ggml.c 520 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_WIN32)
  32. #include <windows.h>
  33. typedef volatile LONG atomic_int;
  34. typedef atomic_int atomic_bool;
  35. static void atomic_store(atomic_int* ptr, LONG val) {
  36. InterlockedExchange(ptr, val);
  37. }
  38. static LONG atomic_load(atomic_int* ptr) {
  39. return InterlockedCompareExchange(ptr, 0, 0);
  40. }
  41. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  42. return InterlockedExchangeAdd(ptr, inc);
  43. }
  44. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  45. return atomic_fetch_add(ptr, -(dec));
  46. }
  47. typedef HANDLE pthread_t;
  48. typedef DWORD thread_ret_t;
  49. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  50. (void) unused;
  51. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  52. if (handle == NULL)
  53. {
  54. return EAGAIN;
  55. }
  56. *out = handle;
  57. return 0;
  58. }
  59. static int pthread_join(pthread_t thread, void* unused) {
  60. (void) unused;
  61. return (int) WaitForSingleObject(thread, INFINITE);
  62. }
  63. static int sched_yield (void) {
  64. Sleep (0);
  65. return 0;
  66. }
  67. #else
  68. #include <pthread.h>
  69. #include <stdatomic.h>
  70. typedef void* thread_ret_t;
  71. #endif
  72. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  73. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  74. #ifndef __FMA__
  75. #define __FMA__
  76. #endif
  77. #ifndef __F16C__
  78. #define __F16C__
  79. #endif
  80. #ifndef __SSE3__
  81. #define __SSE3__
  82. #endif
  83. #endif
  84. #ifdef __HAIKU__
  85. #define static_assert(cond, msg) _Static_assert(cond, msg)
  86. #endif
  87. /*#define GGML_PERF*/
  88. #define GGML_DEBUG 0
  89. #define GGML_GELU_FP16
  90. #define GGML_SILU_FP16
  91. #define GGML_SOFT_MAX_UNROLL 4
  92. #define GGML_VEC_DOT_UNROLL 2
  93. #ifdef GGML_USE_ACCELERATE
  94. // uncomment to use vDSP for soft max computation
  95. // note: not sure if it is actually faster
  96. //#define GGML_SOFT_MAX_ACCELERATE
  97. #endif
  98. #if UINTPTR_MAX == 0xFFFFFFFF
  99. #define GGML_MEM_ALIGN 4
  100. #else
  101. #define GGML_MEM_ALIGN 16
  102. #endif
  103. #if defined(_MSC_VER) || defined(__MINGW32__)
  104. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  105. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  106. #else
  107. inline static void* ggml_aligned_malloc(size_t size) {
  108. void* aligned_memory = NULL;
  109. #ifdef GGML_USE_METAL
  110. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  111. #else
  112. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  113. #endif
  114. if (result != 0) {
  115. // Handle allocation failure
  116. return NULL;
  117. }
  118. return aligned_memory;
  119. }
  120. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  121. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  122. #endif
  123. #define UNUSED(x) (void)(x)
  124. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  125. #if defined(GGML_USE_ACCELERATE)
  126. #include <Accelerate/Accelerate.h>
  127. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  128. #include "ggml-opencl.h"
  129. #endif
  130. #elif defined(GGML_USE_OPENBLAS)
  131. #include <cblas.h>
  132. #elif defined(GGML_USE_CUBLAS)
  133. #include "ggml-cuda.h"
  134. #elif defined(GGML_USE_CLBLAST)
  135. #include "ggml-opencl.h"
  136. #endif
  137. #undef MIN
  138. #undef MAX
  139. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  140. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  141. // floating point type used to accumulate sums
  142. typedef double ggml_float;
  143. // 16-bit float
  144. // on Arm, we use __fp16
  145. // on x86, we use uint16_t
  146. #ifdef __ARM_NEON
  147. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  148. //
  149. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  150. //
  151. #include <arm_neon.h>
  152. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  153. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  154. #define GGML_FP16_TO_FP32(x) ((float) (x))
  155. #define GGML_FP32_TO_FP16(x) (x)
  156. #else
  157. #ifdef __wasm_simd128__
  158. #include <wasm_simd128.h>
  159. #else
  160. #ifdef __POWER9_VECTOR__
  161. #include <altivec.h>
  162. #undef bool
  163. #define bool _Bool
  164. #else
  165. #if defined(_MSC_VER) || defined(__MINGW32__)
  166. #include <intrin.h>
  167. #else
  168. #if !defined(__riscv)
  169. #include <immintrin.h>
  170. #endif
  171. #endif
  172. #endif
  173. #endif
  174. #ifdef __F16C__
  175. #ifdef _MSC_VER
  176. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  177. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  178. #else
  179. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  180. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  181. #endif
  182. #elif defined(__POWER9_VECTOR__)
  183. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  184. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  185. /* the inline asm below is about 12% faster than the lookup method */
  186. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  187. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  188. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  189. register float f;
  190. register double d;
  191. __asm__(
  192. "mtfprd %0,%2\n"
  193. "xscvhpdp %0,%0\n"
  194. "frsp %1,%0\n" :
  195. /* temp */ "=d"(d),
  196. /* out */ "=f"(f):
  197. /* in */ "r"(h));
  198. return f;
  199. }
  200. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  201. register double d;
  202. register ggml_fp16_t r;
  203. __asm__( /* xscvdphp can work on double or single precision */
  204. "xscvdphp %0,%2\n"
  205. "mffprd %1,%0\n" :
  206. /* temp */ "=d"(d),
  207. /* out */ "=r"(r):
  208. /* in */ "f"(f));
  209. return r;
  210. }
  211. #else
  212. // FP16 <-> FP32
  213. // ref: https://github.com/Maratyszcza/FP16
  214. static inline float fp32_from_bits(uint32_t w) {
  215. union {
  216. uint32_t as_bits;
  217. float as_value;
  218. } fp32;
  219. fp32.as_bits = w;
  220. return fp32.as_value;
  221. }
  222. static inline uint32_t fp32_to_bits(float f) {
  223. union {
  224. float as_value;
  225. uint32_t as_bits;
  226. } fp32;
  227. fp32.as_value = f;
  228. return fp32.as_bits;
  229. }
  230. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  231. const uint32_t w = (uint32_t) h << 16;
  232. const uint32_t sign = w & UINT32_C(0x80000000);
  233. const uint32_t two_w = w + w;
  234. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  235. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  236. const float exp_scale = 0x1.0p-112f;
  237. #else
  238. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  239. #endif
  240. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  241. const uint32_t magic_mask = UINT32_C(126) << 23;
  242. const float magic_bias = 0.5f;
  243. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  244. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  245. const uint32_t result = sign |
  246. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  247. return fp32_from_bits(result);
  248. }
  249. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float scale_to_inf = 0x1.0p+112f;
  252. const float scale_to_zero = 0x1.0p-110f;
  253. #else
  254. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  255. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  256. #endif
  257. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  258. const uint32_t w = fp32_to_bits(f);
  259. const uint32_t shl1_w = w + w;
  260. const uint32_t sign = w & UINT32_C(0x80000000);
  261. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  262. if (bias < UINT32_C(0x71000000)) {
  263. bias = UINT32_C(0x71000000);
  264. }
  265. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  266. const uint32_t bits = fp32_to_bits(base);
  267. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  268. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  269. const uint32_t nonsign = exp_bits + mantissa_bits;
  270. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  271. }
  272. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  273. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  274. #endif // __F16C__
  275. #endif // __ARM_NEON
  276. //
  277. // global data
  278. //
  279. // precomputed gelu table for f16 (128 KB)
  280. static ggml_fp16_t table_gelu_f16[1 << 16];
  281. // precomputed silu table for f16 (128 KB)
  282. static ggml_fp16_t table_silu_f16[1 << 16];
  283. // precomputed exp table for f16 (128 KB)
  284. static ggml_fp16_t table_exp_f16[1 << 16];
  285. // precomputed f32 table for f16 (256 KB)
  286. static float table_f32_f16[1 << 16];
  287. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  288. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  289. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  290. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  291. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  292. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  293. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  294. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  295. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  296. // precomputed tables for expanding 8bits to 8 bytes:
  297. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  298. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  299. #endif
  300. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  301. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  302. // This is also true for POWER9.
  303. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  304. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  305. uint16_t s;
  306. memcpy(&s, &f, sizeof(uint16_t));
  307. return table_f32_f16[s];
  308. }
  309. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  310. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  311. #endif
  312. // note: do not use these inside ggml.c
  313. // these are meant to be used via the ggml.h API
  314. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  315. return (float) GGML_FP16_TO_FP32(x);
  316. }
  317. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  318. return GGML_FP32_TO_FP16(x);
  319. }
  320. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  321. for (size_t i = 0; i < n; i++) {
  322. y[i] = GGML_FP16_TO_FP32(x[i]);
  323. }
  324. }
  325. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  326. size_t i = 0;
  327. #if defined(__F16C__)
  328. for (; i + 7 < n; i += 8) {
  329. __m256 x_vec = _mm256_loadu_ps(x + i);
  330. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  331. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  332. }
  333. for(; i + 3 < n; i += 4) {
  334. __m128 x_vec = _mm_loadu_ps(x + i);
  335. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  336. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  337. }
  338. #endif
  339. for (; i < n; i++) {
  340. y[i] = GGML_FP32_TO_FP16(x[i]);
  341. }
  342. }
  343. //
  344. // timing
  345. //
  346. #if defined(_MSC_VER) || defined(__MINGW32__)
  347. static int64_t timer_freq, timer_start;
  348. void ggml_time_init(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceFrequency(&t);
  351. timer_freq = t.QuadPart;
  352. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  353. // and the uptime is high enough.
  354. // We subtract the program start time to reduce the likelihood of that happening.
  355. QueryPerformanceCounter(&t);
  356. timer_start = t.QuadPart;
  357. }
  358. int64_t ggml_time_ms(void) {
  359. LARGE_INTEGER t;
  360. QueryPerformanceCounter(&t);
  361. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  362. }
  363. int64_t ggml_time_us(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceCounter(&t);
  366. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  367. }
  368. #else
  369. void ggml_time_init(void) {}
  370. int64_t ggml_time_ms(void) {
  371. struct timespec ts;
  372. clock_gettime(CLOCK_MONOTONIC, &ts);
  373. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  374. }
  375. int64_t ggml_time_us(void) {
  376. struct timespec ts;
  377. clock_gettime(CLOCK_MONOTONIC, &ts);
  378. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  379. }
  380. #endif
  381. int64_t ggml_cycles(void) {
  382. return clock();
  383. }
  384. int64_t ggml_cycles_per_ms(void) {
  385. return CLOCKS_PER_SEC/1000;
  386. }
  387. #ifdef GGML_PERF
  388. #define ggml_perf_time_ms() ggml_time_ms()
  389. #define ggml_perf_time_us() ggml_time_us()
  390. #define ggml_perf_cycles() ggml_cycles()
  391. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  392. #else
  393. #define ggml_perf_time_ms() 0
  394. #define ggml_perf_time_us() 0
  395. #define ggml_perf_cycles() 0
  396. #define ggml_perf_cycles_per_ms() 0
  397. #endif
  398. //
  399. // cache line
  400. //
  401. #if defined(__cpp_lib_hardware_interference_size)
  402. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  403. #else
  404. #if defined(__POWER9_VECTOR__)
  405. #define CACHE_LINE_SIZE 128
  406. #else
  407. #define CACHE_LINE_SIZE 64
  408. #endif
  409. #endif
  410. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  411. //
  412. // quantization
  413. //
  414. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  415. // multiply int8_t, add results pairwise twice
  416. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  417. // Get absolute values of x vectors
  418. const __m128i ax = _mm_sign_epi8(x, x);
  419. // Sign the values of the y vectors
  420. const __m128i sy = _mm_sign_epi8(y, x);
  421. // Perform multiplication and create 16-bit values
  422. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  423. const __m128i ones = _mm_set1_epi16(1);
  424. return _mm_madd_epi16(ones, dot);
  425. }
  426. #if __AVX__ || __AVX2__ || __AVX512F__
  427. // horizontally add 8 floats
  428. static inline float hsum_float_8(const __m256 x) {
  429. __m128 res = _mm256_extractf128_ps(x, 1);
  430. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  431. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  432. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  433. return _mm_cvtss_f32(res);
  434. }
  435. // horizontally add 8 int32_t
  436. static inline int hsum_i32_8(const __m256i a) {
  437. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  438. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  439. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  440. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  441. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  442. }
  443. // horizontally add 4 int32_t
  444. static inline int hsum_i32_4(const __m128i a) {
  445. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  446. const __m128i sum64 = _mm_add_epi32(hi64, a);
  447. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  448. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  449. }
  450. #if defined(__AVX2__) || defined(__AVX512F__)
  451. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  452. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  453. uint32_t x32;
  454. memcpy(&x32, x, sizeof(uint32_t));
  455. const __m256i shuf_mask = _mm256_set_epi64x(
  456. 0x0303030303030303, 0x0202020202020202,
  457. 0x0101010101010101, 0x0000000000000000);
  458. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  459. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  460. bytes = _mm256_or_si256(bytes, bit_mask);
  461. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  462. }
  463. // Unpack 32 4-bit fields into 32 bytes
  464. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  465. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  466. {
  467. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  468. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  469. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  470. return _mm256_and_si256(lowMask, bytes);
  471. }
  472. // add int16_t pairwise and return as float vector
  473. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  474. const __m256i ones = _mm256_set1_epi16(1);
  475. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  476. return _mm256_cvtepi32_ps(summed_pairs);
  477. }
  478. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  479. #if __AVXVNNI__
  480. const __m256i zero = _mm256_setzero_si256();
  481. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  482. return _mm256_cvtepi32_ps(summed_pairs);
  483. #else
  484. // Perform multiplication and create 16-bit values
  485. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  486. return sum_i16_pairs_float(dot);
  487. #endif
  488. }
  489. // multiply int8_t, add results pairwise twice and return as float vector
  490. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  491. #if __AVXVNNIINT8__
  492. const __m256i zero = _mm256_setzero_si256();
  493. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  494. return _mm256_cvtepi32_ps(summed_pairs);
  495. #else
  496. // Get absolute values of x vectors
  497. const __m256i ax = _mm256_sign_epi8(x, x);
  498. // Sign the values of the y vectors
  499. const __m256i sy = _mm256_sign_epi8(y, x);
  500. return mul_sum_us8_pairs_float(ax, sy);
  501. #endif
  502. }
  503. static inline __m128i packNibbles( __m256i bytes )
  504. {
  505. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  506. #if __AVX512F__
  507. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  508. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  509. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  510. #else
  511. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  512. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  513. __m256i low = _mm256_and_si256( lowByte, bytes );
  514. high = _mm256_srli_epi16( high, 4 );
  515. bytes = _mm256_or_si256( low, high );
  516. // Compress uint16_t lanes into bytes
  517. __m128i r0 = _mm256_castsi256_si128( bytes );
  518. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  519. return _mm_packus_epi16( r0, r1 );
  520. #endif
  521. }
  522. #elif defined(__AVX__)
  523. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  524. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  525. uint32_t x32;
  526. memcpy(&x32, x, sizeof(uint32_t));
  527. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  528. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  529. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  530. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  531. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  532. bytesl = _mm_or_si128(bytesl, bit_mask);
  533. bytesh = _mm_or_si128(bytesh, bit_mask);
  534. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  535. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  536. return _mm256_set_m128i(bytesh, bytesl);
  537. }
  538. // Unpack 32 4-bit fields into 32 bytes
  539. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  540. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  541. {
  542. // Load 16 bytes from memory
  543. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  544. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  545. const __m128i lowMask = _mm_set1_epi8(0xF);
  546. tmpl = _mm_and_si128(lowMask, tmpl);
  547. tmph = _mm_and_si128(lowMask, tmph);
  548. return _mm256_set_m128i(tmph, tmpl);
  549. }
  550. // add int16_t pairwise and return as float vector
  551. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  552. const __m128i ones = _mm_set1_epi16(1);
  553. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  554. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  555. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  556. return _mm256_cvtepi32_ps(summed_pairs);
  557. }
  558. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  559. const __m128i axl = _mm256_castsi256_si128(ax);
  560. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  561. const __m128i syl = _mm256_castsi256_si128(sy);
  562. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. // multiply int8_t, add results pairwise twice and return as float vector
  569. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  570. const __m128i xl = _mm256_castsi256_si128(x);
  571. const __m128i xh = _mm256_extractf128_si256(x, 1);
  572. const __m128i yl = _mm256_castsi256_si128(y);
  573. const __m128i yh = _mm256_extractf128_si256(y, 1);
  574. // Get absolute values of x vectors
  575. const __m128i axl = _mm_sign_epi8(xl, xl);
  576. const __m128i axh = _mm_sign_epi8(xh, xh);
  577. // Sign the values of the y vectors
  578. const __m128i syl = _mm_sign_epi8(yl, xl);
  579. const __m128i syh = _mm_sign_epi8(yh, xh);
  580. // Perform multiplication and create 16-bit values
  581. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  582. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  583. return sum_i16_pairs_float(doth, dotl);
  584. }
  585. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  586. {
  587. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  588. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  589. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  590. __m128i low = _mm_and_si128( lowByte, bytes1 );
  591. high = _mm_srli_epi16( high, 4 );
  592. bytes1 = _mm_or_si128( low, high );
  593. high = _mm_andnot_si128( lowByte, bytes2 );
  594. low = _mm_and_si128( lowByte, bytes2 );
  595. high = _mm_srli_epi16( high, 4 );
  596. bytes2 = _mm_or_si128( low, high );
  597. return _mm_packus_epi16( bytes1, bytes2);
  598. }
  599. #endif
  600. #elif defined(__SSSE3__)
  601. // horizontally add 4x4 floats
  602. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  603. __m128 res_0 =_mm_hadd_ps(a, b);
  604. __m128 res_1 =_mm_hadd_ps(c, d);
  605. __m128 res =_mm_hadd_ps(res_0, res_1);
  606. res =_mm_hadd_ps(res, res);
  607. res =_mm_hadd_ps(res, res);
  608. return _mm_cvtss_f32(res);
  609. }
  610. #endif // __AVX__ || __AVX2__ || __AVX512F__
  611. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  612. #if defined(__ARM_NEON)
  613. #if !defined(__aarch64__)
  614. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  615. return
  616. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  617. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  618. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  619. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  620. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  621. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  622. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  623. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  624. }
  625. inline static int16_t vaddvq_s8(int8x16_t v) {
  626. return
  627. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  628. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  629. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  630. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  631. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  632. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  633. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  634. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  635. }
  636. inline static int32_t vaddvq_s16(int16x8_t v) {
  637. return
  638. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  639. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  640. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  641. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  642. }
  643. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  644. return
  645. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  646. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  647. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  648. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  649. }
  650. inline static int32_t vaddvq_s32(int32x4_t v) {
  651. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  652. }
  653. inline static float vaddvq_f32(float32x4_t v) {
  654. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  655. }
  656. inline static float vminvq_f32(float32x4_t v) {
  657. return
  658. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  659. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  660. }
  661. inline static float vmaxvq_f32(float32x4_t v) {
  662. return
  663. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  664. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  665. }
  666. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  667. int32x4_t res;
  668. res[0] = roundf(vgetq_lane_f32(v, 0));
  669. res[1] = roundf(vgetq_lane_f32(v, 1));
  670. res[2] = roundf(vgetq_lane_f32(v, 2));
  671. res[3] = roundf(vgetq_lane_f32(v, 3));
  672. return res;
  673. }
  674. #endif
  675. #endif
  676. #define QK4_0 32
  677. typedef struct {
  678. ggml_fp16_t d; // delta
  679. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  680. } block_q4_0;
  681. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  682. #define QK4_1 32
  683. typedef struct {
  684. ggml_fp16_t d; // delta
  685. ggml_fp16_t m; // min
  686. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  687. } block_q4_1;
  688. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  689. #define QK5_0 32
  690. typedef struct {
  691. ggml_fp16_t d; // delta
  692. uint8_t qh[4]; // 5-th bit of quants
  693. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  694. } block_q5_0;
  695. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  696. #define QK5_1 32
  697. typedef struct {
  698. ggml_fp16_t d; // delta
  699. ggml_fp16_t m; // min
  700. uint8_t qh[4]; // 5-th bit of quants
  701. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  702. } block_q5_1;
  703. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  704. #define QK8_0 32
  705. typedef struct {
  706. ggml_fp16_t d; // delta
  707. int8_t qs[QK8_0]; // quants
  708. } block_q8_0;
  709. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  710. #define QK8_1 32
  711. typedef struct {
  712. float d; // delta
  713. float s; // d * sum(qs[i])
  714. int8_t qs[QK8_1]; // quants
  715. } block_q8_1;
  716. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  717. // reference implementation for deterministic creation of model files
  718. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  719. static const int qk = QK4_0;
  720. assert(k % qk == 0);
  721. const int nb = k / qk;
  722. for (int i = 0; i < nb; i++) {
  723. float amax = 0.0f; // absolute max
  724. float max = 0.0f;
  725. for (int j = 0; j < qk; j++) {
  726. const float v = x[i*qk + j];
  727. if (amax < fabsf(v)) {
  728. amax = fabsf(v);
  729. max = v;
  730. }
  731. }
  732. const float d = max / -8;
  733. const float id = d ? 1.0f/d : 0.0f;
  734. y[i].d = GGML_FP32_TO_FP16(d);
  735. for (int j = 0; j < qk/2; ++j) {
  736. const float x0 = x[i*qk + 0 + j]*id;
  737. const float x1 = x[i*qk + qk/2 + j]*id;
  738. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  739. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  740. y[i].qs[j] = xi0;
  741. y[i].qs[j] |= xi1 << 4;
  742. }
  743. }
  744. }
  745. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  746. quantize_row_q4_0_reference(x, y, k);
  747. }
  748. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  749. const int qk = QK4_1;
  750. assert(k % qk == 0);
  751. const int nb = k / qk;
  752. for (int i = 0; i < nb; i++) {
  753. float min = FLT_MAX;
  754. float max = -FLT_MAX;
  755. for (int j = 0; j < qk; j++) {
  756. const float v = x[i*qk + j];
  757. if (v < min) min = v;
  758. if (v > max) max = v;
  759. }
  760. const float d = (max - min) / ((1 << 4) - 1);
  761. const float id = d ? 1.0f/d : 0.0f;
  762. y[i].d = GGML_FP32_TO_FP16(d);
  763. y[i].m = GGML_FP32_TO_FP16(min);
  764. for (int j = 0; j < qk/2; ++j) {
  765. const float x0 = (x[i*qk + 0 + j] - min)*id;
  766. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  767. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  768. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  769. y[i].qs[j] = xi0;
  770. y[i].qs[j] |= xi1 << 4;
  771. }
  772. }
  773. }
  774. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  775. quantize_row_q4_1_reference(x, y, k);
  776. }
  777. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  778. static const int qk = QK5_0;
  779. assert(k % qk == 0);
  780. const int nb = k / qk;
  781. for (int i = 0; i < nb; i++) {
  782. float amax = 0.0f; // absolute max
  783. float max = 0.0f;
  784. for (int j = 0; j < qk; j++) {
  785. const float v = x[i*qk + j];
  786. if (amax < fabsf(v)) {
  787. amax = fabsf(v);
  788. max = v;
  789. }
  790. }
  791. const float d = max / -16;
  792. const float id = d ? 1.0f/d : 0.0f;
  793. y[i].d = GGML_FP32_TO_FP16(d);
  794. uint32_t qh = 0;
  795. for (int j = 0; j < qk/2; ++j) {
  796. const float x0 = x[i*qk + 0 + j]*id;
  797. const float x1 = x[i*qk + qk/2 + j]*id;
  798. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  799. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  800. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  801. // get the 5-th bit and store it in qh at the right position
  802. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  803. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  804. }
  805. memcpy(&y[i].qh, &qh, sizeof(qh));
  806. }
  807. }
  808. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  809. quantize_row_q5_0_reference(x, y, k);
  810. }
  811. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  812. const int qk = QK5_1;
  813. assert(k % qk == 0);
  814. const int nb = k / qk;
  815. for (int i = 0; i < nb; i++) {
  816. float min = FLT_MAX;
  817. float max = -FLT_MAX;
  818. for (int j = 0; j < qk; j++) {
  819. const float v = x[i*qk + j];
  820. if (v < min) min = v;
  821. if (v > max) max = v;
  822. }
  823. const float d = (max - min) / ((1 << 5) - 1);
  824. const float id = d ? 1.0f/d : 0.0f;
  825. y[i].d = GGML_FP32_TO_FP16(d);
  826. y[i].m = GGML_FP32_TO_FP16(min);
  827. uint32_t qh = 0;
  828. for (int j = 0; j < qk/2; ++j) {
  829. const float x0 = (x[i*qk + 0 + j] - min)*id;
  830. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  831. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  832. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  833. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  834. // get the 5-th bit and store it in qh at the right position
  835. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  836. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  837. }
  838. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  839. }
  840. }
  841. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  842. quantize_row_q5_1_reference(x, y, k);
  843. }
  844. // reference implementation for deterministic creation of model files
  845. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  846. assert(k % QK8_0 == 0);
  847. const int nb = k / QK8_0;
  848. for (int i = 0; i < nb; i++) {
  849. float amax = 0.0f; // absolute max
  850. for (int j = 0; j < QK8_0; j++) {
  851. const float v = x[i*QK8_0 + j];
  852. amax = MAX(amax, fabsf(v));
  853. }
  854. const float d = amax / ((1 << 7) - 1);
  855. const float id = d ? 1.0f/d : 0.0f;
  856. y[i].d = GGML_FP32_TO_FP16(d);
  857. for (int j = 0; j < QK8_0; ++j) {
  858. const float x0 = x[i*QK8_0 + j]*id;
  859. y[i].qs[j] = roundf(x0);
  860. }
  861. }
  862. }
  863. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  864. assert(QK8_0 == 32);
  865. assert(k % QK8_0 == 0);
  866. const int nb = k / QK8_0;
  867. block_q8_0 * restrict y = vy;
  868. #if defined(__ARM_NEON)
  869. for (int i = 0; i < nb; i++) {
  870. float32x4_t srcv [8];
  871. float32x4_t asrcv[8];
  872. float32x4_t amaxv[8];
  873. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  874. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  875. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  876. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  877. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  878. const float amax = vmaxvq_f32(amaxv[0]);
  879. const float d = amax / ((1 << 7) - 1);
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. for (int j = 0; j < 8; j++) {
  883. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  884. const int32x4_t vi = vcvtnq_s32_f32(v);
  885. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  886. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  887. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  888. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  889. }
  890. }
  891. #elif defined(__wasm_simd128__)
  892. for (int i = 0; i < nb; i++) {
  893. v128_t srcv [8];
  894. v128_t asrcv[8];
  895. v128_t amaxv[8];
  896. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  897. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  898. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  899. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  900. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  901. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  902. wasm_f32x4_extract_lane(amaxv[0], 1)),
  903. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  904. wasm_f32x4_extract_lane(amaxv[0], 3)));
  905. const float d = amax / ((1 << 7) - 1);
  906. const float id = d ? 1.0f/d : 0.0f;
  907. y[i].d = GGML_FP32_TO_FP16(d);
  908. for (int j = 0; j < 8; j++) {
  909. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  910. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  911. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  912. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  913. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  914. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  915. }
  916. }
  917. #elif defined(__AVX2__) || defined(__AVX__)
  918. for (int i = 0; i < nb; i++) {
  919. // Load elements into 4 AVX vectors
  920. __m256 v0 = _mm256_loadu_ps( x );
  921. __m256 v1 = _mm256_loadu_ps( x + 8 );
  922. __m256 v2 = _mm256_loadu_ps( x + 16 );
  923. __m256 v3 = _mm256_loadu_ps( x + 24 );
  924. x += 32;
  925. // Compute max(abs(e)) for the block
  926. const __m256 signBit = _mm256_set1_ps( -0.0f );
  927. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  928. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  929. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  930. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  931. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  932. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  933. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  934. const float maxScalar = _mm_cvtss_f32( max4 );
  935. // Quantize these floats
  936. const float d = maxScalar / 127.f;
  937. y[i].d = GGML_FP32_TO_FP16(d);
  938. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  939. const __m256 mul = _mm256_set1_ps( id );
  940. // Apply the multiplier
  941. v0 = _mm256_mul_ps( v0, mul );
  942. v1 = _mm256_mul_ps( v1, mul );
  943. v2 = _mm256_mul_ps( v2, mul );
  944. v3 = _mm256_mul_ps( v3, mul );
  945. // Round to nearest integer
  946. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  947. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  948. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  949. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  950. // Convert floats to integers
  951. __m256i i0 = _mm256_cvtps_epi32( v0 );
  952. __m256i i1 = _mm256_cvtps_epi32( v1 );
  953. __m256i i2 = _mm256_cvtps_epi32( v2 );
  954. __m256i i3 = _mm256_cvtps_epi32( v3 );
  955. #if defined(__AVX2__)
  956. // Convert int32 to int16
  957. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  958. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  959. // Convert int16 to int8
  960. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  961. // We got our precious signed bytes, but the order is now wrong
  962. // These AVX2 pack instructions process 16-byte pieces independently
  963. // The following instruction is fixing the order
  964. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  965. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  966. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  967. #else
  968. // Since we don't have in AVX some necessary functions,
  969. // we split the registers in half and call AVX2 analogs from SSE
  970. __m128i ni0 = _mm256_castsi256_si128( i0 );
  971. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  972. __m128i ni2 = _mm256_castsi256_si128( i1 );
  973. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  974. __m128i ni4 = _mm256_castsi256_si128( i2 );
  975. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  976. __m128i ni6 = _mm256_castsi256_si128( i3 );
  977. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  978. // Convert int32 to int16
  979. ni0 = _mm_packs_epi32( ni0, ni1 );
  980. ni2 = _mm_packs_epi32( ni2, ni3 );
  981. ni4 = _mm_packs_epi32( ni4, ni5 );
  982. ni6 = _mm_packs_epi32( ni6, ni7 );
  983. // Convert int16 to int8
  984. ni0 = _mm_packs_epi16( ni0, ni2 );
  985. ni4 = _mm_packs_epi16( ni4, ni6 );
  986. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  987. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  988. #endif
  989. }
  990. #else
  991. // scalar
  992. quantize_row_q8_0_reference(x, y, k);
  993. #endif
  994. }
  995. // reference implementation for deterministic creation of model files
  996. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  997. assert(QK8_1 == 32);
  998. assert(k % QK8_1 == 0);
  999. const int nb = k / QK8_1;
  1000. for (int i = 0; i < nb; i++) {
  1001. float amax = 0.0f; // absolute max
  1002. for (int j = 0; j < QK8_1; j++) {
  1003. const float v = x[i*QK8_1 + j];
  1004. amax = MAX(amax, fabsf(v));
  1005. }
  1006. const float d = amax / ((1 << 7) - 1);
  1007. const float id = d ? 1.0f/d : 0.0f;
  1008. y[i].d = d;
  1009. int sum = 0;
  1010. for (int j = 0; j < QK8_1/2; ++j) {
  1011. const float v0 = x[i*QK8_1 + j]*id;
  1012. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1013. y[i].qs[ j] = roundf(v0);
  1014. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1015. sum += y[i].qs[ j];
  1016. sum += y[i].qs[QK8_1/2 + j];
  1017. }
  1018. y[i].s = sum*d;
  1019. }
  1020. }
  1021. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1022. assert(k % QK8_1 == 0);
  1023. const int nb = k / QK8_1;
  1024. block_q8_1 * restrict y = vy;
  1025. #if defined(__ARM_NEON)
  1026. for (int i = 0; i < nb; i++) {
  1027. float32x4_t srcv [8];
  1028. float32x4_t asrcv[8];
  1029. float32x4_t amaxv[8];
  1030. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1031. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1032. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1033. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1034. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1035. const float amax = vmaxvq_f32(amaxv[0]);
  1036. const float d = amax / ((1 << 7) - 1);
  1037. const float id = d ? 1.0f/d : 0.0f;
  1038. y[i].d = d;
  1039. int32x4_t accv = vdupq_n_s32(0);
  1040. for (int j = 0; j < 8; j++) {
  1041. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1042. const int32x4_t vi = vcvtnq_s32_f32(v);
  1043. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1044. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1045. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1046. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1047. accv = vaddq_s32(accv, vi);
  1048. }
  1049. y[i].s = d * vaddvq_s32(accv);
  1050. }
  1051. #elif defined(__wasm_simd128__)
  1052. for (int i = 0; i < nb; i++) {
  1053. v128_t srcv [8];
  1054. v128_t asrcv[8];
  1055. v128_t amaxv[8];
  1056. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1057. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1058. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1059. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1060. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1061. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1062. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1063. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1064. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1065. const float d = amax / ((1 << 7) - 1);
  1066. const float id = d ? 1.0f/d : 0.0f;
  1067. y[i].d = d;
  1068. v128_t accv = wasm_i32x4_splat(0);
  1069. for (int j = 0; j < 8; j++) {
  1070. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1071. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1072. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1073. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1074. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1075. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1076. accv = wasm_i32x4_add(accv, vi);
  1077. }
  1078. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1079. wasm_i32x4_extract_lane(accv, 1) +
  1080. wasm_i32x4_extract_lane(accv, 2) +
  1081. wasm_i32x4_extract_lane(accv, 3));
  1082. }
  1083. #elif defined(__AVX2__) || defined(__AVX__)
  1084. for (int i = 0; i < nb; i++) {
  1085. // Load elements into 4 AVX vectors
  1086. __m256 v0 = _mm256_loadu_ps( x );
  1087. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1088. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1089. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1090. x += 32;
  1091. // Compute max(abs(e)) for the block
