ggml-opencl.cpp 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #include <vector>
  6. #include <limits>
  7. #define CL_TARGET_OPENCL_VERSION 110
  8. #include <clblast.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include <string.h>
  12. #include "ggml.h"
  13. #define CL_DMMV_BLOCK_SIZE 32
  14. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  15. static std::string program_source = MULTILINE_QUOTE(
  16. typedef char int8_t;
  17. typedef uchar uint8_t;
  18. typedef int int32_t;
  19. typedef uint uint32_t;
  20. struct __attribute__ ((packed)) block_q4_0
  21. {
  22. half d;
  23. uint8_t qs[QK4_0 / 2];
  24. };
  25. struct __attribute__ ((packed)) block_q4_1
  26. {
  27. half d;
  28. half m;
  29. uint8_t qs[QK4_1 / 2];
  30. };
  31. struct __attribute__ ((packed)) block_q5_0
  32. {
  33. half d;
  34. uint32_t qh;
  35. uint8_t qs[QK5_0 / 2];
  36. };
  37. struct __attribute__ ((packed)) block_q5_1
  38. {
  39. half d;
  40. half m;
  41. uint32_t qh;
  42. uint8_t qs[QK5_1 / 2];
  43. };
  44. struct __attribute__ ((packed)) block_q8_0
  45. {
  46. half d;
  47. int8_t qs[QK8_0];
  48. };
  49. struct __attribute__((packed)) block_q2_K
  50. {
  51. uint8_t scales[16];
  52. uint8_t qs[64];
  53. half d;
  54. half dmin;
  55. };
  56. struct __attribute__((packed)) block_q3_K
  57. {
  58. uint8_t hmask[32];
  59. uint8_t qs[64];
  60. uint8_t scales[12];
  61. half d;
  62. };
  63. struct __attribute__((packed)) block_q4_K
  64. {
  65. half d;
  66. half dmin;
  67. uint8_t scales[12];
  68. uint8_t qs[128];
  69. };
  70. struct __attribute__((packed)) block_q5_K
  71. {
  72. half d;
  73. half dmin;
  74. uint8_t scales[12];
  75. uint8_t qh[32];
  76. uint8_t qs[128];
  77. };
  78. struct __attribute__((packed)) block_q6_K
  79. {
  80. uint8_t ql[128];
  81. uint8_t qh[64];
  82. int8_t scales[16];
  83. half d;
  84. };
  85. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  86. const uint i = get_global_id(0);
  87. y[i] = vload_half(0, &x[i]);
  88. }
  89. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  90. const float d = vload_half(0, &x[ib].d);
  91. const uint8_t vui = x[ib].qs[iqs];
  92. const int8_t vi0 = vui & 0xF;
  93. const int8_t vi1 = vui >> 4;
  94. *v0 = (vi0 - 8)*d;
  95. *v1 = (vi1 - 8)*d;
  96. }
  97. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  98. const float d = vload_half(0, &x[ib].d);
  99. const float m = vload_half(0, &x[ib].m);
  100. const uint8_t vui = x[ib].qs[iqs];
  101. const int8_t vi0 = vui & 0xF;
  102. const int8_t vi1 = vui >> 4;
  103. *v0 = vi0*d + m;
  104. *v1 = vi1*d + m;
  105. }
  106. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  107. const float d = vload_half(0, &x[ib].d);
  108. uint32_t qh = x[ib].qh;
  109. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  110. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  111. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  112. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  113. *v0 = x0*d;
  114. *v1 = x1*d;
  115. }
  116. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  117. const float d = vload_half(0, &x[ib].d);
  118. const float m = vload_half(0, &x[ib].m);
  119. uint32_t qh = x[ib].qh;
  120. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  121. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  122. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  123. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  124. *v0 = x0*d + m;
  125. *v1 = x1*d + m;
  126. }
  127. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  128. const float d = vload_half(0, &x[ib].d);
  129. const int8_t vi0 = x[ib].qs[iqs + 0];
  130. const int8_t vi1 = x[ib].qs[iqs + 1];
  131. *v0 = vi0*d;
  132. *v1 = vi1*d;
  133. }
  134. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  135. *v0 = vload_half(0, &x[ib + 0]);
  136. *v1 = vload_half(0, &x[ib + 1]);
  137. }
  138. inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
  139. {
  140. if (j < 4)
  141. {
  142. *d = q[j] & 63;
  143. *m = q[j + 4] & 63;
  144. }
  145. else
  146. {
  147. *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
  148. *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
  149. }
  150. }
  151. __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
  152. {
  153. const int i = get_group_id(0);
  154. const int tid = get_local_id(0);
  155. const int n = tid / 32;
  156. const int l = tid - 32 * n;
  157. const int is = 8 * n + l / 16;
  158. const uint8_t q = x[i].qs[32 * n + l];
  159. __global float *y = yy + i * 256 + 128 * n;
  160. const float dall = vload_half(0, &x[i].d);
  161. const float dmin = vload_half(0, &x[i].dmin);
  162. y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
  163. y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
  164. y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
  165. y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
  166. }
  167. __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
  168. {
  169. int r = get_local_id(0) / 4;
  170. int i = get_group_id(0);
  171. int tid = r / 2;
  172. int is0 = r % 2;
  173. int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
  174. int n = tid / 4;
  175. int j = tid - 4 * n;
  176. uint8_t m = 1 << (4 * n + j);
  177. int is = 8 * n + 2 * j + is0;
  178. int shift = 2 * j;
  179. int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
  180. : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
  181. : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
  182. : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
  183. float d_all = vload_half(0, &x[i].d);
  184. float dl = d_all * (us - 32);
  185. __global float *y = yy + i * 256 + 128 * n + 32 * j;
  186. const __global uint8_t *q = x[i].qs + 32 * n;
  187. const __global uint8_t *hm = x[i].hmask;
  188. for (int l = l0; l < l0 + 4; ++l)
  189. y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
  190. }
  191. __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
  192. {
  193. const int i = get_group_id(0);
  194. const int tid = get_local_id(0);
  195. const int il = tid / 8;
  196. const int ir = tid % 8;
  197. const int is = 2 * il;
  198. const int n = 4;
  199. __global float *y = yy + i * 256 + 64 * il + n * ir;
  200. const float dall = vload_half(0, &x[i].d);
  201. const float dmin = vload_half(0, &x[i].dmin);
  202. __global const uint8_t *q = x[i].qs + 32 * il + n * ir;
  203. uint8_t sc, m;
  204. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  205. float d1 = dall * sc;
  206. float m1 = dmin * m;
