k_quants.c 152 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #else
  13. #ifdef __wasm_simd128__
  14. #include <wasm_simd128.h>
  15. #else
  16. #ifdef __POWER9_VECTOR__
  17. #include <altivec.h>
  18. #undef bool
  19. #define bool _Bool
  20. #else
  21. #if defined(_MSC_VER) || defined(__MINGW32__)
  22. #include <intrin.h>
  23. #else
  24. #if !defined(__riscv)
  25. #include <immintrin.h>
  26. #endif
  27. #endif
  28. #endif
  29. #endif
  30. #endif
  31. #undef MIN
  32. #undef MAX
  33. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  34. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  35. //
  36. // 2-6 bit quantization in super-blocks
  37. //
  38. //
  39. // ===================== Helper functions
  40. //
  41. static inline int nearest_int(float fval) {
  42. assert(fval <= 4194303.f);
  43. float val = fval + 12582912.f;
  44. int i; memcpy(&i, &val, sizeof(int));
  45. return (i & 0x007fffff) - 0x00400000;
  46. }
  47. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  48. float max = 0;
  49. float amax = 0;
  50. for (int i = 0; i < n; ++i) {
  51. float ax = fabsf(x[i]);
  52. if (ax > amax) { amax = ax; max = x[i]; }
  53. }
  54. if (!amax) { // all zero
  55. for (int i = 0; i < n; ++i) {
  56. L[i] = 0;
  57. }
  58. return 0.f;
  59. }
  60. float iscale = -nmax / max;
  61. if (rmse_type == 0) {
  62. for (int i = 0; i < n; ++i) {
  63. int l = nearest_int(iscale * x[i]);
  64. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  65. }
  66. return 1/iscale;
  67. }
  68. int weight_type = rmse_type%2;
  69. float sumlx = 0;
  70. float suml2 = 0;
  71. for (int i = 0; i < n; ++i) {
  72. int l = nearest_int(iscale * x[i]);
  73. l = MAX(-nmax, MIN(nmax-1, l));
  74. L[i] = l + nmax;
  75. float w = weight_type == 1 ? x[i] * x[i] : 1;
  76. sumlx += w*x[i]*l;
  77. suml2 += w*l*l;
  78. }
  79. float scale = sumlx/suml2;
  80. float best = scale * sumlx;
  81. for (int itry = 0; itry < 3; ++itry) {
  82. iscale = 1/scale;
  83. float slx = 0;
  84. float sl2 = 0;
  85. bool changed = false;
  86. for (int i = 0; i < n; ++i) {
  87. int l = nearest_int(iscale * x[i]);
  88. l = MAX(-nmax, MIN(nmax-1, l));
  89. if (l + nmax != L[i]) { changed = true; }
  90. float w = weight_type == 1 ? x[i] * x[i] : 1.f;
  91. slx += w*x[i]*l;
  92. sl2 += w*l*l;
  93. }
  94. if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
  95. for (int i = 0; i < n; ++i) {
  96. int l = nearest_int(iscale * x[i]);
  97. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  98. }
  99. sumlx = slx; suml2 = sl2;
  100. scale = sumlx/suml2;
  101. best = scale * sumlx;
  102. }
  103. for (int itry = 0; itry < 5; ++itry) {
  104. int n_changed = 0;
  105. for (int i = 0; i < n; ++i) {
  106. float w = weight_type == 1 ? x[i]*x[i] : 1;
  107. int l = L[i] - nmax;
  108. float slx = sumlx - w*x[i]*l;
  109. if (slx > 0) {
  110. float sl2 = suml2 - w*l*l;
  111. int new_l = nearest_int(x[i] * sl2 / slx);
  112. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  113. if (new_l != l) {
  114. slx += w*x[i]*new_l;
  115. sl2 += w*new_l*new_l;
  116. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  117. L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
  118. scale = sumlx / suml2; best = scale * sumlx;
  119. ++n_changed;
  120. }
  121. }
  122. }
  123. }
  124. if (!n_changed) { break; }
  125. }
  126. if (rmse_type < 3) {
  127. return scale;
  128. }
  129. for (int is = -4; is <= 4; ++is) {
  130. if (is == 0) {
  131. continue;
  132. }
  133. iscale = -(nmax + 0.1f*is) / max;
  134. sumlx = suml2 = 0;
  135. for (int i = 0; i < n; ++i) {
  136. int l = nearest_int(iscale * x[i]);
  137. l = MAX(-nmax, MIN(nmax-1, l));
  138. float w = weight_type == 1 ? x[i] * x[i] : 1;
  139. sumlx += w*x[i]*l;
  140. suml2 += w*l*l;
  141. }
  142. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  143. for (int i = 0; i < n; ++i) {
  144. int l = nearest_int(iscale * x[i]);
  145. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  146. }
  147. scale = sumlx/suml2; best = scale*sumlx;
  148. }
  149. }
  150. return scale;
  151. }
  152. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  153. float max = 0;
  154. float amax = 0;
  155. for (int i = 0; i < n; ++i) {
  156. float ax = fabsf(x[i]);
  157. if (ax > amax) { amax = ax; max = x[i]; }
  158. }
  159. if (!amax) { // all zero
  160. for (int i = 0; i < n; ++i) { L[i] = 0; }
  161. return 0.f;
  162. }
  163. float iscale = -nmax / max;
  164. if (do_rmse) {
  165. float sumlx = 0;
  166. float suml2 = 0;
  167. for (int i = 0; i < n; ++i) {
  168. int l = nearest_int(iscale * x[i]);
  169. l = MAX(-nmax, MIN(nmax-1, l));
  170. L[i] = l;
  171. float w = x[i]*x[i];
  172. sumlx += w*x[i]*l;
  173. suml2 += w*l*l;
  174. }
  175. for (int itry = 0; itry < 5; ++itry) {
  176. int n_changed = 0;
  177. for (int i = 0; i < n; ++i) {
  178. float w = x[i]*x[i];
  179. float slx = sumlx - w*x[i]*L[i];
  180. if (slx > 0) {
  181. float sl2 = suml2 - w*L[i]*L[i];
  182. int new_l = nearest_int(x[i] * sl2 / slx);
  183. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  184. if (new_l != L[i]) {
  185. slx += w*x[i]*new_l;
  186. sl2 += w*new_l*new_l;
  187. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  188. L[i] = new_l; sumlx = slx; suml2 = sl2;
  189. ++n_changed;
  190. }
  191. }
  192. }
  193. }
  194. if (!n_changed) {
  195. break;
  196. }
  197. }
  198. for (int i = 0; i < n; ++i) {
  199. L[i] += nmax;
  200. }
  201. return sumlx / suml2;
  202. }
  203. for (int i = 0; i < n; ++i) {
  204. int l = nearest_int(iscale * x[i]);
  205. l = MAX(-nmax, MIN(nmax-1, l));
  206. L[i] = l + nmax;
  207. }
  208. return 1/iscale;
  209. }
  210. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
  211. float min = x[0];
  212. float max = x[0];
  213. for (int i = 1; i < n; ++i) {
  214. if (x[i] < min) min = x[i];
  215. if (x[i] > max) max = x[i];
  216. }
  217. if (max == min) {
  218. for (int i = 0; i < n; ++i) L[i] = 0;
  219. *the_min = 0;
  220. return 0.f;
  221. }
  222. if (min > 0) min = 0;
  223. float iscale = nmax/(max - min);
  224. float scale = 1/iscale;
  225. for (int itry = 0; itry < ntry; ++itry) {
  226. float sumlx = 0; int suml2 = 0;
  227. bool did_change = false;
  228. for (int i = 0; i < n; ++i) {
  229. int l = nearest_int(iscale*(x[i] - min));
  230. l = MAX(0, MIN(nmax, l));
  231. if (l != L[i]) {
  232. L[i] = l;
  233. did_change = true;
  234. }
  235. sumlx += (x[i] - min)*l;
  236. suml2 += l*l;
  237. }
  238. scale = sumlx/suml2;
  239. float sum = 0;
  240. for (int i = 0; i < n; ++i) {
  241. sum += x[i] - scale*L[i];
  242. }
  243. min = sum/n;
  244. if (min > 0) min = 0;
  245. iscale = 1/scale;
  246. if (!did_change) break;
  247. }
  248. *the_min = -min;
  249. return scale;
  250. }
  251. #if QK_K == 256
  252. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  253. if (j < 4) {
  254. *d = q[j] & 63; *m = q[j + 4] & 63;
  255. } else {
  256. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  257. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  258. }
  259. }
  260. #endif
  261. //========================- 2-bit (de)-quantization
  262. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  263. assert(k % QK_K == 0);
  264. const int nb = k / QK_K;
  265. uint8_t L[QK_K];
  266. float mins[QK_K/16];
  267. float scales[QK_K/16];
  268. const float q4scale = 15.f;
  269. for (int i = 0; i < nb; i++) {
  270. float max_scale = 0; // as we are deducting the min, scales are always positive
  271. float max_min = 0;
  272. for (int j = 0; j < QK_K/16; ++j) {
  273. scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
  274. float scale = scales[j];
  275. if (scale > max_scale) {
  276. max_scale = scale;
  277. }
  278. float min = mins[j];
  279. if (min > max_min) {
  280. max_min = min;
  281. }
  282. }
  283. if (max_scale > 0) {
  284. float iscale = q4scale/max_scale;
  285. for (int j = 0; j < QK_K/16; ++j) {
  286. int l = nearest_int(iscale*scales[j]);
  287. y[i].scales[j] = l;
  288. }
  289. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  290. } else {
  291. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  292. y[i].d = ggml_fp32_to_fp16(0.f);
  293. }
  294. if (max_min > 0) {
  295. float iscale = q4scale/max_min;
  296. for (int j = 0; j < QK_K/16; ++j) {
  297. int l = nearest_int(iscale*mins[j]);
  298. y[i].scales[j] |= (l << 4);
  299. }
  300. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  301. } else {
  302. y[i].dmin = ggml_fp32_to_fp16(0.f);
  303. }
  304. for (int j = 0; j < QK_K/16; ++j) {
  305. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  306. if (!d) continue;
  307. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  308. for (int ii = 0; ii < 16; ++ii) {
  309. int l = nearest_int((x[16*j + ii] + dm)/d);
  310. l = MAX(0, MIN(3, l));
  311. L[16*j + ii] = l;
  312. }
  313. }
  314. #if QK_K == 256
  315. for (int j = 0; j < QK_K; j += 128) {
  316. for (int l = 0; l < 32; ++l) {
  317. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  318. }
  319. }
  320. #else
  321. for (int l = 0; l < 16; ++l) {
  322. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  323. }
  324. #endif
  325. x += QK_K;
  326. }
  327. }
  328. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  329. assert(k % QK_K == 0);
  330. const int nb = k / QK_K;
  331. for (int i = 0; i < nb; i++) {
  332. const float d = ggml_fp16_to_fp32(x[i].d);
  333. const float min = ggml_fp16_to_fp32(x[i].dmin);
  334. const uint8_t * q = x[i].qs;
  335. #if QK_K == 256
  336. int is = 0;
  337. float dl, ml;
  338. for (int n = 0; n < QK_K; n += 128) {
  339. int shift = 0;
  340. for (int j = 0; j < 4; ++j) {
  341. uint8_t sc = x[i].scales[is++];
  342. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  343. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  344. sc = x[i].scales[is++];
  345. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  346. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  347. shift += 2;
  348. }
  349. q += 32;
  350. }
  351. #else
  352. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  353. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  354. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  355. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  356. for (int l = 0; l < 16; ++l) {
  357. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  358. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  359. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  360. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  361. }
  362. y += QK_K;
  363. #endif
  364. }
  365. }
  366. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  367. quantize_row_q2_K_reference(x, vy, k);
  368. }
  369. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  370. const int nb = k / QK_K;
  371. // TODO - collect histograms - although, at a second thought, I don't really care about them
  372. (void)hist;
  373. for (int j = 0; j < nb; j += k) {
  374. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  375. quantize_row_q2_K_reference(src + j, y, k);
  376. }
  377. return (n/QK_K*sizeof(block_q2_K));
  378. }
  379. //========================= 3-bit (de)-quantization
  380. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  381. assert(k % QK_K == 0);
  382. const int nb = k / QK_K;
  383. int8_t L[QK_K];
  384. float scales[QK_K / 16];
  385. for (int i = 0; i < nb; i++) {
  386. float max_scale = 0;
  387. float amax = 0;
  388. for (int j = 0; j < QK_K/16; ++j) {
  389. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  390. float scale = fabsf(scales[j]);
  391. if (scale > amax) {
  392. amax = scale; max_scale = scales[j];
  393. }
  394. }
  395. #if QK_K == 256
  396. memset(y[i].scales, 0, 12);
  397. if (max_scale) {
  398. float iscale = -32.f/max_scale;
  399. for (int j = 0; j < QK_K/16; ++j) {
  400. int8_t l = nearest_int(iscale*scales[j]);
  401. l = MAX(-32, MIN(31, l)) + 32;
  402. if (j < 8) {
  403. y[i].scales[j] = l & 0xF;
  404. } else {
  405. y[i].scales[j-8] |= ((l & 0xF) << 4);
  406. }
  407. l >>= 4;
  408. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  409. }
  410. y[i].d = ggml_fp32_to_fp16(1/iscale);
  411. } else {
  412. y[i].d = ggml_fp32_to_fp16(0.f);
  413. }
  414. int8_t sc;
  415. for (int j = 0; j < QK_K/16; ++j) {
  416. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  417. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  418. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  419. if (!d) {
  420. continue;
  421. }
  422. for (int ii = 0; ii < 16; ++ii) {
  423. int l = nearest_int(x[16*j + ii]/d);
  424. l = MAX(-4, MIN(3, l));
  425. L[16*j + ii] = l + 4;
  426. }
  427. }
  428. #else
  429. if (max_scale) {
  430. float iscale = -8.f/max_scale;
  431. for (int j = 0; j < QK_K/16; j+=2) {
  432. int l1 = nearest_int(iscale*scales[j]);
  433. l1 = 8 + MAX(-8, MIN(7, l1));
  434. int l2 = nearest_int(iscale*scales[j+1]);
  435. l2 = 8 + MAX(-8, MIN(7, l2));
  436. y[i].scales[j/2] = l1 | (l2 << 4);
  437. }
  438. y[i].d = ggml_fp32_to_fp16(1/iscale);
  439. } else {
  440. for (int j = 0; j < QK_K/16; j+=2) {
  441. y[i].scales[j/2] = 0;
  442. }
  443. y[i].d = ggml_fp32_to_fp16(0.f);
  444. }
  445. for (int j = 0; j < QK_K/16; ++j) {
  446. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  447. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  448. if (!d) {
  449. continue;
  450. }
  451. for (int ii = 0; ii < 16; ++ii) {
  452. int l = nearest_int(x[16*j + ii]/d);
  453. l = MAX(-4, MIN(3, l));
  454. L[16*j + ii] = l + 4;
  455. }
  456. }
  457. #endif
  458. memset(y[i].hmask, 0, QK_K/8);
  459. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  460. int m = 0;
  461. uint8_t hm = 1;
  462. for (int j = 0; j < QK_K; ++j) {
  463. if (L[j] > 3) {
  464. y[i].hmask[m] |= hm;
  465. L[j] -= 4;
  466. }
  467. if (++m == QK_K/8) {
  468. m = 0; hm <<= 1;
  469. }
  470. }
  471. #if QK_K == 256
  472. for (int j = 0; j < QK_K; j += 128) {
  473. for (int l = 0; l < 32; ++l) {
  474. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  475. }
  476. }
  477. #else
  478. for (int l = 0; l < 16; ++l) {
  479. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  480. }
  481. #endif
  482. x += QK_K;
  483. }
  484. }
  485. #if QK_K == 256
  486. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  487. assert(k % QK_K == 0);
  488. const int nb = k / QK_K;
  489. const uint32_t kmask1 = 0x03030303;
  490. const uint32_t kmask2 = 0x0f0f0f0f;
  491. uint32_t aux[4];
  492. const int8_t * scales = (const int8_t*)aux;
  493. for (int i = 0; i < nb; i++) {
  494. const float d_all = ggml_fp16_to_fp32(x[i].d);
  495. const uint8_t * restrict q = x[i].qs;
  496. const uint8_t * restrict hm = x[i].hmask;
  497. uint8_t m = 1;
  498. memcpy(aux, x[i].scales, 12);
  499. uint32_t tmp = aux[2];
  500. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  501. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  502. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  503. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  504. int is = 0;
  505. float dl;
  506. for (int n = 0; n < QK_K; n += 128) {
  507. int shift = 0;
  508. for (int j = 0; j < 4; ++j) {
  509. dl = d_all * (scales[is++] - 32);
  510. for (int l = 0; l < 16; ++l) {
  511. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  512. }
  513. dl = d_all * (scales[is++] - 32);
  514. for (int l = 0; l < 16; ++l) {
  515. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  516. }
  517. shift += 2;
  518. m <<= 1;
  519. }
  520. q += 32;
  521. }
  522. }
  523. }
  524. #else
  525. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  526. assert(k % QK_K == 0);
  527. assert(QK_K == 64);
  528. const int nb = k / QK_K;
  529. for (int i = 0; i < nb; i++) {
  530. const float d_all = ggml_fp16_to_fp32(x[i].d);
  531. const uint8_t * restrict q = x[i].qs;
  532. const uint8_t * restrict hm = x[i].hmask;