  1092. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1093. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1094. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1095. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1096. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1097. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1098. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1099. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1100. const float maxScalar = _mm_cvtss_f32( max4 );
  1101. // Quantize these floats
  1102. const float d = maxScalar / 127.f;
  1103. y[i].d = d;
  1104. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1105. const __m256 mul = _mm256_set1_ps( id );
  1106. // Apply the multiplier
  1107. v0 = _mm256_mul_ps( v0, mul );
  1108. v1 = _mm256_mul_ps( v1, mul );
  1109. v2 = _mm256_mul_ps( v2, mul );
  1110. v3 = _mm256_mul_ps( v3, mul );
  1111. // Round to nearest integer
  1112. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1113. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1114. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1115. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1116. // Convert floats to integers
  1117. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1118. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1119. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1120. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1121. #if defined(__AVX2__)
  1122. // Compute the sum of the quants and set y[i].s
  1123. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1124. // Convert int32 to int16
  1125. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1126. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1127. // Convert int16 to int8
  1128. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1129. // We got our precious signed bytes, but the order is now wrong
  1130. // These AVX2 pack instructions process 16-byte pieces independently
  1131. // The following instruction is fixing the order
  1132. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1133. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1134. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1135. #else
  1136. // Since we don't have in AVX some necessary functions,
  1137. // we split the registers in half and call AVX2 analogs from SSE
  1138. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1139. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1140. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1141. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1142. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1143. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1144. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1145. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1146. // Compute the sum of the quants and set y[i].s
  1147. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1148. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1149. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1150. // Convert int32 to int16
  1151. ni0 = _mm_packs_epi32( ni0, ni1 );
  1152. ni2 = _mm_packs_epi32( ni2, ni3 );
  1153. ni4 = _mm_packs_epi32( ni4, ni5 );
  1154. ni6 = _mm_packs_epi32( ni6, ni7 );
  1155. // Convert int16 to int8
  1156. ni0 = _mm_packs_epi16( ni0, ni2 );
  1157. ni4 = _mm_packs_epi16( ni4, ni6 );
  1158. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1160. #endif
  1161. }
  1162. #else
  1163. // scalar
  1164. quantize_row_q8_1_reference(x, y, k);
  1165. #endif
  1166. }
  1167. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1168. static const int qk = QK4_0;
  1169. assert(k % qk == 0);
  1170. const int nb = k / qk;
  1171. for (int i = 0; i < nb; i++) {
  1172. const float d = GGML_FP16_TO_FP32(x[i].d);
  1173. for (int j = 0; j < qk/2; ++j) {
  1174. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1175. const int x1 = (x[i].qs[j] >> 4) - 8;
  1176. y[i*qk + j + 0 ] = x0*d;
  1177. y[i*qk + j + qk/2] = x1*d;
  1178. }
  1179. }
  1180. }
  1181. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1182. static const int qk = QK4_1;
  1183. assert(k % qk == 0);
  1184. const int nb = k / qk;
  1185. for (int i = 0; i < nb; i++) {
  1186. const float d = GGML_FP16_TO_FP32(x[i].d);
  1187. const float m = GGML_FP16_TO_FP32(x[i].m);
  1188. for (int j = 0; j < qk/2; ++j) {
  1189. const int x0 = (x[i].qs[j] & 0x0F);
  1190. const int x1 = (x[i].qs[j] >> 4);
  1191. y[i*qk + j + 0 ] = x0*d + m;
  1192. y[i*qk + j + qk/2] = x1*d + m;
  1193. }
  1194. }
  1195. }
  1196. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1197. static const int qk = QK5_0;
  1198. assert(k % qk == 0);
  1199. const int nb = k / qk;
  1200. for (int i = 0; i < nb; i++) {
  1201. const float d = GGML_FP16_TO_FP32(x[i].d);
  1202. uint32_t qh;
  1203. memcpy(&qh, x[i].qh, sizeof(qh));
  1204. for (int j = 0; j < qk/2; ++j) {
  1205. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1206. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1207. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1208. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1209. y[i*qk + j + 0 ] = x0*d;
  1210. y[i*qk + j + qk/2] = x1*d;
  1211. }
  1212. }
  1213. }
  1214. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1215. static const int qk = QK5_1;
  1216. assert(k % qk == 0);
  1217. const int nb = k / qk;
  1218. for (int i = 0; i < nb; i++) {
  1219. const float d = GGML_FP16_TO_FP32(x[i].d);
  1220. const float m = GGML_FP16_TO_FP32(x[i].m);
  1221. uint32_t qh;
  1222. memcpy(&qh, x[i].qh, sizeof(qh));
  1223. for (int j = 0; j < qk/2; ++j) {
  1224. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1225. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1226. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1227. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1228. y[i*qk + j + 0 ] = x0*d + m;
  1229. y[i*qk + j + qk/2] = x1*d + m;
  1230. }
  1231. }
  1232. }
  1233. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1234. static const int qk = QK8_0;
  1235. assert(k % qk == 0);
  1236. const int nb = k / qk;
  1237. const block_q8_0 * restrict x = vx;
  1238. for (int i = 0; i < nb; i++) {
  1239. const float d = GGML_FP16_TO_FP32(x[i].d);
  1240. for (int j = 0; j < qk; ++j) {
  1241. y[i*qk + j] = x[i].qs[j]*d;
  1242. }
  1243. }
  1244. }
  1245. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1246. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1247. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1248. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1249. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1250. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1251. [GGML_TYPE_Q4_0] = {
  1252. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1253. .quantize_row_q = quantize_row_q4_0,
  1254. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1255. .quantize_row_q_dot = quantize_row_q8_0,
  1256. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1257. .vec_dot_type = GGML_TYPE_Q8_0,
  1258. },
  1259. [GGML_TYPE_Q4_1] = {
  1260. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1261. .quantize_row_q = quantize_row_q4_1,
  1262. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1263. .quantize_row_q_dot = quantize_row_q8_1,
  1264. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1265. .vec_dot_type = GGML_TYPE_Q8_1,
  1266. },
  1267. [GGML_TYPE_Q5_0] = {
  1268. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1269. .quantize_row_q = quantize_row_q5_0,
  1270. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1271. .quantize_row_q_dot = quantize_row_q8_0,
  1272. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1273. .vec_dot_type = GGML_TYPE_Q8_0,
  1274. },
  1275. [GGML_TYPE_Q5_1] = {
  1276. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1277. .quantize_row_q = quantize_row_q5_1,
  1278. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1279. .quantize_row_q_dot = quantize_row_q8_1,
  1280. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1281. .vec_dot_type = GGML_TYPE_Q8_1,
  1282. },
  1283. [GGML_TYPE_Q8_0] = {
  1284. .dequantize_row_q = dequantize_row_q8_0,
  1285. .quantize_row_q = quantize_row_q8_0,
  1286. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1287. .quantize_row_q_dot = quantize_row_q8_0,
  1288. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1289. .vec_dot_type = GGML_TYPE_Q8_0,
  1290. },
  1291. [GGML_TYPE_Q8_1] = {
  1292. .dequantize_row_q = NULL, // TODO
  1293. .quantize_row_q = quantize_row_q8_1,
  1294. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1295. .quantize_row_q_dot = quantize_row_q8_1,
  1296. .vec_dot_q = NULL, // TODO
  1297. .vec_dot_type = GGML_TYPE_Q8_1,
  1298. },
  1299. #ifdef GGML_USE_K_QUANTS
  1300. [GGML_TYPE_Q2_K] = {
  1301. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1302. .quantize_row_q = quantize_row_q2_K,
  1303. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1304. .quantize_row_q_dot = quantize_row_q8_K,
  1305. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1306. .vec_dot_type = GGML_TYPE_Q8_K,
  1307. },
  1308. [GGML_TYPE_Q3_K] = {
  1309. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1310. .quantize_row_q = quantize_row_q3_K,
  1311. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1312. .quantize_row_q_dot = quantize_row_q8_K,
  1313. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1314. .vec_dot_type = GGML_TYPE_Q8_K,
  1315. },
  1316. [GGML_TYPE_Q4_K] = {
  1317. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1318. .quantize_row_q = quantize_row_q4_K,
  1319. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1320. .quantize_row_q_dot = quantize_row_q8_K,
  1321. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1322. .vec_dot_type = GGML_TYPE_Q8_K,
  1323. },
  1324. [GGML_TYPE_Q5_K] = {
  1325. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1326. .quantize_row_q = quantize_row_q5_K,
  1327. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1328. .quantize_row_q_dot = quantize_row_q8_K,
  1329. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1330. .vec_dot_type = GGML_TYPE_Q8_K,
  1331. },
  1332. [GGML_TYPE_Q6_K] = {
  1333. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1334. .quantize_row_q = quantize_row_q6_K,
  1335. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1336. .quantize_row_q_dot = quantize_row_q8_K,
  1337. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1338. .vec_dot_type = GGML_TYPE_Q8_K,
  1339. },
  1340. #endif
  1341. };
  1342. // For internal test use
  1343. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1344. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1345. return quantize_fns[i];
  1346. }
  1347. //
  1348. // simd mappings
  1349. //
  1350. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1351. // we then implement the fundamental computation operations below using only these macros
  1352. // adding support for new architectures requires to define the corresponding SIMD macros
  1353. //
  1354. // GGML_F32_STEP / GGML_F16_STEP
  1355. // number of elements to process in a single step
  1356. //
  1357. // GGML_F32_EPR / GGML_F16_EPR
  1358. // number of elements to fit in a single register
  1359. //
  1360. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1361. #define GGML_SIMD
  1362. // F32 NEON
  1363. #define GGML_F32_STEP 16
  1364. #define GGML_F32_EPR 4
  1365. #define GGML_F32x4 float32x4_t
  1366. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1367. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1368. #define GGML_F32x4_LOAD vld1q_f32
  1369. #define GGML_F32x4_STORE vst1q_f32
  1370. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1371. #define GGML_F32x4_ADD vaddq_f32
  1372. #define GGML_F32x4_MUL vmulq_f32
  1373. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1374. #define GGML_F32x4_REDUCE(res, x) \
  1375. { \
  1376. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1377. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1378. } \
  1379. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1380. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1381. } \
  1382. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1383. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1384. } \
  1385. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1386. }
  1387. #define GGML_F32_VEC GGML_F32x4
  1388. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1389. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1390. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1391. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1392. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1393. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1394. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1395. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1396. // F16 NEON
  1397. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1398. #define GGML_F16_STEP 32
  1399. #define GGML_F16_EPR 8
  1400. #define GGML_F16x8 float16x8_t
  1401. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1402. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1403. #define GGML_F16x8_LOAD vld1q_f16
  1404. #define GGML_F16x8_STORE vst1q_f16
  1405. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1406. #define GGML_F16x8_ADD vaddq_f16
  1407. #define GGML_F16x8_MUL vmulq_f16
  1408. #define GGML_F16x8_REDUCE(res, x) \
  1409. { \
  1410. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1411. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1412. } \
  1413. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1414. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1415. } \
  1416. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1417. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1418. } \
  1419. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1420. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1421. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1422. }
  1423. #define GGML_F16_VEC GGML_F16x8
  1424. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1425. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1426. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1427. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1428. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1429. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1430. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1431. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1432. #else
  1433. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1434. // and take advantage of the vcvt_ functions to convert to/from FP16
  1435. #define GGML_F16_STEP 16
  1436. #define GGML_F16_EPR 4
  1437. #define GGML_F32Cx4 float32x4_t
  1438. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1439. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1440. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1441. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1442. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1443. #define GGML_F32Cx4_ADD vaddq_f32
  1444. #define GGML_F32Cx4_MUL vmulq_f32
  1445. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1446. #define GGML_F16_VEC GGML_F32Cx4
  1447. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1448. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1449. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1450. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1451. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1452. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1453. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1454. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1455. #endif
  1456. #elif defined(__AVX__)
  1457. #define GGML_SIMD
  1458. // F32 AVX
  1459. #define GGML_F32_STEP 32
  1460. #define GGML_F32_EPR 8
  1461. #define GGML_F32x8 __m256
  1462. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1463. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1464. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1465. #define GGML_F32x8_STORE _mm256_storeu_ps
  1466. #if defined(__FMA__)
  1467. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1468. #else
  1469. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1470. #endif
  1471. #define GGML_F32x8_ADD _mm256_add_ps
  1472. #define GGML_F32x8_MUL _mm256_mul_ps
  1473. #define GGML_F32x8_REDUCE(res, x) \
  1474. { \
  1475. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1476. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1477. } \
  1478. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1479. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1480. } \
  1481. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1482. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1483. } \
  1484. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1485. _mm256_extractf128_ps(x[0], 1)); \
  1486. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1487. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1488. }
  1489. // TODO: is this optimal ?
  1490. #define GGML_F32_VEC GGML_F32x8
  1491. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1492. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1493. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1494. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1495. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1496. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1497. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1498. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1499. // F16 AVX
  1500. #define GGML_F16_STEP 32
  1501. #define GGML_F16_EPR 8
  1502. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1503. #define GGML_F32Cx8 __m256
  1504. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1505. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1506. #if defined(__F16C__)
  1507. // the _mm256_cvt intrinsics require F16C
  1508. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1509. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1510. #else
  1511. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1512. float tmp[8];
  1513. for (int i = 0; i < 8; i++) {
  1514. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1515. }
  1516. return _mm256_loadu_ps(tmp);
  1517. }
  1518. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1519. float arr[8];
  1520. _mm256_storeu_ps(arr, y);
  1521. for (int i = 0; i < 8; i++)
  1522. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1523. }
  1524. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1525. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1526. #endif
  1527. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1528. #define GGML_F32Cx8_ADD _mm256_add_ps
  1529. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1530. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1531. #define GGML_F16_VEC GGML_F32Cx8
  1532. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1533. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1534. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1535. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1536. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1537. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1538. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1539. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1540. #elif defined(__POWER9_VECTOR__)
  1541. #define GGML_SIMD
  1542. // F32 POWER9
  1543. #define GGML_F32_STEP 32
  1544. #define GGML_F32_EPR 4
  1545. #define GGML_F32x4 vector float
  1546. #define GGML_F32x4_ZERO 0.0f
  1547. #define GGML_F32x4_SET1 vec_splats
  1548. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1549. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1550. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1551. #define GGML_F32x4_ADD vec_add
  1552. #define GGML_F32x4_MUL vec_mul
  1553. #define GGML_F32x4_REDUCE(res, x) \
  1554. { \
  1555. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1556. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1557. } \
  1558. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1559. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1560. } \
  1561. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1562. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1563. } \
  1564. res = vec_extract(x[0], 0) + \
  1565. vec_extract(x[0], 1) + \
  1566. vec_extract(x[0], 2) + \
  1567. vec_extract(x[0], 3); \
  1568. }
  1569. #define GGML_F32_VEC GGML_F32x4
  1570. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1571. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1572. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1573. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1574. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1575. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1576. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1577. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1578. // F16 POWER9
  1579. #define GGML_F16_STEP GGML_F32_STEP
  1580. #define GGML_F16_EPR GGML_F32_EPR
  1581. #define GGML_F16_VEC GGML_F32x4
  1582. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1583. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1584. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1585. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1586. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1587. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1588. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1589. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1590. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1591. #define GGML_F16_VEC_STORE(p, r, i) \
  1592. if (i & 0x1) \
  1593. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1594. r[i - GGML_ENDIAN_BYTE(0)]), \
  1595. 0, p - GGML_F16_EPR)
  1596. #elif defined(__wasm_simd128__)
  1597. #define GGML_SIMD
  1598. // F32 WASM
  1599. #define GGML_F32_STEP 16
  1600. #define GGML_F32_EPR 4
  1601. #define GGML_F32x4 v128_t
  1602. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1603. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1604. #define GGML_F32x4_LOAD wasm_v128_load
  1605. #define GGML_F32x4_STORE wasm_v128_store
  1606. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1607. #define GGML_F32x4_ADD wasm_f32x4_add
  1608. #define GGML_F32x4_MUL wasm_f32x4_mul
  1609. #define GGML_F32x4_REDUCE(res, x) \
  1610. { \
  1611. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1612. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1613. } \
  1614. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1615. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1616. } \
  1617. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1618. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1619. } \
  1620. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1621. wasm_f32x4_extract_lane(x[0], 1) + \
  1622. wasm_f32x4_extract_lane(x[0], 2) + \
  1623. wasm_f32x4_extract_lane(x[0], 3); \
  1624. }
  1625. #define GGML_F32_VEC GGML_F32x4
  1626. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1627. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1628. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1629. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1630. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1631. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1632. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1633. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1634. // F16 WASM
  1635. #define GGML_F16_STEP 16
  1636. #define GGML_F16_EPR 4
  1637. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1638. float tmp[4];
  1639. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1640. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1641. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1642. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1643. return wasm_v128_load(tmp);
  1644. }
  1645. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1646. float tmp[4];
  1647. wasm_v128_store(tmp, x);
  1648. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1649. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1650. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1651. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1652. }
  1653. #define GGML_F16x4 v128_t
  1654. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1655. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1656. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1657. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1658. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1659. #define GGML_F16x4_ADD wasm_f32x4_add
  1660. #define GGML_F16x4_MUL wasm_f32x4_mul
  1661. #define GGML_F16x4_REDUCE(res, x) \
  1662. { \
  1663. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1664. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1665. } \
  1666. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1667. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1668. } \
  1669. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1670. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1671. } \
  1672. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1673. wasm_f32x4_extract_lane(x[0], 1) + \
  1674. wasm_f32x4_extract_lane(x[0], 2) + \
  1675. wasm_f32x4_extract_lane(x[0], 3); \
  1676. }
  1677. #define GGML_F16_VEC GGML_F16x4
  1678. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1679. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1680. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1681. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1682. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1683. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1684. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1685. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1686. #elif defined(__SSE3__)
  1687. #define GGML_SIMD
  1688. // F32 SSE
  1689. #define GGML_F32_STEP 32
  1690. #define GGML_F32_EPR 4
  1691. #define GGML_F32x4 __m128
  1692. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1693. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1694. #define GGML_F32x4_LOAD _mm_loadu_ps
  1695. #define GGML_F32x4_STORE _mm_storeu_ps
  1696. #if defined(__FMA__)
  1697. // TODO: Does this work?
  1698. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1699. #else
  1700. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1701. #endif
  1702. #define GGML_F32x4_ADD _mm_add_ps
  1703. #define GGML_F32x4_MUL _mm_mul_ps
  1704. #define GGML_F32x4_REDUCE(res, x) \
  1705. { \
  1706. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1707. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1708. } \
  1709. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1710. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1711. } \
  1712. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1713. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1714. } \
  1715. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1716. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1717. }
  1718. // TODO: is this optimal ?
  1719. #define GGML_F32_VEC GGML_F32x4
  1720. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1721. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1722. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1723. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1724. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1725. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1726. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1727. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1728. // F16 SSE
  1729. #define GGML_F16_STEP 32
  1730. #define GGML_F16_EPR 4
  1731. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1732. float tmp[4];
  1733. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1734. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1735. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1736. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1737. return _mm_loadu_ps(tmp);
  1738. }
  1739. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1740. float arr[4];
  1741. _mm_storeu_ps(arr, y);
  1742. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1743. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1744. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1745. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1746. }
  1747. #define GGML_F32Cx4 __m128
  1748. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1749. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1750. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1751. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1752. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1753. #define GGML_F32Cx4_ADD _mm_add_ps
  1754. #define GGML_F32Cx4_MUL _mm_mul_ps
  1755. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1756. #define GGML_F16_VEC GGML_F32Cx4
  1757. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1758. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1759. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1760. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1761. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1762. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1763. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1764. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1765. #endif
  1766. // GGML_F32_ARR / GGML_F16_ARR
  1767. // number of registers to use per step
  1768. #ifdef GGML_SIMD
  1769. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1770. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1771. #endif
  1772. //
  1773. // fundamental operations
  1774. //
  1775. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1776. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1777. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1778. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1779. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1780. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1781. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1782. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1783. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1784. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1785. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1786. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1787. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1788. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1789. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1790. #ifdef GGML_SIMD
  1791. float sumf = 0.0f;
  1792. const int np = (n & ~(GGML_F32_STEP - 1));
  1793. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1794. GGML_F32_VEC ax[GGML_F32_ARR];
  1795. GGML_F32_VEC ay[GGML_F32_ARR];
  1796. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1797. for (int j = 0; j < GGML_F32_ARR; j++) {
  1798. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1799. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1800. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1801. }
  1802. }
  1803. // reduce sum0..sum3 to sum0
  1804. GGML_F32_VEC_REDUCE(sumf, sum);
  1805. // leftovers
  1806. for (int i = np; i < n; ++i) {
  1807. sumf += x[i]*y[i];
  1808. }
  1809. #else
  1810. // scalar
  1811. ggml_float sumf = 0.0;
  1812. for (int i = 0; i < n; ++i) {
  1813. sumf += (ggml_float)(x[i]*y[i]);
  1814. }
  1815. #endif
  1816. *s = sumf;
  1817. }
  1818. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1819. ggml_float sumf = 0.0;
  1820. #if defined(GGML_SIMD)
  1821. const int np = (n & ~(GGML_F16_STEP - 1));
  1822. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1823. GGML_F16_VEC ax[GGML_F16_ARR];
  1824. GGML_F16_VEC ay[GGML_F16_ARR];
  1825. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1826. for (int j = 0; j < GGML_F16_ARR; j++) {
  1827. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1828. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1829. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1830. }
  1831. }
  1832. // reduce sum0..sum3 to sum0
  1833. GGML_F16_VEC_REDUCE(sumf, sum);
  1834. // leftovers
  1835. for (int i = np; i < n; ++i) {
  1836. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1837. }
  1838. #else
  1839. for (int i = 0; i < n; ++i) {
  1840. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1841. }
  1842. #endif
  1843. *s = sumf;
  1844. }
  1845. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1846. const int qk = QK8_0;
  1847. const int nb = n / qk;
  1848. assert(n % qk == 0);
  1849. assert(nb % 2 == 0);
  1850. const block_q4_0 * restrict x = vx;
  1851. const block_q8_0 * restrict y = vy;
  1852. #if defined(__ARM_NEON)
  1853. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1854. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1855. for (int i = 0; i < nb; i += 2) {
  1856. const block_q4_0 * restrict x0 = &x[i + 0];
  1857. const block_q4_0 * restrict x1 = &x[i + 1];
  1858. const block_q8_0 * restrict y0 = &y[i + 0];
  1859. const block_q8_0 * restrict y1 = &y[i + 1];
  1860. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1861. const int8x16_t s8b = vdupq_n_s8(0x8);
  1862. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1863. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1864. // 4-bit -> 8-bit
  1865. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1866. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1867. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1868. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1869. // sub 8
  1870. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1871. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1872. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1873. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1874. // load y
  1875. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1876. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1877. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1878. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1879. #if defined(__ARM_FEATURE_DOTPROD)
  1880. // dot product into int32x4_t
  1881. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1882. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1883. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1884. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1885. #else
  1886. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1887. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1888. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1889. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1890. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1891. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1892. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1893. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1894. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1895. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1896. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1897. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1898. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1899. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1900. #endif
  1901. }
  1902. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1903. #elif defined(__AVX2__)
  1904. // Initialize accumulator with zeros
  1905. __m256 acc = _mm256_setzero_ps();
  1906. // Main loop
  1907. for (int i = 0; i < nb; ++i) {
  1908. /* Compute combined scale for the block */
  1909. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1910. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1911. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1912. const __m256i off = _mm256_set1_epi8( 8 );
  1913. bx = _mm256_sub_epi8( bx, off );
  1914. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1915. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1916. /* Multiply q with scale and accumulate */
  1917. acc = _mm256_fmadd_ps( d, q, acc );
  1918. }
  1919. *s = hsum_float_8(acc);
  1920. #elif defined(__AVX__)
  1921. // Initialize accumulator with zeros
  1922. __m256 acc = _mm256_setzero_ps();
  1923. // Main loop
  1924. for (int i = 0; i < nb; ++i) {
  1925. // Compute combined scale for the block
  1926. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1927. const __m128i lowMask = _mm_set1_epi8(0xF);
  1928. const __m128i off = _mm_set1_epi8(8);
  1929. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1930. __m128i bx = _mm_and_si128(lowMask, tmp);
  1931. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1932. bx = _mm_sub_epi8(bx, off);
  1933. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1934. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1935. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1936. bx = _mm_sub_epi8(bx, off);
  1937. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1938. // Convert int32_t to float
  1939. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1940. // Apply the scale, and accumulate
  1941. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1942. }
  1943. *s = hsum_float_8(acc);
  1944. #elif defined(__SSSE3__)
  1945. // set constants
  1946. const __m128i lowMask = _mm_set1_epi8(0xF);
  1947. const __m128i off = _mm_set1_epi8(8);
  1948. // Initialize accumulator with zeros
  1949. __m128 acc_0 = _mm_setzero_ps();
  1950. __m128 acc_1 = _mm_setzero_ps();
  1951. __m128 acc_2 = _mm_setzero_ps();
  1952. __m128 acc_3 = _mm_setzero_ps();
  1953. // First round without accumulation
  1954. {
  1955. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1956. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1957. // Compute combined scale for the block 0 and 1
  1958. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1959. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1960. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1961. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1962. bx_0 = _mm_sub_epi8(bx_0, off);
  1963. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1964. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1965. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1966. bx_1 = _mm_sub_epi8(bx_1, off);
  1967. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1968. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1969. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1970. // Compute combined scale for the block 2 and 3
  1971. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1972. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1973. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1974. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1975. bx_2 = _mm_sub_epi8(bx_2, off);
  1976. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1977. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1978. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1979. bx_3 = _mm_sub_epi8(bx_3, off);
  1980. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1981. // Convert int32_t to float
  1982. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1983. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1984. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1985. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1986. // Apply the scale
  1987. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1988. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1989. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1990. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1991. }
  1992. // Main loop
  1993. for (int i = 2; i < nb; i+=2) {
  1994. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1995. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1996. // Compute combined scale for the block 0 and 1
  1997. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1998. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1999. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2000. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2001. bx_0 = _mm_sub_epi8(bx_0, off);
  2002. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2003. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2004. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2005. bx_1 = _mm_sub_epi8(bx_1, off);
  2006. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2007. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2008. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2009. // Compute combined scale for the block 2 and 3
  2010. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2011. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2012. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2013. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2014. bx_2 = _mm_sub_epi8(bx_2, off);
  2015. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2016. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2017. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2018. bx_3 = _mm_sub_epi8(bx_3, off);
  2019. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2020. // Convert int32_t to float
  2021. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2022. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2023. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2024. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2025. // Apply the scale
  2026. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2027. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2028. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2029. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2030. // Acummulate
  2031. acc_0 = _mm_add_ps(p0_d, acc_0);