  207. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  208. float d2 = dall * sc;
  209. float m2 = dmin * m;
  210. for (int l = 0; l < n; ++l)
  211. {
  212. y[l + 0] = d1 * (q[l] & 0xF) - m1;
  213. y[l + 32] = d2 * (q[l] >> 4) - m2;
  214. }
  215. }
  216. __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
  217. {
  218. const int i = get_group_id(0);
  219. const int tid = get_local_id(0);
  220. const int il = tid / 16;
  221. const int ir = tid % 16;
  222. const int is = 2 * il;
  223. __global float *y = yy + i * 256 + 64 * il + 2 * ir;
  224. const float dall = vload_half(0, &x[i].d);
  225. const float dmin = vload_half(0, &x[i].dmin);
  226. __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
  227. __global const uint8_t *qh = x[i].qh + 2 * ir;
  228. uint8_t sc, m;
  229. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  230. const float d1 = dall * sc;
  231. const float m1 = dmin * m;
  232. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  233. const float d2 = dall * sc;
  234. const float m2 = dmin * m;
  235. uint8_t hm = 1 << (2 * il);
  236. y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
  237. y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
  238. hm <<= 1;
  239. y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
  240. y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
  241. }
  242. __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
  243. {
  244. const int i = get_group_id(0);
  245. const int tid = get_local_id(0);
  246. const int ip = tid / 32;
  247. const int il = tid - 32 * ip;
  248. const int is = 8 * ip + il / 16;
  249. __global float *y = yy + i * 256 + 128 * ip + il;
  250. const float d = vload_half(0, &x[i].d);
  251. __global const uint8_t *ql = x[i].ql + 64 * ip + il;
  252. const uint8_t qh = x[i].qh[32 * ip + il];
  253. __global const int8_t *sc = x[i].scales + is;
  254. y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
  255. y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
  256. y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
  257. y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
  258. }
  259. void vec_dot_q2_K(__global const struct block_q2_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  260. int n = iqs / 128;
  261. int r = iqs - 128 * n;
  262. int l = r / 8;
  263. __global const float *y = yy + 128 * n + l;
  264. __global const uint8_t *q = x[ib].qs + 32 * n + l;
  265. __global const uint8_t *s = x[ib].scales + 8 * n;
  266. const float dall = vload_half(0, &x[ib].d);
  267. const float dmin = vload_half(0, &x[ib].dmin);
  268. float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
  269. + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
  270. + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
  271. + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
  272. + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
  273. + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
  274. + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
  275. + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
  276. *result = sum;
  277. }
  278. void vec_dot_q3_K(__global const struct block_q3_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  279. const uint32_t kmask1 = 0x03030303;
  280. const uint32_t kmask2 = 0x0f0f0f0f;
  281. uint32_t aux[3];
  282. uint32_t utmp[4];
  283. int n = iqs/128;
  284. int r = iqs - 128*n;
  285. int l = r/8;
  286. __global const float * y = yy + 128*n + l;
  287. __global const uint8_t * q = x[ib].qs + 32*n + l;
  288. __global const uint8_t * hm = x[ib].hmask + l;
  289. const int8_t * s = (const int8_t *)utmp + 8*n;
  290. aux[0] = x[ib].scales[0] | x[ib].scales[1] << 8 | x[ib].scales[2] << 16 | x[ib].scales[3] << 24;
  291. aux[1] = x[ib].scales[4] | x[ib].scales[5] << 8 | x[ib].scales[6] << 16 | x[ib].scales[7] << 24;
  292. aux[2] = x[ib].scales[8] | x[ib].scales[9] << 8 | x[ib].scales[10] << 16 | x[ib].scales[11] << 24;
  293. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  294. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  295. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  296. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  297. const float dall = vload_half(0, &x[ib].d);
  298. const uint8_t m = 1 << (4*n);
  299. float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
  300. + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
  301. + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
  302. + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
  303. + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
  304. + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
  305. + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
  306. + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
  307. *result = sum * dall;
  308. }
  309. void vec_dot_q4_K(__global const struct block_q4_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  310. const int j = iqs / 64; // j is in 0...3
  311. const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
  312. const int is = 2*j; // is is in 0...6 in steps of 2
  313. __global const float * y = yy + 64*j + ir;
  314. __global const uint8_t * q = x[ib].qs + 32*j + ir;
  315. const float dall = vload_half(0, &x[ib].d);
  316. const float dmin = vload_half(0, &x[ib].dmin);
  317. uint8_t sc, m;
  318. get_scale_min_k4(is + 0, x[ib].scales, &sc, &m);
  319. const float d1 = dall * sc;
  320. const float m1 = dmin * m;
  321. get_scale_min_k4(is + 1, x[ib].scales, &sc, &m);
  322. const float d2 = dall * sc;
  323. const float m2 = dmin * m;
  324. float sum = 0;
  325. for (int k = 0; k < 4; ++k) {
  326. sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1);
  327. sum += y[k + 32] * (d2 * (q[k] >> 4) - m2);
  328. }
  329. *result = sum;
  330. }
  331. void vec_dot_q5_K(__global const struct block_q5_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  332. const int j = iqs / 64;
  333. const int ir = (iqs - 64*j)/2;
  334. const int is = 2*j;
  335. __global const float * y = yy + 64*j + ir;
  336. __global const uint8_t * ql = x[ib].qs + 32*j + ir;
  337. __global const uint8_t * qh = x[ib].qh + ir;
  338. const float dall = vload_half(0, &x[ib].d);
  339. const float dmin = vload_half(0, &x[ib].dmin);
  340. uint8_t sc, m;
  341. get_scale_min_k4(is + 0, x[ib].scales, &sc, &m);
  342. const float d1 = dall * sc;
  343. const float m1 = dmin * m;
  344. get_scale_min_k4(is + 1, x[ib].scales, &sc, &m);
  345. const float d2 = dall * sc;
  346. const float m2 = dmin * m;
  347. uint8_t hm = 1 << is;
  348. float sum = 0;
  349. for (int k = 0; k < 4; ++k) {