  533. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  534. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  535. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  536. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  537. for (int l=0; l<8; ++l) {
  538. uint8_t h = hm[l];
  539. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  540. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  541. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  542. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  543. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  544. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  545. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  546. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  547. }
  548. y += QK_K;
  549. }
  550. }
  551. #endif
  552. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  553. quantize_row_q3_K_reference(x, vy, k);
  554. }
  555. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  556. const int nb = k / QK_K;
  557. // TODO - collect histograms - although, at a second thought, I don't really care about them
  558. (void)hist;
  559. for (int j = 0; j < nb; j += k) {
  560. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  561. quantize_row_q3_K_reference(src + j, y, k);
  562. }
  563. return (n/QK_K*sizeof(block_q3_K));
  564. }
  565. // ====================== 4-bit (de)-quantization
  566. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  567. assert(k % QK_K == 0);
  568. const int nb = k / QK_K;
  569. uint8_t L[QK_K];
  570. float mins[QK_K/32];
  571. float scales[QK_K/32];
  572. for (int i = 0; i < nb; i++) {
  573. float max_scale = 0; // as we are deducting the min, scales are always positive
  574. float max_min = 0;
  575. for (int j = 0; j < QK_K/32; ++j) {
  576. scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
  577. float scale = scales[j];
  578. if (scale > max_scale) {
  579. max_scale = scale;
  580. }
  581. float min = mins[j];
  582. if (min > max_min) {
  583. max_min = min;
  584. }
  585. }
  586. #if QK_K == 256
  587. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  588. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  589. for (int j = 0; j < QK_K/32; ++j) {
  590. uint8_t ls = nearest_int(inv_scale*scales[j]);
  591. uint8_t lm = nearest_int(inv_min*mins[j]);
  592. ls = MIN(63, ls);
  593. lm = MIN(63, lm);
  594. if (j < 4) {
  595. y[i].scales[j] = ls;
  596. y[i].scales[j+4] = lm;
  597. } else {
  598. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  599. y[i].scales[j-4] |= ((ls >> 4) << 6);
  600. y[i].scales[j-0] |= ((lm >> 4) << 6);
  601. }
  602. }
  603. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  604. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  605. uint8_t sc, m;
  606. for (int j = 0; j < QK_K/32; ++j) {
  607. get_scale_min_k4(j, y[i].scales, &sc, &m);
  608. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  609. if (!d) continue;
  610. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  611. for (int ii = 0; ii < 32; ++ii) {
  612. int l = nearest_int((x[32*j + ii] + dm)/d);
  613. l = MAX(0, MIN(15, l));
  614. L[32*j + ii] = l;
  615. }
  616. }
  617. #else
  618. const float s_factor = 15.f;
  619. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  620. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  621. int d1 = nearest_int(inv_scale*scales[0]);
  622. int m1 = nearest_int(inv_min*mins[0]);
  623. int d2 = nearest_int(inv_scale*scales[1]);
  624. int m2 = nearest_int(inv_min*mins[1]);
  625. y[i].scales[0] = d1 | (m1 << 4);
  626. y[i].scales[1] = d2 | (m2 << 4);
  627. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  628. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  629. float sumlx = 0;
  630. int suml2 = 0;
  631. for (int j = 0; j < QK_K/32; ++j) {
  632. const uint8_t sd = y[i].scales[j] & 0xF;
  633. const uint8_t sm = y[i].scales[j] >> 4;
  634. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  635. if (!d) continue;
  636. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  637. for (int ii = 0; ii < 32; ++ii) {
  638. int l = nearest_int((x[32*j + ii] + m)/d);
  639. l = MAX(0, MIN(15, l));
  640. L[32*j + ii] = l;
  641. sumlx += (x[32*j + ii] + m)*l*sd;
  642. suml2 += l*l*sd*sd;
  643. }
  644. }
  645. if (suml2) {
  646. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  647. }
  648. #endif
  649. uint8_t * q = y[i].qs;
  650. for (int j = 0; j < QK_K; j += 64) {
  651. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  652. q += 32;
  653. }
  654. x += QK_K;
  655. }
  656. }
  657. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  658. assert(k % QK_K == 0);
  659. const int nb = k / QK_K;
  660. for (int i = 0; i < nb; i++) {
  661. const uint8_t * q = x[i].qs;
  662. #if QK_K == 256
  663. const float d = ggml_fp16_to_fp32(x[i].d);
  664. const float min = ggml_fp16_to_fp32(x[i].dmin);
  665. int is = 0;
  666. uint8_t sc, m;
  667. for (int j = 0; j < QK_K; j += 64) {
  668. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  669. const float d1 = d * sc; const float m1 = min * m;
  670. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  671. const float d2 = d * sc; const float m2 = min * m;
  672. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  673. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  674. q += 32; is += 2;
  675. }
  676. #else
  677. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  678. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  679. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  680. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  681. for (int l = 0; l < 32; ++l) {
  682. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  683. y[l+32] = d2 * (q[l] >> 4) - m2;
  684. }
  685. y += QK_K;
  686. #endif
  687. }
  688. }
  689. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  690. assert(k % QK_K == 0);
  691. block_q4_K * restrict y = vy;
  692. quantize_row_q4_K_reference(x, y, k);
  693. }
  694. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  695. assert(k % QK_K == 0);
  696. const int nb = k / QK_K;
  697. (void)hist; // TODO: collect histograms
  698. for (int j = 0; j < nb; j += k) {
  699. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  700. quantize_row_q4_K_reference(src + j, y, k);
  701. }
  702. return (n/QK_K*sizeof(block_q4_K));
  703. }
  704. // ====================== 5-bit (de)-quantization
  705. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  706. assert(k % QK_K == 0);
  707. const int nb = k / QK_K;
  708. #if QK_K == 256
  709. uint8_t L[QK_K];
  710. float mins[QK_K/32];
  711. float scales[QK_K/32];
  712. #else
  713. int8_t L[QK_K];
  714. float scales[QK_K/16];
  715. #endif
  716. for (int i = 0; i < nb; i++) {
  717. #if QK_K == 256
  718. float max_scale = 0; // as we are deducting the min, scales are always positive
  719. float max_min = 0;
  720. for (int j = 0; j < QK_K/32; ++j) {
  721. scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
  722. float scale = scales[j];
  723. if (scale > max_scale) {
  724. max_scale = scale;
  725. }
  726. float min = mins[j];
  727. if (min > max_min) {
  728. max_min = min;
  729. }
  730. }
  731. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  732. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  733. for (int j = 0; j < QK_K/32; ++j) {
  734. uint8_t ls = nearest_int(inv_scale*scales[j]);
  735. uint8_t lm = nearest_int(inv_min*mins[j]);
  736. ls = MIN(63, ls);
  737. lm = MIN(63, lm);
  738. if (j < 4) {
  739. y[i].scales[j] = ls;
  740. y[i].scales[j+4] = lm;
  741. } else {
  742. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  743. y[i].scales[j-4] |= ((ls >> 4) << 6);
  744. y[i].scales[j-0] |= ((lm >> 4) << 6);
  745. }
  746. }
  747. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  748. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  749. uint8_t sc, m;
  750. for (int j = 0; j < QK_K/32; ++j) {
  751. get_scale_min_k4(j, y[i].scales, &sc, &m);
  752. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  753. if (!d) continue;
  754. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  755. for (int ii = 0; ii < 32; ++ii) {
  756. int l = nearest_int((x[32*j + ii] + dm)/d);
  757. l = MAX(0, MIN(31, l));
  758. L[32*j + ii] = l;
  759. }
  760. }
  761. uint8_t * restrict qh = y[i].qh;
  762. uint8_t * restrict ql = y[i].qs;
  763. memset(qh, 0, QK_K/8);
  764. uint8_t m1 = 1, m2 = 2;
  765. for (int n = 0; n < QK_K; n += 64) {
  766. for (int j = 0; j < 32; ++j) {
  767. int l1 = L[n + j];
  768. if (l1 > 15) {
  769. l1 -= 16; qh[j] |= m1;
  770. }
  771. int l2 = L[n + j + 32];
  772. if (l2 > 15) {
  773. l2 -= 16; qh[j] |= m2;
  774. }
  775. ql[j] = l1 | (l2 << 4);
  776. }
  777. m1 <<= 2; m2 <<= 2;
  778. ql += 32;
  779. }
  780. #else
  781. float max_scale = 0, amax = 0;
  782. for (int j = 0; j < QK_K/16; ++j) {
  783. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  784. float abs_scale = fabsf(scales[j]);
  785. if (abs_scale > amax) {
  786. amax = abs_scale;
  787. max_scale = scales[j];
  788. }
  789. }
  790. float iscale = -128.f/max_scale;
  791. for (int j = 0; j < QK_K/16; ++j) {
  792. int l = nearest_int(iscale*scales[j]);
  793. y[i].scales[j] = MAX(-128, MIN(127, l));
  794. }
  795. y[i].d = ggml_fp32_to_fp16(1/iscale);
  796. for (int j = 0; j < QK_K/16; ++j) {
  797. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  798. if (!d) continue;
  799. for (int ii = 0; ii < 16; ++ii) {
  800. int l = nearest_int(x[16*j + ii]/d);
  801. l = MAX(-16, MIN(15, l));
  802. L[16*j + ii] = l + 16;
  803. }
  804. }
  805. uint8_t * restrict qh = y[i].qh;
  806. uint8_t * restrict ql = y[i].qs;
  807. memset(qh, 0, QK_K/8);
  808. for (int j = 0; j < 32; ++j) {
  809. int jm = j%8;
  810. int is = j/8;
  811. int l1 = L[j];
  812. if (l1 > 15) {
  813. l1 -= 16; qh[jm] |= (1 << is);
  814. }
  815. int l2 = L[j + 32];
  816. if (l2 > 15) {
  817. l2 -= 16; qh[jm] |= (1 << (4 + is));
  818. }
  819. ql[j] = l1 | (l2 << 4);
  820. }
  821. #endif
  822. x += QK_K;
  823. }
  824. }
  825. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  826. assert(k % QK_K == 0);
  827. const int nb = k / QK_K;
  828. for (int i = 0; i < nb; i++) {
  829. const uint8_t * ql = x[i].qs;
  830. const uint8_t * qh = x[i].qh;
  831. #if QK_K == 256
  832. const float d = ggml_fp16_to_fp32(x[i].d);
  833. const float min = ggml_fp16_to_fp32(x[i].dmin);
  834. int is = 0;
  835. uint8_t sc, m;
  836. uint8_t u1 = 1, u2 = 2;
  837. for (int j = 0; j < QK_K; j += 64) {
  838. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  839. const float d1 = d * sc; const float m1 = min * m;
  840. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  841. const float d2 = d * sc; const float m2 = min * m;
  842. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  843. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  844. ql += 32; is += 2;
  845. u1 <<= 2; u2 <<= 2;
  846. }
  847. #else
  848. float d = ggml_fp16_to_fp32(x[i].d);
  849. const int8_t * restrict s = x[i].scales;
  850. for (int l = 0; l < 8; ++l) {
  851. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  852. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  853. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  854. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  855. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  856. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  857. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  858. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  859. }
  860. y += QK_K;
  861. #endif
  862. }
  863. }
  864. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  865. assert(k % QK_K == 0);
  866. block_q5_K * restrict y = vy;
  867. quantize_row_q5_K_reference(x, y, k);
  868. }
  869. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  870. assert(k % QK_K == 0);
  871. const int nb = k / QK_K;
  872. (void)hist;
  873. for (int j = 0; j < nb; j += k) {
  874. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  875. quantize_row_q5_K_reference(src + j, y, k);
  876. }
  877. return (n/QK_K*sizeof(block_q5_K));
  878. }
  879. // ====================== 6-bit (de)-quantization
  880. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  881. assert(k % QK_K == 0);
  882. const int nb = k / QK_K;
  883. int8_t L[QK_K];
  884. float scales[QK_K/16];
  885. for (int i = 0; i < nb; i++) {
  886. float max_scale = 0;
  887. float max_abs_scale = 0;
  888. for (int ib = 0; ib < QK_K/16; ++ib) {
  889. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  890. scales[ib] = scale;
  891. const float abs_scale = fabsf(scale);
  892. if (abs_scale > max_abs_scale) {
  893. max_abs_scale = abs_scale;
  894. max_scale = scale;
  895. }
  896. }
  897. float iscale = -128.f/max_scale;
  898. y[i].d = ggml_fp32_to_fp16(1/iscale);
  899. for (int ib = 0; ib < QK_K/16; ++ib) {
  900. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  901. }
  902. for (int j = 0; j < QK_K/16; ++j) {
  903. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  904. if (!d) {
  905. continue;
  906. }
  907. for (int ii = 0; ii < 16; ++ii) {
  908. int l = nearest_int(x[16*j + ii]/d);
  909. l = MAX(-32, MIN(31, l));
  910. L[16*j + ii] = l + 32;
  911. }
  912. }
  913. uint8_t * restrict ql = y[i].ql;
  914. uint8_t * restrict qh = y[i].qh;
  915. #if QK_K == 256
  916. for (int j = 0; j < QK_K; j += 128) {
  917. for (int l = 0; l < 32; ++l) {
  918. const uint8_t q1 = L[j + l + 0] & 0xF;
  919. const uint8_t q2 = L[j + l + 32] & 0xF;
  920. const uint8_t q3 = L[j + l + 64] & 0xF;
  921. const uint8_t q4 = L[j + l + 96] & 0xF;
  922. ql[l+ 0] = q1 | (q3 << 4);
  923. ql[l+32] = q2 | (q4 << 4);
  924. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  925. }
  926. ql += 64;
  927. qh += 32;
  928. }
  929. #else
  930. for (int l = 0; l < 32; ++l) {
  931. const uint8_t q1 = L[l + 0] & 0xF;
  932. const uint8_t q2 = L[l + 32] & 0xF;
  933. ql[l] = q1 | (q2 << 4);
  934. }
  935. for (int l = 0; l < 16; ++l) {
  936. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  937. }
  938. #endif
  939. x += QK_K;
  940. }
  941. }
  942. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  943. assert(k % QK_K == 0);
  944. const int nb = k / QK_K;
  945. for (int i = 0; i < nb; i++) {
  946. const float d = ggml_fp16_to_fp32(x[i].d);
  947. const uint8_t * restrict ql = x[i].ql;
  948. const uint8_t * restrict qh = x[i].qh;
  949. const int8_t * restrict sc = x[i].scales;
  950. #if QK_K == 256
  951. for (int n = 0; n < QK_K; n += 128) {
  952. for (int l = 0; l < 32; ++l) {
  953. int is = l/16;
  954. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  955. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  956. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  957. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  958. y[l + 0] = d * sc[is + 0] * q1;
  959. y[l + 32] = d * sc[is + 2] * q2;
  960. y[l + 64] = d * sc[is + 4] * q3;
  961. y[l + 96] = d * sc[is + 6] * q4;
  962. }
  963. y += 128;
  964. ql += 64;
  965. qh += 32;
  966. sc += 8;
  967. }
  968. #else
  969. for (int l = 0; l < 16; ++l) {
  970. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  971. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  972. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  973. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  974. y[l+ 0] = d * sc[0] * q1;
  975. y[l+16] = d * sc[1] * q2;
  976. y[l+32] = d * sc[2] * q3;
  977. y[l+48] = d * sc[3] * q4;
  978. }
  979. y += 64;
  980. #endif
  981. }
  982. }
  983. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  984. assert(k % QK_K == 0);
  985. block_q6_K * restrict y = vy;
  986. quantize_row_q6_K_reference(x, y, k);
  987. }
  988. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  989. assert(k % QK_K == 0);
  990. const int nb = k / QK_K;
  991. (void)hist; // TODO
  992. for (int j = 0; j < nb; j += k) {
  993. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  994. quantize_row_q6_K_reference(src + j, y, k);
  995. }
  996. return (n/QK_K*sizeof(block_q6_K));
  997. }