  2032. acc_1 = _mm_add_ps(p1_d, acc_1);
  2033. acc_2 = _mm_add_ps(p2_d, acc_2);
  2034. acc_3 = _mm_add_ps(p3_d, acc_3);
  2035. }
  2036. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2037. #else
  2038. // scalar
  2039. float sumf = 0.0;
  2040. for (int i = 0; i < nb; i++) {
  2041. int sumi = 0;
  2042. for (int j = 0; j < qk/2; ++j) {
  2043. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2044. const int v1 = (x[i].qs[j] >> 4) - 8;
  2045. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2046. }
  2047. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2048. }
  2049. *s = sumf;
  2050. #endif
  2051. }
  2052. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2053. const int qk = QK8_1;
  2054. const int nb = n / qk;
  2055. assert(n % qk == 0);
  2056. assert(nb % 2 == 0);
  2057. const block_q4_1 * restrict x = vx;
  2058. const block_q8_1 * restrict y = vy;
  2059. // TODO: add WASM SIMD
  2060. #if defined(__ARM_NEON)
  2061. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2062. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2063. float summs = 0;
  2064. for (int i = 0; i < nb; i += 2) {
  2065. const block_q4_1 * restrict x0 = &x[i + 0];
  2066. const block_q4_1 * restrict x1 = &x[i + 1];
  2067. const block_q8_1 * restrict y0 = &y[i + 0];
  2068. const block_q8_1 * restrict y1 = &y[i + 1];
  2069. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2070. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2071. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2072. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2073. // 4-bit -> 8-bit
  2074. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2075. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2076. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2077. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2078. // load y
  2079. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2080. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2081. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2082. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2083. #if defined(__ARM_FEATURE_DOTPROD)
  2084. // dot product into int32x4_t
  2085. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2086. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2087. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2088. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2089. #else
  2090. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2091. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2092. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2093. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2094. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2095. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2096. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2097. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2098. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2099. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2100. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2101. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2102. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2103. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2104. #endif
  2105. }
  2106. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2107. #elif defined(__AVX2__) || defined(__AVX__)
  2108. // Initialize accumulator with zeros
  2109. __m256 acc = _mm256_setzero_ps();
  2110. float summs = 0;
  2111. // Main loop
  2112. for (int i = 0; i < nb; ++i) {
  2113. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2114. const float d1 = y[i].d;
  2115. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2116. const __m256 d0v = _mm256_set1_ps( d0 );
  2117. const __m256 d1v = _mm256_set1_ps( d1 );
  2118. // Compute combined scales
  2119. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2120. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2121. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2122. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2123. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2124. // Accumulate d0*d1*x*y
  2125. #if defined(__AVX2__)
  2126. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2127. #else
  2128. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2129. #endif
  2130. }
  2131. *s = hsum_float_8(acc) + summs;
  2132. #else
  2133. // scalar
  2134. float sumf = 0.0;
  2135. for (int i = 0; i < nb; i++) {
  2136. int sumi = 0;
  2137. for (int j = 0; j < qk/2; ++j) {
  2138. const int v0 = (x[i].qs[j] & 0x0F);
  2139. const int v1 = (x[i].qs[j] >> 4);
  2140. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2141. }
  2142. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2143. }
  2144. *s = sumf;
  2145. #endif
  2146. }
  2147. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2148. const int qk = QK8_0;
  2149. const int nb = n / qk;
  2150. assert(n % qk == 0);
  2151. assert(nb % 2 == 0);
  2152. assert(qk == QK5_0);
  2153. const block_q5_0 * restrict x = vx;
  2154. const block_q8_0 * restrict y = vy;
  2155. #if defined(__ARM_NEON)
  2156. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2157. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2158. uint32_t qh0;
  2159. uint32_t qh1;
  2160. uint64_t tmp0[4];
  2161. uint64_t tmp1[4];
  2162. for (int i = 0; i < nb; i += 2) {
  2163. const block_q5_0 * restrict x0 = &x[i];
  2164. const block_q5_0 * restrict x1 = &x[i + 1];
  2165. const block_q8_0 * restrict y0 = &y[i];
  2166. const block_q8_0 * restrict y1 = &y[i + 1];
  2167. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2168. // extract the 5th bit via lookup table ((!b) << 4)
  2169. memcpy(&qh0, x0->qh, sizeof(qh0));
  2170. memcpy(&qh1, x1->qh, sizeof(qh1));
  2171. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2172. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2173. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2174. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2175. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2176. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2177. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2178. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2179. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2180. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2181. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2182. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2191. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2192. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2193. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2194. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2195. // load y
  2196. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2197. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2198. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2199. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2200. #if defined(__ARM_FEATURE_DOTPROD)
  2201. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2202. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2203. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2204. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2205. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2206. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2207. #else
  2208. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2209. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2210. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2211. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2212. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2213. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2214. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2215. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2216. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2217. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2218. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2219. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2220. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2221. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2222. #endif
  2223. }
  2224. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2225. #elif defined(__wasm_simd128__)
  2226. v128_t sumv = wasm_f32x4_splat(0.0f);
  2227. uint32_t qh;
  2228. uint64_t tmp[4];
  2229. // TODO: check if unrolling this is better
  2230. for (int i = 0; i < nb; ++i) {
  2231. const block_q5_0 * restrict x0 = &x[i];
  2232. const block_q8_0 * restrict y0 = &y[i];
  2233. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2234. // extract the 5th bit
  2235. memcpy(&qh, x0->qh, sizeof(qh));
  2236. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2237. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2238. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2239. tmp[3] = table_b2b_1[(qh >> 24) ];
  2240. const v128_t qhl = wasm_v128_load(tmp + 0);
  2241. const v128_t qhh = wasm_v128_load(tmp + 2);
  2242. const v128_t v0 = wasm_v128_load(x0->qs);
  2243. // 4-bit -> 8-bit
  2244. const v128_t v0l = wasm_v128_and (v0, m4b);
  2245. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2246. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2247. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2248. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2249. // load y
  2250. const v128_t v1l = wasm_v128_load(y0->qs);
  2251. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2252. // int8x16 -> int16x8
  2253. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2254. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2255. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2256. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2257. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2258. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2259. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2260. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2261. // dot product
  2262. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2263. wasm_i32x4_add(
  2264. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2265. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2266. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2267. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2268. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2269. }
  2270. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2271. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2272. #elif defined(__AVX2__)
  2273. // Initialize accumulator with zeros
  2274. __m256 acc = _mm256_setzero_ps();
  2275. // Main loop
  2276. for (int i = 0; i < nb; i++) {
  2277. /* Compute combined scale for the block */
  2278. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2279. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2280. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2281. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2282. bx = _mm256_or_si256(bx, bxhi);
  2283. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2284. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2285. /* Multiply q with scale and accumulate */
  2286. acc = _mm256_fmadd_ps(d, q, acc);
  2287. }
  2288. *s = hsum_float_8(acc);
  2289. #elif defined(__AVX__)
  2290. // Initialize accumulator with zeros
  2291. __m256 acc = _mm256_setzero_ps();
  2292. __m128i mask = _mm_set1_epi8((char)0xF0);
  2293. // Main loop
  2294. for (int i = 0; i < nb; i++) {
  2295. /* Compute combined scale for the block */
  2296. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2297. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2298. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2299. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2300. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2301. bxhil = _mm_andnot_si128(bxhil, mask);
  2302. bxhih = _mm_andnot_si128(bxhih, mask);
  2303. __m128i bxl = _mm256_castsi256_si128(bx);
  2304. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2305. bxl = _mm_or_si128(bxl, bxhil);
  2306. bxh = _mm_or_si128(bxh, bxhih);
  2307. bx = _mm256_set_m128i(bxh, bxl);
  2308. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2309. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2310. /* Multiply q with scale and accumulate */
  2311. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2312. }
  2313. *s = hsum_float_8(acc);
  2314. #else
  2315. // scalar
  2316. float sumf = 0.0;
  2317. for (int i = 0; i < nb; i++) {
  2318. uint32_t qh;
  2319. memcpy(&qh, x[i].qh, sizeof(qh));
  2320. int sumi = 0;
  2321. for (int j = 0; j < qk/2; ++j) {
  2322. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2323. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2324. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2325. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2326. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2327. }
  2328. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2329. }
  2330. *s = sumf;
  2331. #endif
  2332. }
  2333. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2334. const int qk = QK8_1;
  2335. const int nb = n / qk;
  2336. assert(n % qk == 0);
  2337. assert(nb % 2 == 0);
  2338. assert(qk == QK5_1);
  2339. const block_q5_1 * restrict x = vx;
  2340. const block_q8_1 * restrict y = vy;
  2341. #if defined(__ARM_NEON)
  2342. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2343. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2344. float summs0 = 0.0f;
  2345. float summs1 = 0.0f;
  2346. uint32_t qh0;
  2347. uint32_t qh1;
  2348. uint64_t tmp0[4];
  2349. uint64_t tmp1[4];
  2350. for (int i = 0; i < nb; i += 2) {
  2351. const block_q5_1 * restrict x0 = &x[i];
  2352. const block_q5_1 * restrict x1 = &x[i + 1];
  2353. const block_q8_1 * restrict y0 = &y[i];
  2354. const block_q8_1 * restrict y1 = &y[i + 1];
  2355. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2356. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2357. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2358. // extract the 5th bit via lookup table ((b) << 4)
  2359. memcpy(&qh0, x0->qh, sizeof(qh0));
  2360. memcpy(&qh1, x1->qh, sizeof(qh1));
  2361. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2362. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2363. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2364. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2365. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2366. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2367. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2368. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2369. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2370. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2371. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2372. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2373. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2374. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2375. // 4-bit -> 8-bit
  2376. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2377. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2378. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2379. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2380. // add high bit
  2381. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2382. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2383. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2384. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2385. // load y
  2386. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2387. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2388. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2389. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2390. #if defined(__ARM_FEATURE_DOTPROD)
  2391. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2392. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2393. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2394. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2395. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2396. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2397. #else
  2398. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2399. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2400. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2401. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2402. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2403. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2404. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2405. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2406. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2407. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2408. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2409. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2410. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2411. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2412. #endif
  2413. }
  2414. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2415. #elif defined(__wasm_simd128__)
  2416. v128_t sumv = wasm_f32x4_splat(0.0f);
  2417. float summs = 0.0f;
  2418. uint32_t qh;
  2419. uint64_t tmp[4];
  2420. // TODO: check if unrolling this is better
  2421. for (int i = 0; i < nb; ++i) {
  2422. const block_q5_1 * restrict x0 = &x[i];
  2423. const block_q8_1 * restrict y0 = &y[i];
  2424. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2425. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2426. // extract the 5th bit
  2427. memcpy(&qh, x0->qh, sizeof(qh));
  2428. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2429. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2430. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2431. tmp[3] = table_b2b_0[(qh >> 24) ];
  2432. const v128_t qhl = wasm_v128_load(tmp + 0);
  2433. const v128_t qhh = wasm_v128_load(tmp + 2);
  2434. const v128_t v0 = wasm_v128_load(x0->qs);
  2435. // 4-bit -> 8-bit
  2436. const v128_t v0l = wasm_v128_and (v0, m4b);
  2437. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2438. // add high bit
  2439. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2440. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2441. // load y
  2442. const v128_t v1l = wasm_v128_load(y0->qs);
  2443. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2444. // int8x16 -> int16x8
  2445. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2446. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2447. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2448. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2449. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2450. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2451. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2452. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2453. // dot product
  2454. sumv = wasm_f32x4_add(sumv,
  2455. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2456. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2457. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2458. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2459. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2460. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2461. }
  2462. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2463. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2464. #elif defined(__AVX2__)
  2465. // Initialize accumulator with zeros
  2466. __m256 acc = _mm256_setzero_ps();
  2467. float summs = 0.0f;
  2468. // Main loop
  2469. for (int i = 0; i < nb; i++) {
  2470. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2471. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2472. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2473. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2474. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2475. bx = _mm256_or_si256(bx, bxhi);
  2476. const __m256 dy = _mm256_set1_ps(y[i].d);
  2477. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2478. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2479. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2480. }
  2481. *s = hsum_float_8(acc) + summs;
  2482. #elif defined(__AVX__)
  2483. // Initialize accumulator with zeros
  2484. __m256 acc = _mm256_setzero_ps();
  2485. __m128i mask = _mm_set1_epi8(0x10);
  2486. float summs = 0.0f;
  2487. // Main loop
  2488. for (int i = 0; i < nb; i++) {
  2489. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2490. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2491. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2492. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2493. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2494. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2495. bxhil = _mm_and_si128(bxhil, mask);
  2496. bxhih = _mm_and_si128(bxhih, mask);
  2497. __m128i bxl = _mm256_castsi256_si128(bx);
  2498. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2499. bxl = _mm_or_si128(bxl, bxhil);
  2500. bxh = _mm_or_si128(bxh, bxhih);
  2501. bx = _mm256_set_m128i(bxh, bxl);
  2502. const __m256 dy = _mm256_set1_ps(y[i].d);
  2503. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2504. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2505. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2506. }
  2507. *s = hsum_float_8(acc) + summs;
  2508. #else
  2509. // scalar
  2510. float sumf = 0.0;
  2511. for (int i = 0; i < nb; i++) {
  2512. uint32_t qh;
  2513. memcpy(&qh, x[i].qh, sizeof(qh));
  2514. int sumi = 0;
  2515. for (int j = 0; j < qk/2; ++j) {
  2516. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2517. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2518. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2519. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2520. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2521. }
  2522. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2523. }
  2524. *s = sumf;
  2525. #endif
  2526. }
  2527. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2528. const int qk = QK8_0;
  2529. const int nb = n / qk;
  2530. assert(n % qk == 0);
  2531. assert(nb % 2 == 0);
  2532. const block_q8_0 * restrict x = vx;
  2533. const block_q8_0 * restrict y = vy;
  2534. #if defined(__ARM_NEON)
  2535. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2536. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2537. for (int i = 0; i < nb; i += 2) {
  2538. const block_q8_0 * restrict x0 = &x[i + 0];
  2539. const block_q8_0 * restrict x1 = &x[i + 1];
  2540. const block_q8_0 * restrict y0 = &y[i + 0];
  2541. const block_q8_0 * restrict y1 = &y[i + 1];
  2542. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2543. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2544. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2545. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2546. // load y
  2547. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2548. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2549. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2550. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2551. #if defined(__ARM_FEATURE_DOTPROD)
  2552. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2553. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2554. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2555. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2556. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2557. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2558. #else
  2559. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2560. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2561. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2562. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2563. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2564. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2565. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2566. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2567. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2568. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2569. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2570. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2571. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2572. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2573. #endif
  2574. }
  2575. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2576. #elif defined(__AVX2__) || defined(__AVX__)
  2577. // Initialize accumulator with zeros
  2578. __m256 acc = _mm256_setzero_ps();
  2579. // Main loop
  2580. for (int i = 0; i < nb; ++i) {
  2581. // Compute combined scale for the block
  2582. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2583. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2584. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2585. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2586. // Multiply q with scale and accumulate
  2587. #if defined(__AVX2__)
  2588. acc = _mm256_fmadd_ps( d, q, acc );
  2589. #else
  2590. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2591. #endif
  2592. }
  2593. *s = hsum_float_8(acc);
  2594. #else
  2595. // scalar
  2596. float sumf = 0.0;
  2597. for (int i = 0; i < nb; i++) {
  2598. int sumi = 0;
  2599. for (int j = 0; j < qk; j++) {
  2600. sumi += x[i].qs[j]*y[i].qs[j];
  2601. }
  2602. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2603. }
  2604. *s = sumf;
  2605. #endif
  2606. }
  2607. // compute GGML_VEC_DOT_UNROLL dot products at once
  2608. // xs - x row stride in bytes
  2609. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2610. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2611. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2612. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2613. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2614. }
  2615. #if defined(GGML_SIMD)
  2616. const int np = (n & ~(GGML_F16_STEP - 1));
  2617. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2618. GGML_F16_VEC ax[GGML_F16_ARR];
  2619. GGML_F16_VEC ay[GGML_F16_ARR];
  2620. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2621. for (int j = 0; j < GGML_F16_ARR; j++) {
  2622. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2623. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2624. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2625. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2626. }
  2627. }
  2628. }
  2629. // reduce sum0..sum3 to sum0
  2630. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2631. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2632. }
  2633. // leftovers
  2634. for (int i = np; i < n; ++i) {
  2635. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2636. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2637. }
  2638. }
  2639. #else
  2640. for (int i = 0; i < n; ++i) {
  2641. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2642. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2643. }
  2644. }
  2645. #endif
  2646. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2647. s[i] = sumf[i];
  2648. }
  2649. }
  2650. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2651. #if defined(GGML_SIMD)
  2652. const int np = (n & ~(GGML_F32_STEP - 1));
  2653. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2654. GGML_F32_VEC ax[GGML_F32_ARR];
  2655. GGML_F32_VEC ay[GGML_F32_ARR];
  2656. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2657. for (int j = 0; j < GGML_F32_ARR; j++) {
  2658. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2659. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2660. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2661. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2662. }
  2663. }
  2664. // leftovers
  2665. for (int i = np; i < n; ++i) {
  2666. y[i] += x[i]*v;
  2667. }
  2668. #else
  2669. // scalar
  2670. for (int i = 0; i < n; ++i) {
  2671. y[i] += x[i]*v;
  2672. }
  2673. #endif
  2674. }
  2675. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2676. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2677. #if defined(GGML_SIMD)
  2678. const int np = (n & ~(GGML_F32_STEP - 1));
  2679. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2680. GGML_F32_VEC ay[GGML_F32_ARR];
  2681. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2682. for (int j = 0; j < GGML_F32_ARR; j++) {
  2683. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2684. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2685. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2686. }
  2687. }
  2688. // leftovers
  2689. for (int i = np; i < n; ++i) {
  2690. y[i] *= v;
  2691. }
  2692. #else
  2693. // scalar
  2694. for (int i = 0; i < n; ++i) {
  2695. y[i] *= v;
  2696. }
  2697. #endif
  2698. }
  2699. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2700. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2701. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2702. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2703. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2704. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2705. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2706. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2707. static const float GELU_COEF_A = 0.044715f;
  2708. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2709. inline static float ggml_gelu_f32(float x) {
  2710. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2711. }
  2712. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2713. const uint16_t * i16 = (const uint16_t *) x;
  2714. for (int i = 0; i < n; ++i) {
  2715. y[i] = table_gelu_f16[i16[i]];
  2716. }
  2717. }
  2718. #ifdef GGML_GELU_FP16
  2719. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2720. uint16_t t;
  2721. for (int i = 0; i < n; ++i) {
  2722. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2723. memcpy(&t, &fp16, sizeof(uint16_t));
  2724. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2725. }
  2726. }
  2727. #else
  2728. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2729. for (int i = 0; i < n; ++i) {
  2730. y[i] = ggml_gelu_f32(x[i]);
  2731. }
  2732. }
  2733. #endif
  2734. // Sigmoid Linear Unit (SiLU) function
  2735. inline static float ggml_silu_f32(float x) {
  2736. return x/(1.0f + expf(-x));
  2737. }
  2738. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2739. // const uint16_t * i16 = (const uint16_t *) x;
  2740. // for (int i = 0; i < n; ++i) {
  2741. // y[i] = table_silu_f16[i16[i]];
  2742. // }
  2743. //}
  2744. #ifdef GGML_SILU_FP16
  2745. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2746. uint16_t t;
  2747. for (int i = 0; i < n; ++i) {
  2748. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2749. memcpy(&t, &fp16, sizeof(uint16_t));
  2750. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2751. }
  2752. }
  2753. #else
  2754. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2755. for (int i = 0; i < n; ++i) {
  2756. y[i] = ggml_silu_f32(x[i]);
  2757. }
  2758. }
  2759. #endif
  2760. inline static float ggml_silu_backward_f32(float x, float dy) {
  2761. const float s = 1.0f/(1.0f + expf(-x));
  2762. return dy*s*(1.0f + x*(1.0f - s));
  2763. }
  2764. #ifdef GGML_SILU_FP16
  2765. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2766. for (int i = 0; i < n; ++i) {
  2767. // we did not use x[i] to compute forward silu but its f16 equivalent
  2768. // take derivative at f16 of x[i]:
  2769. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2770. float usedx = GGML_FP16_TO_FP32(fp16);
  2771. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2772. }
  2773. }
  2774. #else
  2775. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2776. for (int i = 0; i < n; ++i) {
  2777. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2778. }
  2779. }
  2780. #endif
  2781. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2782. #ifndef GGML_USE_ACCELERATE
  2783. ggml_float sum = 0.0;
  2784. for (int i = 0; i < n; ++i) {
  2785. sum += (ggml_float)x[i];
  2786. }
  2787. *s = sum;
  2788. #else
  2789. vDSP_sve(x, 1, s, n);
  2790. #endif
  2791. }
  2792. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2793. ggml_float sum = 0.0;
  2794. for (int i = 0; i < n; ++i) {
  2795. sum += (ggml_float)x[i];
  2796. }
  2797. *s = sum;
  2798. }
  2799. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2800. #ifndef GGML_USE_ACCELERATE
  2801. float max = -INFINITY;
  2802. for (int i = 0; i < n; ++i) {
  2803. max = MAX(max, x[i]);
  2804. }
  2805. *s = max;
  2806. #else
  2807. vDSP_maxv(x, 1, s, n);
  2808. #endif
  2809. }
  2810. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2811. ggml_vec_norm_f32(n, s, x);
  2812. *s = 1.f/(*s);
  2813. }
  2814. //
  2815. // logging
  2816. //
  2817. #if (GGML_DEBUG >= 1)
  2818. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2819. #else
  2820. #define GGML_PRINT_DEBUG(...)
  2821. #endif
  2822. #if (GGML_DEBUG >= 5)
  2823. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2824. #else
  2825. #define GGML_PRINT_DEBUG_5(...)
  2826. #endif
  2827. #if (GGML_DEBUG >= 10)
  2828. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2829. #else
  2830. #define GGML_PRINT_DEBUG_10(...)
  2831. #endif
  2832. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2833. //
  2834. // data types
  2835. //
  2836. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2837. [GGML_TYPE_F32] = 1,
  2838. [GGML_TYPE_F16] = 1,
  2839. [GGML_TYPE_Q4_0] = QK4_0,
  2840. [GGML_TYPE_Q4_1] = QK4_1,
  2841. [GGML_TYPE_Q5_0] = QK5_0,
  2842. [GGML_TYPE_Q5_1] = QK5_1,
  2843. [GGML_TYPE_Q8_0] = QK8_0,
  2844. [GGML_TYPE_Q8_1] = QK8_1,
  2845. #ifdef GGML_USE_K_QUANTS
  2846. [GGML_TYPE_Q2_K] = QK_K,
  2847. [GGML_TYPE_Q3_K] = QK_K,
  2848. [GGML_TYPE_Q4_K] = QK_K,
  2849. [GGML_TYPE_Q5_K] = QK_K,
  2850. [GGML_TYPE_Q6_K] = QK_K,
  2851. [GGML_TYPE_Q8_K] = QK_K,
  2852. #endif
  2853. [GGML_TYPE_I8] = 1,
  2854. [GGML_TYPE_I16] = 1,
  2855. [GGML_TYPE_I32] = 1,
  2856. };
  2857. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2858. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2859. [GGML_TYPE_F32] = sizeof(float),
  2860. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2861. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2862. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2863. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2864. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2865. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2866. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2867. #ifdef GGML_USE_K_QUANTS
  2868. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2869. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2870. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2871. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2872. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2873. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2874. #endif
  2875. [GGML_TYPE_I8] = sizeof(int8_t),
  2876. [GGML_TYPE_I16] = sizeof(int16_t),
  2877. [GGML_TYPE_I32] = sizeof(int32_t),
  2878. };
  2879. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2880. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2881. [GGML_TYPE_F32] = "f32",
  2882. [GGML_TYPE_F16] = "f16",
  2883. [GGML_TYPE_Q4_0] = "q4_0",
  2884. [GGML_TYPE_Q4_1] = "q4_1",
  2885. [GGML_TYPE_Q5_0] = "q5_0",
  2886. [GGML_TYPE_Q5_1] = "q5_1",
  2887. [GGML_TYPE_Q8_0] = "q8_0",
  2888. [GGML_TYPE_Q8_1] = "q8_1",
  2889. [GGML_TYPE_Q2_K] = "q2_K",
  2890. [GGML_TYPE_Q3_K] = "q3_K",
  2891. [GGML_TYPE_Q4_K] = "q4_K",
  2892. [GGML_TYPE_Q5_K] = "q5_K",
  2893. [GGML_TYPE_Q6_K] = "q6_K",
  2894. [GGML_TYPE_Q8_K] = "q8_K",
  2895. [GGML_TYPE_I8] = "i8",
  2896. [GGML_TYPE_I16] = "i16",
  2897. [GGML_TYPE_I32] = "i32",
  2898. };
  2899. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2900. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2901. [GGML_TYPE_F32] = false,
  2902. [GGML_TYPE_F16] = false,
  2903. [GGML_TYPE_Q4_0] = true,
  2904. [GGML_TYPE_Q4_1] = true,
  2905. [GGML_TYPE_Q5_0] = true,
  2906. [GGML_TYPE_Q5_1] = true,
  2907. [GGML_TYPE_Q8_0] = true,
  2908. [GGML_TYPE_Q8_1] = true,
  2909. [GGML_TYPE_Q2_K] = true,
  2910. [GGML_TYPE_Q3_K] = true,
  2911. [GGML_TYPE_Q4_K] = true,
  2912. [GGML_TYPE_Q5_K] = true,
  2913. [GGML_TYPE_Q6_K] = true,
  2914. [GGML_TYPE_Q8_K] = true,
  2915. [GGML_TYPE_I8] = false,
  2916. [GGML_TYPE_I16] = false,
  2917. [GGML_TYPE_I32] = false,
  2918. };
  2919. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2920. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2921. "NONE",
  2922. "DUP",
  2923. "ADD",
  2924. "ADD1",
  2925. "ACC",
  2926. "SUB",
  2927. "MUL",
  2928. "DIV",
  2929. "SQR",
  2930. "SQRT",
  2931. "LOG",
  2932. "SUM",
  2933. "SUM_ROWS",
  2934. "MEAN",
  2935. "REPEAT",
  2936. "ABS",
  2937. "SGN",
  2938. "NEG",
  2939. "STEP",
  2940. "RELU",
  2941. "GELU",
  2942. "SILU",
  2943. "SILU_BACK",
  2944. "NORM",
  2945. "RMS_NORM",
  2946. "RMS_NORM_BACK",
  2947. "MUL_MAT",
  2948. "SCALE",
  2949. "SET",
  2950. "CPY",
  2951. "CONT",
  2952. "RESHAPE",
  2953. "VIEW",
  2954. "PERMUTE",
  2955. "TRANSPOSE",
  2956. "GET_ROWS",
  2957. "GET_ROWS_BACK",
  2958. "DIAG",
  2959. "DIAG_MASK_INF",
  2960. "DIAG_MASK_ZERO",
  2961. "SOFT_MAX",
  2962. "ROPE",
  2963. "ROPE_BACK",
  2964. "ALIBI",
  2965. "CLAMP",
  2966. "CONV_1D_1S",
  2967. "CONV_1D_2S",
  2968. "FLASH_ATTN",
  2969. "FLASH_FF",
  2970. "MAP_UNARY",
  2971. "MAP_BINARY",
  2972. };
  2973. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2974. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2975. "none",
  2976. "x",
  2977. "x+y",
  2978. "x+y",
  2979. "view(x,nb,offset)+=y->x",
  2980. "x-y",
  2981. "x*y",
  2982. "x/y",
  2983. "x^2",
  2984. "√x",
  2985. "log(x)",
  2986. "Σx",
  2987. "Σx_k",
  2988. "Σx/n",
  2989. "repeat(x)",
  2990. "abs(x)",
  2991. "sgn(x)",
  2992. "-x",
  2993. "step(x)",
  2994. "relu(x)",
  2995. "gelu(x)",
  2996. "silu(x)",
  2997. "silu_back(x)",
  2998. "norm(x)",
  2999. "rms_norm(x)",
  3000. "rms_norm_back(x)",
  3001. "X*Y",
  3002. "x*v",
  3003. "y-\\>view(x)",
  3004. "x-\\>y",
  3005. "cont(x)",
  3006. "reshape(x)",
  3007. "view(x)",
  3008. "permute(x)",
  3009. "transpose(x)",
  3010. "get_rows(x)",
  3011. "get_rows_back(x)",
  3012. "diag(x)",
  3013. "diag_mask_inf(x)",
  3014. "diag_mask_zero(x)",
  3015. "soft_max(x)",
  3016. "rope(x)",
  3017. "rope_back(x)",
  3018. "alibi(x)",
  3019. "clamp(x)",
  3020. "conv_1d_1s(x)",
  3021. "conv_1d_2s(x)",
  3022. "flash_attn(x)",
  3023. "flash_ff(x)",
  3024. "f(x)",
  3025. "f(x,y)",
  3026. };
  3027. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3028. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3029. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3030. //
  3031. // ggml context
  3032. //
  3033. struct ggml_context {
  3034. size_t mem_size;
  3035. void * mem_buffer;
  3036. bool mem_buffer_owned;
  3037. bool no_alloc;
  3038. int n_objects;
  3039. struct ggml_object * objects_begin;
  3040. struct ggml_object * objects_end;
  3041. struct ggml_scratch scratch;
  3042. struct ggml_scratch scratch_save;
  3043. };
  3044. struct ggml_context_container {
  3045. bool used;
  3046. struct ggml_context context;
  3047. };
  3048. //
  3049. // ggml state
  3050. //
  3051. struct ggml_state {
  3052. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3053. };
  3054. // global state
  3055. static struct ggml_state g_state;
  3056. static atomic_int g_state_barrier = 0;
  3057. // barrier via spin lock
  3058. inline static void ggml_critical_section_start(void) {
  3059. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3060. while (processing > 0) {
  3061. // wait for other threads to finish
  3062. atomic_fetch_sub(&g_state_barrier, 1);
  3063. sched_yield(); // TODO: reconsider this
  3064. processing = atomic_fetch_add(&g_state_barrier, 1);
  3065. }
  3066. }
  3067. // TODO: make this somehow automatically executed
  3068. // some sort of "sentry" mechanism
  3069. inline static void ggml_critical_section_end(void) {
  3070. atomic_fetch_sub(&g_state_barrier, 1);
  3071. }
  3072. ////////////////////////////////////////////////////////////////////////////////
  3073. void ggml_print_object(const struct ggml_object * obj) {
  3074. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3075. obj->offs, obj->size, (const void *) obj->next);
  3076. }
  3077. void ggml_print_objects(const struct ggml_context * ctx) {
  3078. struct ggml_object * obj = ctx->objects_begin;
  3079. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3080. while (obj != NULL) {
  3081. ggml_print_object(obj);
  3082. obj = obj->next;
  3083. }
  3084. GGML_PRINT("%s: --- end ---\n", __func__);
  3085. }
  3086. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3087. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3088. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3089. }
  3090. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3092. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3093. }
  3094. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3095. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3096. // this should handle cases where the tensor is not contiguous in memory
  3097. // probaby just:
  3098. //
  3099. // return tensor->ne[3]*tensor->nb[3]
  3100. //
  3101. // is enough, but just in case, adding the second part
  3102. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3103. }
