llama.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUBLAS
  5. #include "ggml-cuda.h"
  6. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  7. #else
  8. #define LLAMA_MAX_DEVICES 1
  9. #endif // GGML_USE_CUBLAS
  10. #include <stddef.h>
  11. #include <stdint.h>
  12. #include <stdbool.h>
  13. #ifdef LLAMA_SHARED
  14. # if defined(_WIN32) && !defined(__MINGW32__)
  15. # ifdef LLAMA_BUILD
  16. # define LLAMA_API __declspec(dllexport)
  17. # else
  18. # define LLAMA_API __declspec(dllimport)
  19. # endif
  20. # else
  21. # define LLAMA_API __attribute__ ((visibility ("default")))
  22. # endif
  23. #else
  24. # define LLAMA_API
  25. #endif
  26. #ifdef __GNUC__
  27. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  28. #elif defined(_MSC_VER)
  29. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  30. #else
  31. # define DEPRECATED(func, hint) func
  32. #endif
  33. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  34. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  35. #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
  36. #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
  37. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  38. #define LLAMA_FILE_VERSION 3
  39. #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
  40. #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
  41. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  42. #define LLAMA_SESSION_VERSION 1
  43. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  44. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  45. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  46. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  47. #endif
  48. #ifdef __cplusplus
  49. extern "C" {
  50. #endif
  51. //
  52. // C interface
  53. //
  54. // TODO: show sample usage
  55. //
  56. struct llama_model;
  57. struct llama_context;
  58. typedef int llama_token;
  59. typedef struct llama_token_data {
  60. llama_token id; // token id
  61. float logit; // log-odds of the token
  62. float p; // probability of the token
  63. } llama_token_data;
  64. typedef struct llama_token_data_array {
  65. llama_token_data * data;
  66. size_t size;
  67. bool sorted;
  68. } llama_token_data_array;
  69. typedef void (*llama_progress_callback)(float progress, void *ctx);
  70. struct llama_context_params {
  71. uint32_t seed; // RNG seed, -1 for random
  72. int32_t n_ctx; // text context
  73. int32_t n_batch; // prompt processing batch size
  74. int32_t n_gpu_layers; // number of layers to store in VRAM
  75. int32_t main_gpu; // the GPU that is used for scratch and small tensors
  76. const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
  77. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  78. float rope_freq_base; // RoPE base frequency
  79. float rope_freq_scale; // RoPE frequency scaling factor
  80. // called with a progress value between 0 and 1, pass NULL to disable
  81. llama_progress_callback progress_callback;
  82. // context pointer passed to the progress callback
  83. void * progress_callback_user_data;
  84. // Keep the booleans together to avoid misalignment during copy-by-value.
  85. bool low_vram; // if true, reduce VRAM usage at the cost of performance
  86. bool f16_kv; // use fp16 for KV cache
  87. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  88. bool vocab_only; // only load the vocabulary, no weights
  89. bool use_mmap; // use mmap if possible
  90. bool use_mlock; // force system to keep model in RAM
  91. bool embedding; // embedding mode only
  92. };
  93. // model file types
  94. enum llama_ftype {
  95. LLAMA_FTYPE_ALL_F32 = 0,
  96. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  100. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  101. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  102. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
  110. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
  114. };
  115. // model quantization parameters
  116. typedef struct llama_model_quantize_params {
  117. int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  118. enum llama_ftype ftype; // quantize to this llama_ftype
  119. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  120. bool quantize_output_tensor; // quantize output.weight
  121. } llama_model_quantize_params;
  122. // performance timing information
  123. struct llama_timings {
  124. double t_start_ms;
  125. double t_end_ms;
  126. double t_load_ms;
  127. double t_sample_ms;
  128. double t_p_eval_ms;
  129. double t_eval_ms;
  130. int32_t n_sample;
  131. int32_t n_p_eval;
  132. int32_t n_eval;
  133. };
  134. LLAMA_API int llama_max_devices();
  135. LLAMA_API struct llama_context_params llama_context_default_params();
  136. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
  137. LLAMA_API bool llama_mmap_supported();
  138. LLAMA_API bool llama_mlock_supported();
  139. // TODO: not great API - very likely to change
  140. // Initialize the llama + ggml backend
  141. // If numa is true, use NUMA optimizations
  142. // Call once at the start of the program
  143. LLAMA_API void llama_backend_init(bool numa);
  144. // Call once at the end of the program - currently only used for MPI
  145. LLAMA_API void llama_backend_free();
  146. LLAMA_API int64_t llama_time_us();
  147. LLAMA_API struct llama_model * llama_load_model_from_file(
  148. const char * path_model,
  149. struct llama_context_params params);
  150. LLAMA_API void llama_free_model(struct llama_model * model);
  151. LLAMA_API struct llama_context * llama_new_context_with_model(
  152. struct llama_model * model,
  153. struct llama_context_params params);
  154. // Various functions for loading a ggml llama model.
  155. // Allocate (almost) all memory needed for the model.
