1
0

main.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. // Defines sigaction on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #endif
  5. #include "common.h"
  6. #include "llama.h"
  7. #include "build-info.h"
  8. #include <cassert>
  9. #include <cinttypes>
  10. #include <cmath>
  11. #include <cstdio>
  12. #include <cstring>
  13. #include <ctime>
  14. #include <fstream>
  15. #include <iostream>
  16. #include <string>
  17. #include <vector>
  18. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  19. #include <signal.h>
  20. #include <unistd.h>
  21. #elif defined (_WIN32)
  22. #define WIN32_LEAN_AND_MEAN
  23. #ifndef NOMINMAX
  24. #define NOMINMAX
  25. #endif
  26. #include <windows.h>
  27. #include <signal.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. #pragma warning(disable: 4244 4267) // possible loss of data
  31. #endif
  32. static console_state con_st;
  33. static llama_context ** g_ctx;
  34. static bool is_interacting = false;
  35. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  36. void sigint_handler(int signo) {
  37. if (signo == SIGINT) {
  38. if (!is_interacting) {
  39. is_interacting=true;
  40. } else {
  41. console_cleanup(con_st);
  42. printf("\n");
  43. llama_print_timings(*g_ctx);
  44. _exit(130);
  45. }
  46. }
  47. }
  48. #endif
  49. int main(int argc, char ** argv) {
  50. gpt_params params;
  51. if (gpt_params_parse(argc, argv, params) == false) {
  52. return 1;
  53. }
  54. // save choice to use color for later
  55. // (note for later: this is a slightly awkward choice)
  56. con_st.use_color = params.use_color;
  57. con_st.multiline_input = params.multiline_input;
  58. console_init(con_st);
  59. atexit([]() { console_cleanup(con_st); });
  60. if (params.perplexity) {
  61. printf("\n************\n");
  62. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  63. printf("************\n\n");
  64. return 0;
  65. }
  66. if (params.embedding) {
  67. printf("\n************\n");
  68. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  69. printf("************\n\n");
  70. return 0;
  71. }
  72. if (params.rope_freq_base != 10000.0) {
  73. fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
  74. }
  75. if (params.rope_freq_scale != 1.0) {
  76. fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
  77. }
  78. if (params.n_ctx > 2048) {
  79. fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified);"
  80. " you are on your own\n", __func__, params.n_ctx);
  81. } else if (params.n_ctx < 8) {
  82. fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  83. params.n_ctx = 8;
  84. }
  85. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  86. if (params.seed == LLAMA_DEFAULT_SEED) {
  87. params.seed = time(NULL);
  88. }
  89. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  90. std::mt19937 rng(params.seed);
  91. if (params.random_prompt) {
  92. params.prompt = gpt_random_prompt(rng);
  93. }
  94. llama_backend_init(params.numa);
  95. llama_model * model;
  96. llama_context * ctx;
  97. llama_context * ctx_guidance = NULL;
  98. g_ctx = &ctx;
  99. // load the model and apply lora adapter, if any
  100. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  101. if (params.cfg_scale > 1.f) {
  102. struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
  103. ctx_guidance = llama_new_context_with_model(model, lparams);
  104. }
  105. if (model == NULL) {
  106. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  107. return 1;
  108. }
  109. // print system information
  110. {
  111. fprintf(stderr, "\n");
  112. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  113. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  114. }
  115. // determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters
  116. // uncomment the "used_mem" line in llama.cpp to see the results
  117. if (params.mem_test) {
  118. {
  119. fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
  120. const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
  121. llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
  122. }
  123. llama_print_timings(ctx);
  124. llama_free(ctx);
  125. llama_free_model(model);
  126. return 0;
  127. }
  128. // export the cgraph and exit
  129. if (params.export_cgraph) {
  130. llama_eval_export(ctx, "llama.ggml");
  131. llama_free(ctx);
  132. llama_free_model(model);
  133. return 0;
  134. }
  135. std::string path_session = params.path_prompt_cache;
  136. std::vector<llama_token> session_tokens;
  137. if (!path_session.empty()) {
  138. fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  139. // fopen to check for existing session
  140. FILE * fp = std::fopen(path_session.c_str(), "rb");
  141. if (fp != NULL) {
  142. std::fclose(fp);
  143. session_tokens.resize(params.n_ctx);
  144. size_t n_token_count_out = 0;
  145. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  146. fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  147. return 1;