  998. //===================================== Q8_K ==============================================
  999. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1000. assert(k % QK_K == 0);
  1001. const int nb = k / QK_K;
  1002. for (int i = 0; i < nb; i++) {
  1003. float max = 0;
  1004. float amax = 0;
  1005. for (int j = 0; j < QK_K; ++j) {
  1006. float ax = fabsf(x[j]);
  1007. if (ax > amax) {
  1008. amax = ax; max = x[j];
  1009. }
  1010. }
  1011. if (!amax) {
  1012. y[i].d = 0;
  1013. memset(y[i].qs, 0, QK_K);
  1014. x += QK_K;
  1015. continue;
  1016. }
  1017. const float iscale = -128.f/max;
  1018. for (int j = 0; j < QK_K; ++j) {
  1019. int v = nearest_int(iscale*x[j]);
  1020. y[i].qs[j] = MIN(127, v);
  1021. }
  1022. for (int j = 0; j < QK_K/16; ++j) {
  1023. int sum = 0;
  1024. for (int ii = 0; ii < 16; ++ii) {
  1025. sum += y[i].qs[j*16 + ii];
  1026. }
  1027. y[i].bsums[j] = sum;
  1028. }
  1029. y[i].d = 1/iscale;
  1030. x += QK_K;
  1031. }
  1032. }
  1033. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1034. assert(k % QK_K == 0);
  1035. const int nb = k / QK_K;
  1036. for (int i = 0; i < nb; i++) {
  1037. for (int j = 0; j < QK_K; ++j) {
  1038. *y++ = x[i].d * x[i].qs[j];
  1039. }
  1040. }
  1041. }
  1042. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1043. quantize_row_q8_K_reference(x, y, k);
  1044. }
  1045. //===================================== Dot ptoducts =================================
  1046. //
  1047. // Helper functions
  1048. //
  1049. #if __AVX__ || __AVX2__ || __AVX512F__
  1050. // horizontally add 8 floats
  1051. static inline float hsum_float_8(const __m256 x) {
  1052. __m128 res = _mm256_extractf128_ps(x, 1);
  1053. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1054. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1055. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1056. return _mm_cvtss_f32(res);
  1057. }
  1058. // shuffles to pick the required scales in dot products
  1059. static inline __m256i get_scale_shuffle_q3k(int i) {
  1060. static const uint8_t k_shuffle[128] = {
  1061. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1062. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1063. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1064. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1065. };
  1066. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1067. }
  1068. static inline __m256i get_scale_shuffle_k4(int i) {
  1069. static const uint8_t k_shuffle[256] = {
  1070. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1071. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1072. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1073. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1074. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1075. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1076. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1077. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1078. };
  1079. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1080. }
  1081. static inline __m128i get_scale_shuffle(int i) {
  1082. static const uint8_t k_shuffle[128] = {
  1083. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1084. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1085. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1086. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1087. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1088. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1089. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1090. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1091. };
  1092. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1093. }
  1094. #endif
  1095. #if QK_K == 256
  1096. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1097. const block_q2_K * restrict x = vx;
  1098. const block_q8_K * restrict y = vy;
  1099. const int nb = n / QK_K;
  1100. #ifdef __ARM_NEON
  1101. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1102. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1103. const int32x4_t vzero = vdupq_n_s32(0);
  1104. int8x16x2_t q2bytes;
  1105. uint8_t aux[16];
  1106. float sum = 0;
  1107. for (int i = 0; i < nb; ++i) {
  1108. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1109. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1110. const uint8_t * restrict q2 = x[i].qs;
  1111. const int8_t * restrict q8 = y[i].qs;
  1112. const uint8_t * restrict sc = x[i].scales;
  1113. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1114. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1115. vst1q_u8(aux, scales);
  1116. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1117. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1118. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1119. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1120. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1121. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1122. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1123. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1124. int isum = 0;
  1125. int is = 0;
  1126. // We use this macro instead of a function call because for some reason
  1127. // the code runs 2-3% slower, even if the function is declared inline
  1128. #if defined(__ARM_FEATURE_DOTPROD)
  1129. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1130. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1131. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1132. #else
  1133. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1134. {\
  1135. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1136. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1137. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1138. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1139. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1140. }
  1141. #endif
  1142. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1143. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1144. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1145. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1146. MULTIPLY_ACCUM_WITH_SCALE((index));
  1147. for (int j = 0; j < QK_K/128; ++j) {
  1148. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1149. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1150. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1151. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1152. MULTIPLY_ACCUM_WITH_SCALE(0);
  1153. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1154. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1155. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1156. is += 8;
  1157. }
  1158. sum += d * isum;
  1159. }
  1160. *s = sum;
  1161. #elif defined __AVX2__
  1162. const __m256i m3 = _mm256_set1_epi8(3);
  1163. const __m128i m4 = _mm_set1_epi8(0xF);
  1164. __m256 acc = _mm256_setzero_ps();
  1165. for (int i = 0; i < nb; ++i) {
  1166. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1167. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1168. const uint8_t * restrict q2 = x[i].qs;
  1169. const int8_t * restrict q8 = y[i].qs;
  1170. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1171. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1172. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1173. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1174. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1175. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1176. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1177. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1178. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1179. const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
  1180. __m256i sumi = _mm256_setzero_si256();
  1181. for (int j = 0; j < QK_K/128; ++j) {
  1182. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1183. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1184. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1185. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1186. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1187. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1188. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1189. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1190. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1191. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1192. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1193. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1194. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1195. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1196. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1197. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1198. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1199. p0 = _mm256_add_epi32(p0, p1);
  1200. p2 = _mm256_add_epi32(p2, p3);
  1201. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1202. }
  1203. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1204. }
  1205. *s = hsum_float_8(acc);
  1206. #elif defined __AVX__
  1207. const __m128i m3 = _mm_set1_epi8(0x3);
  1208. const __m128i m4 = _mm_set1_epi8(0xF);
  1209. const __m128i m2 = _mm_set1_epi8(0x2);
  1210. __m256 acc = _mm256_setzero_ps();
  1211. for (int i = 0; i < nb; ++i) {
  1212. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1213. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1214. const uint8_t * restrict q2 = x[i].qs;
  1215. const int8_t * restrict q8 = y[i].qs;
  1216. // load mins and scales from block_q2_K.scales[QK_K/16]
  1217. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1218. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1219. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1220. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1221. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1222. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1223. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1224. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1225. // sumf += -dmin * summs in 32bits*8
  1226. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(_mm256_set_m128i(summs_1, summs_0))), acc);
  1227. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1228. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1229. const __m128i scales[2] = { scales_0, scales_1 };
  1230. __m128i sumi_0 = _mm_setzero_si128();
  1231. __m128i sumi_1 = _mm_setzero_si128();
  1232. for (int j = 0; j < QK_K/128; ++j) {
  1233. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1234. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1235. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1236. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1237. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1238. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1239. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1240. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1241. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1242. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1243. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1244. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1245. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1246. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1247. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1248. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1249. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1250. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1251. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1252. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1253. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1254. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1255. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1256. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1257. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1258. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1259. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1260. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1261. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1262. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1263. __m128i shuffle = _mm_set1_epi16(0x0100);
  1264. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1265. shuffle = _mm_add_epi16(shuffle, m2);
  1266. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1267. shuffle = _mm_add_epi16(shuffle, m2);
  1268. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1269. shuffle = _mm_add_epi16(shuffle, m2);
  1270. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1271. shuffle = _mm_add_epi16(shuffle, m2);
  1272. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1273. shuffle = _mm_add_epi16(shuffle, m2);
  1274. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1275. shuffle = _mm_add_epi16(shuffle, m2);
  1276. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1277. shuffle = _mm_add_epi16(shuffle, m2);
  1278. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1279. p0 = _mm_add_epi32(p0, p1);
  1280. p2 = _mm_add_epi32(p2, p3);
  1281. p4 = _mm_add_epi32(p4, p5);
  1282. p6 = _mm_add_epi32(p6, p7);
  1283. // isum in 32bits*4*2
  1284. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1285. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1286. }
  1287. // sumf += dall * isum - dmin * summs in 32bits
  1288. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  1289. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1290. }
  1291. *s = hsum_float_8(acc);
  1292. #else
  1293. float sumf = 0;
  1294. for (int i = 0; i < nb; ++i) {
  1295. const uint8_t * q2 = x[i].qs;
  1296. const int8_t * q8 = y[i].qs;
  1297. const uint8_t * sc = x[i].scales;
  1298. int summs = 0;
  1299. for (int j = 0; j < 16; ++j) {
  1300. summs += y[i].bsums[j] * (sc[j] >> 4);
  1301. }
  1302. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1303. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1304. int isum = 0;
  1305. int is = 0;
  1306. int d;
  1307. for (int k = 0; k < QK_K/128; ++k) {
  1308. int shift = 0;
  1309. for (int j = 0; j < 4; ++j) {
  1310. d = sc[is++] & 0xF;
  1311. int isuml = 0;
  1312. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1313. isum += d * isuml;
  1314. d = sc[is++] & 0xF;
  1315. isuml = 0;
  1316. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1317. isum += d * isuml;
  1318. shift += 2;
  1319. q8 += 32;
  1320. }
  1321. q2 += 32;
  1322. }
  1323. sumf += dall * isum - dmin * summs;
  1324. }
  1325. *s = sumf;
  1326. #endif
  1327. }
  1328. #else
  1329. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1330. const block_q2_K * restrict x = vx;
  1331. const block_q8_K * restrict y = vy;
  1332. const int nb = n / QK_K;
  1333. #ifdef __ARM_NEON
  1334. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1335. const int32x4_t vzero = vdupq_n_s32(0);
  1336. int8x16x4_t q2bytes;
  1337. uint32_t aux32[2];
  1338. const uint8_t * scales = (const uint8_t *)aux32;
  1339. float sum = 0;
  1340. for (int i = 0; i < nb; ++i) {
  1341. const float d = y[i].d * (float)x[i].d;
  1342. const float dmin = -y[i].d * (float)x[i].dmin;
  1343. const uint8_t * restrict q2 = x[i].qs;
  1344. const int8_t * restrict q8 = y[i].qs;
  1345. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1346. aux32[0] = sc[0] & 0x0f0f0f0f;
  1347. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1348. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1349. int isum1 = 0, isum2 = 0;
  1350. const uint8x16_t q2bits = vld1q_u8(q2);
  1351. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1352. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1353. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1354. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1355. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1356. #if defined(__ARM_FEATURE_DOTPROD)
  1357. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1358. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1359. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1360. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1361. #else