  156. // Return NULL on failure
  157. LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
  158. const char * path_model,
  159. struct llama_context_params params),
  160. "please use llama_load_model_from_file combined with llama_new_context_with_model instead");
  161. // Frees all allocated memory
  162. LLAMA_API void llama_free(struct llama_context * ctx);
  163. // Returns 0 on success
  164. LLAMA_API int llama_model_quantize(
  165. const char * fname_inp,
  166. const char * fname_out,
  167. const llama_model_quantize_params * params);
  168. // Apply a LoRA adapter to a loaded model
  169. // path_base_model is the path to a higher quality model to use as a base for
  170. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  171. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  172. // will be applied on top of the previous one
  173. // Returns 0 on success
  174. LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
  175. struct llama_context * ctx,
  176. const char * path_lora,
  177. const char * path_base_model,
  178. int n_threads),
  179. "please use llama_model_apply_lora_from_file instead");
  180. LLAMA_API int llama_model_apply_lora_from_file(
  181. const struct llama_model * model,
  182. const char * path_lora,
  183. const char * path_base_model,
  184. int n_threads);
  185. // Returns the number of tokens in the KV cache
  186. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  187. // Sets the current rng seed.
  188. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  189. // Returns the maximum size in bytes of the state (rng, logits, embedding
  190. // and kv_cache) - will often be smaller after compacting tokens
  191. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  192. // Copies the state to the specified destination address.
  193. // Destination needs to have allocated enough memory.
  194. // Returns the number of bytes copied
  195. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  196. // Set the state reading from the specified address
  197. // Returns the number of bytes read
  198. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
  199. // Save/load session file
  200. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  201. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  202. // Run the llama inference to obtain the logits and probabilities for the next token.
  203. // tokens + n_tokens is the provided batch of new tokens to process
  204. // n_past is the number of tokens to use from previous eval calls
  205. // Returns 0 on success
  206. LLAMA_API int llama_eval(
  207. struct llama_context * ctx,
  208. const llama_token * tokens,
  209. int n_tokens,
  210. int n_past,
  211. int n_threads);
  212. // Same as llama_eval, but use float matrix input directly.
  213. LLAMA_API int llama_eval_embd(
  214. struct llama_context * ctx,
  215. const float * embd,
  216. int n_tokens,
  217. int n_past,
  218. int n_threads);
  219. // Export a static computation graph for context of 511 and batch size of 1
  220. // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
  221. // parameters here to keep things simple
  222. // IMPORTANT: do not use for anything else other than debugging and testing!
  223. LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
  224. // Convert the provided text into tokens.
  225. // The tokens pointer must be large enough to hold the resulting tokens.
  226. // Returns the number of tokens on success, no more than n_max_tokens
  227. // Returns a negative number on failure - the number of tokens that would have been returned
  228. // TODO: not sure if correct
  229. LLAMA_API int llama_tokenize(
  230. struct llama_context * ctx,
  231. const char * text,
  232. llama_token * tokens,
  233. int n_max_tokens,
  234. bool add_bos);
  235. LLAMA_API int llama_tokenize_with_model(
  236. const struct llama_model * model,
  237. const char * text,
  238. llama_token * tokens,
  239. int n_max_tokens,
  240. bool add_bos);
  241. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  242. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  243. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  244. LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
  245. LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
  246. LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
  247. // Get the vocabulary as output parameters.
  248. // Returns number of results.
  249. LLAMA_API int llama_get_vocab(
  250. const struct llama_context * ctx,
  251. const char * * strings,
  252. float * scores,
  253. int capacity);
  254. LLAMA_API int llama_get_vocab_from_model(
  255. const struct llama_model * model,
  256. const char * * strings,
  257. float * scores,
  258. int capacity);
  259. // Token logits obtained from the last call to llama_eval()
  260. // The logits for the last token are stored in the last row
  261. // Can be mutated in order to change the probabilities of the next token
  262. // Rows: n_tokens
  263. // Cols: n_vocab
  264. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  265. // Get the embeddings for the input
  266. // shape: [n_embd] (1-dimensional)
  267. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  268. // Token Id -> String. Uses the vocabulary in the provided context
  269. LLAMA_API const char * llama_token_to_str(
  270. const struct llama_context * ctx,
  271. llama_token token);
  272. LLAMA_API const char * llama_token_to_str_with_model(
  273. const struct llama_model * model,
  274. llama_token token);
  275. // Special tokens
  276. LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
  277. LLAMA_API llama_token llama_token_eos(); // end-of-sentence
  278. LLAMA_API llama_token llama_token_nl(); // next-line
  279. // Sampling functions
  280. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  281. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  282. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  283. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  284. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  285. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
  286. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  287. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  288. LLAMA_API void llama_sample_classifier_free_guidance(
  289. struct llama_context * ctx,
  290. llama_token_data_array * candidates,
  291. struct llama_context * guidance_ctx,
  292. float scale);
  293. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  294. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  295. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  296. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  297. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  298. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  299. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  300. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  301. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  302. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  303. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  304. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  305. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  306. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  307. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  308. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  309. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  310. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  311. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  312. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  313. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  314. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  315. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  316. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  317. /// @details Selects the token with the highest probability.
  318. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  319. /// @details Randomly selects a token from the candidates based on their probabilities.
  320. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  321. // Performance information
  322. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  323. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  324. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  325. // Print system information
  326. LLAMA_API const char * llama_print_system_info(void);
  327. #ifdef __cplusplus
  328. }
  329. #endif
  330. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  331. #ifdef LLAMA_API_INTERNAL
  332. #include <vector>
  333. #include <string>
  334. struct ggml_tensor;
  335. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  336. #endif
  337. #endif // LLAMA_H