  148. }
  149. session_tokens.resize(n_token_count_out);
  150. llama_set_rng_seed(ctx, params.seed);
  151. fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
  152. } else {
  153. fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
  154. }
  155. }
  156. // tokenize the prompt
  157. std::vector<llama_token> embd_inp;
  158. // Add a space in front of the first character to match OG llama tokenizer behavior
  159. params.prompt.insert(0, 1, ' ');
  160. if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
  161. embd_inp = ::llama_tokenize(ctx, params.prompt, true);
  162. } else {
  163. embd_inp = session_tokens;
  164. }
  165. // Tokenize negative prompt
  166. std::vector<llama_token> guidance_inp;
  167. int guidance_offset = 0;
  168. int original_prompt_len = 0;
  169. if (ctx_guidance) {
  170. params.cfg_negative_prompt.insert(0, 1, ' ');
  171. guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true);
  172. std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
  173. original_prompt_len = original_inp.size();
  174. guidance_offset = (int)guidance_inp.size() - original_prompt_len;
  175. }
  176. const int n_ctx = llama_n_ctx(ctx);
  177. if ((int) embd_inp.size() > n_ctx - 4) {
  178. fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  179. return 1;
  180. }
  181. // debug message about similarity of saved session, if applicable
  182. size_t n_matching_session_tokens = 0;
  183. if (session_tokens.size()) {
  184. for (llama_token id : session_tokens) {
  185. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  186. break;
  187. }
  188. n_matching_session_tokens++;
  189. }
  190. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  191. fprintf(stderr, "%s: using full prompt from session file\n", __func__);
  192. } else if (n_matching_session_tokens >= embd_inp.size()) {
  193. fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
  194. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  195. fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  196. __func__, n_matching_session_tokens, embd_inp.size());
  197. } else {
  198. fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
  199. __func__, n_matching_session_tokens, embd_inp.size());
  200. }
  201. }
  202. // if we will use the cache for the full prompt without reaching the end of the cache, force
  203. // reevaluation of the last token token to recalculate the cached logits
  204. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
  205. session_tokens.size() > embd_inp.size()) {
  206. session_tokens.resize(embd_inp.size() - 1);
  207. }
  208. // number of tokens to keep when resetting context
  209. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
  210. params.n_keep = (int)embd_inp.size();
  211. }
  212. // prefix & suffix for instruct mode
  213. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
  214. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  215. // in instruct mode, we inject a prefix and a suffix to each input by the user
  216. if (params.instruct) {
  217. params.interactive_first = true;
  218. params.antiprompt.push_back("### Instruction:\n\n");
  219. }
  220. // enable interactive mode if interactive start is specified
  221. if (params.interactive_first) {
  222. params.interactive = true;
  223. }
  224. // determine newline token
  225. auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
  226. if (params.verbose_prompt) {
  227. fprintf(stderr, "\n");
  228. fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  229. fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  230. for (int i = 0; i < (int) embd_inp.size(); i++) {
  231. fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
  232. }
  233. if (ctx_guidance) {
  234. fprintf(stderr, "\n");
  235. fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
  236. fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
  237. for (int i = 0; i < (int) guidance_inp.size(); i++) {
  238. fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]));
  239. }
  240. }
  241. if (params.n_keep > 0) {
  242. fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
  243. for (int i = 0; i < params.n_keep; i++) {
  244. fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
  245. }
  246. fprintf(stderr, "'\n");
  247. }
  248. fprintf(stderr, "\n");
  249. }
  250. if (params.interactive) {
  251. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  252. struct sigaction sigint_action;
  253. sigint_action.sa_handler = sigint_handler;
  254. sigemptyset (&sigint_action.sa_mask);
  255. sigint_action.sa_flags = 0;
  256. sigaction(SIGINT, &sigint_action, NULL);
  257. #elif defined (_WIN32)
  258. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  259. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  260. };
  261. SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  262. #endif
