ggml.c 596 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void* ggml_aligned_malloc(size_t size) {
  163. void* aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  181. __func__, error_desc, size/(1024.0*1024.0));
  182. return NULL;
  183. }
  184. return aligned_memory;
  185. }
  186. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  187. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  188. #endif
  189. #define UNUSED GGML_UNUSED
  190. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  191. //
  192. // tensor access macros
  193. //
  194. #define GGML_TENSOR_UNARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  199. #define GGML_TENSOR_BINARY_OP_LOCALS \
  200. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  202. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  203. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  204. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  206. #if defined(GGML_USE_ACCELERATE)
  207. #include <Accelerate/Accelerate.h>
  208. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  209. #include "ggml-opencl.h"
  210. #endif
  211. #elif defined(GGML_USE_OPENBLAS)
  212. #if defined(GGML_BLAS_USE_MKL)
  213. #include <mkl.h>
  214. #else
  215. #include <cblas.h>
  216. #endif
  217. #elif defined(GGML_USE_CUBLAS)
  218. #include "ggml-cuda.h"
  219. #elif defined(GGML_USE_CLBLAST)
  220. #include "ggml-opencl.h"
  221. #endif
  222. #undef MIN
  223. #undef MAX
  224. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  225. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  226. // floating point type used to accumulate sums
  227. typedef double ggml_float;
  228. // 16-bit float
  229. // on Arm, we use __fp16
  230. // on x86, we use uint16_t
  231. #ifdef __ARM_NEON
  232. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  233. //
  234. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  235. //
  236. #include <arm_neon.h>
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  239. #define GGML_FP16_TO_FP32(x) ((float) (x))
  240. #define GGML_FP32_TO_FP16(x) (x)
  241. #else
  242. #ifdef __wasm_simd128__
  243. #include <wasm_simd128.h>
  244. #else
  245. #ifdef __POWER9_VECTOR__
  246. #include <altivec.h>
  247. #undef bool
  248. #define bool _Bool
  249. #else
  250. #if defined(_MSC_VER) || defined(__MINGW32__)
  251. #include <intrin.h>
  252. #else
  253. #if !defined(__riscv)
  254. #include <immintrin.h>
  255. #endif
  256. #endif
  257. #endif
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  703. return
  704. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  705. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  706. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  707. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  708. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  709. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  710. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  711. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  712. }
  713. inline static int16_t vaddvq_s8(int8x16_t v) {
  714. return
  715. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  716. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  717. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  718. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  719. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  720. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  721. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  722. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  723. }
  724. inline static int32_t vaddvq_s16(int16x8_t v) {
  725. return
  726. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  727. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  728. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  729. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  730. }
  731. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  732. return
  733. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  734. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  735. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  736. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  737. }
  738. inline static int32_t vaddvq_s32(int32x4_t v) {
  739. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  740. }
  741. inline static float vaddvq_f32(float32x4_t v) {
  742. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  743. }
  744. inline static float vminvq_f32(float32x4_t v) {
  745. return
  746. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  747. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  748. }
  749. inline static float vmaxvq_f32(float32x4_t v) {
  750. return
  751. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  752. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  753. }
  754. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  755. int32x4_t res;
  756. res[0] = roundf(vgetq_lane_f32(v, 0));
  757. res[1] = roundf(vgetq_lane_f32(v, 1));
  758. res[2] = roundf(vgetq_lane_f32(v, 2));
  759. res[3] = roundf(vgetq_lane_f32(v, 3));
  760. return res;
  761. }
  762. #endif
  763. #endif
  764. #define QK4_0 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  768. } block_q4_0;
  769. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  770. #define QK4_1 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. ggml_fp16_t m; // min
  774. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  775. } block_q4_1;
  776. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  777. #define QK5_0 32
  778. typedef struct {
  779. ggml_fp16_t d; // delta
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  782. } block_q5_0;
  783. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  784. #define QK5_1 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. ggml_fp16_t m; // min
  788. uint8_t qh[4]; // 5-th bit of quants
  789. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  790. } block_q5_1;
  791. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  792. #define QK8_0 32
  793. typedef struct {
  794. ggml_fp16_t d; // delta
  795. int8_t qs[QK8_0]; // quants
  796. } block_q8_0;
  797. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  798. #define QK8_1 32
  799. typedef struct {
  800. float d; // delta
  801. float s; // d * sum(qs[i])
  802. int8_t qs[QK8_1]; // quants
  803. } block_q8_1;
  804. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  805. // reference implementation for deterministic creation of model files
  806. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  807. static const int qk = QK4_0;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float amax = 0.0f; // absolute max
  812. float max = 0.0f;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (amax < fabsf(v)) {
  816. amax = fabsf(v);
  817. max = v;
  818. }
  819. }
  820. const float d = max / -8;
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = GGML_FP32_TO_FP16(d);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = x[i*qk + 0 + j]*id;
  825. const float x1 = x[i*qk + qk/2 + j]*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_0_reference(x, y, k);
  835. }
  836. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  837. const int qk = QK4_1;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float min = FLT_MAX;
  842. float max = -FLT_MAX;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (v < min) min = v;
  846. if (v > max) max = v;
  847. }
  848. const float d = (max - min) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].d = GGML_FP32_TO_FP16(d);
  851. y[i].m = GGML_FP32_TO_FP16(min);
  852. for (int j = 0; j < qk/2; ++j) {
  853. const float x0 = (x[i*qk + 0 + j] - min)*id;
  854. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  855. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  856. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  857. y[i].qs[j] = xi0;
  858. y[i].qs[j] |= xi1 << 4;
  859. }
  860. }
  861. }
  862. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  863. quantize_row_q4_1_reference(x, y, k);
  864. }
  865. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  866. static const int qk = QK5_0;
  867. assert(k % qk == 0);
  868. const int nb = k / qk;
  869. for (int i = 0; i < nb; i++) {
  870. float amax = 0.0f; // absolute max
  871. float max = 0.0f;
  872. for (int j = 0; j < qk; j++) {
  873. const float v = x[i*qk + j];
  874. if (amax < fabsf(v)) {
  875. amax = fabsf(v);
  876. max = v;
  877. }
  878. }
  879. const float d = max / -16;
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. uint32_t qh = 0;
  883. for (int j = 0; j < qk/2; ++j) {
  884. const float x0 = x[i*qk + 0 + j]*id;
  885. const float x1 = x[i*qk + qk/2 + j]*id;
  886. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  887. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  888. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  889. // get the 5-th bit and store it in qh at the right position
  890. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  891. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  892. }
  893. memcpy(&y[i].qh, &qh, sizeof(qh));
  894. }
  895. }
  896. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  897. quantize_row_q5_0_reference(x, y, k);
  898. }
  899. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  900. const int qk = QK5_1;
  901. assert(k % qk == 0);
  902. const int nb = k / qk;
  903. for (int i = 0; i < nb; i++) {
  904. float min = FLT_MAX;
  905. float max = -FLT_MAX;
  906. for (int j = 0; j < qk; j++) {
  907. const float v = x[i*qk + j];
  908. if (v < min) min = v;
  909. if (v > max) max = v;
  910. }
  911. const float d = (max - min) / ((1 << 5) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. y[i].m = GGML_FP32_TO_FP16(min);
  915. uint32_t qh = 0;
  916. for (int j = 0; j < qk/2; ++j) {
  917. const float x0 = (x[i*qk + 0 + j] - min)*id;
  918. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  919. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  920. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  921. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  922. // get the 5-th bit and store it in qh at the right position
  923. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  924. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  925. }
  926. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  927. }
  928. }
  929. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  930. quantize_row_q5_1_reference(x, y, k);
  931. }
  932. // reference implementation for deterministic creation of model files
  933. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  934. assert(k % QK8_0 == 0);
  935. const int nb = k / QK8_0;
  936. for (int i = 0; i < nb; i++) {
  937. float amax = 0.0f; // absolute max
  938. for (int j = 0; j < QK8_0; j++) {
  939. const float v = x[i*QK8_0 + j];
  940. amax = MAX(amax, fabsf(v));
  941. }
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < QK8_0; ++j) {
  946. const float x0 = x[i*QK8_0 + j]*id;
  947. y[i].qs[j] = roundf(x0);
  948. }
  949. }
  950. }
  951. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  952. assert(QK8_0 == 32);
  953. assert(k % QK8_0 == 0);
  954. const int nb = k / QK8_0;
  955. block_q8_0 * restrict y = vy;
  956. #if defined(__ARM_NEON)
  957. for (int i = 0; i < nb; i++) {
  958. float32x4_t srcv [8];
  959. float32x4_t asrcv[8];
  960. float32x4_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = vmaxvq_f32(amaxv[0]);
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < 8; j++) {
  971. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  972. const int32x4_t vi = vcvtnq_s32_f32(v);
  973. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  974. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  975. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  976. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  977. }
  978. }
  979. #elif defined(__wasm_simd128__)
  980. for (int i = 0; i < nb; i++) {
  981. v128_t srcv [8];
  982. v128_t asrcv[8];
  983. v128_t amaxv[8];
  984. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  985. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  986. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  987. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  988. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  989. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  990. wasm_f32x4_extract_lane(amaxv[0], 1)),
  991. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  992. wasm_f32x4_extract_lane(amaxv[0], 3)));
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. for (int j = 0; j < 8; j++) {
  997. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  998. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  999. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1000. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1001. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1002. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1003. }
  1004. }
  1005. #elif defined(__AVX2__) || defined(__AVX__)
  1006. for (int i = 0; i < nb; i++) {
  1007. // Load elements into 4 AVX vectors
  1008. __m256 v0 = _mm256_loadu_ps( x );
  1009. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1010. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1011. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1012. x += 32;
  1013. // Compute max(abs(e)) for the block
  1014. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1015. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1018. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Quantize these floats
  1024. const float d = maxScalar / 127.f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1027. const __m256 mul = _mm256_set1_ps( id );
  1028. // Apply the multiplier
  1029. v0 = _mm256_mul_ps( v0, mul );
  1030. v1 = _mm256_mul_ps( v1, mul );
  1031. v2 = _mm256_mul_ps( v2, mul );
  1032. v3 = _mm256_mul_ps( v3, mul );
  1033. // Round to nearest integer
  1034. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1035. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1036. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1037. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1038. // Convert floats to integers
  1039. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1040. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1041. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1042. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1043. #if defined(__AVX2__)
  1044. // Convert int32 to int16
  1045. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1046. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1047. // Convert int16 to int8
  1048. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1049. // We got our precious signed bytes, but the order is now wrong
  1050. // These AVX2 pack instructions process 16-byte pieces independently
  1051. // The following instruction is fixing the order
  1052. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1053. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1054. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1055. #else
  1056. // Since we don't have in AVX some necessary functions,
  1057. // we split the registers in half and call AVX2 analogs from SSE
  1058. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1059. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1060. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1061. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1062. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1063. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1064. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1065. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1066. // Convert int32 to int16
  1067. ni0 = _mm_packs_epi32( ni0, ni1 );
  1068. ni2 = _mm_packs_epi32( ni2, ni3 );
  1069. ni4 = _mm_packs_epi32( ni4, ni5 );
  1070. ni6 = _mm_packs_epi32( ni6, ni7 );
  1071. // Convert int16 to int8
  1072. ni0 = _mm_packs_epi16( ni0, ni2 );
  1073. ni4 = _mm_packs_epi16( ni4, ni6 );
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1075. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1076. #endif
  1077. }
  1078. #else
  1079. // scalar
  1080. quantize_row_q8_0_reference(x, y, k);
  1081. #endif
  1082. }
  1083. // reference implementation for deterministic creation of model files
  1084. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1085. assert(QK8_1 == 32);
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. for (int i = 0; i < nb; i++) {
  1089. float amax = 0.0f; // absolute max
  1090. for (int j = 0; j < QK8_1; j++) {
  1091. const float v = x[i*QK8_1 + j];
  1092. amax = MAX(amax, fabsf(v));
  1093. }
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int sum = 0;
  1098. for (int j = 0; j < QK8_1/2; ++j) {
  1099. const float v0 = x[i*QK8_1 + j]*id;
  1100. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1101. y[i].qs[ j] = roundf(v0);
  1102. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1103. sum += y[i].qs[ j];
  1104. sum += y[i].qs[QK8_1/2 + j];
  1105. }
  1106. y[i].s = sum*d;
  1107. }
  1108. }
  1109. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK8_1 == 0);
  1111. const int nb = k / QK8_1;
  1112. block_q8_1 * restrict y = vy;
  1113. #if defined(__ARM_NEON)
  1114. for (int i = 0; i < nb; i++) {
  1115. float32x4_t srcv [8];
  1116. float32x4_t asrcv[8];
  1117. float32x4_t amaxv[8];
  1118. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1119. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1120. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1121. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1122. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1123. const float amax = vmaxvq_f32(amaxv[0]);
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. int32x4_t accv = vdupq_n_s32(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1130. const int32x4_t vi = vcvtnq_s32_f32(v);
  1131. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1132. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1133. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1134. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1135. accv = vaddq_s32(accv, vi);
  1136. }
  1137. y[i].s = d * vaddvq_s32(accv);
  1138. }
  1139. #elif defined(__wasm_simd128__)
  1140. for (int i = 0; i < nb; i++) {
  1141. v128_t srcv [8];
  1142. v128_t asrcv[8];
  1143. v128_t amaxv[8];
  1144. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1145. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1146. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1147. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1148. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1149. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1150. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1151. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1152. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1153. const float d = amax / ((1 << 7) - 1);
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = d;
  1156. v128_t accv = wasm_i32x4_splat(0);
  1157. for (int j = 0; j < 8; j++) {
  1158. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1159. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1160. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1161. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1162. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1163. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1164. accv = wasm_i32x4_add(accv, vi);
  1165. }
  1166. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1167. wasm_i32x4_extract_lane(accv, 1) +
  1168. wasm_i32x4_extract_lane(accv, 2) +
  1169. wasm_i32x4_extract_lane(accv, 3));
  1170. }
  1171. #elif defined(__AVX2__) || defined(__AVX__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // Load elements into 4 AVX vectors
  1174. __m256 v0 = _mm256_loadu_ps( x );
  1175. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1176. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1177. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1178. x += 32;
  1179. // Compute max(abs(e)) for the block
  1180. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1181. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1184. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1185. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1186. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1187. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1188. const float maxScalar = _mm_cvtss_f32( max4 );
  1189. // Quantize these floats
  1190. const float d = maxScalar / 127.f;
  1191. y[i].d = d;
  1192. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1193. const __m256 mul = _mm256_set1_ps( id );
  1194. // Apply the multiplier
  1195. v0 = _mm256_mul_ps( v0, mul );
  1196. v1 = _mm256_mul_ps( v1, mul );
  1197. v2 = _mm256_mul_ps( v2, mul );
  1198. v3 = _mm256_mul_ps( v3, mul );
  1199. // Round to nearest integer
  1200. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1201. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1202. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1203. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1204. // Convert floats to integers
  1205. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1206. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1207. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1208. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1209. #if defined(__AVX2__)
  1210. // Compute the sum of the quants and set y[i].s
  1211. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1212. // Convert int32 to int16
  1213. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1214. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1215. // Convert int16 to int8
  1216. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1217. // We got our precious signed bytes, but the order is now wrong
  1218. // These AVX2 pack instructions process 16-byte pieces independently
  1219. // The following instruction is fixing the order
  1220. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1221. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1222. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1223. #else
  1224. // Since we don't have in AVX some necessary functions,
  1225. // we split the registers in half and call AVX2 analogs from SSE
  1226. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1227. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1228. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1229. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1230. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1231. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1232. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1233. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1234. // Compute the sum of the quants and set y[i].s
  1235. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1236. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1237. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1238. // Convert int32 to int16
  1239. ni0 = _mm_packs_epi32( ni0, ni1 );
  1240. ni2 = _mm_packs_epi32( ni2, ni3 );
  1241. ni4 = _mm_packs_epi32( ni4, ni5 );
  1242. ni6 = _mm_packs_epi32( ni6, ni7 );
  1243. // Convert int16 to int8
  1244. ni0 = _mm_packs_epi16( ni0, ni2 );
  1245. ni4 = _mm_packs_epi16( ni4, ni6 );
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1247. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1248. #endif
  1249. }
  1250. #else
  1251. // scalar
  1252. quantize_row_q8_1_reference(x, y, k);
  1253. #endif
  1254. }
  1255. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK4_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. for (int j = 0; j < qk/2; ++j) {
  1262. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1263. const int x1 = (x[i].qs[j] >> 4) - 8;
  1264. y[i*qk + j + 0 ] = x0*d;
  1265. y[i*qk + j + qk/2] = x1*d;
  1266. }
  1267. }
  1268. }
  1269. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1270. static const int qk = QK4_1;
  1271. assert(k % qk == 0);
  1272. const int nb = k / qk;
  1273. for (int i = 0; i < nb; i++) {
  1274. const float d = GGML_FP16_TO_FP32(x[i].d);
  1275. const float m = GGML_FP16_TO_FP32(x[i].m);
  1276. for (int j = 0; j < qk/2; ++j) {
  1277. const int x0 = (x[i].qs[j] & 0x0F);
  1278. const int x1 = (x[i].qs[j] >> 4);
  1279. y[i*qk + j + 0 ] = x0*d + m;
  1280. y[i*qk + j + qk/2] = x1*d + m;
  1281. }
  1282. }
  1283. }
  1284. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1285. static const int qk = QK5_0;
  1286. assert(k % qk == 0);
  1287. const int nb = k / qk;
  1288. for (int i = 0; i < nb; i++) {
  1289. const float d = GGML_FP16_TO_FP32(x[i].d);
  1290. uint32_t qh;
  1291. memcpy(&qh, x[i].qh, sizeof(qh));
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1294. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1295. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1296. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1297. y[i*qk + j + 0 ] = x0*d;
  1298. y[i*qk + j + qk/2] = x1*d;
  1299. }
  1300. }
  1301. }
  1302. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1303. static const int qk = QK5_1;
  1304. assert(k % qk == 0);
  1305. const int nb = k / qk;
  1306. for (int i = 0; i < nb; i++) {
  1307. const float d = GGML_FP16_TO_FP32(x[i].d);
  1308. const float m = GGML_FP16_TO_FP32(x[i].m);
  1309. uint32_t qh;
  1310. memcpy(&qh, x[i].qh, sizeof(qh));
  1311. for (int j = 0; j < qk/2; ++j) {
  1312. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1313. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1314. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1315. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1316. y[i*qk + j + 0 ] = x0*d + m;
  1317. y[i*qk + j + qk/2] = x1*d + m;
  1318. }
  1319. }
  1320. }
  1321. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1322. static const int qk = QK8_0;
  1323. assert(k % qk == 0);
  1324. const int nb = k / qk;
  1325. const block_q8_0 * restrict x = vx;
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d = GGML_FP16_TO_FP32(x[i].d);
  1328. for (int j = 0; j < qk; ++j) {
  1329. y[i*qk + j] = x[i].qs[j]*d;
  1330. }
  1331. }
  1332. }
  1333. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1334. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1335. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1341. [GGML_TYPE_F32] = {
  1342. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1343. .vec_dot_type = GGML_TYPE_F32,
  1344. },
  1345. [GGML_TYPE_F16] = {
  1346. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1347. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1348. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1350. .vec_dot_type = GGML_TYPE_F16,
  1351. },
  1352. [GGML_TYPE_Q4_0] = {
  1353. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1354. .from_float = quantize_row_q4_0,
  1355. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1356. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1357. .vec_dot_type = GGML_TYPE_Q8_0,
  1358. },
  1359. [GGML_TYPE_Q4_1] = {
  1360. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1361. .from_float = quantize_row_q4_1,
  1362. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1363. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1364. .vec_dot_type = GGML_TYPE_Q8_1,
  1365. },
  1366. [GGML_TYPE_Q5_0] = {
  1367. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1368. .from_float = quantize_row_q5_0,
  1369. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1370. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1371. .vec_dot_type = GGML_TYPE_Q8_0,
  1372. },
  1373. [GGML_TYPE_Q5_1] = {
  1374. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1375. .from_float = quantize_row_q5_1,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1377. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1378. .vec_dot_type = GGML_TYPE_Q8_1,
  1379. },
  1380. [GGML_TYPE_Q8_0] = {
  1381. .to_float = dequantize_row_q8_0,
  1382. .from_float = quantize_row_q8_0,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1384. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1385. .vec_dot_type = GGML_TYPE_Q8_0,
  1386. },
  1387. [GGML_TYPE_Q8_1] = {
  1388. .from_float = quantize_row_q8_1,
  1389. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1390. .vec_dot_type = GGML_TYPE_Q8_1,
  1391. },
  1392. #ifdef GGML_USE_K_QUANTS
  1393. [GGML_TYPE_Q2_K] = {
  1394. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1395. .from_float = quantize_row_q2_K,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1397. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1398. .vec_dot_type = GGML_TYPE_Q8_K,
  1399. },
  1400. [GGML_TYPE_Q3_K] = {
  1401. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1402. .from_float = quantize_row_q3_K,
  1403. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1404. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1405. .vec_dot_type = GGML_TYPE_Q8_K,
  1406. },
  1407. [GGML_TYPE_Q4_K] = {
  1408. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1409. .from_float = quantize_row_q4_K,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1411. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1412. .vec_dot_type = GGML_TYPE_Q8_K,
  1413. },
  1414. [GGML_TYPE_Q5_K] = {
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1416. .from_float = quantize_row_q5_K,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1418. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1419. .vec_dot_type = GGML_TYPE_Q8_K,
  1420. },
  1421. [GGML_TYPE_Q6_K] = {
  1422. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1423. .from_float = quantize_row_q6_K,
  1424. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1425. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1426. .vec_dot_type = GGML_TYPE_Q8_K,
  1427. },
  1428. [GGML_TYPE_Q8_K] = {
  1429. .from_float = quantize_row_q8_K,
  1430. }
  1431. #endif
  1432. };
  1433. // For internal test use
  1434. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1435. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1436. return type_traits[i];
  1437. }
  1438. //
  1439. // simd mappings
  1440. //
  1441. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1442. // we then implement the fundamental computation operations below using only these macros
  1443. // adding support for new architectures requires to define the corresponding SIMD macros
  1444. //
  1445. // GGML_F32_STEP / GGML_F16_STEP
  1446. // number of elements to process in a single step
  1447. //
  1448. // GGML_F32_EPR / GGML_F16_EPR
  1449. // number of elements to fit in a single register
  1450. //
  1451. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1452. #define GGML_SIMD
  1453. // F32 NEON
  1454. #define GGML_F32_STEP 16
  1455. #define GGML_F32_EPR 4
  1456. #define GGML_F32x4 float32x4_t
  1457. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1458. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1459. #define GGML_F32x4_LOAD vld1q_f32
  1460. #define GGML_F32x4_STORE vst1q_f32
  1461. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1462. #define GGML_F32x4_ADD vaddq_f32
  1463. #define GGML_F32x4_MUL vmulq_f32
  1464. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1465. #define GGML_F32x4_REDUCE(res, x) \
  1466. { \
  1467. int offset = GGML_F32_ARR >> 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. offset >>= 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1478. } \
  1479. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1480. }
  1481. #define GGML_F32_VEC GGML_F32x4
  1482. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1483. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1484. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1485. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1486. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1487. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1488. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1489. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1490. // F16 NEON
  1491. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1492. #define GGML_F16_STEP 32
  1493. #define GGML_F16_EPR 8
  1494. #define GGML_F16x8 float16x8_t
  1495. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1496. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1497. #define GGML_F16x8_LOAD vld1q_f16
  1498. #define GGML_F16x8_STORE vst1q_f16
  1499. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1500. #define GGML_F16x8_ADD vaddq_f16
  1501. #define GGML_F16x8_MUL vmulq_f16
  1502. #define GGML_F16x8_REDUCE(res, x) \
  1503. { \
  1504. int offset = GGML_F16_ARR >> 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. offset >>= 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1515. } \
  1516. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1517. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1518. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1519. }
  1520. #define GGML_F16_VEC GGML_F16x8
  1521. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1529. #else
  1530. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1531. // and take advantage of the vcvt_ functions to convert to/from FP16
  1532. #define GGML_F16_STEP 16
  1533. #define GGML_F16_EPR 4
  1534. #define GGML_F32Cx4 float32x4_t
  1535. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1536. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1537. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1538. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1539. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1540. #define GGML_F32Cx4_ADD vaddq_f32
  1541. #define GGML_F32Cx4_MUL vmulq_f32
  1542. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1543. #define GGML_F16_VEC GGML_F32Cx4
  1544. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1545. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1546. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1547. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1548. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1549. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1550. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1551. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1552. #endif
  1553. #elif defined(__AVX__)
  1554. #define GGML_SIMD
  1555. // F32 AVX
  1556. #define GGML_F32_STEP 32
  1557. #define GGML_F32_EPR 8
  1558. #define GGML_F32x8 __m256
  1559. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1560. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1561. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1562. #define GGML_F32x8_STORE _mm256_storeu_ps
  1563. #if defined(__FMA__)
  1564. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1565. #else
  1566. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1567. #endif
  1568. #define GGML_F32x8_ADD _mm256_add_ps
  1569. #define GGML_F32x8_MUL _mm256_mul_ps
  1570. #define GGML_F32x8_REDUCE(res, x) \
  1571. { \
  1572. int offset = GGML_F32_ARR >> 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. offset >>= 1; \
  1581. for (int i = 0; i < offset; ++i) { \
  1582. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1583. } \
  1584. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1585. _mm256_extractf128_ps(x[0], 1)); \
  1586. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1587. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1588. }
  1589. // TODO: is this optimal ?
  1590. #define GGML_F32_VEC GGML_F32x8
  1591. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1592. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1593. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1594. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1595. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1596. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1597. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1598. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1599. // F16 AVX
  1600. #define GGML_F16_STEP 32
  1601. #define GGML_F16_EPR 8
  1602. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1603. #define GGML_F32Cx8 __m256
  1604. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1605. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1606. #if defined(__F16C__)
  1607. // the _mm256_cvt intrinsics require F16C
  1608. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1609. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1610. #else
  1611. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1612. float tmp[8];
  1613. for (int i = 0; i < 8; i++) {
  1614. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1615. }
  1616. return _mm256_loadu_ps(tmp);
  1617. }
  1618. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1619. float arr[8];
  1620. _mm256_storeu_ps(arr, y);
  1621. for (int i = 0; i < 8; i++)
  1622. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1623. }
  1624. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1625. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1626. #endif
  1627. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1628. #define GGML_F32Cx8_ADD _mm256_add_ps
  1629. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1630. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1631. #define GGML_F16_VEC GGML_F32Cx8
  1632. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1633. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1634. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1635. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1636. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1637. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1638. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1639. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1640. #elif defined(__POWER9_VECTOR__)
  1641. #define GGML_SIMD
  1642. // F32 POWER9
  1643. #define GGML_F32_STEP 32
  1644. #define GGML_F32_EPR 4
  1645. #define GGML_F32x4 vector float
  1646. #define GGML_F32x4_ZERO 0.0f
  1647. #define GGML_F32x4_SET1 vec_splats
  1648. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1649. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1650. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1651. #define GGML_F32x4_ADD vec_add
  1652. #define GGML_F32x4_MUL vec_mul
  1653. #define GGML_F32x4_REDUCE(res, x) \
  1654. { \
  1655. int offset = GGML_F32_ARR >> 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. offset >>= 1; \
  1664. for (int i = 0; i < offset; ++i) { \
  1665. x[i] = vec_add(x[i], x[offset+i]); \
  1666. } \
  1667. res = vec_extract(x[0], 0) + \
  1668. vec_extract(x[0], 1) + \
  1669. vec_extract(x[0], 2) + \
  1670. vec_extract(x[0], 3); \
  1671. }
  1672. #define GGML_F32_VEC GGML_F32x4
  1673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // F16 POWER9
  1682. #define GGML_F16_STEP GGML_F32_STEP
  1683. #define GGML_F16_EPR GGML_F32_EPR
  1684. #define GGML_F16_VEC GGML_F32x4
  1685. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1686. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1687. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1688. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1689. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1690. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1691. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1692. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1693. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1694. #define GGML_F16_VEC_STORE(p, r, i) \
  1695. if (i & 0x1) \
  1696. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1697. r[i - GGML_ENDIAN_BYTE(0)]), \
  1698. 0, p - GGML_F16_EPR)
  1699. #elif defined(__wasm_simd128__)
  1700. #define GGML_SIMD
  1701. // F32 WASM
  1702. #define GGML_F32_STEP 16
  1703. #define GGML_F32_EPR 4
  1704. #define GGML_F32x4 v128_t
  1705. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1706. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1707. #define GGML_F32x4_LOAD wasm_v128_load
  1708. #define GGML_F32x4_STORE wasm_v128_store
  1709. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1710. #define GGML_F32x4_ADD wasm_f32x4_add
  1711. #define GGML_F32x4_MUL wasm_f32x4_mul
  1712. #define GGML_F32x4_REDUCE(res, x) \
  1713. { \
  1714. int offset = GGML_F32_ARR >> 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. offset >>= 1; \
  1723. for (int i = 0; i < offset; ++i) { \
  1724. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1725. } \
  1726. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1727. wasm_f32x4_extract_lane(x[0], 1) + \
  1728. wasm_f32x4_extract_lane(x[0], 2) + \
  1729. wasm_f32x4_extract_lane(x[0], 3); \
  1730. }
  1731. #define GGML_F32_VEC GGML_F32x4
  1732. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1733. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1734. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1735. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1736. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1738. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1739. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1740. // F16 WASM
  1741. #define GGML_F16_STEP 16
  1742. #define GGML_F16_EPR 4
  1743. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1744. float tmp[4];
  1745. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1746. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1747. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1748. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1749. return wasm_v128_load(tmp);
  1750. }
  1751. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1752. float tmp[4];
  1753. wasm_v128_store(tmp, x);
  1754. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1755. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1756. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1757. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1758. }
  1759. #define GGML_F16x4 v128_t
  1760. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1761. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1762. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1763. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1764. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1765. #define GGML_F16x4_ADD wasm_f32x4_add
  1766. #define GGML_F16x4_MUL wasm_f32x4_mul
  1767. #define GGML_F16x4_REDUCE(res, x) \
  1768. { \
  1769. int offset = GGML_F16_ARR >> 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. offset >>= 1; \
  1778. for (int i = 0; i < offset; ++i) { \
  1779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1780. } \
  1781. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1782. wasm_f32x4_extract_lane(x[0], 1) + \
  1783. wasm_f32x4_extract_lane(x[0], 2) + \
  1784. wasm_f32x4_extract_lane(x[0], 3); \
  1785. }
  1786. #define GGML_F16_VEC GGML_F16x4
  1787. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1795. #elif defined(__SSE3__)
  1796. #define GGML_SIMD
  1797. // F32 SSE
  1798. #define GGML_F32_STEP 32
  1799. #define GGML_F32_EPR 4
  1800. #define GGML_F32x4 __m128
  1801. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1802. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1803. #define GGML_F32x4_LOAD _mm_loadu_ps
  1804. #define GGML_F32x4_STORE _mm_storeu_ps
  1805. #if defined(__FMA__)
  1806. // TODO: Does this work?
  1807. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1808. #else
  1809. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1810. #endif
  1811. #define GGML_F32x4_ADD _mm_add_ps
  1812. #define GGML_F32x4_MUL _mm_mul_ps
  1813. #define GGML_F32x4_REDUCE(res, x) \
  1814. { \
  1815. int offset = GGML_F32_ARR >> 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. offset >>= 1; \
  1824. for (int i = 0; i < offset; ++i) { \
  1825. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1826. } \
  1827. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1828. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1829. }
  1830. // TODO: is this optimal ?
  1831. #define GGML_F32_VEC GGML_F32x4
  1832. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1833. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1834. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1835. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1836. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1837. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1838. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1839. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1840. // F16 SSE
  1841. #define GGML_F16_STEP 32
  1842. #define GGML_F16_EPR 4
  1843. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1844. float tmp[4];
  1845. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1846. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1847. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1848. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1849. return _mm_loadu_ps(tmp);
  1850. }
  1851. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1852. float arr[4];
  1853. _mm_storeu_ps(arr, y);
  1854. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1855. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1856. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1857. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1858. }
  1859. #define GGML_F32Cx4 __m128
  1860. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1861. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1862. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1863. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1864. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1865. #define GGML_F32Cx4_ADD _mm_add_ps
  1866. #define GGML_F32Cx4_MUL _mm_mul_ps
  1867. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1868. #define GGML_F16_VEC GGML_F32Cx4
  1869. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1870. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1871. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1872. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1873. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1874. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1875. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1876. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1877. #endif
  1878. // GGML_F32_ARR / GGML_F16_ARR
  1879. // number of registers to use per step
  1880. #ifdef GGML_SIMD
  1881. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1882. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1883. #endif
  1884. //
  1885. // fundamental operations
  1886. //
  1887. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1890. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1891. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1892. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1893. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1894. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1895. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1896. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1898. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1899. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1900. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1901. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1902. #ifdef GGML_SIMD
  1903. float sumf = 0.0f;
  1904. const int np = (n & ~(GGML_F32_STEP - 1));
  1905. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1906. GGML_F32_VEC ax[GGML_F32_ARR];
  1907. GGML_F32_VEC ay[GGML_F32_ARR];
  1908. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1909. for (int j = 0; j < GGML_F32_ARR; j++) {
  1910. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1911. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1912. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1913. }
  1914. }
  1915. // reduce sum0..sum3 to sum0
  1916. GGML_F32_VEC_REDUCE(sumf, sum);
  1917. // leftovers
  1918. for (int i = np; i < n; ++i) {
  1919. sumf += x[i]*y[i];
  1920. }
  1921. #else
  1922. // scalar
  1923. ggml_float sumf = 0.0;
  1924. for (int i = 0; i < n; ++i) {
  1925. sumf += (ggml_float)(x[i]*y[i]);
  1926. }
  1927. #endif
  1928. *s = sumf;
  1929. }
  1930. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1931. ggml_float sumf = 0.0;
  1932. #if defined(GGML_SIMD)
  1933. const int np = (n & ~(GGML_F16_STEP - 1));
  1934. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1935. GGML_F16_VEC ax[GGML_F16_ARR];
  1936. GGML_F16_VEC ay[GGML_F16_ARR];
  1937. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1938. for (int j = 0; j < GGML_F16_ARR; j++) {
  1939. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1940. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1941. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1942. }
  1943. }
  1944. // reduce sum0..sum3 to sum0
  1945. GGML_F16_VEC_REDUCE(sumf, sum);
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #else
  1951. for (int i = 0; i < n; ++i) {
  1952. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1953. }
  1954. #endif
  1955. *s = sumf;
  1956. }
  1957. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1958. const int qk = QK8_0;
  1959. const int nb = n / qk;
  1960. assert(n % qk == 0);
  1961. assert(nb % 2 == 0);
  1962. const block_q4_0 * restrict x = vx;
  1963. const block_q8_0 * restrict y = vy;
  1964. #if defined(__ARM_NEON)
  1965. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1966. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1967. for (int i = 0; i < nb; i += 2) {
  1968. const block_q4_0 * restrict x0 = &x[i + 0];
  1969. const block_q4_0 * restrict x1 = &x[i + 1];
  1970. const block_q8_0 * restrict y0 = &y[i + 0];
  1971. const block_q8_0 * restrict y1 = &y[i + 1];
  1972. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1973. const int8x16_t s8b = vdupq_n_s8(0x8);
  1974. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1975. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1976. // 4-bit -> 8-bit
  1977. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1978. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1979. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1980. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1981. // sub 8
  1982. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1983. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1984. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1985. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1986. // load y
  1987. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1988. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1989. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1990. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1991. #if defined(__ARM_FEATURE_DOTPROD)
  1992. // dot product into int32x4_t
  1993. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1994. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1995. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1996. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1997. #else
  1998. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1999. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2000. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2001. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2002. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2003. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2004. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2005. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2006. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2007. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2008. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2009. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2011. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2012. #endif
  2013. }
  2014. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2015. #elif defined(__AVX2__)
  2016. // Initialize accumulator with zeros
  2017. __m256 acc = _mm256_setzero_ps();
  2018. // Main loop
  2019. for (int i = 0; i < nb; ++i) {
  2020. /* Compute combined scale for the block */
  2021. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2022. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2023. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2024. const __m256i off = _mm256_set1_epi8( 8 );
  2025. bx = _mm256_sub_epi8( bx, off );
  2026. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2027. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2028. /* Multiply q with scale and accumulate */
  2029. acc = _mm256_fmadd_ps( d, q, acc );
  2030. }
  2031. *s = hsum_float_8(acc);
  2032. #elif defined(__AVX__)
  2033. // Initialize accumulator with zeros
  2034. __m256 acc = _mm256_setzero_ps();
  2035. // Main loop
  2036. for (int i = 0; i < nb; ++i) {
  2037. // Compute combined scale for the block
  2038. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2039. const __m128i lowMask = _mm_set1_epi8(0xF);
  2040. const __m128i off = _mm_set1_epi8(8);
  2041. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2042. __m128i bx = _mm_and_si128(lowMask, tmp);
  2043. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2046. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2047. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2048. bx = _mm_sub_epi8(bx, off);
  2049. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2050. // Convert int32_t to float
  2051. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2052. // Apply the scale, and accumulate
  2053. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2054. }
  2055. *s = hsum_float_8(acc);
  2056. #elif defined(__SSSE3__)
  2057. // set constants
  2058. const __m128i lowMask = _mm_set1_epi8(0xF);
  2059. const __m128i off = _mm_set1_epi8(8);
  2060. // Initialize accumulator with zeros
  2061. __m128 acc_0 = _mm_setzero_ps();
  2062. __m128 acc_1 = _mm_setzero_ps();
  2063. __m128 acc_2 = _mm_setzero_ps();
  2064. __m128 acc_3 = _mm_setzero_ps();
  2065. // First round without accumulation
  2066. {
  2067. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2068. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2069. // Compute combined scale for the block 0 and 1
  2070. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2071. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2072. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2073. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2074. bx_0 = _mm_sub_epi8(bx_0, off);
  2075. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2076. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2077. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2078. bx_1 = _mm_sub_epi8(bx_1, off);
  2079. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2080. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 2 and 3
  2083. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2084. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2085. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2086. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2087. bx_2 = _mm_sub_epi8(bx_2, off);
  2088. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2089. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2090. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2091. bx_3 = _mm_sub_epi8(bx_3, off);
  2092. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2093. // Convert int32_t to float
  2094. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2095. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2096. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2097. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2098. // Apply the scale
  2099. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2100. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2101. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2102. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2103. }
  2104. // Main loop
  2105. for (int i = 2; i < nb; i+=2) {
  2106. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2107. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2108. // Compute combined scale for the block 0 and 1
  2109. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2110. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2111. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2112. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2113. bx_0 = _mm_sub_epi8(bx_0, off);
  2114. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2115. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2116. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2117. bx_1 = _mm_sub_epi8(bx_1, off);
  2118. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2119. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2120. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2121. // Compute combined scale for the block 2 and 3
  2122. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2123. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2124. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2125. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2126. bx_2 = _mm_sub_epi8(bx_2, off);
  2127. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2128. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2129. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2130. bx_3 = _mm_sub_epi8(bx_3, off);
  2131. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2132. // Convert int32_t to float
  2133. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2134. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2135. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2136. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2137. // Apply the scale
  2138. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2139. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2140. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2141. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2142. // Acummulate
  2143. acc_0 = _mm_add_ps(p0_d, acc_0);
  2144. acc_1 = _mm_add_ps(p1_d, acc_1);
  2145. acc_2 = _mm_add_ps(p2_d, acc_2);
  2146. acc_3 = _mm_add_ps(p3_d, acc_3);
  2147. }
  2148. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2149. #else
  2150. // scalar
  2151. float sumf = 0.0;
  2152. for (int i = 0; i < nb; i++) {
  2153. int sumi = 0;
  2154. for (int j = 0; j < qk/2; ++j) {
  2155. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2156. const int v1 = (x[i].qs[j] >> 4) - 8;
  2157. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2158. }
  2159. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2160. }
  2161. *s = sumf;
  2162. #endif
  2163. }
  2164. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2165. const int qk = QK8_1;
  2166. const int nb = n / qk;
  2167. assert(n % qk == 0);
  2168. assert(nb % 2 == 0);
  2169. const block_q4_1 * restrict x = vx;
  2170. const block_q8_1 * restrict y = vy;
  2171. // TODO: add WASM SIMD
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. float summs = 0;
  2176. for (int i = 0; i < nb; i += 2) {
  2177. const block_q4_1 * restrict x0 = &x[i + 0];
  2178. const block_q4_1 * restrict x1 = &x[i + 1];
  2179. const block_q8_1 * restrict y0 = &y[i + 0];
  2180. const block_q8_1 * restrict y1 = &y[i + 1];
  2181. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2182. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // load y
  2191. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2192. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2193. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2194. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2195. #if defined(__ARM_FEATURE_DOTPROD)
  2196. // dot product into int32x4_t
  2197. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2198. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2199. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2201. #else
  2202. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2203. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2204. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2205. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2206. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2207. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2208. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2209. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2210. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2211. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2212. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2213. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2214. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2215. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2216. #endif
  2217. }
  2218. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2219. #elif defined(__AVX2__) || defined(__AVX__)
  2220. // Initialize accumulator with zeros
  2221. __m256 acc = _mm256_setzero_ps();
  2222. float summs = 0;
  2223. // Main loop
  2224. for (int i = 0; i < nb; ++i) {
  2225. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2226. const float d1 = y[i].d;
  2227. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2228. const __m256 d0v = _mm256_set1_ps( d0 );
  2229. const __m256 d1v = _mm256_set1_ps( d1 );
  2230. // Compute combined scales
  2231. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2232. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2233. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2234. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2235. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2236. // Accumulate d0*d1*x*y
  2237. #if defined(__AVX2__)
  2238. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2239. #else
  2240. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2241. #endif
  2242. }
  2243. *s = hsum_float_8(acc) + summs;
  2244. #else
  2245. // scalar
  2246. float sumf = 0.0;
  2247. for (int i = 0; i < nb; i++) {
  2248. int sumi = 0;
  2249. for (int j = 0; j < qk/2; ++j) {
  2250. const int v0 = (x[i].qs[j] & 0x0F);
  2251. const int v1 = (x[i].qs[j] >> 4);
  2252. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2253. }
  2254. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2255. }
  2256. *s = sumf;
  2257. #endif
  2258. }
  2259. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int qk = QK8_0;
  2261. const int nb = n / qk;
  2262. assert(n % qk == 0);
  2263. assert(nb % 2 == 0);
  2264. assert(qk == QK5_0);
  2265. const block_q5_0 * restrict x = vx;
  2266. const block_q8_0 * restrict y = vy;
  2267. #if defined(__ARM_NEON)
  2268. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2269. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2270. uint32_t qh0;
  2271. uint32_t qh1;
  2272. uint64_t tmp0[4];
  2273. uint64_t tmp1[4];
  2274. for (int i = 0; i < nb; i += 2) {
  2275. const block_q5_0 * restrict x0 = &x[i];
  2276. const block_q5_0 * restrict x1 = &x[i + 1];
  2277. const block_q8_0 * restrict y0 = &y[i];
  2278. const block_q8_0 * restrict y1 = &y[i + 1];
  2279. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2280. // extract the 5th bit via lookup table ((!b) << 4)
  2281. memcpy(&qh0, x0->qh, sizeof(qh0));
  2282. memcpy(&qh1, x1->qh, sizeof(qh1));
  2283. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2284. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2285. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2286. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2287. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2288. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2289. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2290. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2291. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2292. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2293. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2294. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2295. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2296. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2297. // 4-bit -> 8-bit
  2298. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2299. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2300. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2301. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2302. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2303. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2304. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2305. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2306. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2307. // load y
  2308. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2309. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2310. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2311. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2312. #if defined(__ARM_FEATURE_DOTPROD)
  2313. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2317. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2318. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2319. #else
  2320. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2321. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2322. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2323. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2324. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2325. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2326. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2327. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2328. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2329. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2330. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2331. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2333. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2334. #endif
  2335. }
  2336. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2337. #elif defined(__wasm_simd128__)
  2338. v128_t sumv = wasm_f32x4_splat(0.0f);
  2339. uint32_t qh;
  2340. uint64_t tmp[4];
  2341. // TODO: check if unrolling this is better
  2342. for (int i = 0; i < nb; ++i) {
  2343. const block_q5_0 * restrict x0 = &x[i];
  2344. const block_q8_0 * restrict y0 = &y[i];
  2345. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2346. // extract the 5th bit
  2347. memcpy(&qh, x0->qh, sizeof(qh));
  2348. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2349. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2350. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2351. tmp[3] = table_b2b_1[(qh >> 24) ];
  2352. const v128_t qhl = wasm_v128_load(tmp + 0);
  2353. const v128_t qhh = wasm_v128_load(tmp + 2);
  2354. const v128_t v0 = wasm_v128_load(x0->qs);
  2355. // 4-bit -> 8-bit
  2356. const v128_t v0l = wasm_v128_and (v0, m4b);
  2357. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2358. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2359. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2360. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2361. // load y
  2362. const v128_t v1l = wasm_v128_load(y0->qs);
  2363. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2364. // int8x16 -> int16x8
  2365. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2366. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2367. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2368. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2369. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2370. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2371. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2372. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2373. // dot product
  2374. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2375. wasm_i32x4_add(
  2376. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2377. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2378. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2379. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2380. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2381. }
  2382. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2383. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2384. #elif defined(__AVX2__)
  2385. // Initialize accumulator with zeros
  2386. __m256 acc = _mm256_setzero_ps();
  2387. // Main loop
  2388. for (int i = 0; i < nb; i++) {
  2389. /* Compute combined scale for the block */
  2390. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2391. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2392. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2393. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2394. bx = _mm256_or_si256(bx, bxhi);
  2395. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2396. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2397. /* Multiply q with scale and accumulate */
  2398. acc = _mm256_fmadd_ps(d, q, acc);
  2399. }
  2400. *s = hsum_float_8(acc);
  2401. #elif defined(__AVX__)
  2402. // Initialize accumulator with zeros
  2403. __m256 acc = _mm256_setzero_ps();
  2404. __m128i mask = _mm_set1_epi8((char)0xF0);
  2405. // Main loop
  2406. for (int i = 0; i < nb; i++) {
  2407. /* Compute combined scale for the block */
  2408. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2409. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2410. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2411. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2412. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2413. bxhil = _mm_andnot_si128(bxhil, mask);
  2414. bxhih = _mm_andnot_si128(bxhih, mask);
  2415. __m128i bxl = _mm256_castsi256_si128(bx);
  2416. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2417. bxl = _mm_or_si128(bxl, bxhil);
  2418. bxh = _mm_or_si128(bxh, bxhih);
  2419. bx = MM256_SET_M128I(bxh, bxl);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #else
  2427. // scalar
  2428. float sumf = 0.0;
  2429. for (int i = 0; i < nb; i++) {
  2430. uint32_t qh;
  2431. memcpy(&qh, x[i].qh, sizeof(qh));
  2432. int sumi = 0;
  2433. for (int j = 0; j < qk/2; ++j) {
  2434. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2435. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2436. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2437. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2438. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2439. }
  2440. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2441. }
  2442. *s = sumf;
  2443. #endif
  2444. }
  2445. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2446. const int qk = QK8_1;
  2447. const int nb = n / qk;
  2448. assert(n % qk == 0);
  2449. assert(nb % 2 == 0);
  2450. assert(qk == QK5_1);
  2451. const block_q5_1 * restrict x = vx;
  2452. const block_q8_1 * restrict y = vy;
  2453. #if defined(__ARM_NEON)
  2454. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2455. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2456. float summs0 = 0.0f;
  2457. float summs1 = 0.0f;
  2458. uint32_t qh0;
  2459. uint32_t qh1;
  2460. uint64_t tmp0[4];
  2461. uint64_t tmp1[4];
  2462. for (int i = 0; i < nb; i += 2) {
  2463. const block_q5_1 * restrict x0 = &x[i];
  2464. const block_q5_1 * restrict x1 = &x[i + 1];
  2465. const block_q8_1 * restrict y0 = &y[i];
  2466. const block_q8_1 * restrict y1 = &y[i + 1];
  2467. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2468. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2469. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2470. // extract the 5th bit via lookup table ((b) << 4)
  2471. memcpy(&qh0, x0->qh, sizeof(qh0));
  2472. memcpy(&qh1, x1->qh, sizeof(qh1));
  2473. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2474. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2475. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2476. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2477. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2478. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2479. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2480. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2481. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2482. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2483. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2484. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2485. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2486. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2487. // 4-bit -> 8-bit
  2488. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2489. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2490. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2491. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2492. // add high bit
  2493. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2494. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2495. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2496. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2497. // load y
  2498. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2499. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2500. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2501. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2502. #if defined(__ARM_FEATURE_DOTPROD)
  2503. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2506. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2507. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2508. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2509. #else
  2510. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2511. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2512. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2513. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2514. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2515. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2516. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2517. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2518. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2519. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2520. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2521. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2522. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2523. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2524. #endif
  2525. }
  2526. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2527. #elif defined(__wasm_simd128__)
  2528. v128_t sumv = wasm_f32x4_splat(0.0f);
  2529. float summs = 0.0f;
  2530. uint32_t qh;
  2531. uint64_t tmp[4];
  2532. // TODO: check if unrolling this is better
  2533. for (int i = 0; i < nb; ++i) {
  2534. const block_q5_1 * restrict x0 = &x[i];
  2535. const block_q8_1 * restrict y0 = &y[i];
  2536. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2537. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2538. // extract the 5th bit
  2539. memcpy(&qh, x0->qh, sizeof(qh));
  2540. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2541. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2542. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2543. tmp[3] = table_b2b_0[(qh >> 24) ];
  2544. const v128_t qhl = wasm_v128_load(tmp + 0);
  2545. const v128_t qhh = wasm_v128_load(tmp + 2);
  2546. const v128_t v0 = wasm_v128_load(x0->qs);
  2547. // 4-bit -> 8-bit
  2548. const v128_t v0l = wasm_v128_and (v0, m4b);
  2549. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2550. // add high bit
  2551. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2552. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2553. // load y
  2554. const v128_t v1l = wasm_v128_load(y0->qs);
  2555. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2556. // int8x16 -> int16x8
  2557. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2558. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2559. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2560. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2561. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2562. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2563. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2564. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2565. // dot product
  2566. sumv = wasm_f32x4_add(sumv,
  2567. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2568. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2569. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2570. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2571. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2572. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2573. }
  2574. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2575. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2576. #elif defined(__AVX2__)
  2577. // Initialize accumulator with zeros
  2578. __m256 acc = _mm256_setzero_ps();
  2579. float summs = 0.0f;
  2580. // Main loop
  2581. for (int i = 0; i < nb; i++) {
  2582. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2583. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2584. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2585. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2586. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2587. bx = _mm256_or_si256(bx, bxhi);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #elif defined(__AVX__)
  2595. // Initialize accumulator with zeros
  2596. __m256 acc = _mm256_setzero_ps();
  2597. __m128i mask = _mm_set1_epi8(0x10);
  2598. float summs = 0.0f;
  2599. // Main loop
  2600. for (int i = 0; i < nb; i++) {
  2601. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2602. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2603. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2604. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2605. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2606. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2607. bxhil = _mm_and_si128(bxhil, mask);
  2608. bxhih = _mm_and_si128(bxhih, mask);
  2609. __m128i bxl = _mm256_castsi256_si128(bx);
  2610. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2611. bxl = _mm_or_si128(bxl, bxhil);
  2612. bxh = _mm_or_si128(bxh, bxhih);
  2613. bx = MM256_SET_M128I(bxh, bxl);
  2614. const __m256 dy = _mm256_set1_ps(y[i].d);
  2615. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2616. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2617. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2618. }
  2619. *s = hsum_float_8(acc) + summs;
  2620. #else
  2621. // scalar
  2622. float sumf = 0.0;
  2623. for (int i = 0; i < nb; i++) {
  2624. uint32_t qh;
  2625. memcpy(&qh, x[i].qh, sizeof(qh));
  2626. int sumi = 0;
  2627. for (int j = 0; j < qk/2; ++j) {
  2628. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2629. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2630. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2631. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2632. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2633. }
  2634. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2635. }
  2636. *s = sumf;
  2637. #endif
  2638. }
  2639. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2640. const int qk = QK8_0;
  2641. const int nb = n / qk;
  2642. assert(n % qk == 0);
  2643. assert(nb % 2 == 0);
  2644. const block_q8_0 * restrict x = vx;
  2645. const block_q8_0 * restrict y = vy;
  2646. #if defined(__ARM_NEON)
  2647. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2648. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2649. for (int i = 0; i < nb; i += 2) {
  2650. const block_q8_0 * restrict x0 = &x[i + 0];
  2651. const block_q8_0 * restrict x1 = &x[i + 1];
  2652. const block_q8_0 * restrict y0 = &y[i + 0];
  2653. const block_q8_0 * restrict y1 = &y[i + 1];
  2654. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2655. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2656. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2657. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2658. // load y
  2659. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2660. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2661. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2662. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2663. #if defined(__ARM_FEATURE_DOTPROD)
  2664. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2666. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2667. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2668. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2669. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2670. #else
  2671. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2672. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2673. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2674. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2675. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2676. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2677. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2678. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2679. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2680. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2681. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2682. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2683. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2684. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2685. #endif
  2686. }
  2687. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2688. #elif defined(__AVX2__) || defined(__AVX__)
  2689. // Initialize accumulator with zeros
  2690. __m256 acc = _mm256_setzero_ps();
  2691. // Main loop
  2692. for (int i = 0; i < nb; ++i) {
  2693. // Compute combined scale for the block
  2694. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2695. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2696. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2697. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2698. // Multiply q with scale and accumulate
  2699. #if defined(__AVX2__)
  2700. acc = _mm256_fmadd_ps( d, q, acc );
  2701. #else
  2702. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2703. #endif
  2704. }
  2705. *s = hsum_float_8(acc);
  2706. #else
  2707. // scalar
  2708. float sumf = 0.0;
  2709. for (int i = 0; i < nb; i++) {
  2710. int sumi = 0;
  2711. for (int j = 0; j < qk; j++) {
  2712. sumi += x[i].qs[j]*y[i].qs[j];
  2713. }
  2714. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2715. }
  2716. *s = sumf;
  2717. #endif
  2718. }
  2719. // compute GGML_VEC_DOT_UNROLL dot products at once
  2720. // xs - x row stride in bytes
  2721. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2722. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2723. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2724. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2725. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2726. }
  2727. #if defined(GGML_SIMD)
  2728. const int np = (n & ~(GGML_F16_STEP - 1));
  2729. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2730. GGML_F16_VEC ax[GGML_F16_ARR];
  2731. GGML_F16_VEC ay[GGML_F16_ARR];
  2732. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2733. for (int j = 0; j < GGML_F16_ARR; j++) {
  2734. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2735. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2736. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2737. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2738. }
  2739. }
  2740. }
  2741. // reduce sum0..sum3 to sum0
  2742. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2743. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2744. }
  2745. // leftovers
  2746. for (int i = np; i < n; ++i) {
  2747. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2748. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2749. }
  2750. }
  2751. #else
  2752. for (int i = 0; i < n; ++i) {
  2753. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2754. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2755. }
  2756. }
  2757. #endif
  2758. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2759. s[i] = sumf[i];
  2760. }
  2761. }
  2762. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ax[GGML_F32_ARR];
  2767. GGML_F32_VEC ay[GGML_F32_ARR];
  2768. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2769. for (int j = 0; j < GGML_F32_ARR; j++) {
  2770. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2771. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2772. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2773. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2774. }
  2775. }
  2776. // leftovers
  2777. for (int i = np; i < n; ++i) {
  2778. y[i] += x[i]*v;
  2779. }
  2780. #else
  2781. // scalar
  2782. for (int i = 0; i < n; ++i) {
  2783. y[i] += x[i]*v;
  2784. }
  2785. #endif
  2786. }
  2787. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2788. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2789. #if defined(GGML_SIMD)
  2790. const int np = (n & ~(GGML_F32_STEP - 1));
  2791. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2792. GGML_F32_VEC ay[GGML_F32_ARR];
  2793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2794. for (int j = 0; j < GGML_F32_ARR; j++) {
  2795. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2796. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2797. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2798. }
  2799. }
  2800. // leftovers
  2801. for (int i = np; i < n; ++i) {
  2802. y[i] *= v;
  2803. }
  2804. #else
  2805. // scalar
  2806. for (int i = 0; i < n; ++i) {
  2807. y[i] *= v;
  2808. }
  2809. #endif
  2810. }
  2811. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2812. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2813. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2814. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2815. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2816. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2817. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2818. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2819. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2820. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2821. static const float GELU_COEF_A = 0.044715f;
  2822. static const float GELU_QUICK_COEF = -1.702f;
  2823. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2824. inline static float ggml_gelu_f32(float x) {
  2825. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2826. }
  2827. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2828. const uint16_t * i16 = (const uint16_t *) x;
  2829. for (int i = 0; i < n; ++i) {
  2830. y[i] = table_gelu_f16[i16[i]];
  2831. }
  2832. }
  2833. #ifdef GGML_GELU_FP16
  2834. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2835. uint16_t t;
  2836. for (int i = 0; i < n; ++i) {
  2837. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2838. memcpy(&t, &fp16, sizeof(uint16_t));
  2839. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2840. }
  2841. }
  2842. #else
  2843. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2844. for (int i = 0; i < n; ++i) {
  2845. y[i] = ggml_gelu_f32(x[i]);
  2846. }
  2847. }
  2848. #endif
  2849. inline static float ggml_gelu_quick_f32(float x) {
  2850. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2851. }
  2852. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2853. // const uint16_t * i16 = (const uint16_t *) x;
  2854. // for (int i = 0; i < n; ++i) {
  2855. // y[i] = table_gelu_quick_f16[i16[i]];
  2856. // }
  2857. //}
  2858. #ifdef GGML_GELU_QUICK_FP16
  2859. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2860. uint16_t t;
  2861. for (int i = 0; i < n; ++i) {
  2862. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2863. memcpy(&t, &fp16, sizeof(uint16_t));
  2864. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2865. }
  2866. }
  2867. #else
  2868. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2869. for (int i = 0; i < n; ++i) {
  2870. y[i] = ggml_gelu_quick_f32(x[i]);
  2871. }
  2872. }
  2873. #endif
  2874. // Sigmoid Linear Unit (SiLU) function
  2875. inline static float ggml_silu_f32(float x) {
  2876. return x/(1.0f + expf(-x));
  2877. }
  2878. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2879. // const uint16_t * i16 = (const uint16_t *) x;
  2880. // for (int i = 0; i < n; ++i) {
  2881. // y[i] = table_silu_f16[i16[i]];
  2882. // }
  2883. //}
  2884. #ifdef GGML_SILU_FP16
  2885. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2886. uint16_t t;
  2887. for (int i = 0; i < n; ++i) {
  2888. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2889. memcpy(&t, &fp16, sizeof(uint16_t));
  2890. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2891. }
  2892. }
  2893. #else
  2894. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2895. for (int i = 0; i < n; ++i) {
  2896. y[i] = ggml_silu_f32(x[i]);
  2897. }
  2898. }
  2899. #endif
  2900. inline static float ggml_silu_backward_f32(float x, float dy) {
  2901. const float s = 1.0f/(1.0f + expf(-x));
  2902. return dy*s*(1.0f + x*(1.0f - s));
  2903. }
  2904. #ifdef GGML_SILU_FP16
  2905. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2906. for (int i = 0; i < n; ++i) {
  2907. // we did not use x[i] to compute forward silu but its f16 equivalent
  2908. // take derivative at f16 of x[i]:
  2909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2910. float usedx = GGML_FP16_TO_FP32(fp16);
  2911. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2912. }
  2913. }
  2914. #else
  2915. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2916. for (int i = 0; i < n; ++i) {
  2917. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2918. }
  2919. }
  2920. #endif
  2921. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2922. #ifndef GGML_USE_ACCELERATE
  2923. ggml_float sum = 0.0;
  2924. for (int i = 0; i < n; ++i) {
  2925. sum += (ggml_float)x[i];
  2926. }
  2927. *s = sum;
  2928. #else
  2929. vDSP_sve(x, 1, s, n);
  2930. #endif
  2931. }
  2932. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2933. ggml_float sum = 0.0;
  2934. for (int i = 0; i < n; ++i) {
  2935. sum += (ggml_float)x[i];
  2936. }
  2937. *s = sum;
  2938. }
  2939. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2940. #ifndef GGML_USE_ACCELERATE
  2941. float max = -INFINITY;
  2942. for (int i = 0; i < n; ++i) {
  2943. max = MAX(max, x[i]);
  2944. }
  2945. *s = max;
  2946. #else
  2947. vDSP_maxv(x, 1, s, n);
  2948. #endif
  2949. }
  2950. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2951. ggml_vec_norm_f32(n, s, x);
  2952. *s = 1.f/(*s);
  2953. }
  2954. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2955. float max = -INFINITY;
  2956. int idx = 0;
  2957. for (int i = 0; i < n; ++i) {
  2958. max = MAX(max, x[i]);
  2959. if (max == x[i]) { idx = i; }
  2960. }
  2961. *s = idx;
  2962. }
  2963. //
  2964. // data types
  2965. //
  2966. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2967. [GGML_TYPE_F32] = 1,
  2968. [GGML_TYPE_F16] = 1,
  2969. [GGML_TYPE_Q4_0] = QK4_0,
  2970. [GGML_TYPE_Q4_1] = QK4_1,
  2971. [GGML_TYPE_Q5_0] = QK5_0,
  2972. [GGML_TYPE_Q5_1] = QK5_1,
  2973. [GGML_TYPE_Q8_0] = QK8_0,
  2974. [GGML_TYPE_Q8_1] = QK8_1,
  2975. #ifdef GGML_USE_K_QUANTS
  2976. [GGML_TYPE_Q2_K] = QK_K,
  2977. [GGML_TYPE_Q3_K] = QK_K,
  2978. [GGML_TYPE_Q4_K] = QK_K,
  2979. [GGML_TYPE_Q5_K] = QK_K,
  2980. [GGML_TYPE_Q6_K] = QK_K,
  2981. [GGML_TYPE_Q8_K] = QK_K,
  2982. #endif
  2983. [GGML_TYPE_I8] = 1,
  2984. [GGML_TYPE_I16] = 1,
  2985. [GGML_TYPE_I32] = 1,
  2986. };
  2987. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2988. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2989. [GGML_TYPE_F32] = sizeof(float),
  2990. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2991. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2992. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2993. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2994. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2995. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2996. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2997. #ifdef GGML_USE_K_QUANTS
  2998. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2999. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3000. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3001. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3002. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3003. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3004. #endif
  3005. [GGML_TYPE_I8] = sizeof(int8_t),
  3006. [GGML_TYPE_I16] = sizeof(int16_t),
  3007. [GGML_TYPE_I32] = sizeof(int32_t),
  3008. };
  3009. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3010. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3011. [GGML_TYPE_F32] = "f32",
  3012. [GGML_TYPE_F16] = "f16",
  3013. [GGML_TYPE_Q4_0] = "q4_0",
  3014. [GGML_TYPE_Q4_1] = "q4_1",
  3015. [GGML_TYPE_Q5_0] = "q5_0",
  3016. [GGML_TYPE_Q5_1] = "q5_1",
  3017. [GGML_TYPE_Q8_0] = "q8_0",
  3018. [GGML_TYPE_Q8_1] = "q8_1",
  3019. [GGML_TYPE_Q2_K] = "q2_K",
  3020. [GGML_TYPE_Q3_K] = "q3_K",
  3021. [GGML_TYPE_Q4_K] = "q4_K",
  3022. [GGML_TYPE_Q5_K] = "q5_K",
  3023. [GGML_TYPE_Q6_K] = "q6_K",
  3024. [GGML_TYPE_Q8_K] = "q8_K",
  3025. [GGML_TYPE_I8] = "i8",
  3026. [GGML_TYPE_I16] = "i16",
  3027. [GGML_TYPE_I32] = "i32",
  3028. };
  3029. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3030. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3031. [GGML_TYPE_F32] = false,
  3032. [GGML_TYPE_F16] = false,
  3033. [GGML_TYPE_Q4_0] = true,
  3034. [GGML_TYPE_Q4_1] = true,
  3035. [GGML_TYPE_Q5_0] = true,
  3036. [GGML_TYPE_Q5_1] = true,
  3037. [GGML_TYPE_Q8_0] = true,
  3038. [GGML_TYPE_Q8_1] = true,
  3039. [GGML_TYPE_Q2_K] = true,
  3040. [GGML_TYPE_Q3_K] = true,
  3041. [GGML_TYPE_Q4_K] = true,
  3042. [GGML_TYPE_Q5_K] = true,
  3043. [GGML_TYPE_Q6_K] = true,
  3044. [GGML_TYPE_Q8_K] = true,
  3045. [GGML_TYPE_I8] = false,
  3046. [GGML_TYPE_I16] = false,
  3047. [GGML_TYPE_I32] = false,
  3048. };
  3049. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3050. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3051. "NONE",
  3052. "DUP",
  3053. "ADD",
  3054. "ADD1",
  3055. "ACC",
  3056. "SUB",
  3057. "MUL",
  3058. "DIV",
  3059. "SQR",
  3060. "SQRT",
  3061. "LOG",
  3062. "SUM",
  3063. "SUM_ROWS",
  3064. "MEAN",
  3065. "ARGMAX",
  3066. "REPEAT",
  3067. "REPEAT_BACK",
  3068. "ABS",
  3069. "SGN",
  3070. "NEG",
  3071. "STEP",
  3072. "TANH",
  3073. "ELU",
  3074. "RELU",
  3075. "GELU",
  3076. "GELU_QUICK",
  3077. "SILU",
  3078. "SILU_BACK",
  3079. "NORM",
  3080. "RMS_NORM",
  3081. "RMS_NORM_BACK",
  3082. "MUL_MAT",
  3083. "OUT_PROD",
  3084. "SCALE",
  3085. "SET",
  3086. "CPY",
  3087. "CONT",
  3088. "RESHAPE",
  3089. "VIEW",
  3090. "PERMUTE",
  3091. "TRANSPOSE",
  3092. "GET_ROWS",
  3093. "GET_ROWS_BACK",
  3094. "DIAG",
  3095. "DIAG_MASK_INF",
  3096. "DIAG_MASK_ZERO",
  3097. "SOFT_MAX",
  3098. "SOFT_MAX_BACK",
  3099. "ROPE",
  3100. "ROPE_BACK",
  3101. "ALIBI",
  3102. "CLAMP",
  3103. "CONV_1D",
  3104. "CONV_2D",
  3105. "POOL_1D",
  3106. "POOL_2D",
  3107. "FLASH_ATTN",
  3108. "FLASH_FF",
  3109. "FLASH_ATTN_BACK",
  3110. "WIN_PART",
  3111. "WIN_UNPART",
  3112. "MAP_UNARY",
  3113. "MAP_BINARY",
  3114. "MAP_CUSTOM1",
  3115. "MAP_CUSTOM2",
  3116. "MAP_CUSTOM3",
  3117. "CROSS_ENTROPY_LOSS",
  3118. "CROSS_ENTROPY_LOSS_BACK",
  3119. };
  3120. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3121. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3122. "none",
  3123. "x",
  3124. "x+y",
  3125. "x+y",
  3126. "view(x,nb,offset)+=y->x",
  3127. "x-y",
  3128. "x*y",
  3129. "x/y",
  3130. "x^2",
  3131. "√x",
  3132. "log(x)",
  3133. "Σx",
  3134. "Σx_k",
  3135. "Σx/n",
  3136. "argmax(x)",
  3137. "repeat(x)",
  3138. "repeat_back(x)",
  3139. "abs(x)",
  3140. "sgn(x)",
  3141. "-x",
  3142. "step(x)",
  3143. "tanh(x)",
  3144. "elu(x)",
  3145. "relu(x)",
  3146. "gelu(x)",
  3147. "gelu_quick(x)",
  3148. "silu(x)",
  3149. "silu_back(x)",
  3150. "norm(x)",
  3151. "rms_norm(x)",
  3152. "rms_norm_back(x)",
  3153. "X*Y",
  3154. "X*Y",
  3155. "x*v",
  3156. "y-\\>view(x)",
  3157. "x-\\>y",
  3158. "cont(x)",
  3159. "reshape(x)",
  3160. "view(x)",
  3161. "permute(x)",
  3162. "transpose(x)",
  3163. "get_rows(x)",
  3164. "get_rows_back(x)",
  3165. "diag(x)",
  3166. "diag_mask_inf(x)",
  3167. "diag_mask_zero(x)",
  3168. "soft_max(x)",
  3169. "soft_max_back(x)",
  3170. "rope(x)",
  3171. "rope_back(x)",
  3172. "alibi(x)",
  3173. "clamp(x)",
  3174. "conv_1d(x)",
  3175. "conv_2d(x)",
  3176. "pool_1d(x)",
  3177. "pool_2d(x)",
  3178. "flash_attn(x)",
  3179. "flash_ff(x)",
  3180. "flash_attn_back(x)",
  3181. "win_part(x)",
  3182. "win_unpart(x)",
  3183. "f(x)",
  3184. "f(x,y)",
  3185. "custom(x)",
  3186. "custom(x,y)",
  3187. "custom(x,y,z)",
  3188. "cross_entropy_loss(x,y)",
  3189. "cross_entropy_loss_back(x,y)",
  3190. };
  3191. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3192. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3193. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3194. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3195. // WARN:
  3196. // Mis-confguration can lead to problem that's hard to reason about:
  3197. // * At best it crash or talks nosense.