  350. sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
  351. }
  352. hm <<= 1;
  353. for (int k = 0; k < 4; ++k) {
  354. sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2);
  355. }
  356. *result = sum;
  357. }
  358. void vec_dot_q6_K(__global const struct block_q6_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  359. const int ip = iqs / 128; // 0 or 1
  360. const int il = (iqs - 128*ip)/8; // 0...15
  361. const int is = 8*ip;
  362. __global const float * y = yy + 128*ip + il;
  363. const float d = vload_half(0, &x[ib].d);
  364. __global const uint8_t * ql = x[ib].ql + 64*ip + il;
  365. __global const uint8_t * qh = x[ib].qh + 32*ip + il;
  366. __global const int8_t * sc = x[ib].scales + is;
  367. *result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
  368. + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
  369. + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
  370. + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
  371. + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
  372. + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
  373. + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
  374. + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
  375. }
  376. );
  377. std::string dequant_template = MULTILINE_QUOTE(
  378. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  379. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  380. if (i >= get_global_size(0)) {
  381. return;
  382. }
  383. const uint qk = QUANT_K;
  384. const uint qr = QUANT_R;
  385. const int ib = i/qk; // block index
  386. const int iqs = (i%qk)/qr; // quant index
  387. const int iybs = i - i%qk; // y block start index
  388. const int y_offset = qr == 1 ? 1 : qk/2;
  389. // dequantize
  390. float v0, v1;
  391. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  392. y[iybs + iqs + 0] = v0;
  393. y[iybs + iqs + y_offset] = v1;
  394. }
  395. );
  396. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  397. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  398. const int block_size = get_local_size(0);
  399. const int row = get_group_id(0);
  400. const int tid = get_local_id(0);
  401. const uint qk = QUANT_K;
  402. const uint qr = QUANT_R;
  403. const int y_offset = qr == 1 ? 1 : qk/2;
  404. tmp[tid] = 0;
  405. for (int i = 0; i < ncols/block_size; i += 2) {
  406. const int col = i*block_size + 2*tid;
  407. const int ib = (row*ncols + col)/qk; // block index
  408. const int iqs = (col%qk)/qr; // quant index
  409. const int iybs = col - col%qk; // y block start index
  410. // dequantize
  411. float v0, v1;
  412. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  413. // matrix multiplication
  414. tmp[tid] += v0 * y[iybs + iqs + 0];
  415. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  416. }
  417. // sum up partial sums and write back result
  418. barrier(CLK_LOCAL_MEM_FENCE);
  419. for (int s=block_size/2; s>0; s>>=1) {
  420. if (tid < s) {
  421. tmp[tid] += tmp[tid + s];
  422. }
  423. barrier(CLK_LOCAL_MEM_FENCE);
  424. }
  425. if (tid == 0) {
  426. dst[row] = tmp[0];
  427. }
  428. }
  429. );
  430. std::string dequant_mul_mat_vec_k_template = MULTILINE_QUOTE(
  431. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  432. const int block_size = get_local_size(0);
  433. const int row = get_group_id(0);
  434. const int tid = get_local_id(0);
  435. const int iter_stride = 256;
  436. const int vals_per_iter = iter_stride / block_size;
  437. const int num_blocks_per_row = ncols / 256;
  438. const int ib0 = row*num_blocks_per_row;
  439. tmp[tid] = 0;
  440. for (int i = 0; i < ncols; i += iter_stride) {
  441. const int col = i + vals_per_iter*tid;
  442. const int ib = ib0 + col/256; // x block index
  443. const int iqs = col%256; // x quant index
  444. const int iybs = col - col%256; // y block start index
  445. // dequantize
  446. float v;
  447. DOT_KERNEL(x, ib, iqs, y + iybs, &v);
  448. tmp[tid] += v;
  449. }
  450. // sum up partial sums and write back result
  451. barrier(CLK_LOCAL_MEM_FENCE);
  452. for (int s=block_size/2; s>0; s>>=1) {
  453. if (tid < s) {
  454. tmp[tid] += tmp[tid + s];
  455. }
  456. barrier(CLK_LOCAL_MEM_FENCE);
  457. }
  458. if (tid == 0) {
  459. dst[row] = tmp[0];
  460. }
  461. }
  462. );
  463. std::string mul_template = MULTILINE_QUOTE(
  464. __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
  465. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
  466. if (i >= get_global_size(0)) {
  467. return;
  468. }
  469. dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
  470. }
  471. );
  472. #define CL_CHECK(err) \
  473. do { \
  474. cl_int err_ = (err); \
  475. if (err_ != CL_SUCCESS) { \
  476. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  477. #err, err_, __FILE__, __LINE__); \
  478. exit(1); \
  479. } \
  480. } while (0)
  481. #define CLBLAST_CHECK(err) \
  482. do { \
  483. CLBlastStatusCode err_ = (err); \
  484. if (err_ != CLBlastSuccess) { \
  485. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  486. #err, err_, __FILE__, __LINE__); \
  487. exit(1); \
  488. } \
  489. } while (0)
  490. std::array<std::string, 5> dequant_str_keys = {
  491. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  492. };
  493. std::array<std::string, 30> dequant_str_values = {
  494. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  495. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  496. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  497. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  498. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  499. "convert_row_f16", "half", "1", "1", "convert_f16"
  500. };
  501. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  502. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  503. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  504. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  505. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  506. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  507. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  508. };
  509. std::array<std::string, 2> mul_str_keys = {
  510. "KERNEL_NAME", "TYPE"
  511. };
  512. std::array<std::string, 2> mul_str_values = {
  513. "mul_f32", "float"
  514. };
  515. std::array<std::string, 3> dmmv_k_str_keys = {
  516. "KERNEL_NAME", "X_TYPE", "DOT_KERNEL"
  517. };
  518. std::array<std::string, 15> dmmv_k_str_values = {
  519. "dequantize_mul_mat_vec_q2_K", "struct block_q2_K", "vec_dot_q2_K",
  520. "dequantize_mul_mat_vec_q3_K", "struct block_q3_K", "vec_dot_q3_K",