  3104. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3105. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3106. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3107. }
  3108. int ggml_blck_size(enum ggml_type type) {
  3109. return GGML_BLCK_SIZE[type];
  3110. }
  3111. size_t ggml_type_size(enum ggml_type type) {
  3112. return GGML_TYPE_SIZE[type];
  3113. }
  3114. float ggml_type_sizef(enum ggml_type type) {
  3115. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3116. }
  3117. const char * ggml_type_name(enum ggml_type type) {
  3118. return GGML_TYPE_NAME[type];
  3119. }
  3120. const char * ggml_op_name(enum ggml_op op) {
  3121. return GGML_OP_NAME[op];
  3122. }
  3123. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3124. return GGML_TYPE_SIZE[tensor->type];
  3125. }
  3126. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3127. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3128. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3129. }
  3130. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3131. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3132. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3133. }
  3134. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3135. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3136. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3137. }
  3138. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3139. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3140. return
  3141. (t0->ne[0] == t1->ne[0]) &&
  3142. (t0->ne[2] == t1->ne[2]) &&
  3143. (t0->ne[3] == t1->ne[3]);
  3144. }
  3145. bool ggml_is_quantized(enum ggml_type type) {
  3146. return GGML_IS_QUANTIZED[type];
  3147. }
  3148. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3149. enum ggml_type wtype = GGML_TYPE_COUNT;
  3150. switch (ftype) {
  3151. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3152. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3153. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3154. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3155. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3156. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3157. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3158. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3159. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3160. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3161. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3162. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3163. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3164. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3165. }
  3166. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3167. return wtype;
  3168. }
  3169. size_t ggml_tensor_overhead(void) {
  3170. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3171. }
  3172. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3173. return tensor->nb[0] > tensor->nb[1];
  3174. }
  3175. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3176. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3177. return
  3178. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3179. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3180. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3181. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3182. }
  3183. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3184. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3185. return
  3186. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3187. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3188. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3189. }
  3190. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3191. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3192. return
  3193. (t0->ne[0] == t1->ne[0] ) &&
  3194. (t0->ne[1] == t1->ne[1] ) &&
  3195. (t0->ne[2] == t1->ne[2] ) &&
  3196. (t0->ne[3] == t1->ne[3] );
  3197. }
  3198. // check if t1 can be represented as a repeatition of t0
  3199. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3200. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3201. return
  3202. (t1->ne[0]%t0->ne[0] == 0) &&
  3203. (t1->ne[1]%t0->ne[1] == 0) &&
  3204. (t1->ne[2]%t0->ne[2] == 0) &&
  3205. (t1->ne[3]%t0->ne[3] == 0);
  3206. }
  3207. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3208. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3209. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3210. }
  3211. static inline int ggml_up32(int n) {
  3212. return (n + 31) & ~31;
  3213. }
  3214. //static inline int ggml_up64(int n) {
  3215. // return (n + 63) & ~63;
  3216. //}
  3217. static inline int ggml_up(int n, int m) {
  3218. // assert m is a power of 2
  3219. GGML_ASSERT((m & (m - 1)) == 0);
  3220. return (n + m - 1) & ~(m - 1);
  3221. }
  3222. // assert that pointer is aligned to GGML_MEM_ALIGN
  3223. #define ggml_assert_aligned(ptr) \
  3224. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3225. ////////////////////////////////////////////////////////////////////////////////
  3226. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3227. // make this function thread safe
  3228. ggml_critical_section_start();
  3229. static bool is_first_call = true;
  3230. if (is_first_call) {
  3231. // initialize time system (required on Windows)
  3232. ggml_time_init();
  3233. // initialize GELU, SILU and EXP F32 tables
  3234. {
  3235. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3236. ggml_fp16_t ii;
  3237. for (int i = 0; i < (1 << 16); ++i) {
  3238. uint16_t ui = i;
  3239. memcpy(&ii, &ui, sizeof(ii));
  3240. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3241. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3242. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3243. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3244. }
  3245. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3246. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3247. }
  3248. // initialize g_state
  3249. {
  3250. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3251. g_state = (struct ggml_state) {
  3252. /*.contexts =*/ { { 0 } },
  3253. };
  3254. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3255. g_state.contexts[i].used = false;
  3256. }
  3257. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3258. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3259. }
  3260. #if defined(GGML_USE_CUBLAS)
  3261. ggml_init_cublas();
  3262. #elif defined(GGML_USE_CLBLAST)
  3263. ggml_cl_init();
  3264. #endif
  3265. is_first_call = false;
  3266. }
  3267. // find non-used context in g_state
  3268. struct ggml_context * ctx = NULL;
  3269. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3270. if (!g_state.contexts[i].used) {
  3271. g_state.contexts[i].used = true;
  3272. ctx = &g_state.contexts[i].context;
  3273. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3274. break;
  3275. }
  3276. }
  3277. if (ctx == NULL) {
  3278. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3279. ggml_critical_section_end();
  3280. return NULL;
  3281. }
  3282. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3283. *ctx = (struct ggml_context) {
  3284. /*.mem_size =*/ mem_size,
  3285. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3286. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3287. /*.no_alloc =*/ params.no_alloc,
  3288. /*.n_objects =*/ 0,
  3289. /*.objects_begin =*/ NULL,
  3290. /*.objects_end =*/ NULL,
  3291. /*.scratch =*/ { 0, 0, NULL, },
  3292. /*.scratch_save =*/ { 0, 0, NULL, },
  3293. };
  3294. GGML_ASSERT(ctx->mem_buffer != NULL);
  3295. ggml_assert_aligned(ctx->mem_buffer);
  3296. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3297. ggml_critical_section_end();
  3298. return ctx;
  3299. }
  3300. void ggml_free(struct ggml_context * ctx) {
  3301. // make this function thread safe
  3302. ggml_critical_section_start();
  3303. bool found = false;
  3304. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3305. if (&g_state.contexts[i].context == ctx) {
  3306. g_state.contexts[i].used = false;
  3307. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3308. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3309. if (ctx->mem_buffer_owned) {
  3310. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3311. }
  3312. found = true;
  3313. break;
  3314. }
  3315. }
  3316. if (!found) {
  3317. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3318. }
  3319. ggml_critical_section_end();
  3320. }
  3321. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3322. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3323. }
  3324. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3325. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3326. ctx->scratch = scratch;
  3327. return result;
  3328. }
  3329. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3330. ctx->no_alloc = no_alloc;
  3331. }
  3332. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3333. return ctx->mem_buffer;
  3334. }
  3335. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3336. return ctx->mem_size;
  3337. }
  3338. // IMPORTANT:
  3339. // when creating "opt" tensors, always save and load the scratch buffer
  3340. // this is an error prone process, but it is necessary to support inplace
  3341. // operators when using scratch buffers
  3342. // TODO: implement a better way
  3343. void ggml_scratch_save(struct ggml_context * ctx) {
  3344. ctx->scratch_save = ctx->scratch;
  3345. ctx->scratch.data = NULL;
  3346. }
  3347. void ggml_scratch_load(struct ggml_context * ctx) {
  3348. ctx->scratch = ctx->scratch_save;
  3349. }
  3350. ////////////////////////////////////////////////////////////////////////////////
  3351. struct ggml_tensor * ggml_new_tensor_impl(
  3352. struct ggml_context * ctx,
  3353. enum ggml_type type,
  3354. int n_dims,
  3355. const int64_t* ne,
  3356. void* data) {
  3357. // always insert objects at the end of the context's memory pool
  3358. struct ggml_object * obj_cur = ctx->objects_end;
  3359. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3360. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3361. const size_t cur_end = cur_offs + cur_size;
  3362. size_t size_needed = 0;
  3363. if (data == NULL && !ctx->no_alloc) {
  3364. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3365. for (int i = 1; i < n_dims; i++) {
  3366. size_needed *= ne[i];
  3367. }
  3368. // align to GGML_MEM_ALIGN
  3369. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3370. }
  3371. char * const mem_buffer = ctx->mem_buffer;
  3372. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3373. if (ctx->scratch.data == NULL || data != NULL) {
  3374. size_needed += GGML_TENSOR_SIZE;
  3375. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3376. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3377. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3378. assert(false);
  3379. return NULL;
  3380. }
  3381. *obj_new = (struct ggml_object) {
  3382. .offs = cur_end + GGML_OBJECT_SIZE,
  3383. .size = size_needed,
  3384. .next = NULL,
  3385. };
  3386. } else {
  3387. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3388. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3389. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3390. assert(false);
  3391. return NULL;
  3392. }
  3393. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3394. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3395. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3396. assert(false);
  3397. return NULL;
  3398. }
  3399. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3400. *obj_new = (struct ggml_object) {
  3401. .offs = cur_end + GGML_OBJECT_SIZE,
  3402. .size = GGML_TENSOR_SIZE,
  3403. .next = NULL,
  3404. };
  3405. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3406. ctx->scratch.offs += size_needed;
  3407. }
  3408. if (obj_cur != NULL) {
  3409. obj_cur->next = obj_new;
  3410. } else {
  3411. // this is the first object in this context
  3412. ctx->objects_begin = obj_new;
  3413. }
  3414. ctx->objects_end = obj_new;
  3415. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3416. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3417. ggml_assert_aligned(result);
  3418. *result = (struct ggml_tensor) {
  3419. /*.type =*/ type,
  3420. /*.backend =*/ GGML_BACKEND_CPU,
  3421. /*.n_dims =*/ n_dims,
  3422. /*.ne =*/ { 1, 1, 1, 1 },
  3423. /*.nb =*/ { 0, 0, 0, 0 },
  3424. /*.op =*/ GGML_OP_NONE,
  3425. /*.is_param =*/ false,
  3426. /*.grad =*/ NULL,
  3427. /*.src0 =*/ NULL,
  3428. /*.src1 =*/ NULL,
  3429. /*.opt =*/ { NULL },
  3430. /*.n_tasks =*/ 0,
  3431. /*.perf_runs =*/ 0,
  3432. /*.perf_cycles =*/ 0,
  3433. /*.perf_time_us =*/ 0,
  3434. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3435. /*.name =*/ { 0 },
  3436. /*.extra =*/ NULL,
  3437. /*.pad =*/ { 0 },
  3438. };
  3439. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3440. //ggml_assert_aligned(result->data);
  3441. for (int i = 0; i < n_dims; i++) {
  3442. result->ne[i] = ne[i];
  3443. }
  3444. result->nb[0] = GGML_TYPE_SIZE[type];
  3445. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3446. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3447. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3448. }
  3449. ctx->n_objects++;
  3450. return result;
  3451. }
  3452. struct ggml_tensor * ggml_new_tensor(
  3453. struct ggml_context * ctx,
  3454. enum ggml_type type,
  3455. int n_dims,
  3456. const int64_t * ne) {
  3457. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3458. }
  3459. struct ggml_tensor * ggml_new_tensor_1d(
  3460. struct ggml_context * ctx,
  3461. enum ggml_type type,
  3462. int64_t ne0) {
  3463. return ggml_new_tensor(ctx, type, 1, &ne0);
  3464. }
  3465. struct ggml_tensor * ggml_new_tensor_2d(
  3466. struct ggml_context * ctx,
  3467. enum ggml_type type,
  3468. int64_t ne0,
  3469. int64_t ne1) {
  3470. const int64_t ne[2] = { ne0, ne1 };
  3471. return ggml_new_tensor(ctx, type, 2, ne);
  3472. }
  3473. struct ggml_tensor * ggml_new_tensor_3d(
  3474. struct ggml_context * ctx,
  3475. enum ggml_type type,
  3476. int64_t ne0,
  3477. int64_t ne1,
  3478. int64_t ne2) {
  3479. const int64_t ne[3] = { ne0, ne1, ne2 };
  3480. return ggml_new_tensor(ctx, type, 3, ne);
  3481. }
  3482. struct ggml_tensor * ggml_new_tensor_4d(
  3483. struct ggml_context * ctx,
  3484. enum ggml_type type,
  3485. int64_t ne0,
  3486. int64_t ne1,
  3487. int64_t ne2,
  3488. int64_t ne3) {
  3489. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3490. return ggml_new_tensor(ctx, type, 4, ne);
  3491. }
  3492. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3493. ggml_scratch_save(ctx);
  3494. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3495. ggml_scratch_load(ctx);
  3496. ggml_set_i32(result, value);
  3497. return result;
  3498. }
  3499. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3500. ggml_scratch_save(ctx);
  3501. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3502. ggml_scratch_load(ctx);
  3503. ggml_set_f32(result, value);
  3504. return result;
  3505. }
  3506. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3507. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3508. }
  3509. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3510. memset(tensor->data, 0, ggml_nbytes(tensor));
  3511. return tensor;
  3512. }
  3513. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3514. const int n = ggml_nrows(tensor);
  3515. const int nc = tensor->ne[0];
  3516. const size_t n1 = tensor->nb[1];
  3517. char * const data = tensor->data;
  3518. switch (tensor->type) {
  3519. case GGML_TYPE_I8:
  3520. {
  3521. assert(tensor->nb[0] == sizeof(int8_t));
  3522. for (int i = 0; i < n; i++) {
  3523. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3524. }
  3525. } break;
  3526. case GGML_TYPE_I16:
  3527. {
  3528. assert(tensor->nb[0] == sizeof(int16_t));
  3529. for (int i = 0; i < n; i++) {
  3530. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3531. }
  3532. } break;
  3533. case GGML_TYPE_I32:
  3534. {
  3535. assert(tensor->nb[0] == sizeof(int32_t));
  3536. for (int i = 0; i < n; i++) {
  3537. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3538. }
  3539. } break;
  3540. case GGML_TYPE_F16:
  3541. {
  3542. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3543. for (int i = 0; i < n; i++) {
  3544. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3545. }
  3546. } break;
  3547. case GGML_TYPE_F32:
  3548. {
  3549. assert(tensor->nb[0] == sizeof(float));
  3550. for (int i = 0; i < n; i++) {
  3551. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3552. }
  3553. } break;
  3554. default:
  3555. {
  3556. GGML_ASSERT(false);
  3557. } break;
  3558. }
  3559. return tensor;
  3560. }
  3561. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3562. const int n = ggml_nrows(tensor);
  3563. const int nc = tensor->ne[0];
  3564. const size_t n1 = tensor->nb[1];
  3565. char * const data = tensor->data;
  3566. switch (tensor->type) {
  3567. case GGML_TYPE_I8:
  3568. {
  3569. assert(tensor->nb[0] == sizeof(int8_t));
  3570. for (int i = 0; i < n; i++) {
  3571. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3572. }
  3573. } break;
  3574. case GGML_TYPE_I16:
  3575. {
  3576. assert(tensor->nb[0] == sizeof(int16_t));
  3577. for (int i = 0; i < n; i++) {
  3578. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3579. }
  3580. } break;
  3581. case GGML_TYPE_I32:
  3582. {
  3583. assert(tensor->nb[0] == sizeof(int32_t));
  3584. for (int i = 0; i < n; i++) {
  3585. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3586. }
  3587. } break;
  3588. case GGML_TYPE_F16:
  3589. {
  3590. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3591. for (int i = 0; i < n; i++) {
  3592. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3593. }
  3594. } break;
  3595. case GGML_TYPE_F32:
  3596. {
  3597. assert(tensor->nb[0] == sizeof(float));
  3598. for (int i = 0; i < n; i++) {
  3599. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3600. }
  3601. } break;
  3602. default:
  3603. {
  3604. GGML_ASSERT(false);
  3605. } break;
  3606. }
  3607. return tensor;
  3608. }
  3609. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3610. switch (tensor->type) {
  3611. case GGML_TYPE_I8:
  3612. {
  3613. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3614. return ((int8_t *)(tensor->data))[i];
  3615. } break;
  3616. case GGML_TYPE_I16:
  3617. {
  3618. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3619. return ((int16_t *)(tensor->data))[i];
  3620. } break;
  3621. case GGML_TYPE_I32:
  3622. {
  3623. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3624. return ((int32_t *)(tensor->data))[i];
  3625. } break;
  3626. case GGML_TYPE_F16:
  3627. {
  3628. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3629. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3630. } break;
  3631. case GGML_TYPE_F32:
  3632. {
  3633. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3634. return ((float *)(tensor->data))[i];
  3635. } break;
  3636. default:
  3637. {
  3638. GGML_ASSERT(false);
  3639. } break;
  3640. }
  3641. return 0.0f;
  3642. }
  3643. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3644. switch (tensor->type) {
  3645. case GGML_TYPE_I8:
  3646. {
  3647. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3648. ((int8_t *)(tensor->data))[i] = value;
  3649. } break;
  3650. case GGML_TYPE_I16:
  3651. {
  3652. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3653. ((int16_t *)(tensor->data))[i] = value;
  3654. } break;
  3655. case GGML_TYPE_I32:
  3656. {
  3657. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3658. ((int32_t *)(tensor->data))[i] = value;
  3659. } break;
  3660. case GGML_TYPE_F16:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3663. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3664. } break;
  3665. case GGML_TYPE_F32:
  3666. {
  3667. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3668. ((float *)(tensor->data))[i] = value;
  3669. } break;
  3670. default:
  3671. {
  3672. GGML_ASSERT(false);
  3673. } break;
  3674. }
  3675. }
  3676. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3677. switch (tensor->type) {
  3678. case GGML_TYPE_I8:
  3679. {
  3680. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3681. return ((int8_t *)(tensor->data))[i];
  3682. } break;
  3683. case GGML_TYPE_I16:
  3684. {
  3685. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3686. return ((int16_t *)(tensor->data))[i];
  3687. } break;
  3688. case GGML_TYPE_I32:
  3689. {
  3690. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3691. return ((int32_t *)(tensor->data))[i];
  3692. } break;
  3693. case GGML_TYPE_F16:
  3694. {
  3695. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3696. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3697. } break;
  3698. case GGML_TYPE_F32:
  3699. {
  3700. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3701. return ((float *)(tensor->data))[i];
  3702. } break;
  3703. default:
  3704. {
  3705. GGML_ASSERT(false);
  3706. } break;
  3707. }
  3708. return 0.0f;
  3709. }
  3710. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3711. switch (tensor->type) {
  3712. case GGML_TYPE_I8:
  3713. {
  3714. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3715. ((int8_t *)(tensor->data))[i] = value;
  3716. } break;
  3717. case GGML_TYPE_I16:
  3718. {
  3719. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3720. ((int16_t *)(tensor->data))[i] = value;
  3721. } break;
  3722. case GGML_TYPE_I32:
  3723. {
  3724. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3725. ((int32_t *)(tensor->data))[i] = value;
  3726. } break;
  3727. case GGML_TYPE_F16:
  3728. {
  3729. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3730. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3731. } break;
  3732. case GGML_TYPE_F32:
  3733. {
  3734. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3735. ((float *)(tensor->data))[i] = value;
  3736. } break;
  3737. default:
  3738. {
  3739. GGML_ASSERT(false);
  3740. } break;
  3741. }
  3742. }
  3743. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3744. return tensor->data;
  3745. }
  3746. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3747. assert(tensor->type == GGML_TYPE_F32);
  3748. return (float *)(tensor->data);
  3749. }
  3750. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3751. return tensor->name;
  3752. }
  3753. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3754. strncpy(tensor->name, name, sizeof(tensor->name));
  3755. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3756. }
  3757. struct ggml_tensor * ggml_view_tensor(
  3758. struct ggml_context * ctx,
  3759. const struct ggml_tensor * src) {
  3760. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3761. result->nb[0] = src->nb[0];
  3762. result->nb[1] = src->nb[1];
  3763. result->nb[2] = src->nb[2];
  3764. result->nb[3] = src->nb[3];
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3768. struct ggml_object * obj = ctx->objects_begin;
  3769. char * const mem_buffer = ctx->mem_buffer;
  3770. while (obj != NULL) {
  3771. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3772. if (strcmp(cur->name, name) == 0) {
  3773. return cur;
  3774. }
  3775. obj = obj->next;
  3776. }
  3777. return NULL;
  3778. }
  3779. ////////////////////////////////////////////////////////////////////////////////
  3780. // ggml_dup
  3781. struct ggml_tensor * ggml_dup_impl(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. bool inplace) {
  3785. bool is_node = false;
  3786. if (!inplace && (a->grad)) {
  3787. is_node = true;
  3788. }
  3789. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3790. result->op = GGML_OP_DUP;
  3791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3792. result->src0 = a;
  3793. result->src1 = NULL;
  3794. return result;
  3795. }
  3796. struct ggml_tensor * ggml_dup(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a) {
  3799. return ggml_dup_impl(ctx, a, false);
  3800. }
  3801. struct ggml_tensor * ggml_dup_inplace(
  3802. struct ggml_context * ctx,
  3803. struct ggml_tensor * a) {
  3804. return ggml_dup_impl(ctx, a, true);
  3805. }
  3806. // ggml_add
  3807. struct ggml_tensor * ggml_add_impl(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. struct ggml_tensor * b,
  3811. bool inplace) {
  3812. GGML_ASSERT(ggml_are_same_shape(a, b));
  3813. bool is_node = false;
  3814. if (!inplace && (a->grad || b->grad)) {
  3815. is_node = true;
  3816. }
  3817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3818. result->op = GGML_OP_ADD;
  3819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3820. result->src0 = a;
  3821. result->src1 = b;
  3822. return result;
  3823. }
  3824. struct ggml_tensor * ggml_add(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b) {
  3828. return ggml_add_impl(ctx, a, b, false);
  3829. }
  3830. struct ggml_tensor * ggml_add_inplace(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. struct ggml_tensor * b) {
  3834. return ggml_add_impl(ctx, a, b, true);
  3835. }
  3836. // ggml_add1
  3837. struct ggml_tensor * ggml_add1_impl(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b,
  3841. bool inplace) {
  3842. GGML_ASSERT(ggml_is_scalar(b));
  3843. GGML_ASSERT(ggml_is_padded_1d(a));
  3844. bool is_node = false;
  3845. if (!inplace && (a->grad || b->grad)) {
  3846. is_node = true;
  3847. }
  3848. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3849. result->op = GGML_OP_ADD1;
  3850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3851. result->src0 = a;
  3852. result->src1 = b;
  3853. return result;
  3854. }
  3855. struct ggml_tensor * ggml_add1(
  3856. struct ggml_context * ctx,
  3857. struct ggml_tensor * a,
  3858. struct ggml_tensor * b) {
  3859. return ggml_add1_impl(ctx, a, b, false);
  3860. }
  3861. struct ggml_tensor * ggml_add1_inplace(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a,
  3864. struct ggml_tensor * b) {
  3865. return ggml_add1_impl(ctx, a, b, true);
  3866. }
  3867. // ggml_acc
  3868. struct ggml_tensor * ggml_acc_impl(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. struct ggml_tensor * b,
  3872. size_t nb1,
  3873. size_t nb2,
  3874. size_t nb3,
  3875. size_t offset,
  3876. bool inplace) {
  3877. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3878. GGML_ASSERT(ggml_is_contiguous(a));
  3879. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3880. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3881. bool is_node = false;
  3882. if (!inplace && (a->grad || b->grad)) {
  3883. is_node = true;
  3884. }
  3885. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3886. ggml_scratch_save(ctx);
  3887. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3888. ((int32_t *) c->data)[0] = nb1;
  3889. ((int32_t *) c->data)[1] = nb2;
  3890. ((int32_t *) c->data)[2] = nb3;
  3891. ((int32_t *) c->data)[3] = offset;
  3892. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3893. ggml_scratch_load(ctx);
  3894. result->op = GGML_OP_ACC;
  3895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3896. result->src0 = a;
  3897. result->src1 = b;
  3898. result->opt[0] = c;
  3899. return result;
  3900. }
  3901. struct ggml_tensor * ggml_acc(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. struct ggml_tensor * b,
  3905. size_t nb1,
  3906. size_t nb2,
  3907. size_t nb3,
  3908. size_t offset) {
  3909. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3910. }
  3911. struct ggml_tensor * ggml_acc_inplace(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b,
  3915. size_t nb1,
  3916. size_t nb2,
  3917. size_t nb3,
  3918. size_t offset) {
  3919. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3920. }
  3921. // ggml_sub
  3922. struct ggml_tensor * ggml_sub_impl(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b,
  3926. bool inplace) {
  3927. GGML_ASSERT(ggml_are_same_shape(a, b));
  3928. bool is_node = false;
  3929. if (!inplace && (a->grad || b->grad)) {
  3930. is_node = true;
  3931. }
  3932. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3933. result->op = GGML_OP_SUB;
  3934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3935. result->src0 = a;
  3936. result->src1 = b;
  3937. return result;
  3938. }
  3939. struct ggml_tensor * ggml_sub(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a,
  3942. struct ggml_tensor * b) {
  3943. return ggml_sub_impl(ctx, a, b, false);
  3944. }
  3945. struct ggml_tensor * ggml_sub_inplace(
  3946. struct ggml_context * ctx,
  3947. struct ggml_tensor * a,
  3948. struct ggml_tensor * b) {
  3949. return ggml_sub_impl(ctx, a, b, true);
  3950. }
  3951. // ggml_mul
  3952. struct ggml_tensor * ggml_mul_impl(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. struct ggml_tensor * b,
  3956. bool inplace) {
  3957. // TODO: support less-strict constraint
  3958. // GGML_ASSERT(ggml_can_repeat(b, a));
  3959. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3960. bool is_node = false;
  3961. if (!inplace && (a->grad || b->grad)) {
  3962. // TODO: support backward pass for broadcasting
  3963. GGML_ASSERT(ggml_are_same_shape(a, b));
  3964. is_node = true;
  3965. }
  3966. if (inplace) {
  3967. GGML_ASSERT(is_node == false);
  3968. }
  3969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3970. result->op = GGML_OP_MUL;
  3971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3972. result->src0 = a;
  3973. result->src1 = b;
  3974. return result;
  3975. }
  3976. struct ggml_tensor * ggml_mul(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. struct ggml_tensor * b) {
  3980. return ggml_mul_impl(ctx, a, b, false);
  3981. }
  3982. struct ggml_tensor * ggml_mul_inplace(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. struct ggml_tensor * b) {
  3986. return ggml_mul_impl(ctx, a, b, true);
  3987. }
  3988. // ggml_div
  3989. struct ggml_tensor * ggml_div_impl(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. struct ggml_tensor * b,
  3993. bool inplace) {
  3994. GGML_ASSERT(ggml_are_same_shape(a, b));
  3995. bool is_node = false;
  3996. if (!inplace && (a->grad || b->grad)) {
  3997. is_node = true;
  3998. }
  3999. if (inplace) {
  4000. GGML_ASSERT(is_node == false);
  4001. }
  4002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4003. result->op = GGML_OP_DIV;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src0 = a;
  4006. result->src1 = b;
  4007. return result;
  4008. }
  4009. struct ggml_tensor * ggml_div(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. struct ggml_tensor * b) {
  4013. return ggml_div_impl(ctx, a, b, false);
  4014. }
  4015. struct ggml_tensor * ggml_div_inplace(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * b) {
  4019. return ggml_div_impl(ctx, a, b, true);
  4020. }
  4021. // ggml_sqr
  4022. struct ggml_tensor * ggml_sqr_impl(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a,
  4025. bool inplace) {
  4026. bool is_node = false;
  4027. if (!inplace && (a->grad)) {
  4028. is_node = true;
  4029. }
  4030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4031. result->op = GGML_OP_SQR;
  4032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4033. result->src0 = a;
  4034. result->src1 = NULL;
  4035. return result;
  4036. }
  4037. struct ggml_tensor * ggml_sqr(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a) {
  4040. return ggml_sqr_impl(ctx, a, false);
  4041. }
  4042. struct ggml_tensor * ggml_sqr_inplace(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a) {
  4045. return ggml_sqr_impl(ctx, a, true);
  4046. }
  4047. // ggml_sqrt
  4048. struct ggml_tensor * ggml_sqrt_impl(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. bool inplace) {
  4052. bool is_node = false;
  4053. if (!inplace && (a->grad)) {
  4054. is_node = true;
  4055. }
  4056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4057. result->op = GGML_OP_SQRT;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src0 = a;
  4060. result->src1 = NULL;
  4061. return result;
  4062. }
  4063. struct ggml_tensor * ggml_sqrt(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. return ggml_sqrt_impl(ctx, a, false);
  4067. }
  4068. struct ggml_tensor * ggml_sqrt_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a) {
  4071. return ggml_sqrt_impl(ctx, a, true);
  4072. }
  4073. // ggml_log
  4074. struct ggml_tensor * ggml_log_impl(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. bool inplace) {
  4078. bool is_node = false;
  4079. if (!inplace && (a->grad)) {
  4080. is_node = true;
  4081. }
  4082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4083. result->op = GGML_OP_LOG;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src0 = a;
  4086. result->src1 = NULL;
  4087. return result;
  4088. }
  4089. struct ggml_tensor * ggml_log(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. return ggml_log_impl(ctx, a, false);
  4093. }
  4094. struct ggml_tensor * ggml_log_inplace(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a) {
  4097. return ggml_log_impl(ctx, a, true);
  4098. }
  4099. // ggml_sum
  4100. struct ggml_tensor * ggml_sum(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a) {
  4103. bool is_node = false;
  4104. if (a->grad) {
  4105. is_node = true;
  4106. }
  4107. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4108. result->op = GGML_OP_SUM;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src0 = a;
  4111. result->src1 = NULL;
  4112. return result;
  4113. }
  4114. // ggml_sum_rows
  4115. struct ggml_tensor * ggml_sum_rows(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a) {
  4118. bool is_node = false;
  4119. if (a->grad) {
  4120. is_node = true;
  4121. }
  4122. int64_t ne[4] = {1,1,1,1};
  4123. for (int i=1; i<a->n_dims; ++i) {
  4124. ne[i] = a->ne[i];
  4125. }
  4126. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4127. result->op = GGML_OP_SUM_ROWS;
  4128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4129. result->src0 = a;
  4130. result->src1 = NULL;
  4131. return result;
  4132. }
  4133. // ggml_mean
  4134. struct ggml_tensor * ggml_mean(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a) {
  4137. bool is_node = false;
  4138. if (a->grad) {
  4139. GGML_ASSERT(false); // TODO: implement
  4140. is_node = true;
  4141. }
  4142. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4143. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4144. result->op = GGML_OP_MEAN;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src0 = a;
  4147. result->src1 = NULL;
  4148. return result;
  4149. }
  4150. // ggml_repeat
  4151. struct ggml_tensor * ggml_repeat(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b) {
  4155. GGML_ASSERT(ggml_can_repeat(a, b));
  4156. bool is_node = false;
  4157. if (a->grad) {
  4158. is_node = true;
  4159. }
  4160. if (ggml_are_same_shape(a, b) && !is_node) {
  4161. return a;
  4162. }
  4163. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4164. result->op = GGML_OP_REPEAT;
  4165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4166. result->src0 = a;
  4167. result->src1 = b;
  4168. return result;
  4169. }
  4170. // ggml_abs
  4171. struct ggml_tensor * ggml_abs_impl(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. bool inplace) {
  4175. bool is_node = false;
  4176. if (!inplace && (a->grad)) {
  4177. is_node = true;
  4178. }
  4179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4180. result->op = GGML_OP_ABS;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src0 = a;
  4183. result->src1 = NULL;
  4184. return result;
  4185. }
  4186. struct ggml_tensor * ggml_abs(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_abs_impl(ctx, a, false);
  4190. }
  4191. struct ggml_tensor * ggml_abs_inplace(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. return ggml_abs_impl(ctx, a, true);
  4195. }
  4196. // ggml_sgn
  4197. struct ggml_tensor * ggml_sgn_impl(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. bool inplace) {
  4201. bool is_node = false;
  4202. if (!inplace && (a->grad)) {
  4203. is_node = true;
  4204. }
  4205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4206. result->op = GGML_OP_SGN;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src0 = a;
  4209. result->src1 = NULL;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_sgn(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_sgn_impl(ctx, a, false);
  4216. }
  4217. struct ggml_tensor * ggml_sgn_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_sgn_impl(ctx, a, true);
  4221. }
  4222. // ggml_neg
  4223. struct ggml_tensor * ggml_neg_impl(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. bool inplace) {
  4227. bool is_node = false;
  4228. if (!inplace && (a->grad)) {
  4229. is_node = true;
  4230. }
  4231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. result->op = GGML_OP_NEG;
  4233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4234. result->src0 = a;
  4235. result->src1 = NULL;
  4236. return result;
  4237. }
  4238. struct ggml_tensor * ggml_neg(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_neg_impl(ctx, a, false);
  4242. }
  4243. struct ggml_tensor * ggml_neg_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a) {
  4246. return ggml_neg_impl(ctx, a, true);
  4247. }
  4248. // ggml_step
  4249. struct ggml_tensor * ggml_step_impl(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. bool inplace) {
  4253. bool is_node = false;
  4254. if (!inplace && (a->grad)) {
  4255. is_node = true;
  4256. }
  4257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4258. result->op = GGML_OP_STEP;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src0 = a;
  4261. result->src1 = NULL;
  4262. return result;
  4263. }
  4264. struct ggml_tensor * ggml_step(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a) {
  4267. return ggml_step_impl(ctx, a, false);
  4268. }
  4269. struct ggml_tensor * ggml_step_inplace(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a) {
  4272. return ggml_step_impl(ctx, a, true);
  4273. }
  4274. // ggml_relu
  4275. struct ggml_tensor * ggml_relu_impl(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. bool inplace) {
  4279. bool is_node = false;
  4280. if (!inplace && (a->grad)) {
  4281. is_node = true;
  4282. }
  4283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4284. result->op = GGML_OP_RELU;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src0 = a;
  4287. result->src1 = NULL;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_relu(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_relu_impl(ctx, a, false);
  4294. }
  4295. struct ggml_tensor * ggml_relu_inplace(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. return ggml_relu_impl(ctx, a, true);
  4299. }
  4300. // ggml_gelu
  4301. struct ggml_tensor * ggml_gelu_impl(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. bool inplace) {
  4305. bool is_node = false;
  4306. if (!inplace && (a->grad)) {
  4307. is_node = true;
  4308. }
  4309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4310. result->op = GGML_OP_GELU;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src0 = a;
  4313. result->src1 = NULL;
  4314. return result;
  4315. }
  4316. struct ggml_tensor * ggml_gelu(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a) {
  4319. return ggml_gelu_impl(ctx, a, false);
  4320. }
  4321. struct ggml_tensor * ggml_gelu_inplace(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a) {
  4324. return ggml_gelu_impl(ctx, a, true);
  4325. }
  4326. // ggml_silu
  4327. struct ggml_tensor * ggml_silu_impl(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. bool inplace) {
  4331. bool is_node = false;
  4332. if (!inplace && (a->grad)) {
  4333. is_node = true;
  4334. }
  4335. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4336. result->op = GGML_OP_SILU;
  4337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4338. result->src0 = a;
  4339. result->src1 = NULL;
  4340. return result;
  4341. }
  4342. struct ggml_tensor * ggml_silu(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a) {
  4345. return ggml_silu_impl(ctx, a, false);
  4346. }
  4347. struct ggml_tensor * ggml_silu_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a) {
  4350. return ggml_silu_impl(ctx, a, true);
  4351. }
  4352. // ggml_silu_back
  4353. struct ggml_tensor * ggml_silu_back(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a,
  4356. struct ggml_tensor * b) {
  4357. bool is_node = false;
  4358. if (a->grad || b->grad) {
  4359. // TODO: implement backward
  4360. is_node = true;
  4361. }
  4362. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4363. result->op = GGML_OP_SILU_BACK;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->src1 = b;
  4367. return result;
  4368. }
  4369. // ggml_norm
  4370. struct ggml_tensor * ggml_norm_impl(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. bool inplace) {
  4374. bool is_node = false;
  4375. if (!inplace && (a->grad)) {
  4376. GGML_ASSERT(false); // TODO: implement backward
  4377. is_node = true;
  4378. }
  4379. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4380. result->op = GGML_OP_NORM;
  4381. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4382. result->src0 = a;
  4383. result->src1 = NULL; // TODO: maybe store epsilon here?