  3198. // * At worst it talks slightly difference but hard to perceive.
  3199. //
  3200. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3201. // Take care about compile options (e.g., GGML_USE_xxx).
  3202. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3203. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3204. static void ggml_setup_op_has_task_pass(void) {
  3205. { // INIT
  3206. bool * p = GGML_OP_HAS_INIT;
  3207. p[GGML_OP_ACC ] = true;
  3208. p[GGML_OP_MUL_MAT ] = true;
  3209. p[GGML_OP_OUT_PROD ] = true;
  3210. p[GGML_OP_SET ] = true;
  3211. p[GGML_OP_GET_ROWS_BACK ] = true;
  3212. p[GGML_OP_DIAG_MASK_INF ] = true;
  3213. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3214. p[GGML_OP_CONV_1D ] = true;
  3215. p[GGML_OP_CONV_2D ] = true;
  3216. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3217. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3218. }
  3219. { // FINALIZE
  3220. bool * p = GGML_OP_HAS_FINALIZE;
  3221. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3222. }
  3223. }
  3224. //
  3225. // ggml context
  3226. //
  3227. struct ggml_context {
  3228. size_t mem_size;
  3229. void * mem_buffer;
  3230. bool mem_buffer_owned;
  3231. bool no_alloc;
  3232. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3233. int n_objects;
  3234. struct ggml_object * objects_begin;
  3235. struct ggml_object * objects_end;
  3236. struct ggml_scratch scratch;
  3237. struct ggml_scratch scratch_save;
  3238. };
  3239. struct ggml_context_container {
  3240. bool used;
  3241. struct ggml_context context;
  3242. };
  3243. //
  3244. // NUMA support
  3245. //
  3246. #define GGML_NUMA_MAX_NODES 8
  3247. #define GGML_NUMA_MAX_CPUS 512
  3248. struct ggml_numa_node {
  3249. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3250. uint32_t n_cpus;
  3251. };
  3252. struct ggml_numa_nodes {
  3253. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3254. uint32_t n_nodes;
  3255. uint32_t total_cpus; // hardware threads on system
  3256. };
  3257. //
  3258. // ggml state
  3259. //
  3260. struct ggml_state {
  3261. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3262. struct ggml_numa_nodes numa;
  3263. };
  3264. // global state
  3265. static struct ggml_state g_state;
  3266. static atomic_int g_state_barrier = 0;
  3267. // barrier via spin lock
  3268. inline static void ggml_critical_section_start(void) {
  3269. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3270. while (processing > 0) {
  3271. // wait for other threads to finish
  3272. atomic_fetch_sub(&g_state_barrier, 1);
  3273. sched_yield(); // TODO: reconsider this
  3274. processing = atomic_fetch_add(&g_state_barrier, 1);
  3275. }
  3276. }
  3277. // TODO: make this somehow automatically executed
  3278. // some sort of "sentry" mechanism
  3279. inline static void ggml_critical_section_end(void) {
  3280. atomic_fetch_sub(&g_state_barrier, 1);
  3281. }
  3282. void ggml_numa_init(void) {
  3283. if (g_state.numa.n_nodes > 0) {
  3284. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3285. return;
  3286. }
  3287. #ifdef __linux__
  3288. struct stat st;
  3289. char path[256];
  3290. int rv;
  3291. // enumerate nodes
  3292. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3293. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3294. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3295. if (stat(path, &st) != 0) { break; }
  3296. ++g_state.numa.n_nodes;
  3297. }
  3298. // enumerate CPUs
  3299. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3300. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3301. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3302. if (stat(path, &st) != 0) { break; }
  3303. ++g_state.numa.total_cpus;
  3304. }
  3305. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3306. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3307. g_state.numa.n_nodes = 0;
  3308. return;
  3309. }
  3310. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3311. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3312. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3313. node->n_cpus = 0;
  3314. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3315. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3316. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3317. if (stat(path, &st) == 0) {
  3318. node->cpus[node->n_cpus++] = c;
  3319. GGML_PRINT_DEBUG(" %u", c);
  3320. }
  3321. }
  3322. GGML_PRINT_DEBUG("\n");
  3323. }
  3324. if (ggml_is_numa()) {
  3325. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3326. if (fptr != NULL) {
  3327. char buf[42];
  3328. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3329. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3330. }
  3331. fclose(fptr);
  3332. }
  3333. }
  3334. #else
  3335. // TODO
  3336. #endif
  3337. }
  3338. bool ggml_is_numa(void) {
  3339. return g_state.numa.n_nodes > 1;
  3340. }
  3341. ////////////////////////////////////////////////////////////////////////////////
  3342. void ggml_print_object(const struct ggml_object * obj) {
  3343. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3344. obj->offs, obj->size, (const void *) obj->next);
  3345. }
  3346. void ggml_print_objects(const struct ggml_context * ctx) {
  3347. struct ggml_object * obj = ctx->objects_begin;
  3348. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3349. while (obj != NULL) {
  3350. ggml_print_object(obj);
  3351. obj = obj->next;
  3352. }
  3353. GGML_PRINT("%s: --- end ---\n", __func__);
  3354. }
  3355. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3358. }
  3359. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3362. }
  3363. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3364. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3365. // this should handle cases where the tensor is not contiguous in memory
  3366. // probaby just:
  3367. //
  3368. // return tensor->ne[3]*tensor->nb[3]
  3369. //
  3370. // is enough, but just in case, adding the second part
  3371. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3372. }
  3373. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3374. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3375. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3376. }
  3377. int ggml_blck_size(enum ggml_type type) {
  3378. return GGML_BLCK_SIZE[type];
  3379. }
  3380. size_t ggml_type_size(enum ggml_type type) {
  3381. return GGML_TYPE_SIZE[type];
  3382. }
  3383. float ggml_type_sizef(enum ggml_type type) {
  3384. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3385. }
  3386. const char * ggml_type_name(enum ggml_type type) {
  3387. return GGML_TYPE_NAME[type];
  3388. }
  3389. const char * ggml_op_name(enum ggml_op op) {
  3390. return GGML_OP_NAME[op];
  3391. }
  3392. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3393. return GGML_TYPE_SIZE[tensor->type];
  3394. }
  3395. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3398. }
  3399. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3402. }
  3403. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3404. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3405. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3406. }
  3407. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return (t0->ne[0] == t1->ne[0]) &&
  3410. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3411. (t1->ne[3]%t0->ne[3] == 0);
  3412. }
  3413. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3414. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3415. return
  3416. (t0->ne[1] == t1->ne[1]) &&
  3417. (t0->ne[2] == t1->ne[2]) &&
  3418. (t0->ne[3] == t1->ne[3]);
  3419. }
  3420. bool ggml_is_quantized(enum ggml_type type) {
  3421. return GGML_IS_QUANTIZED[type];
  3422. }
  3423. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3424. enum ggml_type wtype = GGML_TYPE_COUNT;
  3425. switch (ftype) {
  3426. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3427. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3428. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3429. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3430. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3431. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3432. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3433. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3434. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3435. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3436. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3437. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3438. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3439. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3440. }
  3441. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3442. return wtype;
  3443. }
  3444. size_t ggml_tensor_overhead(void) {
  3445. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3446. }
  3447. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3448. return tensor->nb[0] > tensor->nb[1];
  3449. }
  3450. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return
  3453. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3454. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3455. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3456. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3457. }
  3458. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3459. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3460. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3461. }
  3462. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3463. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3464. return
  3465. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3466. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3467. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3468. }
  3469. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return
  3472. (t0->ne[0] == t1->ne[0] ) &&
  3473. (t0->ne[1] == t1->ne[1] ) &&
  3474. (t0->ne[2] == t1->ne[2] ) &&
  3475. (t0->ne[3] == t1->ne[3] );
  3476. }
  3477. // check if t1 can be represented as a repeatition of t0
  3478. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3479. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3480. return
  3481. (t1->ne[0]%t0->ne[0] == 0) &&
  3482. (t1->ne[1]%t0->ne[1] == 0) &&
  3483. (t1->ne[2]%t0->ne[2] == 0) &&
  3484. (t1->ne[3]%t0->ne[3] == 0);
  3485. }
  3486. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3487. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3488. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3489. }
  3490. static inline int ggml_up32(int n) {
  3491. return (n + 31) & ~31;
  3492. }
  3493. //static inline int ggml_up64(int n) {
  3494. // return (n + 63) & ~63;
  3495. //}
  3496. static inline int ggml_up(int n, int m) {
  3497. // assert m is a power of 2
  3498. GGML_ASSERT((m & (m - 1)) == 0);
  3499. return (n + m - 1) & ~(m - 1);
  3500. }
  3501. // assert that pointer is aligned to GGML_MEM_ALIGN
  3502. #define ggml_assert_aligned(ptr) \
  3503. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3504. ////////////////////////////////////////////////////////////////////////////////
  3505. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3506. // make this function thread safe
  3507. ggml_critical_section_start();
  3508. static bool is_first_call = true;
  3509. if (is_first_call) {
  3510. // initialize time system (required on Windows)
  3511. ggml_time_init();
  3512. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3513. {
  3514. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3515. ggml_fp16_t ii;
  3516. for (int i = 0; i < (1 << 16); ++i) {
  3517. uint16_t ui = i;
  3518. memcpy(&ii, &ui, sizeof(ii));
  3519. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3520. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3521. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3522. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3523. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3524. }
  3525. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3526. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3527. }
  3528. // initialize g_state
  3529. {
  3530. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3531. g_state = (struct ggml_state) {
  3532. /*.contexts =*/ { { 0 } },
  3533. /*.numa =*/ {
  3534. .n_nodes = 0,
  3535. .total_cpus = 0,
  3536. },
  3537. };
  3538. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3539. g_state.contexts[i].used = false;
  3540. }
  3541. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3542. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3543. }
  3544. #if defined(GGML_USE_CUBLAS)
  3545. ggml_init_cublas();
  3546. #elif defined(GGML_USE_CLBLAST)
  3547. ggml_cl_init();
  3548. #endif
  3549. ggml_setup_op_has_task_pass();
  3550. is_first_call = false;
  3551. }
  3552. // find non-used context in g_state
  3553. struct ggml_context * ctx = NULL;
  3554. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3555. if (!g_state.contexts[i].used) {
  3556. g_state.contexts[i].used = true;
  3557. ctx = &g_state.contexts[i].context;
  3558. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3559. break;
  3560. }
  3561. }
  3562. if (ctx == NULL) {
  3563. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3564. ggml_critical_section_end();
  3565. return NULL;
  3566. }
  3567. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3568. *ctx = (struct ggml_context) {
  3569. /*.mem_size =*/ mem_size,
  3570. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3571. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3572. /*.no_alloc =*/ params.no_alloc,
  3573. /*.no_alloc_save =*/ params.no_alloc,
  3574. /*.n_objects =*/ 0,
  3575. /*.objects_begin =*/ NULL,
  3576. /*.objects_end =*/ NULL,
  3577. /*.scratch =*/ { 0, 0, NULL, },
  3578. /*.scratch_save =*/ { 0, 0, NULL, },
  3579. };
  3580. GGML_ASSERT(ctx->mem_buffer != NULL);
  3581. ggml_assert_aligned(ctx->mem_buffer);
  3582. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3583. ggml_critical_section_end();
  3584. return ctx;
  3585. }
  3586. void ggml_free(struct ggml_context * ctx) {
  3587. // make this function thread safe
  3588. ggml_critical_section_start();
  3589. bool found = false;
  3590. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3591. if (&g_state.contexts[i].context == ctx) {
  3592. g_state.contexts[i].used = false;
  3593. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3594. __func__, i, ggml_used_mem(ctx));
  3595. if (ctx->mem_buffer_owned) {
  3596. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3597. }
  3598. found = true;
  3599. break;
  3600. }
  3601. }
  3602. if (!found) {
  3603. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3604. }
  3605. ggml_critical_section_end();
  3606. }
  3607. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3608. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3609. }
  3610. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3611. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3612. ctx->scratch = scratch;
  3613. return result;
  3614. }
  3615. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3616. ctx->no_alloc = no_alloc;
  3617. }
  3618. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3619. return ctx->mem_buffer;
  3620. }
  3621. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3622. return ctx->mem_size;
  3623. }
  3624. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3625. size_t max_size = 0;
  3626. struct ggml_object * obj = ctx->objects_begin;
  3627. while (obj != NULL) {
  3628. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3629. const size_t size = ggml_nbytes(tensor);
  3630. if (max_size < size) {
  3631. max_size = size;
  3632. }
  3633. obj = obj->next;
  3634. }
  3635. return max_size;
  3636. }
  3637. // IMPORTANT:
  3638. // when creating "opt" tensors, always save and load the scratch buffer
  3639. // this is an error prone process, but it is necessary to support inplace
  3640. // operators when using scratch buffers
  3641. // TODO: implement a better way
  3642. void ggml_scratch_save(struct ggml_context * ctx) {
  3643. // this is needed to allow opt tensors to store their data
  3644. // TODO: again, need to find a better way
  3645. ctx->no_alloc_save = ctx->no_alloc;
  3646. ctx->no_alloc = false;
  3647. ctx->scratch_save = ctx->scratch;
  3648. ctx->scratch.data = NULL;
  3649. }
  3650. void ggml_scratch_load(struct ggml_context * ctx) {
  3651. ctx->no_alloc = ctx->no_alloc_save;
  3652. ctx->scratch = ctx->scratch_save;
  3653. }
  3654. ////////////////////////////////////////////////////////////////////////////////
  3655. struct ggml_tensor * ggml_new_tensor_impl(
  3656. struct ggml_context * ctx,
  3657. enum ggml_type type,
  3658. int n_dims,
  3659. const int64_t* ne,
  3660. void* data) {
  3661. // always insert objects at the end of the context's memory pool
  3662. struct ggml_object * obj_cur = ctx->objects_end;
  3663. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3664. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3665. const size_t cur_end = cur_offs + cur_size;
  3666. size_t size_needed = 0;
  3667. if (data == NULL && !ctx->no_alloc) {
  3668. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3669. for (int i = 1; i < n_dims; i++) {
  3670. size_needed *= ne[i];
  3671. }
  3672. // align to GGML_MEM_ALIGN
  3673. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3674. }
  3675. char * const mem_buffer = ctx->mem_buffer;
  3676. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3677. if (ctx->scratch.data == NULL || data != NULL) {
  3678. size_needed += GGML_TENSOR_SIZE;
  3679. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3680. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3681. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3682. assert(false);
  3683. return NULL;
  3684. }
  3685. *obj_new = (struct ggml_object) {
  3686. .offs = cur_end + GGML_OBJECT_SIZE,
  3687. .size = size_needed,
  3688. .next = NULL,
  3689. };
  3690. } else {
  3691. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3692. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3693. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3694. assert(false);
  3695. return NULL;
  3696. }
  3697. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3698. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3699. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3700. assert(false);
  3701. return NULL;
  3702. }
  3703. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3704. *obj_new = (struct ggml_object) {
  3705. .offs = cur_end + GGML_OBJECT_SIZE,
  3706. .size = GGML_TENSOR_SIZE,
  3707. .next = NULL,
  3708. };
  3709. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3710. ctx->scratch.offs += size_needed;
  3711. }
  3712. if (obj_cur != NULL) {
  3713. obj_cur->next = obj_new;
  3714. } else {
  3715. // this is the first object in this context
  3716. ctx->objects_begin = obj_new;
  3717. }
  3718. ctx->objects_end = obj_new;
  3719. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3720. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3721. ggml_assert_aligned(result);
  3722. *result = (struct ggml_tensor) {
  3723. /*.type =*/ type,
  3724. /*.backend =*/ GGML_BACKEND_CPU,
  3725. /*.n_dims =*/ n_dims,
  3726. /*.ne =*/ { 1, 1, 1, 1 },
  3727. /*.nb =*/ { 0, 0, 0, 0 },
  3728. /*.op =*/ GGML_OP_NONE,
  3729. /*.is_param =*/ false,
  3730. /*.grad =*/ NULL,
  3731. /*.src =*/ { NULL },
  3732. /*.perf_runs =*/ 0,
  3733. /*.perf_cycles =*/ 0,
  3734. /*.perf_time_us =*/ 0,
  3735. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3736. /*.name =*/ { 0 },
  3737. /*.extra =*/ NULL,
  3738. /*.padding =*/ { 0 },
  3739. };
  3740. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3741. //ggml_assert_aligned(result->data);
  3742. for (int i = 0; i < n_dims; i++) {
  3743. result->ne[i] = ne[i];
  3744. }
  3745. result->nb[0] = GGML_TYPE_SIZE[type];
  3746. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3747. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3748. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3749. }
  3750. ctx->n_objects++;
  3751. return result;
  3752. }
  3753. struct ggml_tensor * ggml_new_tensor(
  3754. struct ggml_context * ctx,
  3755. enum ggml_type type,
  3756. int n_dims,
  3757. const int64_t * ne) {
  3758. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3759. }
  3760. struct ggml_tensor * ggml_new_tensor_1d(
  3761. struct ggml_context * ctx,
  3762. enum ggml_type type,
  3763. int64_t ne0) {
  3764. return ggml_new_tensor(ctx, type, 1, &ne0);
  3765. }
  3766. struct ggml_tensor * ggml_new_tensor_2d(
  3767. struct ggml_context * ctx,
  3768. enum ggml_type type,
  3769. int64_t ne0,
  3770. int64_t ne1) {
  3771. const int64_t ne[2] = { ne0, ne1 };
  3772. return ggml_new_tensor(ctx, type, 2, ne);
  3773. }
  3774. struct ggml_tensor * ggml_new_tensor_3d(
  3775. struct ggml_context * ctx,
  3776. enum ggml_type type,
  3777. int64_t ne0,
  3778. int64_t ne1,
  3779. int64_t ne2) {
  3780. const int64_t ne[3] = { ne0, ne1, ne2 };
  3781. return ggml_new_tensor(ctx, type, 3, ne);
  3782. }
  3783. struct ggml_tensor * ggml_new_tensor_4d(
  3784. struct ggml_context * ctx,
  3785. enum ggml_type type,
  3786. int64_t ne0,
  3787. int64_t ne1,
  3788. int64_t ne2,
  3789. int64_t ne3) {
  3790. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3791. return ggml_new_tensor(ctx, type, 4, ne);
  3792. }
  3793. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3794. ggml_scratch_save(ctx);
  3795. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3796. ggml_scratch_load(ctx);
  3797. ggml_set_i32(result, value);
  3798. return result;
  3799. }
  3800. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3801. ggml_scratch_save(ctx);
  3802. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3803. ggml_scratch_load(ctx);
  3804. ggml_set_f32(result, value);
  3805. return result;
  3806. }
  3807. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3808. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3809. }
  3810. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3811. memset(tensor->data, 0, ggml_nbytes(tensor));
  3812. return tensor;
  3813. }
  3814. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3815. const int n = ggml_nrows(tensor);
  3816. const int nc = tensor->ne[0];
  3817. const size_t n1 = tensor->nb[1];
  3818. char * const data = tensor->data;
  3819. switch (tensor->type) {
  3820. case GGML_TYPE_I8:
  3821. {
  3822. assert(tensor->nb[0] == sizeof(int8_t));
  3823. for (int i = 0; i < n; i++) {
  3824. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3825. }
  3826. } break;
  3827. case GGML_TYPE_I16:
  3828. {
  3829. assert(tensor->nb[0] == sizeof(int16_t));
  3830. for (int i = 0; i < n; i++) {
  3831. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3832. }
  3833. } break;
  3834. case GGML_TYPE_I32:
  3835. {
  3836. assert(tensor->nb[0] == sizeof(int32_t));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3839. }
  3840. } break;
  3841. case GGML_TYPE_F16:
  3842. {
  3843. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3844. for (int i = 0; i < n; i++) {
  3845. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3846. }
  3847. } break;
  3848. case GGML_TYPE_F32:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(float));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. default:
  3856. {
  3857. GGML_ASSERT(false);
  3858. } break;
  3859. }
  3860. return tensor;
  3861. }
  3862. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3863. const int n = ggml_nrows(tensor);
  3864. const int nc = tensor->ne[0];
  3865. const size_t n1 = tensor->nb[1];
  3866. char * const data = tensor->data;
  3867. switch (tensor->type) {
  3868. case GGML_TYPE_I8:
  3869. {
  3870. assert(tensor->nb[0] == sizeof(int8_t));
  3871. for (int i = 0; i < n; i++) {
  3872. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3873. }
  3874. } break;
  3875. case GGML_TYPE_I16:
  3876. {
  3877. assert(tensor->nb[0] == sizeof(int16_t));
  3878. for (int i = 0; i < n; i++) {
  3879. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3880. }
  3881. } break;
  3882. case GGML_TYPE_I32:
  3883. {
  3884. assert(tensor->nb[0] == sizeof(int32_t));
  3885. for (int i = 0; i < n; i++) {
  3886. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3887. }
  3888. } break;
  3889. case GGML_TYPE_F16:
  3890. {
  3891. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3892. for (int i = 0; i < n; i++) {
  3893. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3894. }
  3895. } break;
  3896. case GGML_TYPE_F32:
  3897. {
  3898. assert(tensor->nb[0] == sizeof(float));
  3899. for (int i = 0; i < n; i++) {
  3900. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3901. }
  3902. } break;
  3903. default:
  3904. {
  3905. GGML_ASSERT(false);
  3906. } break;
  3907. }
  3908. return tensor;
  3909. }
  3910. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3911. switch (tensor->type) {
  3912. case GGML_TYPE_I8:
  3913. {
  3914. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3915. return ((int8_t *)(tensor->data))[i];
  3916. } break;
  3917. case GGML_TYPE_I16:
  3918. {
  3919. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3920. return ((int16_t *)(tensor->data))[i];
  3921. } break;
  3922. case GGML_TYPE_I32:
  3923. {
  3924. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3925. return ((int32_t *)(tensor->data))[i];
  3926. } break;
  3927. case GGML_TYPE_F16:
  3928. {
  3929. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3930. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3931. } break;
  3932. case GGML_TYPE_F32:
  3933. {
  3934. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3935. return ((float *)(tensor->data))[i];
  3936. } break;
  3937. default:
  3938. {
  3939. GGML_ASSERT(false);
  3940. } break;
  3941. }
  3942. return 0.0f;
  3943. }
  3944. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3945. switch (tensor->type) {
  3946. case GGML_TYPE_I8:
  3947. {
  3948. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3949. ((int8_t *)(tensor->data))[i] = value;
  3950. } break;
  3951. case GGML_TYPE_I16:
  3952. {
  3953. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3954. ((int16_t *)(tensor->data))[i] = value;
  3955. } break;
  3956. case GGML_TYPE_I32:
  3957. {
  3958. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3959. ((int32_t *)(tensor->data))[i] = value;
  3960. } break;
  3961. case GGML_TYPE_F16:
  3962. {
  3963. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3964. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3965. } break;
  3966. case GGML_TYPE_F32:
  3967. {
  3968. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3969. ((float *)(tensor->data))[i] = value;
  3970. } break;
  3971. default:
  3972. {
  3973. GGML_ASSERT(false);
  3974. } break;
  3975. }
  3976. }
  3977. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3978. switch (tensor->type) {
  3979. case GGML_TYPE_I8:
  3980. {
  3981. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3982. return ((int8_t *)(tensor->data))[i];
  3983. } break;
  3984. case GGML_TYPE_I16:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3987. return ((int16_t *)(tensor->data))[i];
  3988. } break;
  3989. case GGML_TYPE_I32:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3992. return ((int32_t *)(tensor->data))[i];
  3993. } break;
  3994. case GGML_TYPE_F16:
  3995. {
  3996. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3997. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3998. } break;
  3999. case GGML_TYPE_F32:
  4000. {
  4001. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4002. return ((float *)(tensor->data))[i];
  4003. } break;
  4004. default:
  4005. {
  4006. GGML_ASSERT(false);
  4007. } break;
  4008. }
  4009. return 0.0f;
  4010. }
  4011. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4012. switch (tensor->type) {
  4013. case GGML_TYPE_I8:
  4014. {
  4015. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4016. ((int8_t *)(tensor->data))[i] = value;
  4017. } break;
  4018. case GGML_TYPE_I16:
  4019. {
  4020. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4021. ((int16_t *)(tensor->data))[i] = value;
  4022. } break;
  4023. case GGML_TYPE_I32:
  4024. {
  4025. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4026. ((int32_t *)(tensor->data))[i] = value;
  4027. } break;
  4028. case GGML_TYPE_F16:
  4029. {
  4030. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4031. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4032. } break;
  4033. case GGML_TYPE_F32:
  4034. {
  4035. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4036. ((float *)(tensor->data))[i] = value;
  4037. } break;
  4038. default:
  4039. {
  4040. GGML_ASSERT(false);
  4041. } break;
  4042. }
  4043. }
  4044. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4045. return tensor->data;
  4046. }
  4047. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4048. assert(tensor->type == GGML_TYPE_F32);
  4049. return (float *)(tensor->data);
  4050. }
  4051. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4052. return tensor->name;
  4053. }
  4054. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4055. strncpy(tensor->name, name, sizeof(tensor->name));
  4056. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4057. return tensor;
  4058. }
  4059. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4060. va_list args;
  4061. va_start(args, fmt);
  4062. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4063. va_end(args);
  4064. return tensor;
  4065. }
  4066. struct ggml_tensor * ggml_view_tensor(
  4067. struct ggml_context * ctx,
  4068. const struct ggml_tensor * src) {
  4069. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4070. ggml_format_name(result, "%s (view)", src->name);
  4071. result->nb[0] = src->nb[0];
  4072. result->nb[1] = src->nb[1];
  4073. result->nb[2] = src->nb[2];
  4074. result->nb[3] = src->nb[3];
  4075. return result;
  4076. }
  4077. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4078. struct ggml_object * obj = ctx->objects_begin;
  4079. char * const mem_buffer = ctx->mem_buffer;
  4080. while (obj != NULL) {
  4081. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4082. if (strcmp(cur->name, name) == 0) {
  4083. return cur;
  4084. }
  4085. obj = obj->next;
  4086. }
  4087. return NULL;
  4088. }
  4089. ////////////////////////////////////////////////////////////////////////////////
  4090. // ggml_dup
  4091. struct ggml_tensor * ggml_dup_impl(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. bool inplace) {
  4095. bool is_node = false;
  4096. if (!inplace && (a->grad)) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4100. result->op = GGML_OP_DUP;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src[0] = a;
  4103. result->src[1] = NULL;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_dup(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a) {
  4109. return ggml_dup_impl(ctx, a, false);
  4110. }
  4111. struct ggml_tensor * ggml_dup_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_dup_impl(ctx, a, true);
  4115. }
  4116. // ggml_add
  4117. struct ggml_tensor * ggml_add_impl(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b,
  4121. bool inplace) {
  4122. // TODO: support less-strict constraint
  4123. // GGML_ASSERT(ggml_can_repeat(b, a));
  4124. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4125. bool is_node = false;
  4126. if (!inplace && (a->grad || b->grad)) {
  4127. // TODO: support backward pass for broadcasting
  4128. GGML_ASSERT(ggml_are_same_shape(a, b));
  4129. is_node = true;
  4130. }
  4131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4132. result->op = GGML_OP_ADD;
  4133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4134. result->src[0] = a;
  4135. result->src[1] = b;
  4136. return result;
  4137. }
  4138. struct ggml_tensor * ggml_add(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. struct ggml_tensor * b) {
  4142. return ggml_add_impl(ctx, a, b, false);
  4143. }
  4144. struct ggml_tensor * ggml_add_inplace(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b) {
  4148. return ggml_add_impl(ctx, a, b, true);
  4149. }
  4150. // ggml_add1
  4151. struct ggml_tensor * ggml_add1_impl(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b,
  4155. bool inplace) {
  4156. GGML_ASSERT(ggml_is_scalar(b));
  4157. GGML_ASSERT(ggml_is_padded_1d(a));
  4158. bool is_node = false;
  4159. if (a->grad || b->grad) {
  4160. is_node = true;
  4161. }
  4162. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4163. result->op = GGML_OP_ADD1;
  4164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4165. result->src[0] = a;
  4166. result->src[1] = b;
  4167. return result;
  4168. }
  4169. struct ggml_tensor * ggml_add1(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. struct ggml_tensor * b) {
  4173. return ggml_add1_impl(ctx, a, b, false);
  4174. }
  4175. struct ggml_tensor * ggml_add1_inplace(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b) {
  4179. return ggml_add1_impl(ctx, a, b, true);
  4180. }
  4181. // ggml_acc
  4182. struct ggml_tensor * ggml_acc_impl(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b,
  4186. size_t nb1,
  4187. size_t nb2,
  4188. size_t nb3,
  4189. size_t offset,
  4190. bool inplace) {
  4191. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4192. GGML_ASSERT(ggml_is_contiguous(a));
  4193. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4194. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4195. bool is_node = false;
  4196. if (!inplace && (a->grad || b->grad)) {
  4197. is_node = true;
  4198. }
  4199. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4200. ggml_scratch_save(ctx);
  4201. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4202. ((int32_t *) c->data)[0] = nb1;
  4203. ((int32_t *) c->data)[1] = nb2;
  4204. ((int32_t *) c->data)[2] = nb3;
  4205. ((int32_t *) c->data)[3] = offset;
  4206. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4207. ggml_scratch_load(ctx);
  4208. result->op = GGML_OP_ACC;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src[0] = a;
  4211. result->src[1] = b;
  4212. result->src[2] = c;
  4213. return result;
  4214. }
  4215. struct ggml_tensor * ggml_acc(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. size_t nb1,
  4220. size_t nb2,
  4221. size_t nb3,
  4222. size_t offset) {
  4223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4224. }
  4225. struct ggml_tensor * ggml_acc_inplace(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. struct ggml_tensor * b,
  4229. size_t nb1,
  4230. size_t nb2,
  4231. size_t nb3,
  4232. size_t offset) {
  4233. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4234. }
  4235. // ggml_sub
  4236. struct ggml_tensor * ggml_sub_impl(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. struct ggml_tensor * b,
  4240. bool inplace) {
  4241. GGML_ASSERT(ggml_are_same_shape(a, b));
  4242. bool is_node = false;
  4243. if (!inplace && (a->grad || b->grad)) {
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4247. result->op = GGML_OP_SUB;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = b;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_sub(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b) {
  4257. return ggml_sub_impl(ctx, a, b, false);
  4258. }
  4259. struct ggml_tensor * ggml_sub_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b) {
  4263. return ggml_sub_impl(ctx, a, b, true);
  4264. }
  4265. // ggml_mul
  4266. struct ggml_tensor * ggml_mul_impl(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. struct ggml_tensor * b,
  4270. bool inplace) {
  4271. // TODO: support less-strict constraint
  4272. // GGML_ASSERT(ggml_can_repeat(b, a));
  4273. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4274. bool is_node = false;
  4275. if (!inplace && (a->grad || b->grad)) {
  4276. // TODO: support backward pass for broadcasting
  4277. GGML_ASSERT(ggml_are_same_shape(a, b));
  4278. is_node = true;
  4279. }
  4280. if (inplace) {
  4281. GGML_ASSERT(is_node == false);
  4282. }
  4283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4284. result->op = GGML_OP_MUL;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. result->src[1] = b;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_mul(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b) {
  4294. return ggml_mul_impl(ctx, a, b, false);
  4295. }
  4296. struct ggml_tensor * ggml_mul_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. return ggml_mul_impl(ctx, a, b, true);
  4301. }
  4302. // ggml_div
  4303. struct ggml_tensor * ggml_div_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. bool inplace) {
  4308. GGML_ASSERT(ggml_are_same_shape(a, b));
  4309. bool is_node = false;
  4310. if (!inplace && (a->grad || b->grad)) {
  4311. is_node = true;
  4312. }
  4313. if (inplace) {
  4314. GGML_ASSERT(is_node == false);
  4315. }
  4316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4317. result->op = GGML_OP_DIV;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src[0] = a;
  4320. result->src[1] = b;
  4321. return result;
  4322. }
  4323. struct ggml_tensor * ggml_div(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b) {
  4327. return ggml_div_impl(ctx, a, b, false);
  4328. }
  4329. struct ggml_tensor * ggml_div_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b) {
  4333. return ggml_div_impl(ctx, a, b, true);
  4334. }
  4335. // ggml_sqr
  4336. struct ggml_tensor * ggml_sqr_impl(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. bool inplace) {
  4340. bool is_node = false;
  4341. if (!inplace && (a->grad)) {
  4342. is_node = true;
  4343. }
  4344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4345. result->op = GGML_OP_SQR;
  4346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4347. result->src[0] = a;
  4348. result->src[1] = NULL;
  4349. return result;
  4350. }
  4351. struct ggml_tensor * ggml_sqr(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a) {
  4354. return ggml_sqr_impl(ctx, a, false);
  4355. }
  4356. struct ggml_tensor * ggml_sqr_inplace(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a) {
  4359. return ggml_sqr_impl(ctx, a, true);
  4360. }
  4361. // ggml_sqrt
  4362. struct ggml_tensor * ggml_sqrt_impl(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a,
  4365. bool inplace) {
  4366. bool is_node = false;
  4367. if (!inplace && (a->grad)) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. result->op = GGML_OP_SQRT;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. result->src[1] = NULL;
  4375. return result;
  4376. }
  4377. struct ggml_tensor * ggml_sqrt(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a) {
  4380. return ggml_sqrt_impl(ctx, a, false);
  4381. }
  4382. struct ggml_tensor * ggml_sqrt_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a) {
  4385. return ggml_sqrt_impl(ctx, a, true);
  4386. }
  4387. // ggml_log
  4388. struct ggml_tensor * ggml_log_impl(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. bool inplace) {
  4392. bool is_node = false;
  4393. if (!inplace && (a->grad)) {
  4394. is_node = true;
  4395. }
  4396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4397. result->op = GGML_OP_LOG;
  4398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4399. result->src[0] = a;
  4400. result->src[1] = NULL;
  4401. return result;
  4402. }
  4403. struct ggml_tensor * ggml_log(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. return ggml_log_impl(ctx, a, false);
  4407. }
  4408. struct ggml_tensor * ggml_log_inplace(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a) {
  4411. return ggml_log_impl(ctx, a, true);
  4412. }
  4413. // ggml_sum
  4414. struct ggml_tensor * ggml_sum(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. bool is_node = false;
  4418. if (a->grad) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4422. result->op = GGML_OP_SUM;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. result->src[1] = NULL;
  4426. return result;
  4427. }
  4428. // ggml_sum_rows
  4429. struct ggml_tensor * ggml_sum_rows(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a) {
  4432. bool is_node = false;
  4433. if (a->grad) {
  4434. is_node = true;
  4435. }
  4436. int64_t ne[4] = {1,1,1,1};
  4437. for (int i=1; i<a->n_dims; ++i) {
  4438. ne[i] = a->ne[i];
  4439. }
  4440. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4441. result->op = GGML_OP_SUM_ROWS;
  4442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4443. result->src[0] = a;
  4444. result->src[1] = NULL;
  4445. return result;
  4446. }
  4447. // ggml_mean
  4448. struct ggml_tensor * ggml_mean(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a) {
  4451. bool is_node = false;
  4452. if (a->grad) {
  4453. GGML_ASSERT(false); // TODO: implement
  4454. is_node = true;
  4455. }
  4456. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4458. result->op = GGML_OP_MEAN;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src[0] = a;
  4461. result->src[1] = NULL;
  4462. return result;
  4463. }
  4464. // ggml_argmax
  4465. struct ggml_tensor * ggml_argmax(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a) {
  4468. GGML_ASSERT(ggml_is_matrix(a));
  4469. bool is_node = false;
  4470. if (a->grad) {
  4471. GGML_ASSERT(false);
  4472. is_node = true;
  4473. }
  4474. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4475. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4476. result->op = GGML_OP_ARGMAX;
  4477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4478. result->src[0] = a;
  4479. result->src[1] = NULL;
  4480. return result;
  4481. }
  4482. // ggml_repeat
  4483. struct ggml_tensor * ggml_repeat(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b) {
  4487. GGML_ASSERT(ggml_can_repeat(a, b));
  4488. bool is_node = false;
  4489. if (a->grad) {
  4490. is_node = true;
  4491. }
  4492. if (ggml_are_same_shape(a, b) && !is_node) {
  4493. return a;
  4494. }
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4496. result->op = GGML_OP_REPEAT;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. result->src[1] = b;
  4500. return result;
  4501. }
  4502. // ggml_repeat_back
  4503. struct ggml_tensor * ggml_repeat_back(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b) {
  4507. GGML_ASSERT(ggml_can_repeat(b, a));
  4508. bool is_node = false;
  4509. if (a->grad) {
  4510. is_node = true;
  4511. }
  4512. if (ggml_are_same_shape(a, b) && !is_node) {
  4513. return a;
  4514. }
  4515. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4516. result->op = GGML_OP_REPEAT_BACK;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src[0] = a;
  4519. result->src[1] = b;
  4520. return result;
  4521. }
  4522. // ggml_abs
  4523. struct ggml_tensor * ggml_abs_impl(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. bool inplace) {
  4527. bool is_node = false;
  4528. if (!inplace && (a->grad)) {
  4529. is_node = true;
  4530. }
  4531. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4532. result->op = GGML_OP_ABS;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. result->src[1] = NULL;
  4536. return result;
  4537. }
  4538. struct ggml_tensor * ggml_abs(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a) {
  4541. return ggml_abs_impl(ctx, a, false);
  4542. }
  4543. struct ggml_tensor * ggml_abs_inplace(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a) {
  4546. return ggml_abs_impl(ctx, a, true);
  4547. }
  4548. // ggml_sgn
  4549. struct ggml_tensor * ggml_sgn_impl(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. bool inplace) {
  4553. bool is_node = false;
  4554. if (!inplace && (a->grad)) {
  4555. is_node = true;
  4556. }
  4557. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4558. result->op = GGML_OP_SGN;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. result->src[1] = NULL;
  4562. return result;
  4563. }
  4564. struct ggml_tensor * ggml_sgn(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_sgn_impl(ctx, a, false);
  4568. }
  4569. struct ggml_tensor * ggml_sgn_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_sgn_impl(ctx, a, true);
  4573. }
  4574. // ggml_neg
  4575. struct ggml_tensor * ggml_neg_impl(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a,
  4578. bool inplace) {
  4579. bool is_node = false;
  4580. if (!inplace && (a->grad)) {
  4581. is_node = true;
  4582. }
  4583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4584. result->op = GGML_OP_NEG;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src[0] = a;
  4587. result->src[1] = NULL;
  4588. return result;
  4589. }
  4590. struct ggml_tensor * ggml_neg(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. return ggml_neg_impl(ctx, a, false);
  4594. }
  4595. struct ggml_tensor * ggml_neg_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a) {
  4598. return ggml_neg_impl(ctx, a, true);
  4599. }
  4600. // ggml_step
  4601. struct ggml_tensor * ggml_step_impl(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. bool inplace) {
  4605. bool is_node = false;
  4606. if (!inplace && (a->grad)) {
  4607. is_node = true;
  4608. }
  4609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4610. result->op = GGML_OP_STEP;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src[0] = a;
  4613. result->src[1] = NULL;
  4614. return result;
  4615. }
  4616. struct ggml_tensor * ggml_step(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_step_impl(ctx, a, false);
  4620. }
  4621. struct ggml_tensor * ggml_step_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. return ggml_step_impl(ctx, a, true);
  4625. }
  4626. // ggml_tanh
  4627. struct ggml_tensor * ggml_tanh_impl(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. bool inplace) {
  4631. bool is_node = false;
  4632. if (!inplace && (a->grad)) {
  4633. is_node = true;
  4634. }
  4635. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4636. result->op = GGML_OP_TANH;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = NULL;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_tanh(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a) {
  4645. return ggml_tanh_impl(ctx, a, false);
  4646. }
  4647. struct ggml_tensor * ggml_tanh_inplace(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a) {
  4650. return ggml_tanh_impl(ctx, a, true);
  4651. }
  4652. // ggml_elu
  4653. struct ggml_tensor * ggml_elu_impl(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. bool inplace) {
  4657. bool is_node = false;
  4658. if (!inplace && (a->grad)) {
  4659. is_node = true;
  4660. }
  4661. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4662. result->op = GGML_OP_ELU;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src[0] = a;
  4665. result->src[1] = NULL;
  4666. return result;
  4667. }
  4668. struct ggml_tensor * ggml_elu(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a) {
  4671. return ggml_elu_impl(ctx, a, false);
  4672. }
  4673. struct ggml_tensor * ggml_elu_inplace(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a) {
  4676. return ggml_elu_impl(ctx, a, true);
  4677. }
  4678. // ggml_relu
  4679. struct ggml_tensor * ggml_relu_impl(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. bool inplace) {
  4683. bool is_node = false;
  4684. if (!inplace && (a->grad)) {
  4685. is_node = true;
  4686. }
  4687. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4688. result->op = GGML_OP_RELU;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src[0] = a;
  4691. result->src[1] = NULL;
  4692. return result;
  4693. }
  4694. struct ggml_tensor * ggml_relu(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a) {
  4697. return ggml_relu_impl(ctx, a, false);
  4698. }
  4699. struct ggml_tensor * ggml_relu_inplace(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a) {
  4702. return ggml_relu_impl(ctx, a, true);
  4703. }
  4704. // ggml_gelu
  4705. struct ggml_tensor * ggml_gelu_impl(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. bool inplace) {
  4709. bool is_node = false;
  4710. if (!inplace && (a->grad)) {
  4711. is_node = true;
  4712. }
  4713. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4714. result->op = GGML_OP_GELU;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. result->src[1] = NULL;
  4718. return result;
  4719. }
  4720. struct ggml_tensor * ggml_gelu(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a) {
  4723. return ggml_gelu_impl(ctx, a, false);
  4724. }
  4725. struct ggml_tensor * ggml_gelu_inplace(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a) {
  4728. return ggml_gelu_impl(ctx, a, true);
  4729. }
  4730. // ggml_gelu_quick
  4731. struct ggml_tensor * ggml_gelu_quick_impl(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a,
  4734. bool inplace) {
  4735. bool is_node = false;
  4736. if (!inplace && (a->grad)) {
  4737. is_node = true;
  4738. }
  4739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4740. result->op = GGML_OP_GELU_QUICK;
  4741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4742. result->src[0] = a;
  4743. result->src[1] = NULL;
  4744. return result;
  4745. }
  4746. struct ggml_tensor * ggml_gelu_quick(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a) {
  4749. return ggml_gelu_quick_impl(ctx, a, false);
  4750. }
  4751. struct ggml_tensor * ggml_gelu_quick_inplace(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a) {
  4754. return ggml_gelu_quick_impl(ctx, a, true);
  4755. }
  4756. // ggml_silu
  4757. struct ggml_tensor * ggml_silu_impl(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. bool inplace) {
  4761. bool is_node = false;
  4762. if (!inplace && (a->grad)) {
  4763. is_node = true;
  4764. }
  4765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4766. result->op = GGML_OP_SILU;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src[0] = a;
  4769. result->src[1] = NULL;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_silu(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a) {
  4775. return ggml_silu_impl(ctx, a, false);
  4776. }
  4777. struct ggml_tensor * ggml_silu_inplace(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a) {
  4780. return ggml_silu_impl(ctx, a, true);
  4781. }
  4782. // ggml_silu_back
  4783. struct ggml_tensor * ggml_silu_back(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b) {
  4787. bool is_node = false;
  4788. if (a->grad || b->grad) {
  4789. // TODO: implement backward
  4790. is_node = true;
  4791. }
  4792. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4793. result->op = GGML_OP_SILU_BACK;
  4794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4795. result->src[0] = a;
  4796. result->src[1] = b;
  4797. return result;
  4798. }
  4799. // ggml_norm
  4800. struct ggml_tensor * ggml_norm_impl(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. bool inplace) {
  4804. bool is_node = false;
  4805. if (!inplace && (a->grad)) {
  4806. GGML_ASSERT(false); // TODO: implement backward
  4807. is_node = true;
  4808. }
  4809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4810. result->op = GGML_OP_NORM;
  4811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4812. result->src[0] = a;
  4813. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4814. return result;
  4815. }
  4816. struct ggml_tensor * ggml_norm(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a) {
  4819. return ggml_norm_impl(ctx, a, false);
  4820. }
  4821. struct ggml_tensor * ggml_norm_inplace(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a) {
  4824. return ggml_norm_impl(ctx, a, true);
  4825. }
  4826. struct ggml_tensor * ggml_rms_norm_impl(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. bool inplace) {
  4830. bool is_node = false;
  4831. if (!inplace && (a->grad)) {
  4832. is_node = true;
  4833. }
  4834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4835. result->op = GGML_OP_RMS_NORM;
  4836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4837. result->src[0] = a;
  4838. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4839. return result;
  4840. }
  4841. struct ggml_tensor * ggml_rms_norm(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a) {
  4844. return ggml_rms_norm_impl(ctx, a, false);
  4845. }
  4846. struct ggml_tensor * ggml_rms_norm_inplace(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a) {
  4849. return ggml_rms_norm_impl(ctx, a, true);
  4850. }
  4851. struct ggml_tensor * ggml_rms_norm_back(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b) {
  4855. bool is_node = false;
  4856. if (a->grad) {
  4857. // TODO: implement backward
  4858. is_node = true;
  4859. }
  4860. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4861. result->op = GGML_OP_RMS_NORM_BACK;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. result->src[1] = b;
  4865. return result;
  4866. }
  4867. // ggml_mul_mat
  4868. struct ggml_tensor * ggml_mul_mat(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. struct ggml_tensor * b) {
  4872. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4873. GGML_ASSERT(!ggml_is_transposed(a));
  4874. bool is_node = false;
  4875. if (a->grad || b->grad) {
  4876. is_node = true;
  4877. }
  4878. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4879. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4880. result->op = GGML_OP_MUL_MAT;
  4881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4882. result->src[0] = a;
  4883. result->src[1] = b;
  4884. return result;
  4885. }
  4886. // ggml_out_prod
  4887. struct ggml_tensor * ggml_out_prod(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b) {
  4891. GGML_ASSERT(ggml_can_out_prod(a, b));
  4892. GGML_ASSERT(!ggml_is_transposed(a));
  4893. bool is_node = false;
  4894. if (a->grad || b->grad) {
  4895. is_node = true;
  4896. }
  4897. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4898. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4899. result->op = GGML_OP_OUT_PROD;
  4900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4901. result->src[0] = a;
  4902. result->src[1] = b;
  4903. return result;
  4904. }
  4905. // ggml_scale
  4906. struct ggml_tensor * ggml_scale_impl(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. struct ggml_tensor * b,
  4910. bool inplace) {
  4911. GGML_ASSERT(ggml_is_scalar(b));
  4912. GGML_ASSERT(ggml_is_padded_1d(a));
  4913. bool is_node = false;
  4914. if (a->grad || b->grad) {
  4915. is_node = true;
  4916. }
  4917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4918. result->op = GGML_OP_SCALE;
  4919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4920. result->src[0] = a;
  4921. result->src[1] = b;
  4922. return result;
  4923. }
  4924. struct ggml_tensor * ggml_scale(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b) {
  4928. return ggml_scale_impl(ctx, a, b, false);
  4929. }
  4930. struct ggml_tensor * ggml_scale_inplace(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b) {
  4934. return ggml_scale_impl(ctx, a, b, true);
  4935. }
  4936. // ggml_set
  4937. struct ggml_tensor * ggml_set_impl(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a,
  4940. struct ggml_tensor * b,
  4941. size_t nb1,
  4942. size_t nb2,
  4943. size_t nb3,
  4944. size_t offset,
  4945. bool inplace) {
  4946. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4947. bool is_node = false;
  4948. if (a->grad || b->grad) {
  4949. is_node = true;
  4950. }
  4951. // make a view of the destination
  4952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4953. ggml_scratch_save(ctx);
  4954. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4955. (( int32_t * ) c->data)[0] = nb1;
  4956. (( int32_t * ) c->data)[1] = nb2;
  4957. (( int32_t * ) c->data)[2] = nb3;
  4958. (( int32_t * ) c->data)[3] = offset;
  4959. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4960. ggml_scratch_load(ctx);
  4961. result->op = GGML_OP_SET;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. result->src[1] = b;
  4965. result->src[2] = c;
  4966. return result;
  4967. }
  4968. struct ggml_tensor * ggml_set(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. size_t nb1,
  4973. size_t nb2,
  4974. size_t nb3,
  4975. size_t offset) {
  4976. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4977. }
  4978. struct ggml_tensor * ggml_set_inplace(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. size_t nb1,
  4983. size_t nb2,
  4984. size_t nb3,
  4985. size_t offset) {
  4986. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4987. }
  4988. struct ggml_tensor * ggml_set_1d(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. struct ggml_tensor * b,
  4992. size_t offset) {
  4993. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4994. }
  4995. struct ggml_tensor * ggml_set_1d_inplace(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b,
  4999. size_t offset) {
  5000. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5001. }
  5002. struct ggml_tensor * ggml_set_2d(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. struct ggml_tensor * b,
  5006. size_t nb1,
  5007. size_t offset) {
  5008. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5009. }
  5010. struct ggml_tensor * ggml_set_2d_inplace(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. struct ggml_tensor * b,
  5014. size_t nb1,
  5015. size_t offset) {
  5016. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5017. }
  5018. // ggml_cpy
  5019. struct ggml_tensor * ggml_cpy_impl(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a,
  5022. struct ggml_tensor * b,
  5023. bool inplace) {
  5024. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5025. bool is_node = false;
  5026. if (!inplace && (a->grad || b->grad)) {
  5027. is_node = true;
  5028. }
  5029. // make a view of the destination
  5030. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5031. if (strlen(b->name) > 0) {
  5032. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5033. } else {
  5034. ggml_format_name(result, "%s (copy)", a->name);
  5035. }
  5036. result->op = GGML_OP_CPY;
  5037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5038. result->src[0] = a;