  1362. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1363. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1364. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1365. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1366. isum1 += vaddvq_s16(p1) * scales[0];
  1367. isum2 += vaddvq_s16(p2) * scales[1];
  1368. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1369. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1370. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1371. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1372. isum1 += vaddvq_s16(p3) * scales[2];
  1373. isum2 += vaddvq_s16(p4) * scales[3];
  1374. #endif
  1375. sum += d * (isum1 + isum2);
  1376. }
  1377. *s = sum;
  1378. #elif defined __AVX2__
  1379. const __m256i m3 = _mm256_set1_epi8(3);
  1380. __m256 acc = _mm256_setzero_ps();
  1381. uint32_t ud, um;
  1382. const uint8_t * restrict db = (const uint8_t *)&ud;
  1383. const uint8_t * restrict mb = (const uint8_t *)&um;
  1384. float summs = 0;
  1385. // TODO: optimize this
  1386. for (int i = 0; i < nb; ++i) {
  1387. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1388. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1389. const uint8_t * restrict q2 = x[i].qs;
  1390. const int8_t * restrict q8 = y[i].qs;
  1391. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1392. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1393. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1394. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1395. summs += dmin * smin;
  1396. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1397. const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1398. const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1399. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1400. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1401. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1402. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1403. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1404. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1405. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1406. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1407. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1408. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1409. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1410. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1411. }
  1412. *s = hsum_float_8(acc) + summs;
  1413. #else
  1414. float sumf = 0;
  1415. int isum[4];
  1416. for (int i = 0; i < nb; ++i) {
  1417. const uint8_t * q2 = x[i].qs;
  1418. const int8_t * q8 = y[i].qs;
  1419. const uint8_t * sc = x[i].scales;
  1420. int summs = 0;
  1421. for (int j = 0; j < QK_K/16; ++j) {
  1422. summs += y[i].bsums[j] * (sc[j] >> 4);
  1423. }
  1424. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1425. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1426. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1427. for (int l = 0; l < 16; ++l) {
  1428. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1429. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1430. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1431. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1432. }
  1433. for (int l = 0; l < 4; ++l) {
  1434. isum[l] *= (sc[l] & 0xF);
  1435. }
  1436. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1437. }
  1438. *s = sumf;
  1439. #endif
  1440. }
  1441. #endif
  1442. #if QK_K == 256
  1443. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1444. assert(n % QK_K == 0);
  1445. const uint32_t kmask1 = 0x03030303;
  1446. const uint32_t kmask2 = 0x0f0f0f0f;
  1447. const block_q3_K * restrict x = vx;
  1448. const block_q8_K * restrict y = vy;
  1449. const int nb = n / QK_K;
  1450. #ifdef __ARM_NEON
  1451. uint32_t aux[3];
  1452. uint32_t utmp[4];
  1453. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1454. #ifdef __ARM_FEATURE_DOTPROD
  1455. const int32x4_t vzero = vdupq_n_s32(0);
  1456. #endif
  1457. const uint8x16_t m0 = vdupq_n_u8(1);
  1458. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1459. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1460. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1461. const int8_t m32 = 32;
  1462. int8x16x4_t q3bytes;
  1463. float sum = 0;
  1464. for (int i = 0; i < nb; ++i) {
  1465. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1466. const uint8_t * restrict q3 = x[i].qs;
  1467. const uint8_t * restrict qh = x[i].hmask;
  1468. const int8_t * restrict q8 = y[i].qs;
  1469. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1470. uint8x16x4_t q3h;
  1471. int32_t isum = 0;
  1472. // Set up scales
  1473. memcpy(aux, x[i].scales, 12);
  1474. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1475. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1476. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1477. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1478. int8_t * scale = (int8_t *)utmp;
  1479. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1480. for (int j = 0; j < QK_K/128; ++j) {
  1481. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1482. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1483. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1484. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1485. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1486. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1487. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1488. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1489. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1490. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1491. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1492. #if defined(__ARM_FEATURE_DOTPROD)
  1493. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1494. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1495. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1496. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1497. #else
  1498. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1499. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1500. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1501. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1502. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1503. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1504. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1505. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1506. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1507. #endif
  1508. scale += 4;
  1509. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1510. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1511. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1512. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1513. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1514. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1515. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1516. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1517. #if defined(__ARM_FEATURE_DOTPROD)
  1518. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1519. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1520. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1521. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1522. #else
  1523. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1524. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1525. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1526. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1527. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1528. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1529. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1530. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1531. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1532. #endif
  1533. scale += 4;
  1534. if (j == 0) {
  1535. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1536. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1537. }
  1538. }
  1539. sum += d * isum;
  1540. }
  1541. *s = sum;
  1542. #elif defined __AVX2__
  1543. const __m256i m3 = _mm256_set1_epi8(3);
  1544. const __m256i mone = _mm256_set1_epi8(1);
  1545. const __m128i m32 = _mm_set1_epi8(32);
  1546. __m256 acc = _mm256_setzero_ps();
  1547. uint32_t aux[3];
  1548. for (int i = 0; i < nb; ++i) {
  1549. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1550. const uint8_t * restrict q3 = x[i].qs;
  1551. const int8_t * restrict q8 = y[i].qs;
  1552. // Set up scales
  1553. memcpy(aux, x[i].scales, 12);
  1554. __m128i scales128 = _mm_set_epi32(
  1555. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1556. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1557. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1558. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1559. scales128 = _mm_sub_epi8(scales128, m32);
  1560. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1561. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1562. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1563. const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
  1564. // high bit
  1565. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1566. // integer accumulator
  1567. __m256i sumi = _mm256_setzero_si256();
  1568. int bit = 0;
  1569. int is = 0;
  1570. for (int j = 0; j < QK_K/128; ++j) {
  1571. // load low 2 bits
  1572. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1573. // prepare low and high bits
  1574. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1575. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1576. ++bit;
  1577. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1578. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1579. ++bit;
  1580. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1581. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1582. ++bit;
  1583. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1584. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1585. ++bit;
  1586. // load Q8 quants
  1587. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1588. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1589. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1590. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1591. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1592. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1593. // and 2 if the high bit was set)
  1594. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1595. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1596. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1597. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1598. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1599. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1600. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1601. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1602. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1603. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1604. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1605. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1606. // multiply with scales
  1607. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1608. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1609. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1610. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1611. // accumulate
  1612. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1613. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1614. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1615. }
  1616. // multiply with block scale and accumulate
  1617. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1618. }
  1619. *s = hsum_float_8(acc);
  1620. #elif defined __AVX__
  1621. const __m128i m3 = _mm_set1_epi8(3);
  1622. const __m128i mone = _mm_set1_epi8(1);
  1623. const __m128i m32 = _mm_set1_epi8(32);
  1624. const __m128i m2 = _mm_set1_epi8(2);
  1625. __m256 acc = _mm256_setzero_ps();
  1626. uint32_t *aux;
  1627. for (int i = 0; i < nb; ++i) {
  1628. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1629. const uint8_t * restrict q3 = x[i].qs;
  1630. const int8_t * restrict q8 = y[i].qs;
  1631. // Set up scales
  1632. aux = (uint32_t *)x[i].scales;
  1633. __m128i scales128 = _mm_set_epi32(
  1634. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1635. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1636. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1637. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1638. scales128 = _mm_sub_epi8(scales128, m32);
  1639. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1640. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1641. const __m128i scales[2] = { scales_0, scales_1 };
  1642. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1643. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1644. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1645. // integer accumulator
  1646. __m128i sumi_0 = _mm_setzero_si128();
  1647. __m128i sumi_1 = _mm_setzero_si128();
  1648. for (int j = 0; j < QK_K/128; ++j) {
  1649. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1650. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1651. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1652. // prepare low and high bits
  1653. const int bit = j << 2;
  1654. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1655. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1656. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1657. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1658. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1659. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1660. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1661. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1662. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1663. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1664. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1665. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1666. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1667. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1668. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1669. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1670. // load Q8 quants from block_q8_K.qs[QK_K]
  1671. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1672. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1673. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1674. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1675. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1676. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1677. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1678. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1679. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1680. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1681. // and 2 if the high bit was set)
  1682. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1683. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1684. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1685. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1686. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1687. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1688. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1689. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1690. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1691. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1692. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1693. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1694. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1695. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1696. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1697. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1698. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1699. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1700. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1701. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1702. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1703. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1704. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1705. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1706. // multiply with scales