  263. fprintf(stderr, "%s: interactive mode on.\n", __func__);
  264. if (params.antiprompt.size()) {
  265. for (auto antiprompt : params.antiprompt) {
  266. fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
  267. }
  268. }
  269. if (!params.input_prefix.empty()) {
  270. fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
  271. }
  272. if (!params.input_suffix.empty()) {
  273. fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
  274. }
  275. }
  276. fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  277. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  278. fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  279. fprintf(stderr, "\n\n");
  280. // TODO: replace with ring-buffer
  281. std::vector<llama_token> last_n_tokens(n_ctx);
  282. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  283. if (params.interactive) {
  284. const char *control_message;
  285. if (con_st.multiline_input) {
  286. control_message = " - To return control to LLaMa, end your input with '\\'.\n"
  287. " - To return control without starting a new line, end your input with '/'.\n";
  288. } else {
  289. control_message = " - Press Return to return control to LLaMa.\n"
  290. " - To return control without starting a new line, end your input with '/'.\n"
  291. " - If you want to submit another line, end your input with '\\'.\n";
  292. }
  293. fprintf(stderr, "== Running in interactive mode. ==\n"
  294. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  295. " - Press Ctrl+C to interject at any time.\n"
  296. #endif
  297. "%s\n", control_message);
  298. is_interacting = params.interactive_first;
  299. }
  300. bool is_antiprompt = false;
  301. bool input_echo = true;
  302. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  303. int n_past = 0;
  304. int n_remain = params.n_predict;
  305. int n_consumed = 0;
  306. int n_session_consumed = 0;
  307. int n_past_guidance = 0;
  308. // the first thing we will do is to output the prompt, so set color accordingly
  309. console_set_color(con_st, CONSOLE_COLOR_PROMPT);
  310. std::vector<llama_token> embd;
  311. std::vector<llama_token> embd_guidance;
  312. // do one empty run to warm up the model
  313. {
  314. const std::vector<llama_token> tmp = { llama_token_bos(), };
  315. llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
  316. llama_reset_timings(ctx);
  317. }
  318. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  319. // predict
  320. if (embd.size() > 0) {
  321. // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
  322. // --prompt or --file which uses the same value.
  323. auto max_embd_size = n_ctx - 4;
  324. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  325. if ((int)embd.size() > max_embd_size) {
  326. auto skipped_tokens = embd.size() - max_embd_size;
  327. console_set_color(con_st, CONSOLE_COLOR_ERROR);
  328. printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  329. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  330. fflush(stdout);
  331. embd.resize(max_embd_size);
  332. }
  333. // infinite text generation via context swapping
  334. // if we run out of context:
  335. // - take the n_keep first tokens from the original prompt (via n_past)
  336. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  337. if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
  338. const int n_left = n_past - params.n_keep;
  339. // always keep the first token - BOS
  340. n_past = std::max(1, params.n_keep);
  341. n_past_guidance = std::max(1, params.n_keep + guidance_offset);
  342. // insert n_left/2 tokens at the start of embd from last_n_tokens
  343. embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
  344. // stop saving session if we run out of context
  345. path_session.clear();
  346. //printf("\n---\n");
  347. //printf("resetting: '");
  348. //for (int i = 0; i < (int) embd.size(); i++) {
  349. // printf("%s", llama_token_to_str(ctx, embd[i]));
  350. //}
  351. //printf("'\n");
  352. //printf("\n---\n");
  353. }
  354. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  355. if (n_session_consumed < (int) session_tokens.size()) {
  356. size_t i = 0;
  357. for ( ; i < embd.size(); i++) {
  358. if (embd[i] != session_tokens[n_session_consumed]) {
  359. session_tokens.resize(n_session_consumed);
  360. break;
  361. }
  362. n_past++;
  363. n_session_consumed++;
  364. if (n_session_consumed >= (int) session_tokens.size()) {
  365. ++i;
  366. break;
  367. }
  368. }
  369. if (i > 0) {
  370. embd.erase(embd.begin(), embd.begin() + i);
  371. }
  372. }
  373. // evaluate tokens in batches
  374. // embd is typically prepared beforehand to fit within a batch, but not always
  375. if (ctx_guidance) {
  376. int input_size = 0;
  377. llama_token* input_buf = NULL;
  378. if (n_past_guidance < (int) guidance_inp.size()) {
  379. // Guidance context should have the same data with these modifications:
  380. //