  5039. result->src[1] = b;
  5040. return result;
  5041. }
  5042. struct ggml_tensor * ggml_cpy(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * b) {
  5046. return ggml_cpy_impl(ctx, a, b, false);
  5047. }
  5048. struct ggml_tensor * ggml_cpy_inplace(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b) {
  5052. return ggml_cpy_impl(ctx, a, b, true);
  5053. }
  5054. // ggml_cont
  5055. struct ggml_tensor * ggml_cont_impl(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. bool inplace) {
  5059. bool is_node = false;
  5060. if (!inplace && a->grad) {
  5061. is_node = true;
  5062. }
  5063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5064. ggml_format_name(result, "%s (cont)", a->name);
  5065. result->op = GGML_OP_CONT;
  5066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5067. result->src[0] = a;
  5068. result->src[1] = NULL;
  5069. return result;
  5070. }
  5071. struct ggml_tensor * ggml_cont(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a) {
  5074. return ggml_cont_impl(ctx, a, false);
  5075. }
  5076. struct ggml_tensor * ggml_cont_inplace(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a) {
  5079. return ggml_cont_impl(ctx, a, true);
  5080. }
  5081. // ggml_reshape
  5082. struct ggml_tensor * ggml_reshape(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. struct ggml_tensor * b) {
  5086. GGML_ASSERT(ggml_is_contiguous(a));
  5087. GGML_ASSERT(ggml_is_contiguous(b));
  5088. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5089. bool is_node = false;
  5090. if (a->grad) {
  5091. is_node = true;
  5092. }
  5093. if (b->grad) {
  5094. // gradient propagation is not supported
  5095. //GGML_ASSERT(false);
  5096. }
  5097. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5098. ggml_format_name(result, "%s (reshaped)", a->name);
  5099. result->op = GGML_OP_RESHAPE;
  5100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5101. result->src[0] = a;
  5102. result->src[1] = NULL;
  5103. return result;
  5104. }
  5105. struct ggml_tensor * ggml_reshape_1d(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. int64_t ne0) {
  5109. GGML_ASSERT(ggml_is_contiguous(a));
  5110. GGML_ASSERT(ggml_nelements(a) == ne0);
  5111. bool is_node = false;
  5112. if (a->grad) {
  5113. is_node = true;
  5114. }
  5115. const int64_t ne[1] = { ne0 };
  5116. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5117. ggml_format_name(result, "%s (reshaped)", a->name);
  5118. result->op = GGML_OP_RESHAPE;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = NULL;
  5122. return result;
  5123. }
  5124. struct ggml_tensor * ggml_reshape_2d(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. int64_t ne0,
  5128. int64_t ne1) {
  5129. GGML_ASSERT(ggml_is_contiguous(a));
  5130. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5131. bool is_node = false;
  5132. if (a->grad) {
  5133. is_node = true;
  5134. }
  5135. const int64_t ne[2] = { ne0, ne1 };
  5136. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5137. ggml_format_name(result, "%s (reshaped)", a->name);
  5138. result->op = GGML_OP_RESHAPE;
  5139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5140. result->src[0] = a;
  5141. result->src[1] = NULL;
  5142. return result;
  5143. }
  5144. struct ggml_tensor * ggml_reshape_3d(
  5145. struct ggml_context * ctx,
  5146. struct ggml_tensor * a,
  5147. int64_t ne0,
  5148. int64_t ne1,
  5149. int64_t ne2) {
  5150. GGML_ASSERT(ggml_is_contiguous(a));
  5151. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5152. bool is_node = false;
  5153. if (a->grad) {
  5154. is_node = true;
  5155. }
  5156. const int64_t ne[3] = { ne0, ne1, ne2 };
  5157. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5158. ggml_format_name(result, "%s (reshaped)", a->name);
  5159. result->op = GGML_OP_RESHAPE;
  5160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5161. result->src[0] = a;
  5162. result->src[1] = NULL;
  5163. return result;
  5164. }
  5165. struct ggml_tensor * ggml_reshape_4d(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. int64_t ne0,
  5169. int64_t ne1,
  5170. int64_t ne2,
  5171. int64_t ne3) {
  5172. GGML_ASSERT(ggml_is_contiguous(a));
  5173. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5174. bool is_node = false;
  5175. if (a->grad) {
  5176. is_node = true;
  5177. }
  5178. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5179. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5180. ggml_format_name(result, "%s (reshaped)", a->name);
  5181. result->op = GGML_OP_RESHAPE;
  5182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5183. result->src[0] = a;
  5184. result->src[1] = NULL;
  5185. return result;
  5186. }
  5187. // ggml_view_1d
  5188. struct ggml_tensor * ggml_view_1d(
  5189. struct ggml_context * ctx,
  5190. struct ggml_tensor * a,
  5191. int64_t ne0,
  5192. size_t offset) {
  5193. bool is_node = false;
  5194. if (a->grad) {
  5195. is_node = true;
  5196. }
  5197. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5198. ggml_format_name(result, "%s (view)", a->name);
  5199. ggml_scratch_save(ctx);
  5200. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5201. ggml_set_name(offs, "offset");
  5202. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5203. ggml_scratch_load(ctx);
  5204. result->op = GGML_OP_VIEW;
  5205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5206. result->src[0] = a;
  5207. result->src[1] = NULL;
  5208. result->src[2] = offs;
  5209. return result;
  5210. }
  5211. // ggml_view_2d
  5212. struct ggml_tensor * ggml_view_2d(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. int64_t ne0,
  5216. int64_t ne1,
  5217. size_t nb1,
  5218. size_t offset) {
  5219. bool is_node = false;
  5220. if (a->grad) {
  5221. is_node = true;
  5222. }
  5223. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5224. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5225. ggml_format_name(result, "%s (view)", a->name);
  5226. ggml_scratch_save(ctx);
  5227. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5228. ggml_set_name(offs, "offset");
  5229. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5230. ggml_scratch_load(ctx);
  5231. result->nb[1] = nb1;
  5232. result->nb[2] = result->nb[1]*ne1;
  5233. result->nb[3] = result->nb[2];
  5234. result->op = GGML_OP_VIEW;
  5235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5236. result->src[0] = a;
  5237. result->src[1] = NULL;
  5238. result->src[2] = offs;
  5239. return result;
  5240. }
  5241. // ggml_view_3d
  5242. struct ggml_tensor * ggml_view_3d(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. int64_t ne0,
  5246. int64_t ne1,
  5247. int64_t ne2,
  5248. size_t nb1,
  5249. size_t nb2,
  5250. size_t offset) {
  5251. bool is_node = false;
  5252. if (a->grad) {
  5253. is_node = true;
  5254. }
  5255. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5256. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5257. ggml_format_name(result, "%s (view)", a->name);
  5258. ggml_scratch_save(ctx);
  5259. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5260. ggml_set_name(offs, "offset");
  5261. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5262. ggml_scratch_load(ctx);
  5263. result->nb[1] = nb1;
  5264. result->nb[2] = nb2;
  5265. result->nb[3] = result->nb[2]*ne2;
  5266. result->op = GGML_OP_VIEW;
  5267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5268. result->src[0] = a;
  5269. result->src[1] = NULL;
  5270. result->src[2] = offs;
  5271. return result;
  5272. }
  5273. // ggml_view_4d
  5274. struct ggml_tensor * ggml_view_4d(
  5275. struct ggml_context * ctx,
  5276. struct ggml_tensor * a,
  5277. int64_t ne0,
  5278. int64_t ne1,
  5279. int64_t ne2,
  5280. int64_t ne3,
  5281. size_t nb1,
  5282. size_t nb2,
  5283. size_t nb3,
  5284. size_t offset) {
  5285. bool is_node = false;
  5286. if (a->grad) {
  5287. is_node = true;
  5288. }
  5289. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5290. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5291. ggml_format_name(result, "%s (view)", a->name);
  5292. ggml_scratch_save(ctx);
  5293. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5294. ggml_set_name(offs, "offset");
  5295. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5296. ggml_scratch_load(ctx);
  5297. result->nb[1] = nb1;
  5298. result->nb[2] = nb2;
  5299. result->nb[3] = nb3;
  5300. result->op = GGML_OP_VIEW;
  5301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5302. result->src[0] = a;
  5303. result->src[1] = NULL;
  5304. result->src[2] = offs;
  5305. return result;
  5306. }
  5307. // ggml_permute
  5308. struct ggml_tensor * ggml_permute(
  5309. struct ggml_context * ctx,
  5310. struct ggml_tensor * a,
  5311. int axis0,
  5312. int axis1,
  5313. int axis2,
  5314. int axis3) {
  5315. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5316. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5317. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5318. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5319. GGML_ASSERT(axis0 != axis1);
  5320. GGML_ASSERT(axis0 != axis2);
  5321. GGML_ASSERT(axis0 != axis3);
  5322. GGML_ASSERT(axis1 != axis2);
  5323. GGML_ASSERT(axis1 != axis3);
  5324. GGML_ASSERT(axis2 != axis3);
  5325. bool is_node = false;
  5326. if (a->grad) {
  5327. is_node = true;
  5328. }
  5329. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5330. ggml_format_name(result, "%s (permuted)", a->name);
  5331. int ne[GGML_MAX_DIMS];
  5332. int nb[GGML_MAX_DIMS];
  5333. ne[axis0] = a->ne[0];
  5334. ne[axis1] = a->ne[1];
  5335. ne[axis2] = a->ne[2];
  5336. ne[axis3] = a->ne[3];
  5337. nb[axis0] = a->nb[0];
  5338. nb[axis1] = a->nb[1];
  5339. nb[axis2] = a->nb[2];
  5340. nb[axis3] = a->nb[3];
  5341. result->ne[0] = ne[0];
  5342. result->ne[1] = ne[1];
  5343. result->ne[2] = ne[2];
  5344. result->ne[3] = ne[3];
  5345. result->nb[0] = nb[0];
  5346. result->nb[1] = nb[1];
  5347. result->nb[2] = nb[2];
  5348. result->nb[3] = nb[3];
  5349. result->op = GGML_OP_PERMUTE;
  5350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5351. result->src[0] = a;
  5352. result->src[1] = NULL;
  5353. if (is_node) {
  5354. ggml_scratch_save(ctx);
  5355. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5356. ((int32_t *) b->data)[0] = axis0;
  5357. ((int32_t *) b->data)[1] = axis1;
  5358. ((int32_t *) b->data)[2] = axis2;
  5359. ((int32_t *) b->data)[3] = axis3;
  5360. ggml_scratch_load(ctx);
  5361. result->src[2] = b;
  5362. }
  5363. return result;
  5364. }
  5365. // ggml_transpose
  5366. struct ggml_tensor * ggml_transpose(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a) {
  5369. bool is_node = false;
  5370. if (a->grad) {
  5371. is_node = true;
  5372. }
  5373. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5374. ggml_format_name(result, "%s (transposed)", a->name);
  5375. result->ne[0] = a->ne[1];
  5376. result->ne[1] = a->ne[0];
  5377. result->nb[0] = a->nb[1];
  5378. result->nb[1] = a->nb[0];
  5379. result->op = GGML_OP_TRANSPOSE;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src[0] = a;
  5382. result->src[1] = NULL;
  5383. return result;
  5384. }
  5385. // ggml_get_rows
  5386. struct ggml_tensor * ggml_get_rows(
  5387. struct ggml_context * ctx,
  5388. struct ggml_tensor * a,
  5389. struct ggml_tensor * b) {
  5390. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5391. bool is_node = false;
  5392. if (a->grad || b->grad) {
  5393. is_node = true;
  5394. }
  5395. // TODO: implement non F32 return
  5396. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5397. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5398. result->op = GGML_OP_GET_ROWS;
  5399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5400. result->src[0] = a;
  5401. result->src[1] = b;
  5402. return result;
  5403. }
  5404. // ggml_get_rows_back
  5405. struct ggml_tensor * ggml_get_rows_back(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a,
  5408. struct ggml_tensor * b,
  5409. struct ggml_tensor * c) {
  5410. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5411. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5412. bool is_node = false;
  5413. if (a->grad || b->grad) {
  5414. is_node = true;
  5415. }
  5416. // TODO: implement non F32 return
  5417. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5418. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5419. result->op = GGML_OP_GET_ROWS_BACK;
  5420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5421. result->src[0] = a;
  5422. result->src[1] = b;
  5423. result->src[2] = c;
  5424. return result;
  5425. }
  5426. // ggml_diag
  5427. struct ggml_tensor * ggml_diag(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a) {
  5430. GGML_ASSERT(a->ne[1] == 1);
  5431. bool is_node = false;
  5432. if (a->grad) {
  5433. is_node = true;
  5434. }
  5435. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5436. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5437. result->op = GGML_OP_DIAG;
  5438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5439. result->src[0] = a;
  5440. result->src[1] = NULL;
  5441. return result;
  5442. }
  5443. // ggml_diag_mask_inf
  5444. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * a,
  5447. int n_past,
  5448. bool inplace) {
  5449. bool is_node = false;
  5450. if (a->grad) {
  5451. is_node = true;
  5452. }
  5453. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5454. ggml_scratch_save(ctx);
  5455. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5456. ((int32_t *) b->data)[0] = n_past;
  5457. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5458. ggml_scratch_load(ctx);
  5459. result->op = GGML_OP_DIAG_MASK_INF;
  5460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5461. result->src[0] = a;
  5462. result->src[1] = b;
  5463. return result;
  5464. }
  5465. struct ggml_tensor * ggml_diag_mask_inf(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. int n_past) {
  5469. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5470. }
  5471. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. int n_past) {
  5475. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5476. }
  5477. // ggml_diag_mask_zero
  5478. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. int n_past,
  5482. bool inplace) {
  5483. bool is_node = false;
  5484. if (a->grad) {
  5485. is_node = true;
  5486. }
  5487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5488. ggml_scratch_save(ctx);
  5489. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5490. ggml_set_name(b, "n_past, inplace");
  5491. ((int32_t *) b->data)[0] = n_past;
  5492. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5493. ggml_scratch_load(ctx);
  5494. result->op = GGML_OP_DIAG_MASK_ZERO;
  5495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5496. result->src[0] = a;
  5497. result->src[1] = b;
  5498. return result;
  5499. }
  5500. struct ggml_tensor * ggml_diag_mask_zero(
  5501. struct ggml_context * ctx,
  5502. struct ggml_tensor * a,
  5503. int n_past) {
  5504. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5505. }
  5506. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5507. struct ggml_context * ctx,
  5508. struct ggml_tensor * a,
  5509. int n_past) {
  5510. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5511. }
  5512. // ggml_soft_max
  5513. struct ggml_tensor * ggml_soft_max_impl(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * a,
  5516. bool inplace) {
  5517. bool is_node = false;
  5518. if (a->grad) {
  5519. is_node = true;
  5520. }
  5521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5522. result->op = GGML_OP_SOFT_MAX;
  5523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5524. result->src[0] = a;
  5525. result->src[1] = NULL;
  5526. return result;
  5527. }
  5528. struct ggml_tensor * ggml_soft_max(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * a) {
  5531. return ggml_soft_max_impl(ctx, a, false);
  5532. }
  5533. struct ggml_tensor * ggml_soft_max_inplace(
  5534. struct ggml_context * ctx,
  5535. struct ggml_tensor * a) {
  5536. return ggml_soft_max_impl(ctx, a, true);
  5537. }
  5538. // ggml_soft_max_back
  5539. struct ggml_tensor * ggml_soft_max_back_impl(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. bool inplace) {
  5544. bool is_node = false;
  5545. if (a->grad || b->grad) {
  5546. is_node = true; // TODO : implement backward pass
  5547. }
  5548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5549. result->op = GGML_OP_SOFT_MAX_BACK;
  5550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5551. result->src[0] = a;
  5552. result->src[1] = b;
  5553. return result;
  5554. }
  5555. struct ggml_tensor * ggml_soft_max_back(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b) {
  5559. return ggml_soft_max_back_impl(ctx, a, b, false);
  5560. }
  5561. struct ggml_tensor * ggml_soft_max_back_inplace(
  5562. struct ggml_context * ctx,
  5563. struct ggml_tensor * a,
  5564. struct ggml_tensor * b) {
  5565. return ggml_soft_max_back_impl(ctx, a, b, true);
  5566. }
  5567. // ggml_rope
  5568. struct ggml_tensor * ggml_rope_impl(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. int n_past,
  5572. int n_dims,
  5573. int mode,
  5574. int n_ctx,
  5575. float freq_base,
  5576. float freq_scale,
  5577. bool inplace) {
  5578. GGML_ASSERT(n_past >= 0);
  5579. bool is_node = false;
  5580. if (a->grad) {
  5581. is_node = true;
  5582. }
  5583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5584. ggml_scratch_save(ctx);
  5585. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5586. ((int32_t *) b->data)[0] = n_past;
  5587. ((int32_t *) b->data)[1] = n_dims;
  5588. ((int32_t *) b->data)[2] = mode;
  5589. ((int32_t *) b->data)[3] = n_ctx;
  5590. memcpy((int32_t *) b->data + 4, &freq_base, sizeof(float));
  5591. memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float));
  5592. ggml_scratch_load(ctx);
  5593. result->op = GGML_OP_ROPE;
  5594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5595. result->src[0] = a;
  5596. result->src[1] = b;
  5597. return result;
  5598. }
  5599. struct ggml_tensor * ggml_rope(
  5600. struct ggml_context * ctx,
  5601. struct ggml_tensor * a,
  5602. int n_past,
  5603. int n_dims,
  5604. int mode,
  5605. int n_ctx) {
  5606. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5607. }
  5608. struct ggml_tensor * ggml_rope_inplace(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. int n_past,
  5612. int n_dims,
  5613. int mode,
  5614. int n_ctx) {
  5615. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5616. }
  5617. struct ggml_tensor * ggml_rope_custom_inplace(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. int n_past,
  5621. int n_dims,
  5622. int mode,
  5623. int n_ctx,
  5624. float freq_base,
  5625. float freq_scale) {
  5626. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5627. }
  5628. // ggml_rope_back
  5629. struct ggml_tensor * ggml_rope_back(
  5630. struct ggml_context * ctx,
  5631. struct ggml_tensor * a,
  5632. int n_past,
  5633. int n_dims,
  5634. int mode,
  5635. int n_ctx) {
  5636. GGML_ASSERT(n_past >= 0);
  5637. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5638. bool is_node = false;
  5639. if (a->grad) {
  5640. is_node = false; // TODO: implement backward
  5641. }
  5642. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5643. ggml_scratch_save(ctx);
  5644. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5645. ggml_set_name(b, "n_past, n_dims, mode");
  5646. ((int32_t *) b->data)[0] = n_past;
  5647. ((int32_t *) b->data)[1] = n_dims;
  5648. ((int32_t *) b->data)[2] = mode;
  5649. ((int32_t *) b->data)[3] = n_ctx;
  5650. ggml_scratch_load(ctx);
  5651. result->op = GGML_OP_ROPE_BACK;
  5652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5653. result->src[0] = a;
  5654. result->src[1] = b;
  5655. return result;
  5656. }
  5657. // ggml_alibi
  5658. struct ggml_tensor * ggml_alibi(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. int n_past,
  5662. int n_head,
  5663. float bias_max) {
  5664. GGML_ASSERT(n_past >= 0);
  5665. bool is_node = false;
  5666. if (a->grad) {
  5667. GGML_ASSERT(false); // TODO: implement backward
  5668. is_node = true;
  5669. }
  5670. // TODO: when implement backward, fix this:
  5671. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5672. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5673. ggml_scratch_save(ctx);
  5674. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5675. ((int32_t *) b->data)[0] = n_past;
  5676. ((int32_t *) b->data)[1] = n_head;
  5677. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5678. (((float *) b->data)[2]) = bias_max;
  5679. ggml_scratch_load(ctx);
  5680. result->op = GGML_OP_ALIBI;
  5681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5682. result->src[0] = a;
  5683. result->src[1] = b;
  5684. return result;
  5685. }
  5686. // ggml_clamp
  5687. struct ggml_tensor * ggml_clamp(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * a,
  5690. float min,
  5691. float max) {
  5692. bool is_node = false;
  5693. if (a->grad) {
  5694. GGML_ASSERT(false); // TODO: implement backward
  5695. is_node = true;
  5696. }
  5697. // TODO: when implement backward, fix this:
  5698. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5699. ggml_scratch_save(ctx);
  5700. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5701. ((float *) b->data)[0] = min;
  5702. ((float *) b->data)[1] = max;
  5703. ggml_scratch_load(ctx);
  5704. result->op = GGML_OP_CLAMP;
  5705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5706. result->src[0] = a;
  5707. result->src[1] = b;
  5708. return result;
  5709. }
  5710. // ggml_conv_1d
  5711. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5712. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5713. }
  5714. GGML_API struct ggml_tensor * ggml_conv_1d(
  5715. struct ggml_context * ctx,
  5716. struct ggml_tensor * a,
  5717. struct ggml_tensor * b,
  5718. int s0,
  5719. int p0,
  5720. int d0) {
  5721. GGML_ASSERT(ggml_is_matrix(b));
  5722. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5723. bool is_node = false;
  5724. if (a->grad || b->grad) {
  5725. GGML_ASSERT(false); // TODO: implement backward
  5726. is_node = true;
  5727. }
  5728. const int64_t ne[4] = {
  5729. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5730. a->ne[2], 1, 1,
  5731. };
  5732. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5733. ggml_scratch_save(ctx);
  5734. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5735. ((int32_t*)c->data)[0] = s0;
  5736. ((int32_t*)c->data)[1] = p0;
  5737. ((int32_t*)c->data)[2] = d0;
  5738. ggml_scratch_load(ctx);
  5739. result->op = GGML_OP_CONV_1D;
  5740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5741. result->src[0] = a;
  5742. result->src[1] = b;
  5743. result->src[2] = c;
  5744. return result;
  5745. }
  5746. // ggml_conv_2d
  5747. struct ggml_tensor* ggml_conv_2d(
  5748. struct ggml_context* ctx,
  5749. struct ggml_tensor * a,
  5750. struct ggml_tensor * b,
  5751. int s0,
  5752. int s1,
  5753. int p0,
  5754. int p1,
  5755. int d0,
  5756. int d1) {
  5757. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5758. bool is_node = false;
  5759. if (a->grad || b->grad) {
  5760. GGML_ASSERT(false); // TODO: implement backward
  5761. is_node = true;
  5762. }
  5763. const int64_t ne[4] = {
  5764. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5765. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5766. a->ne[3], b->ne[3],
  5767. };
  5768. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5769. ggml_scratch_save(ctx);
  5770. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5771. ((int32_t*)c->data)[0] = s0;
  5772. ((int32_t*)c->data)[1] = s1;
  5773. ((int32_t*)c->data)[2] = p0;
  5774. ((int32_t*)c->data)[3] = p1;
  5775. ((int32_t*)c->data)[4] = d0;
  5776. ((int32_t*)c->data)[5] = d1;
  5777. ggml_scratch_load(ctx);
  5778. result->op = GGML_OP_CONV_2D;
  5779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5780. result->src[0] = a;
  5781. result->src[1] = b;
  5782. result->src[2] = c;
  5783. return result;
  5784. }
  5785. // ggml_conv_1d_ph
  5786. struct ggml_tensor* ggml_conv_1d_ph(
  5787. struct ggml_context * ctx,
  5788. struct ggml_tensor * a,
  5789. struct ggml_tensor * b,
  5790. int s,
  5791. int d) {
  5792. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5793. }
  5794. // ggml_pool_*
  5795. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5796. return (ins + 2 * p - ks) / s + 1;
  5797. }
  5798. // ggml_pool_2d
  5799. struct ggml_tensor* ggml_pool_1d(
  5800. struct ggml_context * ctx,
  5801. struct ggml_tensor * a,
  5802. enum ggml_op_pool op,
  5803. int k0,
  5804. int s0,
  5805. int p0) {
  5806. bool is_node = false;
  5807. if (a->grad) {
  5808. GGML_ASSERT(false); // TODO: implement backward
  5809. is_node = true;
  5810. }
  5811. const int64_t ne[3] = {
  5812. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5813. a->ne[1],
  5814. };
  5815. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5816. ggml_scratch_save(ctx);
  5817. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5818. ((int32_t*)c->data)[0] = op;
  5819. ((int32_t*)c->data)[1] = k0;
  5820. ((int32_t*)c->data)[2] = s0;
  5821. ((int32_t*)c->data)[3] = p0;
  5822. ggml_scratch_load(ctx);
  5823. result->op = GGML_OP_POOL_1D;
  5824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5825. result->src[0] = a;
  5826. result->src[1] = c;
  5827. return result;
  5828. }
  5829. // ggml_pool_2d
  5830. struct ggml_tensor* ggml_pool_2d(
  5831. struct ggml_context * ctx,
  5832. struct ggml_tensor * a,
  5833. enum ggml_op_pool op,
  5834. int k0,
  5835. int k1,
  5836. int s0,
  5837. int s1,
  5838. int p0,
  5839. int p1) {
  5840. bool is_node = false;
  5841. if (a->grad) {
  5842. GGML_ASSERT(false); // TODO: implement backward
  5843. is_node = true;
  5844. }
  5845. const int64_t ne[3] = {
  5846. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5847. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5848. a->ne[2],
  5849. };
  5850. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5851. ggml_scratch_save(ctx);
  5852. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 7);
  5853. ((int32_t*)c->data)[0] = op;
  5854. ((int32_t*)c->data)[1] = k0;
  5855. ((int32_t*)c->data)[2] = k1;
  5856. ((int32_t*)c->data)[3] = s0;
  5857. ((int32_t*)c->data)[4] = s1;
  5858. ((int32_t*)c->data)[5] = p0;
  5859. ((int32_t*)c->data)[6] = p1;
  5860. ggml_scratch_load(ctx);
  5861. result->op = GGML_OP_POOL_2D;
  5862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5863. result->src[0] = a;
  5864. result->src[1] = c;
  5865. return result;
  5866. }
  5867. // ggml_flash_attn
  5868. struct ggml_tensor * ggml_flash_attn(
  5869. struct ggml_context * ctx,
  5870. struct ggml_tensor * q,
  5871. struct ggml_tensor * k,
  5872. struct ggml_tensor * v,
  5873. bool masked) {
  5874. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5875. // TODO: check if vT can be multiplied by (k*qT)
  5876. bool is_node = false;
  5877. if (q->grad || k->grad || v->grad) {
  5878. is_node = true;
  5879. }
  5880. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5881. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5882. result->op = GGML_OP_FLASH_ATTN;
  5883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5884. result->src[0] = q;
  5885. result->src[1] = k;
  5886. result->src[2] = v;
  5887. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5888. return result;
  5889. }
  5890. // ggml_flash_ff
  5891. struct ggml_tensor * ggml_flash_ff(
  5892. struct ggml_context * ctx,
  5893. struct ggml_tensor * a,
  5894. struct ggml_tensor * b0,
  5895. struct ggml_tensor * b1,
  5896. struct ggml_tensor * c0,
  5897. struct ggml_tensor * c1) {
  5898. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5899. // TODO: more checks
  5900. bool is_node = false;
  5901. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5902. is_node = true;
  5903. }
  5904. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5905. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5906. result->op = GGML_OP_FLASH_FF;
  5907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5908. result->src[0] = a;
  5909. result->src[1] = b0;
  5910. result->src[2] = b1;
  5911. result->src[3] = c0;
  5912. result->src[4] = c1;
  5913. return result;
  5914. }
  5915. // ggml_flash_attn_back
  5916. struct ggml_tensor * ggml_flash_attn_back(
  5917. struct ggml_context * ctx,
  5918. struct ggml_tensor * q,
  5919. struct ggml_tensor * k,
  5920. struct ggml_tensor * v,
  5921. struct ggml_tensor * d,
  5922. bool masked) {
  5923. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5924. // TODO: check if vT can be multiplied by (k*qT)
  5925. // d shape [D,N,ne2,ne3]
  5926. // q shape [D,N,ne2,ne3]
  5927. // k shape [D,M,ne2,ne3]
  5928. // v shape [M,D,ne2,ne3]
  5929. const int64_t D = q->ne[0];
  5930. const int64_t N = q->ne[1];
  5931. const int64_t M = k->ne[1];
  5932. const int64_t ne2 = q->ne[2];
  5933. const int64_t ne3 = q->ne[3];
  5934. GGML_ASSERT(k->ne[0] == D);
  5935. GGML_ASSERT(v->ne[0] == M);
  5936. GGML_ASSERT(v->ne[1] == D);
  5937. GGML_ASSERT(d->ne[0] == D);
  5938. GGML_ASSERT(d->ne[1] == N);
  5939. GGML_ASSERT(k->ne[2] == ne2);
  5940. GGML_ASSERT(k->ne[3] == ne3);
  5941. GGML_ASSERT(v->ne[2] == ne2);
  5942. GGML_ASSERT(v->ne[3] == ne3);
  5943. GGML_ASSERT(d->ne[2] == ne2);
  5944. GGML_ASSERT(d->ne[3] == ne3);
  5945. bool is_node = false;
  5946. if (q->grad || k->grad || v->grad) {
  5947. // when using this operation (in backwards pass) these grads are set.
  5948. // we don't want to create (big) grad of our result, so is_node is false.
  5949. is_node = false;
  5950. }
  5951. // store gradients of q, k and v as continuous tensors concatenated in result.
  5952. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5953. // gradq->data = result->data
  5954. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5955. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5956. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5957. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5958. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5959. result->op = GGML_OP_FLASH_ATTN_BACK;
  5960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5961. result->src[0] = q;
  5962. result->src[1] = k;
  5963. result->src[2] = v;
  5964. result->src[3] = d;
  5965. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5966. return result;
  5967. }
  5968. // ggml_win_part
  5969. struct ggml_tensor * ggml_win_part(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * a,
  5972. int w) {
  5973. GGML_ASSERT(a->ne[3] == 1);
  5974. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5975. bool is_node = false;
  5976. if (a->grad) {
  5977. GGML_ASSERT(false); // TODO: implement backward
  5978. is_node = true;
  5979. }
  5980. // padding
  5981. const int px = (w - a->ne[1]%w)%w;
  5982. const int py = (w - a->ne[2]%w)%w;
  5983. const int npx = (px + a->ne[1])/w;
  5984. const int npy = (py + a->ne[2])/w;
  5985. const int np = npx*npy;
  5986. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5987. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5988. ggml_scratch_save(ctx);
  5989. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5990. ((int32_t *) b->data)[0] = npx;
  5991. ((int32_t *) b->data)[1] = npy;
  5992. ((int32_t *) b->data)[2] = w;
  5993. ggml_scratch_load(ctx);
  5994. result->op = GGML_OP_WIN_PART;
  5995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5996. result->src[0] = a;
  5997. result->src[1] = NULL;
  5998. result->src[2] = b;
  5999. return result;
  6000. }
  6001. // ggml_win_unpart
  6002. struct ggml_tensor * ggml_win_unpart(
  6003. struct ggml_context * ctx,
  6004. struct ggml_tensor * a,
  6005. int w0,
  6006. int h0,
  6007. int w) {
  6008. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6009. bool is_node = false;
  6010. if (a->grad) {
  6011. GGML_ASSERT(false); // TODO: implement backward
  6012. is_node = true;
  6013. }
  6014. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6015. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6016. ggml_scratch_save(ctx);
  6017. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  6018. ((int32_t *) b->data)[0] = w;
  6019. ggml_scratch_load(ctx);
  6020. result->op = GGML_OP_WIN_UNPART;
  6021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6022. result->src[0] = a;
  6023. result->src[1] = NULL;
  6024. result->src[2] = b;
  6025. return result;
  6026. }
  6027. // ggml_map_unary
  6028. struct ggml_tensor * ggml_map_unary_impl_f32(
  6029. struct ggml_context * ctx,
  6030. struct ggml_tensor * a,
  6031. const ggml_unary_op_f32_t fun,
  6032. bool inplace) {
  6033. bool is_node = false;
  6034. if (!inplace && a->grad) {
  6035. is_node = true;
  6036. }
  6037. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6038. ggml_scratch_save(ctx);
  6039. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6040. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6041. ggml_scratch_load(ctx);
  6042. result->op = GGML_OP_MAP_UNARY;
  6043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6044. result->src[0] = a;
  6045. result->src[2] = addr_tensor;
  6046. return result;
  6047. }
  6048. struct ggml_tensor * ggml_map_unary_f32(
  6049. struct ggml_context * ctx,
  6050. struct ggml_tensor * a,
  6051. const ggml_unary_op_f32_t fun) {
  6052. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6053. }
  6054. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6055. struct ggml_context * ctx,
  6056. struct ggml_tensor * a,
  6057. const ggml_unary_op_f32_t fun) {
  6058. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6059. }
  6060. // ggml_map_binary
  6061. struct ggml_tensor * ggml_map_binary_impl_f32(
  6062. struct ggml_context * ctx,
  6063. struct ggml_tensor * a,
  6064. struct ggml_tensor * b,
  6065. const ggml_binary_op_f32_t fun,
  6066. bool inplace) {
  6067. GGML_ASSERT(ggml_are_same_shape(a, b));
  6068. bool is_node = false;
  6069. if (!inplace && (a->grad || b->grad)) {
  6070. is_node = true;
  6071. }
  6072. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6073. ggml_scratch_save(ctx);
  6074. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6075. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6076. ggml_scratch_load(ctx);
  6077. result->op = GGML_OP_MAP_BINARY;
  6078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6079. result->src[0] = a;
  6080. result->src[1] = b;
  6081. result->src[2] = addr_tensor;
  6082. return result;
  6083. }
  6084. struct ggml_tensor * ggml_map_binary_f32(
  6085. struct ggml_context * ctx,
  6086. struct ggml_tensor * a,
  6087. struct ggml_tensor * b,
  6088. const ggml_binary_op_f32_t fun) {
  6089. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6090. }
  6091. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6092. struct ggml_context * ctx,
  6093. struct ggml_tensor * a,
  6094. struct ggml_tensor * b,
  6095. const ggml_binary_op_f32_t fun) {
  6096. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6097. }
  6098. // ggml_map_custom1
  6099. struct ggml_tensor * ggml_map_custom1_impl_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. const ggml_custom1_op_f32_t fun,
  6103. bool inplace) {
  6104. bool is_node = false;
  6105. if (!inplace && a->grad) {
  6106. is_node = true;
  6107. }
  6108. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6109. ggml_scratch_save(ctx);
  6110. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6111. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6112. ggml_scratch_load(ctx);
  6113. result->op = GGML_OP_MAP_CUSTOM1;
  6114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6115. result->src[0] = a;
  6116. result->src[2] = addr_tensor;
  6117. return result;
  6118. }
  6119. struct ggml_tensor * ggml_map_custom1_f32(
  6120. struct ggml_context * ctx,
  6121. struct ggml_tensor * a,
  6122. const ggml_custom1_op_f32_t fun) {
  6123. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6124. }
  6125. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6126. struct ggml_context * ctx,
  6127. struct ggml_tensor * a,
  6128. const ggml_custom1_op_f32_t fun) {
  6129. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6130. }
  6131. // ggml_map_custom2
  6132. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6133. struct ggml_context * ctx,
  6134. struct ggml_tensor * a,
  6135. struct ggml_tensor * b,
  6136. const ggml_custom2_op_f32_t fun,
  6137. bool inplace) {
  6138. bool is_node = false;
  6139. if (!inplace && (a->grad || b->grad)) {
  6140. is_node = true;
  6141. }
  6142. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6143. ggml_scratch_save(ctx);
  6144. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6145. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6146. ggml_scratch_load(ctx);
  6147. result->op = GGML_OP_MAP_CUSTOM2;
  6148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6149. result->src[0] = a;
  6150. result->src[1] = b;
  6151. result->src[2] = addr_tensor;
  6152. return result;
  6153. }
  6154. struct ggml_tensor * ggml_map_custom2_f32(
  6155. struct ggml_context * ctx,
  6156. struct ggml_tensor * a,
  6157. struct ggml_tensor * b,
  6158. const ggml_custom2_op_f32_t fun) {
  6159. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6160. }
  6161. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6162. struct ggml_context * ctx,
  6163. struct ggml_tensor * a,
  6164. struct ggml_tensor * b,
  6165. const ggml_custom2_op_f32_t fun) {
  6166. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6167. }
  6168. // ggml_map_custom3
  6169. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6170. struct ggml_context * ctx,
  6171. struct ggml_tensor * a,
  6172. struct ggml_tensor * b,
  6173. struct ggml_tensor * c,
  6174. const ggml_custom3_op_f32_t fun,
  6175. bool inplace) {
  6176. bool is_node = false;
  6177. if (!inplace && (a->grad || b->grad || c->grad)) {
  6178. is_node = true;
  6179. }
  6180. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6181. ggml_scratch_save(ctx);
  6182. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6183. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6184. ggml_scratch_load(ctx);
  6185. result->op = GGML_OP_MAP_CUSTOM3;
  6186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6187. result->src[0] = a;
  6188. result->src[1] = b;
  6189. result->src[2] = addr_tensor;
  6190. result->src[3] = c;
  6191. return result;
  6192. }
  6193. struct ggml_tensor * ggml_map_custom3_f32(
  6194. struct ggml_context * ctx,
  6195. struct ggml_tensor * a,
  6196. struct ggml_tensor * b,
  6197. struct ggml_tensor * c,
  6198. const ggml_custom3_op_f32_t fun) {
  6199. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6200. }
  6201. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6202. struct ggml_context * ctx,
  6203. struct ggml_tensor * a,
  6204. struct ggml_tensor * b,
  6205. struct ggml_tensor * c,
  6206. const ggml_custom3_op_f32_t fun) {
  6207. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6208. }
  6209. // ggml_cross_entropy_loss
  6210. struct ggml_tensor * ggml_cross_entropy_loss(
  6211. struct ggml_context * ctx,
  6212. struct ggml_tensor * a,
  6213. struct ggml_tensor * b) {
  6214. GGML_ASSERT(ggml_are_same_shape(a, b));
  6215. bool is_node = false;
  6216. if (a->grad || b->grad) {
  6217. is_node = true;
  6218. }
  6219. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6220. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6222. result->src[0] = a;
  6223. result->src[1] = b;
  6224. return result;
  6225. }
  6226. // ggml_cross_entropy_loss_back
  6227. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6228. struct ggml_context * ctx,
  6229. struct ggml_tensor * a,
  6230. struct ggml_tensor * b,
  6231. struct ggml_tensor * c) {
  6232. GGML_ASSERT(ggml_are_same_shape(a, b));
  6233. GGML_ASSERT(ggml_is_scalar(c));
  6234. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6235. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6236. result->grad = NULL;
  6237. result->src[0] = a;
  6238. result->src[1] = b;
  6239. result->src[2] = c;
  6240. return result;
  6241. }
  6242. ////////////////////////////////////////////////////////////////////////////////
  6243. void ggml_set_param(
  6244. struct ggml_context * ctx,
  6245. struct ggml_tensor * tensor) {
  6246. tensor->is_param = true;
  6247. GGML_ASSERT(tensor->grad == NULL);
  6248. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6249. }
  6250. // ggml_compute_forward_dup
  6251. static void ggml_compute_forward_dup_same_cont(
  6252. const struct ggml_compute_params * params,
  6253. const struct ggml_tensor * src0,
  6254. struct ggml_tensor * dst) {
  6255. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6256. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6257. GGML_ASSERT(src0->type == dst->type);
  6258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6259. return;
  6260. }
  6261. const size_t nb00 = src0->nb[0];
  6262. const size_t nb0 = dst->nb[0];
  6263. const int ith = params->ith; // thread index
  6264. const int nth = params->nth; // number of threads
  6265. // parallelize by elements
  6266. const int ne = ggml_nelements(dst);
  6267. const int dr = (ne + nth - 1) / nth;
  6268. const int ie0 = dr * ith;
  6269. const int ie1 = MIN(ie0 + dr, ne);
  6270. if (ie0 < ie1) {
  6271. memcpy(
  6272. ((char *) dst->data + ie0*nb0),
  6273. ((char *) src0->data + ie0*nb00),
  6274. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6275. }
  6276. }
  6277. static void ggml_compute_forward_dup_f16(
  6278. const struct ggml_compute_params * params,
  6279. const struct ggml_tensor * src0,
  6280. struct ggml_tensor * dst) {
  6281. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6283. return;
  6284. }
  6285. GGML_TENSOR_UNARY_OP_LOCALS;
  6286. const int ith = params->ith; // thread index
  6287. const int nth = params->nth; // number of threads
  6288. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6289. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6290. return;
  6291. }
  6292. // parallelize by rows
  6293. const int nr = ne01;
  6294. // number of rows per thread
  6295. const int dr = (nr + nth - 1) / nth;
  6296. // row range for this thread
  6297. const int ir0 = dr * ith;
  6298. const int ir1 = MIN(ir0 + dr, nr);
  6299. if (src0->type == dst->type &&
  6300. ne00 == ne0 &&
  6301. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6302. // copy by rows
  6303. const size_t rs = ne00*nb00;
  6304. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6305. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6306. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6307. memcpy(
  6308. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6309. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6310. rs);
  6311. }
  6312. }
  6313. }
  6314. return;
  6315. }
  6316. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6317. if (ggml_is_contiguous(dst)) {
  6318. if (nb00 == sizeof(ggml_fp16_t)) {
  6319. if (dst->type == GGML_TYPE_F16) {
  6320. size_t id = 0;
  6321. const size_t rs = ne00 * nb00;
  6322. char * dst_ptr = (char *) dst->data;
  6323. for (int i03 = 0; i03 < ne03; i03++) {
  6324. for (int i02 = 0; i02 < ne02; i02++) {
  6325. id += rs * ir0;
  6326. for (int i01 = ir0; i01 < ir1; i01++) {
  6327. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6328. memcpy(dst_ptr + id, src0_ptr, rs);
  6329. id += rs;
  6330. }
  6331. id += rs * (ne01 - ir1);
  6332. }
  6333. }
  6334. } else if (dst->type == GGML_TYPE_F32) {
  6335. size_t id = 0;
  6336. float * dst_ptr = (float *) dst->data;
  6337. for (int i03 = 0; i03 < ne03; i03++) {
  6338. for (int i02 = 0; i02 < ne02; i02++) {
  6339. id += ne00 * ir0;
  6340. for (int i01 = ir0; i01 < ir1; i01++) {
  6341. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6342. for (int i00 = 0; i00 < ne00; i00++) {
  6343. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6344. id++;
  6345. }
  6346. }
  6347. id += ne00 * (ne01 - ir1);
  6348. }
  6349. }
  6350. } else if (type_traits[dst->type].from_float) {
  6351. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6352. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6353. size_t id = 0;
  6354. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6355. char * dst_ptr = (char *) dst->data;
  6356. for (int i03 = 0; i03 < ne03; i03++) {
  6357. for (int i02 = 0; i02 < ne02; i02++) {
  6358. id += rs * ir0;
  6359. for (int i01 = ir0; i01 < ir1; i01++) {
  6360. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6361. for (int i00 = 0; i00 < ne00; i00++) {
  6362. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6363. }
  6364. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6365. id += rs;
  6366. }
  6367. id += rs * (ne01 - ir1);
  6368. }
  6369. }
  6370. } else {
  6371. GGML_ASSERT(false); // TODO: implement
  6372. }
  6373. } else {
  6374. //printf("%s: this is not optimal - fix me\n", __func__);
  6375. if (dst->type == GGML_TYPE_F32) {
  6376. size_t id = 0;
  6377. float * dst_ptr = (float *) dst->data;
  6378. for (int i03 = 0; i03 < ne03; i03++) {
  6379. for (int i02 = 0; i02 < ne02; i02++) {
  6380. id += ne00 * ir0;
  6381. for (int i01 = ir0; i01 < ir1; i01++) {
  6382. for (int i00 = 0; i00 < ne00; i00++) {
  6383. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6384. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6385. id++;
  6386. }
  6387. }
  6388. id += ne00 * (ne01 - ir1);
  6389. }
  6390. }
  6391. } else if (dst->type == GGML_TYPE_F16) {
  6392. size_t id = 0;
  6393. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6394. for (int i03 = 0; i03 < ne03; i03++) {
  6395. for (int i02 = 0; i02 < ne02; i02++) {
  6396. id += ne00 * ir0;
  6397. for (int i01 = ir0; i01 < ir1; i01++) {
  6398. for (int i00 = 0; i00 < ne00; i00++) {
  6399. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6400. dst_ptr[id] = *src0_ptr;
  6401. id++;
  6402. }
  6403. }
  6404. id += ne00 * (ne01 - ir1);
  6405. }
  6406. }
  6407. } else {
  6408. GGML_ASSERT(false); // TODO: implement
  6409. }
  6410. }
  6411. return;
  6412. }
  6413. // dst counters
  6414. int64_t i10 = 0;
  6415. int64_t i11 = 0;
  6416. int64_t i12 = 0;
  6417. int64_t i13 = 0;
  6418. if (dst->type == GGML_TYPE_F16) {
  6419. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6420. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6421. i10 += ne00 * ir0;
  6422. while (i10 >= ne0) {
  6423. i10 -= ne0;
  6424. if (++i11 == ne1) {
  6425. i11 = 0;
  6426. if (++i12 == ne2) {
  6427. i12 = 0;
  6428. if (++i13 == ne3) {
  6429. i13 = 0;
  6430. }
  6431. }
  6432. }
  6433. }
  6434. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6435. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6436. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6437. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6438. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6439. if (++i10 == ne00) {
  6440. i10 = 0;
  6441. if (++i11 == ne01) {
  6442. i11 = 0;
  6443. if (++i12 == ne02) {
  6444. i12 = 0;
  6445. if (++i13 == ne03) {
  6446. i13 = 0;
  6447. }
  6448. }
  6449. }
  6450. }
  6451. }
  6452. }
  6453. i10 += ne00 * (ne01 - ir1);
  6454. while (i10 >= ne0) {
  6455. i10 -= ne0;
  6456. if (++i11 == ne1) {
  6457. i11 = 0;
  6458. if (++i12 == ne2) {
  6459. i12 = 0;
  6460. if (++i13 == ne3) {
  6461. i13 = 0;
  6462. }
  6463. }
  6464. }
  6465. }
  6466. }
  6467. }
  6468. } else if (dst->type == GGML_TYPE_F32) {
  6469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6471. i10 += ne00 * ir0;
  6472. while (i10 >= ne0) {
  6473. i10 -= ne0;
  6474. if (++i11 == ne1) {
  6475. i11 = 0;
  6476. if (++i12 == ne2) {
  6477. i12 = 0;
  6478. if (++i13 == ne3) {
  6479. i13 = 0;
  6480. }
  6481. }
  6482. }
  6483. }
  6484. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6486. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6487. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6488. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6489. if (++i10 == ne0) {
  6490. i10 = 0;
  6491. if (++i11 == ne1) {
  6492. i11 = 0;
  6493. if (++i12 == ne2) {
  6494. i12 = 0;
  6495. if (++i13 == ne3) {
  6496. i13 = 0;
  6497. }
  6498. }
  6499. }
  6500. }
  6501. }
  6502. }
  6503. i10 += ne00 * (ne01 - ir1);
  6504. while (i10 >= ne0) {
  6505. i10 -= ne0;
  6506. if (++i11 == ne1) {
  6507. i11 = 0;
  6508. if (++i12 == ne2) {
  6509. i12 = 0;
  6510. if (++i13 == ne3) {
  6511. i13 = 0;
  6512. }
  6513. }
  6514. }
  6515. }
  6516. }
  6517. }
  6518. } else {
  6519. GGML_ASSERT(false); // TODO: implement
  6520. }
  6521. }
  6522. static void ggml_compute_forward_dup_f32(
  6523. const struct ggml_compute_params * params,
  6524. const struct ggml_tensor * src0,
  6525. struct ggml_tensor * dst) {
  6526. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6528. return;
  6529. }
  6530. GGML_TENSOR_UNARY_OP_LOCALS;
  6531. const int ith = params->ith; // thread index
  6532. const int nth = params->nth; // number of threads
  6533. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6534. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6535. return;
  6536. }
  6537. // parallelize by rows
  6538. const int nr = ne01;
  6539. // number of rows per thread
  6540. const int dr = (nr + nth - 1) / nth;
  6541. // row range for this thread
  6542. const int ir0 = dr * ith;
  6543. const int ir1 = MIN(ir0 + dr, nr);
  6544. if (src0->type == dst->type &&
  6545. ne00 == ne0 &&
  6546. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6547. // copy by rows
  6548. const size_t rs = ne00*nb00;
  6549. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6550. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6551. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6552. memcpy(
  6553. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6554. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6555. rs);
  6556. }
  6557. }
  6558. }
  6559. return;
  6560. }
  6561. if (ggml_is_contiguous(dst)) {
  6562. // TODO: simplify
  6563. if (nb00 == sizeof(float)) {
  6564. if (dst->type == GGML_TYPE_F32) {
  6565. size_t id = 0;
  6566. const size_t rs = ne00 * nb00;
  6567. char * dst_ptr = (char *) dst->data;
  6568. for (int i03 = 0; i03 < ne03; i03++) {
  6569. for (int i02 = 0; i02 < ne02; i02++) {
  6570. id += rs * ir0;
  6571. for (int i01 = ir0; i01 < ir1; i01++) {
  6572. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6573. memcpy(dst_ptr + id, src0_ptr, rs);
  6574. id += rs;
  6575. }
  6576. id += rs * (ne01 - ir1);
  6577. }
  6578. }
  6579. } else if (type_traits[dst->type].from_float) {
  6580. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6581. size_t id = 0;
  6582. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6583. char * dst_ptr = (char *) dst->data;
  6584. for (int i03 = 0; i03 < ne03; i03++) {
  6585. for (int i02 = 0; i02 < ne02; i02++) {
  6586. id += rs * ir0;
  6587. for (int i01 = ir0; i01 < ir1; i01++) {
  6588. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6589. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6590. id += rs;
  6591. }
  6592. id += rs * (ne01 - ir1);
  6593. }
  6594. }
  6595. } else {
  6596. GGML_ASSERT(false); // TODO: implement
  6597. }
  6598. } else {
  6599. //printf("%s: this is not optimal - fix me\n", __func__);
  6600. if (dst->type == GGML_TYPE_F32) {
  6601. size_t id = 0;
  6602. float * dst_ptr = (float *) dst->data;
  6603. for (int i03 = 0; i03 < ne03; i03++) {
  6604. for (int i02 = 0; i02 < ne02; i02++) {
  6605. id += ne00 * ir0;
  6606. for (int i01 = ir0; i01 < ir1; i01++) {
  6607. for (int i00 = 0; i00 < ne00; i00++) {
  6608. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6609. dst_ptr[id] = *src0_ptr;
  6610. id++;
  6611. }
  6612. }
  6613. id += ne00 * (ne01 - ir1);
  6614. }
  6615. }
  6616. } else if (dst->type == GGML_TYPE_F16) {
  6617. size_t id = 0;
  6618. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6619. for (int i03 = 0; i03 < ne03; i03++) {
  6620. for (int i02 = 0; i02 < ne02; i02++) {
  6621. id += ne00 * ir0;
  6622. for (int i01 = ir0; i01 < ir1; i01++) {
  6623. for (int i00 = 0; i00 < ne00; i00++) {
  6624. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6625. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6626. id++;
  6627. }
  6628. }
  6629. id += ne00 * (ne01 - ir1);
  6630. }
  6631. }
  6632. } else {
  6633. GGML_ASSERT(false); // TODO: implement
  6634. }
  6635. }
  6636. return;
  6637. }
  6638. // dst counters
  6639. int64_t i10 = 0;
  6640. int64_t i11 = 0;
  6641. int64_t i12 = 0;
  6642. int64_t i13 = 0;
  6643. if (dst->type == GGML_TYPE_F32) {
  6644. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6645. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6646. i10 += ne00 * ir0;
  6647. while (i10 >= ne0) {
  6648. i10 -= ne0;
  6649. if (++i11 == ne1) {
  6650. i11 = 0;
  6651. if (++i12 == ne2) {
  6652. i12 = 0;
  6653. if (++i13 == ne3) {
  6654. i13 = 0;
  6655. }
  6656. }
  6657. }
  6658. }
  6659. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6660. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6661. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6662. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6663. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6664. if (++i10 == ne0) {
  6665. i10 = 0;
  6666. if (++i11 == ne1) {
  6667. i11 = 0;
  6668. if (++i12 == ne2) {
  6669. i12 = 0;
  6670. if (++i13 == ne3) {
  6671. i13 = 0;
  6672. }
  6673. }
  6674. }
  6675. }
  6676. }
  6677. }
  6678. i10 += ne00 * (ne01 - ir1);
  6679. while (i10 >= ne0) {
  6680. i10 -= ne0;
  6681. if (++i11 == ne1) {
  6682. i11 = 0;
  6683. if (++i12 == ne2) {
  6684. i12 = 0;
  6685. if (++i13 == ne3) {
  6686. i13 = 0;
  6687. }
  6688. }
  6689. }
  6690. }
  6691. }
  6692. }
  6693. } else if (dst->type == GGML_TYPE_F16) {
  6694. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6696. i10 += ne00 * ir0;
  6697. while (i10 >= ne0) {
  6698. i10 -= ne0;
  6699. if (++i11 == ne1) {
  6700. i11 = 0;
  6701. if (++i12 == ne2) {
  6702. i12 = 0;
  6703. if (++i13 == ne3) {
  6704. i13 = 0;
  6705. }
  6706. }
  6707. }
  6708. }
  6709. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6710. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6711. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6712. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6713. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6714. if (++i10 == ne0) {
  6715. i10 = 0;
  6716. if (++i11 == ne1) {
  6717. i11 = 0;
  6718. if (++i12 == ne2) {
  6719. i12 = 0;
  6720. if (++i13 == ne3) {
  6721. i13 = 0;
  6722. }
  6723. }
  6724. }
  6725. }
  6726. }
  6727. }
  6728. i10 += ne00 * (ne01 - ir1);
  6729. while (i10 >= ne0) {
  6730. i10 -= ne0;
  6731. if (++i11 == ne1) {
  6732. i11 = 0;
  6733. if (++i12 == ne2) {
  6734. i12 = 0;
  6735. if (++i13 == ne3) {
  6736. i13 = 0;
  6737. }
  6738. }
  6739. }
  6740. }
  6741. }
  6742. }
  6743. } else {
  6744. GGML_ASSERT(false); // TODO: implement
  6745. }
  6746. }
  6747. static void ggml_compute_forward_dup(
  6748. const struct ggml_compute_params * params,
  6749. const struct ggml_tensor * src0,
  6750. struct ggml_tensor * dst) {
  6751. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6752. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6753. return;
  6754. }
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F16:
  6757. {
  6758. ggml_compute_forward_dup_f16(params, src0, dst);
  6759. } break;
  6760. case GGML_TYPE_F32:
  6761. {
  6762. ggml_compute_forward_dup_f32(params, src0, dst);
  6763. } break;
  6764. default:
  6765. {
  6766. GGML_ASSERT(false);
  6767. } break;
  6768. }
  6769. }
  6770. // ggml_compute_forward_add
  6771. static void ggml_compute_forward_add_f32(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. const struct ggml_tensor * src1,
  6775. struct ggml_tensor * dst) {
  6776. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6778. return;
  6779. }
  6780. const int ith = params->ith;
  6781. const int nth = params->nth;
  6782. const int nr = ggml_nrows(src0);
  6783. GGML_TENSOR_BINARY_OP_LOCALS;
  6784. GGML_ASSERT( nb0 == sizeof(float));
  6785. GGML_ASSERT(nb00 == sizeof(float));
  6786. // rows per thread
  6787. const int dr = (nr + nth - 1)/nth;
  6788. // row range for this thread
  6789. const int ir0 = dr*ith;
  6790. const int ir1 = MIN(ir0 + dr, nr);
  6791. if (nb10 == sizeof(float)) {
  6792. for (int ir = ir0; ir < ir1; ++ir) {
  6793. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6794. const int64_t i03 = ir/(ne02*ne01);
  6795. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6796. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6797. const int64_t i13 = i03 % ne13;
  6798. const int64_t i12 = i02 % ne12;
  6799. const int64_t i11 = i01 % ne11;
  6800. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6801. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6802. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6803. #ifdef GGML_USE_ACCELERATE
  6804. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6805. #else
  6806. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6807. #endif
  6808. // }
  6809. // }
  6810. }
  6811. } else {
  6812. // src1 is not contiguous
  6813. for (int ir = ir0; ir < ir1; ++ir) {
  6814. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6815. const int64_t i03 = ir/(ne02*ne01);
  6816. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6817. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6818. const int64_t i13 = i03 % ne13;
  6819. const int64_t i12 = i02 % ne12;
  6820. const int64_t i11 = i01 % ne11;
  6821. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6822. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6823. for (int i0 = 0; i0 < ne0; i0++) {
  6824. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6825. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6826. }
  6827. }
  6828. }
  6829. }