  1707. __m128i shuffle = _mm_set1_epi16(0x0100);
  1708. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1709. shuffle = _mm_add_epi16(shuffle, m2);
  1710. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1711. shuffle = _mm_add_epi16(shuffle, m2);
  1712. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1713. shuffle = _mm_add_epi16(shuffle, m2);
  1714. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1715. shuffle = _mm_add_epi16(shuffle, m2);
  1716. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1717. shuffle = _mm_add_epi16(shuffle, m2);
  1718. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1719. shuffle = _mm_add_epi16(shuffle, m2);
  1720. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1721. shuffle = _mm_add_epi16(shuffle, m2);
  1722. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1723. // accumulate
  1724. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1725. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1726. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1727. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1728. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1729. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1730. }
  1731. // multiply with block scale and accumulate
  1732. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  1733. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1734. }
  1735. *s = hsum_float_8(acc);
  1736. #else
  1737. // scalar version
  1738. // This function is written like this so the compiler can manage to vectorize most of it
  1739. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1740. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1741. // The ideal situation would be if we could just write the code once, and the compiler would
  1742. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1743. // write vectorized versions for AVX, ARM_NEON, etc.
  1744. int8_t aux8[QK_K];
  1745. int16_t aux16[8];
  1746. float sums [8];
  1747. int32_t aux32[8];
  1748. memset(sums, 0, 8*sizeof(float));
  1749. uint32_t auxs[4];
  1750. const int8_t * scales = (const int8_t*)auxs;
  1751. float sumf = 0;
  1752. for (int i = 0; i < nb; ++i) {
  1753. const uint8_t * restrict q3 = x[i].qs;
  1754. const uint8_t * restrict hm = x[i].hmask;
  1755. const int8_t * restrict q8 = y[i].qs;
  1756. memset(aux32, 0, 8*sizeof(int32_t));
  1757. int8_t * restrict a = aux8;
  1758. uint8_t m = 1;
  1759. for (int j = 0; j < QK_K; j += 128) {
  1760. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1761. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1762. a += 32; m <<= 1;
  1763. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1764. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1765. a += 32; m <<= 1;
  1766. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1767. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1768. a += 32; m <<= 1;
  1769. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1770. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1771. a += 32; m <<= 1;
  1772. q3 += 32;
  1773. }
  1774. a = aux8;
  1775. memcpy(auxs, x[i].scales, 12);
  1776. uint32_t tmp = auxs[2];
  1777. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1778. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1779. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1780. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1781. for (int j = 0; j < QK_K/16; ++j) {
  1782. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1783. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1784. q8 += 8; a += 8;
  1785. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1786. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1787. q8 += 8; a += 8;
  1788. }
  1789. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1790. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1791. }
  1792. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1793. *s = sumf;
  1794. #endif
  1795. }
  1796. #else
  1797. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1798. assert(n % QK_K == 0);
  1799. const block_q3_K * restrict x = vx;
  1800. const block_q8_K * restrict y = vy;
  1801. const int nb = n / QK_K;
  1802. #ifdef __ARM_NEON
  1803. #ifdef __ARM_FEATURE_DOTPROD
  1804. const int32x4_t vzero = vdupq_n_s32(0);
  1805. #endif
  1806. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1807. const uint8x16_t mh = vdupq_n_u8(4);
  1808. int8x16x4_t q3bytes;
  1809. uint16_t aux16[2];
  1810. int8_t * scales = (int8_t *)aux16;
  1811. float sum = 0;
  1812. for (int i = 0; i < nb; ++i) {
  1813. uint8x16x4_t q3h;
  1814. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1815. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1816. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1817. const uint16_t a = *(const uint16_t *)x[i].scales;
  1818. aux16[0] = a & 0x0f0f;
  1819. aux16[1] = (a >> 4) & 0x0f0f;
  1820. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1821. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1822. const float d = y[i].d * (float)x[i].d;
  1823. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1824. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1825. q3h.val[1] = vandq_u8(mh, htmp);
  1826. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1827. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1828. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1829. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1830. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1831. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1832. #if defined(__ARM_FEATURE_DOTPROD)
  1833. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1834. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1835. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1836. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1837. #else
  1838. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1839. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1840. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1841. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1842. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1843. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1844. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1845. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1846. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1847. #endif
  1848. sum += d * isum;
  1849. }
  1850. *s = sum;
  1851. #elif defined __AVX2__
  1852. const __m256i m3 = _mm256_set1_epi8(3);
  1853. const __m256i m1 = _mm256_set1_epi8(1);
  1854. __m256 acc = _mm256_setzero_ps();
  1855. uint64_t aux64;
  1856. uint16_t aux16[2];
  1857. const int8_t * aux8 = (const int8_t *)aux16;
  1858. for (int i = 0; i < nb; ++i) {
  1859. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1860. const uint8_t * restrict q3 = x[i].qs;
  1861. const int8_t * restrict q8 = y[i].qs;
  1862. const uint16_t a = *(const uint16_t *)x[i].scales;
  1863. aux16[0] = a & 0x0f0f;
  1864. aux16[1] = (a >> 4) & 0x0f0f;
  1865. const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1866. const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1867. memcpy(&aux64, x[i].hmask, 8);
  1868. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1869. __m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux);
  1870. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1871. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1872. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1873. // load low 2 bits
  1874. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1875. // prepare low and high bits
  1876. const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits);
  1877. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1878. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1879. // load Q8 quants
  1880. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1881. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1882. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1883. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1884. // and 2 if the high bit was set)
  1885. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1886. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1887. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1888. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1889. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1890. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1891. // multiply with scales
  1892. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1893. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1894. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1895. // multiply with block scale and accumulate
  1896. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1897. }
  1898. *s = hsum_float_8(acc);
  1899. #else
  1900. int8_t aux8[QK_K];
  1901. int16_t aux16[8];
  1902. float sums [8];
  1903. int32_t aux32[8];
  1904. int32_t scales[4];
  1905. memset(sums, 0, 8*sizeof(float));
  1906. float sumf = 0;
  1907. for (int i = 0; i < nb; ++i) {
  1908. const uint8_t * restrict q3 = x[i].qs;
  1909. const uint8_t * restrict hm = x[i].hmask;
  1910. const int8_t * restrict q8 = y[i].qs;
  1911. int8_t * restrict a = aux8;
  1912. for (int l = 0; l < 8; ++l) {
  1913. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  1914. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  1915. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  1916. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  1917. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  1918. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  1919. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  1920. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  1921. }
  1922. scales[0] = (x[i].scales[0] & 0xF) - 8;
  1923. scales[1] = (x[i].scales[0] >> 4) - 8;
  1924. scales[2] = (x[i].scales[1] & 0xF) - 8;
  1925. scales[3] = (x[i].scales[1] >> 4) - 8;
  1926. memset(aux32, 0, 8*sizeof(int32_t));
  1927. for (int j = 0; j < QK_K/16; ++j) {
  1928. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1929. q8 += 8; a += 8;
  1930. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  1931. q8 += 8; a += 8;
  1932. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  1933. }
  1934. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1935. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1936. }
  1937. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1938. *s = sumf;
  1939. #endif
  1940. }
  1941. #endif
  1942. #if QK_K == 256
  1943. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1944. assert(n % QK_K == 0);
  1945. const block_q4_K * restrict x = vx;
  1946. const block_q8_K * restrict y = vy;
  1947. const int nb = n / QK_K;
  1948. static const uint32_t kmask1 = 0x3f3f3f3f;
  1949. static const uint32_t kmask2 = 0x0f0f0f0f;
  1950. static const uint32_t kmask3 = 0x03030303;
  1951. uint32_t utmp[4];
  1952. #ifdef __ARM_NEON
  1953. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1954. #ifdef __ARM_FEATURE_DOTPROD
  1955. const int32x4_t mzero = vdupq_n_s32(0);
  1956. #endif
  1957. int8x16x2_t q4bytes;
  1958. int8x16x2_t q8bytes;
  1959. float sumf = 0;
  1960. for (int i = 0; i < nb; ++i) {
  1961. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1962. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1963. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  1964. memcpy(utmp, x[i].scales, 12);
  1965. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  1966. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  1967. utmp[0] &= kmask1;
  1968. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  1969. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  1970. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  1971. sumf -= dmin * vaddvq_s32(prod);
  1972. const uint8_t * scales = (const uint8_t *)utmp;
  1973. const uint8_t * restrict q4 = x[i].qs;
  1974. const int8_t * restrict q8 = y[i].qs;
  1975. //int32x4_t isum = mzero;
  1976. int32_t sumi1 = 0;
  1977. int32_t sumi2 = 0;
  1978. for (int j = 0; j < QK_K/64; ++j) {
  1979. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  1980. #ifdef __ARM_FEATURE_DOTPROD
  1981. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1982. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  1983. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  1984. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  1985. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  1986. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1987. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  1988. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  1989. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  1990. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  1991. #else
  1992. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1993. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  1994. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  1995. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1996. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1997. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1998. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1999. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2000. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2001. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2002. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2003. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2004. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2005. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2006. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2007. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2008. #endif
  2009. }
  2010. sumf += d * (sumi1 + sumi2);
  2011. }
  2012. *s = sumf;
  2013. #elif defined __AVX2__
  2014. const __m256i m4 = _mm256_set1_epi8(0xF);
  2015. __m256 acc = _mm256_setzero_ps();
  2016. __m128 acc_m = _mm_setzero_ps();
  2017. for (int i = 0; i < nb; ++i) {
  2018. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2019. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2020. memcpy(utmp, x[i].scales, 12);
  2021. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2022. const uint32_t uaux = utmp[1] & kmask1;
  2023. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2024. utmp[2] = uaux;
  2025. utmp[0] &= kmask1;
  2026. const uint8_t * restrict q4 = x[i].qs;
  2027. const int8_t * restrict q8 = y[i].qs;
  2028. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2029. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2030. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2031. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2032. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2033. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2034. const __m256i scales = _mm256_set_m128i(sc128, sc128);
  2035. __m256i sumi = _mm256_setzero_si256();
  2036. for (int j = 0; j < QK_K/64; ++j) {
  2037. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2038. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2039. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2040. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2041. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2042. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2043. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2044. p16l = _mm256_madd_epi16(scale_l, p16l);
  2045. sumi = _mm256_add_epi32(sumi, p16l);
  2046. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2047. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2048. p16h = _mm256_madd_epi16(scale_h, p16h);
  2049. sumi = _mm256_add_epi32(sumi, p16h);
  2050. }
  2051. __m256 vd = _mm256_set1_ps(d);
  2052. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2053. }
  2054. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2055. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2056. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2057. #elif defined __AVX__