  4384. return result;
  4385. }
  4386. struct ggml_tensor * ggml_norm(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a) {
  4389. return ggml_norm_impl(ctx, a, false);
  4390. }
  4391. struct ggml_tensor * ggml_norm_inplace(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a) {
  4394. return ggml_norm_impl(ctx, a, true);
  4395. }
  4396. struct ggml_tensor * ggml_rms_norm_impl(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. bool inplace) {
  4400. bool is_node = false;
  4401. if (!inplace && (a->grad)) {
  4402. is_node = true;
  4403. }
  4404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4405. result->op = GGML_OP_RMS_NORM;
  4406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4407. result->src0 = a;
  4408. result->src1 = NULL; // TODO: maybe store epsilon here?
  4409. return result;
  4410. }
  4411. struct ggml_tensor * ggml_rms_norm(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_rms_norm_impl(ctx, a, false);
  4415. }
  4416. struct ggml_tensor * ggml_rms_norm_inplace(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. return ggml_rms_norm_impl(ctx, a, true);
  4420. }
  4421. struct ggml_tensor * ggml_rms_norm_back(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a,
  4424. struct ggml_tensor * b) {
  4425. bool is_node = false;
  4426. if (a->grad) {
  4427. // TODO: implement backward
  4428. is_node = true;
  4429. }
  4430. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4431. result->op = GGML_OP_RMS_NORM_BACK;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src0 = a;
  4434. result->src1 = b;
  4435. return result;
  4436. }
  4437. // ggml_mul_mat
  4438. struct ggml_tensor * ggml_mul_mat(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4443. GGML_ASSERT(!ggml_is_transposed(a));
  4444. bool is_node = false;
  4445. if (a->grad || b->grad) {
  4446. is_node = true;
  4447. }
  4448. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4449. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4450. result->op = GGML_OP_MUL_MAT;
  4451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4452. result->src0 = a;
  4453. result->src1 = b;
  4454. return result;
  4455. }
  4456. // ggml_scale
  4457. struct ggml_tensor * ggml_scale_impl(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. struct ggml_tensor * b,
  4461. bool inplace) {
  4462. GGML_ASSERT(ggml_is_scalar(b));
  4463. GGML_ASSERT(ggml_is_padded_1d(a));
  4464. bool is_node = false;
  4465. if (!inplace && (a->grad || b->grad)) {
  4466. is_node = true;
  4467. }
  4468. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4469. result->op = GGML_OP_SCALE;
  4470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4471. result->src0 = a;
  4472. result->src1 = b;
  4473. return result;
  4474. }
  4475. struct ggml_tensor * ggml_scale(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b) {
  4479. return ggml_scale_impl(ctx, a, b, false);
  4480. }
  4481. struct ggml_tensor * ggml_scale_inplace(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * b) {
  4485. return ggml_scale_impl(ctx, a, b, true);
  4486. }
  4487. // ggml_set
  4488. struct ggml_tensor * ggml_set_impl(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b,
  4492. size_t nb1,
  4493. size_t nb2,
  4494. size_t nb3,
  4495. size_t offset,
  4496. bool inplace) {
  4497. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4498. bool is_node = false;
  4499. if (!inplace && (a->grad || b->grad)) {
  4500. is_node = true;
  4501. }
  4502. // make a view of the destination
  4503. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4504. ggml_scratch_save(ctx);
  4505. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4506. (( int32_t * ) c->data)[0] = nb1;
  4507. (( int32_t * ) c->data)[1] = nb2;
  4508. (( int32_t * ) c->data)[2] = nb3;
  4509. (( int32_t * ) c->data)[3] = offset;
  4510. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4511. ggml_scratch_load(ctx);
  4512. result->op = GGML_OP_SET;
  4513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4514. result->src0 = a;
  4515. result->src1 = b;
  4516. result->opt[0] = c;
  4517. return result;
  4518. }
  4519. struct ggml_tensor * ggml_set(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b,
  4523. size_t nb1,
  4524. size_t nb2,
  4525. size_t nb3,
  4526. size_t offset) {
  4527. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4528. }
  4529. struct ggml_tensor * ggml_set_inplace(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a,
  4532. struct ggml_tensor * b,
  4533. size_t nb1,
  4534. size_t nb2,
  4535. size_t nb3,
  4536. size_t offset) {
  4537. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4538. }
  4539. struct ggml_tensor * ggml_set_1d(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a,
  4542. struct ggml_tensor * b,
  4543. size_t offset) {
  4544. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4545. }
  4546. struct ggml_tensor * ggml_set_1d_inplace(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. struct ggml_tensor * b,
  4550. size_t offset) {
  4551. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4552. }
  4553. struct ggml_tensor * ggml_set_2d(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. struct ggml_tensor * b,
  4557. size_t nb1,
  4558. size_t offset) {
  4559. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4560. }
  4561. struct ggml_tensor * ggml_set_2d_inplace(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. size_t nb1,
  4566. size_t offset) {
  4567. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4568. }
  4569. // ggml_cpy
  4570. struct ggml_tensor * ggml_cpy_impl(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a,
  4573. struct ggml_tensor * b,
  4574. bool inplace) {
  4575. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4576. bool is_node = false;
  4577. if (!inplace && (a->grad || b->grad)) {
  4578. is_node = true;
  4579. }
  4580. // make a view of the destination
  4581. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4582. result->op = GGML_OP_CPY;
  4583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4584. result->src0 = a;
  4585. result->src1 = b;
  4586. return result;
  4587. }
  4588. struct ggml_tensor * ggml_cpy(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b) {
  4592. return ggml_cpy_impl(ctx, a, b, false);
  4593. }
  4594. struct ggml_tensor * ggml_cpy_inplace(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b) {
  4598. return ggml_cpy_impl(ctx, a, b, true);
  4599. }
  4600. // ggml_cont
  4601. struct ggml_tensor * ggml_cont_impl(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. bool inplace) {
  4605. bool is_node = false;
  4606. if (!inplace && a->grad) {
  4607. is_node = true;
  4608. }
  4609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4610. result->op = GGML_OP_CONT;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src0 = a;
  4613. result->src1 = NULL;
  4614. return result;
  4615. }
  4616. struct ggml_tensor * ggml_cont(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_cont_impl(ctx, a, false);
  4620. }
  4621. struct ggml_tensor * ggml_cont_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. return ggml_cont_impl(ctx, a, true);
  4625. }
  4626. // ggml_reshape
  4627. struct ggml_tensor * ggml_reshape(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b) {
  4631. GGML_ASSERT(ggml_is_contiguous(a));
  4632. GGML_ASSERT(ggml_is_contiguous(b));
  4633. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4634. bool is_node = false;
  4635. if (a->grad) {
  4636. is_node = true;
  4637. }
  4638. if (b->grad) {
  4639. // gradient propagation is not supported
  4640. //GGML_ASSERT(false);
  4641. }
  4642. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4643. result->op = GGML_OP_RESHAPE;
  4644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4645. result->src0 = a;
  4646. result->src1 = NULL;
  4647. return result;
  4648. }
  4649. struct ggml_tensor * ggml_reshape_1d(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. int64_t ne0) {
  4653. GGML_ASSERT(ggml_is_contiguous(a));
  4654. GGML_ASSERT(ggml_nelements(a) == ne0);
  4655. bool is_node = false;
  4656. if (a->grad) {
  4657. is_node = true;
  4658. }
  4659. const int64_t ne[1] = { ne0 };
  4660. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4661. result->op = GGML_OP_RESHAPE;
  4662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4663. result->src0 = a;
  4664. result->src1 = NULL;
  4665. return result;
  4666. }
  4667. struct ggml_tensor * ggml_reshape_2d(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a,
  4670. int64_t ne0,
  4671. int64_t ne1) {
  4672. GGML_ASSERT(ggml_is_contiguous(a));
  4673. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4674. bool is_node = false;
  4675. if (a->grad) {
  4676. is_node = true;
  4677. }
  4678. const int64_t ne[2] = { ne0, ne1 };
  4679. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4680. result->op = GGML_OP_RESHAPE;
  4681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4682. result->src0 = a;
  4683. result->src1 = NULL;
  4684. return result;
  4685. }
  4686. struct ggml_tensor * ggml_reshape_3d(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. int64_t ne0,
  4690. int64_t ne1,
  4691. int64_t ne2) {
  4692. GGML_ASSERT(ggml_is_contiguous(a));
  4693. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4694. bool is_node = false;
  4695. if (a->grad) {
  4696. is_node = true;
  4697. }
  4698. const int64_t ne[3] = { ne0, ne1, ne2 };
  4699. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4700. result->op = GGML_OP_RESHAPE;
  4701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4702. result->src0 = a;
  4703. result->src1 = NULL;
  4704. return result;
  4705. }
  4706. struct ggml_tensor * ggml_reshape_4d(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. int64_t ne0,
  4710. int64_t ne1,
  4711. int64_t ne2,
  4712. int64_t ne3) {
  4713. GGML_ASSERT(ggml_is_contiguous(a));
  4714. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4715. bool is_node = false;
  4716. if (a->grad) {
  4717. is_node = true;
  4718. }
  4719. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4720. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4721. result->op = GGML_OP_RESHAPE;
  4722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4723. result->src0 = a;
  4724. result->src1 = NULL;
  4725. return result;
  4726. }
  4727. // ggml_view_1d
  4728. struct ggml_tensor * ggml_view_1d(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. int64_t ne0,
  4732. size_t offset) {
  4733. bool is_node = false;
  4734. if (a->grad) {
  4735. is_node = true;
  4736. }
  4737. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4738. ggml_scratch_save(ctx);
  4739. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4740. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4741. ggml_scratch_load(ctx);
  4742. result->op = GGML_OP_VIEW;
  4743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4744. result->src0 = a;
  4745. result->src1 = NULL;
  4746. result->opt[0] = offs;
  4747. if (is_node) {
  4748. memcpy(result->padding, &offset, sizeof(offset));
  4749. }
  4750. return result;
  4751. }
  4752. // ggml_view_2d
  4753. struct ggml_tensor * ggml_view_2d(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a,
  4756. int64_t ne0,
  4757. int64_t ne1,
  4758. size_t nb1,
  4759. size_t offset) {
  4760. bool is_node = false;
  4761. if (a->grad) {
  4762. is_node = true;
  4763. }
  4764. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4765. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4766. ggml_scratch_save(ctx);
  4767. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4768. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4769. ggml_scratch_load(ctx);
  4770. result->nb[1] = nb1;
  4771. result->nb[2] = result->nb[1]*ne1;
  4772. result->nb[3] = result->nb[2];
  4773. result->op = GGML_OP_VIEW;
  4774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4775. result->src0 = a;
  4776. result->src1 = NULL;
  4777. result->opt[0] = offs;
  4778. if (is_node) {
  4779. memcpy(result->padding, &offset, sizeof(offset));
  4780. }
  4781. return result;
  4782. }
  4783. // ggml_view_3d
  4784. struct ggml_tensor * ggml_view_3d(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. int64_t ne0,
  4788. int64_t ne1,
  4789. int64_t ne2,
  4790. size_t nb1,
  4791. size_t nb2,
  4792. size_t offset) {
  4793. bool is_node = false;
  4794. if (a->grad) {
  4795. is_node = true;
  4796. }
  4797. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4798. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4799. ggml_scratch_save(ctx);
  4800. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4801. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4802. ggml_scratch_load(ctx);
  4803. result->nb[1] = nb1;
  4804. result->nb[2] = nb2;
  4805. result->nb[3] = result->nb[2]*ne2;
  4806. result->op = GGML_OP_VIEW;
  4807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4808. result->src0 = a;
  4809. result->src1 = NULL;
  4810. result->opt[0] = offs;
  4811. if (is_node) {
  4812. memcpy(result->padding, &offset, sizeof(offset));
  4813. }
  4814. return result;
  4815. }
  4816. // ggml_view_4d
  4817. struct ggml_tensor * ggml_view_4d(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. int64_t ne0,
  4821. int64_t ne1,
  4822. int64_t ne2,
  4823. int64_t ne3,
  4824. size_t nb1,
  4825. size_t nb2,
  4826. size_t nb3,
  4827. size_t offset) {
  4828. bool is_node = false;
  4829. if (a->grad) {
  4830. is_node = true;
  4831. }
  4832. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4833. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4834. ggml_scratch_save(ctx);
  4835. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4836. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4837. ggml_scratch_load(ctx);
  4838. result->nb[1] = nb1;
  4839. result->nb[2] = nb2;
  4840. result->nb[3] = nb3;
  4841. result->op = GGML_OP_VIEW;
  4842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4843. result->src0 = a;
  4844. result->src1 = NULL;
  4845. result->opt[0] = offs;
  4846. if (is_node) {
  4847. memcpy(result->padding, &offset, sizeof(offset));
  4848. }
  4849. return result;
  4850. }
  4851. // ggml_permute
  4852. struct ggml_tensor * ggml_permute(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. int axis0,
  4856. int axis1,
  4857. int axis2,
  4858. int axis3) {
  4859. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4860. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4861. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4862. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4863. GGML_ASSERT(axis0 != axis1);
  4864. GGML_ASSERT(axis0 != axis2);
  4865. GGML_ASSERT(axis0 != axis3);
  4866. GGML_ASSERT(axis1 != axis2);
  4867. GGML_ASSERT(axis1 != axis3);
  4868. GGML_ASSERT(axis2 != axis3);
  4869. bool is_node = false;
  4870. if (a->grad) {
  4871. is_node = true;
  4872. }
  4873. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4874. int ne[GGML_MAX_DIMS];
  4875. int nb[GGML_MAX_DIMS];
  4876. ne[axis0] = a->ne[0];
  4877. ne[axis1] = a->ne[1];
  4878. ne[axis2] = a->ne[2];
  4879. ne[axis3] = a->ne[3];
  4880. nb[axis0] = a->nb[0];
  4881. nb[axis1] = a->nb[1];
  4882. nb[axis2] = a->nb[2];
  4883. nb[axis3] = a->nb[3];
  4884. result->ne[0] = ne[0];
  4885. result->ne[1] = ne[1];
  4886. result->ne[2] = ne[2];
  4887. result->ne[3] = ne[3];
  4888. result->nb[0] = nb[0];
  4889. result->nb[1] = nb[1];
  4890. result->nb[2] = nb[2];
  4891. result->nb[3] = nb[3];
  4892. result->op = GGML_OP_PERMUTE;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src0 = a;
  4895. result->src1 = NULL;
  4896. if (is_node) {
  4897. result->padding[0] = axis0;
  4898. result->padding[1] = axis1;
  4899. result->padding[2] = axis2;
  4900. result->padding[3] = axis3;
  4901. }
  4902. return result;
  4903. }
  4904. // ggml_transpose
  4905. struct ggml_tensor * ggml_transpose(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a) {
  4908. bool is_node = false;
  4909. if (a->grad) {
  4910. is_node = true;
  4911. }
  4912. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4913. result->ne[0] = a->ne[1];
  4914. result->ne[1] = a->ne[0];
  4915. result->nb[0] = a->nb[1];
  4916. result->nb[1] = a->nb[0];
  4917. result->op = GGML_OP_TRANSPOSE;
  4918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4919. result->src0 = a;
  4920. result->src1 = NULL;
  4921. return result;
  4922. }
  4923. // ggml_get_rows
  4924. struct ggml_tensor * ggml_get_rows(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b) {
  4928. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4929. bool is_node = false;
  4930. if (a->grad || b->grad) {
  4931. is_node = true;
  4932. }
  4933. // TODO: implement non F32 return
  4934. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4935. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4936. result->op = GGML_OP_GET_ROWS;
  4937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4938. result->src0 = a;
  4939. result->src1 = b;
  4940. return result;
  4941. }
  4942. // ggml_get_rows_back
  4943. struct ggml_tensor * ggml_get_rows_back(
  4944. struct ggml_context * ctx,
  4945. struct ggml_tensor * a,
  4946. struct ggml_tensor * b,
  4947. struct ggml_tensor * c) {
  4948. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4949. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4950. bool is_node = false;
  4951. if (a->grad || b->grad) {
  4952. is_node = true;
  4953. }
  4954. // TODO: implement non F32 return
  4955. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4956. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4957. result->op = GGML_OP_GET_ROWS_BACK;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src0 = a;
  4960. result->src1 = b;
  4961. result->opt[0] = c;
  4962. return result;
  4963. }
  4964. // ggml_diag
  4965. struct ggml_tensor * ggml_diag(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a) {
  4968. GGML_ASSERT(a->ne[1] == 1);
  4969. bool is_node = false;
  4970. if (a->grad) {
  4971. is_node = true;
  4972. }
  4973. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4974. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4975. result->op = GGML_OP_DIAG;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src0 = a;
  4978. result->src1 = NULL;
  4979. return result;
  4980. }
  4981. // ggml_diag_mask_inf
  4982. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. int n_past,
  4986. bool inplace) {
  4987. bool is_node = false;
  4988. if (a->grad) {
  4989. is_node = true;
  4990. }
  4991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4992. ggml_scratch_save(ctx);
  4993. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4994. ((int32_t *) b->data)[0] = n_past;
  4995. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4996. ggml_scratch_load(ctx);
  4997. result->op = GGML_OP_DIAG_MASK_INF;
  4998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4999. result->src0 = a;
  5000. result->src1 = b;
  5001. return result;
  5002. }
  5003. struct ggml_tensor * ggml_diag_mask_inf(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. int n_past) {
  5007. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5008. }
  5009. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. int n_past) {
  5013. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5014. }
  5015. // ggml_diag_mask_zero
  5016. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. int n_past,
  5020. bool inplace) {
  5021. bool is_node = false;
  5022. if (a->grad) {
  5023. is_node = true;
  5024. }
  5025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5026. ggml_scratch_save(ctx);
  5027. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5028. ggml_set_name(b, "n_past, inplace");
  5029. ((int32_t *) b->data)[0] = n_past;
  5030. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5031. ggml_scratch_load(ctx);
  5032. result->op = GGML_OP_DIAG_MASK_ZERO;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src0 = a;
  5035. result->src1 = b;
  5036. return result;
  5037. }
  5038. struct ggml_tensor * ggml_diag_mask_zero(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. int n_past) {
  5042. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5043. }
  5044. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. int n_past) {
  5048. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5049. }
  5050. // ggml_soft_max
  5051. struct ggml_tensor * ggml_soft_max_impl(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. bool inplace) {
  5055. bool is_node = false;
  5056. if (a->grad) {
  5057. is_node = true;
  5058. }
  5059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5060. result->op = GGML_OP_SOFT_MAX;
  5061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5062. result->src0 = a;
  5063. result->src1 = NULL;
  5064. return result;
  5065. }
  5066. struct ggml_tensor * ggml_soft_max(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a) {
  5069. return ggml_soft_max_impl(ctx, a, false);
  5070. }
  5071. struct ggml_tensor * ggml_soft_max_inplace(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a) {
  5074. return ggml_soft_max_impl(ctx, a, true);
  5075. }
  5076. // ggml_rope
  5077. struct ggml_tensor * ggml_rope_impl(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. int n_past,
  5081. int n_dims,
  5082. int mode,
  5083. bool inplace) {
  5084. GGML_ASSERT(n_past >= 0);
  5085. bool is_node = false;
  5086. if (!inplace && a->grad) {
  5087. is_node = true;
  5088. }
  5089. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5090. ggml_scratch_save(ctx);
  5091. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5092. ((int32_t *) b->data)[0] = n_past;
  5093. ((int32_t *) b->data)[1] = n_dims;
  5094. ((int32_t *) b->data)[2] = mode;
  5095. ggml_scratch_load(ctx);
  5096. result->op = GGML_OP_ROPE;
  5097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5098. result->src0 = a;
  5099. result->src1 = b;
  5100. return result;
  5101. }
  5102. struct ggml_tensor * ggml_rope(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. int n_past,
  5106. int n_dims,
  5107. int mode) {
  5108. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5109. }
  5110. struct ggml_tensor * ggml_rope_inplace(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. int n_past,
  5114. int n_dims,
  5115. int mode) {
  5116. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5117. }
  5118. // ggml_rope_back
  5119. struct ggml_tensor * ggml_rope_back(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * a,
  5122. int n_past,
  5123. int n_dims,
  5124. int mode) {
  5125. GGML_ASSERT(n_past >= 0);
  5126. bool is_node = false;
  5127. if (a->grad) {
  5128. GGML_ASSERT(false); // TODO: implement backward
  5129. is_node = true;
  5130. }
  5131. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5132. ggml_scratch_save(ctx);
  5133. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5134. ggml_set_name(b, "n_past, n_dims, mode");
  5135. ((int32_t *) b->data)[0] = n_past;
  5136. ((int32_t *) b->data)[1] = n_dims;
  5137. ((int32_t *) b->data)[2] = mode;
  5138. ggml_scratch_load(ctx);
  5139. result->op = GGML_OP_ROPE_BACK;
  5140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5141. result->src0 = a;
  5142. result->src1 = b;
  5143. return result;
  5144. }
  5145. // ggml_alibi
  5146. struct ggml_tensor * ggml_alibi(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. int n_past,
  5150. int n_head,
  5151. float bias_max) {
  5152. GGML_ASSERT(n_past >= 0);
  5153. bool is_node = false;
  5154. if (a->grad) {
  5155. GGML_ASSERT(false); // TODO: implement backward
  5156. is_node = true;
  5157. }
  5158. // TODO: when implement backward, fix this:
  5159. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5160. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5161. ggml_scratch_save(ctx);
  5162. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5163. ((int32_t *) b->data)[0] = n_past;
  5164. ((int32_t *) b->data)[1] = n_head;
  5165. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5166. (((float *) b->data)[2]) = bias_max;
  5167. ggml_scratch_load(ctx);
  5168. result->op = GGML_OP_ALIBI;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src0 = a;
  5171. result->src1 = b;
  5172. return result;
  5173. }
  5174. // ggml_clamp
  5175. struct ggml_tensor * ggml_clamp(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. float min,
  5179. float max) {
  5180. bool is_node = false;
  5181. if (a->grad) {
  5182. GGML_ASSERT(false); // TODO: implement backward
  5183. is_node = true;
  5184. }
  5185. // TODO: when implement backward, fix this:
  5186. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5187. ggml_scratch_save(ctx);
  5188. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5189. ((float *) b->data)[0] = min;
  5190. ((float *) b->data)[1] = max;
  5191. ggml_scratch_load(ctx);
  5192. result->op = GGML_OP_CLAMP;
  5193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5194. result->src0 = a;
  5195. result->src1 = b;
  5196. return result;
  5197. }
  5198. // ggml_conv_1d_1s
  5199. struct ggml_tensor * ggml_conv_1d_1s(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. struct ggml_tensor * b) {
  5203. GGML_ASSERT(ggml_is_matrix(b));
  5204. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5205. GGML_ASSERT(a->ne[3] == 1);
  5206. bool is_node = false;
  5207. if (a->grad || b->grad) {
  5208. GGML_ASSERT(false); // TODO: implement backward
  5209. is_node = true;
  5210. }
  5211. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5212. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5213. result->op = GGML_OP_CONV_1D_1S;
  5214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5215. result->src0 = a;
  5216. result->src1 = b;
  5217. return result;
  5218. }
  5219. // ggml_conv_1d_2s
  5220. struct ggml_tensor * ggml_conv_1d_2s(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. struct ggml_tensor * b) {
  5224. GGML_ASSERT(ggml_is_matrix(b));
  5225. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5226. GGML_ASSERT(a->ne[3] == 1);
  5227. bool is_node = false;
  5228. if (a->grad || b->grad) {
  5229. GGML_ASSERT(false); // TODO: implement backward
  5230. is_node = true;
  5231. }
  5232. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5233. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5234. result->op = GGML_OP_CONV_1D_2S;
  5235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5236. result->src0 = a;
  5237. result->src1 = b;
  5238. return result;
  5239. }
  5240. // ggml_flash_attn
  5241. struct ggml_tensor * ggml_flash_attn(
  5242. struct ggml_context * ctx,
  5243. struct ggml_tensor * q,
  5244. struct ggml_tensor * k,
  5245. struct ggml_tensor * v,
  5246. bool masked) {
  5247. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5248. // TODO: check if vT can be multiplied by (k*qT)
  5249. bool is_node = false;
  5250. if (q->grad || k->grad || v->grad) {
  5251. GGML_ASSERT(false); // TODO: implement backward
  5252. is_node = true;
  5253. }
  5254. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5255. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5256. result->op = GGML_OP_FLASH_ATTN;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src0 = q;
  5259. result->src1 = k;
  5260. result->opt[0] = v;
  5261. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5262. return result;
  5263. }
  5264. // ggml_flash_ff
  5265. struct ggml_tensor * ggml_flash_ff(
  5266. struct ggml_context * ctx,
  5267. struct ggml_tensor * a,
  5268. struct ggml_tensor * b0,
  5269. struct ggml_tensor * b1,
  5270. struct ggml_tensor * c0,
  5271. struct ggml_tensor * c1) {
  5272. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5273. // TODO: more checks
  5274. bool is_node = false;
  5275. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5276. GGML_ASSERT(false); // TODO: implement backward
  5277. is_node = true;
  5278. }
  5279. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5280. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5281. result->op = GGML_OP_FLASH_FF;
  5282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5283. result->src0 = a;
  5284. result->src1 = b0;
  5285. result->opt[0] = b1;
  5286. result->opt[1] = c0;
  5287. result->opt[2] = c1;
  5288. return result;
  5289. }
  5290. // ggml_map_unary
  5291. struct ggml_tensor * ggml_map_unary_impl_f32(
  5292. struct ggml_context * ctx,
  5293. struct ggml_tensor * a,
  5294. const ggml_unary_op_f32_t fun,
  5295. bool inplace) {
  5296. bool is_node = false;
  5297. if (!inplace && a->grad) {
  5298. is_node = true;
  5299. }
  5300. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5301. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5302. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5303. result->op = GGML_OP_MAP_UNARY;
  5304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5305. result->src0 = a;
  5306. result->opt[0] = addr_tensor;
  5307. return result;
  5308. }
  5309. struct ggml_tensor * ggml_map_unary_f32(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. const ggml_unary_op_f32_t fun) {
  5313. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5314. }
  5315. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. const ggml_unary_op_f32_t fun) {
  5319. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5320. }
  5321. // ggml_map_binary
  5322. struct ggml_tensor * ggml_map_binary_impl_f32(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. struct ggml_tensor * b,
  5326. const ggml_binary_op_f32_t fun,
  5327. bool inplace) {
  5328. GGML_ASSERT(ggml_are_same_shape(a, b));
  5329. bool is_node = false;
  5330. if (!inplace && (a->grad || b->grad)) {
  5331. is_node = true;
  5332. }
  5333. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5334. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5335. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5336. result->op = GGML_OP_MAP_BINARY;
  5337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5338. result->src0 = a;
  5339. result->src1 = b;
  5340. result->opt[0] = addr_tensor;
  5341. return result;
  5342. }
  5343. struct ggml_tensor * ggml_map_binary_f32(
  5344. struct ggml_context * ctx,
  5345. struct ggml_tensor * a,
  5346. struct ggml_tensor * b,
  5347. const ggml_binary_op_f32_t fun) {
  5348. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5349. }
  5350. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * a,
  5353. struct ggml_tensor * b,
  5354. const ggml_binary_op_f32_t fun) {
  5355. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5356. }
  5357. ////////////////////////////////////////////////////////////////////////////////
  5358. void ggml_set_param(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * tensor) {
  5361. tensor->is_param = true;
  5362. GGML_ASSERT(tensor->grad == NULL);
  5363. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5364. }
  5365. // ggml_compute_forward_dup
  5366. static void ggml_compute_forward_dup_same_cont(
  5367. const struct ggml_compute_params * params,
  5368. const struct ggml_tensor * src0,
  5369. struct ggml_tensor * dst) {
  5370. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5371. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5372. GGML_ASSERT(src0->type == dst->type);
  5373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5374. return;
  5375. }
  5376. const size_t nb00 = src0->nb[0];
  5377. const size_t nb0 = dst->nb[0];
  5378. const int ith = params->ith; // thread index
  5379. const int nth = params->nth; // number of threads
  5380. // parallelize by elements
  5381. const int ne = ggml_nelements(dst);
  5382. const int dr = (ne + nth - 1) / nth;
  5383. const int ie0 = dr * ith;
  5384. const int ie1 = MIN(ie0 + dr, ne);
  5385. if (ie0 < ie1) {
  5386. memcpy(
  5387. ((char *) dst->data + ie0*nb0),
  5388. ((char *) src0->data + ie0*nb00),
  5389. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5390. }
  5391. }
  5392. static void ggml_compute_forward_dup_f16(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0,
  5395. struct ggml_tensor * dst) {
  5396. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5397. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5398. return;
  5399. }
  5400. const int64_t ne00 = src0->ne[0];
  5401. const int64_t ne01 = src0->ne[1];
  5402. const int64_t ne02 = src0->ne[2];
  5403. const int64_t ne03 = src0->ne[3];
  5404. const int64_t ne0 = dst->ne[0];
  5405. const int64_t ne1 = dst->ne[1];
  5406. const int64_t ne2 = dst->ne[2];
  5407. const int64_t ne3 = dst->ne[3];
  5408. const size_t nb00 = src0->nb[0];
  5409. const size_t nb01 = src0->nb[1];
  5410. const size_t nb02 = src0->nb[2];
  5411. const size_t nb03 = src0->nb[3];
  5412. const size_t nb0 = dst->nb[0];
  5413. const size_t nb1 = dst->nb[1];
  5414. const size_t nb2 = dst->nb[2];
  5415. const size_t nb3 = dst->nb[3];
  5416. const int ith = params->ith; // thread index
  5417. const int nth = params->nth; // number of threads
  5418. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5419. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5420. return;
  5421. }
  5422. // parallelize by rows
  5423. const int nr = ne01;
  5424. // number of rows per thread
  5425. const int dr = (nr + nth - 1) / nth;
  5426. // row range for this thread
  5427. const int ir0 = dr * ith;
  5428. const int ir1 = MIN(ir0 + dr, nr);
  5429. if (src0->type == dst->type &&
  5430. ne00 == ne0 &&
  5431. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5432. // copy by rows
  5433. const size_t rs = ne00*nb00;
  5434. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5435. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5436. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5437. memcpy(
  5438. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5439. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5440. rs);
  5441. }
  5442. }
  5443. }
  5444. return;
  5445. }
  5446. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5447. if (ggml_is_contiguous(dst)) {
  5448. if (nb00 == sizeof(ggml_fp16_t)) {
  5449. if (dst->type == GGML_TYPE_F16) {
  5450. size_t id = 0;
  5451. const size_t rs = ne00 * nb00;
  5452. char * dst_ptr = (char *) dst->data;
  5453. for (int i03 = 0; i03 < ne03; i03++) {
  5454. for (int i02 = 0; i02 < ne02; i02++) {
  5455. id += rs * ir0;
  5456. for (int i01 = ir0; i01 < ir1; i01++) {
  5457. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5458. memcpy(dst_ptr + id, src0_ptr, rs);
  5459. id += rs;
  5460. }
  5461. id += rs * (ne01 - ir1);
  5462. }
  5463. }
  5464. } else if (dst->type == GGML_TYPE_F32) {
  5465. size_t id = 0;
  5466. float * dst_ptr = (float *) dst->data;
  5467. for (int i03 = 0; i03 < ne03; i03++) {
  5468. for (int i02 = 0; i02 < ne02; i02++) {
  5469. id += ne00 * ir0;
  5470. for (int i01 = ir0; i01 < ir1; i01++) {
  5471. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5472. for (int i00 = 0; i00 < ne00; i00++) {