  6830. static void ggml_compute_forward_add_f16_f32(
  6831. const struct ggml_compute_params * params,
  6832. const struct ggml_tensor * src0,
  6833. const struct ggml_tensor * src1,
  6834. struct ggml_tensor * dst) {
  6835. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6837. return;
  6838. }
  6839. const int ith = params->ith;
  6840. const int nth = params->nth;
  6841. const int nr = ggml_nrows(src0);
  6842. GGML_TENSOR_BINARY_OP_LOCALS;
  6843. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6844. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6845. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6846. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6847. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6848. // rows per thread
  6849. const int dr = (nr + nth - 1)/nth;
  6850. // row range for this thread
  6851. const int ir0 = dr*ith;
  6852. const int ir1 = MIN(ir0 + dr, nr);
  6853. if (nb10 == sizeof(float)) {
  6854. for (int ir = ir0; ir < ir1; ++ir) {
  6855. // src0, src1 and dst are same shape => same indices
  6856. const int i3 = ir/(ne2*ne1);
  6857. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6858. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6859. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6860. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6861. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6862. for (int i = 0; i < ne0; i++) {
  6863. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6864. }
  6865. }
  6866. }
  6867. else {
  6868. // src1 is not contiguous
  6869. GGML_ASSERT(false);
  6870. }
  6871. }
  6872. static void ggml_compute_forward_add_f16_f16(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. const struct ggml_tensor * src1,
  6876. struct ggml_tensor * dst) {
  6877. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6879. return;
  6880. }
  6881. const int ith = params->ith;
  6882. const int nth = params->nth;
  6883. const int nr = ggml_nrows(src0);
  6884. GGML_TENSOR_BINARY_OP_LOCALS;
  6885. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6886. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6887. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6888. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6889. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6890. // rows per thread
  6891. const int dr = (nr + nth - 1)/nth;
  6892. // row range for this thread
  6893. const int ir0 = dr*ith;
  6894. const int ir1 = MIN(ir0 + dr, nr);
  6895. if (nb10 == sizeof(ggml_fp16_t)) {
  6896. for (int ir = ir0; ir < ir1; ++ir) {
  6897. // src0, src1 and dst are same shape => same indices
  6898. const int i3 = ir/(ne2*ne1);
  6899. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6900. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6901. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6902. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6903. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6904. for (int i = 0; i < ne0; i++) {
  6905. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6906. }
  6907. }
  6908. }
  6909. else {
  6910. // src1 is not contiguous
  6911. GGML_ASSERT(false);
  6912. }
  6913. }
  6914. static void ggml_compute_forward_add_q_f32(
  6915. const struct ggml_compute_params * params,
  6916. const struct ggml_tensor * src0,
  6917. const struct ggml_tensor * src1,
  6918. struct ggml_tensor * dst) {
  6919. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6920. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6921. return;
  6922. }
  6923. const int nr = ggml_nrows(src0);
  6924. GGML_TENSOR_BINARY_OP_LOCALS;
  6925. const int ith = params->ith;
  6926. const int nth = params->nth;
  6927. const enum ggml_type type = src0->type;
  6928. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6929. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6930. // we don't support permuted src0 or src1
  6931. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6932. GGML_ASSERT(nb10 == sizeof(float));
  6933. // dst cannot be transposed or permuted
  6934. GGML_ASSERT(nb0 <= nb1);
  6935. GGML_ASSERT(nb1 <= nb2);
  6936. GGML_ASSERT(nb2 <= nb3);
  6937. GGML_ASSERT(ggml_is_quantized(src0->type));
  6938. GGML_ASSERT(dst->type == src0->type);
  6939. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6940. // rows per thread
  6941. const int dr = (nr + nth - 1)/nth;
  6942. // row range for this thread
  6943. const int ir0 = dr*ith;
  6944. const int ir1 = MIN(ir0 + dr, nr);
  6945. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6946. for (int ir = ir0; ir < ir1; ++ir) {
  6947. // src0 indices
  6948. const int i03 = ir/(ne02*ne01);
  6949. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6950. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6951. // src1 and dst are same shape as src0 => same indices
  6952. const int i13 = i03;
  6953. const int i12 = i02;
  6954. const int i11 = i01;
  6955. const int i3 = i03;
  6956. const int i2 = i02;
  6957. const int i1 = i01;
  6958. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6959. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6960. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6961. assert(ne00 % 32 == 0);
  6962. // unquantize row from src0 to temp buffer
  6963. dequantize_row_q(src0_row, wdata, ne00);
  6964. // add src1
  6965. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6966. // quantize row to dst
  6967. quantize_row_q(wdata, dst_row, ne00);
  6968. }
  6969. }
  6970. static void ggml_compute_forward_add(
  6971. const struct ggml_compute_params * params,
  6972. const struct ggml_tensor * src0,
  6973. const struct ggml_tensor * src1,
  6974. struct ggml_tensor * dst) {
  6975. switch (src0->type) {
  6976. case GGML_TYPE_F32:
  6977. {
  6978. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6979. } break;
  6980. case GGML_TYPE_F16:
  6981. {
  6982. if (src1->type == GGML_TYPE_F16) {
  6983. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6984. }
  6985. else if (src1->type == GGML_TYPE_F32) {
  6986. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6987. }
  6988. else {
  6989. GGML_ASSERT(false);
  6990. }
  6991. } break;
  6992. case GGML_TYPE_Q4_0:
  6993. case GGML_TYPE_Q4_1:
  6994. case GGML_TYPE_Q5_0:
  6995. case GGML_TYPE_Q5_1:
  6996. case GGML_TYPE_Q8_0:
  6997. case GGML_TYPE_Q2_K:
  6998. case GGML_TYPE_Q3_K:
  6999. case GGML_TYPE_Q4_K:
  7000. case GGML_TYPE_Q5_K:
  7001. case GGML_TYPE_Q6_K:
  7002. {
  7003. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7004. } break;
  7005. default:
  7006. {
  7007. GGML_ASSERT(false);
  7008. } break;
  7009. }
  7010. }
  7011. // ggml_compute_forward_add1
  7012. static void ggml_compute_forward_add1_f32(
  7013. const struct ggml_compute_params * params,
  7014. const struct ggml_tensor * src0,
  7015. const struct ggml_tensor * src1,
  7016. struct ggml_tensor * dst) {
  7017. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7018. GGML_ASSERT(ggml_is_scalar(src1));
  7019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. const int ith = params->ith;
  7023. const int nth = params->nth;
  7024. const int nr = ggml_nrows(src0);
  7025. GGML_TENSOR_UNARY_OP_LOCALS;
  7026. GGML_ASSERT( nb0 == sizeof(float));
  7027. GGML_ASSERT(nb00 == sizeof(float));
  7028. // rows per thread
  7029. const int dr = (nr + nth - 1)/nth;
  7030. // row range for this thread
  7031. const int ir0 = dr*ith;
  7032. const int ir1 = MIN(ir0 + dr, nr);
  7033. for (int ir = ir0; ir < ir1; ++ir) {
  7034. // src0 and dst are same shape => same indices
  7035. const int i3 = ir/(ne2*ne1);
  7036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7038. #ifdef GGML_USE_ACCELERATE
  7039. UNUSED(ggml_vec_add1_f32);
  7040. vDSP_vadd(
  7041. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7042. (float *) ((char *) src1->data), 0,
  7043. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7044. ne0);
  7045. #else
  7046. ggml_vec_add1_f32(ne0,
  7047. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7048. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7049. *(float *) src1->data);
  7050. #endif
  7051. }
  7052. }
  7053. static void ggml_compute_forward_add1_f16_f32(
  7054. const struct ggml_compute_params * params,
  7055. const struct ggml_tensor * src0,
  7056. const struct ggml_tensor * src1,
  7057. struct ggml_tensor * dst) {
  7058. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7059. GGML_ASSERT(ggml_is_scalar(src1));
  7060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7061. return;
  7062. }
  7063. // scalar to add
  7064. const float v = *(float *) src1->data;
  7065. const int ith = params->ith;
  7066. const int nth = params->nth;
  7067. const int nr = ggml_nrows(src0);
  7068. GGML_TENSOR_UNARY_OP_LOCALS;
  7069. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7070. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7071. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7072. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7073. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7074. // rows per thread
  7075. const int dr = (nr + nth - 1)/nth;
  7076. // row range for this thread
  7077. const int ir0 = dr*ith;
  7078. const int ir1 = MIN(ir0 + dr, nr);
  7079. for (int ir = ir0; ir < ir1; ++ir) {
  7080. // src0 and dst are same shape => same indices
  7081. const int i3 = ir/(ne2*ne1);
  7082. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7083. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7084. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7085. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7086. for (int i = 0; i < ne0; i++) {
  7087. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7088. }
  7089. }
  7090. }
  7091. static void ggml_compute_forward_add1_f16_f16(
  7092. const struct ggml_compute_params * params,
  7093. const struct ggml_tensor * src0,
  7094. const struct ggml_tensor * src1,
  7095. struct ggml_tensor * dst) {
  7096. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7097. GGML_ASSERT(ggml_is_scalar(src1));
  7098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7099. return;
  7100. }
  7101. // scalar to add
  7102. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7103. const int ith = params->ith;
  7104. const int nth = params->nth;
  7105. const int nr = ggml_nrows(src0);
  7106. GGML_TENSOR_UNARY_OP_LOCALS;
  7107. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7108. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7109. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7110. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7111. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7112. // rows per thread
  7113. const int dr = (nr + nth - 1)/nth;
  7114. // row range for this thread
  7115. const int ir0 = dr*ith;
  7116. const int ir1 = MIN(ir0 + dr, nr);
  7117. for (int ir = ir0; ir < ir1; ++ir) {
  7118. // src0 and dst are same shape => same indices
  7119. const int i3 = ir/(ne2*ne1);
  7120. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7121. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7122. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7123. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7124. for (int i = 0; i < ne0; i++) {
  7125. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7126. }
  7127. }
  7128. }
  7129. static void ggml_compute_forward_add1_q_f32(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. const struct ggml_tensor * src1,
  7133. struct ggml_tensor * dst) {
  7134. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7135. GGML_ASSERT(ggml_is_scalar(src1));
  7136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7137. return;
  7138. }
  7139. // scalar to add
  7140. const float v = *(float *) src1->data;
  7141. const int ith = params->ith;
  7142. const int nth = params->nth;
  7143. const int nr = ggml_nrows(src0);
  7144. GGML_TENSOR_UNARY_OP_LOCALS;
  7145. const enum ggml_type type = src0->type;
  7146. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7147. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7148. // we don't support permuted src0
  7149. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7150. // dst cannot be transposed or permuted
  7151. GGML_ASSERT(nb0 <= nb1);
  7152. GGML_ASSERT(nb1 <= nb2);
  7153. GGML_ASSERT(nb2 <= nb3);
  7154. GGML_ASSERT(ggml_is_quantized(src0->type));
  7155. GGML_ASSERT(dst->type == src0->type);
  7156. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7157. // rows per thread
  7158. const int dr = (nr + nth - 1)/nth;
  7159. // row range for this thread
  7160. const int ir0 = dr*ith;
  7161. const int ir1 = MIN(ir0 + dr, nr);
  7162. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7163. for (int ir = ir0; ir < ir1; ++ir) {
  7164. // src0 and dst are same shape => same indices
  7165. const int i3 = ir/(ne2*ne1);
  7166. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7167. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7168. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7169. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7170. assert(ne0 % 32 == 0);
  7171. // unquantize row from src0 to temp buffer
  7172. dequantize_row_q(src0_row, wdata, ne0);
  7173. // add src1
  7174. ggml_vec_acc1_f32(ne0, wdata, v);
  7175. // quantize row to dst
  7176. quantize_row_q(wdata, dst_row, ne0);
  7177. }
  7178. }
  7179. static void ggml_compute_forward_add1(
  7180. const struct ggml_compute_params * params,
  7181. const struct ggml_tensor * src0,
  7182. const struct ggml_tensor * src1,
  7183. struct ggml_tensor * dst) {
  7184. switch (src0->type) {
  7185. case GGML_TYPE_F32:
  7186. {
  7187. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7188. } break;
  7189. case GGML_TYPE_F16:
  7190. {
  7191. if (src1->type == GGML_TYPE_F16) {
  7192. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7193. }
  7194. else if (src1->type == GGML_TYPE_F32) {
  7195. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7196. }
  7197. else {
  7198. GGML_ASSERT(false);
  7199. }
  7200. } break;
  7201. case GGML_TYPE_Q4_0:
  7202. case GGML_TYPE_Q4_1:
  7203. case GGML_TYPE_Q5_0:
  7204. case GGML_TYPE_Q5_1:
  7205. case GGML_TYPE_Q8_0:
  7206. case GGML_TYPE_Q8_1:
  7207. case GGML_TYPE_Q2_K:
  7208. case GGML_TYPE_Q3_K:
  7209. case GGML_TYPE_Q4_K:
  7210. case GGML_TYPE_Q5_K:
  7211. case GGML_TYPE_Q6_K:
  7212. {
  7213. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7214. } break;
  7215. default:
  7216. {
  7217. GGML_ASSERT(false);
  7218. } break;
  7219. }
  7220. }
  7221. // ggml_compute_forward_acc
  7222. static void ggml_compute_forward_acc_f32(
  7223. const struct ggml_compute_params * params,
  7224. const struct ggml_tensor * src0,
  7225. const struct ggml_tensor * src1,
  7226. const struct ggml_tensor * opt0,
  7227. struct ggml_tensor * dst) {
  7228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7229. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7230. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7231. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7232. // view src0 and dst with these strides and data offset inbytes during acc
  7233. // nb0 is implicitely element_size because src0 and dst are contiguous
  7234. size_t nb1 = ((int32_t *) opt0->data)[0];
  7235. size_t nb2 = ((int32_t *) opt0->data)[1];
  7236. size_t nb3 = ((int32_t *) opt0->data)[2];
  7237. size_t offset = ((int32_t *) opt0->data)[3];
  7238. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7239. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7240. // memcpy needs to be synchronized across threads to avoid race conditions.
  7241. // => do it in INIT phase
  7242. memcpy(
  7243. ((char *) dst->data),
  7244. ((char *) src0->data),
  7245. ggml_nbytes(dst));
  7246. }
  7247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7248. return;
  7249. }
  7250. const int ith = params->ith;
  7251. const int nth = params->nth;
  7252. const int nr = ggml_nrows(src1);
  7253. const int nc = src1->ne[0];
  7254. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7255. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7256. // src0 and dst as viewed during acc
  7257. const size_t nb0 = ggml_element_size(src0);
  7258. const size_t nb00 = nb0;
  7259. const size_t nb01 = nb1;
  7260. const size_t nb02 = nb2;
  7261. const size_t nb03 = nb3;
  7262. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7263. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7264. GGML_ASSERT(nb10 == sizeof(float));
  7265. // rows per thread
  7266. const int dr = (nr + nth - 1)/nth;
  7267. // row range for this thread
  7268. const int ir0 = dr*ith;
  7269. const int ir1 = MIN(ir0 + dr, nr);
  7270. for (int ir = ir0; ir < ir1; ++ir) {
  7271. // src0 and dst are viewed with shape of src1 and offset
  7272. // => same indices
  7273. const int i3 = ir/(ne12*ne11);
  7274. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7275. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7276. #ifdef GGML_USE_ACCELERATE
  7277. vDSP_vadd(
  7278. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7279. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7280. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7281. #else
  7282. ggml_vec_add_f32(nc,
  7283. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7284. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7285. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7286. #endif
  7287. }
  7288. }
  7289. static void ggml_compute_forward_acc(
  7290. const struct ggml_compute_params * params,
  7291. const struct ggml_tensor * src0,
  7292. const struct ggml_tensor * src1,
  7293. const struct ggml_tensor * opt0,
  7294. struct ggml_tensor * dst) {
  7295. switch (src0->type) {
  7296. case GGML_TYPE_F32:
  7297. {
  7298. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7299. } break;
  7300. case GGML_TYPE_F16:
  7301. case GGML_TYPE_Q4_0:
  7302. case GGML_TYPE_Q4_1:
  7303. case GGML_TYPE_Q5_0:
  7304. case GGML_TYPE_Q5_1:
  7305. case GGML_TYPE_Q8_0:
  7306. case GGML_TYPE_Q8_1:
  7307. case GGML_TYPE_Q2_K:
  7308. case GGML_TYPE_Q3_K:
  7309. case GGML_TYPE_Q4_K:
  7310. case GGML_TYPE_Q5_K:
  7311. case GGML_TYPE_Q6_K:
  7312. default:
  7313. {
  7314. GGML_ASSERT(false);
  7315. } break;
  7316. }
  7317. }
  7318. // ggml_compute_forward_sub
  7319. static void ggml_compute_forward_sub_f32(
  7320. const struct ggml_compute_params * params,
  7321. const struct ggml_tensor * src0,
  7322. const struct ggml_tensor * src1,
  7323. struct ggml_tensor * dst) {
  7324. assert(params->ith == 0);
  7325. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7327. return;
  7328. }
  7329. const int nr = ggml_nrows(src0);
  7330. GGML_TENSOR_BINARY_OP_LOCALS;
  7331. GGML_ASSERT( nb0 == sizeof(float));
  7332. GGML_ASSERT(nb00 == sizeof(float));
  7333. if (nb10 == sizeof(float)) {
  7334. for (int ir = 0; ir < nr; ++ir) {
  7335. // src0, src1 and dst are same shape => same indices
  7336. const int i3 = ir/(ne2*ne1);
  7337. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7338. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7339. #ifdef GGML_USE_ACCELERATE
  7340. vDSP_vsub(
  7341. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7342. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7343. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7344. ne0);
  7345. #else
  7346. ggml_vec_sub_f32(ne0,
  7347. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7348. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7349. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7350. #endif
  7351. // }
  7352. // }
  7353. }
  7354. } else {
  7355. // src1 is not contiguous
  7356. for (int ir = 0; ir < nr; ++ir) {
  7357. // src0, src1 and dst are same shape => same indices
  7358. const int i3 = ir/(ne2*ne1);
  7359. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7360. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7361. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7362. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7363. for (int i0 = 0; i0 < ne0; i0++) {
  7364. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7365. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7366. }
  7367. }
  7368. }
  7369. }
  7370. static void ggml_compute_forward_sub(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. const struct ggml_tensor * src1,
  7374. struct ggml_tensor * dst) {
  7375. switch (src0->type) {
  7376. case GGML_TYPE_F32:
  7377. {
  7378. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7379. } break;
  7380. default:
  7381. {
  7382. GGML_ASSERT(false);
  7383. } break;
  7384. }
  7385. }
  7386. // ggml_compute_forward_mul
  7387. static void ggml_compute_forward_mul_f32(
  7388. const struct ggml_compute_params * params,
  7389. const struct ggml_tensor * src0,
  7390. const struct ggml_tensor * src1,
  7391. struct ggml_tensor * dst) {
  7392. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7393. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7394. return;
  7395. }
  7396. const int ith = params->ith;
  7397. const int nth = params->nth;
  7398. #ifdef GGML_USE_CLBLAST
  7399. if (src1->backend == GGML_BACKEND_GPU) {
  7400. if (ith == 0) {
  7401. ggml_cl_mul(src0, src1, dst);
  7402. }
  7403. return;
  7404. }
  7405. #endif
  7406. const int64_t nr = ggml_nrows(src0);
  7407. GGML_TENSOR_BINARY_OP_LOCALS;
  7408. GGML_ASSERT( nb0 == sizeof(float));
  7409. GGML_ASSERT(nb00 == sizeof(float));
  7410. GGML_ASSERT(ne00 == ne10);
  7411. if (nb10 == sizeof(float)) {
  7412. for (int64_t ir = ith; ir < nr; ir += nth) {
  7413. // src0 and dst are same shape => same indices
  7414. const int64_t i03 = ir/(ne02*ne01);
  7415. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7416. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7417. const int64_t i13 = i03 % ne13;
  7418. const int64_t i12 = i02 % ne12;
  7419. const int64_t i11 = i01 % ne11;
  7420. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7421. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7422. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7423. #ifdef GGML_USE_ACCELERATE
  7424. UNUSED(ggml_vec_mul_f32);
  7425. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7426. #else
  7427. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7428. #endif
  7429. // }
  7430. // }
  7431. }
  7432. } else {
  7433. // src1 is not contiguous
  7434. for (int64_t ir = ith; ir < nr; ir += nth) {
  7435. // src0 and dst are same shape => same indices
  7436. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7437. const int64_t i03 = ir/(ne02*ne01);
  7438. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7439. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7440. const int64_t i13 = i03 % ne13;
  7441. const int64_t i12 = i02 % ne12;
  7442. const int64_t i11 = i01 % ne11;
  7443. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7444. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7445. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7446. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7447. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7448. }
  7449. }
  7450. }
  7451. }
  7452. static void ggml_compute_forward_mul(
  7453. const struct ggml_compute_params * params,
  7454. const struct ggml_tensor * src0,
  7455. const struct ggml_tensor * src1,
  7456. struct ggml_tensor * dst) {
  7457. switch (src0->type) {
  7458. case GGML_TYPE_F32:
  7459. {
  7460. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7461. } break;
  7462. default:
  7463. {
  7464. GGML_ASSERT(false);
  7465. } break;
  7466. }
  7467. }
  7468. // ggml_compute_forward_div
  7469. static void ggml_compute_forward_div_f32(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. const struct ggml_tensor * src1,
  7473. struct ggml_tensor * dst) {
  7474. assert(params->ith == 0);
  7475. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7477. return;
  7478. }
  7479. const int nr = ggml_nrows(src0);
  7480. GGML_TENSOR_BINARY_OP_LOCALS;
  7481. GGML_ASSERT( nb0 == sizeof(float));
  7482. GGML_ASSERT(nb00 == sizeof(float));
  7483. if (nb10 == sizeof(float)) {
  7484. for (int ir = 0; ir < nr; ++ir) {
  7485. // src0, src1 and dst are same shape => same indices
  7486. const int i3 = ir/(ne2*ne1);
  7487. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7488. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7489. #ifdef GGML_USE_ACCELERATE
  7490. vDSP_vdiv(
  7491. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7492. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7493. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7494. ne0);
  7495. #else
  7496. ggml_vec_div_f32(ne0,
  7497. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7498. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7499. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7500. #endif
  7501. // }
  7502. // }
  7503. }
  7504. } else {
  7505. // src1 is not contiguous
  7506. for (int ir = 0; ir < nr; ++ir) {
  7507. // src0, src1 and dst are same shape => same indices
  7508. const int i3 = ir/(ne2*ne1);
  7509. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7510. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7511. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7512. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7513. for (int i0 = 0; i0 < ne0; i0++) {
  7514. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7515. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7516. }
  7517. }
  7518. }
  7519. }
  7520. static void ggml_compute_forward_div(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. const struct ggml_tensor * src1,
  7524. struct ggml_tensor * dst) {
  7525. switch (src0->type) {
  7526. case GGML_TYPE_F32:
  7527. {
  7528. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7529. } break;
  7530. default:
  7531. {
  7532. GGML_ASSERT(false);
  7533. } break;
  7534. }
  7535. }
  7536. // ggml_compute_forward_sqr
  7537. static void ggml_compute_forward_sqr_f32(
  7538. const struct ggml_compute_params * params,
  7539. const struct ggml_tensor * src0,
  7540. struct ggml_tensor * dst) {
  7541. assert(params->ith == 0);
  7542. assert(ggml_are_same_shape(src0, dst));
  7543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7544. return;
  7545. }
  7546. const int n = ggml_nrows(src0);
  7547. const int nc = src0->ne[0];
  7548. assert( dst->nb[0] == sizeof(float));
  7549. assert(src0->nb[0] == sizeof(float));
  7550. for (int i = 0; i < n; i++) {
  7551. ggml_vec_sqr_f32(nc,
  7552. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7553. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7554. }
  7555. }
  7556. static void ggml_compute_forward_sqr(
  7557. const struct ggml_compute_params * params,
  7558. const struct ggml_tensor * src0,
  7559. struct ggml_tensor * dst) {
  7560. switch (src0->type) {
  7561. case GGML_TYPE_F32:
  7562. {
  7563. ggml_compute_forward_sqr_f32(params, src0, dst);
  7564. } break;
  7565. default:
  7566. {
  7567. GGML_ASSERT(false);
  7568. } break;
  7569. }
  7570. }
  7571. // ggml_compute_forward_sqrt
  7572. static void ggml_compute_forward_sqrt_f32(
  7573. const struct ggml_compute_params * params,
  7574. const struct ggml_tensor * src0,
  7575. struct ggml_tensor * dst) {
  7576. assert(params->ith == 0);
  7577. assert(ggml_are_same_shape(src0, dst));
  7578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7579. return;
  7580. }
  7581. const int n = ggml_nrows(src0);
  7582. const int nc = src0->ne[0];
  7583. assert( dst->nb[0] == sizeof(float));
  7584. assert(src0->nb[0] == sizeof(float));
  7585. for (int i = 0; i < n; i++) {
  7586. ggml_vec_sqrt_f32(nc,
  7587. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7588. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7589. }
  7590. }
  7591. static void ggml_compute_forward_sqrt(
  7592. const struct ggml_compute_params * params,
  7593. const struct ggml_tensor * src0,
  7594. struct ggml_tensor * dst) {
  7595. switch (src0->type) {
  7596. case GGML_TYPE_F32:
  7597. {
  7598. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7599. } break;
  7600. default:
  7601. {
  7602. GGML_ASSERT(false);
  7603. } break;
  7604. }
  7605. }
  7606. // ggml_compute_forward_log
  7607. static void ggml_compute_forward_log_f32(
  7608. const struct ggml_compute_params * params,
  7609. const struct ggml_tensor * src0,
  7610. struct ggml_tensor * dst) {
  7611. GGML_ASSERT(params->ith == 0);
  7612. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7613. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7614. return;
  7615. }
  7616. const int n = ggml_nrows(src0);
  7617. const int nc = src0->ne[0];
  7618. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7619. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7620. for (int i = 0; i < n; i++) {
  7621. ggml_vec_log_f32(nc,
  7622. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7623. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7624. }
  7625. }
  7626. static void ggml_compute_forward_log(
  7627. const struct ggml_compute_params * params,
  7628. const struct ggml_tensor * src0,
  7629. struct ggml_tensor * dst) {
  7630. switch (src0->type) {
  7631. case GGML_TYPE_F32:
  7632. {
  7633. ggml_compute_forward_log_f32(params, src0, dst);
  7634. } break;
  7635. default:
  7636. {
  7637. GGML_ASSERT(false);
  7638. } break;
  7639. }
  7640. }
  7641. // ggml_compute_forward_sum
  7642. static void ggml_compute_forward_sum_f32(
  7643. const struct ggml_compute_params * params,
  7644. const struct ggml_tensor * src0,
  7645. struct ggml_tensor * dst) {
  7646. assert(params->ith == 0);
  7647. assert(ggml_is_scalar(dst));
  7648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7649. return;
  7650. }
  7651. assert(ggml_is_scalar(dst));
  7652. assert(src0->nb[0] == sizeof(float));
  7653. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7654. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7655. ggml_float sum = 0;
  7656. ggml_float row_sum = 0;
  7657. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7658. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7659. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7660. ggml_vec_sum_ggf(ne00,
  7661. &row_sum,
  7662. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7663. sum += row_sum;
  7664. }
  7665. }
  7666. }
  7667. ((float *) dst->data)[0] = sum;
  7668. }
  7669. static void ggml_compute_forward_sum(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. struct ggml_tensor * dst) {
  7673. switch (src0->type) {
  7674. case GGML_TYPE_F32:
  7675. {
  7676. ggml_compute_forward_sum_f32(params, src0, dst);
  7677. } break;
  7678. default:
  7679. {
  7680. GGML_ASSERT(false);
  7681. } break;
  7682. }
  7683. }
  7684. // ggml_compute_forward_sum_rows
  7685. static void ggml_compute_forward_sum_rows_f32(
  7686. const struct ggml_compute_params * params,
  7687. const struct ggml_tensor * src0,
  7688. struct ggml_tensor * dst) {
  7689. GGML_ASSERT(params->ith == 0);
  7690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7691. return;
  7692. }
  7693. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7694. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7695. GGML_TENSOR_UNARY_OP_LOCALS;
  7696. GGML_ASSERT(ne0 == 1);
  7697. GGML_ASSERT(ne1 == ne01);
  7698. GGML_ASSERT(ne2 == ne02);
  7699. GGML_ASSERT(ne3 == ne03);
  7700. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7701. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7702. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7703. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7704. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7705. float row_sum = 0;
  7706. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7707. dst_row[0] = row_sum;
  7708. }
  7709. }
  7710. }
  7711. }
  7712. static void ggml_compute_forward_sum_rows(
  7713. const struct ggml_compute_params * params,
  7714. const struct ggml_tensor * src0,
  7715. struct ggml_tensor * dst) {
  7716. switch (src0->type) {
  7717. case GGML_TYPE_F32:
  7718. {
  7719. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7720. } break;
  7721. default:
  7722. {
  7723. GGML_ASSERT(false);
  7724. } break;
  7725. }
  7726. }
  7727. // ggml_compute_forward_mean
  7728. static void ggml_compute_forward_mean_f32(
  7729. const struct ggml_compute_params * params,
  7730. const struct ggml_tensor * src0,
  7731. struct ggml_tensor * dst) {
  7732. assert(params->ith == 0);
  7733. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7734. return;
  7735. }
  7736. assert(src0->nb[0] == sizeof(float));
  7737. GGML_TENSOR_UNARY_OP_LOCALS;
  7738. assert(ne0 == 1);
  7739. assert(ne1 == ne01);
  7740. assert(ne2 == ne02);
  7741. assert(ne3 == ne03);
  7742. UNUSED(ne0);
  7743. UNUSED(ne1);
  7744. UNUSED(ne2);
  7745. UNUSED(ne3);
  7746. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7747. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7748. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7749. ggml_vec_sum_f32(ne00,
  7750. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7751. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7752. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7753. }
  7754. }
  7755. }
  7756. }
  7757. static void ggml_compute_forward_mean(
  7758. const struct ggml_compute_params * params,
  7759. const struct ggml_tensor * src0,
  7760. struct ggml_tensor * dst) {
  7761. switch (src0->type) {
  7762. case GGML_TYPE_F32:
  7763. {
  7764. ggml_compute_forward_mean_f32(params, src0, dst);
  7765. } break;
  7766. default:
  7767. {
  7768. GGML_ASSERT(false);
  7769. } break;
  7770. }
  7771. }
  7772. // ggml_compute_forward_argmax
  7773. static void ggml_compute_forward_argmax_f32(
  7774. const struct ggml_compute_params * params,
  7775. const struct ggml_tensor * src0,
  7776. struct ggml_tensor * dst) {
  7777. assert(params->ith == 0);
  7778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7779. return;
  7780. }
  7781. assert(src0->nb[0] == sizeof(float));
  7782. assert(dst->nb[0] == sizeof(float));
  7783. const int64_t ne00 = src0->ne[0];
  7784. const int64_t ne01 = src0->ne[1];
  7785. const size_t nb01 = src0->nb[1];
  7786. const size_t nb0 = dst->nb[0];
  7787. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7788. float * src = (float *) ((char *) src0->data + i1*nb01);
  7789. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7790. int v = 0;
  7791. ggml_vec_argmax_f32(ne00, &v, src);
  7792. dst_[0] = v;
  7793. }
  7794. }
  7795. static void ggml_compute_forward_argmax(
  7796. const struct ggml_compute_params * params,
  7797. const struct ggml_tensor * src0,
  7798. struct ggml_tensor * dst) {
  7799. switch (src0->type) {
  7800. case GGML_TYPE_F32:
  7801. {
  7802. ggml_compute_forward_argmax_f32(params, src0, dst);
  7803. } break;
  7804. default:
  7805. {
  7806. GGML_ASSERT(false);
  7807. } break;
  7808. }
  7809. }
  7810. // ggml_compute_forward_repeat
  7811. static void ggml_compute_forward_repeat_f32(
  7812. const struct ggml_compute_params * params,
  7813. const struct ggml_tensor * src0,
  7814. struct ggml_tensor * dst) {
  7815. GGML_ASSERT(params->ith == 0);
  7816. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7818. return;
  7819. }
  7820. GGML_TENSOR_UNARY_OP_LOCALS;
  7821. // guaranteed to be an integer due to the check in ggml_can_repeat
  7822. const int nr0 = (int)(ne0/ne00);
  7823. const int nr1 = (int)(ne1/ne01);
  7824. const int nr2 = (int)(ne2/ne02);
  7825. const int nr3 = (int)(ne3/ne03);
  7826. // TODO: support for transposed / permuted tensors
  7827. GGML_ASSERT(nb0 == sizeof(float));
  7828. GGML_ASSERT(nb00 == sizeof(float));
  7829. // TODO: maybe this is not optimal?
  7830. for (int i3 = 0; i3 < nr3; i3++) {
  7831. for (int k3 = 0; k3 < ne03; k3++) {
  7832. for (int i2 = 0; i2 < nr2; i2++) {
  7833. for (int k2 = 0; k2 < ne02; k2++) {
  7834. for (int i1 = 0; i1 < nr1; i1++) {
  7835. for (int k1 = 0; k1 < ne01; k1++) {
  7836. for (int i0 = 0; i0 < nr0; i0++) {
  7837. ggml_vec_cpy_f32(ne00,
  7838. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7839. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7840. }
  7841. }
  7842. }
  7843. }
  7844. }
  7845. }
  7846. }
  7847. }
  7848. static void ggml_compute_forward_repeat(
  7849. const struct ggml_compute_params * params,
  7850. const struct ggml_tensor * src0,
  7851. struct ggml_tensor * dst) {
  7852. switch (src0->type) {
  7853. case GGML_TYPE_F32:
  7854. {
  7855. ggml_compute_forward_repeat_f32(params, src0, dst);
  7856. } break;
  7857. default:
  7858. {
  7859. GGML_ASSERT(false);
  7860. } break;
  7861. }
  7862. }
  7863. // ggml_compute_forward_repeat_back
  7864. static void ggml_compute_forward_repeat_back_f32(
  7865. const struct ggml_compute_params * params,
  7866. const struct ggml_tensor * src0,
  7867. struct ggml_tensor * dst) {
  7868. GGML_ASSERT(params->ith == 0);
  7869. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7871. return;
  7872. }
  7873. GGML_TENSOR_UNARY_OP_LOCALS;
  7874. // guaranteed to be an integer due to the check in ggml_can_repeat
  7875. const int nr0 = (int)(ne00/ne0);
  7876. const int nr1 = (int)(ne01/ne1);
  7877. const int nr2 = (int)(ne02/ne2);
  7878. const int nr3 = (int)(ne03/ne3);
  7879. // TODO: support for transposed / permuted tensors
  7880. GGML_ASSERT(nb0 == sizeof(float));
  7881. GGML_ASSERT(nb00 == sizeof(float));
  7882. if (ggml_is_contiguous(dst)) {
  7883. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7884. } else {
  7885. for (int k3 = 0; k3 < ne3; k3++) {
  7886. for (int k2 = 0; k2 < ne2; k2++) {
  7887. for (int k1 = 0; k1 < ne1; k1++) {
  7888. ggml_vec_set_f32(ne0,
  7889. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7890. 0);
  7891. }
  7892. }
  7893. }
  7894. }
  7895. // TODO: maybe this is not optimal?
  7896. for (int i3 = 0; i3 < nr3; i3++) {
  7897. for (int k3 = 0; k3 < ne3; k3++) {
  7898. for (int i2 = 0; i2 < nr2; i2++) {
  7899. for (int k2 = 0; k2 < ne2; k2++) {
  7900. for (int i1 = 0; i1 < nr1; i1++) {
  7901. for (int k1 = 0; k1 < ne1; k1++) {
  7902. for (int i0 = 0; i0 < nr0; i0++) {
  7903. ggml_vec_acc_f32(ne0,
  7904. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7905. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7906. }
  7907. }
  7908. }
  7909. }
  7910. }
  7911. }
  7912. }
  7913. }
  7914. static void ggml_compute_forward_repeat_back(
  7915. const struct ggml_compute_params * params,
  7916. const struct ggml_tensor * src0,
  7917. struct ggml_tensor * dst) {
  7918. switch (src0->type) {
  7919. case GGML_TYPE_F32:
  7920. {
  7921. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7922. } break;
  7923. default:
  7924. {
  7925. GGML_ASSERT(false);
  7926. } break;
  7927. }
  7928. }
  7929. // ggml_compute_forward_abs
  7930. static void ggml_compute_forward_abs_f32(
  7931. const struct ggml_compute_params * params,
  7932. const struct ggml_tensor * src0,
  7933. struct ggml_tensor * dst) {
  7934. assert(params->ith == 0);
  7935. assert(ggml_are_same_shape(src0, dst));
  7936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7937. return;
  7938. }
  7939. const int n = ggml_nrows(src0);
  7940. const int nc = src0->ne[0];
  7941. assert(dst->nb[0] == sizeof(float));
  7942. assert(src0->nb[0] == sizeof(float));
  7943. for (int i = 0; i < n; i++) {
  7944. ggml_vec_abs_f32(nc,
  7945. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7946. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7947. }
  7948. }
  7949. static void ggml_compute_forward_abs(
  7950. const struct ggml_compute_params * params,
  7951. const struct ggml_tensor * src0,
  7952. struct ggml_tensor * dst) {
  7953. switch (src0->type) {
  7954. case GGML_TYPE_F32:
  7955. {
  7956. ggml_compute_forward_abs_f32(params, src0, dst);
  7957. } break;
  7958. default:
  7959. {
  7960. GGML_ASSERT(false);
  7961. } break;
  7962. }
  7963. }
  7964. // ggml_compute_forward_sgn
  7965. static void ggml_compute_forward_sgn_f32(
  7966. const struct ggml_compute_params * params,
  7967. const struct ggml_tensor * src0,
  7968. struct ggml_tensor * dst) {
  7969. assert(params->ith == 0);
  7970. assert(ggml_are_same_shape(src0, dst));
  7971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7972. return;
  7973. }
  7974. const int n = ggml_nrows(src0);
  7975. const int nc = src0->ne[0];
  7976. assert(dst->nb[0] == sizeof(float));
  7977. assert(src0->nb[0] == sizeof(float));
  7978. for (int i = 0; i < n; i++) {
  7979. ggml_vec_sgn_f32(nc,
  7980. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7981. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7982. }
  7983. }
  7984. static void ggml_compute_forward_sgn(
  7985. const struct ggml_compute_params * params,
  7986. const struct ggml_tensor * src0,
  7987. struct ggml_tensor * dst) {
  7988. switch (src0->type) {
  7989. case GGML_TYPE_F32:
  7990. {
  7991. ggml_compute_forward_sgn_f32(params, src0, dst);
  7992. } break;
  7993. default:
  7994. {
  7995. GGML_ASSERT(false);
  7996. } break;
  7997. }
  7998. }
  7999. // ggml_compute_forward_neg
  8000. static void ggml_compute_forward_neg_f32(
  8001. const struct ggml_compute_params * params,
  8002. const struct ggml_tensor * src0,
  8003. struct ggml_tensor * dst) {
  8004. assert(params->ith == 0);
  8005. assert(ggml_are_same_shape(src0, dst));
  8006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8007. return;
  8008. }
  8009. const int n = ggml_nrows(src0);
  8010. const int nc = src0->ne[0];
  8011. assert(dst->nb[0] == sizeof(float));
  8012. assert(src0->nb[0] == sizeof(float));
  8013. for (int i = 0; i < n; i++) {
  8014. ggml_vec_neg_f32(nc,
  8015. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8016. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8017. }
  8018. }
  8019. static void ggml_compute_forward_neg(
  8020. const struct ggml_compute_params * params,
  8021. const struct ggml_tensor * src0,
  8022. struct ggml_tensor * dst) {
  8023. switch (src0->type) {
  8024. case GGML_TYPE_F32:
  8025. {
  8026. ggml_compute_forward_neg_f32(params, src0, dst);
  8027. } break;
  8028. default:
  8029. {
  8030. GGML_ASSERT(false);
  8031. } break;
  8032. }
  8033. }
  8034. // ggml_compute_forward_step
  8035. static void ggml_compute_forward_step_f32(
  8036. const struct ggml_compute_params * params,
  8037. const struct ggml_tensor * src0,
  8038. struct ggml_tensor * dst) {
  8039. assert(params->ith == 0);
  8040. assert(ggml_are_same_shape(src0, dst));
  8041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8042. return;
  8043. }
  8044. const int n = ggml_nrows(src0);
  8045. const int nc = src0->ne[0];
  8046. assert(dst->nb[0] == sizeof(float));
  8047. assert(src0->nb[0] == sizeof(float));
  8048. for (int i = 0; i < n; i++) {
  8049. ggml_vec_step_f32(nc,
  8050. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8051. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8052. }
  8053. }
  8054. static void ggml_compute_forward_step(
  8055. const struct ggml_compute_params * params,
  8056. const struct ggml_tensor * src0,
  8057. struct ggml_tensor * dst) {
  8058. switch (src0->type) {
  8059. case GGML_TYPE_F32:
  8060. {
  8061. ggml_compute_forward_step_f32(params, src0, dst);
  8062. } break;
  8063. default:
  8064. {
  8065. GGML_ASSERT(false);
  8066. } break;
  8067. }
  8068. }
  8069. // ggml_compute_forward_tanh
  8070. static void ggml_compute_forward_tanh_f32(
  8071. const struct ggml_compute_params * params,
  8072. const struct ggml_tensor * src0,
  8073. struct ggml_tensor * dst) {
  8074. assert(params->ith == 0);
  8075. assert(ggml_are_same_shape(src0, dst));
  8076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8077. return;
  8078. }
  8079. const int n = ggml_nrows(src0);
  8080. const int nc = src0->ne[0];
  8081. assert(dst->nb[0] == sizeof(float));
  8082. assert(src0->nb[0] == sizeof(float));
  8083. for (int i = 0; i < n; i++) {
  8084. ggml_vec_tanh_f32(nc,
  8085. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8086. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8087. }
  8088. }
  8089. static void ggml_compute_forward_tanh(
  8090. const struct ggml_compute_params * params,
  8091. const struct ggml_tensor * src0,
  8092. struct ggml_tensor * dst) {
  8093. switch (src0->type) {
  8094. case GGML_TYPE_F32:
  8095. {
  8096. ggml_compute_forward_tanh_f32(params, src0, dst);
  8097. } break;
  8098. default:
  8099. {
  8100. GGML_ASSERT(false);
  8101. } break;
  8102. }
  8103. }
  8104. // ggml_compute_forward_elu
  8105. static void ggml_compute_forward_elu_f32(
  8106. const struct ggml_compute_params * params,
  8107. const struct ggml_tensor * src0,
  8108. struct ggml_tensor * dst) {
  8109. assert(params->ith == 0);
  8110. assert(ggml_are_same_shape(src0, dst));
  8111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8112. return;
  8113. }
  8114. const int n = ggml_nrows(src0);
  8115. const int nc = src0->ne[0];
  8116. assert(dst->nb[0] == sizeof(float));
  8117. assert(src0->nb[0] == sizeof(float));
  8118. for (int i = 0; i < n; i++) {
  8119. ggml_vec_elu_f32(nc,
  8120. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8121. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8122. }
  8123. }
  8124. static void ggml_compute_forward_elu(
  8125. const struct ggml_compute_params * params,
  8126. const struct ggml_tensor * src0,
  8127. struct ggml_tensor * dst) {
  8128. switch (src0->type) {
  8129. case GGML_TYPE_F32:
  8130. {
  8131. ggml_compute_forward_elu_f32(params, src0, dst);
  8132. } break;
  8133. default:
  8134. {
  8135. GGML_ASSERT(false);
  8136. } break;
  8137. }
  8138. }
  8139. // ggml_compute_forward_relu
  8140. static void ggml_compute_forward_relu_f32(
  8141. const struct ggml_compute_params * params,
  8142. const struct ggml_tensor * src0,
  8143. struct ggml_tensor * dst) {
  8144. assert(params->ith == 0);
  8145. assert(ggml_are_same_shape(src0, dst));
  8146. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8147. return;
  8148. }
  8149. const int n = ggml_nrows(src0);
  8150. const int nc = src0->ne[0];
  8151. assert(dst->nb[0] == sizeof(float));
  8152. assert(src0->nb[0] == sizeof(float));
  8153. for (int i = 0; i < n; i++) {
  8154. ggml_vec_relu_f32(nc,
  8155. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8156. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8157. }
  8158. }
  8159. static void ggml_compute_forward_relu(
  8160. const struct ggml_compute_params * params,
  8161. const struct ggml_tensor * src0,
  8162. struct ggml_tensor * dst) {
  8163. switch (src0->type) {
  8164. case GGML_TYPE_F32:
  8165. {
  8166. ggml_compute_forward_relu_f32(params, src0, dst);
  8167. } break;
  8168. default:
  8169. {
  8170. GGML_ASSERT(false);
  8171. } break;
  8172. }
  8173. }
  8174. // ggml_compute_forward_gelu
  8175. static void ggml_compute_forward_gelu_f32(
  8176. const struct ggml_compute_params * params,
  8177. const struct ggml_tensor * src0,
  8178. struct ggml_tensor * dst) {
  8179. GGML_ASSERT(ggml_is_contiguous(src0));
  8180. GGML_ASSERT(ggml_is_contiguous(dst));
  8181. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8183. return;
  8184. }
  8185. const int ith = params->ith;
  8186. const int nth = params->nth;
  8187. const int nc = src0->ne[0];
  8188. const int nr = ggml_nrows(src0);
  8189. // rows per thread
  8190. const int dr = (nr + nth - 1)/nth;
  8191. // row range for this thread
  8192. const int ir0 = dr*ith;
  8193. const int ir1 = MIN(ir0 + dr, nr);
  8194. for (int i1 = ir0; i1 < ir1; i1++) {
  8195. ggml_vec_gelu_f32(nc,
  8196. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8197. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8198. #ifndef NDEBUG
  8199. for (int k = 0; k < nc; k++) {
  8200. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8201. UNUSED(x);
  8202. assert(!isnan(x));
  8203. assert(!isinf(x));
  8204. }
  8205. #endif
  8206. }
  8207. }
  8208. static void ggml_compute_forward_gelu(
  8209. const struct ggml_compute_params * params,
  8210. const struct ggml_tensor * src0,
  8211. struct ggml_tensor * dst) {
  8212. switch (src0->type) {
  8213. case GGML_TYPE_F32:
  8214. {
  8215. ggml_compute_forward_gelu_f32(params, src0, dst);
  8216. } break;
  8217. default:
  8218. {
  8219. GGML_ASSERT(false);
  8220. } break;
  8221. }
  8222. }
  8223. // ggml_compute_forward_gelu_quick
  8224. static void ggml_compute_forward_gelu_quick_f32(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. struct ggml_tensor * dst) {
  8228. GGML_ASSERT(ggml_is_contiguous(src0));
  8229. GGML_ASSERT(ggml_is_contiguous(dst));
  8230. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8232. return;
  8233. }
  8234. const int ith = params->ith;
  8235. const int nth = params->nth;
  8236. const int nc = src0->ne[0];
  8237. const int nr = ggml_nrows(src0);
  8238. // rows per thread
  8239. const int dr = (nr + nth - 1)/nth;
  8240. // row range for this thread
  8241. const int ir0 = dr*ith;
  8242. const int ir1 = MIN(ir0 + dr, nr);
  8243. for (int i1 = ir0; i1 < ir1; i1++) {
  8244. ggml_vec_gelu_quick_f32(nc,
  8245. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8246. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8247. #ifndef NDEBUG
  8248. for (int k = 0; k < nc; k++) {
  8249. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8250. UNUSED(x);
  8251. assert(!isnan(x));
  8252. assert(!isinf(x));
  8253. }
  8254. #endif
  8255. }
  8256. }
  8257. static void ggml_compute_forward_gelu_quick(
  8258. const struct ggml_compute_params * params,
  8259. const struct ggml_tensor * src0,
  8260. struct ggml_tensor * dst) {
  8261. switch (src0->type) {
  8262. case GGML_TYPE_F32:
  8263. {
  8264. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8265. } break;
  8266. default:
  8267. {
  8268. GGML_ASSERT(false);
  8269. } break;
  8270. }
  8271. }
  8272. // ggml_compute_forward_silu
  8273. static void ggml_compute_forward_silu_f32(
  8274. const struct ggml_compute_params * params,
  8275. const struct ggml_tensor * src0,
  8276. struct ggml_tensor * dst) {
  8277. GGML_ASSERT(ggml_is_contiguous(src0));
  8278. GGML_ASSERT(ggml_is_contiguous(dst));
  8279. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8281. return;
  8282. }
  8283. const int ith = params->ith;
  8284. const int nth = params->nth;
  8285. const int nc = src0->ne[0];
  8286. const int nr = ggml_nrows(src0);
  8287. // rows per thread
  8288. const int dr = (nr + nth - 1)/nth;
  8289. // row range for this thread
  8290. const int ir0 = dr*ith;
  8291. const int ir1 = MIN(ir0 + dr, nr);
  8292. for (int i1 = ir0; i1 < ir1; i1++) {
  8293. ggml_vec_silu_f32(nc,
  8294. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8295. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8296. #ifndef NDEBUG
  8297. for (int k = 0; k < nc; k++) {
  8298. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8299. UNUSED(x);
  8300. assert(!isnan(x));
  8301. assert(!isinf(x));
  8302. }
  8303. #endif
  8304. }
  8305. }
  8306. static void ggml_compute_forward_silu(
  8307. const struct ggml_compute_params * params,
  8308. const struct ggml_tensor * src0,
  8309. struct ggml_tensor * dst) {
  8310. switch (src0->type) {
  8311. case GGML_TYPE_F32:
  8312. {
  8313. ggml_compute_forward_silu_f32(params, src0, dst);
  8314. } break;
  8315. default:
  8316. {
  8317. GGML_ASSERT(false);
  8318. } break;
  8319. }
  8320. }
  8321. // ggml_compute_forward_silu_back
  8322. static void ggml_compute_forward_silu_back_f32(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. const struct ggml_tensor * grad,
  8326. struct ggml_tensor * dst) {
  8327. GGML_ASSERT(ggml_is_contiguous(grad));
  8328. GGML_ASSERT(ggml_is_contiguous(src0));
  8329. GGML_ASSERT(ggml_is_contiguous(dst));
  8330. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8331. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8333. return;
  8334. }
  8335. const int ith = params->ith;
  8336. const int nth = params->nth;
  8337. const int nc = src0->ne[0];
  8338. const int nr = ggml_nrows(src0);
  8339. // rows per thread
  8340. const int dr = (nr + nth - 1)/nth;
  8341. // row range for this thread
  8342. const int ir0 = dr*ith;
  8343. const int ir1 = MIN(ir0 + dr, nr);
  8344. for (int i1 = ir0; i1 < ir1; i1++) {
  8345. ggml_vec_silu_backward_f32(nc,
  8346. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8347. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8348. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8349. #ifndef NDEBUG
  8350. for (int k = 0; k < nc; k++) {
  8351. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8352. UNUSED(x);
  8353. assert(!isnan(x));
  8354. assert(!isinf(x));
  8355. }
  8356. #endif
  8357. }
  8358. }
  8359. static void ggml_compute_forward_silu_back(
  8360. const struct ggml_compute_params * params,
  8361. const struct ggml_tensor * src0,
  8362. const struct ggml_tensor * grad,
  8363. struct ggml_tensor * dst) {
  8364. switch (src0->type) {
  8365. case GGML_TYPE_F32:
  8366. {
  8367. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8368. } break;
  8369. default:
  8370. {
  8371. GGML_ASSERT(false);
  8372. } break;
  8373. }
  8374. }
  8375. // ggml_compute_forward_norm
  8376. static void ggml_compute_forward_norm_f32(
  8377. const struct ggml_compute_params * params,
  8378. const struct ggml_tensor * src0,
  8379. struct ggml_tensor * dst) {
  8380. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8382. return;
  8383. }
  8384. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8385. const int ith = params->ith;
  8386. const int nth = params->nth;
  8387. GGML_TENSOR_UNARY_OP_LOCALS;
  8388. const float eps = 1e-5f; // TODO: make this a parameter
  8389. // TODO: optimize
  8390. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8391. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8392. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8393. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8394. ggml_float sum = 0.0;
  8395. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8396. sum += (ggml_float)x[i00];
  8397. }
  8398. float mean = sum/ne00;
  8399. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8400. ggml_float sum2 = 0.0;
  8401. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8402. float v = x[i00] - mean;
  8403. y[i00] = v;
  8404. sum2 += (ggml_float)(v*v);
  8405. }
  8406. float variance = sum2/ne00;
  8407. const float scale = 1.0f/sqrtf(variance + eps);
  8408. ggml_vec_scale_f32(ne00, y, scale);
  8409. }
  8410. }
  8411. }
  8412. }
  8413. static void ggml_compute_forward_norm(
  8414. const struct ggml_compute_params * params,
  8415. const struct ggml_tensor * src0,
  8416. struct ggml_tensor * dst) {
  8417. switch (src0->type) {
  8418. case GGML_TYPE_F32:
  8419. {
  8420. ggml_compute_forward_norm_f32(params, src0, dst);
  8421. } break;
  8422. default:
  8423. {
  8424. GGML_ASSERT(false);
  8425. } break;
  8426. }
  8427. }
  8428. static void ggml_compute_forward_rms_norm_f32(
  8429. const struct ggml_compute_params * params,
  8430. const struct ggml_tensor * src0,
  8431. struct ggml_tensor * dst) {
  8432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8434. return;
  8435. }
  8436. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8437. const int ith = params->ith;
  8438. const int nth = params->nth;
  8439. GGML_TENSOR_UNARY_OP_LOCALS;
  8440. const float eps = 1e-6f; // TODO: make this a parameter
  8441. // TODO: optimize
  8442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8444. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8445. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8446. ggml_float sum = 0.0;
  8447. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8448. sum += (ggml_float)(x[i00] * x[i00]);
  8449. }
  8450. const float mean = sum/ne00;
  8451. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8452. memcpy(y, x, ne00 * sizeof(float));
  8453. // for (int i00 = 0; i00 < ne00; i00++) {
  8454. // y[i00] = x[i00];
  8455. // }
  8456. const float scale = 1.0f/sqrtf(mean + eps);
  8457. ggml_vec_scale_f32(ne00, y, scale);
  8458. }
  8459. }
  8460. }
  8461. }
  8462. static void ggml_compute_forward_rms_norm(
  8463. const struct ggml_compute_params * params,
  8464. const struct ggml_tensor * src0,
  8465. struct ggml_tensor * dst) {
  8466. switch (src0->type) {
  8467. case GGML_TYPE_F32:
  8468. {
  8469. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8470. } break;
  8471. default:
  8472. {
  8473. GGML_ASSERT(false);
  8474. } break;
  8475. }
  8476. }
  8477. static void ggml_compute_forward_rms_norm_back_f32(
  8478. const struct ggml_compute_params * params,
  8479. const struct ggml_tensor * src0,
  8480. const struct ggml_tensor * src1,
  8481. struct ggml_tensor * dst) {
  8482. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8484. return;
  8485. }
  8486. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8487. const int ith = params->ith;
  8488. const int nth = params->nth;
  8489. GGML_TENSOR_BINARY_OP_LOCALS;
  8490. const float eps = 1e-6f; // TODO: make this a parameter
  8491. // TODO: optimize
  8492. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8493. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8494. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8495. // src1 is same shape as src0 => same indices
  8496. const int64_t i11 = i01;
  8497. const int64_t i12 = i02;
  8498. const int64_t i13 = i03;
  8499. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8500. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8501. ggml_float sum_xx = 0.0;
  8502. ggml_float sum_xdz = 0.0;
  8503. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8504. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8505. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8506. }
  8507. //const float mean = (float)(sum_xx)/ne00;
  8508. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8509. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8510. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8511. // we could cache rms from forward pass to improve performance.