  381. // * Replace the initial prompt
  382. // * Shift everything by guidance_offset
  383. embd_guidance = guidance_inp;
  384. if (embd.begin() + original_prompt_len < embd.end()) {
  385. embd_guidance.insert(
  386. embd_guidance.end(),
  387. embd.begin() + original_prompt_len,
  388. embd.end()
  389. );
  390. }
  391. input_buf = embd_guidance.data();
  392. input_size = embd_guidance.size();
  393. //fprintf(stderr, "\n---------------------\n");
  394. //for (int i = 0; i < (int) embd_guidance.size(); i++) {
  395. //fprintf(stderr, "%s", llama_token_to_str(ctx, embd_guidance[i]));
  396. //}
  397. //fprintf(stderr, "\n---------------------\n");
  398. } else {
  399. input_buf = embd.data();
  400. input_size = embd.size();
  401. }
  402. for (int i = 0; i < input_size; i += params.n_batch) {
  403. int n_eval = std::min(input_size - i, params.n_batch);
  404. if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) {
  405. fprintf(stderr, "%s : failed to eval\n", __func__);
  406. return 1;
  407. }
  408. n_past_guidance += n_eval;
  409. }
  410. }
  411. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  412. int n_eval = (int) embd.size() - i;
  413. if (n_eval > params.n_batch) {
  414. n_eval = params.n_batch;
  415. }
  416. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  417. fprintf(stderr, "%s : failed to eval\n", __func__);
  418. return 1;
  419. }
  420. n_past += n_eval;
  421. }
  422. if (embd.size() > 0 && !path_session.empty()) {
  423. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  424. n_session_consumed = session_tokens.size();
  425. }
  426. }
  427. embd.clear();
  428. embd_guidance.clear();
  429. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  430. // out of user input, sample next token
  431. const float temp = params.temp;
  432. const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
  433. const float top_p = params.top_p;
  434. const float tfs_z = params.tfs_z;
  435. const float typical_p = params.typical_p;
  436. const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
  437. const float repeat_penalty = params.repeat_penalty;
  438. const float alpha_presence = params.presence_penalty;
  439. const float alpha_frequency = params.frequency_penalty;
  440. const int mirostat = params.mirostat;
  441. const float mirostat_tau = params.mirostat_tau;
  442. const float mirostat_eta = params.mirostat_eta;
  443. const bool penalize_nl = params.penalize_nl;
  444. // optionally save the session on first sample (for faster prompt loading next time)
  445. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  446. need_to_save_session = false;
  447. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  448. }
  449. llama_token id = 0;
  450. {
  451. auto logits = llama_get_logits(ctx);
  452. auto n_vocab = llama_n_vocab(ctx);
  453. // Apply params.logit_bias map
  454. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  455. logits[it->first] += it->second;
  456. }
  457. std::vector<llama_token_data> candidates;
  458. candidates.reserve(n_vocab);
  459. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  460. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  461. }
  462. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  463. if (ctx_guidance) {
  464. llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale);
  465. }
  466. // Apply penalties
  467. float nl_logit = logits[llama_token_nl()];
  468. auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
  469. llama_sample_repetition_penalty(ctx, &candidates_p,
  470. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  471. last_n_repeat, repeat_penalty);
  472. llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
  473. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  474. last_n_repeat, alpha_frequency, alpha_presence);
  475. if (!penalize_nl) {
  476. logits[llama_token_nl()] = nl_logit;
  477. }
  478. if (temp <= 0) {
  479. // Greedy sampling
  480. id = llama_sample_token_greedy(ctx, &candidates_p);
  481. } else {
  482. if (mirostat == 1) {
  483. static float mirostat_mu = 2.0f * mirostat_tau;
  484. const int mirostat_m = 100;
  485. llama_sample_temperature(ctx, &candidates_p, temp);
  486. id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  487. } else if (mirostat == 2) {
  488. static float mirostat_mu = 2.0f * mirostat_tau;
  489. llama_sample_temperature(ctx, &candidates_p, temp);
  490. id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  491. } else {
  492. // Temperature sampling
  493. llama_sample_top_k(ctx, &candidates_p, top_k, 1);
  494. llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
  495. llama_sample_typical(ctx, &candidates_p, typical_p, 1);
  496. llama_sample_top_p(ctx, &candidates_p, top_p, 1);
  497. llama_sample_temperature(ctx, &candidates_p, temp);
  498. id = llama_sample_token(ctx, &candidates_p);
  499. }
  500. }
  501. // printf("`%d`", candidates_p.size);