  5473. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5474. id++;
  5475. }
  5476. }
  5477. id += ne00 * (ne01 - ir1);
  5478. }
  5479. }
  5480. } else if (ggml_is_quantized(dst->type)) {
  5481. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5482. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5483. size_t id = 0;
  5484. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5485. char * dst_ptr = (char *) dst->data;
  5486. for (int i03 = 0; i03 < ne03; i03++) {
  5487. for (int i02 = 0; i02 < ne02; i02++) {
  5488. id += rs * ir0;
  5489. for (int i01 = ir0; i01 < ir1; i01++) {
  5490. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5491. for (int i00 = 0; i00 < ne00; i00++) {
  5492. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5493. }
  5494. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5495. id += rs;
  5496. }
  5497. id += rs * (ne01 - ir1);
  5498. }
  5499. }
  5500. } else {
  5501. GGML_ASSERT(false); // TODO: implement
  5502. }
  5503. } else {
  5504. //printf("%s: this is not optimal - fix me\n", __func__);
  5505. if (dst->type == GGML_TYPE_F32) {
  5506. size_t id = 0;
  5507. float * dst_ptr = (float *) dst->data;
  5508. for (int i03 = 0; i03 < ne03; i03++) {
  5509. for (int i02 = 0; i02 < ne02; i02++) {
  5510. id += ne00 * ir0;
  5511. for (int i01 = ir0; i01 < ir1; i01++) {
  5512. for (int i00 = 0; i00 < ne00; i00++) {
  5513. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5514. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5515. id++;
  5516. }
  5517. }
  5518. id += ne00 * (ne01 - ir1);
  5519. }
  5520. }
  5521. } else if (dst->type == GGML_TYPE_F16) {
  5522. size_t id = 0;
  5523. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5524. for (int i03 = 0; i03 < ne03; i03++) {
  5525. for (int i02 = 0; i02 < ne02; i02++) {
  5526. id += ne00 * ir0;
  5527. for (int i01 = ir0; i01 < ir1; i01++) {
  5528. for (int i00 = 0; i00 < ne00; i00++) {
  5529. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5530. dst_ptr[id] = *src0_ptr;
  5531. id++;
  5532. }
  5533. }
  5534. id += ne00 * (ne01 - ir1);
  5535. }
  5536. }
  5537. } else {
  5538. GGML_ASSERT(false); // TODO: implement
  5539. }
  5540. }
  5541. return;
  5542. }
  5543. // dst counters
  5544. int64_t i10 = 0;
  5545. int64_t i11 = 0;
  5546. int64_t i12 = 0;
  5547. int64_t i13 = 0;
  5548. if (dst->type == GGML_TYPE_F16) {
  5549. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5550. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5551. i10 += ne00 * ir0;
  5552. while (i10 >= ne0) {
  5553. i10 -= ne0;
  5554. if (++i11 == ne1) {
  5555. i11 = 0;
  5556. if (++i12 == ne2) {
  5557. i12 = 0;
  5558. if (++i13 == ne3) {
  5559. i13 = 0;
  5560. }
  5561. }
  5562. }
  5563. }
  5564. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5565. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5566. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5567. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5568. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5569. if (++i10 == ne00) {
  5570. i10 = 0;
  5571. if (++i11 == ne01) {
  5572. i11 = 0;
  5573. if (++i12 == ne02) {
  5574. i12 = 0;
  5575. if (++i13 == ne03) {
  5576. i13 = 0;
  5577. }
  5578. }
  5579. }
  5580. }
  5581. }
  5582. }
  5583. i10 += ne00 * (ne01 - ir1);
  5584. while (i10 >= ne0) {
  5585. i10 -= ne0;
  5586. if (++i11 == ne1) {
  5587. i11 = 0;
  5588. if (++i12 == ne2) {
  5589. i12 = 0;
  5590. if (++i13 == ne3) {
  5591. i13 = 0;
  5592. }
  5593. }
  5594. }
  5595. }
  5596. }
  5597. }
  5598. } else if (dst->type == GGML_TYPE_F32) {
  5599. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5600. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5601. i10 += ne00 * ir0;
  5602. while (i10 >= ne0) {
  5603. i10 -= ne0;
  5604. if (++i11 == ne1) {
  5605. i11 = 0;
  5606. if (++i12 == ne2) {
  5607. i12 = 0;
  5608. if (++i13 == ne3) {
  5609. i13 = 0;
  5610. }
  5611. }
  5612. }
  5613. }
  5614. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5615. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5616. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5617. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5618. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5619. if (++i10 == ne0) {
  5620. i10 = 0;
  5621. if (++i11 == ne1) {
  5622. i11 = 0;
  5623. if (++i12 == ne2) {
  5624. i12 = 0;
  5625. if (++i13 == ne3) {
  5626. i13 = 0;
  5627. }
  5628. }
  5629. }
  5630. }
  5631. }
  5632. }
  5633. i10 += ne00 * (ne01 - ir1);
  5634. while (i10 >= ne0) {
  5635. i10 -= ne0;
  5636. if (++i11 == ne1) {
  5637. i11 = 0;
  5638. if (++i12 == ne2) {
  5639. i12 = 0;
  5640. if (++i13 == ne3) {
  5641. i13 = 0;
  5642. }
  5643. }
  5644. }
  5645. }
  5646. }
  5647. }
  5648. } else {
  5649. GGML_ASSERT(false); // TODO: implement
  5650. }
  5651. }
  5652. static void ggml_compute_forward_dup_f32(
  5653. const struct ggml_compute_params * params,
  5654. const struct ggml_tensor * src0,
  5655. struct ggml_tensor * dst) {
  5656. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5658. return;
  5659. }
  5660. const int64_t ne00 = src0->ne[0];
  5661. const int64_t ne01 = src0->ne[1];
  5662. const int64_t ne02 = src0->ne[2];
  5663. const int64_t ne03 = src0->ne[3];
  5664. const int64_t ne0 = dst->ne[0];
  5665. const int64_t ne1 = dst->ne[1];
  5666. const int64_t ne2 = dst->ne[2];
  5667. const int64_t ne3 = dst->ne[3];
  5668. const size_t nb00 = src0->nb[0];
  5669. const size_t nb01 = src0->nb[1];
  5670. const size_t nb02 = src0->nb[2];
  5671. const size_t nb03 = src0->nb[3];
  5672. const size_t nb0 = dst->nb[0];
  5673. const size_t nb1 = dst->nb[1];
  5674. const size_t nb2 = dst->nb[2];
  5675. const size_t nb3 = dst->nb[3];
  5676. const int ith = params->ith; // thread index
  5677. const int nth = params->nth; // number of threads
  5678. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5679. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5680. return;
  5681. }
  5682. // parallelize by rows
  5683. const int nr = ne01;
  5684. // number of rows per thread
  5685. const int dr = (nr + nth - 1) / nth;
  5686. // row range for this thread
  5687. const int ir0 = dr * ith;
  5688. const int ir1 = MIN(ir0 + dr, nr);
  5689. if (src0->type == dst->type &&
  5690. ne00 == ne0 &&
  5691. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5692. // copy by rows
  5693. const size_t rs = ne00*nb00;
  5694. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5696. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5697. memcpy(
  5698. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5699. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5700. rs);
  5701. }
  5702. }
  5703. }
  5704. return;
  5705. }
  5706. if (ggml_is_contiguous(dst)) {
  5707. // TODO: simplify
  5708. if (nb00 == sizeof(float)) {
  5709. if (dst->type == GGML_TYPE_F32) {
  5710. size_t id = 0;
  5711. const size_t rs = ne00 * nb00;
  5712. char * dst_ptr = (char *) dst->data;
  5713. for (int i03 = 0; i03 < ne03; i03++) {
  5714. for (int i02 = 0; i02 < ne02; i02++) {
  5715. id += rs * ir0;
  5716. for (int i01 = ir0; i01 < ir1; i01++) {
  5717. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5718. memcpy(dst_ptr + id, src0_ptr, rs);
  5719. id += rs;
  5720. }
  5721. id += rs * (ne01 - ir1);
  5722. }
  5723. }
  5724. } else if (dst->type == GGML_TYPE_F16) {
  5725. size_t id = 0;
  5726. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5727. for (int i03 = 0; i03 < ne03; i03++) {
  5728. for (int i02 = 0; i02 < ne02; i02++) {
  5729. id += ne00 * ir0;
  5730. for (int i01 = ir0; i01 < ir1; i01++) {
  5731. for (int i00 = 0; i00 < ne00; i00++) {
  5732. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5733. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5734. id++;
  5735. }
  5736. }
  5737. id += ne00 * (ne01 - ir1);
  5738. }
  5739. }
  5740. } else if (ggml_is_quantized(dst->type)) {
  5741. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5742. size_t id = 0;
  5743. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5744. char * dst_ptr = (char *) dst->data;
  5745. for (int i03 = 0; i03 < ne03; i03++) {
  5746. for (int i02 = 0; i02 < ne02; i02++) {
  5747. id += rs * ir0;
  5748. for (int i01 = ir0; i01 < ir1; i01++) {
  5749. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5750. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5751. id += rs;
  5752. }
  5753. id += rs * (ne01 - ir1);
  5754. }
  5755. }
  5756. } else {
  5757. GGML_ASSERT(false); // TODO: implement
  5758. }
  5759. } else {
  5760. //printf("%s: this is not optimal - fix me\n", __func__);
  5761. if (dst->type == GGML_TYPE_F32) {
  5762. size_t id = 0;
  5763. float * dst_ptr = (float *) dst->data;
  5764. for (int i03 = 0; i03 < ne03; i03++) {
  5765. for (int i02 = 0; i02 < ne02; i02++) {
  5766. id += ne00 * ir0;
  5767. for (int i01 = ir0; i01 < ir1; i01++) {
  5768. for (int i00 = 0; i00 < ne00; i00++) {
  5769. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5770. dst_ptr[id] = *src0_ptr;
  5771. id++;
  5772. }
  5773. }
  5774. id += ne00 * (ne01 - ir1);
  5775. }
  5776. }
  5777. } else if (dst->type == GGML_TYPE_F16) {
  5778. size_t id = 0;
  5779. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5780. for (int i03 = 0; i03 < ne03; i03++) {
  5781. for (int i02 = 0; i02 < ne02; i02++) {
  5782. id += ne00 * ir0;
  5783. for (int i01 = ir0; i01 < ir1; i01++) {
  5784. for (int i00 = 0; i00 < ne00; i00++) {
  5785. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5786. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5787. id++;
  5788. }
  5789. }
  5790. id += ne00 * (ne01 - ir1);
  5791. }
  5792. }
  5793. } else {
  5794. GGML_ASSERT(false); // TODO: implement
  5795. }
  5796. }
  5797. return;
  5798. }
  5799. // dst counters
  5800. int64_t i10 = 0;
  5801. int64_t i11 = 0;
  5802. int64_t i12 = 0;
  5803. int64_t i13 = 0;
  5804. if (dst->type == GGML_TYPE_F32) {
  5805. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5807. i10 += ne00 * ir0;
  5808. while (i10 >= ne0) {
  5809. i10 -= ne0;
  5810. if (++i11 == ne1) {
  5811. i11 = 0;
  5812. if (++i12 == ne2) {
  5813. i12 = 0;
  5814. if (++i13 == ne3) {
  5815. i13 = 0;
  5816. }
  5817. }
  5818. }
  5819. }
  5820. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5821. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5822. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5823. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5824. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5825. if (++i10 == ne0) {
  5826. i10 = 0;
  5827. if (++i11 == ne1) {
  5828. i11 = 0;
  5829. if (++i12 == ne2) {
  5830. i12 = 0;
  5831. if (++i13 == ne3) {
  5832. i13 = 0;
  5833. }
  5834. }
  5835. }
  5836. }
  5837. }
  5838. }
  5839. i10 += ne00 * (ne01 - ir1);
  5840. while (i10 >= ne0) {
  5841. i10 -= ne0;
  5842. if (++i11 == ne1) {
  5843. i11 = 0;
  5844. if (++i12 == ne2) {
  5845. i12 = 0;
  5846. if (++i13 == ne3) {
  5847. i13 = 0;
  5848. }
  5849. }
  5850. }
  5851. }
  5852. }
  5853. }
  5854. } else if (dst->type == GGML_TYPE_F16) {
  5855. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5856. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5857. i10 += ne00 * ir0;
  5858. while (i10 >= ne0) {
  5859. i10 -= ne0;
  5860. if (++i11 == ne1) {
  5861. i11 = 0;
  5862. if (++i12 == ne2) {
  5863. i12 = 0;
  5864. if (++i13 == ne3) {
  5865. i13 = 0;
  5866. }
  5867. }
  5868. }
  5869. }
  5870. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5871. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5872. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5873. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5874. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5875. if (++i10 == ne0) {
  5876. i10 = 0;
  5877. if (++i11 == ne1) {
  5878. i11 = 0;
  5879. if (++i12 == ne2) {
  5880. i12 = 0;
  5881. if (++i13 == ne3) {
  5882. i13 = 0;
  5883. }
  5884. }
  5885. }
  5886. }
  5887. }
  5888. }
  5889. i10 += ne00 * (ne01 - ir1);
  5890. while (i10 >= ne0) {
  5891. i10 -= ne0;
  5892. if (++i11 == ne1) {
  5893. i11 = 0;
  5894. if (++i12 == ne2) {
  5895. i12 = 0;
  5896. if (++i13 == ne3) {
  5897. i13 = 0;
  5898. }
  5899. }
  5900. }
  5901. }
  5902. }
  5903. }
  5904. } else {
  5905. GGML_ASSERT(false); // TODO: implement
  5906. }
  5907. }
  5908. static void ggml_compute_forward_dup(
  5909. const struct ggml_compute_params * params,
  5910. const struct ggml_tensor * src0,
  5911. struct ggml_tensor * dst) {
  5912. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5913. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5914. return;
  5915. }
  5916. switch (src0->type) {
  5917. case GGML_TYPE_F16:
  5918. {
  5919. ggml_compute_forward_dup_f16(params, src0, dst);
  5920. } break;
  5921. case GGML_TYPE_F32:
  5922. {
  5923. ggml_compute_forward_dup_f32(params, src0, dst);
  5924. } break;
  5925. default:
  5926. {
  5927. GGML_ASSERT(false);
  5928. } break;
  5929. }
  5930. }
  5931. // ggml_compute_forward_add
  5932. static void ggml_compute_forward_add_f32(
  5933. const struct ggml_compute_params * params,
  5934. const struct ggml_tensor * src0,
  5935. const struct ggml_tensor * src1,
  5936. struct ggml_tensor * dst) {
  5937. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5939. return;
  5940. }
  5941. const int ith = params->ith;
  5942. const int nth = params->nth;
  5943. const int nr = ggml_nrows(src0);
  5944. const int64_t ne0 = src0->ne[0];
  5945. const int64_t ne1 = src0->ne[1];
  5946. const int64_t ne2 = src0->ne[2];
  5947. const size_t nb00 = src0->nb[0];
  5948. const size_t nb01 = src0->nb[1];
  5949. const size_t nb02 = src0->nb[2];
  5950. const size_t nb03 = src0->nb[3];
  5951. const size_t nb10 = src1->nb[0];
  5952. const size_t nb11 = src1->nb[1];
  5953. const size_t nb12 = src1->nb[2];
  5954. const size_t nb13 = src1->nb[3];
  5955. const size_t nb0 = dst->nb[0];
  5956. const size_t nb1 = dst->nb[1];
  5957. const size_t nb2 = dst->nb[2];
  5958. const size_t nb3 = dst->nb[3];
  5959. GGML_ASSERT( nb0 == sizeof(float));
  5960. GGML_ASSERT(nb00 == sizeof(float));
  5961. // rows per thread
  5962. const int dr = (nr + nth - 1)/nth;
  5963. // row range for this thread
  5964. const int ir0 = dr*ith;
  5965. const int ir1 = MIN(ir0 + dr, nr);
  5966. if (nb10 == sizeof(float)) {
  5967. for (int ir = ir0; ir < ir1; ++ir) {
  5968. // src0, src1 and dst are same shape => same indices
  5969. const int i3 = ir/(ne2*ne1);
  5970. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5971. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5972. #ifdef GGML_USE_ACCELERATE
  5973. vDSP_vadd(
  5974. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5975. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5976. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5977. ne0);
  5978. #else
  5979. ggml_vec_add_f32(ne0,
  5980. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5981. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5982. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5983. #endif
  5984. // }
  5985. // }
  5986. }
  5987. } else {
  5988. // src1 is not contiguous
  5989. for (int ir = ir0; ir < ir1; ++ir) {
  5990. // src0, src1 and dst are same shape => same indices
  5991. const int i3 = ir/(ne2*ne1);
  5992. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5993. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5994. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5995. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5996. for (int i0 = 0; i0 < ne0; i0++) {
  5997. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5998. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5999. }
  6000. }
  6001. }
  6002. }
  6003. static void ggml_compute_forward_add_f16_f32(
  6004. const struct ggml_compute_params * params,
  6005. const struct ggml_tensor * src0,
  6006. const struct ggml_tensor * src1,
  6007. struct ggml_tensor * dst) {
  6008. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6009. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6010. return;
  6011. }
  6012. const int ith = params->ith;
  6013. const int nth = params->nth;
  6014. const int nr = ggml_nrows(src0);
  6015. const int64_t ne0 = src0->ne[0];
  6016. const int64_t ne1 = src0->ne[1];
  6017. const int64_t ne2 = src0->ne[2];
  6018. const size_t nb00 = src0->nb[0];
  6019. const size_t nb01 = src0->nb[1];
  6020. const size_t nb02 = src0->nb[2];
  6021. const size_t nb03 = src0->nb[3];
  6022. const size_t nb10 = src1->nb[0];
  6023. const size_t nb11 = src1->nb[1];
  6024. const size_t nb12 = src1->nb[2];
  6025. const size_t nb13 = src1->nb[3];
  6026. const size_t nb0 = dst->nb[0];
  6027. const size_t nb1 = dst->nb[1];
  6028. const size_t nb2 = dst->nb[2];
  6029. const size_t nb3 = dst->nb[3];
  6030. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6031. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6032. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6033. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6034. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6035. // rows per thread
  6036. const int dr = (nr + nth - 1)/nth;
  6037. // row range for this thread
  6038. const int ir0 = dr*ith;
  6039. const int ir1 = MIN(ir0 + dr, nr);
  6040. if (nb10 == sizeof(float)) {
  6041. for (int ir = ir0; ir < ir1; ++ir) {
  6042. // src0, src1 and dst are same shape => same indices
  6043. const int i3 = ir/(ne2*ne1);
  6044. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6045. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6046. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6047. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6048. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6049. for (int i = 0; i < ne0; i++) {
  6050. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6051. }
  6052. }
  6053. }
  6054. else {
  6055. // src1 is not contiguous
  6056. GGML_ASSERT(false);
  6057. }
  6058. }
  6059. static void ggml_compute_forward_add_f16_f16(
  6060. const struct ggml_compute_params * params,
  6061. const struct ggml_tensor * src0,
  6062. const struct ggml_tensor * src1,
  6063. struct ggml_tensor * dst) {
  6064. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6066. return;
  6067. }
  6068. const int ith = params->ith;
  6069. const int nth = params->nth;
  6070. const int nr = ggml_nrows(src0);
  6071. const int64_t ne0 = src0->ne[0];
  6072. const int64_t ne1 = src0->ne[1];
  6073. const int64_t ne2 = src0->ne[2];
  6074. const size_t nb00 = src0->nb[0];
  6075. const size_t nb01 = src0->nb[1];
  6076. const size_t nb02 = src0->nb[2];
  6077. const size_t nb03 = src0->nb[3];
  6078. const size_t nb10 = src1->nb[0];
  6079. const size_t nb11 = src1->nb[1];
  6080. const size_t nb12 = src1->nb[2];
  6081. const size_t nb13 = src1->nb[3];
  6082. const size_t nb0 = dst->nb[0];
  6083. const size_t nb1 = dst->nb[1];
  6084. const size_t nb2 = dst->nb[2];
  6085. const size_t nb3 = dst->nb[3];
  6086. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6087. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6088. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6089. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6090. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6091. // rows per thread
  6092. const int dr = (nr + nth - 1)/nth;
  6093. // row range for this thread
  6094. const int ir0 = dr*ith;
  6095. const int ir1 = MIN(ir0 + dr, nr);
  6096. if (nb10 == sizeof(ggml_fp16_t)) {
  6097. for (int ir = ir0; ir < ir1; ++ir) {
  6098. // src0, src1 and dst are same shape => same indices
  6099. const int i3 = ir/(ne2*ne1);
  6100. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6101. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6102. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6103. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6104. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6105. for (int i = 0; i < ne0; i++) {
  6106. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6107. }
  6108. }
  6109. }
  6110. else {
  6111. // src1 is not contiguous
  6112. GGML_ASSERT(false);
  6113. }
  6114. }
  6115. static void ggml_compute_forward_add_q_f32(
  6116. const struct ggml_compute_params * params,
  6117. const struct ggml_tensor * src0,
  6118. const struct ggml_tensor * src1,
  6119. struct ggml_tensor * dst) {
  6120. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6121. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6122. return;
  6123. }
  6124. const int nr = ggml_nrows(src0);
  6125. const int64_t ne00 = src0->ne[0];
  6126. const int64_t ne01 = src0->ne[1];
  6127. const int64_t ne02 = src0->ne[2];
  6128. //const int64_t ne03 = src0->ne[3];
  6129. const size_t nb00 = src0->nb[0];
  6130. const size_t nb01 = src0->nb[1];
  6131. const size_t nb02 = src0->nb[2];
  6132. const size_t nb03 = src0->nb[3];
  6133. const size_t nb10 = src1->nb[0];
  6134. const size_t nb11 = src1->nb[1];
  6135. const size_t nb12 = src1->nb[2];
  6136. const size_t nb13 = src1->nb[3];
  6137. const size_t nb0 = dst->nb[0];
  6138. const size_t nb1 = dst->nb[1];
  6139. const size_t nb2 = dst->nb[2];
  6140. const size_t nb3 = dst->nb[3];
  6141. const int ith = params->ith;
  6142. const int nth = params->nth;
  6143. const enum ggml_type type = src0->type;
  6144. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6145. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6146. // we don't support permuted src0 or src1
  6147. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6148. GGML_ASSERT(nb10 == sizeof(float));
  6149. // dst cannot be transposed or permuted
  6150. GGML_ASSERT(nb0 <= nb1);
  6151. GGML_ASSERT(nb1 <= nb2);
  6152. GGML_ASSERT(nb2 <= nb3);
  6153. GGML_ASSERT(ggml_is_quantized(src0->type));
  6154. GGML_ASSERT(dst->type == src0->type);
  6155. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6156. // rows per thread
  6157. const int dr = (nr + nth - 1)/nth;
  6158. // row range for this thread
  6159. const int ir0 = dr*ith;
  6160. const int ir1 = MIN(ir0 + dr, nr);
  6161. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6162. for (int ir = ir0; ir < ir1; ++ir) {
  6163. // src0 indices
  6164. const int i03 = ir/(ne02*ne01);
  6165. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6166. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6167. // src1 and dst are same shape as src0 => same indices
  6168. const int i13 = i03;
  6169. const int i12 = i02;
  6170. const int i11 = i01;
  6171. const int i3 = i03;
  6172. const int i2 = i02;
  6173. const int i1 = i01;
  6174. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6175. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6176. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6177. assert(ne00 % 32 == 0);
  6178. // unquantize row from src0 to temp buffer
  6179. dequantize_row_q(src0_row, wdata, ne00);
  6180. // add src1
  6181. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6182. // quantize row to dst
  6183. quantize_row_q(wdata, dst_row, ne00);
  6184. }
  6185. }
  6186. static void ggml_compute_forward_add(
  6187. const struct ggml_compute_params * params,
  6188. const struct ggml_tensor * src0,
  6189. const struct ggml_tensor * src1,
  6190. struct ggml_tensor * dst) {
  6191. switch (src0->type) {
  6192. case GGML_TYPE_F32:
  6193. {
  6194. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6195. } break;
  6196. case GGML_TYPE_F16:
  6197. {
  6198. if (src1->type == GGML_TYPE_F16) {
  6199. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6200. }
  6201. else if (src1->type == GGML_TYPE_F32) {
  6202. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6203. }
  6204. else {
  6205. GGML_ASSERT(false);
  6206. }
  6207. } break;
  6208. case GGML_TYPE_Q4_0:
  6209. case GGML_TYPE_Q4_1:
  6210. case GGML_TYPE_Q5_0:
  6211. case GGML_TYPE_Q5_1:
  6212. case GGML_TYPE_Q8_0:
  6213. case GGML_TYPE_Q2_K:
  6214. case GGML_TYPE_Q3_K:
  6215. case GGML_TYPE_Q4_K:
  6216. case GGML_TYPE_Q5_K:
  6217. case GGML_TYPE_Q6_K:
  6218. {
  6219. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6220. } break;
  6221. default:
  6222. {
  6223. GGML_ASSERT(false);
  6224. } break;
  6225. }
  6226. }
  6227. // ggml_compute_forward_add1
  6228. static void ggml_compute_forward_add1_f32(
  6229. const struct ggml_compute_params * params,
  6230. const struct ggml_tensor * src0,
  6231. const struct ggml_tensor * src1,
  6232. struct ggml_tensor * dst) {
  6233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6234. GGML_ASSERT(ggml_is_scalar(src1));
  6235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6236. return;
  6237. }
  6238. const int ith = params->ith;
  6239. const int nth = params->nth;
  6240. const int nr = ggml_nrows(src0);
  6241. const int64_t ne0 = src0->ne[0];
  6242. const int64_t ne1 = src0->ne[1];
  6243. const int64_t ne2 = src0->ne[2];
  6244. const size_t nb00 = src0->nb[0];
  6245. const size_t nb01 = src0->nb[1];
  6246. const size_t nb02 = src0->nb[2];
  6247. const size_t nb03 = src0->nb[3];
  6248. const size_t nb0 = dst->nb[0];
  6249. const size_t nb1 = dst->nb[1];
  6250. const size_t nb2 = dst->nb[2];
  6251. const size_t nb3 = dst->nb[3];
  6252. GGML_ASSERT( nb0 == sizeof(float));
  6253. GGML_ASSERT(nb00 == sizeof(float));
  6254. // rows per thread
  6255. const int dr = (nr + nth - 1)/nth;
  6256. // row range for this thread
  6257. const int ir0 = dr*ith;
  6258. const int ir1 = MIN(ir0 + dr, nr);
  6259. for (int ir = ir0; ir < ir1; ++ir) {
  6260. // src0 and dst are same shape => same indices
  6261. const int i3 = ir/(ne2*ne1);
  6262. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6263. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6264. #ifdef GGML_USE_ACCELERATE
  6265. UNUSED(ggml_vec_add1_f32);
  6266. vDSP_vadd(
  6267. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6268. (float *) ((char *) src1->data), 0,
  6269. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6270. ne0);
  6271. #else
  6272. ggml_vec_add1_f32(ne0,
  6273. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6274. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6275. *(float *) src1->data);
  6276. #endif
  6277. }
  6278. }
  6279. static void ggml_compute_forward_add1_f16_f32(
  6280. const struct ggml_compute_params * params,
  6281. const struct ggml_tensor * src0,
  6282. const struct ggml_tensor * src1,
  6283. struct ggml_tensor * dst) {
  6284. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6285. GGML_ASSERT(ggml_is_scalar(src1));
  6286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6287. return;
  6288. }
  6289. // scalar to add
  6290. const float v = *(float *) src1->data;
  6291. const int ith = params->ith;
  6292. const int nth = params->nth;
  6293. const int nr = ggml_nrows(src0);
  6294. const int64_t ne0 = src0->ne[0];
  6295. const int64_t ne1 = src0->ne[1];
  6296. const int64_t ne2 = src0->ne[2];
  6297. const size_t nb00 = src0->nb[0];
  6298. const size_t nb01 = src0->nb[1];
  6299. const size_t nb02 = src0->nb[2];
  6300. const size_t nb03 = src0->nb[3];
  6301. const size_t nb0 = dst->nb[0];
  6302. const size_t nb1 = dst->nb[1];
  6303. const size_t nb2 = dst->nb[2];
  6304. const size_t nb3 = dst->nb[3];
  6305. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6306. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6307. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6308. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6309. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6310. // rows per thread
  6311. const int dr = (nr + nth - 1)/nth;
  6312. // row range for this thread
  6313. const int ir0 = dr*ith;
  6314. const int ir1 = MIN(ir0 + dr, nr);
  6315. for (int ir = ir0; ir < ir1; ++ir) {
  6316. // src0 and dst are same shape => same indices
  6317. const int i3 = ir/(ne2*ne1);
  6318. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6319. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6320. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6321. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6322. for (int i = 0; i < ne0; i++) {
  6323. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6324. }
  6325. }
  6326. }
  6327. static void ggml_compute_forward_add1_f16_f16(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. const struct ggml_tensor * src1,
  6331. struct ggml_tensor * dst) {
  6332. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6333. GGML_ASSERT(ggml_is_scalar(src1));
  6334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6335. return;
  6336. }
  6337. // scalar to add
  6338. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6339. const int ith = params->ith;
  6340. const int nth = params->nth;
  6341. const int nr = ggml_nrows(src0);
  6342. const int64_t ne0 = src0->ne[0];
  6343. const int64_t ne1 = src0->ne[1];
  6344. const int64_t ne2 = src0->ne[2];
  6345. const size_t nb00 = src0->nb[0];
  6346. const size_t nb01 = src0->nb[1];
  6347. const size_t nb02 = src0->nb[2];
  6348. const size_t nb03 = src0->nb[3];
  6349. const size_t nb0 = dst->nb[0];
  6350. const size_t nb1 = dst->nb[1];
  6351. const size_t nb2 = dst->nb[2];
  6352. const size_t nb3 = dst->nb[3];
  6353. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6354. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6355. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6356. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6357. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6358. // rows per thread
  6359. const int dr = (nr + nth - 1)/nth;
  6360. // row range for this thread
  6361. const int ir0 = dr*ith;
  6362. const int ir1 = MIN(ir0 + dr, nr);
  6363. for (int ir = ir0; ir < ir1; ++ir) {
  6364. // src0 and dst are same shape => same indices
  6365. const int i3 = ir/(ne2*ne1);
  6366. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6367. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6368. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6369. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6370. for (int i = 0; i < ne0; i++) {
  6371. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6372. }
  6373. }
  6374. }
  6375. static void ggml_compute_forward_add1_q_f32(
  6376. const struct ggml_compute_params * params,
  6377. const struct ggml_tensor * src0,
  6378. const struct ggml_tensor * src1,
  6379. struct ggml_tensor * dst) {
  6380. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6381. GGML_ASSERT(ggml_is_scalar(src1));
  6382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6383. return;
  6384. }
  6385. // scalar to add
  6386. const float v = *(float *) src1->data;
  6387. const int ith = params->ith;
  6388. const int nth = params->nth;
  6389. const int nr = ggml_nrows(src0);
  6390. const int64_t ne0 = src0->ne[0];
  6391. const int64_t ne1 = src0->ne[1];
  6392. const int64_t ne2 = src0->ne[2];
  6393. const size_t nb00 = src0->nb[0];
  6394. const size_t nb01 = src0->nb[1];
  6395. const size_t nb02 = src0->nb[2];
  6396. const size_t nb03 = src0->nb[3];
  6397. const size_t nb0 = dst->nb[0];
  6398. const size_t nb1 = dst->nb[1];
  6399. const size_t nb2 = dst->nb[2];
  6400. const size_t nb3 = dst->nb[3];
  6401. const enum ggml_type type = src0->type;
  6402. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6403. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6404. // we don't support permuted src0
  6405. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6406. // dst cannot be transposed or permuted
  6407. GGML_ASSERT(nb0 <= nb1);
  6408. GGML_ASSERT(nb1 <= nb2);
  6409. GGML_ASSERT(nb2 <= nb3);
  6410. GGML_ASSERT(ggml_is_quantized(src0->type));
  6411. GGML_ASSERT(dst->type == src0->type);
  6412. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6413. // rows per thread
  6414. const int dr = (nr + nth - 1)/nth;
  6415. // row range for this thread
  6416. const int ir0 = dr*ith;
  6417. const int ir1 = MIN(ir0 + dr, nr);
  6418. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6419. for (int ir = ir0; ir < ir1; ++ir) {
  6420. // src0 and dst are same shape => same indices
  6421. const int i3 = ir/(ne2*ne1);
  6422. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6423. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6424. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6425. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6426. assert(ne0 % 32 == 0);
  6427. // unquantize row from src0 to temp buffer
  6428. dequantize_row_q(src0_row, wdata, ne0);
  6429. // add src1
  6430. ggml_vec_acc1_f32(ne0, wdata, v);
  6431. // quantize row to dst
  6432. quantize_row_q(wdata, dst_row, ne0);
  6433. }
  6434. }
  6435. static void ggml_compute_forward_add1(
  6436. const struct ggml_compute_params * params,
  6437. const struct ggml_tensor * src0,
  6438. const struct ggml_tensor * src1,
  6439. struct ggml_tensor * dst) {
  6440. switch (src0->type) {
  6441. case GGML_TYPE_F32:
  6442. {
  6443. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6444. } break;
  6445. case GGML_TYPE_F16:
  6446. {
  6447. if (src1->type == GGML_TYPE_F16) {
  6448. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6449. }
  6450. else if (src1->type == GGML_TYPE_F32) {
  6451. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6452. }
  6453. else {
  6454. GGML_ASSERT(false);
  6455. }
  6456. } break;
  6457. case GGML_TYPE_Q4_0:
  6458. case GGML_TYPE_Q4_1:
  6459. case GGML_TYPE_Q5_0:
  6460. case GGML_TYPE_Q5_1:
  6461. case GGML_TYPE_Q8_0:
  6462. case GGML_TYPE_Q8_1:
  6463. case GGML_TYPE_Q2_K:
  6464. case GGML_TYPE_Q3_K:
  6465. case GGML_TYPE_Q4_K:
  6466. case GGML_TYPE_Q5_K:
  6467. case GGML_TYPE_Q6_K:
  6468. {
  6469. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6470. } break;
  6471. default:
  6472. {
  6473. GGML_ASSERT(false);
  6474. } break;
  6475. }
  6476. }
  6477. // ggml_compute_forward_acc
  6478. static void ggml_compute_forward_acc_f32(
  6479. const struct ggml_compute_params * params,
  6480. const struct ggml_tensor * src0,
  6481. const struct ggml_tensor * src1,
  6482. const struct ggml_tensor * opt0,
  6483. struct ggml_tensor * dst) {
  6484. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6485. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6486. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6487. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6488. // view src0 and dst with these strides and data offset inbytes during acc
  6489. // nb0 is implicitely element_size because src0 and dst are contiguous
  6490. size_t nb1 = ((int32_t *) opt0->data)[0];
  6491. size_t nb2 = ((int32_t *) opt0->data)[1];
  6492. size_t nb3 = ((int32_t *) opt0->data)[2];
  6493. size_t offset = ((int32_t *) opt0->data)[3];
  6494. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6495. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6496. // memcpy needs to be synchronized across threads to avoid race conditions.