  521. "dequantize_mul_mat_vec_q4_K", "struct block_q4_K", "vec_dot_q4_K",
  522. "dequantize_mul_mat_vec_q5_K", "struct block_q5_K", "vec_dot_q5_K",
  523. "dequantize_mul_mat_vec_q6_K", "struct block_q6_K", "vec_dot_q6_K",
  524. };
  525. std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  526. size_t pos = 0;
  527. while ((pos = s.find(from, pos)) != std::string::npos) {
  528. s.replace(pos, from.length(), to);
  529. pos += to.length();
  530. }
  531. return s;
  532. }
  533. std::string generate_kernels() {
  534. std::stringstream src;
  535. src << program_source << '\n';
  536. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  537. std::string dequant_kernel = dequant_template;
  538. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  539. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  540. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  541. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  542. }
  543. src << dequant_kernel << '\n';
  544. src << dmmv_kernel << '\n';
  545. }
  546. for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
  547. std::string mul_kernel = mul_template;
  548. for (size_t j = 0; j < mul_str_keys.size(); j++) {
  549. replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
  550. }
  551. src << mul_kernel << '\n';
  552. }
  553. for (size_t i = 0; i < dmmv_k_str_values.size(); i += dmmv_k_str_keys.size()) {
  554. std::string dmmv_k_kernel = dequant_mul_mat_vec_k_template;
  555. for (size_t j = 0; j < dmmv_k_str_keys.size(); j++) {
  556. replace(dmmv_k_kernel, dmmv_k_str_keys[j], dmmv_k_str_values[i + j]);
  557. }
  558. src << dmmv_k_kernel << '\n';
  559. }
  560. return src.str();
  561. }
  562. static cl_platform_id platform;
  563. static cl_device_id device;
  564. static cl_context context;
  565. static cl_command_queue queue;
  566. static cl_program program;
  567. static cl_kernel convert_row_f16_cl;
  568. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  569. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  570. static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
  571. static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
  572. static cl_kernel mul_f32_cl;
  573. static bool fp16_support;
  574. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  575. cl_program p;
  576. char *program_log;
  577. size_t program_size;
  578. size_t log_size;
  579. int err;
  580. program_size = strlen(program_buffer);
  581. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  582. if(err < 0) {
  583. fprintf(stderr, "OpenCL error creating program");
  584. exit(1);
  585. }
  586. const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  587. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
  588. err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
  589. if(err < 0) {
  590. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  591. program_log = (char*) malloc(log_size + 1);
  592. program_log[log_size] = '\0';
  593. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  594. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  595. free(program_log);
  596. exit(1);
  597. }
  598. return p;
  599. }
  600. void ggml_cl_init(void) {
  601. cl_int err;
  602. struct cl_device;
  603. struct cl_platform {
  604. cl_platform_id id;
  605. unsigned number;
  606. char name[128];
  607. char vendor[128];
  608. struct cl_device * devices;
  609. unsigned n_devices;
  610. struct cl_device * default_device;
  611. };
  612. struct cl_device {
  613. struct cl_platform * platform;
  614. cl_device_id id;
  615. unsigned number;
  616. cl_device_type type;
  617. char name[128];
  618. };
  619. enum { NPLAT = 16, NDEV = 16 };
  620. struct cl_platform platforms[NPLAT];
  621. unsigned n_platforms = 0;
  622. struct cl_device devices[NDEV];
  623. unsigned n_devices = 0;
  624. struct cl_device * default_device = NULL;
  625. platform = NULL;
  626. device = NULL;
  627. cl_platform_id platform_ids[NPLAT];
  628. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  629. for (unsigned i = 0; i < n_platforms; i++) {
  630. struct cl_platform * p = &platforms[i];
  631. p->number = i;
  632. p->id = platform_ids[i];
  633. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  634. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  635. cl_device_id device_ids[NDEV];
  636. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  637. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  638. p->n_devices = 0;
  639. } else {
  640. CL_CHECK(clGetDeviceIDsError);
  641. }
  642. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  643. p->default_device = NULL;
  644. for (unsigned j = 0; j < p->n_devices; j++) {
  645. struct cl_device * d = &devices[n_devices];
  646. d->number = n_devices++;
  647. d->id = device_ids[j];
  648. d->platform = p;
  649. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  650. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  651. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  652. p->default_device = d;
  653. }
  654. }
  655. if (default_device == NULL && p->default_device != NULL) {
  656. default_device = p->default_device;
  657. }
  658. }
  659. if (n_devices == 0) {
  660. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  661. exit(1);
  662. }
  663. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  664. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  665. int user_platform_number = -1;
  666. int user_device_number = -1;
  667. unsigned n;
  668. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  669. user_platform_number = (int)n;
  670. }
  671. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  672. user_device_number = (int)n;
  673. }
  674. if (user_platform_number != -1 && user_device_number != -1) {
  675. cl_platform* platform = &platforms[user_platform_number];
  676. if ((unsigned)user_device_number >= platform->n_devices) {
  677. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  678. exit(1);
  679. }
  680. default_device = &platform->devices[user_device_number];
  681. } else {
  682. struct cl_device * selected_devices = devices;
  683. unsigned n_selected_devices = n_devices;
  684. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  685. for (unsigned i = 0; i < n_platforms; i++) {
  686. struct cl_platform * p = &platforms[i];
  687. if (strstr(p->name, user_platform_string) != NULL ||
  688. strstr(p->vendor, user_platform_string) != NULL) {
  689. user_platform_number = (int)i;
  690. break;
  691. }
  692. }
  693. if (user_platform_number == -1) {
  694. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  695. exit(1);