  502. last_n_tokens.erase(last_n_tokens.begin());
  503. last_n_tokens.push_back(id);
  504. }
  505. // replace end of text token with newline token when in interactive mode
  506. if (id == llama_token_eos() && params.interactive && !params.instruct) {
  507. id = llama_token_newline.front();
  508. if (params.antiprompt.size() != 0) {
  509. // tokenize and inject first reverse prompt
  510. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  511. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  512. }
  513. }
  514. // add it to the context
  515. embd.push_back(id);
  516. // echo this to console
  517. input_echo = true;
  518. // decrement remaining sampling budget
  519. --n_remain;
  520. } else {
  521. // some user input remains from prompt or interaction, forward it to processing
  522. while ((int) embd_inp.size() > n_consumed) {
  523. embd.push_back(embd_inp[n_consumed]);
  524. last_n_tokens.erase(last_n_tokens.begin());
  525. last_n_tokens.push_back(embd_inp[n_consumed]);
  526. ++n_consumed;
  527. if ((int) embd.size() >= params.n_batch) {
  528. break;
  529. }
  530. }
  531. }
  532. // display text
  533. if (input_echo) {
  534. for (auto id : embd) {
  535. printf("%s", llama_token_to_str(ctx, id));
  536. }
  537. fflush(stdout);
  538. }
  539. // reset color to default if we there is no pending user input
  540. if (input_echo && (int)embd_inp.size() == n_consumed) {
  541. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  542. }
  543. // if not currently processing queued inputs;
  544. if ((int) embd_inp.size() <= n_consumed) {
  545. // check for reverse prompt
  546. if (params.antiprompt.size()) {
  547. std::string last_output;
  548. for (auto id : last_n_tokens) {
  549. last_output += llama_token_to_str(ctx, id);
  550. }
  551. is_antiprompt = false;
  552. // Check if each of the reverse prompts appears at the end of the output.
  553. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  554. // so we'll compensate for that by widening the search window a bit.
  555. for (std::string & antiprompt : params.antiprompt) {
  556. size_t extra_padding = params.interactive ? 0 : 2;
  557. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  558. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  559. : 0;
  560. if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
  561. if (params.interactive) {
  562. is_interacting = true;
  563. console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
  564. }
  565. is_antiprompt = true;
  566. fflush(stdout);
  567. break;
  568. }
  569. }
  570. }
  571. if (n_past > 0 && is_interacting) {
  572. if (params.instruct) {
  573. printf("\n> ");
  574. }
  575. std::string buffer;
  576. if (!params.input_prefix.empty()) {
  577. buffer += params.input_prefix;
  578. printf("%s", buffer.c_str());
  579. }
  580. std::string line;
  581. bool another_line = true;
  582. do {
  583. another_line = console_readline(con_st, line);
  584. buffer += line;
  585. } while (another_line);
  586. // done taking input, reset color
  587. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  588. // Add tokens to embd only if the input buffer is non-empty
  589. // Entering a empty line lets the user pass control back
  590. if (buffer.length() > 1) {
  591. // append input suffix if any
  592. if (!params.input_suffix.empty()) {
  593. buffer += params.input_suffix;
  594. printf("%s", params.input_suffix.c_str());
  595. }
  596. // instruct mode: insert instruction prefix
  597. if (params.instruct && !is_antiprompt) {
  598. n_consumed = embd_inp.size();
  599. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  600. }
  601. auto line_inp = ::llama_tokenize(ctx, buffer, false);
  602. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  603. // instruct mode: insert response suffix
  604. if (params.instruct) {
  605. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  606. }
  607. n_remain -= line_inp.size();
  608. }
  609. input_echo = false; // do not echo this again
  610. }
  611. if (n_past > 0) {
  612. is_interacting = false;
  613. }
  614. }
  615. // end of text token
  616. if (!embd.empty() && embd.back() == llama_token_eos()) {
  617. if (params.instruct) {
  618. is_interacting = true;
  619. } else {
  620. fprintf(stderr, " [end of text]\n");
  621. break;
  622. }
  623. }
  624. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  625. if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
  626. n_remain = params.n_predict;
  627. is_interacting = true;
  628. }
  629. }
  630. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  631. fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  632. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  633. }
  634. llama_print_timings(ctx);
  635. if (ctx_guidance) { llama_free(ctx_guidance); }
  636. llama_free(ctx);
  637. llama_free_model(model);
  638. llama_backend_free();
  639. return 0;
  640. }