  6497. // => do it in INIT phase
  6498. memcpy(
  6499. ((char *) dst->data),
  6500. ((char *) src0->data),
  6501. ggml_nbytes(dst));
  6502. }
  6503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6504. return;
  6505. }
  6506. const int ith = params->ith;
  6507. const int nth = params->nth;
  6508. const int nr = ggml_nrows(src1);
  6509. const int nc = src1->ne[0];
  6510. const int64_t ne10 = src1->ne[0];
  6511. const int64_t ne11 = src1->ne[1];
  6512. const int64_t ne12 = src1->ne[2];
  6513. const int64_t ne13 = src1->ne[3];
  6514. const size_t nb10 = src1->nb[0];
  6515. const size_t nb11 = src1->nb[1];
  6516. const size_t nb12 = src1->nb[2];
  6517. const size_t nb13 = src1->nb[3];
  6518. // src0 and dst as viewed during acc
  6519. const size_t nb0 = ggml_element_size(src0);
  6520. const size_t nb00 = nb0;
  6521. const size_t nb01 = nb1;
  6522. const size_t nb02 = nb2;
  6523. const size_t nb03 = nb3;
  6524. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6525. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6526. GGML_ASSERT(nb10 == sizeof(float));
  6527. // rows per thread
  6528. const int dr = (nr + nth - 1)/nth;
  6529. // row range for this thread
  6530. const int ir0 = dr*ith;
  6531. const int ir1 = MIN(ir0 + dr, nr);
  6532. for (int ir = ir0; ir < ir1; ++ir) {
  6533. // src0 and dst are viewed with shape of src1 and offset
  6534. // => same indices
  6535. const int i3 = ir/(ne12*ne11);
  6536. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6537. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6538. #ifdef GGML_USE_ACCELERATE
  6539. vDSP_vadd(
  6540. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6541. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6542. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6543. #else
  6544. ggml_vec_add_f32(nc,
  6545. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6546. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6547. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6548. #endif
  6549. }
  6550. }
  6551. static void ggml_compute_forward_acc(
  6552. const struct ggml_compute_params * params,
  6553. const struct ggml_tensor * src0,
  6554. const struct ggml_tensor * src1,
  6555. const struct ggml_tensor * opt0,
  6556. struct ggml_tensor * dst) {
  6557. switch (src0->type) {
  6558. case GGML_TYPE_F32:
  6559. {
  6560. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6561. } break;
  6562. case GGML_TYPE_F16:
  6563. case GGML_TYPE_Q4_0:
  6564. case GGML_TYPE_Q4_1:
  6565. case GGML_TYPE_Q5_0:
  6566. case GGML_TYPE_Q5_1:
  6567. case GGML_TYPE_Q8_0:
  6568. case GGML_TYPE_Q8_1:
  6569. case GGML_TYPE_Q2_K:
  6570. case GGML_TYPE_Q3_K:
  6571. case GGML_TYPE_Q4_K:
  6572. case GGML_TYPE_Q5_K:
  6573. case GGML_TYPE_Q6_K:
  6574. default:
  6575. {
  6576. GGML_ASSERT(false);
  6577. } break;
  6578. }
  6579. }
  6580. // ggml_compute_forward_sub
  6581. static void ggml_compute_forward_sub_f32(
  6582. const struct ggml_compute_params * params,
  6583. const struct ggml_tensor * src0,
  6584. const struct ggml_tensor * src1,
  6585. struct ggml_tensor * dst) {
  6586. assert(params->ith == 0);
  6587. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6589. return;
  6590. }
  6591. const int nr = ggml_nrows(src0);
  6592. const int64_t ne0 = src0->ne[0];
  6593. const int64_t ne1 = src0->ne[1];
  6594. const int64_t ne2 = src0->ne[2];
  6595. const size_t nb00 = src0->nb[0];
  6596. const size_t nb01 = src0->nb[1];
  6597. const size_t nb02 = src0->nb[2];
  6598. const size_t nb03 = src0->nb[3];
  6599. const size_t nb10 = src1->nb[0];
  6600. const size_t nb11 = src1->nb[1];
  6601. const size_t nb12 = src1->nb[2];
  6602. const size_t nb13 = src1->nb[3];
  6603. const size_t nb0 = dst->nb[0];
  6604. const size_t nb1 = dst->nb[1];
  6605. const size_t nb2 = dst->nb[2];
  6606. const size_t nb3 = dst->nb[3];
  6607. GGML_ASSERT( nb0 == sizeof(float));
  6608. GGML_ASSERT(nb00 == sizeof(float));
  6609. if (nb10 == sizeof(float)) {
  6610. for (int ir = 0; ir < nr; ++ir) {
  6611. // src0, src1 and dst are same shape => same indices
  6612. const int i3 = ir/(ne2*ne1);
  6613. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6614. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6615. #ifdef GGML_USE_ACCELERATE
  6616. vDSP_vsub(
  6617. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6618. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6619. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6620. ne0);
  6621. #else
  6622. ggml_vec_sub_f32(ne0,
  6623. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6624. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6625. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6626. #endif
  6627. // }
  6628. // }
  6629. }
  6630. } else {
  6631. // src1 is not contiguous
  6632. for (int ir = 0; ir < nr; ++ir) {
  6633. // src0, src1 and dst are same shape => same indices
  6634. const int i3 = ir/(ne2*ne1);
  6635. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6636. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6637. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6638. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6639. for (int i0 = 0; i0 < ne0; i0++) {
  6640. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6641. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6642. }
  6643. }
  6644. }
  6645. }
  6646. static void ggml_compute_forward_sub(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * src0,
  6649. const struct ggml_tensor * src1,
  6650. struct ggml_tensor * dst) {
  6651. switch (src0->type) {
  6652. case GGML_TYPE_F32:
  6653. {
  6654. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6655. } break;
  6656. default:
  6657. {
  6658. GGML_ASSERT(false);
  6659. } break;
  6660. }
  6661. }
  6662. // ggml_compute_forward_mul
  6663. static void ggml_compute_forward_mul_f32(
  6664. const struct ggml_compute_params * params,
  6665. const struct ggml_tensor * src0,
  6666. const struct ggml_tensor * src1,
  6667. struct ggml_tensor * dst) {
  6668. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6670. return;
  6671. }
  6672. const int ith = params->ith;
  6673. const int nth = params->nth;
  6674. #ifdef GGML_USE_CLBLAST
  6675. if (src1->backend == GGML_BACKEND_GPU) {
  6676. if (ith == 0) {
  6677. ggml_cl_mul(src0, src1, dst);
  6678. }
  6679. return;
  6680. }
  6681. #endif
  6682. const int64_t nr = ggml_nrows(src0);
  6683. const int64_t ne00 = src0->ne[0];
  6684. const int64_t ne01 = src0->ne[1];
  6685. const int64_t ne02 = src0->ne[2];
  6686. const int64_t ne10 = src1->ne[0];
  6687. const int64_t ne11 = src1->ne[1];
  6688. const int64_t ne12 = src1->ne[2];
  6689. const int64_t ne13 = src1->ne[3];
  6690. const size_t nb00 = src0->nb[0];
  6691. const size_t nb01 = src0->nb[1];
  6692. const size_t nb02 = src0->nb[2];
  6693. const size_t nb03 = src0->nb[3];
  6694. const size_t nb10 = src1->nb[0];
  6695. const size_t nb11 = src1->nb[1];
  6696. const size_t nb12 = src1->nb[2];
  6697. const size_t nb13 = src1->nb[3];
  6698. const size_t nb0 = dst->nb[0];
  6699. const size_t nb1 = dst->nb[1];
  6700. const size_t nb2 = dst->nb[2];
  6701. const size_t nb3 = dst->nb[3];
  6702. GGML_ASSERT( nb0 == sizeof(float));
  6703. GGML_ASSERT(nb00 == sizeof(float));
  6704. GGML_ASSERT(ne00 == ne10);
  6705. if (nb10 == sizeof(float)) {
  6706. for (int64_t ir = ith; ir < nr; ir += nth) {
  6707. // src0 and dst are same shape => same indices
  6708. const int64_t i03 = ir/(ne02*ne01);
  6709. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6710. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6711. const int64_t i13 = i03 % ne13;
  6712. const int64_t i12 = i02 % ne12;
  6713. const int64_t i11 = i01 % ne11;
  6714. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6715. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6716. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6717. #ifdef GGML_USE_ACCELERATE
  6718. UNUSED(ggml_vec_mul_f32);
  6719. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6720. #else
  6721. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6722. #endif
  6723. // }
  6724. // }
  6725. }
  6726. } else {
  6727. // src1 is not contiguous
  6728. for (int64_t ir = ith; ir < nr; ir += nth) {
  6729. // src0 and dst are same shape => same indices
  6730. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6731. const int64_t i03 = ir/(ne02*ne01);
  6732. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6733. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6734. const int64_t i13 = i03 % ne13;
  6735. const int64_t i12 = i02 % ne12;
  6736. const int64_t i11 = i01 % ne11;
  6737. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6738. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6739. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6740. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6741. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6742. }
  6743. }
  6744. }
  6745. }
  6746. static void ggml_compute_forward_mul(
  6747. const struct ggml_compute_params * params,
  6748. const struct ggml_tensor * src0,
  6749. const struct ggml_tensor * src1,
  6750. struct ggml_tensor * dst) {
  6751. switch (src0->type) {
  6752. case GGML_TYPE_F32:
  6753. {
  6754. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6755. } break;
  6756. default:
  6757. {
  6758. GGML_ASSERT(false);
  6759. } break;
  6760. }
  6761. }
  6762. // ggml_compute_forward_div
  6763. static void ggml_compute_forward_div_f32(
  6764. const struct ggml_compute_params * params,
  6765. const struct ggml_tensor * src0,
  6766. const struct ggml_tensor * src1,
  6767. struct ggml_tensor * dst) {
  6768. assert(params->ith == 0);
  6769. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6771. return;
  6772. }
  6773. const int nr = ggml_nrows(src0);
  6774. const int64_t ne0 = src0->ne[0];
  6775. const int64_t ne1 = src0->ne[1];
  6776. const int64_t ne2 = src0->ne[2];
  6777. const size_t nb00 = src0->nb[0];
  6778. const size_t nb01 = src0->nb[1];
  6779. const size_t nb02 = src0->nb[2];
  6780. const size_t nb03 = src0->nb[3];
  6781. const size_t nb10 = src1->nb[0];
  6782. const size_t nb11 = src1->nb[1];
  6783. const size_t nb12 = src1->nb[2];
  6784. const size_t nb13 = src1->nb[3];
  6785. const size_t nb0 = dst->nb[0];
  6786. const size_t nb1 = dst->nb[1];
  6787. const size_t nb2 = dst->nb[2];
  6788. const size_t nb3 = dst->nb[3];
  6789. GGML_ASSERT( nb0 == sizeof(float));
  6790. GGML_ASSERT(nb00 == sizeof(float));
  6791. if (nb10 == sizeof(float)) {
  6792. for (int ir = 0; ir < nr; ++ir) {
  6793. // src0, src1 and dst are same shape => same indices
  6794. const int i3 = ir/(ne2*ne1);
  6795. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6796. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6797. #ifdef GGML_USE_ACCELERATE
  6798. vDSP_vdiv(
  6799. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6800. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6801. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6802. ne0);
  6803. #else
  6804. ggml_vec_div_f32(ne0,
  6805. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6806. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6807. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6808. #endif
  6809. // }
  6810. // }
  6811. }
  6812. } else {
  6813. // src1 is not contiguous
  6814. for (int ir = 0; ir < nr; ++ir) {
  6815. // src0, src1 and dst are same shape => same indices
  6816. const int i3 = ir/(ne2*ne1);
  6817. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6818. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6819. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6820. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6821. for (int i0 = 0; i0 < ne0; i0++) {
  6822. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6823. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6824. }
  6825. }
  6826. }
  6827. }
  6828. static void ggml_compute_forward_div(
  6829. const struct ggml_compute_params * params,
  6830. const struct ggml_tensor * src0,
  6831. const struct ggml_tensor * src1,
  6832. struct ggml_tensor * dst) {
  6833. switch (src0->type) {
  6834. case GGML_TYPE_F32:
  6835. {
  6836. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6837. } break;
  6838. default:
  6839. {
  6840. GGML_ASSERT(false);
  6841. } break;
  6842. }
  6843. }
  6844. // ggml_compute_forward_sqr
  6845. static void ggml_compute_forward_sqr_f32(
  6846. const struct ggml_compute_params * params,
  6847. const struct ggml_tensor * src0,
  6848. struct ggml_tensor * dst) {
  6849. assert(params->ith == 0);
  6850. assert(ggml_are_same_shape(src0, dst));
  6851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6852. return;
  6853. }
  6854. const int n = ggml_nrows(src0);
  6855. const int nc = src0->ne[0];
  6856. assert( dst->nb[0] == sizeof(float));
  6857. assert(src0->nb[0] == sizeof(float));
  6858. for (int i = 0; i < n; i++) {
  6859. ggml_vec_sqr_f32(nc,
  6860. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6861. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6862. }
  6863. }
  6864. static void ggml_compute_forward_sqr(
  6865. const struct ggml_compute_params * params,
  6866. const struct ggml_tensor * src0,
  6867. struct ggml_tensor * dst) {
  6868. switch (src0->type) {
  6869. case GGML_TYPE_F32:
  6870. {
  6871. ggml_compute_forward_sqr_f32(params, src0, dst);
  6872. } break;
  6873. default:
  6874. {
  6875. GGML_ASSERT(false);
  6876. } break;
  6877. }
  6878. }
  6879. // ggml_compute_forward_sqrt
  6880. static void ggml_compute_forward_sqrt_f32(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. struct ggml_tensor * dst) {
  6884. assert(params->ith == 0);
  6885. assert(ggml_are_same_shape(src0, dst));
  6886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6887. return;
  6888. }
  6889. const int n = ggml_nrows(src0);
  6890. const int nc = src0->ne[0];
  6891. assert( dst->nb[0] == sizeof(float));
  6892. assert(src0->nb[0] == sizeof(float));
  6893. for (int i = 0; i < n; i++) {
  6894. ggml_vec_sqrt_f32(nc,
  6895. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6896. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6897. }
  6898. }
  6899. static void ggml_compute_forward_sqrt(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. struct ggml_tensor * dst) {
  6903. switch (src0->type) {
  6904. case GGML_TYPE_F32:
  6905. {
  6906. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6907. } break;
  6908. default:
  6909. {
  6910. GGML_ASSERT(false);
  6911. } break;
  6912. }
  6913. }
  6914. // ggml_compute_forward_log
  6915. static void ggml_compute_forward_log_f32(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. GGML_ASSERT(params->ith == 0);
  6920. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6922. return;
  6923. }
  6924. const int n = ggml_nrows(src0);
  6925. const int nc = src0->ne[0];
  6926. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6927. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6928. for (int i = 0; i < n; i++) {
  6929. ggml_vec_log_f32(nc,
  6930. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6931. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6932. }
  6933. }
  6934. static void ggml_compute_forward_log(
  6935. const struct ggml_compute_params * params,
  6936. const struct ggml_tensor * src0,
  6937. struct ggml_tensor * dst) {
  6938. switch (src0->type) {
  6939. case GGML_TYPE_F32:
  6940. {
  6941. ggml_compute_forward_log_f32(params, src0, dst);
  6942. } break;
  6943. default:
  6944. {
  6945. GGML_ASSERT(false);
  6946. } break;
  6947. }
  6948. }
  6949. // ggml_compute_forward_sum
  6950. static void ggml_compute_forward_sum_f32(
  6951. const struct ggml_compute_params * params,
  6952. const struct ggml_tensor * src0,
  6953. struct ggml_tensor * dst) {
  6954. assert(params->ith == 0);
  6955. assert(ggml_is_scalar(dst));
  6956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6957. return;
  6958. }
  6959. assert(ggml_is_scalar(dst));
  6960. assert(src0->nb[0] == sizeof(float));
  6961. const int64_t ne00 = src0->ne[0];
  6962. const int64_t ne01 = src0->ne[1];
  6963. const int64_t ne02 = src0->ne[2];
  6964. const int64_t ne03 = src0->ne[3];
  6965. const size_t nb01 = src0->nb[1];
  6966. const size_t nb02 = src0->nb[2];
  6967. const size_t nb03 = src0->nb[3];
  6968. ggml_float sum = 0;
  6969. ggml_float row_sum = 0;
  6970. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6971. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6972. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6973. ggml_vec_sum_ggf(ne00,
  6974. &row_sum,
  6975. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6976. sum += row_sum;
  6977. }
  6978. }
  6979. }
  6980. ((float *) dst->data)[0] = sum;
  6981. }
  6982. static void ggml_compute_forward_sum(
  6983. const struct ggml_compute_params * params,
  6984. const struct ggml_tensor * src0,
  6985. struct ggml_tensor * dst) {
  6986. switch (src0->type) {
  6987. case GGML_TYPE_F32:
  6988. {
  6989. ggml_compute_forward_sum_f32(params, src0, dst);
  6990. } break;
  6991. default:
  6992. {
  6993. GGML_ASSERT(false);
  6994. } break;
  6995. }
  6996. }
  6997. // ggml_compute_forward_sum_rows
  6998. static void ggml_compute_forward_sum_rows_f32(
  6999. const struct ggml_compute_params * params,
  7000. const struct ggml_tensor * src0,
  7001. struct ggml_tensor * dst) {
  7002. GGML_ASSERT(params->ith == 0);
  7003. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7004. return;
  7005. }
  7006. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7007. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7008. const int64_t ne00 = src0->ne[0];
  7009. const int64_t ne01 = src0->ne[1];
  7010. const int64_t ne02 = src0->ne[2];
  7011. const int64_t ne03 = src0->ne[3];
  7012. const int64_t ne0 = dst->ne[0];
  7013. const int64_t ne1 = dst->ne[1];
  7014. const int64_t ne2 = dst->ne[2];
  7015. const int64_t ne3 = dst->ne[3];
  7016. GGML_ASSERT(ne0 == 1);
  7017. GGML_ASSERT(ne1 == ne01);
  7018. GGML_ASSERT(ne2 == ne02);
  7019. GGML_ASSERT(ne3 == ne03);
  7020. const size_t nb01 = src0->nb[1];
  7021. const size_t nb02 = src0->nb[2];
  7022. const size_t nb03 = src0->nb[3];
  7023. const size_t nb1 = dst->nb[1];
  7024. const size_t nb2 = dst->nb[2];
  7025. const size_t nb3 = dst->nb[3];
  7026. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7027. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7028. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7029. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7030. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7031. float row_sum = 0;
  7032. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7033. dst_row[0] = row_sum;
  7034. }
  7035. }
  7036. }
  7037. }
  7038. static void ggml_compute_forward_sum_rows(
  7039. const struct ggml_compute_params * params,
  7040. const struct ggml_tensor * src0,
  7041. struct ggml_tensor * dst) {
  7042. switch (src0->type) {
  7043. case GGML_TYPE_F32:
  7044. {
  7045. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7046. } break;
  7047. default:
  7048. {
  7049. GGML_ASSERT(false);
  7050. } break;
  7051. }
  7052. }
  7053. // ggml_compute_forward_mean
  7054. static void ggml_compute_forward_mean_f32(
  7055. const struct ggml_compute_params * params,
  7056. const struct ggml_tensor * src0,
  7057. struct ggml_tensor * dst) {
  7058. assert(params->ith == 0);
  7059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7060. return;
  7061. }
  7062. assert(src0->nb[0] == sizeof(float));
  7063. const int64_t ne00 = src0->ne[0];
  7064. const int64_t ne01 = src0->ne[1];
  7065. const int64_t ne02 = src0->ne[2];
  7066. const int64_t ne03 = src0->ne[3];
  7067. const size_t nb01 = src0->nb[1];
  7068. const size_t nb02 = src0->nb[2];
  7069. const size_t nb03 = src0->nb[3];
  7070. const int64_t ne0 = dst->ne[0];
  7071. const int64_t ne1 = dst->ne[1];
  7072. const int64_t ne2 = dst->ne[2];
  7073. const int64_t ne3 = dst->ne[3];
  7074. assert(ne0 == 1);
  7075. assert(ne1 == ne01);
  7076. assert(ne2 == ne02);
  7077. assert(ne3 == ne03);
  7078. UNUSED(ne0);
  7079. UNUSED(ne1);
  7080. UNUSED(ne2);
  7081. UNUSED(ne3);
  7082. const size_t nb1 = dst->nb[1];
  7083. const size_t nb2 = dst->nb[2];
  7084. const size_t nb3 = dst->nb[3];
  7085. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7086. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7087. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7088. ggml_vec_sum_f32(ne00,
  7089. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7090. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7091. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7092. }
  7093. }
  7094. }
  7095. }
  7096. static void ggml_compute_forward_mean(
  7097. const struct ggml_compute_params * params,
  7098. const struct ggml_tensor * src0,
  7099. struct ggml_tensor * dst) {
  7100. switch (src0->type) {
  7101. case GGML_TYPE_F32:
  7102. {
  7103. ggml_compute_forward_mean_f32(params, src0, dst);
  7104. } break;
  7105. default:
  7106. {
  7107. GGML_ASSERT(false);
  7108. } break;
  7109. }
  7110. }
  7111. // ggml_compute_forward_repeat
  7112. static void ggml_compute_forward_repeat_f32(
  7113. const struct ggml_compute_params * params,
  7114. const struct ggml_tensor * src0,
  7115. struct ggml_tensor * dst) {
  7116. GGML_ASSERT(params->ith == 0);
  7117. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7119. return;
  7120. }
  7121. const int64_t ne0 = dst->ne[0];
  7122. const int64_t ne1 = dst->ne[1];
  7123. const int64_t ne2 = dst->ne[2];
  7124. const int64_t ne3 = dst->ne[3];
  7125. const int64_t ne00 = src0->ne[0];
  7126. const int64_t ne01 = src0->ne[1];
  7127. const int64_t ne02 = src0->ne[2];
  7128. const int64_t ne03 = src0->ne[3];
  7129. const size_t nb0 = dst->nb[0];
  7130. const size_t nb1 = dst->nb[1];
  7131. const size_t nb2 = dst->nb[2];
  7132. const size_t nb3 = dst->nb[3];
  7133. const size_t nb00 = src0->nb[0];
  7134. const size_t nb01 = src0->nb[1];
  7135. const size_t nb02 = src0->nb[2];
  7136. const size_t nb03 = src0->nb[3];
  7137. // guaranteed to be an integer due to the check in ggml_can_repeat
  7138. const int nr0 = (int)(ne0/ne00);
  7139. const int nr1 = (int)(ne1/ne01);
  7140. const int nr2 = (int)(ne2/ne02);
  7141. const int nr3 = (int)(ne3/ne03);
  7142. // TODO: support for transposed / permuted tensors
  7143. GGML_ASSERT(nb0 == sizeof(float));
  7144. GGML_ASSERT(nb00 == sizeof(float));
  7145. // TODO: maybe this is not optimal?