  8512. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8513. //const float rms = sqrtf(mean_eps);
  8514. const float rrms = 1.0f / sqrtf(mean_eps);
  8515. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8516. {
  8517. // z = rms_norm(x)
  8518. //
  8519. // rms_norm(src0) =
  8520. // scale(
  8521. // src0,
  8522. // div(
  8523. // 1,
  8524. // sqrt(
  8525. // add(
  8526. // scale(
  8527. // sum(
  8528. // sqr(
  8529. // src0)),
  8530. // (1.0/N)),
  8531. // eps))));
  8532. // postorder:
  8533. // ## op args grad
  8534. // 00 param src0 grad[#00]
  8535. // 01 const 1
  8536. // 02 sqr (#00) grad[#02]
  8537. // 03 sum (#02) grad[#03]
  8538. // 04 const 1/N
  8539. // 05 scale (#03, #04) grad[#05]
  8540. // 06 const eps
  8541. // 07 add (#05, #06) grad[#07]
  8542. // 08 sqrt (#07) grad[#08]
  8543. // 09 div (#01,#08) grad[#09]
  8544. // 10 scale (#00,#09) grad[#10]
  8545. //
  8546. // backward pass, given grad[#10]
  8547. // #10: scale
  8548. // grad[#00] += scale(grad[#10],#09)
  8549. // grad[#09] += sum(mul(grad[#10],#00))
  8550. // #09: div
  8551. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8552. // #08: sqrt
  8553. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8554. // #07: add
  8555. // grad[#05] += grad[#07]
  8556. // #05: scale
  8557. // grad[#03] += scale(grad[#05],#04)
  8558. // #03: sum
  8559. // grad[#02] += repeat(grad[#03], #02)
  8560. // #02:
  8561. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8562. //
  8563. // substitute and simplify:
  8564. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8565. // grad[#02] = repeat(grad[#03], #02)
  8566. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8567. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8568. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8569. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8570. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8571. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8572. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8573. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8574. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8575. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8576. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8577. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8578. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8579. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8580. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8581. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8582. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8583. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8584. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8585. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8586. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8587. // a = b*c + d*e
  8588. // a = b*c*f/f + d*e*f/f
  8589. // a = (b*c*f + d*e*f)*(1/f)
  8590. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8591. // a = (b + d*e/c)*c
  8592. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8593. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8594. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8595. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8596. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8597. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8598. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8599. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8600. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8601. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8602. }
  8603. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8604. // post-order:
  8605. // dx := x
  8606. // dx := scale(dx,-mean_xdz/mean_eps)
  8607. // dx := add(dx, dz)
  8608. // dx := scale(dx, rrms)
  8609. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8610. ggml_vec_cpy_f32 (ne00, dx, x);
  8611. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8612. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8613. ggml_vec_acc_f32 (ne00, dx, dz);
  8614. ggml_vec_scale_f32(ne00, dx, rrms);
  8615. }
  8616. }
  8617. }
  8618. }
  8619. static void ggml_compute_forward_rms_norm_back(
  8620. const struct ggml_compute_params * params,
  8621. const struct ggml_tensor * src0,
  8622. const struct ggml_tensor * src1,
  8623. struct ggml_tensor * dst) {
  8624. switch (src0->type) {
  8625. case GGML_TYPE_F32:
  8626. {
  8627. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8628. } break;
  8629. default:
  8630. {
  8631. GGML_ASSERT(false);
  8632. } break;
  8633. }
  8634. }
  8635. // ggml_compute_forward_mul_mat
  8636. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8637. // helper function to determine if it is better to use BLAS or not
  8638. // for large matrices, BLAS is faster
  8639. static bool ggml_compute_forward_mul_mat_use_blas(
  8640. const struct ggml_tensor * src0,
  8641. const struct ggml_tensor * src1,
  8642. struct ggml_tensor * dst) {
  8643. //const int64_t ne00 = src0->ne[0];
  8644. //const int64_t ne01 = src0->ne[1];
  8645. const int64_t ne10 = src1->ne[0];
  8646. const int64_t ne0 = dst->ne[0];
  8647. const int64_t ne1 = dst->ne[1];
  8648. // TODO: find the optimal values for these
  8649. if (ggml_is_contiguous(src0) &&
  8650. ggml_is_contiguous(src1) &&
  8651. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8652. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8653. return true;
  8654. }
  8655. return false;
  8656. }
  8657. #endif
  8658. static void ggml_compute_forward_mul_mat(
  8659. const struct ggml_compute_params * params,
  8660. const struct ggml_tensor * src0,
  8661. const struct ggml_tensor * src1,
  8662. struct ggml_tensor * dst) {
  8663. int64_t t0 = ggml_perf_time_us();
  8664. UNUSED(t0);
  8665. GGML_TENSOR_BINARY_OP_LOCALS;
  8666. const int ith = params->ith;
  8667. const int nth = params->nth;
  8668. const enum ggml_type type = src0->type;
  8669. const bool src1_cont = ggml_is_contiguous(src1);
  8670. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8671. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8672. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8673. GGML_ASSERT(ne0 == ne01);
  8674. GGML_ASSERT(ne1 == ne11);
  8675. GGML_ASSERT(ne2 == ne12);
  8676. GGML_ASSERT(ne3 == ne13);
  8677. // we don't support permuted src0 or src1
  8678. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8679. GGML_ASSERT(nb10 == sizeof(float));
  8680. // dst cannot be transposed or permuted
  8681. GGML_ASSERT(nb0 == sizeof(float));
  8682. GGML_ASSERT(nb0 <= nb1);
  8683. GGML_ASSERT(nb1 <= nb2);
  8684. GGML_ASSERT(nb2 <= nb3);
  8685. // nb01 >= nb00 - src0 is not transposed
  8686. // compute by src0 rows
  8687. #if defined(GGML_USE_CLBLAST)
  8688. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8689. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8690. // ref: https://github.com/ggerganov/ggml/pull/224
  8691. GGML_ASSERT(ne02 == ne12);
  8692. GGML_ASSERT(ne03 == ne13);
  8693. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8694. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8695. }
  8696. return;
  8697. }
  8698. #endif
  8699. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8700. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8701. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8702. // ref: https://github.com/ggerganov/ggml/pull/224
  8703. GGML_ASSERT(ne02 == ne12);
  8704. GGML_ASSERT(ne03 == ne13);
  8705. if (params->ith != 0) {
  8706. return;
  8707. }
  8708. if (params->type == GGML_TASK_INIT) {
  8709. return;
  8710. }
  8711. if (params->type == GGML_TASK_FINALIZE) {
  8712. return;
  8713. }
  8714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8716. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8717. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8718. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8719. if (type != GGML_TYPE_F32) {
  8720. float * const wdata = params->wdata;
  8721. ggml_to_float_t const to_float = type_traits[type].to_float;
  8722. size_t id = 0;
  8723. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8724. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8725. id += ne00;
  8726. }
  8727. assert(id*sizeof(float) <= params->wsize);
  8728. x = wdata;
  8729. }
  8730. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8731. ne11, ne01, ne10,
  8732. 1.0f, y, ne10,
  8733. x, ne00,
  8734. 0.0f, d, ne01);
  8735. }
  8736. }
  8737. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8738. return;
  8739. }
  8740. #endif
  8741. if (params->type == GGML_TASK_INIT) {
  8742. if (src1->type != vec_dot_type) {
  8743. char * wdata = params->wdata;
  8744. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8745. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8746. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8747. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8748. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8749. wdata += row_size;
  8750. }
  8751. }
  8752. }
  8753. }
  8754. return;
  8755. }
  8756. if (params->type == GGML_TASK_FINALIZE) {
  8757. return;
  8758. }
  8759. // parallelize by src0 rows
  8760. const int64_t dr = (ne01 + nth - 1)/nth;
  8761. const int64_t ir10 = dr*ith;
  8762. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8763. // src1 rows
  8764. const int64_t nr1 = ne11*ne12*ne13;
  8765. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8766. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8767. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8768. const int64_t i13 = (ir1/(ne12*ne11));
  8769. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8770. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8771. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8772. const int64_t i03 = (ir0/(ne02));
  8773. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8774. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8775. // GG: this is likely the correct way to broadcast, though need some more thought
  8776. // therefore leaving the comments to remind us for now
  8777. const int64_t i02 = (i12 / (ne12 / ne02));
  8778. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8779. // const int64_t i02 = (ir0 - i03*ne02);
  8780. const int64_t i1 = i11;
  8781. const int64_t i2 = i12;
  8782. const int64_t i3 = i13;
  8783. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8784. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8785. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8786. // the original src1 data pointer, so we should index using the indices directly
  8787. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8788. const char * src1_col = (const char *) wdata +
  8789. (src1_cont || src1->type != vec_dot_type
  8790. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8791. : (i11*nb11 + i12*nb12 + i13*nb13));
  8792. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8793. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8794. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8795. }
  8796. }
  8797. //int64_t t1 = ggml_time_us();
  8798. //static int64_t acc = 0;
  8799. //acc += t1 - t0;
  8800. //if (t1 - t0 > 10) {
  8801. // printf("\n");
  8802. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8803. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8804. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8805. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8806. //}
  8807. }
  8808. // ggml_compute_forward_out_prod
  8809. static void ggml_compute_forward_out_prod_f32(
  8810. const struct ggml_compute_params * params,
  8811. const struct ggml_tensor * src0,
  8812. const struct ggml_tensor * src1,
  8813. struct ggml_tensor * dst) {
  8814. int64_t t0 = ggml_perf_time_us();
  8815. UNUSED(t0);
  8816. GGML_TENSOR_BINARY_OP_LOCALS;
  8817. const int ith = params->ith;
  8818. const int nth = params->nth;
  8819. GGML_ASSERT(ne02 == ne12);
  8820. GGML_ASSERT(ne03 == ne13);
  8821. GGML_ASSERT(ne2 == ne12);
  8822. GGML_ASSERT(ne3 == ne13);
  8823. // we don't support permuted src0 or src1
  8824. GGML_ASSERT(nb00 == sizeof(float));
  8825. // dst cannot be transposed or permuted
  8826. GGML_ASSERT(nb0 == sizeof(float));
  8827. // GGML_ASSERT(nb0 <= nb1);
  8828. // GGML_ASSERT(nb1 <= nb2);
  8829. // GGML_ASSERT(nb2 <= nb3);
  8830. GGML_ASSERT(ne0 == ne00);
  8831. GGML_ASSERT(ne1 == ne10);
  8832. GGML_ASSERT(ne2 == ne02);
  8833. GGML_ASSERT(ne3 == ne03);
  8834. // nb01 >= nb00 - src0 is not transposed
  8835. // compute by src0 rows
  8836. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8837. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8838. if (params->type == GGML_TASK_INIT) {
  8839. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8840. return;
  8841. }
  8842. if (params->type == GGML_TASK_FINALIZE) {
  8843. return;
  8844. }
  8845. // parallelize by last three dimensions
  8846. // total rows in dst
  8847. const int64_t nr = ne1*ne2*ne3;
  8848. // rows per thread
  8849. const int64_t dr = (nr + nth - 1)/nth;
  8850. // row range for this thread
  8851. const int64_t ir0 = dr*ith;
  8852. const int64_t ir1 = MIN(ir0 + dr, nr);
  8853. // dst[:,:,:,:] = 0
  8854. // for i2,i3:
  8855. // for i1:
  8856. // for i01:
  8857. // for i0:
  8858. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8859. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8860. // dst indices
  8861. const int64_t i3 = ir/(ne2*ne1);
  8862. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8863. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8864. const int64_t i02 = i2;
  8865. const int64_t i03 = i3;
  8866. //const int64_t i10 = i1;
  8867. const int64_t i12 = i2;
  8868. const int64_t i13 = i3;
  8869. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8870. const int64_t i11 = i01;
  8871. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8872. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8873. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8874. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8875. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8876. // d[i0] += s0[i0] * s1[i1];
  8877. // }
  8878. }
  8879. }
  8880. //int64_t t1 = ggml_perf_time_us();
  8881. //static int64_t acc = 0;
  8882. //acc += t1 - t0;
  8883. //if (t1 - t0 > 10) {
  8884. // printf("\n");
  8885. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8886. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8887. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8888. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8889. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8890. //}
  8891. }
  8892. static void ggml_compute_forward_out_prod(
  8893. const struct ggml_compute_params * params,
  8894. const struct ggml_tensor * src0,
  8895. const struct ggml_tensor * src1,
  8896. struct ggml_tensor * dst) {
  8897. switch (src0->type) {
  8898. case GGML_TYPE_Q4_0:
  8899. case GGML_TYPE_Q4_1:
  8900. case GGML_TYPE_Q5_0:
  8901. case GGML_TYPE_Q5_1:
  8902. case GGML_TYPE_Q8_0:
  8903. case GGML_TYPE_Q8_1:
  8904. {
  8905. GGML_ASSERT(false); // todo
  8906. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8907. } break;
  8908. case GGML_TYPE_F16:
  8909. {
  8910. GGML_ASSERT(false); // todo
  8911. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8912. } break;
  8913. case GGML_TYPE_F32:
  8914. {
  8915. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8916. } break;
  8917. default:
  8918. {
  8919. GGML_ASSERT(false);
  8920. } break;
  8921. }
  8922. }
  8923. // ggml_compute_forward_scale
  8924. static void ggml_compute_forward_scale_f32(
  8925. const struct ggml_compute_params * params,
  8926. const struct ggml_tensor * src0,
  8927. const struct ggml_tensor * src1,
  8928. struct ggml_tensor * dst) {
  8929. GGML_ASSERT(ggml_is_contiguous(src0));
  8930. GGML_ASSERT(ggml_is_contiguous(dst));
  8931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8932. GGML_ASSERT(ggml_is_scalar(src1));
  8933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8934. return;
  8935. }
  8936. // scale factor
  8937. const float v = *(float *) src1->data;
  8938. const int ith = params->ith;
  8939. const int nth = params->nth;
  8940. const int nc = src0->ne[0];
  8941. const int nr = ggml_nrows(src0);
  8942. // rows per thread
  8943. const int dr = (nr + nth - 1)/nth;
  8944. // row range for this thread
  8945. const int ir0 = dr*ith;
  8946. const int ir1 = MIN(ir0 + dr, nr);
  8947. const size_t nb01 = src0->nb[1];
  8948. const size_t nb1 = dst->nb[1];
  8949. for (int i1 = ir0; i1 < ir1; i1++) {
  8950. if (dst->data != src0->data) {
  8951. // src0 is same shape as dst => same indices
  8952. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8953. }
  8954. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8955. }
  8956. }
  8957. static void ggml_compute_forward_scale(
  8958. const struct ggml_compute_params * params,
  8959. const struct ggml_tensor * src0,
  8960. const struct ggml_tensor * src1,
  8961. struct ggml_tensor * dst) {
  8962. switch (src0->type) {
  8963. case GGML_TYPE_F32:
  8964. {
  8965. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8966. } break;
  8967. default:
  8968. {
  8969. GGML_ASSERT(false);
  8970. } break;
  8971. }
  8972. }
  8973. // ggml_compute_forward_set
  8974. static void ggml_compute_forward_set_f32(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. const struct ggml_tensor * opt0,
  8979. struct ggml_tensor * dst) {
  8980. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8981. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8982. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8983. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8984. // view src0 and dst with these strides and data offset inbytes during set
  8985. // nb0 is implicitely element_size because src0 and dst are contiguous
  8986. size_t nb1 = ((int32_t *) opt0->data)[0];
  8987. size_t nb2 = ((int32_t *) opt0->data)[1];
  8988. size_t nb3 = ((int32_t *) opt0->data)[2];
  8989. size_t offset = ((int32_t *) opt0->data)[3];
  8990. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8991. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8992. // memcpy needs to be synchronized across threads to avoid race conditions.
  8993. // => do it in INIT phase
  8994. memcpy(
  8995. ((char *) dst->data),
  8996. ((char *) src0->data),
  8997. ggml_nbytes(dst));
  8998. }
  8999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9000. return;
  9001. }
  9002. const int ith = params->ith;
  9003. const int nth = params->nth;
  9004. const int nr = ggml_nrows(src1);
  9005. const int nc = src1->ne[0];
  9006. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9007. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9008. // src0 and dst as viewed during set
  9009. const size_t nb0 = ggml_element_size(src0);
  9010. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9011. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9012. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9013. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9014. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9015. GGML_ASSERT(nb10 == sizeof(float));
  9016. // rows per thread
  9017. const int dr = (nr + nth - 1)/nth;
  9018. // row range for this thread
  9019. const int ir0 = dr*ith;
  9020. const int ir1 = MIN(ir0 + dr, nr);
  9021. for (int ir = ir0; ir < ir1; ++ir) {
  9022. // src0 and dst are viewed with shape of src1 and offset
  9023. // => same indices
  9024. const int i3 = ir/(ne12*ne11);
  9025. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9026. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9027. ggml_vec_cpy_f32(nc,
  9028. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9029. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9030. }
  9031. }
  9032. static void ggml_compute_forward_set(
  9033. const struct ggml_compute_params * params,
  9034. const struct ggml_tensor * src0,
  9035. const struct ggml_tensor * src1,
  9036. const struct ggml_tensor * opt0,
  9037. struct ggml_tensor * dst) {
  9038. switch (src0->type) {
  9039. case GGML_TYPE_F32:
  9040. {
  9041. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9042. } break;
  9043. case GGML_TYPE_F16:
  9044. case GGML_TYPE_Q4_0:
  9045. case GGML_TYPE_Q4_1:
  9046. case GGML_TYPE_Q5_0:
  9047. case GGML_TYPE_Q5_1:
  9048. case GGML_TYPE_Q8_0:
  9049. case GGML_TYPE_Q8_1:
  9050. case GGML_TYPE_Q2_K:
  9051. case GGML_TYPE_Q3_K:
  9052. case GGML_TYPE_Q4_K:
  9053. case GGML_TYPE_Q5_K:
  9054. case GGML_TYPE_Q6_K:
  9055. default:
  9056. {
  9057. GGML_ASSERT(false);
  9058. } break;
  9059. }
  9060. }
  9061. // ggml_compute_forward_cpy
  9062. static void ggml_compute_forward_cpy(
  9063. const struct ggml_compute_params * params,
  9064. const struct ggml_tensor * src0,
  9065. struct ggml_tensor * dst) {
  9066. ggml_compute_forward_dup(params, src0, dst);
  9067. }
  9068. // ggml_compute_forward_cont
  9069. static void ggml_compute_forward_cont(
  9070. const struct ggml_compute_params * params,
  9071. const struct ggml_tensor * src0,
  9072. struct ggml_tensor * dst) {
  9073. ggml_compute_forward_dup(params, src0, dst);
  9074. }
  9075. // ggml_compute_forward_reshape
  9076. static void ggml_compute_forward_reshape(
  9077. const struct ggml_compute_params * params,
  9078. const struct ggml_tensor * src0,
  9079. struct ggml_tensor * dst) {
  9080. // NOP
  9081. UNUSED(params);
  9082. UNUSED(src0);
  9083. UNUSED(dst);
  9084. }
  9085. // ggml_compute_forward_view
  9086. static void ggml_compute_forward_view(
  9087. const struct ggml_compute_params * params,
  9088. const struct ggml_tensor * src0) {
  9089. // NOP
  9090. UNUSED(params);
  9091. UNUSED(src0);
  9092. }
  9093. // ggml_compute_forward_permute
  9094. static void ggml_compute_forward_permute(
  9095. const struct ggml_compute_params * params,
  9096. const struct ggml_tensor * src0) {
  9097. // NOP
  9098. UNUSED(params);
  9099. UNUSED(src0);
  9100. }
  9101. // ggml_compute_forward_transpose
  9102. static void ggml_compute_forward_transpose(
  9103. const struct ggml_compute_params * params,
  9104. const struct ggml_tensor * src0) {
  9105. // NOP
  9106. UNUSED(params);
  9107. UNUSED(src0);
  9108. }
  9109. // ggml_compute_forward_get_rows
  9110. static void ggml_compute_forward_get_rows_q(
  9111. const struct ggml_compute_params * params,
  9112. const struct ggml_tensor * src0,
  9113. const struct ggml_tensor * src1,
  9114. struct ggml_tensor * dst) {
  9115. assert(params->ith == 0);
  9116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9117. return;
  9118. }
  9119. const int nc = src0->ne[0];
  9120. const int nr = ggml_nelements(src1);
  9121. const enum ggml_type type = src0->type;
  9122. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9123. assert( dst->ne[0] == nc);
  9124. assert( dst->ne[1] == nr);
  9125. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9126. for (int i = 0; i < nr; ++i) {
  9127. const int r = ((int32_t *) src1->data)[i];
  9128. dequantize_row_q(
  9129. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9130. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9131. }
  9132. }
  9133. static void ggml_compute_forward_get_rows_f16(
  9134. const struct ggml_compute_params * params,
  9135. const struct ggml_tensor * src0,
  9136. const struct ggml_tensor * src1,
  9137. struct ggml_tensor * dst) {
  9138. assert(params->ith == 0);
  9139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9140. return;
  9141. }
  9142. const int nc = src0->ne[0];
  9143. const int nr = ggml_nelements(src1);
  9144. assert( dst->ne[0] == nc);
  9145. assert( dst->ne[1] == nr);
  9146. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9147. for (int i = 0; i < nr; ++i) {
  9148. const int r = ((int32_t *) src1->data)[i];
  9149. for (int j = 0; j < nc; ++j) {
  9150. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9151. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9152. }
  9153. }
  9154. }
  9155. static void ggml_compute_forward_get_rows_f32(
  9156. const struct ggml_compute_params * params,
  9157. const struct ggml_tensor * src0,
  9158. const struct ggml_tensor * src1,
  9159. struct ggml_tensor * dst) {
  9160. assert(params->ith == 0);
  9161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9162. return;
  9163. }
  9164. const int nc = src0->ne[0];
  9165. const int nr = ggml_nelements(src1);
  9166. assert( dst->ne[0] == nc);
  9167. assert( dst->ne[1] == nr);
  9168. assert(src0->nb[0] == sizeof(float));
  9169. for (int i = 0; i < nr; ++i) {
  9170. const int r = ((int32_t *) src1->data)[i];
  9171. ggml_vec_cpy_f32(nc,
  9172. (float *) ((char *) dst->data + i*dst->nb[1]),
  9173. (float *) ((char *) src0->data + r*src0->nb[1]));
  9174. }
  9175. }
  9176. static void ggml_compute_forward_get_rows(
  9177. const struct ggml_compute_params * params,
  9178. const struct ggml_tensor * src0,
  9179. const struct ggml_tensor * src1,
  9180. struct ggml_tensor * dst) {
  9181. switch (src0->type) {
  9182. case GGML_TYPE_Q4_0:
  9183. case GGML_TYPE_Q4_1:
  9184. case GGML_TYPE_Q5_0:
  9185. case GGML_TYPE_Q5_1:
  9186. case GGML_TYPE_Q8_0:
  9187. case GGML_TYPE_Q8_1:
  9188. case GGML_TYPE_Q2_K:
  9189. case GGML_TYPE_Q3_K:
  9190. case GGML_TYPE_Q4_K:
  9191. case GGML_TYPE_Q5_K:
  9192. case GGML_TYPE_Q6_K:
  9193. {
  9194. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9195. } break;
  9196. case GGML_TYPE_F16:
  9197. {
  9198. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9199. } break;
  9200. case GGML_TYPE_F32:
  9201. {
  9202. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9203. } break;
  9204. default:
  9205. {
  9206. GGML_ASSERT(false);
  9207. } break;
  9208. }
  9209. //static bool first = true;
  9210. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9211. //if (first) {
  9212. // first = false;
  9213. //} else {
  9214. // for (int k = 0; k < dst->ne[1]; ++k) {
  9215. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9216. // for (int i = 0; i < 16; ++i) {
  9217. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9218. // }
  9219. // printf("\n");
  9220. // }
  9221. // printf("\n");
  9222. // }
  9223. // printf("\n");
  9224. // exit(0);
  9225. //}
  9226. }
  9227. // ggml_compute_forward_get_rows_back
  9228. static void ggml_compute_forward_get_rows_back_f32_f16(
  9229. const struct ggml_compute_params * params,
  9230. const struct ggml_tensor * src0,
  9231. const struct ggml_tensor * src1,
  9232. const struct ggml_tensor * opt0,
  9233. struct ggml_tensor * dst) {
  9234. GGML_ASSERT(params->ith == 0);
  9235. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9236. GGML_ASSERT(ggml_is_contiguous(opt0));
  9237. GGML_ASSERT(ggml_is_contiguous(dst));
  9238. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9240. return;
  9241. }
  9242. const int nc = src0->ne[0];
  9243. const int nr = ggml_nelements(src1);
  9244. GGML_ASSERT( dst->ne[0] == nc);
  9245. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9246. for (int i = 0; i < nr; ++i) {
  9247. const int r = ((int32_t *) src1->data)[i];
  9248. for (int j = 0; j < nc; ++j) {
  9249. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9250. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9251. }
  9252. }
  9253. }
  9254. static void ggml_compute_forward_get_rows_back_f32(
  9255. const struct ggml_compute_params * params,
  9256. const struct ggml_tensor * src0,
  9257. const struct ggml_tensor * src1,
  9258. const struct ggml_tensor * opt0,
  9259. struct ggml_tensor * dst) {
  9260. GGML_ASSERT(params->ith == 0);
  9261. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9262. GGML_ASSERT(ggml_is_contiguous(opt0));
  9263. GGML_ASSERT(ggml_is_contiguous(dst));
  9264. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9265. if (params->type == GGML_TASK_INIT) {
  9266. memset(dst->data, 0, ggml_nbytes(dst));
  9267. }
  9268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9269. return;
  9270. }
  9271. const int nc = src0->ne[0];
  9272. const int nr = ggml_nelements(src1);
  9273. GGML_ASSERT( dst->ne[0] == nc);
  9274. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9275. for (int i = 0; i < nr; ++i) {
  9276. const int r = ((int32_t *) src1->data)[i];
  9277. ggml_vec_add_f32(nc,
  9278. (float *) ((char *) dst->data + r*dst->nb[1]),
  9279. (float *) ((char *) dst->data + r*dst->nb[1]),
  9280. (float *) ((char *) src0->data + i*src0->nb[1]));
  9281. }
  9282. }
  9283. static void ggml_compute_forward_get_rows_back(
  9284. const struct ggml_compute_params * params,
  9285. const struct ggml_tensor * src0,
  9286. const struct ggml_tensor * src1,
  9287. const struct ggml_tensor * opt0,
  9288. struct ggml_tensor * dst) {
  9289. switch (src0->type) {
  9290. case GGML_TYPE_F16:
  9291. {
  9292. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9293. } break;
  9294. case GGML_TYPE_F32:
  9295. {
  9296. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9297. } break;
  9298. default:
  9299. {
  9300. GGML_ASSERT(false);
  9301. } break;
  9302. }
  9303. //static bool first = true;
  9304. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9305. //if (first) {
  9306. // first = false;
  9307. //} else {
  9308. // for (int k = 0; k < dst->ne[1]; ++k) {
  9309. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9310. // for (int i = 0; i < 16; ++i) {
  9311. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9312. // }
  9313. // printf("\n");
  9314. // }
  9315. // printf("\n");
  9316. // }
  9317. // printf("\n");
  9318. // exit(0);
  9319. //}
  9320. }
  9321. // ggml_compute_forward_diag
  9322. static void ggml_compute_forward_diag_f32(
  9323. const struct ggml_compute_params * params,
  9324. const struct ggml_tensor * src0,
  9325. struct ggml_tensor * dst) {
  9326. GGML_ASSERT(params->ith == 0);
  9327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9328. return;
  9329. }
  9330. // TODO: handle transposed/permuted matrices
  9331. GGML_TENSOR_UNARY_OP_LOCALS;
  9332. GGML_ASSERT(ne00 == ne0);
  9333. GGML_ASSERT(ne00 == ne1);
  9334. GGML_ASSERT(ne01 == 1);
  9335. GGML_ASSERT(ne02 == ne2);
  9336. GGML_ASSERT(ne03 == ne3);
  9337. GGML_ASSERT(nb00 == sizeof(float));
  9338. GGML_ASSERT(nb0 == sizeof(float));
  9339. for (int i3 = 0; i3 < ne3; i3++) {
  9340. for (int i2 = 0; i2 < ne2; i2++) {
  9341. for (int i1 = 0; i1 < ne1; i1++) {
  9342. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9343. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9344. for (int i0 = 0; i0 < i1; i0++) {
  9345. d[i0] = 0;
  9346. }
  9347. d[i1] = s[i1];
  9348. for (int i0 = i1+1; i0 < ne0; i0++) {
  9349. d[i0] = 0;
  9350. }
  9351. }
  9352. }
  9353. }
  9354. }
  9355. static void ggml_compute_forward_diag(
  9356. const struct ggml_compute_params * params,
  9357. const struct ggml_tensor * src0,
  9358. struct ggml_tensor * dst) {
  9359. switch (src0->type) {
  9360. case GGML_TYPE_F32:
  9361. {
  9362. ggml_compute_forward_diag_f32(params, src0, dst);
  9363. } break;
  9364. default:
  9365. {
  9366. GGML_ASSERT(false);
  9367. } break;
  9368. }
  9369. }
  9370. // ggml_compute_forward_diag_mask_inf
  9371. static void ggml_compute_forward_diag_mask_f32(
  9372. const struct ggml_compute_params * params,
  9373. const struct ggml_tensor * src0,
  9374. const struct ggml_tensor * src1,
  9375. struct ggml_tensor * dst,
  9376. const float value) {
  9377. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9378. GGML_ASSERT(ggml_nelements(src1) == 2);
  9379. const int ith = params->ith;
  9380. const int nth = params->nth;
  9381. const int n_past = ((int32_t *) src1->data)[0];
  9382. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9383. GGML_ASSERT(n_past >= 0);
  9384. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9385. // memcpy needs to be synchronized across threads to avoid race conditions.
  9386. // => do it in INIT phase
  9387. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9388. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9389. memcpy(
  9390. ((char *) dst->data),
  9391. ((char *) src0->data),
  9392. ggml_nbytes(dst));
  9393. }
  9394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9395. return;
  9396. }
  9397. // TODO: handle transposed/permuted matrices
  9398. const int n = ggml_nrows(src0);
  9399. const int nc = src0->ne[0];
  9400. const int nr = src0->ne[1];
  9401. const int nz = n/nr;
  9402. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9403. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9404. for (int k = 0; k < nz; k++) {
  9405. for (int j = ith; j < nr; j += nth) {
  9406. for (int i = n_past; i < nc; i++) {
  9407. if (i > n_past + j) {
  9408. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9409. }
  9410. }
  9411. }
  9412. }
  9413. }
  9414. static void ggml_compute_forward_diag_mask_inf(
  9415. const struct ggml_compute_params * params,
  9416. const struct ggml_tensor * src0,
  9417. const struct ggml_tensor * src1,
  9418. struct ggml_tensor * dst) {
  9419. switch (src0->type) {
  9420. case GGML_TYPE_F32:
  9421. {
  9422. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9423. } break;
  9424. default:
  9425. {
  9426. GGML_ASSERT(false);
  9427. } break;
  9428. }
  9429. }
  9430. static void ggml_compute_forward_diag_mask_zero(
  9431. const struct ggml_compute_params * params,
  9432. const struct ggml_tensor * src0,
  9433. const struct ggml_tensor * src1,
  9434. struct ggml_tensor * dst) {
  9435. switch (src0->type) {
  9436. case GGML_TYPE_F32:
  9437. {
  9438. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9439. } break;
  9440. default:
  9441. {
  9442. GGML_ASSERT(false);
  9443. } break;
  9444. }
  9445. }
  9446. // ggml_compute_forward_soft_max
  9447. static void ggml_compute_forward_soft_max_f32(
  9448. const struct ggml_compute_params * params,
  9449. const struct ggml_tensor * src0,
  9450. struct ggml_tensor * dst) {
  9451. GGML_ASSERT(ggml_is_contiguous(src0));
  9452. GGML_ASSERT(ggml_is_contiguous(dst));
  9453. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9455. return;
  9456. }
  9457. // TODO: handle transposed/permuted matrices
  9458. const int ith = params->ith;
  9459. const int nth = params->nth;
  9460. const int nc = src0->ne[0];
  9461. const int nr = ggml_nrows(src0);
  9462. // rows per thread
  9463. const int dr = (nr + nth - 1)/nth;
  9464. // row range for this thread
  9465. const int ir0 = dr*ith;
  9466. const int ir1 = MIN(ir0 + dr, nr);
  9467. for (int i1 = ir0; i1 < ir1; i1++) {
  9468. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9469. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9470. #ifndef NDEBUG
  9471. for (int i = 0; i < nc; ++i) {
  9472. //printf("p[%d] = %f\n", i, p[i]);
  9473. assert(!isnan(sp[i]));
  9474. }
  9475. #endif
  9476. float max = -INFINITY;
  9477. ggml_vec_max_f32(nc, &max, sp);
  9478. ggml_float sum = 0.0;
  9479. uint16_t scvt;
  9480. for (int i = 0; i < nc; i++) {
  9481. if (sp[i] == -INFINITY) {
  9482. dp[i] = 0.0f;
  9483. } else {
  9484. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9485. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9486. memcpy(&scvt, &s, sizeof(scvt));
  9487. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9488. sum += (ggml_float)val;
  9489. dp[i] = val;
  9490. }
  9491. }
  9492. assert(sum > 0.0);
  9493. sum = 1.0/sum;
  9494. ggml_vec_scale_f32(nc, dp, sum);
  9495. #ifndef NDEBUG
  9496. for (int i = 0; i < nc; ++i) {
  9497. assert(!isnan(dp[i]));
  9498. assert(!isinf(dp[i]));
  9499. }
  9500. #endif
  9501. }
  9502. }
  9503. static void ggml_compute_forward_soft_max(
  9504. const struct ggml_compute_params * params,
  9505. const struct ggml_tensor * src0,
  9506. struct ggml_tensor * dst) {
  9507. switch (src0->type) {
  9508. case GGML_TYPE_F32:
  9509. {
  9510. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9511. } break;
  9512. default:
  9513. {
  9514. GGML_ASSERT(false);
  9515. } break;
  9516. }
  9517. }
  9518. // ggml_compute_forward_soft_max_back
  9519. static void ggml_compute_forward_soft_max_back_f32(
  9520. const struct ggml_compute_params * params,
  9521. const struct ggml_tensor * src0,
  9522. const struct ggml_tensor * src1,
  9523. struct ggml_tensor * dst) {
  9524. GGML_ASSERT(ggml_is_contiguous(src0));
  9525. GGML_ASSERT(ggml_is_contiguous(src1));
  9526. GGML_ASSERT(ggml_is_contiguous(dst));
  9527. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9528. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9530. return;
  9531. }
  9532. // TODO: handle transposed/permuted matrices
  9533. const int ith = params->ith;
  9534. const int nth = params->nth;
  9535. const int nc = src0->ne[0];
  9536. const int nr = ggml_nrows(src0);
  9537. // rows per thread
  9538. const int dr = (nr + nth - 1)/nth;
  9539. // row range for this thread
  9540. const int ir0 = dr*ith;
  9541. const int ir1 = MIN(ir0 + dr, nr);
  9542. for (int i1 = ir0; i1 < ir1; i1++) {
  9543. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9544. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9545. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9546. #ifndef NDEBUG
  9547. for (int i = 0; i < nc; ++i) {
  9548. //printf("p[%d] = %f\n", i, p[i]);
  9549. assert(!isnan(dy[i]));
  9550. assert(!isnan(y[i]));
  9551. }
  9552. #endif
  9553. // Jii = yi - yi*yi
  9554. // Jij = -yi*yj
  9555. // J = diag(y)-y.T*y
  9556. // dx = J * dy
  9557. // dxk = sum_i(Jki * dyi)
  9558. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9559. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9560. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9561. // dxk = -yk * dot(y, dy) + yk*dyk
  9562. // dxk = yk * (- dot(y, dy) + dyk)
  9563. // dxk = yk * (dyk - dot(y, dy))
  9564. //
  9565. // post-order:
  9566. // dot_y_dy := dot(y, dy)
  9567. // dx := dy
  9568. // dx := dx - dot_y_dy
  9569. // dx := dx * y
  9570. // linear runtime, no additional memory
  9571. float dot_y_dy = 0;
  9572. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9573. ggml_vec_cpy_f32 (nc, dx, dy);
  9574. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9575. ggml_vec_mul_f32 (nc, dx, dx, y);
  9576. #ifndef NDEBUG
  9577. for (int i = 0; i < nc; ++i) {
  9578. assert(!isnan(dx[i]));
  9579. assert(!isinf(dx[i]));
  9580. }
  9581. #endif
  9582. }
  9583. }
  9584. static void ggml_compute_forward_soft_max_back(
  9585. const struct ggml_compute_params * params,
  9586. const struct ggml_tensor * src0,
  9587. const struct ggml_tensor * src1,
  9588. struct ggml_tensor * dst) {
  9589. switch (src0->type) {
  9590. case GGML_TYPE_F32:
  9591. {
  9592. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9593. } break;
  9594. default:
  9595. {
  9596. GGML_ASSERT(false);
  9597. } break;
  9598. }
  9599. }
  9600. // ggml_compute_forward_alibi
  9601. static void ggml_compute_forward_alibi_f32(
  9602. const struct ggml_compute_params * params,
  9603. const struct ggml_tensor * src0,
  9604. const struct ggml_tensor * src1,
  9605. struct ggml_tensor * dst) {
  9606. assert(params->ith == 0);
  9607. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9608. GGML_ASSERT(ggml_nelements(src1) == 3);
  9609. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9610. return;
  9611. }
  9612. const int n_past = ((int32_t *) src1->data)[0];
  9613. const int n_head = ((int32_t *) src1->data)[1];
  9614. const float max_bias = ((float *) src1->data)[2];
  9615. assert(n_past >= 0);
  9616. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9617. const int ne1 = src0->ne[1]; // seq_len_without_past
  9618. const int ne2 = src0->ne[2]; // n_head -> this is k
  9619. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9620. const int n = ggml_nrows(src0);
  9621. const int ne2_ne3 = n/ne1; // ne2*ne3
  9622. const int nb0 = src0->nb[0];
  9623. const int nb1 = src0->nb[1];
  9624. const int nb2 = src0->nb[2];
  9625. //const int nb3 = src0->nb[3];
  9626. GGML_ASSERT(nb0 == sizeof(float));
  9627. GGML_ASSERT(ne1 + n_past == ne0);
  9628. GGML_ASSERT(n_head == ne2);
  9629. // add alibi to src0 (KQ_scaled)
  9630. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9631. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9632. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9633. for (int i = 0; i < ne0; i++) {
  9634. for (int j = 0; j < ne1; j++) {
  9635. for (int k = 0; k < ne2_ne3; k++) {
  9636. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9637. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9638. // TODO: k*nb2 or k*nb3
  9639. float m_k;
  9640. if (k < n_heads_log2_floor) {
  9641. m_k = powf(m0, k + 1);
  9642. } else {
  9643. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9644. }
  9645. pdst[0] = i * m_k + src[0];
  9646. }
  9647. }
  9648. }
  9649. }
  9650. static void ggml_compute_forward_alibi_f16(
  9651. const struct ggml_compute_params * params,
  9652. const struct ggml_tensor * src0,
  9653. const struct ggml_tensor * src1,
  9654. struct ggml_tensor * dst) {
  9655. assert(params->ith == 0);
  9656. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9657. GGML_ASSERT(ggml_nelements(src1) == 3);
  9658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9659. return;
  9660. }
  9661. const int n_past = ((int32_t *) src1->data)[0];
  9662. const int n_head = ((int32_t *) src1->data)[1];
  9663. const float max_bias = ((float *) src1->data)[2];
  9664. assert(n_past >= 0);
  9665. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9666. const int ne1 = src0->ne[1]; // seq_len_without_past
  9667. const int ne2 = src0->ne[2]; // n_head -> this is k
  9668. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9669. const int n = ggml_nrows(src0);
  9670. const int ne2_ne3 = n/ne1; // ne2*ne3
  9671. const int nb0 = src0->nb[0];
  9672. const int nb1 = src0->nb[1];
  9673. const int nb2 = src0->nb[2];
  9674. //const int nb3 = src0->nb[3];
  9675. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9676. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9677. GGML_ASSERT(n_head == ne2);
  9678. // add alibi to src0 (KQ_scaled)
  9679. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9680. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9681. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9682. for (int i = 0; i < ne0; i++) {
  9683. for (int j = 0; j < ne1; j++) {
  9684. for (int k = 0; k < ne2_ne3; k++) {
  9685. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9686. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9687. // TODO: k*nb2 or k*nb3
  9688. float m_k;
  9689. if (k < n_heads_log2_floor) {
  9690. m_k = powf(m0, k + 1);
  9691. } else {
  9692. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9693. }
  9694. // we return F32
  9695. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9696. }
  9697. }
  9698. }
  9699. }
  9700. static void ggml_compute_forward_alibi(
  9701. const struct ggml_compute_params * params,
  9702. const struct ggml_tensor * src0,
  9703. const struct ggml_tensor * src1,
  9704. struct ggml_tensor * dst) {
  9705. switch (src0->type) {
  9706. case GGML_TYPE_F16:
  9707. {
  9708. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9709. } break;
  9710. case GGML_TYPE_F32:
  9711. {
  9712. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9713. } break;
  9714. case GGML_TYPE_Q4_0:
  9715. case GGML_TYPE_Q4_1:
  9716. case GGML_TYPE_Q5_0:
  9717. case GGML_TYPE_Q5_1:
  9718. case GGML_TYPE_Q8_0:
  9719. case GGML_TYPE_Q8_1:
  9720. case GGML_TYPE_Q2_K:
  9721. case GGML_TYPE_Q3_K:
  9722. case GGML_TYPE_Q4_K:
  9723. case GGML_TYPE_Q5_K:
  9724. case GGML_TYPE_Q6_K:
  9725. case GGML_TYPE_Q8_K:
  9726. case GGML_TYPE_I8:
  9727. case GGML_TYPE_I16:
  9728. case GGML_TYPE_I32:
  9729. case GGML_TYPE_COUNT:
  9730. {
  9731. GGML_ASSERT(false);
  9732. } break;
  9733. }
  9734. }
  9735. // ggml_compute_forward_clamp
  9736. static void ggml_compute_forward_clamp_f32(
  9737. const struct ggml_compute_params * params,
  9738. const struct ggml_tensor * src0,
  9739. const struct ggml_tensor * src1,
  9740. struct ggml_tensor * dst) {
  9741. assert(params->ith == 0);
  9742. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9743. GGML_ASSERT(ggml_nelements(src1) == 2);
  9744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9745. return;
  9746. }
  9747. const float min = ((float *) src1->data)[0];
  9748. const float max = ((float *) src1->data)[1];
  9749. const int ith = params->ith;
  9750. const int nth = params->nth;
  9751. const int n = ggml_nrows(src0);
  9752. const int nc = src0->ne[0];
  9753. const size_t nb00 = src0->nb[0];
  9754. const size_t nb01 = src0->nb[1];
  9755. const size_t nb0 = dst->nb[0];
  9756. const size_t nb1 = dst->nb[1];
  9757. GGML_ASSERT( nb0 == sizeof(float));
  9758. GGML_ASSERT(nb00 == sizeof(float));
  9759. for (int j = ith; j < n; j += nth) {
  9760. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9761. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9762. for (int i = 0; i < nc; i++) {
  9763. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9764. }
  9765. }
  9766. }
  9767. static void ggml_compute_forward_clamp(
  9768. const struct ggml_compute_params * params,
  9769. const struct ggml_tensor * src0,
  9770. const struct ggml_tensor * src1,
  9771. struct ggml_tensor * dst) {
  9772. switch (src0->type) {
  9773. case GGML_TYPE_F32:
  9774. {
  9775. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9776. } break;
  9777. case GGML_TYPE_F16:
  9778. case GGML_TYPE_Q4_0:
  9779. case GGML_TYPE_Q4_1:
  9780. case GGML_TYPE_Q5_0:
  9781. case GGML_TYPE_Q5_1:
  9782. case GGML_TYPE_Q8_0:
  9783. case GGML_TYPE_Q8_1:
  9784. case GGML_TYPE_Q2_K:
  9785. case GGML_TYPE_Q3_K:
  9786. case GGML_TYPE_Q4_K:
  9787. case GGML_TYPE_Q5_K:
  9788. case GGML_TYPE_Q6_K:
  9789. case GGML_TYPE_Q8_K:
  9790. case GGML_TYPE_I8:
  9791. case GGML_TYPE_I16:
  9792. case GGML_TYPE_I32:
  9793. case GGML_TYPE_COUNT:
  9794. {
  9795. GGML_ASSERT(false);
  9796. } break;
  9797. }
  9798. }
  9799. // ggml_compute_forward_rope
  9800. static void ggml_compute_forward_rope_f32(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. const struct ggml_tensor * src1,
  9804. struct ggml_tensor * dst) {
  9805. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9806. GGML_ASSERT(ggml_nelements(src1) == 6);
  9807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9808. return;
  9809. }
  9810. float freq_base;
  9811. float freq_scale;
  9812. const int n_past = ((int32_t *) src1->data)[0];
  9813. const int n_dims = ((int32_t *) src1->data)[1];
  9814. const int mode = ((int32_t *) src1->data)[2];
  9815. const int n_ctx = ((int32_t *) src1->data)[3];
  9816. memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
  9817. memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
  9818. assert(n_past >= 0);
  9819. GGML_TENSOR_UNARY_OP_LOCALS;
  9820. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9821. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9822. GGML_ASSERT(nb00 == sizeof(float));
  9823. const int ith = params->ith;
  9824. const int nth = params->nth;
  9825. const int nr = ggml_nrows(dst);
  9826. GGML_ASSERT(n_dims <= ne0);
  9827. GGML_ASSERT(n_dims % 2 == 0);
  9828. // rows per thread
  9829. const int dr = (nr + nth - 1)/nth;
  9830. // row range for this thread
  9831. const int ir0 = dr*ith;
  9832. const int ir1 = MIN(ir0 + dr, nr);
  9833. // row index used to determine which thread to use
  9834. int ir = 0;
  9835. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9836. const bool is_neox = mode & 2;
  9837. const bool is_glm = mode & 4;
  9838. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9839. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9840. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9841. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9842. if (ir++ < ir0) continue;
  9843. if (ir > ir1) break;
  9844. float theta = freq_scale * (float)p;
  9845. if (is_glm) {
  9846. theta = MIN(p, n_ctx - 2);
  9847. float block_theta = MAX(p - (n_ctx - 2), 0);
  9848. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9849. const float cos_theta = cosf(theta);
  9850. const float sin_theta = sinf(theta);
  9851. const float cos_block_theta = cosf(block_theta);
  9852. const float sin_block_theta = sinf(block_theta);
  9853. theta *= theta_scale;
  9854. block_theta *= theta_scale;
  9855. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9856. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9857. const float x0 = src[0];
  9858. const float x1 = src[n_dims/2];
  9859. const float x2 = src[n_dims];
  9860. const float x3 = src[n_dims/2*3];
  9861. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9862. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9863. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9864. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9865. }
  9866. } else if (!is_neox) {
  9867. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9868. const float cos_theta = cosf(theta);
  9869. const float sin_theta = sinf(theta);
  9870. theta *= theta_scale;
  9871. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9872. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9873. const float x0 = src[0];
  9874. const float x1 = src[1];
  9875. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9876. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9877. }
  9878. } else {
  9879. // TODO: this is probably wrong, but I can't figure it out ..
  9880. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9881. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9882. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9883. const float cos_theta = cosf(theta);
  9884. const float sin_theta = sinf(theta);
  9885. theta *= theta_scale;
  9886. const int64_t i0 = ib*n_dims + ic/2;
  9887. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9888. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9889. const float x0 = src[0];
  9890. const float x1 = src[n_dims/2];
  9891. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9892. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9893. }
  9894. }
  9895. }
  9896. }
  9897. }
  9898. }
  9899. }
  9900. static void ggml_compute_forward_rope_f16(
  9901. const struct ggml_compute_params * params,
  9902. const struct ggml_tensor * src0,
  9903. const struct ggml_tensor * src1,
  9904. struct ggml_tensor * dst) {
  9905. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9906. GGML_ASSERT(ggml_nelements(src1) == 6);
  9907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9908. return;
  9909. }
  9910. float freq_base;
  9911. float freq_scale;
  9912. const int n_past = ((int32_t *) src1->data)[0];
  9913. const int n_dims = ((int32_t *) src1->data)[1];
  9914. const int mode = ((int32_t *) src1->data)[2];
  9915. const int n_ctx = ((int32_t *) src1->data)[3];
  9916. memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
  9917. memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
  9918. assert(n_past >= 0);
  9919. GGML_TENSOR_UNARY_OP_LOCALS;
  9920. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9921. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9922. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9923. const int ith = params->ith;
  9924. const int nth = params->nth;
  9925. const int nr = ggml_nrows(dst);
  9926. GGML_ASSERT(n_dims <= ne0);
  9927. GGML_ASSERT(n_dims % 2 == 0);
  9928. // rows per thread
  9929. const int dr = (nr + nth - 1)/nth;
  9930. // row range for this thread
  9931. const int ir0 = dr*ith;
  9932. const int ir1 = MIN(ir0 + dr, nr);
  9933. // row index used to determine which thread to use
  9934. int ir = 0;
  9935. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9936. const bool is_neox = mode & 2;
  9937. const bool is_glm = mode & 4;
  9938. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9939. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9940. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9941. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9942. if (ir++ < ir0) continue;
  9943. if (ir > ir1) break;
  9944. float theta = freq_scale * (float)p;
  9945. if (is_glm) {
  9946. theta = MIN(p, n_ctx - 2);
  9947. float block_theta = MAX(p - (n_ctx - 2), 0);
  9948. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9949. const float cos_theta = cosf(theta);
  9950. const float sin_theta = sinf(theta);
  9951. const float cos_block_theta = cosf(block_theta);
  9952. const float sin_block_theta = sinf(block_theta);
  9953. theta *= theta_scale;
  9954. block_theta *= theta_scale;
  9955. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9956. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9957. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9958. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9959. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9960. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9961. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9962. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9963. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9964. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9965. }
  9966. } if (!is_neox) {
  9967. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9968. const float cos_theta = cosf(theta);
  9969. const float sin_theta = sinf(theta);
  9970. theta *= theta_scale;
  9971. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9972. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9973. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9974. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9975. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9976. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9977. }
  9978. } else {
  9979. // TODO: this is probably wrong, but I can't figure it out ..