  2058. const __m128i m4 = _mm_set1_epi8(0xF);
  2059. const __m128i m2 = _mm_set1_epi8(0x2);
  2060. __m256 acc = _mm256_setzero_ps();
  2061. __m128 acc_m = _mm_setzero_ps();
  2062. for (int i = 0; i < nb; ++i) {
  2063. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2064. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2065. const uint8_t * restrict q4 = x[i].qs;
  2066. const int8_t * restrict q8 = y[i].qs;
  2067. memcpy(utmp, x[i].scales, 12);
  2068. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2069. const uint32_t uaux = utmp[1] & kmask1;
  2070. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2071. utmp[2] = uaux;
  2072. utmp[0] &= kmask1;
  2073. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2074. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2075. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2076. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2077. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2078. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2079. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2080. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2081. __m128i sumi_0 = _mm_setzero_si128();
  2082. __m128i sumi_1 = _mm_setzero_si128();
  2083. __m128i shuffle = _mm_set1_epi16(0x0100);
  2084. for (int j = 0; j < QK_K/64; ++j) {
  2085. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2086. shuffle = _mm_add_epi16(shuffle, m2);
  2087. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2088. shuffle = _mm_add_epi16(shuffle, m2);
  2089. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2090. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2091. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2092. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2093. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2094. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2095. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2096. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2097. p16l = _mm_madd_epi16(scale_l, p16l);
  2098. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2099. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2100. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2101. p16l = _mm_madd_epi16(scale_l, p16l);
  2102. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2103. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2104. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2105. p16h = _mm_madd_epi16(scale_h, p16h);
  2106. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2107. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2108. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2109. p16h = _mm_madd_epi16(scale_h, p16h);
  2110. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2111. }
  2112. __m256 vd = _mm256_set1_ps(d);
  2113. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  2114. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2115. }
  2116. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2117. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2118. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2119. #else
  2120. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2121. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2122. int8_t aux8[QK_K];
  2123. int16_t aux16[8];
  2124. float sums [8];
  2125. int32_t aux32[8];
  2126. memset(sums, 0, 8*sizeof(float));
  2127. float sumf = 0;
  2128. for (int i = 0; i < nb; ++i) {
  2129. const uint8_t * restrict q4 = x[i].qs;
  2130. const int8_t * restrict q8 = y[i].qs;
  2131. memset(aux32, 0, 8*sizeof(int32_t));
  2132. int8_t * restrict a = aux8;
  2133. for (int j = 0; j < QK_K/64; ++j) {
  2134. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2135. a += 32;
  2136. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2137. a += 32; q4 += 32;
  2138. }
  2139. memcpy(utmp, x[i].scales, 12);
  2140. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2141. const uint32_t uaux = utmp[1] & kmask1;
  2142. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2143. utmp[2] = uaux;
  2144. utmp[0] &= kmask1;
  2145. int sumi = 0;
  2146. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2147. a = aux8;
  2148. int is = 0;
  2149. for (int j = 0; j < QK_K/32; ++j) {
  2150. int32_t scale = scales[is++];
  2151. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2152. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2153. q8 += 8; a += 8;
  2154. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2155. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2156. q8 += 8; a += 8;
  2157. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2158. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2159. q8 += 8; a += 8;
  2160. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2161. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2162. q8 += 8; a += 8;
  2163. }
  2164. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2165. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2166. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2167. sumf -= dmin * sumi;
  2168. }
  2169. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2170. *s = sumf;
  2171. #endif
  2172. }
  2173. #else
  2174. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2175. assert(n % QK_K == 0);
  2176. const block_q4_K * restrict x = vx;
  2177. const block_q8_K * restrict y = vy;
  2178. const int nb = n / QK_K;
  2179. #ifdef __ARM_NEON
  2180. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2181. #ifdef __ARM_FEATURE_DOTPROD
  2182. const int32x4_t mzero = vdupq_n_s32(0);
  2183. #endif
  2184. float sumf = 0;
  2185. int8x16x2_t q4bytes;
  2186. int8x16x4_t q8bytes;
  2187. float sum_mins = 0.f;
  2188. uint16_t aux16[2];
  2189. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2190. for (int i = 0; i < nb; ++i) {
  2191. const uint8_t * restrict q4 = x[i].qs;
  2192. const int8_t * restrict q8 = y[i].qs;
  2193. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2194. aux16[0] = a[0] & 0x0f0f;
  2195. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2196. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2197. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2198. const float d = y[i].d * (float)x[i].d[0];
  2199. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2200. #ifdef __ARM_FEATURE_DOTPROD
  2201. q8bytes = vld1q_s8_x4(q8);
  2202. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2203. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2204. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2205. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2206. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2207. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2208. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2209. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2210. #else
  2211. q8bytes = vld1q_s8_x4(q8);
  2212. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2213. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2214. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2215. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2216. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2217. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2218. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2219. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2220. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2221. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2222. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2223. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2224. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2225. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2226. #endif
  2227. sumf += d * (sumi1 + sumi2);
  2228. }
  2229. *s = sumf - sum_mins;
  2230. #elif defined __AVX2__
  2231. const __m256i m4 = _mm256_set1_epi8(0xF);
  2232. __m256 acc = _mm256_setzero_ps();
  2233. float summs = 0;
  2234. uint16_t aux16[2];
  2235. const uint8_t * scales = (const uint8_t *)aux16;
  2236. for (int i = 0; i < nb; ++i) {
  2237. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2238. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2239. const __m256 vd = _mm256_set1_ps(d);
  2240. const uint16_t * a = (const uint16_t *)x[i].scales;
  2241. aux16[0] = a[0] & 0x0f0f;
  2242. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2243. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2244. const uint8_t * restrict q4 = x[i].qs;
  2245. const int8_t * restrict q8 = y[i].qs;
  2246. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2247. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2248. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2249. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2250. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2251. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2252. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2253. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2254. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2255. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2256. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2257. }
  2258. *s = hsum_float_8(acc) - summs;
  2259. #else
  2260. uint8_t aux8[QK_K];
  2261. int16_t aux16[16];
  2262. float sums [8];
  2263. memset(sums, 0, 8*sizeof(float));
  2264. uint16_t s16[2];
  2265. const uint8_t * restrict scales = (const uint8_t *)s16;
  2266. float sumf = 0;
  2267. for (int i = 0; i < nb; ++i) {
  2268. const uint8_t * restrict q4 = x[i].qs;
  2269. const int8_t * restrict q8 = y[i].qs;
  2270. uint8_t * restrict a = aux8;
  2271. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2272. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2273. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2274. s16[0] = b[0] & 0x0f0f;
  2275. s16[1] = (b[0] >> 4) & 0x0f0f;
  2276. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2277. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2278. for (int j = 0; j < QK_K/32; ++j) {
  2279. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2280. q8 += 16; a += 16;
  2281. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2282. q8 += 16; a += 16;
  2283. const float dl = d * scales[j];
  2284. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2285. }
  2286. }
  2287. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2288. *s = sumf;
  2289. #endif
  2290. }
  2291. #endif
  2292. #if QK_K == 256
  2293. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2294. assert(n % QK_K == 0);
  2295. const block_q5_K * restrict x = vx;
  2296. const block_q8_K * restrict y = vy;
  2297. const int nb = n / QK_K;
  2298. static const uint32_t kmask1 = 0x3f3f3f3f;
  2299. static const uint32_t kmask2 = 0x0f0f0f0f;
  2300. static const uint32_t kmask3 = 0x03030303;
  2301. uint32_t utmp[4];
  2302. #ifdef __ARM_NEON
  2303. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2304. const int32x4_t mzero = vdupq_n_s32(0);
  2305. const uint8x16_t mone = vdupq_n_u8(1);
  2306. const uint8x16_t mtwo = vdupq_n_u8(2);
  2307. int8x16x4_t q5bytes;
  2308. float sumf = 0;
  2309. for (int i = 0; i < nb; ++i) {
  2310. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2311. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2312. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2313. memcpy(utmp, x[i].scales, 12);
  2314. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2315. const uint32_t uaux = utmp[1] & kmask1;
  2316. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2317. utmp[2] = uaux;
  2318. utmp[0] &= kmask1;
  2319. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2320. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2321. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2322. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2323. int32_t sumi_mins = vaddvq_s32(prod);
  2324. const uint8_t * scales = (const uint8_t *)utmp;
  2325. const uint8_t * restrict q5 = x[i].qs;
  2326. const uint8_t * restrict qh = x[i].qh;
  2327. const int8_t * restrict q8 = y[i].qs;
  2328. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2329. uint8x16x4_t q5h;
  2330. int32_t sumi = 0;
  2331. for (int j = 0; j < QK_K/64; ++j) {
  2332. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2333. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2334. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2335. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2336. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2337. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2338. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2339. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2340. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2341. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2342. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2343. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2344. #if defined(__ARM_FEATURE_DOTPROD)
  2345. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2346. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2347. #else
  2348. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2349. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2350. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2351. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2352. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2353. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2354. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2355. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2356. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2357. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2358. #endif
  2359. }
  2360. sumf += d * sumi - dmin * sumi_mins;
  2361. }
  2362. *s = sumf;
  2363. #elif defined __AVX2__
  2364. const __m256i m4 = _mm256_set1_epi8(0xF);
  2365. const __m128i mzero = _mm_setzero_si128();
  2366. const __m256i mone = _mm256_set1_epi8(1);
  2367. __m256 acc = _mm256_setzero_ps();
  2368. float summs = 0.f;
  2369. for (int i = 0; i < nb; ++i) {
  2370. const uint8_t * restrict q5 = x[i].qs;
  2371. const int8_t * restrict q8 = y[i].qs;
  2372. #if QK_K == 256
  2373. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2374. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2375. memcpy(utmp, x[i].scales, 12);
  2376. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2377. const uint32_t uaux = utmp[1] & kmask1;
  2378. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2379. utmp[2] = uaux;
  2380. utmp[0] &= kmask1;
  2381. #else
  2382. // TODO
  2383. const float d = 0, dmin = 0;
  2384. #endif
  2385. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2386. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2387. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2388. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2389. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2390. summs += dmin * _mm_extract_epi32(hsum, 0);
  2391. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2392. const __m256i scales = _mm256_set_m128i(sc128, sc128);
  2393. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2394. __m256i hmask = mone;
  2395. __m256i sumi = _mm256_setzero_si256();
  2396. int bit = 0;
  2397. for (int j = 0; j < QK_K/64; ++j) {
  2398. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2399. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2400. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2401. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2402. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2403. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2404. hmask = _mm256_slli_epi16(hmask, 1);
  2405. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2406. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2407. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2408. hmask = _mm256_slli_epi16(hmask, 1);
  2409. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2410. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2411. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2412. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2413. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2414. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2415. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2416. }