  696. }
  697. }
  698. if (user_platform_number != -1) {
  699. struct cl_platform * p = &platforms[user_platform_number];
  700. selected_devices = p->devices;
  701. n_selected_devices = p->n_devices;
  702. default_device = p->default_device;
  703. if (n_selected_devices == 0) {
  704. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  705. exit(1);
  706. }
  707. }
  708. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  709. for (unsigned i = 0; i < n_selected_devices; i++) {
  710. struct cl_device * d = &selected_devices[i];
  711. if (strstr(d->name, user_device_string) != NULL) {
  712. user_device_number = d->number;
  713. break;
  714. }
  715. }
  716. if (user_device_number == -1) {
  717. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  718. exit(1);
  719. }
  720. }
  721. if (user_device_number != -1) {
  722. selected_devices = &devices[user_device_number];
  723. n_selected_devices = 1;
  724. default_device = &selected_devices[0];
  725. }
  726. GGML_ASSERT(n_selected_devices > 0);
  727. if (default_device == NULL) {
  728. default_device = &selected_devices[0];
  729. }
  730. }
  731. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  732. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  733. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  734. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  735. }
  736. platform = default_device->platform->id;
  737. device = default_device->id;
  738. size_t ext_str_size;
  739. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  740. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  741. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  742. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  743. // Check if ext_buffer contains cl_khr_fp16
  744. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  745. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  746. cl_context_properties properties[] = {
  747. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  748. };
  749. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  750. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  751. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  752. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  753. )));
  754. const std::string kernel_src = generate_kernels();
  755. program = build_program_from_source(context, device, kernel_src.c_str());
  756. // FP16 to FP32 kernel
  757. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  758. // Dequantize kernels
  759. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  760. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  761. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  762. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  763. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  764. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  765. CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
  766. CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
  767. CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
  768. CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
  769. CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
  770. // dequant mul mat kernel
  771. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  772. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  773. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  774. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  775. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  776. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  777. CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
  778. CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
  779. CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
  780. CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
  781. CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
  782. // mul kernel
  783. CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
  784. }
  785. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  786. switch (type) {
  787. case GGML_TYPE_Q4_0:
  788. return &dequantize_row_q4_0_cl;
  789. case GGML_TYPE_Q4_1:
  790. return &dequantize_row_q4_1_cl;
  791. case GGML_TYPE_Q5_0:
  792. return &dequantize_row_q5_0_cl;
  793. case GGML_TYPE_Q5_1:
  794. return &dequantize_row_q5_1_cl;
  795. case GGML_TYPE_Q8_0:
  796. return &dequantize_row_q8_0_cl;
  797. case GGML_TYPE_Q2_K:
  798. return &dequantize_block_q2_k_cl;
  799. case GGML_TYPE_Q3_K:
  800. return &dequantize_block_q3_k_cl;
  801. case GGML_TYPE_Q4_K:
  802. return &dequantize_block_q4_k_cl;
  803. case GGML_TYPE_Q5_K:
  804. return &dequantize_block_q5_k_cl;
  805. case GGML_TYPE_Q6_K:
  806. return &dequantize_block_q6_k_cl;
  807. case GGML_TYPE_F16:
  808. return &convert_row_f16_cl;
  809. default:
  810. return nullptr;
  811. }
  812. }
  813. static size_t ggml_cl_global_denom(ggml_type type) {
  814. switch (type) {
  815. case GGML_TYPE_Q4_0:
  816. case GGML_TYPE_Q4_1:
  817. case GGML_TYPE_Q5_0:
  818. case GGML_TYPE_Q5_1:
  819. case GGML_TYPE_Q8_0:
  820. return 1;
  821. case GGML_TYPE_Q2_K:
  822. case GGML_TYPE_Q3_K:
  823. return 4;
  824. case GGML_TYPE_Q4_K:
  825. return 8;
  826. case GGML_TYPE_Q5_K:
  827. case GGML_TYPE_Q6_K:
  828. return 4;
  829. case GGML_TYPE_F16:
  830. default:
  831. return 1;
  832. }
  833. }
  834. static size_t ggml_cl_local_size(ggml_type type) {
  835. switch (type) {
  836. case GGML_TYPE_Q4_0:
  837. case GGML_TYPE_Q4_1:
  838. case GGML_TYPE_Q5_0:
  839. case GGML_TYPE_Q5_1:
  840. case GGML_TYPE_Q8_0:
  841. return 0;
  842. case GGML_TYPE_Q2_K:
  843. case GGML_TYPE_Q3_K:
  844. return 64;
  845. case GGML_TYPE_Q4_K:
  846. return 32;
  847. case GGML_TYPE_Q5_K:
  848. case GGML_TYPE_Q6_K:
  849. return 64;
  850. case GGML_TYPE_F16:
  851. default:
  852. return 0;
  853. }
  854. }
  855. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  856. switch (type) {
  857. case GGML_TYPE_Q4_0:
  858. return &dequantize_mul_mat_vec_q4_0_cl;
  859. case GGML_TYPE_Q4_1:
  860. return &dequantize_mul_mat_vec_q4_1_cl;
  861. case GGML_TYPE_Q5_0:
  862. return &dequantize_mul_mat_vec_q5_0_cl;
  863. case GGML_TYPE_Q5_1:
  864. return &dequantize_mul_mat_vec_q5_1_cl;
  865. case GGML_TYPE_Q8_0:
  866. return &dequantize_mul_mat_vec_q8_0_cl;
  867. case GGML_TYPE_F16:
  868. return &convert_mul_mat_vec_f16_cl;
  869. case GGML_TYPE_Q2_K:
  870. return &dequantize_mul_mat_vec_q2_K_cl;
  871. case GGML_TYPE_Q3_K:
  872. return &dequantize_mul_mat_vec_q3_K_cl;
  873. case GGML_TYPE_Q4_K:
  874. return &dequantize_mul_mat_vec_q4_K_cl;