  9980. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9981. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9982. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9983. const float cos_theta = cosf(theta);
  9984. const float sin_theta = sinf(theta);
  9985. theta *= theta_scale;
  9986. const int64_t i0 = ib*n_dims + ic/2;
  9987. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9988. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9989. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9990. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9991. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9992. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9993. }
  9994. }
  9995. }
  9996. }
  9997. }
  9998. }
  9999. }
  10000. static void ggml_compute_forward_rope(
  10001. const struct ggml_compute_params * params,
  10002. const struct ggml_tensor * src0,
  10003. const struct ggml_tensor * src1,
  10004. struct ggml_tensor * dst) {
  10005. switch (src0->type) {
  10006. case GGML_TYPE_F16:
  10007. {
  10008. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10009. } break;
  10010. case GGML_TYPE_F32:
  10011. {
  10012. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10013. } break;
  10014. default:
  10015. {
  10016. GGML_ASSERT(false);
  10017. } break;
  10018. }
  10019. }
  10020. // ggml_compute_forward_rope_back
  10021. static void ggml_compute_forward_rope_back_f32(
  10022. const struct ggml_compute_params * params,
  10023. const struct ggml_tensor * src0,
  10024. const struct ggml_tensor * src1,
  10025. struct ggml_tensor * dst) {
  10026. assert(src1->type == GGML_TYPE_I32);
  10027. assert(ggml_nelements(src1) == 4);
  10028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10029. return;
  10030. }
  10031. // y = rope(x, src1)
  10032. // dx = rope_back(dy, src1)
  10033. // src0 is dy, src1 contains options
  10034. const int n_past = ((int32_t *) src1->data)[0];
  10035. const int n_dims = ((int32_t *) src1->data)[1];
  10036. const int mode = ((int32_t *) src1->data)[2];
  10037. assert(n_past >= 0);
  10038. GGML_TENSOR_UNARY_OP_LOCALS;
  10039. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10040. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10041. assert(nb0 == sizeof(float));
  10042. const int ith = params->ith;
  10043. const int nth = params->nth;
  10044. const int nr = ggml_nrows(dst);
  10045. // rows per thread
  10046. const int dr = (nr + nth - 1)/nth;
  10047. // row range for this thread
  10048. const int ir0 = dr*ith;
  10049. const int ir1 = MIN(ir0 + dr, nr);
  10050. // row index used to determine which thread to use
  10051. int ir = 0;
  10052. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10053. const bool is_neox = mode & 2;
  10054. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10055. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10056. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10057. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10058. if (ir++ < ir0) continue;
  10059. if (ir > ir1) break;
  10060. float theta = (float)p;
  10061. if (!is_neox) {
  10062. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10063. const float cos_theta = cosf(theta);
  10064. const float sin_theta = sinf(theta);
  10065. theta *= theta_scale;
  10066. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10067. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10068. const float dy0 = dy[0];
  10069. const float dy1 = dy[1];
  10070. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10071. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10072. }
  10073. } else {
  10074. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10075. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10076. const float cos_theta = cosf(theta);
  10077. const float sin_theta = sinf(theta);
  10078. theta *= theta_scale;
  10079. const int64_t i0 = ib*n_dims + ic/2;
  10080. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10081. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10082. const float dy0 = dy[0];
  10083. const float dy1 = dy[n_dims/2];
  10084. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10085. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10086. }
  10087. }
  10088. }
  10089. }
  10090. }
  10091. }
  10092. }
  10093. static void ggml_compute_forward_rope_back_f16(
  10094. const struct ggml_compute_params * params,
  10095. const struct ggml_tensor * src0,
  10096. const struct ggml_tensor * src1,
  10097. struct ggml_tensor * dst) {
  10098. assert(src1->type == GGML_TYPE_I32);
  10099. assert(ggml_nelements(src1) == 3);
  10100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10101. return;
  10102. }
  10103. // y = rope(x, src1)
  10104. // dx = rope_back(dy, src1)
  10105. // src0 is dy, src1 contains options
  10106. const int n_past = ((int32_t *) src1->data)[0];
  10107. const int n_dims = ((int32_t *) src1->data)[1];
  10108. const int mode = ((int32_t *) src1->data)[2];
  10109. assert(n_past >= 0);
  10110. GGML_TENSOR_UNARY_OP_LOCALS;
  10111. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10112. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10113. assert(nb0 == sizeof(ggml_fp16_t));
  10114. const int ith = params->ith;
  10115. const int nth = params->nth;
  10116. const int nr = ggml_nrows(dst);
  10117. // rows per thread
  10118. const int dr = (nr + nth - 1)/nth;
  10119. // row range for this thread
  10120. const int ir0 = dr*ith;
  10121. const int ir1 = MIN(ir0 + dr, nr);
  10122. // row index used to determine which thread to use
  10123. int ir = 0;
  10124. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10125. const bool is_neox = mode & 2;
  10126. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10127. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10128. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10129. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10130. if (ir++ < ir0) continue;
  10131. if (ir > ir1) break;
  10132. float theta = (float)p;
  10133. if (!is_neox) {
  10134. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10135. const float cos_theta = cosf(theta);
  10136. const float sin_theta = sinf(theta);
  10137. theta *= theta_scale;
  10138. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10139. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10140. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10141. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10142. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10143. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10144. }
  10145. } else {
  10146. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10147. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10148. const float cos_theta = cosf(theta);
  10149. const float sin_theta = sinf(theta);
  10150. theta *= theta_scale;
  10151. const int64_t i0 = ib*n_dims + ic/2;
  10152. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10153. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10154. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10155. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10156. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10157. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10158. }
  10159. }
  10160. }
  10161. }
  10162. }
  10163. }
  10164. }
  10165. static void ggml_compute_forward_rope_back(
  10166. const struct ggml_compute_params * params,
  10167. const struct ggml_tensor * src0,
  10168. const struct ggml_tensor * src1,
  10169. struct ggml_tensor * dst) {
  10170. switch (src0->type) {
  10171. case GGML_TYPE_F16:
  10172. {
  10173. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10174. } break;
  10175. case GGML_TYPE_F32:
  10176. {
  10177. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10178. } break;
  10179. default:
  10180. {
  10181. GGML_ASSERT(false);
  10182. } break;
  10183. }
  10184. }
  10185. // ggml_compute_forward_conv_1d
  10186. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10187. const struct ggml_compute_params * params,
  10188. const struct ggml_tensor * src0,
  10189. const struct ggml_tensor * src1,
  10190. struct ggml_tensor * dst) {
  10191. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10192. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10193. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10194. int64_t t0 = ggml_perf_time_us();
  10195. UNUSED(t0);
  10196. GGML_TENSOR_BINARY_OP_LOCALS;
  10197. const int ith = params->ith;
  10198. const int nth = params->nth;
  10199. const int nk = ne00;
  10200. const int nh = nk/2;
  10201. const int ew0 = ggml_up32(ne01);
  10202. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10203. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10204. GGML_ASSERT(nb10 == sizeof(float));
  10205. if (params->type == GGML_TASK_INIT) {
  10206. // TODO: fix this memset (wsize is overestimated)
  10207. memset(params->wdata, 0, params->wsize);
  10208. // prepare kernel data (src0)
  10209. {
  10210. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10211. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10212. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10213. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10214. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10215. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10216. dst_data[i00*ew0 + i01] = src[i00];
  10217. }
  10218. }
  10219. }
  10220. }
  10221. // prepare source data (src1)
  10222. {
  10223. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10224. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10225. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10226. ggml_fp16_t * dst_data = wdata;
  10227. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10228. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10229. }
  10230. }
  10231. }
  10232. return;
  10233. }
  10234. if (params->type == GGML_TASK_FINALIZE) {
  10235. return;
  10236. }
  10237. // total rows in dst
  10238. const int nr = ne02;
  10239. // rows per thread
  10240. const int dr = (nr + nth - 1)/nth;
  10241. // row range for this thread
  10242. const int ir0 = dr*ith;
  10243. const int ir1 = MIN(ir0 + dr, nr);
  10244. for (int i1 = ir0; i1 < ir1; i1++) {
  10245. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10246. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10247. dst_data[i0] = 0;
  10248. for (int k = -nh; k <= nh; k++) {
  10249. float v = 0.0f;
  10250. ggml_vec_dot_f16(ew0, &v,
  10251. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10252. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10253. dst_data[i0] += v;
  10254. }
  10255. }
  10256. }
  10257. }
  10258. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10259. const struct ggml_compute_params * params,
  10260. const struct ggml_tensor * src0,
  10261. const struct ggml_tensor * src1,
  10262. struct ggml_tensor * dst) {
  10263. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10264. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10265. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10266. int64_t t0 = ggml_perf_time_us();
  10267. UNUSED(t0);
  10268. GGML_TENSOR_BINARY_OP_LOCALS;
  10269. const int ith = params->ith;
  10270. const int nth = params->nth;
  10271. const int nk = ne00;
  10272. const int nh = nk/2;
  10273. const int ew0 = ggml_up32(ne01);
  10274. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10275. GGML_ASSERT(nb00 == sizeof(float));
  10276. GGML_ASSERT(nb10 == sizeof(float));
  10277. if (params->type == GGML_TASK_INIT) {
  10278. // TODO: fix this memset (wsize is overestimated)
  10279. memset(params->wdata, 0, params->wsize);
  10280. // prepare kernel data (src0)
  10281. {
  10282. float * const wdata = (float *) params->wdata + 0;
  10283. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10284. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10285. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10286. float * dst_data = wdata + i02*ew0*ne00;
  10287. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10288. dst_data[i00*ew0 + i01] = src[i00];
  10289. }
  10290. }
  10291. }
  10292. }
  10293. // prepare source data (src1)
  10294. {
  10295. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10296. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10297. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10298. float * dst_data = wdata;
  10299. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10300. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10301. }
  10302. }
  10303. }
  10304. return;
  10305. }
  10306. if (params->type == GGML_TASK_FINALIZE) {
  10307. return;
  10308. }
  10309. // total rows in dst
  10310. const int nr = ne02;
  10311. // rows per thread
  10312. const int dr = (nr + nth - 1)/nth;
  10313. // row range for this thread
  10314. const int ir0 = dr*ith;
  10315. const int ir1 = MIN(ir0 + dr, nr);
  10316. for (int i1 = ir0; i1 < ir1; i1++) {
  10317. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10318. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10319. dst_data[i0] = 0;
  10320. for (int k = -nh; k <= nh; k++) {
  10321. float v = 0.0f;
  10322. ggml_vec_dot_f32(ew0, &v,
  10323. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10324. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10325. dst_data[i0] += v;
  10326. }
  10327. }
  10328. }
  10329. }
  10330. static void ggml_compute_forward_conv_1d_s1_ph(
  10331. const struct ggml_compute_params * params,
  10332. const struct ggml_tensor * src0,
  10333. const struct ggml_tensor * src1,
  10334. struct ggml_tensor * dst) {
  10335. switch (src0->type) {
  10336. case GGML_TYPE_F16:
  10337. {
  10338. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10339. } break;
  10340. case GGML_TYPE_F32:
  10341. {
  10342. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10343. } break;
  10344. default:
  10345. {
  10346. GGML_ASSERT(false);
  10347. } break;
  10348. }
  10349. }
  10350. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10351. const struct ggml_compute_params * params,
  10352. const struct ggml_tensor * src0,
  10353. const struct ggml_tensor * src1,
  10354. struct ggml_tensor * dst) {
  10355. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10356. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10357. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10358. int64_t t0 = ggml_perf_time_us();
  10359. UNUSED(t0);
  10360. GGML_TENSOR_BINARY_OP_LOCALS;
  10361. const int ith = params->ith;
  10362. const int nth = params->nth;
  10363. const int nk = ne00;
  10364. const int nh = nk/2;
  10365. const int ew0 = ggml_up32(ne01);
  10366. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10367. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10368. GGML_ASSERT(nb10 == sizeof(float));
  10369. if (params->type == GGML_TASK_INIT) {
  10370. // TODO: fix this memset (wsize is overestimated)
  10371. memset(params->wdata, 0, params->wsize);
  10372. // prepare kernel data (src0)
  10373. {
  10374. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10375. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10376. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10377. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10378. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10379. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10380. dst_data[i00*ew0 + i01] = src[i00];
  10381. }
  10382. }
  10383. }
  10384. }
  10385. // prepare source data (src1)
  10386. {
  10387. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10388. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10389. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10390. ggml_fp16_t * dst_data = wdata;
  10391. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10392. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10393. }
  10394. }
  10395. }
  10396. return;
  10397. }
  10398. if (params->type == GGML_TASK_FINALIZE) {
  10399. return;
  10400. }
  10401. // total rows in dst
  10402. const int nr = ne02;
  10403. // rows per thread
  10404. const int dr = (nr + nth - 1)/nth;
  10405. // row range for this thread
  10406. const int ir0 = dr*ith;
  10407. const int ir1 = MIN(ir0 + dr, nr);
  10408. for (int i1 = ir0; i1 < ir1; i1++) {
  10409. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10410. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10411. dst_data[i0/2] = 0;
  10412. for (int k = -nh; k <= nh; k++) {
  10413. float v = 0.0f;
  10414. ggml_vec_dot_f16(ew0, &v,
  10415. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10416. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10417. dst_data[i0/2] += v;
  10418. }
  10419. }
  10420. }
  10421. }
  10422. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10423. const struct ggml_compute_params * params,
  10424. const struct ggml_tensor * src0,
  10425. const struct ggml_tensor * src1,
  10426. struct ggml_tensor * dst) {
  10427. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10428. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10429. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10430. int64_t t0 = ggml_perf_time_us();
  10431. UNUSED(t0);
  10432. GGML_TENSOR_BINARY_OP_LOCALS;
  10433. const int ith = params->ith;
  10434. const int nth = params->nth;
  10435. const int nk = ne00;
  10436. const int nh = nk/2;
  10437. const int ew0 = ggml_up32(ne01);
  10438. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10439. GGML_ASSERT(nb00 == sizeof(float));
  10440. GGML_ASSERT(nb10 == sizeof(float));
  10441. if (params->type == GGML_TASK_INIT) {
  10442. // TODO: fix this memset (wsize is overestimated)
  10443. memset(params->wdata, 0, params->wsize);
  10444. // prepare kernel data (src0)
  10445. {
  10446. float * const wdata = (float *) params->wdata + 0;
  10447. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10448. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10449. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10450. float * dst_data = wdata + i02*ew0*ne00;
  10451. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10452. dst_data[i00*ew0 + i01] = src[i00];
  10453. }
  10454. }
  10455. }
  10456. }
  10457. // prepare source data (src1)
  10458. {
  10459. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10460. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10461. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10462. float * dst_data = wdata;
  10463. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10464. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10465. }
  10466. }
  10467. }
  10468. return;
  10469. }
  10470. if (params->type == GGML_TASK_FINALIZE) {
  10471. return;
  10472. }
  10473. // total rows in dst
  10474. const int nr = ne02;
  10475. // rows per thread
  10476. const int dr = (nr + nth - 1)/nth;
  10477. // row range for this thread
  10478. const int ir0 = dr*ith;
  10479. const int ir1 = MIN(ir0 + dr, nr);
  10480. for (int i1 = ir0; i1 < ir1; i1++) {
  10481. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10482. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10483. dst_data[i0/2] = 0;
  10484. for (int k = -nh; k <= nh; k++) {
  10485. float v = 0.0f;
  10486. ggml_vec_dot_f32(ew0, &v,
  10487. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10488. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10489. dst_data[i0/2] += v;
  10490. }
  10491. }
  10492. }
  10493. }
  10494. static void ggml_compute_forward_conv_1d_s2_ph(
  10495. const struct ggml_compute_params * params,
  10496. const struct ggml_tensor * src0,
  10497. const struct ggml_tensor * src1,
  10498. struct ggml_tensor * dst) {
  10499. switch (src0->type) {
  10500. case GGML_TYPE_F16:
  10501. {
  10502. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10503. } break;
  10504. case GGML_TYPE_F32:
  10505. {
  10506. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10507. } break;
  10508. default:
  10509. {
  10510. GGML_ASSERT(false);
  10511. } break;
  10512. }
  10513. }
  10514. // ggml_compute_forward_conv_1d
  10515. static void ggml_compute_forward_conv_1d(
  10516. const struct ggml_compute_params * params,
  10517. const struct ggml_tensor * src0,
  10518. const struct ggml_tensor * src1,
  10519. const struct ggml_tensor * opt0,
  10520. struct ggml_tensor * dst) {
  10521. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10522. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10523. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10524. GGML_ASSERT(d0 == 1); // dilation not supported
  10525. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10526. if (s0 == 1) {
  10527. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10528. } else if (s0 == 2) {
  10529. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10530. } else {
  10531. GGML_ASSERT(false); // only stride 1 and 2 supported
  10532. };
  10533. }
  10534. // ggml_compute_forward_conv_2d
  10535. static void ggml_compute_forward_conv_2d_f16_f32(
  10536. const struct ggml_compute_params * params,
  10537. const struct ggml_tensor * src0,
  10538. const struct ggml_tensor * src1,
  10539. const struct ggml_tensor * opt0,
  10540. struct ggml_tensor * dst) {
  10541. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10542. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10543. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10544. int64_t t0 = ggml_perf_time_us();
  10545. UNUSED(t0);
  10546. GGML_TENSOR_BINARY_OP_LOCALS;
  10547. const int ith = params->ith;
  10548. const int nth = params->nth;
  10549. const int nk0 = ne00;
  10550. const int nk1 = ne01;
  10551. // size of the convolution row - the kernel size unrolled across all channels
  10552. const int ew0 = nk0*nk1*ne02;
  10553. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10554. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10555. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10556. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10557. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10558. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10559. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10560. GGML_ASSERT(nb10 == sizeof(float));
  10561. if (params->type == GGML_TASK_INIT) {
  10562. memset(params->wdata, 0, params->wsize);
  10563. // prepare source data (src1)
  10564. {
  10565. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10566. for (int i12 = 0; i12 < ne12; i12++) {
  10567. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10568. ggml_fp16_t * dst_data = wdata;
  10569. for (int i1 = 0; i1 < ne1; i1++) {
  10570. for (int i0 = 0; i0 < ne0; i0++) {
  10571. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10572. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10573. const int idx0 = i0*s0 + ik0*d0 - p0;
  10574. const int idx1 = i1*s1 + ik1*d1 - p1;
  10575. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10576. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10577. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10578. }
  10579. }
  10580. }
  10581. }
  10582. }
  10583. }
  10584. }
  10585. return;
  10586. }
  10587. if (params->type == GGML_TASK_FINALIZE) {
  10588. return;
  10589. }
  10590. // total patches in dst
  10591. const int np = ne2;
  10592. // patches per thread
  10593. const int dp = (np + nth - 1)/nth;
  10594. // patch range for this thread
  10595. const int ip0 = dp*ith;
  10596. const int ip1 = MIN(ip0 + dp, np);
  10597. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10598. for (int i3 = 0; i3 < ne3; i3++) {
  10599. for (int i2 = ip0; i2 < ip1; i2++) {
  10600. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10601. for (int i1 = 0; i1 < ne1; ++i1) {
  10602. for (int i0 = 0; i0 < ne0; ++i0) {
  10603. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10604. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10605. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10606. }
  10607. }
  10608. }
  10609. }
  10610. }
  10611. static void ggml_compute_forward_conv_2d(
  10612. const struct ggml_compute_params * params,
  10613. const struct ggml_tensor * src0,
  10614. const struct ggml_tensor * src1,
  10615. const struct ggml_tensor * opt0,
  10616. struct ggml_tensor * dst
  10617. ) {
  10618. switch (src0->type) {
  10619. case GGML_TYPE_F16:
  10620. {
  10621. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, opt0, dst);
  10622. } break;
  10623. case GGML_TYPE_F32:
  10624. {
  10625. //ggml_compute_forward_conv_2d_f32(params, src0, src1, opt0, dst);
  10626. GGML_ASSERT(false);
  10627. } break;
  10628. default:
  10629. {
  10630. GGML_ASSERT(false);
  10631. } break;
  10632. }
  10633. }
  10634. // ggml_compute_forward_pool_1d_sk_p0
  10635. static void ggml_compute_forward_pool_1d_sk_p0(
  10636. const struct ggml_compute_params * params,
  10637. const enum ggml_op_pool op,
  10638. const struct ggml_tensor * src,
  10639. const int k,
  10640. struct ggml_tensor * dst) {
  10641. assert(src->type == GGML_TYPE_F32);
  10642. assert(params->ith == 0);
  10643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10644. return;
  10645. }
  10646. const char * cdata = (const char *)src->data;
  10647. const char * const data_end = cdata + ggml_nbytes(src);
  10648. float * drow = (float *)dst->data;
  10649. const int64_t rs = dst->ne[0];
  10650. while (cdata < data_end) {
  10651. const float * const srow = (const float *)cdata;
  10652. int j = 0;
  10653. for (int64_t i = 0; i < rs; ++i) {
  10654. switch (op) {
  10655. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10656. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10657. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10658. }
  10659. for (int ki = 0; ki < k; ++ki) {
  10660. switch (op) {
  10661. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10662. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10663. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10664. }
  10665. ++j;
  10666. }
  10667. switch (op) {
  10668. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10669. case GGML_OP_POOL_MAX: break;
  10670. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10671. }
  10672. }
  10673. cdata += src->nb[1];
  10674. drow += rs;
  10675. }
  10676. }
  10677. // ggml_compute_forward_pool_1d
  10678. static void ggml_compute_forward_pool_1d(
  10679. const struct ggml_compute_params* params,
  10680. const struct ggml_tensor* src0,
  10681. const struct ggml_tensor* opt0,
  10682. struct ggml_tensor* dst) {
  10683. GGML_ASSERT(opt0->ne[0] == 4);
  10684. const int* opts = (const int*)opt0->data;
  10685. enum ggml_op_pool op = opts[0];
  10686. const int k0 = opts[1];
  10687. const int s0 = opts[2];
  10688. const int p0 = opts[3];
  10689. GGML_ASSERT(p0 == 0); // padding not supported
  10690. GGML_ASSERT(k0 == s0); // only s = k supported
  10691. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10692. }
  10693. // ggml_compute_forward_pool_2d_sk_p0
  10694. static void ggml_compute_forward_pool_2d_sk_p0(
  10695. const struct ggml_compute_params * params,
  10696. const enum ggml_op_pool op,
  10697. const struct ggml_tensor * src,
  10698. const int k0,
  10699. const int k1,
  10700. struct ggml_tensor * dst) {
  10701. assert(src->type == GGML_TYPE_F32);
  10702. assert(params->ith == 0);
  10703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10704. return;
  10705. }
  10706. const char * cdata = (const char*)src->data;
  10707. const char * const data_end = cdata + ggml_nbytes(src);
  10708. const int64_t px = dst->ne[0];
  10709. const int64_t py = dst->ne[1];
  10710. const int64_t pa = px * py;
  10711. float * dplane = (float *)dst->data;
  10712. const int ka = k0 * k1;
  10713. while (cdata < data_end) {
  10714. for (int oy = 0; oy < py; ++oy) {
  10715. float * const drow = dplane + oy * px;
  10716. for (int ox = 0; ox < px; ++ox) {
  10717. float * const out = drow + ox;
  10718. switch (op) {
  10719. case GGML_OP_POOL_AVG: *out = 0; break;
  10720. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10721. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10722. }
  10723. const int ix = ox * k0;
  10724. const int iy = oy * k1;
  10725. for (int ky = 0; ky < k1; ++ky) {
  10726. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10727. for (int kx = 0; kx < k0; ++kx) {
  10728. int j = ix + kx;
  10729. switch (op) {
  10730. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10731. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10732. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10733. }
  10734. }
  10735. }
  10736. switch (op) {
  10737. case GGML_OP_POOL_AVG: *out /= ka; break;
  10738. case GGML_OP_POOL_MAX: break;
  10739. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10740. }
  10741. }
  10742. }
  10743. cdata += src->nb[2];
  10744. dplane += pa;
  10745. }
  10746. }
  10747. // ggml_compute_forward_pool_2d
  10748. static void ggml_compute_forward_pool_2d(
  10749. const struct ggml_compute_params * params,
  10750. const struct ggml_tensor * src0,
  10751. const struct ggml_tensor * opt0,
  10752. struct ggml_tensor * dst) {
  10753. GGML_ASSERT(opt0->ne[0] == 7);
  10754. const int* opts = (const int*)opt0->data;
  10755. enum ggml_op_pool op = opts[0];
  10756. const int k0 = opts[1];
  10757. const int k1 = opts[2];
  10758. const int s0 = opts[3];
  10759. const int s1 = opts[4];
  10760. const int p0 = opts[5];
  10761. const int p1 = opts[6];
  10762. GGML_ASSERT(p0 == 0);
  10763. GGML_ASSERT(p1 == 0); // padding not supported
  10764. GGML_ASSERT(k0 == s0);
  10765. GGML_ASSERT(k1 == s1); // only s = k supported
  10766. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10767. }
  10768. // ggml_compute_forward_flash_attn
  10769. static void ggml_compute_forward_flash_attn_f32(
  10770. const struct ggml_compute_params * params,
  10771. const struct ggml_tensor * q,
  10772. const struct ggml_tensor * k,
  10773. const struct ggml_tensor * v,
  10774. const bool masked,
  10775. struct ggml_tensor * dst) {
  10776. int64_t t0 = ggml_perf_time_us();
  10777. UNUSED(t0);
  10778. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10779. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10780. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10781. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10782. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10783. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10784. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10785. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10786. const int ith = params->ith;
  10787. const int nth = params->nth;
  10788. const int64_t D = neq0;
  10789. const int64_t N = neq1;
  10790. const int64_t P = nek1 - N;
  10791. const int64_t M = P + N;
  10792. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10793. GGML_ASSERT(ne0 == D);
  10794. GGML_ASSERT(ne1 == N);
  10795. GGML_ASSERT(P >= 0);
  10796. GGML_ASSERT(nbq0 == sizeof(float));
  10797. GGML_ASSERT(nbk0 == sizeof(float));
  10798. GGML_ASSERT(nbv0 == sizeof(float));
  10799. GGML_ASSERT(neq0 == D);
  10800. GGML_ASSERT(nek0 == D);
  10801. GGML_ASSERT(nev1 == D);
  10802. GGML_ASSERT(neq1 == N);
  10803. GGML_ASSERT(nek1 == N + P);
  10804. GGML_ASSERT(nev1 == D);
  10805. // dst cannot be transposed or permuted
  10806. GGML_ASSERT(nb0 == sizeof(float));
  10807. GGML_ASSERT(nb0 <= nb1);
  10808. GGML_ASSERT(nb1 <= nb2);
  10809. GGML_ASSERT(nb2 <= nb3);
  10810. if (params->type == GGML_TASK_INIT) {
  10811. return;
  10812. }
  10813. if (params->type == GGML_TASK_FINALIZE) {
  10814. return;
  10815. }
  10816. // parallelize by q rows using ggml_vec_dot_f32
  10817. // total rows in q
  10818. const int nr = neq1*neq2*neq3;
  10819. // rows per thread
  10820. const int dr = (nr + nth - 1)/nth;
  10821. // row range for this thread
  10822. const int ir0 = dr*ith;
  10823. const int ir1 = MIN(ir0 + dr, nr);
  10824. const float scale = 1.0f/sqrtf(D);
  10825. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10826. for (int ir = ir0; ir < ir1; ++ir) {
  10827. // q indices
  10828. const int iq3 = ir/(neq2*neq1);
  10829. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10830. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10831. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10832. for (int i = M; i < Mup; ++i) {
  10833. S[i] = -INFINITY;
  10834. }
  10835. for (int64_t ic = 0; ic < nek1; ++ic) {
  10836. // k indices
  10837. const int ik3 = iq3;
  10838. const int ik2 = iq2;
  10839. const int ik1 = ic;
  10840. // S indices
  10841. const int i1 = ik1;
  10842. ggml_vec_dot_f32(neq0,
  10843. S + i1,
  10844. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10845. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10846. }
  10847. // scale
  10848. ggml_vec_scale_f32(nek1, S, scale);
  10849. if (masked) {
  10850. for (int64_t i = P; i < M; i++) {
  10851. if (i > P + iq1) {
  10852. S[i] = -INFINITY;
  10853. }
  10854. }
  10855. }
  10856. // softmax
  10857. {
  10858. float max = -INFINITY;
  10859. ggml_vec_max_f32(M, &max, S);
  10860. ggml_float sum = 0.0;
  10861. {
  10862. #ifdef GGML_SOFT_MAX_ACCELERATE
  10863. max = -max;
  10864. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10865. vvexpf(S, S, &Mup);
  10866. ggml_vec_sum_f32(Mup, &sum, S);
  10867. #else
  10868. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10869. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10870. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10871. float * SS = S + i;
  10872. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10873. if (SS[j] == -INFINITY) {
  10874. SS[j] = 0.0f;
  10875. } else {
  10876. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10877. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10878. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10879. sump[j] += (ggml_float)val;
  10880. SS[j] = val;
  10881. }
  10882. }
  10883. }
  10884. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10885. sum += sump[i];
  10886. }
  10887. #endif
  10888. }
  10889. assert(sum > 0.0);
  10890. sum = 1.0/sum;
  10891. ggml_vec_scale_f32(M, S, sum);
  10892. #ifndef NDEBUG
  10893. for (int i = 0; i < M; ++i) {
  10894. assert(!isnan(S[i]));
  10895. assert(!isinf(S[i]));
  10896. }
  10897. #endif
  10898. }
  10899. for (int64_t ic = 0; ic < nev1; ++ic) {
  10900. // dst indices
  10901. const int i1 = iq1;
  10902. const int i2 = iq2;
  10903. const int i3 = iq3;
  10904. ggml_vec_dot_f32(nek1,
  10905. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10906. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10907. S);
  10908. }
  10909. }
  10910. }
  10911. static void ggml_compute_forward_flash_attn_f16(
  10912. const struct ggml_compute_params * params,
  10913. const struct ggml_tensor * q,
  10914. const struct ggml_tensor * k,
  10915. const struct ggml_tensor * v,
  10916. const bool masked,
  10917. struct ggml_tensor * dst) {
  10918. int64_t t0 = ggml_perf_time_us();
  10919. UNUSED(t0);
  10920. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10921. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10922. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10923. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10924. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10925. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10926. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10927. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10928. const int ith = params->ith;
  10929. const int nth = params->nth;
  10930. const int64_t D = neq0;
  10931. const int64_t N = neq1;
  10932. const int64_t P = nek1 - N;
  10933. const int64_t M = P + N;
  10934. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10935. GGML_ASSERT(ne0 == D);
  10936. GGML_ASSERT(ne1 == N);
  10937. GGML_ASSERT(P >= 0);
  10938. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10939. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10940. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10941. GGML_ASSERT(neq0 == D);
  10942. GGML_ASSERT(nek0 == D);
  10943. GGML_ASSERT(nev1 == D);
  10944. GGML_ASSERT(neq1 == N);
  10945. GGML_ASSERT(nek1 == N + P);
  10946. GGML_ASSERT(nev1 == D);
  10947. // dst cannot be transposed or permuted
  10948. GGML_ASSERT(nb0 == sizeof(float));
  10949. GGML_ASSERT(nb0 <= nb1);
  10950. GGML_ASSERT(nb1 <= nb2);
  10951. GGML_ASSERT(nb2 <= nb3);
  10952. if (params->type == GGML_TASK_INIT) {
  10953. return;
  10954. }
  10955. if (params->type == GGML_TASK_FINALIZE) {
  10956. return;
  10957. }
  10958. // parallelize by q rows using ggml_vec_dot_f32
  10959. // total rows in q
  10960. const int nr = neq1*neq2*neq3;
  10961. // rows per thread
  10962. const int dr = (nr + nth - 1)/nth;
  10963. // row range for this thread
  10964. const int ir0 = dr*ith;
  10965. const int ir1 = MIN(ir0 + dr, nr);
  10966. const float scale = 1.0f/sqrtf(D);
  10967. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10968. for (int ir = ir0; ir < ir1; ++ir) {
  10969. // q indices
  10970. const int iq3 = ir/(neq2*neq1);
  10971. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10972. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10973. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10974. for (int i = M; i < Mup; ++i) {
  10975. S[i] = -INFINITY;
  10976. }
  10977. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10978. for (int64_t ic = 0; ic < nek1; ++ic) {
  10979. // k indices
  10980. const int ik3 = iq3;
  10981. const int ik2 = iq2;
  10982. const int ik1 = ic;
  10983. // S indices
  10984. const int i1 = ik1;
  10985. ggml_vec_dot_f16(neq0,
  10986. S + i1,
  10987. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10988. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10989. }
  10990. } else {
  10991. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10992. // k indices
  10993. const int ik3 = iq3;
  10994. const int ik2 = iq2;
  10995. const int ik1 = ic;
  10996. // S indices
  10997. const int i1 = ik1;
  10998. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10999. S + i1,
  11000. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11001. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11002. }
  11003. }
  11004. // scale
  11005. ggml_vec_scale_f32(nek1, S, scale);
  11006. if (masked) {
  11007. for (int64_t i = P; i < M; i++) {
  11008. if (i > P + iq1) {
  11009. S[i] = -INFINITY;
  11010. }
  11011. }
  11012. }
  11013. // softmax
  11014. {
  11015. float max = -INFINITY;
  11016. ggml_vec_max_f32(M, &max, S);
  11017. ggml_float sum = 0.0;
  11018. {
  11019. #ifdef GGML_SOFT_MAX_ACCELERATE
  11020. max = -max;
  11021. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11022. vvexpf(S, S, &Mup);
  11023. ggml_vec_sum_f32(Mup, &sum, S);
  11024. #else
  11025. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11026. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11027. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11028. float * SS = S + i;
  11029. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11030. if (SS[j] == -INFINITY) {
  11031. SS[j] = 0.0f;
  11032. } else {
  11033. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11034. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11035. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11036. sump[j] += (ggml_float)val;
  11037. SS[j] = val;
  11038. }
  11039. }
  11040. }
  11041. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11042. sum += sump[i];
  11043. }
  11044. #endif
  11045. }
  11046. assert(sum > 0.0);
  11047. sum = 1.0/sum;
  11048. ggml_vec_scale_f32(M, S, sum);
  11049. #ifndef NDEBUG
  11050. for (int i = 0; i < M; ++i) {
  11051. assert(!isnan(S[i]));
  11052. assert(!isinf(S[i]));
  11053. }
  11054. #endif
  11055. }
  11056. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11057. for (int64_t i = 0; i < M; i++) {
  11058. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11059. }
  11060. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11061. for (int64_t ic = 0; ic < nev1; ++ic) {
  11062. // dst indices
  11063. const int i1 = iq1;
  11064. const int i2 = iq2;
  11065. const int i3 = iq3;
  11066. ggml_vec_dot_f16(nek1,
  11067. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11068. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11069. S16);
  11070. }
  11071. } else {
  11072. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11073. // dst indices
  11074. const int i1 = iq1;
  11075. const int i2 = iq2;
  11076. const int i3 = iq3;
  11077. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11078. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11079. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11080. S16);
  11081. }
  11082. }
  11083. }
  11084. }
  11085. static void ggml_compute_forward_flash_attn(
  11086. const struct ggml_compute_params * params,
  11087. const struct ggml_tensor * q,
  11088. const struct ggml_tensor * k,
  11089. const struct ggml_tensor * v,
  11090. const bool masked,
  11091. struct ggml_tensor * dst) {
  11092. switch (q->type) {
  11093. case GGML_TYPE_F16:
  11094. {
  11095. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11096. } break;
  11097. case GGML_TYPE_F32:
  11098. {
  11099. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11100. } break;
  11101. default:
  11102. {
  11103. GGML_ASSERT(false);
  11104. } break;
  11105. }
  11106. }
  11107. // ggml_compute_forward_flash_ff
  11108. static void ggml_compute_forward_flash_ff_f16(
  11109. const struct ggml_compute_params * params,
  11110. const struct ggml_tensor * a, // F16
  11111. const struct ggml_tensor * b0, // F16 fc_w
  11112. const struct ggml_tensor * b1, // F32 fc_b
  11113. const struct ggml_tensor * c0, // F16 proj_w
  11114. const struct ggml_tensor * c1, // F32 proj_b
  11115. struct ggml_tensor * dst) {
  11116. int64_t t0 = ggml_perf_time_us();
  11117. UNUSED(t0);
  11118. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11119. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11120. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11121. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11122. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11123. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11124. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11125. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11126. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11127. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11128. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11129. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11130. const int ith = params->ith;
  11131. const int nth = params->nth;
  11132. const int64_t D = nea0;
  11133. //const int64_t N = nea1;
  11134. const int64_t M = neb01;
  11135. GGML_ASSERT(ne0 == nea0);
  11136. GGML_ASSERT(ne1 == nea1);
  11137. GGML_ASSERT(ne2 == nea2);
  11138. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11139. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11140. GGML_ASSERT(nbb10 == sizeof(float));
  11141. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11142. GGML_ASSERT(nbc10 == sizeof(float));
  11143. GGML_ASSERT(neb00 == D);
  11144. GGML_ASSERT(neb01 == M);
  11145. GGML_ASSERT(neb10 == M);
  11146. GGML_ASSERT(neb11 == 1);
  11147. GGML_ASSERT(nec00 == M);
  11148. GGML_ASSERT(nec01 == D);
  11149. GGML_ASSERT(nec10 == D);
  11150. GGML_ASSERT(nec11 == 1);
  11151. // dst cannot be transposed or permuted
  11152. GGML_ASSERT(nb0 == sizeof(float));
  11153. GGML_ASSERT(nb0 <= nb1);
  11154. GGML_ASSERT(nb1 <= nb2);
  11155. GGML_ASSERT(nb2 <= nb3);
  11156. if (params->type == GGML_TASK_INIT) {
  11157. return;
  11158. }
  11159. if (params->type == GGML_TASK_FINALIZE) {
  11160. return;
  11161. }
  11162. // parallelize by a rows using ggml_vec_dot_f32
  11163. // total rows in a
  11164. const int nr = nea1*nea2*nea3;
  11165. // rows per thread
  11166. const int dr = (nr + nth - 1)/nth;
  11167. // row range for this thread
  11168. const int ir0 = dr*ith;
  11169. const int ir1 = MIN(ir0 + dr, nr);
  11170. for (int ir = ir0; ir < ir1; ++ir) {
  11171. // a indices
  11172. const int ia3 = ir/(nea2*nea1);
  11173. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11174. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11175. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11176. for (int64_t ic = 0; ic < neb01; ++ic) {
  11177. // b0 indices
  11178. const int ib03 = ia3;
  11179. const int ib02 = ia2;
  11180. const int ib01 = ic;
  11181. // S indices
  11182. const int i1 = ib01;
  11183. ggml_vec_dot_f16(nea0,
  11184. S + i1,
  11185. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11186. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11187. }
  11188. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11189. //ggml_vec_gelu_f32(neb01, S, S);
  11190. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11191. for (int64_t i = 0; i < M; i++) {
  11192. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11193. }
  11194. ggml_vec_gelu_f16(neb01, S16, S16);
  11195. {
  11196. // dst indices
  11197. const int i1 = ia1;
  11198. const int i2 = ia2;
  11199. const int i3 = ia3;
  11200. for (int64_t ic = 0; ic < nec01; ++ic) {
  11201. ggml_vec_dot_f16(neb01,
  11202. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11203. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11204. S16);
  11205. }
  11206. ggml_vec_add_f32(nec01,
  11207. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11208. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11209. (float *) c1->data);
  11210. }
  11211. }
  11212. }
  11213. static void ggml_compute_forward_flash_ff(
  11214. const struct ggml_compute_params * params,
  11215. const struct ggml_tensor * a,
  11216. const struct ggml_tensor * b0,
  11217. const struct ggml_tensor * b1,
  11218. const struct ggml_tensor * c0,
  11219. const struct ggml_tensor * c1,
  11220. struct ggml_tensor * dst) {
  11221. switch (b0->type) {
  11222. case GGML_TYPE_F16:
  11223. {
  11224. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11225. } break;
  11226. case GGML_TYPE_F32:
  11227. {
  11228. GGML_ASSERT(false); // TODO
  11229. } break;
  11230. default:
  11231. {
  11232. GGML_ASSERT(false);
  11233. } break;
  11234. }
  11235. }
  11236. // ggml_compute_forward_flash_attn_back
  11237. static void ggml_compute_forward_flash_attn_back_f32(
  11238. const struct ggml_compute_params * params,
  11239. const struct ggml_tensor * q,
  11240. const struct ggml_tensor * k,
  11241. const struct ggml_tensor * v,
  11242. const struct ggml_tensor * d,
  11243. const bool masked,
  11244. struct ggml_tensor * dst) {
  11245. int64_t t0 = ggml_perf_time_us();
  11246. UNUSED(t0);
  11247. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11248. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11249. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11250. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11251. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11252. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11253. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11254. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11255. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11256. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11257. const int ith = params->ith;
  11258. const int nth = params->nth;
  11259. const int64_t D = neq0;
  11260. const int64_t N = neq1;
  11261. const int64_t P = nek1 - N;
  11262. const int64_t M = P + N;
  11263. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11264. const int mxDM = MAX(D, Mup);
  11265. // GGML_ASSERT(ne0 == D);
  11266. // GGML_ASSERT(ne1 == N);
  11267. GGML_ASSERT(P >= 0);
  11268. GGML_ASSERT(nbq0 == sizeof(float));
  11269. GGML_ASSERT(nbk0 == sizeof(float));
  11270. GGML_ASSERT(nbv0 == sizeof(float));
  11271. GGML_ASSERT(neq0 == D);
  11272. GGML_ASSERT(nek0 == D);
  11273. GGML_ASSERT(nev1 == D);
  11274. GGML_ASSERT(ned0 == D);
  11275. GGML_ASSERT(neq1 == N);
  11276. GGML_ASSERT(nek1 == N + P);
  11277. GGML_ASSERT(nev1 == D);
  11278. GGML_ASSERT(ned1 == N);
  11279. // dst cannot be transposed or permuted
  11280. GGML_ASSERT(nb0 == sizeof(float));
  11281. GGML_ASSERT(nb0 <= nb1);
  11282. GGML_ASSERT(nb1 <= nb2);
  11283. GGML_ASSERT(nb2 <= nb3);
  11284. if (params->type == GGML_TASK_INIT) {
  11285. if (ith == 0) {
  11286. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11287. }
  11288. return;
  11289. }
  11290. if (params->type == GGML_TASK_FINALIZE) {
  11291. return;
  11292. }
  11293. // parallelize by q rows using ggml_vec_dot_f32
  11294. // total rows in q
  11295. const int nr = neq2*neq3;
  11296. // rows per thread
  11297. const int dr = (nr + nth - 1)/nth;
  11298. // row range for this thread
  11299. const int ir0 = dr*ith;
  11300. const int ir1 = MIN(ir0 + dr, nr);
  11301. const float scale = 1.0f/sqrtf(D);
  11302. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11303. for (int ir = ir0; ir < ir1; ++ir) {
  11304. // q indices
  11305. const int iq3 = ir/(neq2);
  11306. const int iq2 = ir - iq3*neq2;
  11307. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11308. // not sure about CACHE_LINE_SIZE_F32..