  2417. __m256 vd = _mm256_set1_ps(d);
  2418. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2419. }
  2420. *s = hsum_float_8(acc) + summs;
  2421. #elif defined __AVX__
  2422. const __m128i m4 = _mm_set1_epi8(0xF);
  2423. const __m128i mzero = _mm_setzero_si128();
  2424. const __m128i mone = _mm_set1_epi8(1);
  2425. const __m128i m2 = _mm_set1_epi8(2);
  2426. __m256 acc = _mm256_setzero_ps();
  2427. float summs = 0.f;
  2428. for (int i = 0; i < nb; ++i) {
  2429. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2430. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2431. const uint8_t * restrict q5 = x[i].qs;
  2432. const int8_t * restrict q8 = y[i].qs;
  2433. memcpy(utmp, x[i].scales, 12);
  2434. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2435. const uint32_t uaux = utmp[1] & kmask1;
  2436. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2437. utmp[2] = uaux;
  2438. utmp[0] &= kmask1;
  2439. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2440. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2441. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2442. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2443. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2444. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2445. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2446. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2447. summs += dmin * _mm_extract_epi32(hsum, 0);
  2448. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2449. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2450. __m128i hmask = mone;
  2451. __m128i sumi_0 = _mm_setzero_si128();
  2452. __m128i sumi_1 = _mm_setzero_si128();
  2453. int bit = 0;
  2454. __m128i shuffle = _mm_set1_epi16(0x0100);
  2455. for (int j = 0; j < QK_K/64; ++j) {
  2456. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2457. shuffle = _mm_add_epi16(shuffle, m2);
  2458. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2459. shuffle = _mm_add_epi16(shuffle, m2);
  2460. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2461. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2462. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2463. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2464. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2465. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2466. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2467. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2468. hmask = _mm_slli_epi16(hmask, 1);
  2469. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2470. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2471. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2472. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2473. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2474. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2475. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2476. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2477. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2478. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2479. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2480. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2481. hmask = _mm_slli_epi16(hmask, 1);
  2482. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2483. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2484. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2485. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2486. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2487. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2488. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2489. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2490. }
  2491. __m256 vd = _mm256_set1_ps(d);
  2492. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  2493. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2494. }
  2495. *s = hsum_float_8(acc) + summs;
  2496. #else
  2497. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2498. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2499. int8_t aux8[QK_K];
  2500. int16_t aux16[8];
  2501. float sums [8];
  2502. int32_t aux32[8];
  2503. memset(sums, 0, 8*sizeof(float));
  2504. float sumf = 0;
  2505. for (int i = 0; i < nb; ++i) {
  2506. const uint8_t * restrict q4 = x[i].qs;
  2507. const uint8_t * restrict hm = x[i].qh;
  2508. const int8_t * restrict q8 = y[i].qs;
  2509. memset(aux32, 0, 8*sizeof(int32_t));
  2510. int8_t * restrict a = aux8;
  2511. uint8_t m = 1;
  2512. for (int j = 0; j < QK_K/64; ++j) {
  2513. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2514. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2515. a += 32; m <<= 1;
  2516. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2517. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2518. a += 32; m <<= 1;
  2519. q4 += 32;
  2520. }
  2521. memcpy(utmp, x[i].scales, 12);
  2522. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2523. const uint32_t uaux = utmp[1] & kmask1;
  2524. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2525. utmp[2] = uaux;
  2526. utmp[0] &= kmask1;
  2527. int sumi = 0;
  2528. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2529. a = aux8;
  2530. int is = 0;
  2531. for (int j = 0; j < QK_K/32; ++j) {
  2532. int32_t scale = scales[is++];
  2533. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2534. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2535. q8 += 8; a += 8;
  2536. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2537. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2538. q8 += 8; a += 8;
  2539. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2540. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2541. q8 += 8; a += 8;
  2542. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2543. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2544. q8 += 8; a += 8;
  2545. }
  2546. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2547. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2548. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2549. sumf -= dmin * sumi;
  2550. }
  2551. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2552. *s = sumf;
  2553. #endif
  2554. }
  2555. #else
  2556. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2557. assert(n % QK_K == 0);
  2558. const block_q5_K * restrict x = vx;
  2559. const block_q8_K * restrict y = vy;
  2560. const int nb = n / QK_K;
  2561. #ifdef __ARM_NEON
  2562. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2563. const int32x4_t mzero = vdupq_n_s32(0);
  2564. const uint8x16_t mh = vdupq_n_u8(16);
  2565. int8x16x4_t q5bytes;
  2566. uint8x16x4_t q5h;
  2567. float sumf = 0;
  2568. for (int i = 0; i < nb; ++i) {
  2569. const float d = y[i].d * (float)x[i].d;
  2570. const int8_t * sc = x[i].scales;
  2571. const uint8_t * restrict q5 = x[i].qs;
  2572. const uint8_t * restrict qh = x[i].qh;
  2573. const int8_t * restrict q8 = y[i].qs;
  2574. const uint8x8_t qhbits = vld1_u8(qh);
  2575. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2576. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2577. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2578. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2579. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2580. q5h.val[2] = vbicq_u8(mh, htmp);
  2581. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2582. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2583. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2584. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2585. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2586. #if defined(__ARM_FEATURE_DOTPROD)
  2587. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2588. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2589. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2590. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2591. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2592. #else
  2593. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2594. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2595. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2596. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2597. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2598. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2599. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2600. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2601. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2602. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2603. sumf += d*sumi;
  2604. #endif
  2605. }
  2606. *s = sumf;
  2607. #elif defined __AVX2__
  2608. const __m256i m4 = _mm256_set1_epi8(0xF);
  2609. const __m256i mone = _mm256_set1_epi8(1);
  2610. __m256 acc = _mm256_setzero_ps();
  2611. for (int i = 0; i < nb; ++i) {
  2612. const uint8_t * restrict q5 = x[i].qs;
  2613. const int8_t * restrict q8 = y[i].qs;
  2614. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2615. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2616. const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2617. const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2618. int64_t aux64;
  2619. memcpy(&aux64, x[i].qh, 8);
  2620. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2621. const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128);
  2622. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2623. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2624. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2625. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2626. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2627. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2628. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2629. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2630. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2631. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2632. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2633. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2634. }
  2635. *s = hsum_float_8(acc);
  2636. #else
  2637. uint8_t aux8[QK_K];
  2638. int16_t aux16[16];
  2639. float sums [8];
  2640. memset(sums, 0, 8*sizeof(float));
  2641. float sumf = 0;
  2642. for (int i = 0; i < nb; ++i) {
  2643. const uint8_t * restrict q4 = x[i].qs;
  2644. const uint8_t * restrict hm = x[i].qh;
  2645. const int8_t * restrict q8 = y[i].qs;
  2646. uint8_t * restrict a = aux8;
  2647. for (int l = 0; l < 32; ++l) {
  2648. a[l+ 0] = q4[l] & 0xF;
  2649. a[l+32] = q4[l] >> 4;
  2650. }
  2651. for (int is = 0; is < 8; ++is) {
  2652. uint8_t m = 1 << is;
  2653. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2654. }
  2655. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2656. const int8_t * restrict sc = x[i].scales;
  2657. for (int j = 0; j < QK_K/16; ++j) {
  2658. const float dl = d * sc[j];
  2659. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2660. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2661. q8 += 16; a += 16;
  2662. }
  2663. }
  2664. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2665. *s = sumf;
  2666. #endif
  2667. }
  2668. #endif
  2669. #if QK_K == 256
  2670. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2671. assert(n % QK_K == 0);
  2672. const block_q6_K * restrict x = vx;
  2673. const block_q8_K * restrict y = vy;
  2674. const int nb = n / QK_K;
  2675. #ifdef __ARM_NEON
  2676. float sum = 0;
  2677. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2678. const int32x4_t vzero = vdupq_n_s32(0);
  2679. //const int8x16_t m32s = vdupq_n_s8(32);
  2680. const uint8x16_t mone = vdupq_n_u8(3);
  2681. int8x16x4_t q6bytes;
  2682. uint8x16x4_t q6h;
  2683. for (int i = 0; i < nb; ++i) {
  2684. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2685. const uint8_t * restrict q6 = x[i].ql;
  2686. const uint8_t * restrict qh = x[i].qh;
  2687. const int8_t * restrict q8 = y[i].qs;
  2688. const int8_t * restrict scale = x[i].scales;
  2689. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2690. const int8x16_t scales = vld1q_s8(scale);
  2691. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2692. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2693. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2694. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2695. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2696. int32_t isum_mins = vaddvq_s32(prod);
  2697. int32_t isum = 0;
  2698. for (int j = 0; j < QK_K/128; ++j) {
  2699. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2700. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2701. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2702. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2703. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2704. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2705. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2706. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2707. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2708. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2709. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2710. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2711. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2712. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2713. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2714. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2715. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2716. #if defined(__ARM_FEATURE_DOTPROD)
  2717. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2718. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2719. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2720. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2721. scale += 4;
  2722. #else
  2723. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2724. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2725. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2726. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2727. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2728. scale += 2;
  2729. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2730. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2731. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2732. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2733. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2734. scale += 2;
  2735. #endif
  2736. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2737. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2738. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2739. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2740. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2741. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2742. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2743. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2744. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2745. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2746. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2747. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2748. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2749. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2750. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2751. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2752. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2753. #if defined(__ARM_FEATURE_DOTPROD)
  2754. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2755. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2756. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2757. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2758. scale += 4;
  2759. //for (int l = 0; l < 4; ++l) {
  2760. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2761. // isum += vaddvq_s32(p) * *scale++;
  2762. //}
  2763. #else