  875. case GGML_TYPE_Q5_K:
  876. return &dequantize_mul_mat_vec_q5_K_cl;
  877. case GGML_TYPE_Q6_K:
  878. return &dequantize_mul_mat_vec_q6_K_cl;
  879. default:
  880. return nullptr;
  881. }
  882. }
  883. // buffer pool for cl
  884. #define MAX_CL_BUFFERS 256
  885. struct scoped_spin_lock {
  886. std::atomic_flag& lock;
  887. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  888. while (lock.test_and_set(std::memory_order_acquire)) {
  889. ; // spin
  890. }
  891. }
  892. ~scoped_spin_lock() {
  893. lock.clear(std::memory_order_release);
  894. }
  895. scoped_spin_lock(const scoped_spin_lock&) = delete;
  896. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  897. };
  898. struct cl_buffer {
  899. cl_mem mem;
  900. size_t size = 0;
  901. };
  902. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  903. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  904. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
  905. scoped_spin_lock lock(g_cl_pool_lock);
  906. cl_int err;
  907. int best_i = -1;
  908. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  909. int worst_i = -1;
  910. size_t worst_size = 0; //largest unused buffer seen so far
  911. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  912. cl_buffer &b = g_cl_buffer_pool[i];
  913. if (b.size > 0 && b.size >= size && b.size < best_size)
  914. {
  915. best_i = i;
  916. best_size = b.size;
  917. }
  918. if (b.size > 0 && b.size > worst_size)
  919. {
  920. worst_i = i;
  921. worst_size = b.size;
  922. }
  923. }
  924. if(best_i!=-1) //found the smallest buffer that fits our needs
  925. {
  926. cl_buffer& b = g_cl_buffer_pool[best_i];
  927. cl_mem mem = b.mem;
  928. *actual_size = b.size;
  929. b.size = 0;
  930. return mem;
  931. }
  932. if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
  933. {
  934. cl_buffer& b = g_cl_buffer_pool[worst_i];
  935. cl_mem mem = b.mem;
  936. b.size = 0;
  937. clReleaseMemObject(mem);
  938. }
  939. cl_mem mem;
  940. CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
  941. *actual_size = size;
  942. return mem;
  943. }
  944. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  945. scoped_spin_lock lock(g_cl_pool_lock);
  946. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  947. cl_buffer& b = g_cl_buffer_pool[i];
  948. if (b.size == 0) {
  949. b.mem = mem;
  950. b.size = size;
  951. return;
  952. }
  953. }
  954. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  955. clReleaseMemObject(mem);
  956. }
  957. void ggml_cl_free_data(const struct ggml_tensor* tensor) {
  958. if (tensor->backend != GGML_BACKEND_GPU) {
  959. return;
  960. }
  961. cl_mem mem = (cl_mem)tensor->data;
  962. clReleaseMemObject(mem);
  963. }
  964. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  965. cl_int err;
  966. const uint64_t ne0 = src->ne[0];
  967. const uint64_t ne1 = src->ne[1];
  968. const uint64_t nb0 = src->nb[0];
  969. const uint64_t nb1 = src->nb[1];
  970. const uint64_t nb2 = src->nb[2];
  971. const uint64_t nb3 = src->nb[3];
  972. const enum ggml_type type = src->type;
  973. const size_t ts = ggml_type_size(type);
  974. const size_t bs = ggml_blck_size(type);
  975. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  976. if (nb0 == ts && nb1 == ts*ne0/bs) {
  977. err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
  978. return err;
  979. }
  980. if (nb0 == ts) {
  981. const size_t buffer_origin[3] = { offset, 0, 0 };
  982. const size_t host_origin[3] = { 0, 0, 0 };
  983. const size_t region[3] = { ts*ne0/bs, ne1, 1 };
  984. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
  985. return err;
  986. }
  987. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  988. // pretend the row is a matrix with cols=1
  989. const size_t buffer_origin[3] = { offset, i1, 0 };
  990. const size_t host_origin[3] = { 0, 0, 0 };
  991. const size_t region[3] = { ts/bs, ne0, 1 };
  992. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
  993. if (err != CL_SUCCESS) {
  994. break;
  995. }
  996. }
  997. return err;
  998. }
  999. static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1000. GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
  1001. const int64_t ne00 = src0->ne[0];
  1002. const int64_t ne01 = src0->ne[1];
  1003. const int64_t ne02 = src0->ne[2];
  1004. const int64_t ne03 = src0->ne[2];
  1005. const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
  1006. const int64_t ne10 = src1->ne[0];
  1007. const int64_t ne11 = src1->ne[1];
  1008. const int64_t ne12 = src1->ne[2];
  1009. const int64_t ne13 = src1->ne[3];
  1010. const int64_t nb10 = src1->nb[0];
  1011. const int nb2 = dst->nb[2];
  1012. const int nb3 = dst->nb[3];
  1013. size_t x_size;
  1014. size_t d_size;
  1015. cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
  1016. cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
  1017. cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
  1018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1020. const int i0 = i03*ne02 + i02;
  1021. cl_event ev;
  1022. // copy src0 to device
  1023. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
  1024. if (nb10 == sizeof(float)) {
  1025. // Contiguous, avoid overhead from queueing many kernel runs
  1026. const int64_t i13 = i03%ne13;
  1027. const int64_t i12 = i02%ne12;
  1028. const int i1 = i13*ne12*ne11 + i12*ne11;
  1029. cl_int x_offset = 0;
  1030. cl_int y_offset = i1*ne10;
  1031. cl_int d_offset = 0;
  1032. size_t global = ne00 * ne01;
  1033. cl_int ky = ne10;
  1034. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1035. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1036. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1037. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1038. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1039. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1040. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1041. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1042. } else {
  1043. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1044. const int64_t i13 = i03%ne13;
  1045. const int64_t i12 = i02%ne12;
  1046. const int64_t i11 = i01%ne11;
  1047. const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
  1048. cl_int x_offset = i01*ne00;
  1049. cl_int y_offset = i1*ne10;
  1050. cl_int d_offset = i01*ne00;
  1051. // compute
  1052. size_t global = ne00;
  1053. cl_int ky = ne10;