  11309. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11310. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11311. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11312. for (int i = M; i < Mup; ++i) {
  11313. S[i] = -INFINITY;
  11314. }
  11315. for (int64_t ic = 0; ic < nek1; ++ic) {
  11316. // k indices
  11317. const int ik3 = iq3;
  11318. const int ik2 = iq2;
  11319. const int ik1 = ic;
  11320. // S indices
  11321. const int i1 = ik1;
  11322. ggml_vec_dot_f32(neq0,
  11323. S + i1,
  11324. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11325. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11326. }
  11327. // scale
  11328. ggml_vec_scale_f32(nek1, S, scale);
  11329. if (masked) {
  11330. for (int64_t i = P; i < M; i++) {
  11331. if (i > P + iq1) {
  11332. S[i] = -INFINITY;
  11333. }
  11334. }
  11335. }
  11336. // softmax
  11337. {
  11338. float max = -INFINITY;
  11339. ggml_vec_max_f32(M, &max, S);
  11340. ggml_float sum = 0.0;
  11341. {
  11342. #ifdef GGML_SOFT_MAX_ACCELERATE
  11343. max = -max;
  11344. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11345. vvexpf(SM, SM, &Mup);
  11346. ggml_vec_sum_f32(Mup, &sum, SM);
  11347. #else
  11348. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11349. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11350. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11351. float * SR = S + i;
  11352. float * SW = SM + i;
  11353. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11354. if (SR[j] == -INFINITY) {
  11355. SW[j] = 0.0f;
  11356. } else {
  11357. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11358. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11359. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11360. sump[j] += (ggml_float)val;
  11361. SW[j] = val;
  11362. }
  11363. }
  11364. }
  11365. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11366. sum += sump[i];
  11367. }
  11368. #endif
  11369. }
  11370. assert(sum > 0.0);
  11371. sum = 1.0/sum;
  11372. ggml_vec_scale_f32(M, SM, sum);
  11373. }
  11374. // step-by-step explanation
  11375. {
  11376. // forward-process shape grads from backward process
  11377. // parallel_for iq2,iq3:
  11378. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11379. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11380. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11381. // for iq1:
  11382. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11383. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11384. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11385. // S0 = -Inf [D,1,1,1]
  11386. // ~S1[i] = dot(kcur[:D,i], qcur)
  11387. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11388. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11389. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11390. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11391. // ~S5[i] = dot(vcur[:,i], S4)
  11392. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11393. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11394. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11395. // dst backward-/ grad[dst] = d
  11396. //
  11397. // output gradients with their dependencies:
  11398. //
  11399. // grad[kcur] = grad[S1].T @ qcur
  11400. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11401. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11402. // grad[S4] = grad[S5] @ vcur
  11403. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11404. // grad[qcur] = grad[S1] @ kcur
  11405. // grad[vcur] = grad[S5].T @ S4
  11406. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11407. //
  11408. // in post-order:
  11409. //
  11410. // S1 = qcur @ kcur.T
  11411. // S2 = S1 * scale
  11412. // S3 = diag_mask_inf(S2, P)
  11413. // S4 = softmax(S3)
  11414. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11415. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11416. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11417. // grad[qcur] = grad[S1] @ kcur
  11418. // grad[kcur] = grad[S1].T @ qcur
  11419. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11420. //
  11421. // using less variables (SM=S4):
  11422. //
  11423. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11424. // SM = softmax(S)
  11425. // S = d[:D,iq1,iq2,iq3] @ vcur
  11426. // dot_SM_gradSM = dot(SM, S)
  11427. // S = SM * (S - dot(SM, S))
  11428. // S = diag_mask_zero(S, P) * scale
  11429. //
  11430. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11431. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11432. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11433. }
  11434. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11435. // S = d[:D,iq1,iq2,iq3] @ vcur
  11436. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11437. ggml_vec_set_f32(M, S, 0);
  11438. for (int64_t ic = 0; ic < D; ++ic) {
  11439. // dst indices
  11440. const int i1 = iq1;
  11441. const int i2 = iq2;
  11442. const int i3 = iq3;
  11443. ggml_vec_mad_f32(M,
  11444. S,
  11445. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11446. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11447. }
  11448. // S = SM * (S - dot(SM, S))
  11449. float dot_SM_gradSM = 0;
  11450. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11451. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11452. ggml_vec_mul_f32 (M, S, S, SM);
  11453. // S = diag_mask_zero(S, P) * scale
  11454. if (masked) {
  11455. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11456. // S[i] = 0;
  11457. // }
  11458. for (int64_t i = P; i < M; i++) {
  11459. if (i > P + iq1) {
  11460. S[i] = 0;
  11461. }
  11462. }
  11463. }
  11464. ggml_vec_scale_f32(M, S, scale);
  11465. void * grad_q = (char *) dst->data;
  11466. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11467. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11468. const size_t nbgq1 = nb0*neq0;
  11469. const size_t nbgq2 = nb0*neq0*neq1;
  11470. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11471. const size_t nbgk1 = nb0*nek0;
  11472. const size_t nbgk2 = nb0*nek0*nek1;
  11473. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11474. const size_t nbgv1 = nb0*nev0;
  11475. const size_t nbgv2 = nb0*nev0*nev1;
  11476. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11477. // S shape [M,1]
  11478. // SM shape [M,1]
  11479. // kcur shape [D,M]
  11480. // qcur shape [D,1]
  11481. // vcur shape [M,D]
  11482. //
  11483. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11484. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11485. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11486. //
  11487. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11488. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11489. for (int64_t ic = 0; ic < M; ++ic) {
  11490. // dst indices
  11491. const int i1 = iq1;
  11492. const int i2 = iq2;
  11493. const int i3 = iq3;
  11494. ggml_vec_mad_f32(D,
  11495. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11496. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11497. S[ic]);
  11498. }
  11499. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11500. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11501. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11502. for (int64_t ic = 0; ic < M; ++ic) {
  11503. // dst indices
  11504. const int i1 = iq1;
  11505. const int i2 = iq2;
  11506. const int i3 = iq3;
  11507. // ggml_vec_set_f32(D,
  11508. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11509. // 0);
  11510. ggml_vec_mad_f32(D,
  11511. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11512. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11513. S[ic]);
  11514. }
  11515. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11516. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11517. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11518. for (int64_t ic = 0; ic < D; ++ic) {
  11519. // dst indices
  11520. const int i1 = iq1;
  11521. const int i2 = iq2;
  11522. const int i3 = iq3;
  11523. // ggml_vec_set_f32(M,
  11524. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11525. // 0);
  11526. ggml_vec_mad_f32(M,
  11527. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11528. SM,
  11529. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11530. }
  11531. }
  11532. }
  11533. }
  11534. static void ggml_compute_forward_flash_attn_back(
  11535. const struct ggml_compute_params * params,
  11536. const struct ggml_tensor * q,
  11537. const struct ggml_tensor * k,
  11538. const struct ggml_tensor * v,
  11539. const struct ggml_tensor * d,
  11540. const bool masked,
  11541. struct ggml_tensor * dst) {
  11542. switch (q->type) {
  11543. case GGML_TYPE_F32:
  11544. {
  11545. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11546. } break;
  11547. default:
  11548. {
  11549. GGML_ASSERT(false);
  11550. } break;
  11551. }
  11552. }
  11553. // ggml_compute_forward_win_part
  11554. static void ggml_compute_forward_win_part_f32(
  11555. const struct ggml_compute_params * params,
  11556. const struct ggml_tensor * src0,
  11557. const struct ggml_tensor * opt0,
  11558. struct ggml_tensor * dst) {
  11559. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11560. return;
  11561. }
  11562. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11563. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11564. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11565. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11566. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11567. assert(ne00 == ne0);
  11568. assert(ne3 == nep0*nep1);
  11569. // TODO: optimize / multi-thread
  11570. for (int py = 0; py < nep1; ++py) {
  11571. for (int px = 0; px < nep0; ++px) {
  11572. const int64_t i3 = py*nep0 + px;
  11573. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11574. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11575. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11576. const int64_t i02 = py*w + i2;
  11577. const int64_t i01 = px*w + i1;
  11578. const int64_t i00 = i0;
  11579. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11580. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11581. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11582. ((float *) dst->data)[i] = 0.0f;
  11583. } else {
  11584. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11585. }
  11586. }
  11587. }
  11588. }
  11589. }
  11590. }
  11591. }
  11592. static void ggml_compute_forward_win_part(
  11593. const struct ggml_compute_params * params,
  11594. const struct ggml_tensor * src0,
  11595. const struct ggml_tensor * opt0,
  11596. struct ggml_tensor * dst) {
  11597. switch (src0->type) {
  11598. case GGML_TYPE_F32:
  11599. {
  11600. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11601. } break;
  11602. default:
  11603. {
  11604. GGML_ASSERT(false);
  11605. } break;
  11606. }
  11607. }
  11608. // ggml_compute_forward_win_unpart
  11609. static void ggml_compute_forward_win_unpart_f32(
  11610. const struct ggml_compute_params * params,
  11611. const struct ggml_tensor * src0,
  11612. const struct ggml_tensor * opt0,
  11613. struct ggml_tensor * dst) {
  11614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11615. return;
  11616. }
  11617. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11618. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11619. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11620. // padding
  11621. const int px = (w - ne1%w)%w;
  11622. //const int py = (w - ne2%w)%w;
  11623. const int npx = (px + ne1)/w;
  11624. //const int npy = (py + ne2)/w;
  11625. assert(ne0 == ne00);
  11626. // TODO: optimize / multi-thread
  11627. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11628. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11629. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11630. const int ip2 = i2/w;
  11631. const int ip1 = i1/w;
  11632. const int64_t i02 = i2%w;
  11633. const int64_t i01 = i1%w;
  11634. const int64_t i00 = i0;
  11635. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11636. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11637. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11638. }
  11639. }
  11640. }
  11641. }
  11642. static void ggml_compute_forward_win_unpart(
  11643. const struct ggml_compute_params * params,
  11644. const struct ggml_tensor * src0,
  11645. const struct ggml_tensor * opt0,
  11646. struct ggml_tensor * dst) {
  11647. switch (src0->type) {
  11648. case GGML_TYPE_F32:
  11649. {
  11650. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11651. } break;
  11652. default:
  11653. {
  11654. GGML_ASSERT(false);
  11655. } break;
  11656. }
  11657. }
  11658. // ggml_compute_forward_map_unary
  11659. static void ggml_compute_forward_map_unary_f32(
  11660. const struct ggml_compute_params * params,
  11661. const struct ggml_tensor * src0,
  11662. struct ggml_tensor * dst,
  11663. const ggml_unary_op_f32_t fun) {
  11664. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11666. return;
  11667. }
  11668. const int n = ggml_nrows(src0);
  11669. const int nc = src0->ne[0];
  11670. assert( dst->nb[0] == sizeof(float));
  11671. assert(src0->nb[0] == sizeof(float));
  11672. for (int i = 0; i < n; i++) {
  11673. fun(nc,
  11674. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11675. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11676. }
  11677. }
  11678. static void ggml_compute_forward_map_unary(
  11679. const struct ggml_compute_params * params,
  11680. const struct ggml_tensor * src0,
  11681. struct ggml_tensor * dst,
  11682. const ggml_unary_op_f32_t fun) {
  11683. switch (src0->type) {
  11684. case GGML_TYPE_F32:
  11685. {
  11686. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11687. } break;
  11688. default:
  11689. {
  11690. GGML_ASSERT(false);
  11691. } break;
  11692. }
  11693. }
  11694. // ggml_compute_forward_map_binary
  11695. static void ggml_compute_forward_map_binary_f32(
  11696. const struct ggml_compute_params * params,
  11697. const struct ggml_tensor * src0,
  11698. const struct ggml_tensor * src1,
  11699. struct ggml_tensor * dst,
  11700. const ggml_binary_op_f32_t fun) {
  11701. assert(params->ith == 0);
  11702. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11704. return;
  11705. }
  11706. const int n = ggml_nrows(src0);
  11707. const int nc = src0->ne[0];
  11708. assert( dst->nb[0] == sizeof(float));
  11709. assert(src0->nb[0] == sizeof(float));
  11710. assert(src1->nb[0] == sizeof(float));
  11711. for (int i = 0; i < n; i++) {
  11712. fun(nc,
  11713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11714. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11715. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11716. }
  11717. }
  11718. static void ggml_compute_forward_map_binary(
  11719. const struct ggml_compute_params * params,
  11720. const struct ggml_tensor * src0,
  11721. const struct ggml_tensor * src1,
  11722. struct ggml_tensor * dst,
  11723. const ggml_binary_op_f32_t fun) {
  11724. switch (src0->type) {
  11725. case GGML_TYPE_F32:
  11726. {
  11727. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11728. } break;
  11729. default:
  11730. {
  11731. GGML_ASSERT(false);
  11732. } break;
  11733. }
  11734. }
  11735. // ggml_compute_forward_map_custom1
  11736. static void ggml_compute_forward_map_custom1_f32(
  11737. const struct ggml_compute_params * params,
  11738. const struct ggml_tensor * a,
  11739. struct ggml_tensor * dst,
  11740. const ggml_custom1_op_f32_t fun) {
  11741. assert(params->ith == 0);
  11742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11743. return;
  11744. }
  11745. fun(dst, a);
  11746. }
  11747. static void ggml_compute_forward_map_custom1(
  11748. const struct ggml_compute_params * params,
  11749. const struct ggml_tensor * a,
  11750. struct ggml_tensor * dst,
  11751. const ggml_custom1_op_f32_t fun) {
  11752. switch (a->type) {
  11753. case GGML_TYPE_F32:
  11754. {
  11755. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11756. } break;
  11757. default:
  11758. {
  11759. GGML_ASSERT(false);
  11760. } break;
  11761. }
  11762. }
  11763. // ggml_compute_forward_map_custom2
  11764. static void ggml_compute_forward_map_custom2_f32(
  11765. const struct ggml_compute_params * params,
  11766. const struct ggml_tensor * a,
  11767. const struct ggml_tensor * b,
  11768. struct ggml_tensor * dst,
  11769. const ggml_custom2_op_f32_t fun) {
  11770. assert(params->ith == 0);
  11771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11772. return;
  11773. }
  11774. fun(dst, a, b);
  11775. }
  11776. static void ggml_compute_forward_map_custom2(
  11777. const struct ggml_compute_params * params,
  11778. const struct ggml_tensor * a,
  11779. const struct ggml_tensor * b,
  11780. struct ggml_tensor * dst,
  11781. const ggml_custom2_op_f32_t fun) {
  11782. switch (a->type) {
  11783. case GGML_TYPE_F32:
  11784. {
  11785. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11786. } break;
  11787. default:
  11788. {
  11789. GGML_ASSERT(false);
  11790. } break;
  11791. }
  11792. }
  11793. // ggml_compute_forward_map_custom3
  11794. static void ggml_compute_forward_map_custom3_f32(
  11795. const struct ggml_compute_params * params,
  11796. const struct ggml_tensor * a,
  11797. const struct ggml_tensor * b,
  11798. const struct ggml_tensor * c,
  11799. struct ggml_tensor * dst,
  11800. const ggml_custom3_op_f32_t fun) {
  11801. assert(params->ith == 0);
  11802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11803. return;
  11804. }
  11805. fun(dst, a, b, c);
  11806. }
  11807. static void ggml_compute_forward_map_custom3(
  11808. const struct ggml_compute_params * params,
  11809. const struct ggml_tensor * a,
  11810. const struct ggml_tensor * b,
  11811. const struct ggml_tensor * c,
  11812. struct ggml_tensor * dst,
  11813. const ggml_custom3_op_f32_t fun) {
  11814. switch (a->type) {
  11815. case GGML_TYPE_F32:
  11816. {
  11817. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11818. } break;
  11819. default:
  11820. {
  11821. GGML_ASSERT(false);
  11822. } break;
  11823. }
  11824. }
  11825. // ggml_compute_forward_cross_entropy_loss
  11826. static void ggml_compute_forward_cross_entropy_loss_f32(
  11827. const struct ggml_compute_params * params,
  11828. const struct ggml_tensor * src0,
  11829. const struct ggml_tensor * src1,
  11830. struct ggml_tensor * dst) {
  11831. GGML_ASSERT(ggml_is_contiguous(src0));
  11832. GGML_ASSERT(ggml_is_contiguous(src1));
  11833. GGML_ASSERT(ggml_is_scalar(dst));
  11834. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11835. const int ith = params->ith;
  11836. const int nth = params->nth;
  11837. float * sums = (float *) params->wdata;
  11838. // TODO: handle transposed/permuted matrices
  11839. const int nc = src0->ne[0];
  11840. const int nr = ggml_nrows(src0);
  11841. if (params->type == GGML_TASK_INIT) {
  11842. if (ith == 0) {
  11843. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11844. }
  11845. return;
  11846. }
  11847. if (params->type == GGML_TASK_FINALIZE) {
  11848. if (ith == 0) {
  11849. float * dp = (float *) dst->data;
  11850. ggml_vec_sum_f32(nth, dp, sums);
  11851. dp[0] *= -1.0f;
  11852. }
  11853. return;
  11854. }
  11855. const double eps = 1e-9;
  11856. // rows per thread
  11857. const int dr = (nr + nth - 1)/nth;
  11858. // row range for this thread
  11859. const int ir0 = dr*ith;
  11860. const int ir1 = MIN(ir0 + dr, nr);
  11861. for (int i1 = ir0; i1 < ir1; i1++) {
  11862. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11863. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11864. float * st = (float *) params->wdata + nth + ith*nc;
  11865. #ifndef NDEBUG
  11866. for (int i = 0; i < nc; ++i) {
  11867. //printf("p[%d] = %f\n", i, p[i]);
  11868. assert(!isnan(s0[i]));
  11869. assert(!isnan(s1[i]));
  11870. }
  11871. #endif
  11872. // soft_max
  11873. ggml_float sum = 0.0;
  11874. {
  11875. float max = -INFINITY;
  11876. ggml_vec_max_f32(nc, &max, s0);
  11877. uint16_t scvt;
  11878. for (int i = 0; i < nc; i++) {
  11879. if (s0[i] == -INFINITY) {
  11880. st[i] = 0.0f;
  11881. } else {
  11882. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11883. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11884. memcpy(&scvt, &s, sizeof(scvt));
  11885. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11886. sum += (ggml_float)val;
  11887. st[i] = val;
  11888. }
  11889. }
  11890. assert(sum > 0.0);
  11891. // sum = 1.0/sum;
  11892. }
  11893. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11894. sum = (1.0 - eps) / sum;
  11895. ggml_vec_scale_f32(nc, st, sum);
  11896. ggml_vec_add1_f32(nc, st, st, eps);
  11897. ggml_vec_log_f32(nc, st, st);
  11898. ggml_vec_mul_f32(nc, st, st, s1);
  11899. ggml_vec_sum_f32(nc, sums + ith, st);
  11900. #ifndef NDEBUG
  11901. for (int i = 0; i < nc; ++i) {
  11902. assert(!isnan(st[i]));
  11903. assert(!isinf(st[i]));
  11904. }
  11905. #endif
  11906. }
  11907. }
  11908. static void ggml_compute_forward_cross_entropy_loss(
  11909. const struct ggml_compute_params * params,
  11910. const struct ggml_tensor * src0,
  11911. const struct ggml_tensor * src1,
  11912. struct ggml_tensor * dst) {
  11913. switch (src0->type) {
  11914. case GGML_TYPE_F32:
  11915. {
  11916. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11917. } break;
  11918. default:
  11919. {
  11920. GGML_ASSERT(false);
  11921. } break;
  11922. }
  11923. }
  11924. // ggml_compute_forward_cross_entropy_loss_back
  11925. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11926. const struct ggml_compute_params * params,
  11927. const struct ggml_tensor * src0,
  11928. const struct ggml_tensor * src1,
  11929. const struct ggml_tensor * opt0,
  11930. struct ggml_tensor * dst) {
  11931. GGML_ASSERT(ggml_is_contiguous(dst));
  11932. GGML_ASSERT(ggml_is_contiguous(src0));
  11933. GGML_ASSERT(ggml_is_contiguous(src1));
  11934. GGML_ASSERT(ggml_is_contiguous(opt0));
  11935. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11936. const int64_t ith = params->ith;
  11937. const int64_t nth = params->nth;
  11938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11939. return;
  11940. }
  11941. const float eps = 1e-9f;
  11942. // TODO: handle transposed/permuted matrices
  11943. const int64_t nc = src0->ne[0];
  11944. const int64_t nr = ggml_nrows(src0);
  11945. // rows per thread
  11946. const int64_t dr = (nr + nth - 1)/nth;
  11947. // row range for this thread
  11948. const int64_t ir0 = dr*ith;
  11949. const int64_t ir1 = MIN(ir0 + dr, nr);
  11950. float * d = (float *) opt0->data;
  11951. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11952. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11953. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11954. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11955. float * sm = (float *) params->wdata + ith*nc;
  11956. #ifndef NDEBUG
  11957. for (int i = 0; i < nc; ++i) {
  11958. //printf("p[%d] = %f\n", i, p[i]);
  11959. assert(!isnan(s0[i]));
  11960. assert(!isnan(s1[i]));
  11961. }
  11962. #endif
  11963. // step by step explanation:
  11964. {
  11965. //float * sums = (float *) params->wdata;
  11966. // forward pass with annotated gradients from backward pass
  11967. // (built by going in reverse operation order, adding to gradients of current operation args)
  11968. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11969. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11970. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11971. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11972. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11973. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11974. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11975. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11976. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11977. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11978. // postorder:
  11979. // grad[st1] := softmax(s0)
  11980. // grad[st1] := grad[st1]*(1.0 - eps)
  11981. // grad[st1] := grad[st1] + eps
  11982. // grad[st1] := s1 / grad[st1]
  11983. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11984. // src0 gradients by going through softmax_back
  11985. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11986. // from softmax_back:
  11987. // dxk = yk * (dyk - dot(y, dy))
  11988. // dot_y_dy := dot(y, dy)
  11989. // dx := dy
  11990. // dx := dx - dot_y_dy
  11991. // dx := dx * y
  11992. // postorder:
  11993. // dot_st1_dst1 := dot(st1, grad[st1])
  11994. // grad[s0] := grad[st1]
  11995. // grad[s0] := grad[s0] - dot_st1_dst1
  11996. // grad[s0] := grad[s0] * st1
  11997. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11998. // sm := softmax(s0)
  11999. // grad[s0] := sm*(1.0 - eps)
  12000. // grad[s0] := grad[s0] + eps
  12001. // grad[s0] := s1 / grad[s0]
  12002. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12003. // dot_st1_dst1 := dot(sm, grad[s0])
  12004. // grad[s0] := grad[s0] - dot_st1_dst1
  12005. // grad[s0] := grad[s0] * sm
  12006. }
  12007. // soft_max
  12008. ggml_float sum = 0.0;
  12009. {
  12010. float max = -INFINITY;
  12011. ggml_vec_max_f32(nc, &max, s0);
  12012. uint16_t scvt;
  12013. for (int i = 0; i < nc; i++) {
  12014. if (s0[i] == -INFINITY) {
  12015. sm[i] = 0.0f;
  12016. } else {
  12017. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12018. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12019. memcpy(&scvt, &s, sizeof(scvt));
  12020. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12021. sum += (ggml_float)val;
  12022. sm[i] = val;
  12023. }
  12024. }
  12025. assert(sum > 0.0);
  12026. sum = 1.0/sum;
  12027. }
  12028. float dot_st1_dst1 = 0;
  12029. ggml_vec_scale_f32(nc, sm, sum);
  12030. ggml_vec_cpy_f32 (nc, ds0, sm);
  12031. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12032. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12033. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12034. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12035. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12036. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12037. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12038. #ifndef NDEBUG
  12039. for (int i = 0; i < nc; ++i) {
  12040. assert(!isnan(sm[i]));
  12041. assert(!isinf(sm[i]));
  12042. assert(!isnan(ds0[i]));
  12043. assert(!isinf(ds0[i]));
  12044. }
  12045. #endif
  12046. }
  12047. }
  12048. static void ggml_compute_forward_cross_entropy_loss_back(
  12049. const struct ggml_compute_params * params,
  12050. const struct ggml_tensor * src0,
  12051. const struct ggml_tensor * src1,
  12052. const struct ggml_tensor * opt0,
  12053. struct ggml_tensor * dst) {
  12054. switch (src0->type) {
  12055. case GGML_TYPE_F32:
  12056. {
  12057. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12058. } break;
  12059. default:
  12060. {
  12061. GGML_ASSERT(false);
  12062. } break;
  12063. }
  12064. }
  12065. /////////////////////////////////
  12066. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12067. GGML_ASSERT(params);
  12068. #ifdef GGML_USE_CUBLAS
  12069. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12070. if (skip_cpu) {
  12071. return;
  12072. }
  12073. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12074. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12075. #endif // GGML_USE_CUBLAS
  12076. switch (tensor->op) {
  12077. case GGML_OP_DUP:
  12078. {
  12079. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12080. } break;
  12081. case GGML_OP_ADD:
  12082. {
  12083. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12084. } break;
  12085. case GGML_OP_ADD1:
  12086. {
  12087. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12088. } break;
  12089. case GGML_OP_ACC:
  12090. {
  12091. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12092. } break;
  12093. case GGML_OP_SUB:
  12094. {
  12095. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12096. } break;
  12097. case GGML_OP_MUL:
  12098. {
  12099. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12100. } break;
  12101. case GGML_OP_DIV:
  12102. {
  12103. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12104. } break;
  12105. case GGML_OP_SQR:
  12106. {
  12107. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12108. } break;
  12109. case GGML_OP_SQRT:
  12110. {
  12111. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12112. } break;
  12113. case GGML_OP_LOG:
  12114. {
  12115. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12116. } break;
  12117. case GGML_OP_SUM:
  12118. {
  12119. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12120. } break;
  12121. case GGML_OP_SUM_ROWS:
  12122. {
  12123. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12124. } break;
  12125. case GGML_OP_MEAN:
  12126. {
  12127. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12128. } break;
  12129. case GGML_OP_ARGMAX:
  12130. {
  12131. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12132. } break;
  12133. case GGML_OP_REPEAT:
  12134. {
  12135. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12136. } break;
  12137. case GGML_OP_REPEAT_BACK:
  12138. {
  12139. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12140. } break;
  12141. case GGML_OP_ABS:
  12142. {
  12143. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  12144. } break;
  12145. case GGML_OP_SGN:
  12146. {
  12147. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  12148. } break;
  12149. case GGML_OP_NEG:
  12150. {
  12151. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  12152. } break;
  12153. case GGML_OP_STEP:
  12154. {
  12155. ggml_compute_forward_step(params, tensor->src[0], tensor);
  12156. } break;
  12157. case GGML_OP_TANH:
  12158. {
  12159. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  12160. } break;
  12161. case GGML_OP_ELU:
  12162. {
  12163. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  12164. } break;
  12165. case GGML_OP_RELU:
  12166. {
  12167. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  12168. } break;
  12169. case GGML_OP_GELU:
  12170. {
  12171. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  12172. } break;
  12173. case GGML_OP_GELU_QUICK:
  12174. {
  12175. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  12176. } break;
  12177. case GGML_OP_SILU:
  12178. {
  12179. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  12180. } break;
  12181. case GGML_OP_SILU_BACK:
  12182. {
  12183. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12184. } break;
  12185. case GGML_OP_NORM:
  12186. {
  12187. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12188. } break;
  12189. case GGML_OP_RMS_NORM:
  12190. {
  12191. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12192. } break;
  12193. case GGML_OP_RMS_NORM_BACK:
  12194. {
  12195. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12196. } break;
  12197. case GGML_OP_MUL_MAT:
  12198. {
  12199. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12200. } break;
  12201. case GGML_OP_OUT_PROD:
  12202. {
  12203. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12204. } break;
  12205. case GGML_OP_SCALE:
  12206. {
  12207. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12208. } break;
  12209. case GGML_OP_SET:
  12210. {
  12211. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12212. } break;
  12213. case GGML_OP_CPY:
  12214. {
  12215. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12216. } break;
  12217. case GGML_OP_CONT:
  12218. {
  12219. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12220. } break;
  12221. case GGML_OP_RESHAPE:
  12222. {
  12223. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12224. } break;
  12225. case GGML_OP_VIEW:
  12226. {
  12227. ggml_compute_forward_view(params, tensor->src[0]);
  12228. } break;
  12229. case GGML_OP_PERMUTE:
  12230. {
  12231. ggml_compute_forward_permute(params, tensor->src[0]);
  12232. } break;
  12233. case GGML_OP_TRANSPOSE:
  12234. {
  12235. ggml_compute_forward_transpose(params, tensor->src[0]);
  12236. } break;
  12237. case GGML_OP_GET_ROWS:
  12238. {
  12239. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12240. } break;
  12241. case GGML_OP_GET_ROWS_BACK:
  12242. {
  12243. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12244. } break;
  12245. case GGML_OP_DIAG:
  12246. {
  12247. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12248. } break;
  12249. case GGML_OP_DIAG_MASK_INF:
  12250. {
  12251. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
  12252. } break;
  12253. case GGML_OP_DIAG_MASK_ZERO:
  12254. {
  12255. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
  12256. } break;
  12257. case GGML_OP_SOFT_MAX:
  12258. {
  12259. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12260. } break;
  12261. case GGML_OP_SOFT_MAX_BACK:
  12262. {
  12263. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12264. } break;
  12265. case GGML_OP_ROPE:
  12266. {
  12267. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12268. } break;
  12269. case GGML_OP_ROPE_BACK:
  12270. {
  12271. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12272. } break;
  12273. case GGML_OP_ALIBI:
  12274. {
  12275. ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
  12276. } break;
  12277. case GGML_OP_CLAMP:
  12278. {
  12279. ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
  12280. } break;
  12281. case GGML_OP_CONV_1D:
  12282. {
  12283. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12284. } break;
  12285. case GGML_OP_CONV_2D:
  12286. {
  12287. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12288. } break;
  12289. case GGML_OP_POOL_1D:
  12290. {
  12291. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor->src[1], tensor);
  12292. } break;
  12293. case GGML_OP_POOL_2D:
  12294. {
  12295. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor->src[1], tensor);
  12296. } break;
  12297. case GGML_OP_FLASH_ATTN:
  12298. {
  12299. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12300. GGML_ASSERT(t == 0 || t == 1);
  12301. const bool masked = t != 0;
  12302. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12303. } break;
  12304. case GGML_OP_FLASH_FF:
  12305. {
  12306. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12307. } break;
  12308. case GGML_OP_FLASH_ATTN_BACK:
  12309. {
  12310. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12311. GGML_ASSERT(t == 0 || t == 1);
  12312. bool masked = t != 0;
  12313. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12314. } break;
  12315. case GGML_OP_WIN_PART:
  12316. {
  12317. ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
  12318. } break;
  12319. case GGML_OP_WIN_UNPART:
  12320. {
  12321. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
  12322. } break;
  12323. case GGML_OP_MAP_UNARY:
  12324. {
  12325. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
  12326. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12327. }
  12328. break;
  12329. case GGML_OP_MAP_BINARY:
  12330. {
  12331. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
  12332. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12333. }
  12334. break;
  12335. case GGML_OP_MAP_CUSTOM1:
  12336. {
  12337. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
  12338. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12339. }
  12340. break;
  12341. case GGML_OP_MAP_CUSTOM2:
  12342. {
  12343. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
  12344. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12345. }
  12346. break;
  12347. case GGML_OP_MAP_CUSTOM3:
  12348. {
  12349. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
  12350. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
  12351. }
  12352. break;
  12353. case GGML_OP_CROSS_ENTROPY_LOSS:
  12354. {
  12355. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12356. }
  12357. break;
  12358. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12359. {
  12360. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12361. }
  12362. break;
  12363. case GGML_OP_NONE:
  12364. {
  12365. // nop
  12366. } break;
  12367. case GGML_OP_COUNT:
  12368. {
  12369. GGML_ASSERT(false);
  12370. } break;
  12371. }
  12372. }
  12373. ////////////////////////////////////////////////////////////////////////////////
  12374. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12375. struct ggml_tensor * src0 = tensor->src[0];
  12376. struct ggml_tensor * src1 = tensor->src[1];
  12377. switch (tensor->op) {
  12378. case GGML_OP_DUP:
  12379. {
  12380. if (src0->grad) {
  12381. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12382. }
  12383. } break;
  12384. case GGML_OP_ADD:
  12385. {
  12386. if (src0->grad) {
  12387. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12388. }
  12389. if (src1->grad) {
  12390. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12391. }
  12392. } break;
  12393. case GGML_OP_ADD1:
  12394. {
  12395. if (src0->grad) {
  12396. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12397. }
  12398. if (src1->grad) {
  12399. src1->grad = ggml_add_impl(ctx,
  12400. src1->grad,
  12401. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12402. inplace);
  12403. }
  12404. } break;
  12405. case GGML_OP_ACC:
  12406. {
  12407. if (src0->grad) {
  12408. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12409. }
  12410. if (src1->grad) {
  12411. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12412. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12413. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12414. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12415. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12416. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12417. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12418. tensor->grad,
  12419. src1->grad->ne[0],
  12420. src1->grad->ne[1],
  12421. src1->grad->ne[2],
  12422. src1->grad->ne[3],
  12423. nb1, nb2, nb3, offset);
  12424. src1->grad =
  12425. ggml_add_impl(ctx,
  12426. src1->grad,
  12427. ggml_reshape(ctx,
  12428. ggml_cont(ctx, tensor_grad_view),
  12429. src1->grad),
  12430. inplace);
  12431. }
  12432. } break;
  12433. case GGML_OP_SUB:
  12434. {
  12435. if (src0->grad) {
  12436. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12437. }
  12438. if (src1->grad) {
  12439. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12440. }
  12441. } break;
  12442. case GGML_OP_MUL:
  12443. {
  12444. if (src0->grad) {
  12445. src0->grad =
  12446. ggml_add_impl(ctx,
  12447. src0->grad,
  12448. ggml_mul(ctx, src1, tensor->grad),
  12449. inplace);
  12450. }
  12451. if (src1->grad) {
  12452. src1->grad =
  12453. ggml_add_impl(ctx,
  12454. src1->grad,
  12455. ggml_mul(ctx, src0, tensor->grad),
  12456. inplace);
  12457. }
  12458. } break;
  12459. case GGML_OP_DIV:
  12460. {
  12461. if (src0->grad) {
  12462. src0->grad =
  12463. ggml_add_impl(ctx,
  12464. src0->grad,
  12465. ggml_div(ctx, tensor->grad, src1),
  12466. inplace);
  12467. }
  12468. if (src1->grad) {
  12469. src1->grad =
  12470. ggml_sub_impl(ctx,
  12471. src1->grad,
  12472. ggml_mul(ctx,
  12473. tensor->grad,
  12474. ggml_div(ctx, tensor, src1)),
  12475. inplace);
  12476. }
  12477. } break;
  12478. case GGML_OP_SQR:
  12479. {
  12480. if (src0->grad) {
  12481. src0->grad =
  12482. ggml_add_impl(ctx,
  12483. src0->grad,
  12484. ggml_scale(ctx,
  12485. ggml_mul(ctx, src0, tensor->grad),
  12486. ggml_new_f32(ctx, 2.0f)),
  12487. inplace);
  12488. }
  12489. } break;
  12490. case GGML_OP_SQRT:
  12491. {
  12492. if (src0->grad) {
  12493. src0->grad =
  12494. ggml_add_impl(ctx,
  12495. src0->grad,
  12496. ggml_scale(ctx,
  12497. ggml_div(ctx,
  12498. tensor->grad,
  12499. tensor),
  12500. ggml_new_f32(ctx, 0.5f)),
  12501. inplace);
  12502. }
  12503. } break;
  12504. case GGML_OP_LOG:
  12505. {
  12506. if (src0->grad) {
  12507. src0->grad =
  12508. ggml_add_impl(ctx,
  12509. src0->grad,
  12510. ggml_div(ctx,
  12511. tensor->grad,
  12512. src0),
  12513. inplace);
  12514. }
  12515. } break;
  12516. case GGML_OP_SUM:
  12517. {
  12518. if (src0->grad) {
  12519. src0->grad =
  12520. ggml_add1_impl(ctx,
  12521. src0->grad,
  12522. tensor->grad,
  12523. inplace);
  12524. }
  12525. } break;
  12526. case GGML_OP_SUM_ROWS:
  12527. {
  12528. if (src0->grad) {
  12529. src0->grad =
  12530. ggml_add_impl(ctx,
  12531. src0->grad,
  12532. ggml_repeat(ctx,
  12533. tensor->grad,
  12534. src0->grad),
  12535. inplace);
  12536. }
  12537. } break;
  12538. case GGML_OP_MEAN:
  12539. case GGML_OP_ARGMAX:
  12540. {
  12541. GGML_ASSERT(false); // TODO: implement
  12542. } break;
  12543. case GGML_OP_REPEAT:
  12544. {
  12545. // necessary for llama
  12546. if (src0->grad) {
  12547. src0->grad = ggml_add_impl(ctx,
  12548. src0->grad,
  12549. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12550. inplace);
  12551. }
  12552. } break;
  12553. case GGML_OP_REPEAT_BACK:
  12554. {
  12555. if (src0->grad) {
  12556. // TODO: test this
  12557. src0->grad = ggml_add_impl(ctx,
  12558. src0->grad,
  12559. ggml_repeat(ctx, tensor->grad, src0->grad),
  12560. inplace);
  12561. }
  12562. } break;
  12563. case GGML_OP_ABS:
  12564. {
  12565. if (src0->grad) {
  12566. src0->grad =
  12567. ggml_add_impl(ctx,
  12568. src0->grad,
  12569. ggml_mul(ctx,
  12570. ggml_sgn(ctx, src0),
  12571. tensor->grad),
  12572. inplace);
  12573. }
  12574. } break;
  12575. case GGML_OP_SGN:
  12576. {
  12577. if (src0->grad) {
  12578. // noop
  12579. }
  12580. } break;
  12581. case GGML_OP_NEG:
  12582. {
  12583. if (src0->grad) {
  12584. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12585. }
  12586. } break;
  12587. case GGML_OP_STEP:
  12588. {
  12589. if (src0->grad) {
  12590. // noop
  12591. }
  12592. } break;
  12593. case GGML_OP_TANH:
  12594. {
  12595. GGML_ASSERT(false); // TODO: not implemented
  12596. } break;
  12597. case GGML_OP_ELU:
  12598. {
  12599. GGML_ASSERT(false); // TODO: not implemented
  12600. } break;
  12601. case GGML_OP_RELU:
  12602. {
  12603. if (src0->grad) {
  12604. src0->grad = ggml_sub_impl(ctx,
  12605. src0->grad,
  12606. ggml_mul(ctx,
  12607. ggml_step(ctx, src0),
  12608. tensor->grad),
  12609. inplace);
  12610. }
  12611. } break;
  12612. case GGML_OP_GELU:
  12613. {
  12614. GGML_ASSERT(false); // TODO: not implemented
  12615. } break;
  12616. case GGML_OP_GELU_QUICK:
  12617. {
  12618. GGML_ASSERT(false); // TODO: not implemented
  12619. } break;
  12620. case GGML_OP_SILU:
  12621. {
  12622. // necessary for llama
  12623. if (src0->grad) {
  12624. src0->grad = ggml_add_impl(ctx,
  12625. src0->grad,
  12626. ggml_silu_back(ctx, src0, tensor->grad),
  12627. inplace);
  12628. }
  12629. } break;
  12630. case GGML_OP_SILU_BACK:
  12631. {
  12632. GGML_ASSERT(false); // TODO: not implemented
  12633. } break;
  12634. case GGML_OP_NORM:
  12635. {
  12636. GGML_ASSERT(false); // TODO: not implemented
  12637. } break;
  12638. case GGML_OP_RMS_NORM:
  12639. {
  12640. // necessary for llama
  12641. if (src0->grad) {
  12642. src0->grad = ggml_add_impl(ctx,
  12643. src0->grad,
  12644. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12645. inplace);
  12646. }
  12647. } break;
  12648. case GGML_OP_RMS_NORM_BACK:
  12649. {
  12650. GGML_ASSERT(false); // TODO: not implemented
  12651. } break;
  12652. case GGML_OP_MUL_MAT:
  12653. {
  12654. // https://cs231n.github.io/optimization-2/#staged
  12655. // # forward pass
  12656. // s0 = np.random.randn(5, 10)
  12657. // s1 = np.random.randn(10, 3)
  12658. // t = s0.dot(s1)
  12659. // # now suppose we had the gradient on t from above in the circuit
  12660. // dt = np.random.randn(*t.shape) # same shape as t
  12661. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12662. // ds1 = t.T.dot(dt)
  12663. // tensor.shape [m,p]
  12664. // src0.shape [n,m]
  12665. // src1.shape [n,p]
  12666. // necessary for llama
  12667. if (src0->grad) {
  12668. src0->grad =
  12669. ggml_add_impl(ctx,
  12670. src0->grad,
  12671. ggml_out_prod(ctx, // [n,m]
  12672. src1, // [n,p]
  12673. tensor->grad), // [m,p]
  12674. inplace);
  12675. }
  12676. if (src1->grad) {
  12677. src1->grad =
  12678. ggml_add_impl(ctx,
  12679. src1->grad,
  12680. // ggml_mul_mat(ctx, // [n,p]
  12681. // ggml_cont(ctx, // [m,n]
  12682. // ggml_transpose(ctx, src0)), // [m,n]
  12683. // tensor->grad), // [m,p]
  12684. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12685. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12686. // // and then use ggml_out_prod
  12687. ggml_out_prod(ctx, // [n,p]
  12688. src0, // [n,m]
  12689. ggml_transpose(ctx, // [p,m]
  12690. tensor->grad)), // [m,p]
  12691. inplace);
  12692. }
  12693. } break;
  12694. case GGML_OP_OUT_PROD:
  12695. {
  12696. GGML_ASSERT(false); // TODO: not implemented
  12697. } break;
  12698. case GGML_OP_SCALE:
  12699. {
  12700. // necessary for llama
  12701. if (src0->grad) {
  12702. src0->grad =
  12703. ggml_add_impl(ctx,
  12704. src0->grad,
  12705. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12706. inplace);
  12707. }
  12708. if (src1->grad) {
  12709. src1->grad =
  12710. ggml_add_impl(ctx,
  12711. src1->grad,
  12712. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12713. inplace);
  12714. }
  12715. } break;
  12716. case GGML_OP_SET:
  12717. {
  12718. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12719. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12720. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12721. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12722. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12723. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12724. struct ggml_tensor * tensor_grad_view = NULL;
  12725. if (src0->grad || src1->grad) {
  12726. GGML_ASSERT(src0->type == tensor->type);
  12727. GGML_ASSERT(tensor->grad->type == tensor->type);
  12728. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12729. tensor_grad_view = ggml_view_4d(ctx,
  12730. tensor->grad,
  12731. src1->grad->ne[0],
  12732. src1->grad->ne[1],
  12733. src1->grad->ne[2],
  12734. src1->grad->ne[3],
  12735. nb1, nb2, nb3, offset);
  12736. }
  12737. if (src0->grad) {
  12738. src0->grad = ggml_add_impl(ctx,
  12739. src0->grad,
  12740. ggml_acc_impl(ctx,
  12741. tensor->grad,
  12742. ggml_neg(ctx, tensor_grad_view),
  12743. nb1, nb2, nb3, offset, false),
  12744. inplace);
  12745. }
  12746. if (src1->grad) {
  12747. src1->grad =
  12748. ggml_add_impl(ctx,
  12749. src1->grad,
  12750. ggml_reshape(ctx,
  12751. ggml_cont(ctx, tensor_grad_view),
  12752. src1->grad),
  12753. inplace);
  12754. }
  12755. } break;
  12756. case GGML_OP_CPY:
  12757. {
  12758. // necessary for llama
  12759. // cpy overwrites value of src1 by src0 and returns view(src1)
  12760. // the overwriting is mathematically equivalent to:
  12761. // tensor = src0 * 1 + src1 * 0
  12762. if (src0->grad) {
  12763. // dsrc0 = dtensor * 1
  12764. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12765. }
  12766. if (src1->grad) {
  12767. // dsrc1 = dtensor * 0 -> noop
  12768. }
  12769. } break;
  12770. case GGML_OP_CONT:
  12771. {
  12772. // same as cpy
  12773. if (src0->grad) {
  12774. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12775. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12776. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12777. }
  12778. } break;
  12779. case GGML_OP_RESHAPE:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. src0->grad =
  12784. ggml_add_impl(ctx, src0->grad,
  12785. ggml_reshape(ctx, tensor->grad, src0->grad),
  12786. inplace);
  12787. }
  12788. } break;
  12789. case GGML_OP_VIEW:
  12790. {
  12791. // necessary for llama
  12792. if (src0->grad) {
  12793. size_t offset;
  12794. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
  12795. memcpy(&offset, tensor->src[2]->data, sizeof(offset));
  12796. size_t nb1 = tensor->nb[1];
  12797. size_t nb2 = tensor->nb[2];
  12798. size_t nb3 = tensor->nb[3];
  12799. if (src0->type != src0->grad->type) {
  12800. // gradient is typically F32, but src0 could be other type
  12801. size_t ng = ggml_element_size(src0->grad);
  12802. size_t n0 = ggml_element_size(src0);
  12803. GGML_ASSERT(offset % n0 == 0);
  12804. GGML_ASSERT(nb1 % n0 == 0);
  12805. GGML_ASSERT(nb2 % n0 == 0);
  12806. GGML_ASSERT(nb3 % n0 == 0);
  12807. offset = (offset / n0) * ng;
  12808. nb1 = (nb1 / n0) * ng;
  12809. nb2 = (nb2 / n0) * ng;
  12810. nb3 = (nb3 / n0) * ng;
  12811. }
  12812. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12813. }
  12814. } break;
  12815. case GGML_OP_PERMUTE:
  12816. {
  12817. // necessary for llama
  12818. if (src0->grad) {
  12819. int32_t * axes = (int32_t *) tensor->src[2]->data;
  12820. int axis0 = axes[0] & 0x3;
  12821. int axis1 = axes[1] & 0x3;
  12822. int axis2 = axes[2] & 0x3;
  12823. int axis3 = axes[3] & 0x3;
  12824. int axes_backward[4] = {0,0,0,0};
  12825. axes_backward[axis0] = 0;
  12826. axes_backward[axis1] = 1;
  12827. axes_backward[axis2] = 2;
  12828. axes_backward[axis3] = 3;
  12829. src0->grad =
  12830. ggml_add_impl(ctx, src0->grad,
  12831. ggml_permute(ctx,
  12832. tensor->grad,
  12833. axes_backward[0],
  12834. axes_backward[1],
  12835. axes_backward[2],
  12836. axes_backward[3]),
  12837. inplace);
  12838. }
  12839. } break;
  12840. case GGML_OP_TRANSPOSE:
  12841. {
  12842. // necessary for llama
  12843. if (src0->grad) {
  12844. src0->grad =
  12845. ggml_add_impl(ctx, src0->grad,
  12846. ggml_transpose(ctx, tensor->grad),
  12847. inplace);
  12848. }
  12849. } break;
  12850. case GGML_OP_GET_ROWS:
  12851. {
  12852. // necessary for llama (only for tokenizer)
  12853. if (src0->grad) {
  12854. src0->grad =
  12855. ggml_add_impl(ctx, src0->grad,
  12856. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12857. inplace);
  12858. }
  12859. if (src1->grad) {
  12860. // noop
  12861. }
  12862. } break;
  12863. case GGML_OP_GET_ROWS_BACK:
  12864. {
  12865. GGML_ASSERT(false); // TODO: not implemented
  12866. } break;
  12867. case GGML_OP_DIAG:
  12868. {
  12869. GGML_ASSERT(false); // TODO: not implemented
  12870. } break;
  12871. case GGML_OP_DIAG_MASK_INF:
  12872. {
  12873. // necessary for llama
  12874. if (src0->grad) {
  12875. assert(src1->type == GGML_TYPE_I32);
  12876. assert(ggml_nelements(src1) == 2);
  12877. const int n_past = ((int32_t *) src1->data)[0];
  12878. src0->grad =
  12879. ggml_add_impl(ctx, src0->grad,
  12880. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12881. inplace);
  12882. }
  12883. if (src1->grad) {
  12884. // noop
  12885. }
  12886. } break;
  12887. case GGML_OP_DIAG_MASK_ZERO:
  12888. {
  12889. // necessary for llama
  12890. if (src0->grad) {
  12891. assert(src1->type == GGML_TYPE_I32);
  12892. assert(ggml_nelements(src1) == 2);
  12893. const int n_past = ((int32_t *) src1->data)[0];
  12894. src0->grad =
  12895. ggml_add_impl(ctx, src0->grad,
  12896. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12897. inplace);
  12898. }
  12899. if (src1->grad) {
  12900. // noop
  12901. }
  12902. } break;
  12903. case GGML_OP_SOFT_MAX:
  12904. {
  12905. // necessary for llama
  12906. if (src0->grad) {
  12907. src0->grad =
  12908. ggml_add_impl(ctx, src0->grad,
  12909. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12910. inplace);
  12911. }
  12912. } break;
  12913. case GGML_OP_SOFT_MAX_BACK:
  12914. {
  12915. GGML_ASSERT(false); // TODO: not implemented
  12916. } break;
  12917. case GGML_OP_ROPE:
  12918. {
  12919. // necessary for llama
  12920. if (src0->grad) {
  12921. assert(src1->type == GGML_TYPE_I32);
  12922. assert(ggml_nelements(src1) == 6);
  12923. const int n_past = ((int32_t *) src1->data)[0];
  12924. const int n_dims = ((int32_t *) src1->data)[1];
  12925. const int mode = ((int32_t *) src1->data)[2];
  12926. const int n_ctx = ((int32_t *) src1->data)[3];
  12927. src0->grad = ggml_add_impl(ctx,
  12928. src0->grad,
  12929. ggml_rope_back(ctx,
  12930. tensor->grad,
  12931. n_past,
  12932. n_dims,
  12933. mode,
  12934. n_ctx),
  12935. inplace);
  12936. }
  12937. if (src1->grad) {
  12938. // noop
  12939. }
  12940. } break;
  12941. case GGML_OP_ROPE_BACK:
  12942. {
  12943. if (src0->grad) {
  12944. assert(src1->type == GGML_TYPE_I32);
  12945. assert(ggml_nelements(src1) == 4);
  12946. const int n_past = ((int32_t *) src1->data)[0];
  12947. const int n_dims = ((int32_t *) src1->data)[1];
  12948. const int mode = ((int32_t *) src1->data)[2];
  12949. const int n_ctx = ((int32_t *) src1->data)[3];
  12950. src0->grad = ggml_add_impl(ctx,
  12951. src0->grad,
  12952. ggml_rope(ctx,
  12953. tensor->grad,
  12954. n_past,
  12955. n_dims,
  12956. mode,
  12957. n_ctx),
  12958. inplace);
  12959. }
  12960. if (src1->grad) {
  12961. // noop
  12962. }
  12963. } break;
  12964. case GGML_OP_ALIBI:
  12965. {
  12966. GGML_ASSERT(false); // TODO: not implemented
  12967. } break;
  12968. case GGML_OP_CLAMP:
  12969. {
  12970. GGML_ASSERT(false); // TODO: not implemented
  12971. } break;
  12972. case GGML_OP_CONV_1D:
  12973. {
  12974. GGML_ASSERT(false); // TODO: not implemented
  12975. } break;
  12976. case GGML_OP_CONV_2D:
  12977. {
  12978. GGML_ASSERT(false); // TODO: not implemented
  12979. } break;
  12980. case GGML_OP_POOL_1D:
  12981. {
  12982. GGML_ASSERT(false); // TODO: not implemented
  12983. } break;
  12984. case GGML_OP_POOL_2D:
  12985. {
  12986. GGML_ASSERT(false); // TODO: not implemented
  12987. } break;
  12988. case GGML_OP_FLASH_ATTN:
  12989. {
  12990. struct ggml_tensor * flash_grad = NULL;
  12991. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12992. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12993. GGML_ASSERT(t == 0 || t == 1);
  12994. bool masked = t != 0;
  12995. flash_grad =
  12996. ggml_flash_attn_back(ctx,
  12997. src0,
  12998. src1,
  12999. tensor->src[2],
  13000. tensor->grad,
  13001. masked);
  13002. }
  13003. if (src0->grad) {
  13004. struct ggml_tensor * grad_q = NULL;
  13005. const size_t nb0 = flash_grad->nb[0];
  13006. const size_t offset = 0;
  13007. switch(src0->n_dims) {
  13008. case 2:
  13009. {
  13010. grad_q = ggml_view_2d(ctx,
  13011. flash_grad,
  13012. src0->ne[0],
  13013. src0->ne[1],
  13014. nb0*src0->ne[0],
  13015. offset);
  13016. } break;
  13017. case 3:
  13018. {
  13019. grad_q = ggml_view_3d(ctx,
  13020. flash_grad,
  13021. src0->ne[0],
  13022. src0->ne[1],
  13023. src0->ne[2],
  13024. nb0*src0->ne[0],
  13025. nb0*src0->ne[0]*src0->ne[1],
  13026. offset);
  13027. } break;
  13028. case 4:
  13029. {
  13030. grad_q = ggml_view_4d(ctx,
  13031. flash_grad,
  13032. src0->ne[0],
  13033. src0->ne[1],
  13034. src0->ne[2],
  13035. src0->ne[3],
  13036. nb0*src0->ne[0],
  13037. nb0*src0->ne[0]*src0->ne[1],
  13038. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13039. offset);
  13040. } break;
  13041. }
  13042. src0->grad = ggml_add_impl(ctx,
  13043. src0->grad,
  13044. grad_q,
  13045. inplace);
  13046. }
  13047. if (src1->grad) {
  13048. struct ggml_tensor * grad_k = NULL;
  13049. const size_t nb0 = flash_grad->nb[0];
  13050. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13051. switch(src1->n_dims) {
  13052. case 2:
  13053. {
  13054. grad_k = ggml_view_2d(ctx,
  13055. flash_grad,
  13056. src1->ne[0],
  13057. src1->ne[1],
  13058. nb0*src1->ne[0],
  13059. offset);
  13060. } break;
  13061. case 3:
  13062. {
  13063. grad_k = ggml_view_3d(ctx,
  13064. flash_grad,
  13065. src1->ne[0],
  13066. src1->ne[1],
  13067. src1->ne[2],
  13068. nb0*src1->ne[0],
  13069. nb0*src1->ne[0]*src1->ne[1],
  13070. offset);
  13071. } break;
  13072. case 4:
  13073. {
  13074. grad_k = ggml_view_4d(ctx,
  13075. flash_grad,
  13076. src1->ne[0],
  13077. src1->ne[1],
  13078. src1->ne[2],
  13079. src1->ne[3],
  13080. nb0*src1->ne[0],
  13081. nb0*src1->ne[0]*src1->ne[1],
  13082. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13083. offset);
  13084. } break;
  13085. }
  13086. src1->grad = ggml_add_impl(ctx,
  13087. src1->grad,
  13088. grad_k,
  13089. inplace);
  13090. }
  13091. struct ggml_tensor * opt0 = tensor->src[2];
  13092. if (opt0->grad) {
  13093. struct ggml_tensor * grad_v = NULL;
  13094. const size_t nb0 = flash_grad->nb[0];
  13095. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13096. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13097. switch(opt0->n_dims) {
  13098. case 2:
  13099. {
  13100. grad_v = ggml_view_2d(ctx,
  13101. flash_grad,
  13102. opt0->ne[0],
  13103. opt0->ne[1],
  13104. nb0*opt0->ne[0],
  13105. offset);
  13106. } break;
  13107. case 3:
  13108. {
  13109. grad_v = ggml_view_3d(ctx,
  13110. flash_grad,
  13111. opt0->ne[0],
  13112. opt0->ne[1],
  13113. opt0->ne[2],
  13114. nb0*opt0->ne[0],
  13115. nb0*opt0->ne[0]*opt0->ne[1],
  13116. offset);
  13117. } break;
  13118. case 4:
  13119. {
  13120. grad_v = ggml_view_4d(ctx,
  13121. flash_grad,
  13122. opt0->ne[0],
  13123. opt0->ne[1],
  13124. opt0->ne[2],
  13125. opt0->ne[3],
  13126. nb0*opt0->ne[0],
  13127. nb0*opt0->ne[0]*opt0->ne[1],
  13128. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13129. offset);
  13130. } break;
  13131. }
  13132. opt0->grad = ggml_add_impl(ctx,
  13133. opt0->grad,
  13134. grad_v,
  13135. inplace);
  13136. }
  13137. } break;
  13138. case GGML_OP_FLASH_FF:
  13139. {
  13140. GGML_ASSERT(false); // not supported
  13141. } break;
  13142. case GGML_OP_FLASH_ATTN_BACK:
  13143. {
  13144. GGML_ASSERT(false); // not supported
  13145. } break;
  13146. case GGML_OP_WIN_PART:
  13147. case GGML_OP_WIN_UNPART:
  13148. case GGML_OP_MAP_UNARY:
  13149. case GGML_OP_MAP_BINARY:
  13150. case GGML_OP_MAP_CUSTOM1:
  13151. case GGML_OP_MAP_CUSTOM2:
  13152. case GGML_OP_MAP_CUSTOM3:
  13153. {
  13154. GGML_ASSERT(false); // not supported
  13155. } break;
  13156. case GGML_OP_CROSS_ENTROPY_LOSS:
  13157. {
  13158. if (src0->grad) {
  13159. src0->grad = ggml_add_impl(ctx,
  13160. src0->grad,
  13161. ggml_cross_entropy_loss_back(ctx,
  13162. src0,
  13163. src1,
  13164. tensor->grad),
  13165. inplace);
  13166. }
  13167. } break;
  13168. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13169. {
  13170. GGML_ASSERT(false); // not supported
  13171. } break;
  13172. case GGML_OP_NONE:
  13173. {
  13174. // nop
  13175. } break;
  13176. case GGML_OP_COUNT:
  13177. {
  13178. GGML_ASSERT(false);
  13179. } break;
  13180. }
  13181. }
  13182. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13183. if (node->grad == NULL) {
  13184. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13185. // it can also happen during forward pass, if the user performs computations with constants
  13186. if (node->op != GGML_OP_NONE) {
  13187. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13188. }
  13189. }
  13190. // check if already visited
  13191. for (int i = 0; i < cgraph->n_nodes; i++) {
  13192. if (cgraph->nodes[i] == node) {
  13193. return;
  13194. }
  13195. }
  13196. for (int i = 0; i < cgraph->n_leafs; i++) {
  13197. if (cgraph->leafs[i] == node) {
  13198. return;
  13199. }
  13200. }
  13201. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13202. if (node->src[i]) {
  13203. ggml_visit_parents(cgraph, node->src[i]);
  13204. }
  13205. }
  13206. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13207. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13208. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13209. if (strlen(node->name) == 0) {
  13210. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13211. }
  13212. cgraph->leafs[cgraph->n_leafs] = node;
  13213. cgraph->n_leafs++;
  13214. } else {
  13215. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13216. if (strlen(node->name) == 0) {
  13217. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13218. }
  13219. cgraph->nodes[cgraph->n_nodes] = node;
  13220. cgraph->grads[cgraph->n_nodes] = node->grad;
  13221. cgraph->n_nodes++;
  13222. }
  13223. }
  13224. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13225. if (!expand) {
  13226. cgraph->n_nodes = 0;
  13227. cgraph->n_leafs = 0;
  13228. }
  13229. const int n0 = cgraph->n_nodes;
  13230. UNUSED(n0);
  13231. ggml_visit_parents(cgraph, tensor);
  13232. const int n_new = cgraph->n_nodes - n0;
  13233. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13234. if (n_new > 0) {
  13235. // the last added node should always be starting point
  13236. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13237. }
  13238. }
  13239. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13240. ggml_build_forward_impl(cgraph, tensor, true);
  13241. }
  13242. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13243. struct ggml_cgraph result = {
  13244. /*.n_nodes =*/ 0,
  13245. /*.n_leafs =*/ 0,
  13246. /*.nodes =*/ { NULL },
  13247. /*.grads =*/ { NULL },
  13248. /*.leafs =*/ { NULL },
  13249. /*.perf_runs =*/ 0,
  13250. /*.perf_cycles =*/ 0,
  13251. /*.perf_time_us =*/ 0,
  13252. };
  13253. ggml_build_forward_impl(&result, tensor, false);
  13254. return result;
  13255. }
  13256. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13257. struct ggml_cgraph result = *gf;
  13258. GGML_ASSERT(gf->n_nodes > 0);
  13259. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13260. if (keep) {
  13261. for (int i = 0; i < gf->n_nodes; i++) {
  13262. struct ggml_tensor * node = gf->nodes[i];
  13263. if (node->grad) {
  13264. node->grad = ggml_dup_tensor(ctx, node);
  13265. gf->grads[i] = node->grad;
  13266. }
  13267. }
  13268. }
  13269. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13270. struct ggml_tensor * node = gf->nodes[i];
  13271. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13272. if (node->grad) {
  13273. ggml_compute_backward(ctx, node, keep);
  13274. }
  13275. }
  13276. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13277. struct ggml_tensor * node = gf->nodes[i];
  13278. if (node->is_param) {
  13279. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13280. ggml_build_forward_impl(&result, node->grad, true);
  13281. }
  13282. }
  13283. return result;
  13284. }
  13285. //
  13286. // thread data
  13287. //
  13288. // synchronization is done via busy loops
  13289. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13290. //
  13291. #ifdef __APPLE__
  13292. //#include <os/lock.h>
  13293. //
  13294. //typedef os_unfair_lock ggml_lock_t;
  13295. //
  13296. //#define ggml_lock_init(x) UNUSED(x)
  13297. //#define ggml_lock_destroy(x) UNUSED(x)
  13298. //#define ggml_lock_lock os_unfair_lock_lock
  13299. //#define ggml_lock_unlock os_unfair_lock_unlock
  13300. //
  13301. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13302. typedef int ggml_lock_t;
  13303. #define ggml_lock_init(x) UNUSED(x)
  13304. #define ggml_lock_destroy(x) UNUSED(x)
  13305. #define ggml_lock_lock(x) UNUSED(x)
  13306. #define ggml_lock_unlock(x) UNUSED(x)
  13307. #define GGML_LOCK_INITIALIZER 0
  13308. typedef pthread_t ggml_thread_t;
  13309. #define ggml_thread_create pthread_create
  13310. #define ggml_thread_join pthread_join
  13311. #else
  13312. //typedef pthread_spinlock_t ggml_lock_t;
  13313. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13314. //#define ggml_lock_destroy pthread_spin_destroy
  13315. //#define ggml_lock_lock pthread_spin_lock
  13316. //#define ggml_lock_unlock pthread_spin_unlock
  13317. typedef int ggml_lock_t;
  13318. #define ggml_lock_init(x) UNUSED(x)
  13319. #define ggml_lock_destroy(x) UNUSED(x)
  13320. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13321. #define ggml_lock_lock(x) _mm_pause()
  13322. #else
  13323. #define ggml_lock_lock(x) UNUSED(x)
  13324. #endif
  13325. #define ggml_lock_unlock(x) UNUSED(x)
  13326. #define GGML_LOCK_INITIALIZER 0
  13327. typedef pthread_t ggml_thread_t;
  13328. #define ggml_thread_create pthread_create
  13329. #define ggml_thread_join pthread_join
  13330. #endif
  13331. // Android's libc implementation "bionic" does not support setting affinity
  13332. #if defined(__linux__) && !defined(__BIONIC__)
  13333. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13334. if (!ggml_is_numa()) {
  13335. return;
  13336. }
  13337. // run thread on node_num thread_n / (threads per node)
  13338. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13339. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13340. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13341. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13342. CPU_ZERO_S(setsize, cpus);
  13343. for (size_t i = 0; i < node->n_cpus; ++i) {
  13344. CPU_SET_S(node->cpus[i], setsize, cpus);
  13345. }
  13346. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13347. if (rv) {
  13348. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13349. strerror(rv));
  13350. }
  13351. CPU_FREE(cpus);
  13352. }
  13353. void clear_numa_thread_affinity(void) {
  13354. if (!ggml_is_numa()) {
  13355. return;
  13356. }
  13357. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13358. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13359. CPU_ZERO_S(setsize, cpus);
  13360. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13361. CPU_SET_S(i, setsize, cpus);
  13362. }
  13363. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13364. if (rv) {
  13365. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13366. strerror(rv));
  13367. }
  13368. CPU_FREE(cpus);
  13369. }
  13370. #else
  13371. // TODO: Windows etc.
  13372. // (the linux implementation may also work on BSD, someone should test)
  13373. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13374. void clear_numa_thread_affinity(void) {}
  13375. #endif
  13376. struct ggml_compute_state_shared {
  13377. const struct ggml_cgraph * cgraph;
  13378. const struct ggml_cplan * cplan;
  13379. int64_t perf_node_start_cycles;
  13380. int64_t perf_node_start_time_us;
  13381. const int n_threads;
  13382. // synchronization primitives
  13383. atomic_int n_active; // num active threads
  13384. atomic_int node_n; // active graph node
  13385. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13386. void * abort_callback_data;
  13387. };
  13388. struct ggml_compute_state {
  13389. ggml_thread_t thrd;
  13390. int ith;
  13391. struct ggml_compute_state_shared * shared;
  13392. };
  13393. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13394. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13395. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13396. node->perf_runs++;
  13397. node->perf_cycles += cycles_cur;
  13398. node->perf_time_us += time_us_cur;
  13399. }
  13400. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13401. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13402. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13403. const struct ggml_cplan * cplan = state->shared->cplan;
  13404. const int * n_tasks_arr = cplan->n_tasks;
  13405. const int n_threads = state->shared->n_threads;
  13406. set_numa_thread_affinity(state->ith, n_threads);
  13407. int node_n = -1;
  13408. while (true) {
  13409. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13410. state->shared->node_n += 1;
  13411. return (thread_ret_t) GGML_EXIT_ABORTED;
  13412. }
  13413. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13414. // all other threads are finished and spinning
  13415. // do finalize and init here so we don't have synchronize again
  13416. struct ggml_compute_params params = {
  13417. /*.type =*/ GGML_TASK_FINALIZE,
  13418. /*.ith =*/ 0,
  13419. /*.nth =*/ 0,
  13420. /*.wsize =*/ cplan->work_size,
  13421. /*.wdata =*/ cplan->work_data,
  13422. };
  13423. if (node_n != -1) {
  13424. /* FINALIZE */
  13425. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13426. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13427. params.nth = n_tasks_arr[node_n];
  13428. ggml_compute_forward(&params, node);
  13429. }
  13430. ggml_graph_compute_perf_stats_node(node, state->shared);
  13431. }
  13432. // distribute new work or execute it direct if 1T
  13433. while (++node_n < cgraph->n_nodes) {
  13434. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13435. struct ggml_tensor * node = cgraph->nodes[node_n];
  13436. const int n_tasks = n_tasks_arr[node_n];
  13437. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13438. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13439. params.nth = n_tasks;
  13440. /* INIT */
  13441. if (GGML_OP_HAS_INIT[node->op]) {
  13442. params.type = GGML_TASK_INIT;
  13443. ggml_compute_forward(&params, node);
  13444. }
  13445. if (n_tasks == 1) {
  13446. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13447. // they do something more efficient than spinning (?)