  2764. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2765. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2766. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2767. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2768. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2769. scale += 2;
  2770. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2771. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2772. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2773. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2774. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2775. scale += 2;
  2776. #endif
  2777. }
  2778. //sum += isum * d_all * y[i].d;
  2779. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  2780. }
  2781. *s = sum;
  2782. #elif defined __AVX2__
  2783. const __m256i m4 = _mm256_set1_epi8(0xF);
  2784. const __m256i m2 = _mm256_set1_epi8(3);
  2785. const __m256i m32s = _mm256_set1_epi8(32);
  2786. __m256 acc = _mm256_setzero_ps();
  2787. for (int i = 0; i < nb; ++i) {
  2788. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2789. const uint8_t * restrict q4 = x[i].ql;
  2790. const uint8_t * restrict qh = x[i].qh;
  2791. const int8_t * restrict q8 = y[i].qs;
  2792. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2793. __m256i sumi = _mm256_setzero_si256();
  2794. int is = 0;
  2795. for (int j = 0; j < QK_K/128; ++j) {
  2796. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  2797. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  2798. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  2799. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  2800. is += 4;
  2801. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2802. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2803. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  2804. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  2805. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  2806. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  2807. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  2808. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  2809. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  2810. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  2811. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  2812. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2813. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2814. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2815. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2816. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  2817. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  2818. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  2819. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  2820. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  2821. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  2822. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  2823. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  2824. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  2825. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  2826. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  2827. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  2828. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  2829. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  2830. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  2831. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  2832. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2833. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  2834. }
  2835. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  2836. }
  2837. *s = hsum_float_8(acc);
  2838. #elif defined __AVX__
  2839. const __m128i m4 = _mm_set1_epi8(0xF);
  2840. const __m128i m3 = _mm_set1_epi8(3);
  2841. const __m128i m32s = _mm_set1_epi8(32);
  2842. const __m128i m2 = _mm_set1_epi8(2);
  2843. __m256 acc = _mm256_setzero_ps();
  2844. for (int i = 0; i < nb; ++i) {
  2845. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2846. const uint8_t * restrict q4 = x[i].ql;
  2847. const uint8_t * restrict qh = x[i].qh;
  2848. const int8_t * restrict q8 = y[i].qs;
  2849. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2850. __m128i sumi_0 = _mm_setzero_si128();
  2851. __m128i sumi_1 = _mm_setzero_si128();
  2852. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  2853. for (int j = 0; j < QK_K/128; ++j) {
  2854. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  2855. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  2856. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  2857. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  2858. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  2859. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  2860. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  2861. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  2862. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  2863. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  2864. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2865. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2866. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2867. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2868. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  2869. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  2870. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  2871. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  2872. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  2873. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  2874. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  2875. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  2876. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2877. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2878. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2879. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2880. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2881. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2882. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2883. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2884. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  2885. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  2886. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  2887. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  2888. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  2889. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  2890. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  2891. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  2892. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  2893. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  2894. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  2895. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  2896. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  2897. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  2898. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  2899. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  2900. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2901. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2902. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2903. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2904. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  2905. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  2906. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  2907. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  2908. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2909. shuffle = _mm_add_epi8(shuffle, m2);
  2910. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2911. shuffle = _mm_add_epi8(shuffle, m2);
  2912. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  2913. shuffle = _mm_add_epi8(shuffle, m2);
  2914. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  2915. shuffle = _mm_add_epi8(shuffle, m2);
  2916. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  2917. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  2918. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  2919. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  2920. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  2921. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  2922. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  2923. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  2924. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2925. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2926. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  2927. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  2928. }
  2929. __m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
  2930. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  2931. }
  2932. *s = hsum_float_8(acc);
  2933. #else
  2934. int8_t aux8[QK_K];
  2935. int16_t aux16[8];
  2936. float sums [8];
  2937. int32_t aux32[8];
  2938. memset(sums, 0, 8*sizeof(float));
  2939. float sumf = 0;
  2940. for (int i = 0; i < nb; ++i) {
  2941. const uint8_t * restrict q4 = x[i].ql;
  2942. const uint8_t * restrict qh = x[i].qh;
  2943. const int8_t * restrict q8 = y[i].qs;
  2944. memset(aux32, 0, 8*sizeof(int32_t));
  2945. int8_t * restrict a = aux8;
  2946. for (int j = 0; j < QK_K; j += 128) {
  2947. for (int l = 0; l < 32; ++l) {
  2948. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2949. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2950. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2951. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2952. }
  2953. a += 128;
  2954. q4 += 64;
  2955. qh += 32;
  2956. }
  2957. a = aux8;
  2958. int is = 0;
  2959. for (int j = 0; j < QK_K/16; ++j) {
  2960. int scale = x[i].scales[is++];
  2961. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2962. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2963. q8 += 8; a += 8;
  2964. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2965. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2966. q8 += 8; a += 8;
  2967. }
  2968. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2969. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2970. }
  2971. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2972. *s = sumf;
  2973. #endif
  2974. }
  2975. #else
  2976. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2977. assert(n % QK_K == 0);
  2978. const block_q6_K * restrict x = vx;
  2979. const block_q8_K * restrict y = vy;
  2980. const int nb = n / QK_K;
  2981. #ifdef __ARM_NEON
  2982. float sum = 0;
  2983. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2984. const int32x4_t vzero = vdupq_n_s32(0);
  2985. const int8x16_t m32s = vdupq_n_s8(32);
  2986. const uint8x16_t mone = vdupq_n_u8(3);
  2987. int8x16x4_t q6bytes;
  2988. uint8x16x4_t q6h;
  2989. for (int i = 0; i < nb; ++i) {
  2990. const float d_all = (float)x[i].d;
  2991. const uint8_t * restrict q6 = x[i].ql;
  2992. const uint8_t * restrict qh = x[i].qh;
  2993. const int8_t * restrict q8 = y[i].qs;
  2994. const int8_t * restrict scale = x[i].scales;
  2995. int32_t isum = 0;
  2996. uint8x16_t qhbits = vld1q_u8(qh);
  2997. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  2998. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2999. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3000. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3001. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3002. shifted = vshrq_n_u8(qhbits, 4);
  3003. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3004. shifted = vshrq_n_u8(qhbits, 6);
  3005. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3006. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3007. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3008. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3009. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3010. #if defined(__ARM_FEATURE_DOTPROD)
  3011. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3012. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3013. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3014. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3015. #else
  3016. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3017. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3018. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3019. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3020. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3021. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3022. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3023. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3024. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3025. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3026. #endif
  3027. sum += isum * d_all * y[i].d;
  3028. }
  3029. *s = sum;
  3030. #elif defined __AVX2__
  3031. const __m256i m4 = _mm256_set1_epi8(0xF);
  3032. const __m256i m2 = _mm256_set1_epi8(3);
  3033. const __m256i m32s = _mm256_set1_epi8(32);
  3034. __m256 acc = _mm256_setzero_ps();
  3035. for (int i = 0; i < nb; ++i) {
  3036. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3037. const uint8_t * restrict q4 = x[i].ql;
  3038. const uint8_t * restrict qh = x[i].qh;
  3039. const int8_t * restrict q8 = y[i].qs;
  3040. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3041. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3042. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3043. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3044. __m256i sumi = _mm256_setzero_si256();
  3045. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3046. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3047. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3048. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3049. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3050. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3051. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3052. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3053. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3054. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3055. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3056. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3057. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3058. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3059. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3060. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3061. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3062. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3063. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3064. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3065. }
  3066. *s = hsum_float_8(acc);
  3067. #else
  3068. int8_t aux8[QK_K];
  3069. int16_t aux16[8];
  3070. float sums [8];
  3071. int32_t aux32[8];
  3072. memset(sums, 0, 8*sizeof(float));
  3073. float sumf = 0;
  3074. for (int i = 0; i < nb; ++i) {
  3075. const uint8_t * restrict q4 = x[i].ql;
  3076. const uint8_t * restrict qh = x[i].qh;
  3077. const int8_t * restrict q8 = y[i].qs;
  3078. memset(aux32, 0, 8*sizeof(int32_t));
  3079. int8_t * restrict a = aux8;
  3080. for (int l = 0; l < 16; ++l) {
  3081. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3082. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3083. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3084. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3085. }
  3086. int is = 0;
  3087. for (int j = 0; j < QK_K/16; ++j) {
  3088. int scale = x[i].scales[is++];
  3089. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3090. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3091. q8 += 8; a += 8;
  3092. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3093. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3094. q8 += 8; a += 8;
  3095. }
  3096. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3097. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3098. }
  3099. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3100. *s = sumf;
  3101. #endif
  3102. }
  3103. #endif