  1054. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1055. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1056. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1057. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1058. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1059. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1060. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1061. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1062. }
  1063. }
  1064. CL_CHECK(clReleaseEvent(ev));
  1065. CL_CHECK(clFinish(queue));
  1066. // copy dst to host
  1067. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1068. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
  1069. }
  1070. }
  1071. ggml_cl_pool_free(d_X, x_size);
  1072. ggml_cl_pool_free(d_D, d_size);
  1073. }
  1074. void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1075. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
  1076. ggml_cl_mul_f32(src0, src1, dst);
  1077. }
  1078. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1079. const int64_t ne00 = src0->ne[0];
  1080. const int64_t ne01 = src0->ne[1];
  1081. const int64_t ne02 = src0->ne[2];
  1082. const int64_t ne03 = src0->ne[3];
  1083. const int64_t ne10 = src1->ne[0];
  1084. const int64_t ne11 = src1->ne[1];
  1085. const int nb2 = dst->nb[2];
  1086. const int nb3 = dst->nb[3];
  1087. const float alpha = 1.0f;
  1088. const float beta = 0.0f;
  1089. const int x_ne = ne01 * ne00;
  1090. const int y_ne = ne11 * ne10;
  1091. const int d_ne = ne11 * ne01;
  1092. size_t x_size;
  1093. size_t y_size;
  1094. size_t d_size;
  1095. cl_mem d_X;
  1096. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1097. d_X = (cl_mem) src0->data;
  1098. } else {
  1099. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  1100. }
  1101. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1102. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1103. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1104. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1105. // copy data to device
  1106. if (src0->backend != GGML_BACKEND_GPU) {
  1107. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1108. }
  1109. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  1110. CL_CHECK(clFinish(queue));
  1111. // compute
  1112. cl_event ev_sgemm;
  1113. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1114. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1115. ne01, ne11, ne10,
  1116. alpha,
  1117. d_X, 0, ne00,
  1118. d_Y, 0, ne10,
  1119. beta,
  1120. d_D, 0, ne01,
  1121. &queue, &ev_sgemm);
  1122. if (status != clblast::StatusCode::kSuccess) {
  1123. GGML_ASSERT(false);
  1124. }
  1125. // copy dst to host
  1126. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1127. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  1128. }
  1129. }
  1130. if (src0->backend != GGML_BACKEND_GPU) {
  1131. ggml_cl_pool_free(d_X, x_size);
  1132. }
  1133. ggml_cl_pool_free(d_Y, y_size);
  1134. ggml_cl_pool_free(d_D, d_size);
  1135. }
  1136. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  1137. GGML_ASSERT(fp16_support);
  1138. const int64_t ne00 = src0->ne[0];
  1139. const int64_t ne01 = src0->ne[1];
  1140. const int64_t ne02 = src0->ne[2];
  1141. const int64_t ne03 = src0->ne[3];
  1142. const int64_t ne10 = src1->ne[0];
  1143. const int64_t ne11 = src1->ne[1];
  1144. const int nb10 = src1->nb[0];
  1145. const int nb11 = src1->nb[1];
  1146. const int nb12 = src1->nb[2];
  1147. const int nb13 = src1->nb[3];
  1148. const int nb2 = dst->nb[2];
  1149. const int nb3 = dst->nb[3];
  1150. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  1151. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  1152. const int x_ne = ne01 * ne00;
  1153. const int y_ne = ne11 * ne10;
  1154. const int d_ne = ne11 * ne01;
  1155. size_t x_size;
  1156. size_t y_size;
  1157. size_t d_size;
  1158. cl_mem d_X;
  1159. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1160. d_X = (cl_mem) src0->data;
  1161. } else {
  1162. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  1163. }
  1164. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
  1165. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
  1166. bool src1_cont_rows = nb10 == sizeof(float);
  1167. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  1168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1170. // copy src0 to device
  1171. if (src0->backend != GGML_BACKEND_GPU) {
  1172. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1173. }
  1174. // convert src1 to fp16
  1175. // TODO: use multiple threads
  1176. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  1177. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  1178. if (src1_cont_rows) {
  1179. if (src1_cont_cols) {
  1180. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  1181. }
  1182. else {
  1183. for (int64_t i01 = 0; i01 < ne11; i01++) {
  1184. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  1185. }
  1186. }
  1187. }
  1188. else {
  1189. for (int64_t i01 = 0; i01 < ne11; i01++) {
  1190. for (int64_t i00 = 0; i00 < ne10; i00++) {
  1191. // very slow due to no inlining
  1192. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  1193. }
  1194. }
  1195. }
  1196. // copy src1 to device
  1197. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  1198. CL_CHECK(clFinish(queue));
  1199. // compute
  1200. cl_event ev_sgemm;
  1201. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  1202. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1203. ne01, ne11, ne10,
  1204. alpha,
  1205. d_X, 0, ne00,
  1206. d_Y, 0, ne10,
  1207. beta,
  1208. d_D, 0, ne01,
  1209. &queue, &ev_sgemm);
  1210. if (status != clblast::StatusCode::kSuccess) {
  1211. GGML_ASSERT(false);
  1212. }
  1213. // copy dst to host, then convert to float
  1214. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  1215. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1216. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  1217. }
  1218. }
  1219. if (src0->backend != GGML_BACKEND_GPU) {
  1220. ggml_cl_pool_free(d_X, x_size);
  1221. }
  1222. ggml_cl_pool_free(d_Y, y_size);
  1223. ggml_cl_pool_free(d_D, d_size);
  1224. }
  1225. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1226. const int64_t ne00 = src0->ne[0];
  1227. const int64_t ne01 = src0->ne[1];
  1228. const int64_t ne02 = src0->ne[2];
  1229. const int64_t ne03 = src0->ne[3];
  1230. const int64_t ne10 = src1->ne[0];
  1231. const int64_t ne11 = src1->ne[1];
  1232. const int nb2 = dst->nb[2];
  1233. const int nb3 = dst->nb[3];
  1234. const ggml_type type = src0->type;
  1235. const bool mul_mat_vec = ne11 == 1;
  1236. const float alpha = 1.0f;