  13448. params.type = GGML_TASK_COMPUTE;
  13449. ggml_compute_forward(&params, node);
  13450. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13451. params.type = GGML_TASK_FINALIZE;
  13452. ggml_compute_forward(&params, node);
  13453. }
  13454. ggml_graph_compute_perf_stats_node(node, state->shared);
  13455. } else {
  13456. break;
  13457. }
  13458. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13459. break;
  13460. }
  13461. }
  13462. atomic_store(&state->shared->n_active, n_threads);
  13463. atomic_store(&state->shared->node_n, node_n);
  13464. } else {
  13465. // wait for other threads to finish
  13466. const int last = node_n;
  13467. do {
  13468. //sched_yield();
  13469. node_n = atomic_load(&state->shared->node_n);
  13470. } while (node_n == last);
  13471. }
  13472. // check if we should stop
  13473. if (node_n >= cgraph->n_nodes) break;
  13474. /* COMPUTE */
  13475. struct ggml_tensor * node = cgraph->nodes[node_n];
  13476. const int n_tasks = n_tasks_arr[node_n];
  13477. struct ggml_compute_params params = {
  13478. /*.type =*/ GGML_TASK_COMPUTE,
  13479. /*.ith =*/ state->ith,
  13480. /*.nth =*/ n_tasks,
  13481. /*.wsize =*/ cplan->work_size,
  13482. /*.wdata =*/ cplan->work_data,
  13483. };
  13484. if (state->ith < n_tasks) {
  13485. ggml_compute_forward(&params, node);
  13486. }
  13487. }
  13488. return GGML_EXIT_SUCCESS;
  13489. }
  13490. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13491. if (n_threads <= 0) {
  13492. n_threads = GGML_DEFAULT_N_THREADS;
  13493. }
  13494. size_t work_size = 0;
  13495. struct ggml_cplan cplan;
  13496. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13497. // thread scheduling for the different operations + work buffer size estimation
  13498. for (int i = 0; i < cgraph->n_nodes; i++) {
  13499. int n_tasks = 1;
  13500. struct ggml_tensor * node = cgraph->nodes[i];
  13501. switch (node->op) {
  13502. case GGML_OP_CPY:
  13503. case GGML_OP_DUP:
  13504. {
  13505. n_tasks = n_threads;
  13506. size_t cur = 0;
  13507. if (ggml_is_quantized(node->type)) {
  13508. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13509. }
  13510. work_size = MAX(work_size, cur);
  13511. } break;
  13512. case GGML_OP_ADD:
  13513. case GGML_OP_ADD1:
  13514. {
  13515. n_tasks = n_threads;
  13516. size_t cur = 0;
  13517. if (ggml_is_quantized(node->src[0]->type)) {
  13518. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13519. }
  13520. work_size = MAX(work_size, cur);
  13521. } break;
  13522. case GGML_OP_ACC:
  13523. {
  13524. n_tasks = n_threads;
  13525. size_t cur = 0;
  13526. if (ggml_is_quantized(node->src[0]->type)) {
  13527. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13528. }
  13529. work_size = MAX(work_size, cur);
  13530. } break;
  13531. case GGML_OP_SUB:
  13532. case GGML_OP_DIV:
  13533. case GGML_OP_SQR:
  13534. case GGML_OP_SQRT:
  13535. case GGML_OP_LOG:
  13536. case GGML_OP_SUM:
  13537. case GGML_OP_SUM_ROWS:
  13538. case GGML_OP_MEAN:
  13539. case GGML_OP_ARGMAX:
  13540. case GGML_OP_REPEAT:
  13541. case GGML_OP_REPEAT_BACK:
  13542. case GGML_OP_ABS:
  13543. case GGML_OP_SGN:
  13544. case GGML_OP_NEG:
  13545. case GGML_OP_STEP:
  13546. case GGML_OP_TANH:
  13547. case GGML_OP_ELU:
  13548. case GGML_OP_RELU:
  13549. {
  13550. n_tasks = 1;
  13551. } break;
  13552. case GGML_OP_MUL:
  13553. case GGML_OP_GELU:
  13554. case GGML_OP_GELU_QUICK:
  13555. case GGML_OP_SILU:
  13556. case GGML_OP_SILU_BACK:
  13557. case GGML_OP_NORM:
  13558. case GGML_OP_RMS_NORM:
  13559. case GGML_OP_RMS_NORM_BACK:
  13560. {
  13561. n_tasks = n_threads;
  13562. } break;
  13563. case GGML_OP_MUL_MAT:
  13564. case GGML_OP_OUT_PROD:
  13565. {
  13566. n_tasks = n_threads;
  13567. // TODO: use different scheduling for different matrix sizes
  13568. //const int nr0 = ggml_nrows(node->src[0]);
  13569. //const int nr1 = ggml_nrows(node->src[1]);
  13570. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13571. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13572. size_t cur = 0;
  13573. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13574. #if defined(GGML_USE_CUBLAS)
  13575. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13576. n_tasks = 1; // TODO: this actually is doing nothing
  13577. // the threads are still spinning
  13578. } else
  13579. #elif defined(GGML_USE_CLBLAST)
  13580. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13581. n_tasks = 1; // TODO: this actually is doing nothing
  13582. // the threads are still spinning
  13583. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13584. } else
  13585. #endif
  13586. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13587. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13588. n_tasks = 1; // TODO: this actually is doing nothing
  13589. // the threads are still spinning
  13590. if (node->src[0]->type != GGML_TYPE_F32) {
  13591. // here we need memory just for single 2D matrix from src0
  13592. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13593. }
  13594. } else
  13595. #endif
  13596. if (node->src[1]->type != vec_dot_type) {
  13597. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13598. } else {
  13599. cur = 0;
  13600. }
  13601. work_size = MAX(work_size, cur);
  13602. } break;
  13603. case GGML_OP_SCALE:
  13604. {
  13605. n_tasks = 1;
  13606. } break;
  13607. case GGML_OP_SET:
  13608. case GGML_OP_CONT:
  13609. case GGML_OP_RESHAPE:
  13610. case GGML_OP_VIEW:
  13611. case GGML_OP_PERMUTE:
  13612. case GGML_OP_TRANSPOSE:
  13613. case GGML_OP_GET_ROWS:
  13614. case GGML_OP_GET_ROWS_BACK:
  13615. case GGML_OP_DIAG:
  13616. case GGML_OP_DIAG_MASK_ZERO:
  13617. {
  13618. n_tasks = 1;
  13619. } break;
  13620. case GGML_OP_DIAG_MASK_INF:
  13621. case GGML_OP_SOFT_MAX:
  13622. case GGML_OP_SOFT_MAX_BACK:
  13623. case GGML_OP_ROPE:
  13624. case GGML_OP_ROPE_BACK:
  13625. {
  13626. n_tasks = n_threads;
  13627. } break;
  13628. case GGML_OP_ALIBI:
  13629. {
  13630. n_tasks = 1; //TODO
  13631. } break;
  13632. case GGML_OP_CLAMP:
  13633. {
  13634. n_tasks = 1; //TODO
  13635. } break;
  13636. case GGML_OP_CONV_1D:
  13637. {
  13638. n_tasks = n_threads;
  13639. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13640. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13641. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13642. size_t cur = 0;
  13643. const int nk = node->src[0]->ne[0];
  13644. if (node->src[0]->type == GGML_TYPE_F16 &&
  13645. node->src[1]->type == GGML_TYPE_F32) {
  13646. cur = sizeof(ggml_fp16_t)*(
  13647. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13648. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13649. );
  13650. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13651. node->src[1]->type == GGML_TYPE_F32) {
  13652. cur = sizeof(float)*(
  13653. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13654. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13655. );
  13656. } else {
  13657. GGML_ASSERT(false);
  13658. }
  13659. work_size = MAX(work_size, cur);
  13660. } break;
  13661. case GGML_OP_CONV_2D:
  13662. {
  13663. n_tasks = n_threads;
  13664. const int64_t ne00 = node->src[0]->ne[0]; // W
  13665. const int64_t ne01 = node->src[0]->ne[1]; // H
  13666. const int64_t ne02 = node->src[0]->ne[2]; // C
  13667. const int64_t ne03 = node->src[0]->ne[3]; // N
  13668. const int64_t ne10 = node->src[1]->ne[0]; // W
  13669. const int64_t ne11 = node->src[1]->ne[1]; // H
  13670. const int64_t ne12 = node->src[1]->ne[2]; // C
  13671. const int64_t ne0 = node->ne[0];
  13672. const int64_t ne1 = node->ne[1];
  13673. const int64_t ne2 = node->ne[2];
  13674. const int64_t nk = ne00*ne01;
  13675. const int64_t ew0 = nk * ne02;
  13676. UNUSED(ne03);
  13677. UNUSED(ne2);
  13678. size_t cur = 0;
  13679. if (node->src[0]->type == GGML_TYPE_F16 &&
  13680. node->src[1]->type == GGML_TYPE_F32) {
  13681. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13682. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13683. node->src[1]->type == GGML_TYPE_F32) {
  13684. cur = sizeof(float)* (ne10*ne11*ne12);
  13685. } else {
  13686. GGML_ASSERT(false);
  13687. }
  13688. work_size = MAX(work_size, cur);
  13689. } break;
  13690. case GGML_OP_POOL_1D:
  13691. case GGML_OP_POOL_2D:
  13692. {
  13693. n_tasks = 1;
  13694. } break;
  13695. case GGML_OP_FLASH_ATTN:
  13696. {
  13697. n_tasks = n_threads;
  13698. size_t cur = 0;
  13699. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13700. if (node->src[1]->type == GGML_TYPE_F32) {
  13701. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13702. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13703. }
  13704. if (node->src[1]->type == GGML_TYPE_F16) {
  13705. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13706. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13707. }
  13708. work_size = MAX(work_size, cur);
  13709. } break;
  13710. case GGML_OP_FLASH_FF:
  13711. {
  13712. n_tasks = n_threads;
  13713. size_t cur = 0;
  13714. if (node->src[1]->type == GGML_TYPE_F32) {
  13715. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13716. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13717. }
  13718. if (node->src[1]->type == GGML_TYPE_F16) {
  13719. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13720. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13721. }
  13722. work_size = MAX(work_size, cur);
  13723. } break;
  13724. case GGML_OP_FLASH_ATTN_BACK:
  13725. {
  13726. n_tasks = n_threads;
  13727. size_t cur = 0;
  13728. const int64_t D = node->src[0]->ne[0];
  13729. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13730. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13731. if (node->src[1]->type == GGML_TYPE_F32) {
  13732. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13733. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13734. }
  13735. if (node->src[1]->type == GGML_TYPE_F16) {
  13736. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13737. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13738. }
  13739. work_size = MAX(work_size, cur);
  13740. } break;
  13741. case GGML_OP_WIN_PART:
  13742. case GGML_OP_WIN_UNPART:
  13743. case GGML_OP_MAP_UNARY:
  13744. case GGML_OP_MAP_BINARY:
  13745. case GGML_OP_MAP_CUSTOM1:
  13746. case GGML_OP_MAP_CUSTOM2:
  13747. case GGML_OP_MAP_CUSTOM3:
  13748. {
  13749. n_tasks = 1;
  13750. } break;
  13751. case GGML_OP_CROSS_ENTROPY_LOSS:
  13752. {
  13753. n_tasks = n_threads;
  13754. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13755. work_size = MAX(work_size, cur);
  13756. } break;
  13757. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13758. {
  13759. n_tasks = n_threads;
  13760. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13761. work_size = MAX(work_size, cur);
  13762. } break;
  13763. case GGML_OP_NONE:
  13764. {
  13765. n_tasks = 1;
  13766. } break;
  13767. case GGML_OP_COUNT:
  13768. {
  13769. GGML_ASSERT(false);
  13770. } break;
  13771. }
  13772. cplan.n_tasks[i] = n_tasks;
  13773. }
  13774. if (work_size > 0) {
  13775. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13776. }
  13777. cplan.n_threads = n_threads;
  13778. cplan.work_size = work_size;
  13779. cplan.work_data = NULL;
  13780. return cplan;
  13781. }
  13782. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13783. {
  13784. GGML_ASSERT(cplan);
  13785. GGML_ASSERT(cplan->n_threads > 0);
  13786. if (cplan->work_size > 0) {
  13787. GGML_ASSERT(cplan->work_data);
  13788. }
  13789. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13790. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13791. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13792. }
  13793. }
  13794. }
  13795. const int n_threads = cplan->n_threads;
  13796. struct ggml_compute_state_shared state_shared = {
  13797. /*.cgraph =*/ cgraph,
  13798. /*.cgraph_plan =*/ cplan,
  13799. /*.perf_node_start_cycles =*/ 0,
  13800. /*.perf_node_start_time_us =*/ 0,
  13801. /*.n_threads =*/ n_threads,
  13802. /*.n_active =*/ n_threads,
  13803. /*.node_n =*/ -1,
  13804. /*.abort_callback =*/ NULL,
  13805. /*.abort_callback_data =*/ NULL,
  13806. };
  13807. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13808. // create thread pool
  13809. if (n_threads > 1) {
  13810. for (int j = 1; j < n_threads; ++j) {
  13811. workers[j] = (struct ggml_compute_state) {
  13812. .thrd = 0,
  13813. .ith = j,
  13814. .shared = &state_shared,
  13815. };
  13816. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13817. GGML_ASSERT(rc == 0);
  13818. }
  13819. }
  13820. workers[0].ith = 0;
  13821. workers[0].shared = &state_shared;
  13822. const int64_t perf_start_cycles = ggml_perf_cycles();
  13823. const int64_t perf_start_time_us = ggml_perf_time_us();
  13824. // this is a work thread too
  13825. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13826. // don't leave affinity set on the main thread
  13827. clear_numa_thread_affinity();
  13828. // join or kill thread pool
  13829. if (n_threads > 1) {
  13830. for (int j = 1; j < n_threads; j++) {
  13831. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13832. GGML_ASSERT(rc == 0);
  13833. }
  13834. }
  13835. // performance stats (graph)
  13836. {
  13837. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13838. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13839. cgraph->perf_runs++;
  13840. cgraph->perf_cycles += perf_cycles_cur;
  13841. cgraph->perf_time_us += perf_time_us_cur;
  13842. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13843. __func__, cgraph->perf_runs,
  13844. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13845. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13846. (double) perf_time_us_cur / 1000.0,
  13847. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13848. }
  13849. return compute_status;
  13850. }
  13851. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13852. for (int i = 0; i < cgraph->n_nodes; i++) {
  13853. struct ggml_tensor * grad = cgraph->grads[i];
  13854. if (grad) {
  13855. ggml_set_zero(grad);
  13856. }
  13857. }
  13858. }
  13859. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13860. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13861. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13862. GGML_ASSERT(buf);
  13863. cplan.work_data = buf->data;
  13864. ggml_graph_compute(cgraph, &cplan);
  13865. }
  13866. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13867. for (int i = 0; i < cgraph->n_leafs; i++) {
  13868. struct ggml_tensor * leaf = cgraph->leafs[i];
  13869. if (strcmp(leaf->name, name) == 0) {
  13870. return leaf;
  13871. }
  13872. }
  13873. for (int i = 0; i < cgraph->n_nodes; i++) {
  13874. struct ggml_tensor * node = cgraph->nodes[i];
  13875. if (strcmp(node->name, name) == 0) {
  13876. return node;
  13877. }
  13878. }
  13879. return NULL;
  13880. }
  13881. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13882. const int64_t * ne = tensor->ne;
  13883. const size_t * nb = tensor->nb;
  13884. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13885. ggml_type_name(tensor->type),
  13886. ggml_op_name (tensor->op),
  13887. tensor->n_dims,
  13888. ne[0], ne[1], ne[2], ne[3],
  13889. nb[0], nb[1], nb[2], nb[3],
  13890. tensor->data,
  13891. tensor->name);
  13892. }
  13893. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13894. const int64_t * ne = tensor->ne;
  13895. const size_t * nb = tensor->nb;
  13896. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13897. arg,
  13898. ggml_type_name(tensor->type),
  13899. ggml_op_name (tensor->op),
  13900. tensor->n_dims,
  13901. ne[0], ne[1], ne[2], ne[3],
  13902. nb[0], nb[1], nb[2], nb[3],
  13903. tensor->data,
  13904. tensor->name);
  13905. }
  13906. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13907. uint64_t size_eval = 0;
  13908. // compute size of intermediate results
  13909. // TODO: does not take into account scratch buffers !!!!
  13910. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13911. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13912. }
  13913. // print
  13914. {
  13915. FILE * fout = stdout;
  13916. fprintf(fout, "\n");
  13917. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13918. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13919. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13920. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13921. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13922. // header
  13923. fprintf(fout, "\n");
  13924. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13925. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13926. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13927. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13928. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13929. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13930. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13931. }
  13932. // header
  13933. fprintf(fout, "\n");
  13934. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13935. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13936. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13937. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13938. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13939. if (cgraph->nodes[i]->src[j]) {
  13940. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13941. }
  13942. }
  13943. fprintf(fout, "\n");
  13944. }
  13945. fprintf(fout, "\n");
  13946. }
  13947. // write binary data
  13948. {
  13949. FILE * fout = fopen(fname, "wb");
  13950. if (!fout) {
  13951. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13952. return;
  13953. }
  13954. // header
  13955. {
  13956. const uint32_t magic = GGML_FILE_MAGIC;
  13957. const uint32_t version = GGML_FILE_VERSION;
  13958. const uint32_t n_leafs = cgraph->n_leafs;
  13959. const uint32_t nodes = cgraph->n_nodes;
  13960. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13961. fwrite(&version, sizeof(uint32_t), 1, fout);
  13962. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13963. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13964. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13965. }
  13966. // leafs
  13967. {
  13968. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13969. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13970. const uint32_t type = tensor->type;
  13971. const uint32_t op = tensor->op;
  13972. const uint32_t n_dims = tensor->n_dims;
  13973. fwrite(&type, sizeof(uint32_t), 1, fout);
  13974. fwrite(&op, sizeof(uint32_t), 1, fout);
  13975. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13976. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13977. const uint64_t ne = tensor->ne[j];
  13978. const uint64_t nb = tensor->nb[j];
  13979. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13980. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13981. }
  13982. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13983. // dump the data
  13984. // TODO: pad this to 32 byte boundary
  13985. {
  13986. const size_t size = ggml_nbytes(tensor);
  13987. fwrite(tensor->data, sizeof(char), size, fout);
  13988. }
  13989. }
  13990. }
  13991. // nodes
  13992. {
  13993. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13994. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13995. const uint32_t type = tensor->type;
  13996. const uint32_t op = tensor->op;
  13997. const uint32_t n_dims = tensor->n_dims;
  13998. fwrite(&type, sizeof(uint32_t), 1, fout);
  13999. fwrite(&op, sizeof(uint32_t), 1, fout);
  14000. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14001. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14002. const uint64_t ne = tensor->ne[j];
  14003. const uint64_t nb = tensor->nb[j];
  14004. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14005. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14006. }
  14007. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14008. // output the op arguments
  14009. {
  14010. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14011. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14012. args[j] = tensor->src[j];
  14013. }
  14014. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14015. if (args[j]) {
  14016. int32_t idx = -1;
  14017. // check if leaf
  14018. {
  14019. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14020. if (args[j] == cgraph->leafs[k]) {
  14021. idx = k;
  14022. break;
  14023. }
  14024. }
  14025. }
  14026. // check if node
  14027. if (idx == -1) {
  14028. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14029. if (args[j] == cgraph->nodes[k]) {
  14030. idx = GGML_MAX_NODES + k;
  14031. break;
  14032. }
  14033. }
  14034. }
  14035. if (idx == -1) {
  14036. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14037. return;
  14038. }
  14039. fwrite(&idx, sizeof(int32_t), 1, fout);
  14040. } else {
  14041. const int32_t nul = -1;
  14042. fwrite(&nul, sizeof(int32_t), 1, fout);
  14043. }
  14044. }
  14045. }
  14046. }
  14047. }
  14048. fclose(fout);
  14049. }
  14050. }
  14051. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14052. assert(*ctx_data == NULL);
  14053. assert(*ctx_eval == NULL);
  14054. struct ggml_cgraph result = { 0 };
  14055. struct ggml_tensor * data = NULL;
  14056. // read file into data
  14057. {
  14058. FILE * fin = fopen(fname, "rb");
  14059. if (!fin) {
  14060. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14061. return result;
  14062. }
  14063. size_t fsize = 0;
  14064. fseek(fin, 0, SEEK_END);
  14065. fsize = ftell(fin);
  14066. fseek(fin, 0, SEEK_SET);
  14067. // create the data context
  14068. {
  14069. const size_t overhead = 1*ggml_tensor_overhead();
  14070. struct ggml_init_params params = {
  14071. .mem_size = fsize + overhead,
  14072. .mem_buffer = NULL,
  14073. .no_alloc = false,
  14074. };
  14075. *ctx_data = ggml_init(params);
  14076. if (!*ctx_data) {
  14077. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14078. fclose(fin);
  14079. return result;
  14080. }
  14081. }
  14082. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14083. {
  14084. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14085. if (ret != fsize) {
  14086. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14087. fclose(fin);
  14088. return result;
  14089. }
  14090. }
  14091. fclose(fin);
  14092. }
  14093. // populate result
  14094. {
  14095. char * ptr = (char *) data->data;
  14096. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14097. if (magic != GGML_FILE_MAGIC) {
  14098. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14099. return result;
  14100. }
  14101. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14102. if (version != GGML_FILE_VERSION) {
  14103. fprintf(stderr, "%s: invalid version number\n", __func__);
  14104. return result;
  14105. }
  14106. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14107. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14108. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14109. result.n_leafs = n_leafs;
  14110. result.n_nodes = n_nodes;
  14111. // create the data context
  14112. {
  14113. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14114. struct ggml_init_params params = {
  14115. .mem_size = size_eval + overhead,
  14116. .mem_buffer = NULL,
  14117. .no_alloc = true,
  14118. };
  14119. *ctx_eval = ggml_init(params);
  14120. if (!*ctx_eval) {
  14121. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14122. return result;
  14123. }
  14124. }
  14125. // leafs
  14126. {
  14127. uint32_t type;
  14128. uint32_t op;
  14129. uint32_t n_dims;
  14130. for (uint32_t i = 0; i < n_leafs; ++i) {
  14131. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14132. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14133. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14134. int64_t ne[GGML_MAX_DIMS];
  14135. size_t nb[GGML_MAX_DIMS];
  14136. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14137. uint64_t ne_cur;
  14138. uint64_t nb_cur;
  14139. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14140. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14141. ne[j] = ne_cur;
  14142. nb[j] = nb_cur;
  14143. }
  14144. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14145. tensor->op = (enum ggml_op) op;
  14146. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14147. tensor->data = (void *) ptr;
  14148. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14149. tensor->nb[j] = nb[j];
  14150. }
  14151. result.leafs[i] = tensor;
  14152. ptr += ggml_nbytes(tensor);
  14153. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14154. }
  14155. }
  14156. ggml_set_no_alloc(*ctx_eval, false);
  14157. // nodes
  14158. {
  14159. uint32_t type;
  14160. uint32_t op;
  14161. uint32_t n_dims;
  14162. for (uint32_t i = 0; i < n_nodes; ++i) {
  14163. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14164. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14165. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14166. enum ggml_op eop = (enum ggml_op) op;
  14167. int64_t ne[GGML_MAX_DIMS];
  14168. size_t nb[GGML_MAX_DIMS];
  14169. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14170. uint64_t ne_cur;
  14171. uint64_t nb_cur;
  14172. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14173. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14174. ne[j] = ne_cur;
  14175. nb[j] = nb_cur;
  14176. }
  14177. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14178. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14179. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14180. // parse args
  14181. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14182. const int32_t arg_idx = ptr_arg_idx[j];
  14183. if (arg_idx == -1) {
  14184. continue;
  14185. }
  14186. if (arg_idx < GGML_MAX_NODES) {
  14187. args[j] = result.leafs[arg_idx];
  14188. } else {
  14189. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14190. }
  14191. }
  14192. // create the tensor
  14193. // "view" operations are handled differently
  14194. // TODO: handle inplace ops - currently a copy is always made
  14195. struct ggml_tensor * tensor = NULL;
  14196. switch (eop) {
  14197. // TODO: implement other view ops
  14198. case GGML_OP_RESHAPE:
  14199. {
  14200. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14201. } break;
  14202. case GGML_OP_VIEW:
  14203. {
  14204. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14205. uint64_t offs;
  14206. memcpy(&offs, args[2]->data, sizeof(offs));
  14207. tensor->data = ((char *) tensor->data) + offs;
  14208. } break;
  14209. case GGML_OP_TRANSPOSE:
  14210. {
  14211. tensor = ggml_transpose(*ctx_eval, args[0]);
  14212. } break;
  14213. case GGML_OP_PERMUTE:
  14214. {
  14215. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14216. } break;
  14217. default:
  14218. {
  14219. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14220. tensor->op = eop;
  14221. } break;
  14222. }
  14223. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14224. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14225. tensor->nb[j] = nb[j];
  14226. }
  14227. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14228. tensor->src[j] = args[j];
  14229. }
  14230. result.nodes[i] = tensor;
  14231. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14232. }
  14233. }
  14234. }
  14235. return result;
  14236. }
  14237. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14238. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14239. GGML_PRINT("=== GRAPH ===\n");
  14240. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14241. for (int i = 0; i < cgraph->n_nodes; i++) {
  14242. struct ggml_tensor * node = cgraph->nodes[i];
  14243. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14244. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14245. i,
  14246. node->ne[0], node->ne[1], node->ne[2],
  14247. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14248. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14249. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14250. (double) node->perf_time_us / 1000.0,
  14251. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14252. }
  14253. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14254. for (int i = 0; i < cgraph->n_leafs; i++) {
  14255. struct ggml_tensor * node = cgraph->leafs[i];
  14256. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14257. i,
  14258. node->ne[0], node->ne[1],
  14259. GGML_OP_NAME[node->op]);
  14260. }
  14261. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14262. if (perf_total_per_op_us[i] == 0) {
  14263. continue;
  14264. }
  14265. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14266. }
  14267. GGML_PRINT("========================================\n");
  14268. }
  14269. // check if node is part of the graph
  14270. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14271. if (cgraph == NULL) {
  14272. return true;
  14273. }
  14274. for (int i = 0; i < cgraph->n_nodes; i++) {
  14275. if (cgraph->nodes[i] == node) {
  14276. return true;
  14277. }
  14278. }
  14279. return false;
  14280. }
  14281. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14282. for (int i = 0; i < cgraph->n_nodes; i++) {
  14283. struct ggml_tensor * parent = cgraph->nodes[i];
  14284. if (parent->grad == node) {
  14285. return parent;
  14286. }
  14287. }
  14288. return NULL;
  14289. }
  14290. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14291. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14292. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14293. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14294. gparent0 ? (void *) gparent0 : (void *) parent,
  14295. gparent0 ? "g" : "x",
  14296. gparent ? (void *) gparent : (void *) node,
  14297. gparent ? "g" : "x",
  14298. gparent ? "empty" : "vee",
  14299. gparent ? "dashed" : "solid",
  14300. label);
  14301. }
  14302. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14303. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14304. (void *) parent, "x",
  14305. (void *) node, "x",
  14306. label);
  14307. }
  14308. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14309. char color[16];
  14310. FILE * fp = fopen(filename, "w");
  14311. GGML_ASSERT(fp);
  14312. fprintf(fp, "digraph G {\n");
  14313. fprintf(fp, " newrank = true;\n");
  14314. fprintf(fp, " rankdir = LR;\n");
  14315. for (int i = 0; i < gb->n_nodes; i++) {
  14316. struct ggml_tensor * node = gb->nodes[i];
  14317. if (ggml_graph_get_parent(gb, node) != NULL) {
  14318. continue;
  14319. }
  14320. if (node->is_param) {
  14321. snprintf(color, sizeof(color), "yellow");
  14322. } else if (node->grad) {
  14323. if (ggml_graph_find(gf, node)) {
  14324. snprintf(color, sizeof(color), "green");
  14325. } else {
  14326. snprintf(color, sizeof(color), "lightblue");
  14327. }
  14328. } else {
  14329. snprintf(color, sizeof(color), "white");
  14330. }
  14331. fprintf(fp, " \"%p\" [ "
  14332. "style = filled; fillcolor = %s; shape = record; "
  14333. "label=\"",
  14334. (void *) node, color);
  14335. if (strlen(node->name) > 0) {
  14336. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14337. } else {
  14338. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14339. }
  14340. if (node->n_dims == 2) {
  14341. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14342. } else {
  14343. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14344. }
  14345. if (node->grad) {
  14346. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14347. } else {
  14348. fprintf(fp, "\"; ]\n");
  14349. }
  14350. }
  14351. for (int i = 0; i < gb->n_leafs; i++) {
  14352. struct ggml_tensor * node = gb->leafs[i];
  14353. snprintf(color, sizeof(color), "pink");
  14354. fprintf(fp, " \"%p\" [ "
  14355. "style = filled; fillcolor = %s; shape = record; "
  14356. "label=\"<x>",
  14357. (void *) node, color);
  14358. if (strlen(node->name) > 0) {
  14359. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14360. } else {
  14361. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14362. }
  14363. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14364. if (ggml_nelements(node) < 5) {
  14365. fprintf(fp, " | (");
  14366. for (int j = 0; j < ggml_nelements(node); j++) {
  14367. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14368. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14369. }
  14370. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14371. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14372. }
  14373. else {
  14374. fprintf(fp, "#");
  14375. }
  14376. if (j < ggml_nelements(node) - 1) {
  14377. fprintf(fp, ", ");
  14378. }
  14379. }
  14380. fprintf(fp, ")");
  14381. }
  14382. fprintf(fp, "\"; ]\n");
  14383. }
  14384. for (int i = 0; i < gb->n_nodes; i++) {
  14385. struct ggml_tensor * node = gb->nodes[i];
  14386. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14387. if (node->src[j]) {
  14388. char label[16];
  14389. snprintf(label, sizeof(label), "src %d", j);
  14390. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14391. }
  14392. }
  14393. }
  14394. for (int i = 0; i < gb->n_leafs; i++) {
  14395. struct ggml_tensor * node = gb->leafs[i];
  14396. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14397. if (node->src[j]) {
  14398. char label[16];
  14399. snprintf(label, sizeof(label), "src %d", j);
  14400. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14401. }
  14402. }
  14403. }
  14404. fprintf(fp, "}\n");
  14405. fclose(fp);
  14406. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14407. }
  14408. ////////////////////////////////////////////////////////////////////////////////
  14409. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14410. int i = 0;
  14411. for (int p = 0; p < np; ++p) {
  14412. const int64_t ne = ggml_nelements(ps[p]) ;
  14413. // TODO: add function to set tensor from array
  14414. for (int64_t j = 0; j < ne; ++j) {
  14415. ggml_set_f32_1d(ps[p], j, x[i++]);
  14416. }
  14417. }
  14418. }
  14419. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14420. int i = 0;
  14421. for (int p = 0; p < np; ++p) {
  14422. const int64_t ne = ggml_nelements(ps[p]) ;
  14423. // TODO: add function to get all elements at once
  14424. for (int64_t j = 0; j < ne; ++j) {
  14425. x[i++] = ggml_get_f32_1d(ps[p], j);
  14426. }
  14427. }
  14428. }
  14429. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14430. int i = 0;
  14431. for (int p = 0; p < np; ++p) {
  14432. const int64_t ne = ggml_nelements(ps[p]) ;
  14433. // TODO: add function to get all elements at once
  14434. for (int64_t j = 0; j < ne; ++j) {
  14435. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14436. }
  14437. }
  14438. }
  14439. //
  14440. // ADAM
  14441. //
  14442. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14443. //
  14444. static enum ggml_opt_result ggml_opt_adam(
  14445. struct ggml_context * ctx,
  14446. struct ggml_opt_context * opt,
  14447. struct ggml_opt_params params,
  14448. struct ggml_tensor * f,
  14449. struct ggml_cgraph * gf,
  14450. struct ggml_cgraph * gb) {
  14451. GGML_ASSERT(ggml_is_scalar(f));
  14452. // these will store the parameters we want to optimize
  14453. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14454. int np = 0;
  14455. int nx = 0;
  14456. for (int i = 0; i < gf->n_nodes; ++i) {
  14457. if (gf->nodes[i]->is_param) {
  14458. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14459. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14460. ps[np++] = gf->nodes[i];
  14461. nx += ggml_nelements(gf->nodes[i]);
  14462. }
  14463. }
  14464. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14465. int iter = opt->iter;
  14466. ggml_opt_init(opt->ctx, opt, params, nx);
  14467. opt->iter = iter;
  14468. }
  14469. // constants
  14470. const float sched = params.adam.sched;
  14471. const float decay = params.adam.decay * sched;
  14472. const float alpha = params.adam.alpha * sched;
  14473. const float beta1 = params.adam.beta1;
  14474. const float beta2 = params.adam.beta2;
  14475. const float eps = params.adam.eps;
  14476. float * x = opt->adam.x->data; // view of the parameters
  14477. float * g1 = opt->adam.g1->data; // gradient
  14478. float * g2 = opt->adam.g2->data; // gradient squared
  14479. float * m = opt->adam.m->data; // first moment
  14480. float * v = opt->adam.v->data; // second moment
  14481. float * mh = opt->adam.mh->data; // first moment hat
  14482. float * vh = opt->adam.vh->data; // second moment hat
  14483. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14484. // update view
  14485. ggml_opt_get_params(np, ps, x);
  14486. // compute the function value
  14487. ggml_graph_reset (gf);
  14488. ggml_set_f32 (f->grad, 1.0f);
  14489. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14490. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14491. opt->adam.fx_best = opt->adam.fx_prev;
  14492. if (pf) {
  14493. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14494. }
  14495. // initialize
  14496. if (opt->just_initialized) {
  14497. opt->adam.n_no_improvement = 0;
  14498. opt->just_initialized = false;
  14499. }
  14500. float * fx_best = &opt->adam.fx_best;
  14501. float * fx_prev = &opt->adam.fx_prev;
  14502. int * n_no_improvement = &opt->adam.n_no_improvement;
  14503. int iter0 = opt->iter;
  14504. // run the optimizer
  14505. for (int t = 0; t < params.adam.n_iter; ++t) {
  14506. opt->iter = iter0 + t + 1;
  14507. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14508. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14509. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14510. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14511. for (int i = 0; i < np; ++i) {
  14512. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14513. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14514. }
  14515. const int64_t t_start_wall = ggml_time_us();
  14516. const int64_t t_start_cpu = ggml_cycles();
  14517. UNUSED(t_start_wall);
  14518. UNUSED(t_start_cpu);
  14519. {
  14520. // update the gradient
  14521. ggml_opt_get_grad(np, ps, g1);
  14522. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14523. ggml_vec_scale_f32(nx, m, beta1);
  14524. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14525. // g2 = g1^2
  14526. ggml_vec_sqr_f32 (nx, g2, g1);
  14527. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14528. ggml_vec_scale_f32(nx, v, beta2);
  14529. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14530. // m^hat = m_t / (1 - beta1^t)
  14531. // v^hat = v_t / (1 - beta2^t)
  14532. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14533. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14534. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14535. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14536. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14537. ggml_vec_cpy_f32 (nx, mh, m);
  14538. ggml_vec_cpy_f32 (nx, vh, v);
  14539. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14540. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14541. ggml_vec_sqrt_f32 (nx, vh, vh);
  14542. ggml_vec_acc1_f32 (nx, vh, eps);
  14543. ggml_vec_div_f32 (nx, mh, mh, vh);
  14544. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14545. ggml_vec_sub_f32 (nx, x, x, mh);
  14546. // update the parameters
  14547. ggml_opt_set_params(np, ps, x);
  14548. }
  14549. ggml_graph_reset (gf);
  14550. ggml_set_f32 (f->grad, 1.0f);
  14551. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14552. const float fx = ggml_get_f32_1d(f, 0);
  14553. // check convergence
  14554. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14555. GGML_PRINT_DEBUG("converged\n");
  14556. return GGML_OPT_OK;
  14557. }
  14558. // delta-based convergence test
  14559. if (pf != NULL) {
  14560. // need at least params.past iterations to start checking for convergence
  14561. if (params.past <= iter0 + t) {
  14562. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14563. if (fabsf(rate) < params.delta) {
  14564. return GGML_OPT_OK;
  14565. }
  14566. }
  14567. pf[(iter0 + t)%params.past] = fx;
  14568. }
  14569. // check for improvement
  14570. if (params.max_no_improvement > 0) {
  14571. if (fx_best[0] > fx) {
  14572. fx_best[0] = fx;
  14573. n_no_improvement[0] = 0;
  14574. } else {
  14575. ++n_no_improvement[0];
  14576. if (n_no_improvement[0] >= params.max_no_improvement) {
  14577. return GGML_OPT_OK;
  14578. }
  14579. }
  14580. }
  14581. fx_prev[0] = fx;
  14582. {
  14583. const int64_t t_end_cpu = ggml_cycles();
  14584. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14585. UNUSED(t_end_cpu);
  14586. const int64_t t_end_wall = ggml_time_us();
  14587. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14588. UNUSED(t_end_wall);
  14589. }
  14590. }
  14591. return GGML_OPT_DID_NOT_CONVERGE;
  14592. }
  14593. //
  14594. // L-BFGS
  14595. //
  14596. // the L-BFGS implementation below is based on the following implementation:
  14597. //
  14598. // https://github.com/chokkan/liblbfgs
  14599. //
  14600. struct ggml_lbfgs_iteration_data {
  14601. float alpha;
  14602. float ys;
  14603. float * s;
  14604. float * y;
  14605. };
  14606. static enum ggml_opt_result linesearch_backtracking(
  14607. struct ggml_context * ctx,
  14608. const struct ggml_opt_params * params,
  14609. int nx,
  14610. float * x,
  14611. float * fx,
  14612. float * g,
  14613. float * d,
  14614. float * step,
  14615. const float * xp,
  14616. struct ggml_tensor * f,
  14617. struct ggml_cgraph * gf,
  14618. struct ggml_cgraph * gb,
  14619. const int np,
  14620. struct ggml_tensor * ps[]) {
  14621. int count = 0;
  14622. float width = 0.0f;
  14623. float dg = 0.0f;
  14624. float finit = 0.0f;
  14625. float dginit = 0.0f;
  14626. float dgtest = 0.0f;
  14627. const float dec = 0.5f;
  14628. const float inc = 2.1f;
  14629. if (*step <= 0.f) {
  14630. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14631. }
  14632. // compute the initial gradient in the search direction
  14633. ggml_vec_dot_f32(nx, &dginit, g, d);
  14634. // make sure that d points to a descent direction
  14635. if (0 < dginit) {
  14636. return GGML_LINESEARCH_FAIL;
  14637. }
  14638. // initialize local variables
  14639. finit = *fx;
  14640. dgtest = params->lbfgs.ftol*dginit;
  14641. while (true) {
  14642. ggml_vec_cpy_f32(nx, x, xp);
  14643. ggml_vec_mad_f32(nx, x, d, *step);
  14644. // evaluate the function and gradient values
  14645. {
  14646. ggml_opt_set_params(np, ps, x);
  14647. ggml_graph_reset (gf);
  14648. ggml_set_f32 (f->grad, 1.0f);
  14649. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14650. ggml_opt_get_grad(np, ps, g);
  14651. *fx = ggml_get_f32_1d(f, 0);
  14652. }
  14653. ++count;
  14654. if (*fx > finit + (*step)*dgtest) {
  14655. width = dec;
  14656. } else {
  14657. // Armijo condition is satisfied
  14658. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14659. return count;
  14660. }
  14661. ggml_vec_dot_f32(nx, &dg, g, d);
  14662. // check the Wolfe condition
  14663. if (dg < params->lbfgs.wolfe * dginit) {
  14664. width = inc;
  14665. } else {
  14666. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14667. // regular Wolfe conditions
  14668. return count;
  14669. }
  14670. if(dg > -params->lbfgs.wolfe*dginit) {
  14671. width = dec;
  14672. } else {
  14673. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14674. return count;
  14675. }
  14676. return count;
  14677. }
  14678. }
  14679. if (*step < params->lbfgs.min_step) {
  14680. return GGML_LINESEARCH_MINIMUM_STEP;
  14681. }
  14682. if (*step > params->lbfgs.max_step) {
  14683. return GGML_LINESEARCH_MAXIMUM_STEP;
  14684. }
  14685. if (params->lbfgs.max_linesearch <= count) {
  14686. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14687. }
  14688. (*step) *= width;
  14689. }
  14690. return GGML_LINESEARCH_FAIL;
  14691. }
  14692. static enum ggml_opt_result ggml_opt_lbfgs(
  14693. struct ggml_context * ctx,
  14694. struct ggml_opt_context * opt,
  14695. struct ggml_opt_params params,
  14696. struct ggml_tensor * f,
  14697. struct ggml_cgraph * gf,
  14698. struct ggml_cgraph * gb) {
  14699. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14700. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14701. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14702. return GGML_OPT_INVALID_WOLFE;
  14703. }
  14704. }
  14705. const int m = params.lbfgs.m;
  14706. // these will store the parameters we want to optimize
  14707. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14708. int np = 0;
  14709. int nx = 0;
  14710. for (int i = 0; i < gf->n_nodes; ++i) {
  14711. if (gf->nodes[i]->is_param) {
  14712. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14713. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14714. ps[np++] = gf->nodes[i];
  14715. nx += ggml_nelements(gf->nodes[i]);
  14716. }
  14717. }
  14718. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14719. int iter = opt->iter;
  14720. ggml_opt_init(ctx, opt, params, nx);
  14721. opt->iter = iter;
  14722. }
  14723. float * x = opt->lbfgs.x->data; // current parameters
  14724. float * xp = opt->lbfgs.xp->data; // previous parameters
  14725. float * g = opt->lbfgs.g->data; // current gradient
  14726. float * gp = opt->lbfgs.gp->data; // previous gradient
  14727. float * d = opt->lbfgs.d->data; // search direction
  14728. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14729. float fx = 0.0f; // cost function value
  14730. float xnorm = 0.0f; // ||x||
  14731. float gnorm = 0.0f; // ||g||
  14732. // initialize x from the graph nodes
  14733. ggml_opt_get_params(np, ps, x);
  14734. // the L-BFGS memory
  14735. float * lm_alpha = opt->lbfgs.lmal->data;
  14736. float * lm_ys = opt->lbfgs.lmys->data;
  14737. float * lm_s = opt->lbfgs.lms->data;
  14738. float * lm_y = opt->lbfgs.lmy->data;
  14739. // evaluate the function value and its gradient
  14740. {
  14741. ggml_opt_set_params(np, ps, x);
  14742. ggml_graph_reset (gf);
  14743. ggml_set_f32 (f->grad, 1.0f);
  14744. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14745. ggml_opt_get_grad(np, ps, g);
  14746. fx = ggml_get_f32_1d(f, 0);
  14747. }
  14748. // search direction = -gradient
  14749. ggml_vec_neg_f32(nx, d, g);
  14750. // ||x||, ||g||
  14751. ggml_vec_norm_f32(nx, &xnorm, x);
  14752. ggml_vec_norm_f32(nx, &gnorm, g);
  14753. if (xnorm < 1.0f) {
  14754. xnorm = 1.0f;
  14755. }
  14756. // already optimized
  14757. if (gnorm/xnorm <= params.lbfgs.eps) {
  14758. return GGML_OPT_OK;
  14759. }
  14760. if (opt->just_initialized) {
  14761. if (pf) {
  14762. pf[0] = fx;
  14763. }
  14764. opt->lbfgs.fx_best = fx;
  14765. // initial step
  14766. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14767. opt->lbfgs.j = 0;
  14768. opt->lbfgs.k = 1;
  14769. opt->lbfgs.end = 0;
  14770. opt->lbfgs.n_no_improvement = 0;
  14771. opt->just_initialized = false;
  14772. }
  14773. float * fx_best = &opt->lbfgs.fx_best;
  14774. float * step = &opt->lbfgs.step;
  14775. int * j = &opt->lbfgs.j;
  14776. int * k = &opt->lbfgs.k;
  14777. int * end = &opt->lbfgs.end;
  14778. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14779. int ls = 0;
  14780. int bound = 0;
  14781. float ys = 0.0f;
  14782. float yy = 0.0f;
  14783. float beta = 0.0f;
  14784. int it = 0;
  14785. while (true) {
  14786. // store the current position and gradient vectors
  14787. ggml_vec_cpy_f32(nx, xp, x);
  14788. ggml_vec_cpy_f32(nx, gp, g);
  14789. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14790. if (ls < 0) {
  14791. // linesearch failed - go back to the previous point and return
  14792. ggml_vec_cpy_f32(nx, x, xp);
  14793. ggml_vec_cpy_f32(nx, g, gp);
  14794. return ls;
  14795. }
  14796. ggml_vec_norm_f32(nx, &xnorm, x);
  14797. ggml_vec_norm_f32(nx, &gnorm, g);
  14798. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14799. if (xnorm < 1.0f) {
  14800. xnorm = 1.0f;
  14801. }
  14802. if (gnorm/xnorm <= params.lbfgs.eps) {
  14803. // converged
  14804. return GGML_OPT_OK;
  14805. }
  14806. // delta-based convergence test
  14807. if (pf != NULL) {
  14808. // need at least params.past iterations to start checking for convergence
  14809. if (params.past <= k[0]) {
  14810. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14811. if (fabsf(rate) < params.delta) {
  14812. return GGML_OPT_OK;
  14813. }
  14814. }
  14815. pf[k[0]%params.past] = fx;
  14816. }
  14817. // check for improvement
  14818. if (params.max_no_improvement > 0) {
  14819. if (fx < fx_best[0]) {
  14820. fx_best[0] = fx;
  14821. n_no_improvement[0] = 0;
  14822. } else {
  14823. n_no_improvement[0]++;
  14824. if (n_no_improvement[0] >= params.max_no_improvement) {
  14825. return GGML_OPT_OK;
  14826. }
  14827. }
  14828. }
  14829. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14830. // reached the maximum number of iterations
  14831. return GGML_OPT_DID_NOT_CONVERGE;
  14832. }
  14833. // update vectors s and y:
  14834. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14835. // y_{k+1} = g_{k+1} - g_{k}.
  14836. //
  14837. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14838. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14839. // compute scalars ys and yy:
  14840. // ys = y^t \cdot s -> 1 / \rho.
  14841. // yy = y^t \cdot y.
  14842. //
  14843. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14844. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14845. lm_ys[end[0]] = ys;
  14846. // find new search direction
  14847. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14848. bound = (m <= k[0]) ? m : k[0];
  14849. k[0]++;
  14850. it++;
  14851. end[0] = (end[0] + 1)%m;
  14852. // initialize search direction with -g
  14853. ggml_vec_neg_f32(nx, d, g);
  14854. j[0] = end[0];
  14855. for (int i = 0; i < bound; ++i) {
  14856. j[0] = (j[0] + m - 1) % m;
  14857. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14858. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14859. lm_alpha[j[0]] /= lm_ys[j[0]];
  14860. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14861. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14862. }
  14863. ggml_vec_scale_f32(nx, d, ys/yy);
  14864. for (int i = 0; i < bound; ++i) {
  14865. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14866. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14867. beta /= lm_ys[j[0]];
  14868. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14869. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14870. j[0] = (j[0] + 1)%m;
  14871. }
  14872. step[0] = 1.0;
  14873. }
  14874. return GGML_OPT_DID_NOT_CONVERGE;
  14875. }
  14876. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14877. struct ggml_opt_params result;
  14878. switch (type) {
  14879. case GGML_OPT_ADAM:
  14880. {
  14881. result = (struct ggml_opt_params) {
  14882. .type = GGML_OPT_ADAM,
  14883. .n_threads = 1,
  14884. .past = 0,
  14885. .delta = 1e-5f,
  14886. .max_no_improvement = 100,
  14887. .print_forward_graph = true,
  14888. .print_backward_graph = true,
  14889. .adam = {
  14890. .n_iter = 10000,
  14891. .sched = 1.000f,
  14892. .decay = 0.001f,
  14893. .alpha = 0.001f,
  14894. .beta1 = 0.9f,
  14895. .beta2 = 0.999f,
  14896. .eps = 1e-8f,
  14897. .eps_f = 1e-5f,
  14898. .eps_g = 1e-3f,
  14899. },
  14900. };
  14901. } break;
  14902. case GGML_OPT_LBFGS:
  14903. {
  14904. result = (struct ggml_opt_params) {
  14905. .type = GGML_OPT_LBFGS,
  14906. .n_threads = 1,
  14907. .past = 0,
  14908. .delta = 1e-5f,
  14909. .max_no_improvement = 0,
  14910. .print_forward_graph = true,
  14911. .print_backward_graph = true,
  14912. .lbfgs = {
  14913. .m = 6,
  14914. .n_iter = 100,
  14915. .max_linesearch = 20,
  14916. .eps = 1e-5f,
  14917. .ftol = 1e-4f,
  14918. .wolfe = 0.9f,
  14919. .min_step = 1e-20f,
  14920. .max_step = 1e+20f,
  14921. .linesearch = GGML_LINESEARCH_DEFAULT,
  14922. },
  14923. };
  14924. } break;
  14925. }
  14926. return result;
  14927. }
  14928. GGML_API void ggml_opt_init(
  14929. struct ggml_context * ctx,
  14930. struct ggml_opt_context * opt,
  14931. struct ggml_opt_params params,
  14932. int64_t nx) {
  14933. opt->ctx = ctx;
  14934. opt->params = params;
  14935. opt->iter = 0;
  14936. opt->nx = nx;
  14937. opt->just_initialized = true;
  14938. switch (opt->params.type) {
  14939. case GGML_OPT_ADAM:
  14940. {
  14941. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14942. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14943. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14944. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14945. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14946. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14947. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14948. opt->adam.pf = params.past > 0
  14949. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14950. : NULL;
  14951. ggml_set_zero(opt->adam.x);
  14952. ggml_set_zero(opt->adam.g1);
  14953. ggml_set_zero(opt->adam.g2);
  14954. ggml_set_zero(opt->adam.m);
  14955. ggml_set_zero(opt->adam.v);
  14956. ggml_set_zero(opt->adam.mh);
  14957. ggml_set_zero(opt->adam.vh);
  14958. if (opt->adam.pf) {
  14959. ggml_set_zero(opt->adam.pf);
  14960. }
  14961. } break;
  14962. case GGML_OPT_LBFGS:
  14963. {
  14964. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14965. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14966. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14967. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14968. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14969. opt->lbfgs.pf = params.past > 0
  14970. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14971. : NULL;
  14972. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14973. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14974. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14975. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14976. ggml_set_zero(opt->lbfgs.x);
  14977. ggml_set_zero(opt->lbfgs.xp);
  14978. ggml_set_zero(opt->lbfgs.g);
  14979. ggml_set_zero(opt->lbfgs.gp);
  14980. ggml_set_zero(opt->lbfgs.d);
  14981. if (opt->lbfgs.pf) {
  14982. ggml_set_zero(opt->lbfgs.pf);
  14983. }
  14984. ggml_set_zero(opt->lbfgs.lmal);
  14985. ggml_set_zero(opt->lbfgs.lmys);
  14986. ggml_set_zero(opt->lbfgs.lms);
  14987. ggml_set_zero(opt->lbfgs.lmy);
  14988. } break;
  14989. }
  14990. }
  14991. enum ggml_opt_result ggml_opt(
  14992. struct ggml_context * ctx,
  14993. struct ggml_opt_params params,
  14994. struct ggml_tensor * f) {
  14995. bool free_ctx = false;
  14996. if (ctx == NULL) {
  14997. struct ggml_init_params params_ctx = {
  14998. .mem_size = 16*1024*1024,
  14999. .mem_buffer = NULL,
  15000. .no_alloc = false,
  15001. };
  15002. ctx = ggml_init(params_ctx);
  15003. if (ctx == NULL) {
  15004. return GGML_OPT_NO_CONTEXT;
  15005. }
  15006. free_ctx = true;
  15007. }
  15008. enum ggml_opt_result result = GGML_OPT_OK;
  15009. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15010. ggml_opt_init(ctx, opt, params, 0);
  15011. result = ggml_opt_resume(ctx, opt, f);
  15012. if (free_ctx) {
  15013. ggml_free(ctx);
  15014. }
  15015. return result;
  15016. }
  15017. enum ggml_opt_result ggml_opt_resume(
  15018. struct ggml_context * ctx,
  15019. struct ggml_opt_context * opt,
  15020. struct ggml_tensor * f) {
  15021. // build forward + backward compute graphs
  15022. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15023. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15024. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15025. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15026. *gf = ggml_build_forward (f);
  15027. *gb = ggml_build_backward(ctx, gf, true);
  15028. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15029. }
  15030. enum ggml_opt_result ggml_opt_resume_g(
  15031. struct ggml_context * ctx,
  15032. struct ggml_opt_context * opt,
  15033. struct ggml_tensor * f,
  15034. struct ggml_cgraph * gf,
  15035. struct ggml_cgraph * gb) {
  15036. // build forward + backward compute graphs
  15037. enum ggml_opt_result result = GGML_OPT_OK;
  15038. switch (opt->params.type) {
  15039. case GGML_OPT_ADAM:
  15040. {
  15041. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15042. } break;
  15043. case GGML_OPT_LBFGS:
  15044. {
  15045. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15046. } break;
  15047. }
  15048. if (opt->params.print_forward_graph) {
  15049. ggml_graph_print (gf);
  15050. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15051. }
  15052. if (opt->params.print_backward_graph) {
  15053. ggml_graph_print (gb);
  15054. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15055. }
  15056. return result;
  15057. }
  15058. ////////////////////////////////////////////////////////////////////////////////
  15059. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15060. assert(k % QK4_0 == 0);
  15061. const int nb = k / QK4_0;
  15062. for (int b = 0; b < n; b += k) {
  15063. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15064. quantize_row_q4_0_reference(src + b, y, k);
  15065. for (int i = 0; i < nb; i++) {
  15066. for (int j = 0; j < QK4_0; j += 2) {
  15067. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15068. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15069. hist[vi0]++;
  15070. hist[vi1]++;
  15071. }
  15072. }
  15073. }
  15074. return (n/QK4_0*sizeof(block_q4_0));
  15075. }
  15076. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15077. assert(k % QK4_1 == 0);
  15078. const int nb = k / QK4_1;
  15079. for (int b = 0; b < n; b += k) {
  15080. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15081. quantize_row_q4_1_reference(src + b, y, k);
  15082. for (int i = 0; i < nb; i++) {
  15083. for (int j = 0; j < QK4_1; j += 2) {
  15084. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15085. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15086. hist[vi0]++;
  15087. hist[vi1]++;
  15088. }
  15089. }
  15090. }
  15091. return (n/QK4_1*sizeof(block_q4_1));
  15092. }
  15093. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15094. assert(k % QK5_0 == 0);
  15095. const int nb = k / QK5_0;
  15096. for (int b = 0; b < n; b += k) {
  15097. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15098. quantize_row_q5_0_reference(src + b, y, k);
  15099. for (int i = 0; i < nb; i++) {
  15100. uint32_t qh;
  15101. memcpy(&qh, &y[i].qh, sizeof(qh));
  15102. for (int j = 0; j < QK5_0; j += 2) {
  15103. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15104. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15105. // cast to 16 bins
  15106. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15107. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15108. hist[vi0]++;
  15109. hist[vi1]++;
  15110. }
  15111. }
  15112. }
  15113. return (n/QK5_0*sizeof(block_q5_0));
  15114. }
  15115. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15116. assert(k % QK5_1 == 0);
  15117. const int nb = k / QK5_1;
  15118. for (int b = 0; b < n; b += k) {
  15119. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15120. quantize_row_q5_1_reference(src + b, y, k);
  15121. for (int i = 0; i < nb; i++) {
  15122. uint32_t qh;
  15123. memcpy(&qh, &y[i].qh, sizeof(qh));
  15124. for (int j = 0; j < QK5_1; j += 2) {
  15125. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15126. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15127. // cast to 16 bins
  15128. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15129. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15130. hist[vi0]++;
  15131. hist[vi1]++;
  15132. }
  15133. }
  15134. }
  15135. return (n/QK5_1*sizeof(block_q5_1));
  15136. }
  15137. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15138. assert(k % QK8_0 == 0);
  15139. const int nb = k / QK8_0;
  15140. for (int b = 0; b < n; b += k) {
  15141. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15142. quantize_row_q8_0_reference(src + b, y, k);
  15143. for (int i = 0; i < nb; i++) {
  15144. for (int j = 0; j < QK8_0; ++j) {
  15145. const int8_t vi = y[i].qs[j];
  15146. hist[vi/16 + 8]++;
  15147. }
  15148. }
  15149. }
  15150. return (n/QK8_0*sizeof(block_q8_0));
  15151. }
  15152. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15153. size_t result = 0;
  15154. switch (type) {
  15155. case GGML_TYPE_Q4_0:
  15156. {
  15157. GGML_ASSERT(start % QK4_0 == 0);
  15158. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15159. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15160. } break;
  15161. case GGML_TYPE_Q4_1:
  15162. {
  15163. GGML_ASSERT(start % QK4_1 == 0);
  15164. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15165. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15166. } break;
  15167. case GGML_TYPE_Q5_0:
  15168. {
  15169. GGML_ASSERT(start % QK5_0 == 0);
  15170. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15171. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15172. } break;
  15173. case GGML_TYPE_Q5_1:
  15174. {
  15175. GGML_ASSERT(start % QK5_1 == 0);
  15176. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15177. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15178. } break;
  15179. case GGML_TYPE_Q8_0:
  15180. {
  15181. GGML_ASSERT(start % QK8_0 == 0);
  15182. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15183. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15184. } break;
  15185. #ifdef GGML_USE_K_QUANTS
  15186. case GGML_TYPE_Q2_K:
  15187. {
  15188. GGML_ASSERT(start % QK_K == 0);
  15189. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15190. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15191. } break;
  15192. case GGML_TYPE_Q3_K:
  15193. {
  15194. GGML_ASSERT(start % QK_K == 0);
  15195. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15196. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15197. } break;
  15198. case GGML_TYPE_Q4_K:
  15199. {
  15200. GGML_ASSERT(start % QK_K == 0);
  15201. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15202. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15203. } break;
  15204. case GGML_TYPE_Q5_K:
  15205. {
  15206. GGML_ASSERT(start % QK_K == 0);
  15207. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15208. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15209. } break;
  15210. case GGML_TYPE_Q6_K:
  15211. {
  15212. GGML_ASSERT(start % QK_K == 0);
  15213. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15214. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15215. } break;
  15216. #endif
  15217. case GGML_TYPE_F16:
  15218. {
  15219. int elemsize = sizeof(ggml_fp16_t);
  15220. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15221. result = n * elemsize;
  15222. } break;
  15223. case GGML_TYPE_F32:
  15224. {
  15225. int elemsize = sizeof(float);
  15226. result = n * elemsize;
  15227. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15228. } break;
  15229. default:
  15230. assert(false);
  15231. }
  15232. return result;
  15233. }
  15234. ////////////////////////////////////////////////////////////////////////////////
  15235. int ggml_cpu_has_avx(void) {
  15236. #if defined(__AVX__)
  15237. return 1;
  15238. #else
  15239. return 0;
  15240. #endif
  15241. }
  15242. int ggml_cpu_has_avx2(void) {
  15243. #if defined(__AVX2__)
  15244. return 1;
  15245. #else
  15246. return 0;
  15247. #endif
  15248. }
  15249. int ggml_cpu_has_avx512(void) {
  15250. #if defined(__AVX512F__)
  15251. return 1;
  15252. #else
  15253. return 0;
  15254. #endif
  15255. }
  15256. int ggml_cpu_has_avx512_vbmi(void) {
  15257. #if defined(__AVX512VBMI__)
  15258. return 1;
  15259. #else
  15260. return 0;
  15261. #endif
  15262. }
  15263. int ggml_cpu_has_avx512_vnni(void) {
  15264. #if defined(__AVX512VNNI__)
  15265. return 1;
  15266. #else
  15267. return 0;
  15268. #endif
  15269. }
  15270. int ggml_cpu_has_fma(void) {
  15271. #if defined(__FMA__)
  15272. return 1;
  15273. #else
  15274. return 0;
  15275. #endif
  15276. }
  15277. int ggml_cpu_has_neon(void) {
  15278. #if defined(__ARM_NEON)
  15279. return 1;
  15280. #else
  15281. return 0;
  15282. #endif
  15283. }
  15284. int ggml_cpu_has_arm_fma(void) {
  15285. #if defined(__ARM_FEATURE_FMA)
  15286. return 1;
  15287. #else
  15288. return 0;
  15289. #endif
  15290. }
  15291. int ggml_cpu_has_f16c(void) {
  15292. #if defined(__F16C__)
  15293. return 1;
  15294. #else
  15295. return 0;
  15296. #endif
  15297. }
  15298. int ggml_cpu_has_fp16_va(void) {
  15299. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15300. return 1;
  15301. #else
  15302. return 0;
  15303. #endif
  15304. }
  15305. int ggml_cpu_has_wasm_simd(void) {
  15306. #if defined(__wasm_simd128__)
  15307. return 1;
  15308. #else
  15309. return 0;
  15310. #endif
  15311. }
  15312. int ggml_cpu_has_blas(void) {
  15313. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15314. return 1;
  15315. #else
  15316. return 0;
  15317. #endif
  15318. }
  15319. int ggml_cpu_has_cublas(void) {
  15320. #if defined(GGML_USE_CUBLAS)
  15321. return 1;
  15322. #else
  15323. return 0;
  15324. #endif
  15325. }
  15326. int ggml_cpu_has_clblast(void) {
  15327. #if defined(GGML_USE_CLBLAST)
  15328. return 1;
  15329. #else
  15330. return 0;
  15331. #endif
  15332. }
  15333. int ggml_cpu_has_gpublas(void) {
  15334. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15335. }
  15336. int ggml_cpu_has_sse3(void) {
  15337. #if defined(__SSE3__)
  15338. return 1;
  15339. #else
  15340. return 0;
  15341. #endif
  15342. }
  15343. int ggml_cpu_has_vsx(void) {
  15344. #if defined(__POWER9_VECTOR__)
  15345. return 1;
  15346. #else
  15347. return 0;
  15348. #endif
  15349. }
  15350. ////////////////////////////////////////////////////////////////////////////////