cpu_has_fp16_va(void) {
  16595. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16596. return 1;
  16597. #else
  16598. return 0;
  16599. #endif
  16600. }
  16601. int ggml_cpu_has_wasm_simd(void) {
  16602. #if defined(__wasm_simd128__)
  16603. return 1;
  16604. #else
  16605. return 0;
  16606. #endif
  16607. }
  16608. int ggml_cpu_has_blas(void) {
  16609. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16610. return 1;
  16611. #else
  16612. return 0;
  16613. #endif
  16614. }
  16615. int ggml_cpu_has_cublas(void) {
  16616. #if defined(GGML_USE_CUBLAS)
  16617. return 1;
  16618. #else
  16619. return 0;
  16620. #endif
  16621. }
  16622. int ggml_cpu_has_clblast(void) {
  16623. #if defined(GGML_USE_CLBLAST)
  16624. return 1;
  16625. #else
  16626. return 0;
  16627. #endif
  16628. }
  16629. int ggml_cpu_has_gpublas(void) {
  16630. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16631. }
  16632. int ggml_cpu_has_sse3(void) {
  16633. #if defined(__SSE3__)
  16634. return 1;
  16635. #else
  16636. return 0;
  16637. #endif
  16638. }
  16639. int ggml_cpu_has_ssse3(void) {
  16640. #if defined(__SSSE3__)
  16641. return 1;
  16642. #else
  16643. return 0;
  16644. #endif
  16645. }
  16646. int ggml_cpu_has_vsx(void) {
  16647. #if defined(__POWER9_VECTOR__)
  16648. return 1;
  16649. #else
  16650. return 0;
  16651. #endif
  16652. }
  16653. ////////////////////////////////////////////////////////////////////////////////