  1237. const float beta = 0.0f;
  1238. const int x_ne = ne01 * ne00;
  1239. const int y_ne = ne11 * ne10;
  1240. const int d_ne = ne11 * ne01;
  1241. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  1242. size_t x_size;
  1243. size_t y_size;
  1244. size_t d_size;
  1245. size_t q_size;
  1246. cl_mem d_X;
  1247. if (!mul_mat_vec) {
  1248. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  1249. }
  1250. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1251. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1252. cl_mem d_Q;
  1253. if (src0->backend == GGML_BACKEND_CPU) {
  1254. d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
  1255. }
  1256. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  1257. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  1258. GGML_ASSERT(to_fp32_cl != nullptr);
  1259. const size_t global_denom = ggml_cl_global_denom(type);
  1260. const size_t local = ggml_cl_local_size(type);
  1261. size_t ev_idx = 0;
  1262. std::vector<cl_event> events;
  1263. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1264. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1265. // copy src0 to device if necessary
  1266. if (src0->backend == GGML_BACKEND_CPU) {
  1267. events.emplace_back();
  1268. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
  1269. } else if (src0->backend == GGML_BACKEND_GPU) {
  1270. d_Q = (cl_mem) src0->data;
  1271. } else {
  1272. GGML_ASSERT(false);
  1273. }
  1274. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  1275. // copy src1 to device
  1276. events.emplace_back();
  1277. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
  1278. // compute
  1279. const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
  1280. const size_t local = CL_DMMV_BLOCK_SIZE;
  1281. const cl_int ncols = ne00;
  1282. events.emplace_back();
  1283. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  1284. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  1285. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  1286. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  1287. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  1288. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
  1289. } else { // general dequantization kernel + CLBlast matrix matrix multiplication
  1290. // convert src0 to fp32 on device
  1291. const size_t global = x_ne / global_denom;
  1292. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  1293. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  1294. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
  1295. // copy src1 to device
  1296. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  1297. events.emplace_back();
  1298. // wait for conversion
  1299. CL_CHECK(clFinish(queue));
  1300. // compute
  1301. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1302. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1303. ne01, ne11, ne10,
  1304. alpha,
  1305. d_X, 0, ne00,
  1306. d_Y, 0, ne10,
  1307. beta,
  1308. d_D, 0, ne01,
  1309. &queue, events.data() + ev_idx++);
  1310. if (status != clblast::StatusCode::kSuccess) {
  1311. GGML_ASSERT(false);
  1312. }
  1313. }
  1314. // copy dst to host
  1315. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1316. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
  1317. for (auto *event : events) {
  1318. clReleaseEvent(event);
  1319. }
  1320. ev_idx = 0;
  1321. events.clear();
  1322. }
  1323. }
  1324. if (!mul_mat_vec) {
  1325. ggml_cl_pool_free(d_X, x_size);
  1326. }
  1327. ggml_cl_pool_free(d_Y, y_size);
  1328. ggml_cl_pool_free(d_D, d_size);
  1329. if (src0->backend == GGML_BACKEND_CPU) {
  1330. ggml_cl_pool_free(d_Q, q_size);
  1331. }
  1332. }
  1333. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1334. const int64_t ne10 = src1->ne[0];
  1335. const int64_t ne0 = dst->ne[0];
  1336. const int64_t ne1 = dst->ne[1];
  1337. // TODO: find the optimal values for these
  1338. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  1339. src1->type == GGML_TYPE_F32 &&
  1340. dst->type == GGML_TYPE_F32 &&
  1341. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
  1342. return true;
  1343. }
  1344. return false;
  1345. }
  1346. bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  1347. // If device doesn't support FP16
  1348. if (!fp16_support) {
  1349. return false;
  1350. }
  1351. size_t src0_sz = ggml_nbytes(src0);
  1352. size_t src1_sz = ggml_nbytes(src1);
  1353. // mul_mat_q: src0 is converted to fp32 on device
  1354. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  1355. // mul_mat_f16: src1 is converted to fp16 on cpu
  1356. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  1357. // choose the smaller one to transfer to the device
  1358. // TODO: this is not always the best choice due to the overhead of converting to fp16
  1359. return mul_mat_f16_transfer < mul_mat_q_transfer;
  1360. }
  1361. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  1362. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  1363. if (src0->type == GGML_TYPE_F32) {
  1364. ggml_cl_mul_mat_f32(src0, src1, dst);
  1365. }
  1366. else if (src0->type == GGML_TYPE_F16) {
  1367. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1368. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  1369. }
  1370. else {
  1371. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1372. }
  1373. }
  1374. else if (ggml_is_quantized(src0->type)) {
  1375. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1376. }
  1377. else {
  1378. GGML_ASSERT(false);
  1379. }
  1380. }
  1381. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1382. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1383. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  1384. }
  1385. return 0;
  1386. }
  1387. void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
  1388. const int64_t ne0 = tensor->ne[0];
  1389. const int64_t ne1 = tensor->ne[1];
  1390. const int64_t ne2 = tensor->ne[2];
  1391. const int64_t ne3 = tensor->ne[3];
  1392. const ggml_type type = tensor->type;
  1393. const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
  1394. size_t q_size;
  1395. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
  1396. tensor->data = data;
  1397. // copy tensor to device
  1398. for (int64_t i3 = 0; i3 < ne3; i3++) {
  1399. for (int64_t i2 = 0; i2 < ne2; i2++) {
  1400. int i = i3*ne2 + i2;
  1401. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
  1402. }
  1403. }
  1404. CL_CHECK(clFinish(queue));
  1405. tensor->data = dst;
  1406. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  1407. }