  7146. for (int i3 = 0; i3 < nr3; i3++) {
  7147. for (int k3 = 0; k3 < ne03; k3++) {
  7148. for (int i2 = 0; i2 < nr2; i2++) {
  7149. for (int k2 = 0; k2 < ne02; k2++) {
  7150. for (int i1 = 0; i1 < nr1; i1++) {
  7151. for (int k1 = 0; k1 < ne01; k1++) {
  7152. for (int i0 = 0; i0 < nr0; i0++) {
  7153. ggml_vec_cpy_f32(ne00,
  7154. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7155. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7156. }
  7157. }
  7158. }
  7159. }
  7160. }
  7161. }
  7162. }
  7163. }
  7164. static void ggml_compute_forward_repeat(
  7165. const struct ggml_compute_params * params,
  7166. const struct ggml_tensor * src0,
  7167. struct ggml_tensor * dst) {
  7168. switch (src0->type) {
  7169. case GGML_TYPE_F32:
  7170. {
  7171. ggml_compute_forward_repeat_f32(params, src0, dst);
  7172. } break;
  7173. default:
  7174. {
  7175. GGML_ASSERT(false);
  7176. } break;
  7177. }
  7178. }
  7179. // ggml_compute_forward_abs
  7180. static void ggml_compute_forward_abs_f32(
  7181. const struct ggml_compute_params * params,
  7182. const struct ggml_tensor * src0,
  7183. struct ggml_tensor * dst) {
  7184. assert(params->ith == 0);
  7185. assert(ggml_are_same_shape(src0, dst));
  7186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7187. return;
  7188. }
  7189. const int n = ggml_nrows(src0);
  7190. const int nc = src0->ne[0];
  7191. assert(dst->nb[0] == sizeof(float));
  7192. assert(src0->nb[0] == sizeof(float));
  7193. for (int i = 0; i < n; i++) {
  7194. ggml_vec_abs_f32(nc,
  7195. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7196. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7197. }
  7198. }
  7199. static void ggml_compute_forward_abs(
  7200. const struct ggml_compute_params * params,
  7201. const struct ggml_tensor * src0,
  7202. struct ggml_tensor * dst) {
  7203. switch (src0->type) {
  7204. case GGML_TYPE_F32:
  7205. {
  7206. ggml_compute_forward_abs_f32(params, src0, dst);
  7207. } break;
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. // ggml_compute_forward_sgn
  7215. static void ggml_compute_forward_sgn_f32(
  7216. const struct ggml_compute_params * params,
  7217. const struct ggml_tensor * src0,
  7218. struct ggml_tensor * dst) {
  7219. assert(params->ith == 0);
  7220. assert(ggml_are_same_shape(src0, dst));
  7221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7222. return;
  7223. }
  7224. const int n = ggml_nrows(src0);
  7225. const int nc = src0->ne[0];
  7226. assert(dst->nb[0] == sizeof(float));
  7227. assert(src0->nb[0] == sizeof(float));
  7228. for (int i = 0; i < n; i++) {
  7229. ggml_vec_sgn_f32(nc,
  7230. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7231. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7232. }
  7233. }
  7234. static void ggml_compute_forward_sgn(
  7235. const struct ggml_compute_params * params,
  7236. const struct ggml_tensor * src0,
  7237. struct ggml_tensor * dst) {
  7238. switch (src0->type) {
  7239. case GGML_TYPE_F32:
  7240. {
  7241. ggml_compute_forward_sgn_f32(params, src0, dst);
  7242. } break;
  7243. default:
  7244. {
  7245. GGML_ASSERT(false);
  7246. } break;
  7247. }
  7248. }
  7249. // ggml_compute_forward_neg
  7250. static void ggml_compute_forward_neg_f32(
  7251. const struct ggml_compute_params * params,
  7252. const struct ggml_tensor * src0,
  7253. struct ggml_tensor * dst) {
  7254. assert(params->ith == 0);
  7255. assert(ggml_are_same_shape(src0, dst));
  7256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7257. return;
  7258. }
  7259. const int n = ggml_nrows(src0);
  7260. const int nc = src0->ne[0];
  7261. assert(dst->nb[0] == sizeof(float));
  7262. assert(src0->nb[0] == sizeof(float));
  7263. for (int i = 0; i < n; i++) {
  7264. ggml_vec_neg_f32(nc,
  7265. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7266. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7267. }
  7268. }
  7269. static void ggml_compute_forward_neg(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. struct ggml_tensor * dst) {
  7273. switch (src0->type) {
  7274. case GGML_TYPE_F32:
  7275. {
  7276. ggml_compute_forward_neg_f32(params, src0, dst);
  7277. } break;
  7278. default:
  7279. {
  7280. GGML_ASSERT(false);
  7281. } break;
  7282. }
  7283. }
  7284. // ggml_compute_forward_step
  7285. static void ggml_compute_forward_step_f32(
  7286. const struct ggml_compute_params * params,
  7287. const struct ggml_tensor * src0,
  7288. struct ggml_tensor * dst) {
  7289. assert(params->ith == 0);
  7290. assert(ggml_are_same_shape(src0, dst));
  7291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7292. return;
  7293. }
  7294. const int n = ggml_nrows(src0);
  7295. const int nc = src0->ne[0];
  7296. assert(dst->nb[0] == sizeof(float));
  7297. assert(src0->nb[0] == sizeof(float));
  7298. for (int i = 0; i < n; i++) {
  7299. ggml_vec_step_f32(nc,
  7300. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7301. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7302. }
  7303. }
  7304. static void ggml_compute_forward_step(
  7305. const struct ggml_compute_params * params,
  7306. const struct ggml_tensor * src0,
  7307. struct ggml_tensor * dst) {
  7308. switch (src0->type) {
  7309. case GGML_TYPE_F32:
  7310. {
  7311. ggml_compute_forward_step_f32(params, src0, dst);
  7312. } break;
  7313. default:
  7314. {
  7315. GGML_ASSERT(false);
  7316. } break;
  7317. }
  7318. }
  7319. // ggml_compute_forward_relu
  7320. static void ggml_compute_forward_relu_f32(
  7321. const struct ggml_compute_params * params,
  7322. const struct ggml_tensor * src0,
  7323. struct ggml_tensor * dst) {
  7324. assert(params->ith == 0);
  7325. assert(ggml_are_same_shape(src0, dst));
  7326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7327. return;
  7328. }
  7329. const int n = ggml_nrows(src0);
  7330. const int nc = src0->ne[0];
  7331. assert(dst->nb[0] == sizeof(float));
  7332. assert(src0->nb[0] == sizeof(float));
  7333. for (int i = 0; i < n; i++) {
  7334. ggml_vec_relu_f32(nc,
  7335. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7336. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7337. }
  7338. }
  7339. static void ggml_compute_forward_relu(
  7340. const struct ggml_compute_params * params,
  7341. const struct ggml_tensor * src0,
  7342. struct ggml_tensor * dst) {
  7343. switch (src0->type) {
  7344. case GGML_TYPE_F32:
  7345. {
  7346. ggml_compute_forward_relu_f32(params, src0, dst);
  7347. } break;
  7348. default:
  7349. {
  7350. GGML_ASSERT(false);
  7351. } break;
  7352. }
  7353. }
  7354. // ggml_compute_forward_gelu
  7355. static void ggml_compute_forward_gelu_f32(
  7356. const struct ggml_compute_params * params,
  7357. const struct ggml_tensor * src0,
  7358. struct ggml_tensor * dst) {
  7359. GGML_ASSERT(ggml_is_contiguous(src0));
  7360. GGML_ASSERT(ggml_is_contiguous(dst));
  7361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7363. return;
  7364. }
  7365. const int ith = params->ith;
  7366. const int nth = params->nth;
  7367. const int nc = src0->ne[0];
  7368. const int nr = ggml_nrows(src0);
  7369. // rows per thread
  7370. const int dr = (nr + nth - 1)/nth;
  7371. // row range for this thread
  7372. const int ir0 = dr*ith;
  7373. const int ir1 = MIN(ir0 + dr, nr);
  7374. for (int i1 = ir0; i1 < ir1; i1++) {
  7375. ggml_vec_gelu_f32(nc,
  7376. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7377. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7378. #ifndef NDEBUG
  7379. for (int k = 0; k < nc; k++) {
  7380. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7381. UNUSED(x);
  7382. assert(!isnan(x));
  7383. assert(!isinf(x));
  7384. }
  7385. #endif
  7386. }
  7387. }
  7388. static void ggml_compute_forward_gelu(
  7389. const struct ggml_compute_params * params,
  7390. const struct ggml_tensor * src0,
  7391. struct ggml_tensor * dst) {
  7392. switch (src0->type) {
  7393. case GGML_TYPE_F32:
  7394. {
  7395. ggml_compute_forward_gelu_f32(params, src0, dst);
  7396. } break;
  7397. default:
  7398. {
  7399. GGML_ASSERT(false);
  7400. } break;
  7401. }
  7402. //printf("XXXXXXXX gelu\n");
  7403. }
  7404. // ggml_compute_forward_silu
  7405. static void ggml_compute_forward_silu_f32(
  7406. const struct ggml_compute_params * params,
  7407. const struct ggml_tensor * src0,
  7408. struct ggml_tensor * dst) {
  7409. GGML_ASSERT(ggml_is_contiguous(src0));
  7410. GGML_ASSERT(ggml_is_contiguous(dst));
  7411. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7413. return;
  7414. }
  7415. const int ith = params->ith;
  7416. const int nth = params->nth;
  7417. const int nc = src0->ne[0];
  7418. const int nr = ggml_nrows(src0);
  7419. // rows per thread
  7420. const int dr = (nr + nth - 1)/nth;
  7421. // row range for this thread
  7422. const int ir0 = dr*ith;
  7423. const int ir1 = MIN(ir0 + dr, nr);
  7424. for (int i1 = ir0; i1 < ir1; i1++) {
  7425. ggml_vec_silu_f32(nc,
  7426. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7427. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7428. #ifndef NDEBUG
  7429. for (int k = 0; k < nc; k++) {
  7430. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7431. UNUSED(x);
  7432. assert(!isnan(x));
  7433. assert(!isinf(x));
  7434. }
  7435. #endif
  7436. }
  7437. }
  7438. static void ggml_compute_forward_silu(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. struct ggml_tensor * dst) {
  7442. switch (src0->type) {
  7443. case GGML_TYPE_F32:
  7444. {
  7445. ggml_compute_forward_silu_f32(params, src0, dst);
  7446. } break;
  7447. default:
  7448. {
  7449. GGML_ASSERT(false);
  7450. } break;
  7451. }
  7452. }
  7453. // ggml_compute_forward_silu_back
  7454. static void ggml_compute_forward_silu_back_f32(
  7455. const struct ggml_compute_params * params,
  7456. const struct ggml_tensor * src0,
  7457. const struct ggml_tensor * grad,
  7458. struct ggml_tensor * dst) {
  7459. GGML_ASSERT(ggml_is_contiguous(grad));
  7460. GGML_ASSERT(ggml_is_contiguous(src0));
  7461. GGML_ASSERT(ggml_is_contiguous(dst));
  7462. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7463. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7465. return;
  7466. }
  7467. const int ith = params->ith;
  7468. const int nth = params->nth;
  7469. const int nc = src0->ne[0];
  7470. const int nr = ggml_nrows(src0);
  7471. // rows per thread
  7472. const int dr = (nr + nth - 1)/nth;
  7473. // row range for this thread
  7474. const int ir0 = dr*ith;
  7475. const int ir1 = MIN(ir0 + dr, nr);
  7476. for (int i1 = ir0; i1 < ir1; i1++) {
  7477. ggml_vec_silu_backward_f32(nc,
  7478. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7479. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7480. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7481. #ifndef NDEBUG
  7482. for (int k = 0; k < nc; k++) {
  7483. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7484. UNUSED(x);
  7485. assert(!isnan(x));
  7486. assert(!isinf(x));
  7487. }
  7488. #endif
  7489. }
  7490. }
  7491. static void ggml_compute_forward_silu_back(
  7492. const struct ggml_compute_params * params,
  7493. const struct ggml_tensor * src0,
  7494. const struct ggml_tensor * grad,
  7495. struct ggml_tensor * dst) {
  7496. switch (src0->type) {
  7497. case GGML_TYPE_F32:
  7498. {
  7499. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7500. } break;
  7501. default:
  7502. {
  7503. GGML_ASSERT(false);
  7504. } break;
  7505. }
  7506. }
  7507. // ggml_compute_forward_norm
  7508. static void ggml_compute_forward_norm_f32(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. struct ggml_tensor * dst) {
  7512. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7514. return;
  7515. }
  7516. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7517. const int ith = params->ith;
  7518. const int nth = params->nth;
  7519. const int64_t ne00 = src0->ne[0];
  7520. const int64_t ne01 = src0->ne[1];
  7521. const int64_t ne02 = src0->ne[2];
  7522. const int64_t ne03 = src0->ne[3];
  7523. const size_t nb01 = src0->nb[1];
  7524. const size_t nb02 = src0->nb[2];
  7525. const size_t nb03 = src0->nb[3];
  7526. const size_t nb1 = dst->nb[1];
  7527. const size_t nb2 = dst->nb[2];
  7528. const size_t nb3 = dst->nb[3];
  7529. const float eps = 1e-5f; // TODO: make this a parameter
  7530. // TODO: optimize
  7531. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7532. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7533. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7534. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7535. ggml_float sum = 0.0;
  7536. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7537. sum += (ggml_float)x[i00];
  7538. }
  7539. float mean = sum/ne00;
  7540. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7541. ggml_float sum2 = 0.0;
  7542. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7543. float v = x[i00] - mean;
  7544. y[i00] = v;
  7545. sum2 += (ggml_float)(v*v);
  7546. }
  7547. float variance = sum2/ne00;
  7548. const float scale = 1.0f/sqrtf(variance + eps);
  7549. ggml_vec_scale_f32(ne00, y, scale);
  7550. }
  7551. }
  7552. }
  7553. }
  7554. static void ggml_compute_forward_norm(
  7555. const struct ggml_compute_params * params,
  7556. const struct ggml_tensor * src0,
  7557. struct ggml_tensor * dst) {
  7558. switch (src0->type) {
  7559. case GGML_TYPE_F32:
  7560. {
  7561. ggml_compute_forward_norm_f32(params, src0, dst);
  7562. } break;
  7563. default:
  7564. {
  7565. GGML_ASSERT(false);
  7566. } break;
  7567. }
  7568. }
  7569. static void ggml_compute_forward_rms_norm_f32(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * src0,
  7572. struct ggml_tensor * dst) {
  7573. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7575. return;
  7576. }
  7577. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7578. const int ith = params->ith;
  7579. const int nth = params->nth;
  7580. const int64_t ne00 = src0->ne[0];
  7581. const int64_t ne01 = src0->ne[1];
  7582. const int64_t ne02 = src0->ne[2];
  7583. const int64_t ne03 = src0->ne[3];
  7584. const size_t nb01 = src0->nb[1];
  7585. const size_t nb02 = src0->nb[2];
  7586. const size_t nb03 = src0->nb[3];
  7587. const size_t nb1 = dst->nb[1];
  7588. const size_t nb2 = dst->nb[2];
  7589. const size_t nb3 = dst->nb[3];
  7590. const float eps = 1e-6f; // TODO: make this a parameter
  7591. // TODO: optimize
  7592. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7593. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7594. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7595. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7596. ggml_float sum = 0.0;
  7597. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7598. sum += (ggml_float)(x[i00] * x[i00]);
  7599. }
  7600. const float mean = sum/ne00;
  7601. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7602. memcpy(y, x, ne00 * sizeof(float));
  7603. // for (int i00 = 0; i00 < ne00; i00++) {
  7604. // y[i00] = x[i00];
  7605. // }
  7606. const float scale = 1.0f/sqrtf(mean + eps);
  7607. ggml_vec_scale_f32(ne00, y, scale);
  7608. }
  7609. }
  7610. }
  7611. }
  7612. static void ggml_compute_forward_rms_norm(
  7613. const struct ggml_compute_params * params,
  7614. const struct ggml_tensor * src0,
  7615. struct ggml_tensor * dst) {
  7616. switch (src0->type) {
  7617. case GGML_TYPE_F32:
  7618. {
  7619. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7620. } break;
  7621. default:
  7622. {
  7623. GGML_ASSERT(false);
  7624. } break;
  7625. }
  7626. }
  7627. static void ggml_compute_forward_rms_norm_back_f32(
  7628. const struct ggml_compute_params * params,
  7629. const struct ggml_tensor * src0,
  7630. const struct ggml_tensor * src1,
  7631. struct ggml_tensor * dst) {
  7632. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7634. return;
  7635. }
  7636. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7637. const int ith = params->ith;
  7638. const int nth = params->nth;
  7639. const int64_t ne00 = src0->ne[0];
  7640. const int64_t ne01 = src0->ne[1];
  7641. const int64_t ne02 = src0->ne[2];
  7642. const int64_t ne03 = src0->ne[3];
  7643. const size_t nb01 = src0->nb[1];
  7644. const size_t nb02 = src0->nb[2];
  7645. const size_t nb03 = src0->nb[3];
  7646. const size_t nb11 = src1->nb[1];
  7647. const size_t nb12 = src1->nb[2];
  7648. const size_t nb13 = src1->nb[3];
  7649. const size_t nb1 = dst->nb[1];
  7650. const size_t nb2 = dst->nb[2];
  7651. const size_t nb3 = dst->nb[3];
  7652. const float eps = 1e-6f; // TODO: make this a parameter
  7653. // TODO: optimize
  7654. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7655. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7656. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7657. // src1 is same shape as src0 => same indices
  7658. const int64_t i11 = i01;
  7659. const int64_t i12 = i02;
  7660. const int64_t i13 = i03;
  7661. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7662. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7663. ggml_float sum_xx = 0.0;
  7664. ggml_float sum_xdz = 0.0;
  7665. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7666. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7667. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7668. }
  7669. //const float mean = (float)(sum_xx)/ne00;
  7670. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7671. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7672. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7673. // we could cache rms from forward pass to improve performance.
  7674. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7675. //const float rms = sqrtf(mean_eps);
  7676. const float rrms = 1.0f / sqrtf(mean_eps);
  7677. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7678. {
  7679. // z = rms_norm(x)
  7680. //
  7681. // rms_norm(src0) =
  7682. // scale(
  7683. // src0,
  7684. // div(
  7685. // 1,
  7686. // sqrt(
  7687. // add(
  7688. // scale(
  7689. // sum(
  7690. // sqr(
  7691. // src0)),
  7692. // (1.0/N)),
  7693. // eps))));
  7694. // postorder:
  7695. // ## op args grad
  7696. // 00 param src0 grad[#00]
  7697. // 01 const 1
  7698. // 02 sqr (#00) grad[#02]
  7699. // 03 sum (#02) grad[#03]
  7700. // 04 const 1/N
  7701. // 05 scale (#03, #04) grad[#05]
  7702. // 06 const eps
  7703. // 07 add (#05, #06) grad[#07]
  7704. // 08 sqrt (#07) grad[#08]
  7705. // 09 div (#01,#08) grad[#09]
  7706. // 10 scale (#00,#09) grad[#10]
  7707. //
  7708. // backward pass, given grad[#10]
  7709. // #10: scale
  7710. // grad[#00] += scale(grad[#10],#09)
  7711. // grad[#09] += sum(mul(grad[#10],#00))
  7712. // #09: div
  7713. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7714. // #08: sqrt
  7715. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7716. // #07: add
  7717. // grad[#05] += grad[#07]
  7718. // #05: scale
  7719. // grad[#03] += scale(grad[#05],#04)
  7720. // #03: sum
  7721. // grad[#02] += repeat(grad[#03], #02)
  7722. // #02:
  7723. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7724. //
  7725. // substitute and simplify:
  7726. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7727. // grad[#02] = repeat(grad[#03], #02)
  7728. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7729. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7730. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7731. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7732. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7733. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7734. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7735. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7736. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7737. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7738. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7739. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7740. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7741. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7742. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7743. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7744. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7745. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7746. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7747. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7748. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7749. // a = b*c + d*e
  7750. // a = b*c*f/f + d*e*f/f
  7751. // a = (b*c*f + d*e*f)*(1/f)
  7752. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7753. // a = (b + d*e/c)*c
  7754. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7755. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7756. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7757. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7758. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7759. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7760. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7761. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7762. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7763. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7764. }
  7765. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7766. // post-order:
  7767. // dx := x
  7768. // dx := scale(dx,-mean_xdz/mean_eps)
  7769. // dx := add(dx, dz)
  7770. // dx := scale(dx, rrms)
  7771. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7772. ggml_vec_cpy_f32 (ne00, dx, x);
  7773. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7774. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7775. ggml_vec_acc_f32 (ne00, dx, dz);
  7776. ggml_vec_scale_f32(ne00, dx, rrms);
  7777. }
  7778. }
  7779. }
  7780. }
  7781. static void ggml_compute_forward_rms_norm_back(
  7782. const struct ggml_compute_params * params,
  7783. const struct ggml_tensor * src0,
  7784. const struct ggml_tensor * src1,
  7785. struct ggml_tensor * dst) {
  7786. switch (src0->type) {
  7787. case GGML_TYPE_F32:
  7788. {
  7789. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7790. } break;
  7791. default:
  7792. {
  7793. GGML_ASSERT(false);
  7794. } break;
  7795. }
  7796. }
  7797. // ggml_compute_forward_mul_mat
  7798. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7799. // helper function to determine if it is better to use BLAS or not
  7800. // for large matrices, BLAS is faster
  7801. static bool ggml_compute_forward_mul_mat_use_blas(
  7802. const struct ggml_tensor * src0,
  7803. const struct ggml_tensor * src1,
  7804. struct ggml_tensor * dst) {
  7805. //const int64_t ne00 = src0->ne[0];
  7806. //const int64_t ne01 = src0->ne[1];
  7807. const int64_t ne10 = src1->ne[0];
  7808. const int64_t ne0 = dst->ne[0];
  7809. const int64_t ne1 = dst->ne[1];
  7810. // TODO: find the optimal values for these
  7811. if (ggml_is_contiguous(src0) &&
  7812. ggml_is_contiguous(src1) &&
  7813. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7814. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7815. return true;
  7816. }
  7817. return false;
  7818. }
  7819. #endif
  7820. static void ggml_compute_forward_mul_mat_f32(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. const struct ggml_tensor * src1,
  7824. struct ggml_tensor * dst) {
  7825. int64_t t0 = ggml_perf_time_us();
  7826. UNUSED(t0);
  7827. const int64_t ne00 = src0->ne[0];
  7828. const int64_t ne01 = src0->ne[1];
  7829. const int64_t ne02 = src0->ne[2];
  7830. const int64_t ne03 = src0->ne[3];
  7831. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7832. const int64_t ne10 = src1->ne[0];
  7833. #endif
  7834. const int64_t ne11 = src1->ne[1];
  7835. #ifndef NDEBUG
  7836. const int64_t ne12 = src1->ne[2];
  7837. const int64_t ne13 = src1->ne[3];
  7838. const int64_t ne0 = dst->ne[0];
  7839. const int64_t ne1 = dst->ne[1];
  7840. const int64_t ne2 = dst->ne[2];
  7841. const int64_t ne3 = dst->ne[3];
  7842. const int nb00 = src0->nb[0];
  7843. #endif
  7844. const int nb01 = src0->nb[1];
  7845. const int nb02 = src0->nb[2];
  7846. const int nb03 = src0->nb[3];
  7847. #ifndef NDEBUG
  7848. const int nb10 = src1->nb[0];
  7849. #endif
  7850. const int nb11 = src1->nb[1];
  7851. const int nb12 = src1->nb[2];
  7852. const int nb13 = src1->nb[3];
  7853. const int nb0 = dst->nb[0];
  7854. const int nb1 = dst->nb[1];
  7855. const int nb2 = dst->nb[2];
  7856. const int nb3 = dst->nb[3];
  7857. const int ith = params->ith;
  7858. const int nth = params->nth;
  7859. assert(ne02 == ne12);
  7860. assert(ne03 == ne13);
  7861. assert(ne2 == ne12);
  7862. assert(ne3 == ne13);
  7863. // we don't support permuted src0 or src1
  7864. assert(nb00 == sizeof(float));
  7865. assert(nb10 == sizeof(float));
  7866. // dst cannot be transposed or permuted
  7867. assert(nb0 == sizeof(float));
  7868. assert(nb0 <= nb1);
  7869. assert(nb1 <= nb2);
  7870. assert(nb2 <= nb3);
  7871. assert(ne0 == ne01);
  7872. assert(ne1 == ne11);
  7873. assert(ne2 == ne02);
  7874. assert(ne3 == ne03);
  7875. // nb01 >= nb00 - src0 is not transposed
  7876. // compute by src0 rows
  7877. #if defined(GGML_USE_CLBLAST)
  7878. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7879. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7880. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7881. }
  7882. return;
  7883. }
  7884. #endif
  7885. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7886. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7887. if (params->ith != 0) {
  7888. return;
  7889. }
  7890. if (params->type == GGML_TASK_INIT) {
  7891. return;
  7892. }
  7893. if (params->type == GGML_TASK_FINALIZE) {
  7894. return;
  7895. }
  7896. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7897. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7898. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7899. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7900. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7901. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7902. ne11, ne01, ne10,
  7903. 1.0f, y, ne10,
  7904. x, ne00,
  7905. 0.0f, d, ne01);
  7906. }
  7907. }
  7908. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7909. return;
  7910. }
  7911. #endif
  7912. if (params->type == GGML_TASK_INIT) {
  7913. return;
  7914. }
  7915. if (params->type == GGML_TASK_FINALIZE) {
  7916. return;
  7917. }
  7918. // parallelize by src0 rows using ggml_vec_dot_f32
  7919. // total rows in src0
  7920. const int nr = ne01*ne02*ne03;
  7921. // rows per thread
  7922. const int dr = (nr + nth - 1)/nth;
  7923. // row range for this thread
  7924. const int ir0 = dr*ith;
  7925. const int ir1 = MIN(ir0 + dr, nr);
  7926. for (int ir = ir0; ir < ir1; ++ir) {
  7927. // src0 indices
  7928. const int i03 = ir/(ne02*ne01);
  7929. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7930. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7931. for (int64_t ic = 0; ic < ne11; ++ic) {
  7932. // src1 indices
  7933. const int i13 = i03;
  7934. const int i12 = i02;
  7935. const int i11 = ic;
  7936. // dst indices
  7937. const int i0 = i01;
  7938. const int i1 = i11;
  7939. const int i2 = i02;
  7940. const int i3 = i03;
  7941. ggml_vec_dot_f32(ne00,
  7942. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7943. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7944. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7945. }
  7946. }
  7947. //int64_t t1 = ggml_perf_time_us();
  7948. //static int64_t acc = 0;
  7949. //acc += t1 - t0;
  7950. //if (t1 - t0 > 10) {
  7951. // printf("\n");
  7952. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7953. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7954. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7955. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7956. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7957. //}
  7958. }
  7959. static void ggml_compute_forward_mul_mat_f16_f32(
  7960. const struct ggml_compute_params * params,
  7961. const struct ggml_tensor * src0,
  7962. const struct ggml_tensor * src1,
  7963. struct ggml_tensor * dst) {
  7964. int64_t t0 = ggml_perf_time_us();
  7965. UNUSED(t0);
  7966. const int64_t ne00 = src0->ne[0];
  7967. const int64_t ne01 = src0->ne[1];
  7968. const int64_t ne02 = src0->ne[2];
  7969. const int64_t ne03 = src0->ne[3];
  7970. const int64_t ne10 = src1->ne[0];
  7971. const int64_t ne11 = src1->ne[1];
  7972. const int64_t ne12 = src1->ne[2];
  7973. const int64_t ne13 = src1->ne[3];
  7974. const int64_t ne0 = dst->ne[0];
  7975. const int64_t ne1 = dst->ne[1];
  7976. const int64_t ne2 = dst->ne[2];
  7977. const int64_t ne3 = dst->ne[3];
  7978. //const int64_t ne = ne0*ne1*ne2*ne3;
  7979. const int nb00 = src0->nb[0];
  7980. const int nb01 = src0->nb[1];
  7981. const int nb02 = src0->nb[2];
  7982. const int nb03 = src0->nb[3];
  7983. const int nb10 = src1->nb[0];
  7984. const int nb11 = src1->nb[1];
  7985. const int nb12 = src1->nb[2];
  7986. const int nb13 = src1->nb[3];
  7987. const int nb0 = dst->nb[0];
  7988. const int nb1 = dst->nb[1];
  7989. const int nb2 = dst->nb[2];
  7990. const int nb3 = dst->nb[3];
  7991. const int ith = params->ith;
  7992. const int nth = params->nth;
  7993. GGML_ASSERT(ne02 == ne12);
  7994. GGML_ASSERT(ne03 == ne13);
  7995. GGML_ASSERT(ne2 == ne12);
  7996. GGML_ASSERT(ne3 == ne13);
  7997. // TODO: we don't support permuted src0
  7998. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7999. // dst cannot be transposed or permuted
  8000. GGML_ASSERT(nb0 == sizeof(float));
  8001. GGML_ASSERT(nb0 <= nb1);
  8002. GGML_ASSERT(nb1 <= nb2);
  8003. GGML_ASSERT(nb2 <= nb3);
  8004. GGML_ASSERT(ne0 == ne01);
  8005. GGML_ASSERT(ne1 == ne11);
  8006. GGML_ASSERT(ne2 == ne02);
  8007. GGML_ASSERT(ne3 == ne03);
  8008. // nb01 >= nb00 - src0 is not transposed
  8009. // compute by src0 rows
  8010. #if defined(GGML_USE_CLBLAST)
  8011. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8012. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8013. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8014. }
  8015. return;
  8016. }
  8017. #endif
  8018. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8019. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8020. GGML_ASSERT(nb10 == sizeof(float));
  8021. if (params->ith != 0) {
  8022. return;
  8023. }
  8024. if (params->type == GGML_TASK_INIT) {
  8025. return;
  8026. }
  8027. if (params->type == GGML_TASK_FINALIZE) {
  8028. return;
  8029. }
  8030. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8031. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8032. float * const wdata = params->wdata;
  8033. {
  8034. size_t id = 0;
  8035. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8036. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8037. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8038. }
  8039. }
  8040. assert(id*sizeof(float) <= params->wsize);
  8041. }
  8042. const float * x = wdata;
  8043. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8044. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8045. // zT = y * xT
  8046. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8047. ne11, ne01, ne10,
  8048. 1.0f, y, ne10,
  8049. x, ne00,
  8050. 0.0f, d, ne01);
  8051. }
  8052. }
  8053. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8054. return;
  8055. }
  8056. #endif
  8057. if (params->type == GGML_TASK_INIT) {
  8058. ggml_fp16_t * const wdata = params->wdata;
  8059. size_t id = 0;
  8060. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8061. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8062. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8063. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8064. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8065. }
  8066. }
  8067. }
  8068. }
  8069. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8070. return;
  8071. }
  8072. if (params->type == GGML_TASK_FINALIZE) {
  8073. return;
  8074. }
  8075. // fp16 -> half the size, so divide by 2
  8076. // TODO: do not support transposed src1
  8077. assert(nb10/2 == sizeof(ggml_fp16_t));
  8078. // parallelize by src0 rows using ggml_vec_dot_f16
  8079. // total rows in src0
  8080. const int nr = ne01*ne02*ne03;
  8081. // rows per thread
  8082. const int dr = (nr + nth - 1)/nth;
  8083. // row range for this thread
  8084. const int ir0 = dr*ith;
  8085. const int ir1 = MIN(ir0 + dr, nr);
  8086. ggml_fp16_t * wdata = params->wdata;
  8087. for (int ir = ir0; ir < ir1; ++ir) {
  8088. // src0 indices
  8089. const int i03 = ir/(ne02*ne01);
  8090. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8091. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8092. const int i13 = i03;
  8093. const int i12 = i02;
  8094. const int i0 = i01;
  8095. const int i2 = i02;
  8096. const int i3 = i03;
  8097. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8098. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8099. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8100. for (int64_t ic = 0; ic < ne11; ++ic) {
  8101. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8102. }
  8103. }
  8104. //int64_t t1 = ggml_time_us();
  8105. //static int64_t acc = 0;
  8106. //acc += t1 - t0;
  8107. //if (t1 - t0 > 10) {
  8108. // printf("\n");
  8109. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8110. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8111. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8112. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8113. //}
  8114. }
  8115. static void ggml_compute_forward_mul_mat_q_f32(
  8116. const struct ggml_compute_params * params,
  8117. const struct ggml_tensor * src0,
  8118. const struct ggml_tensor * src1,
  8119. struct ggml_tensor * dst) {
  8120. int64_t t0 = ggml_perf_time_us();
  8121. UNUSED(t0);
  8122. const int64_t ne00 = src0->ne[0];
  8123. const int64_t ne01 = src0->ne[1];
  8124. const int64_t ne02 = src0->ne[2];
  8125. const int64_t ne03 = src0->ne[3];
  8126. const int64_t ne10 = src1->ne[0];
  8127. const int64_t ne11 = src1->ne[1];
  8128. const int64_t ne12 = src1->ne[2];
  8129. const int64_t ne13 = src1->ne[3];
  8130. const int64_t ne0 = dst->ne[0];
  8131. const int64_t ne1 = dst->ne[1];
  8132. const int64_t ne2 = dst->ne[2];
  8133. const int64_t ne3 = dst->ne[3];
  8134. const int nb00 = src0->nb[0];
  8135. const int nb01 = src0->nb[1];
  8136. const int nb02 = src0->nb[2];
  8137. const int nb03 = src0->nb[3];
  8138. const int nb10 = src1->nb[0];
  8139. const int nb11 = src1->nb[1];
  8140. const int nb12 = src1->nb[2];
  8141. const int nb13 = src1->nb[3];
  8142. const int nb0 = dst->nb[0];
  8143. const int nb1 = dst->nb[1];
  8144. const int nb2 = dst->nb[2];
  8145. const int nb3 = dst->nb[3];
  8146. const int ith = params->ith;
  8147. const int nth = params->nth;
  8148. GGML_ASSERT(ne02 == ne12);
  8149. GGML_ASSERT(ne03 == ne13);
  8150. GGML_ASSERT(ne2 == ne12);
  8151. GGML_ASSERT(ne3 == ne13);
  8152. const enum ggml_type type = src0->type;
  8153. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8154. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8155. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8156. // we don't support permuted src0 or src1
  8157. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8158. GGML_ASSERT(nb10 == sizeof(float));
  8159. // dst cannot be transposed or permuted
  8160. GGML_ASSERT(nb0 == sizeof(float));
  8161. GGML_ASSERT(nb0 <= nb1);
  8162. GGML_ASSERT(nb1 <= nb2);
  8163. GGML_ASSERT(nb2 <= nb3);
  8164. GGML_ASSERT(ne0 == ne01);
  8165. GGML_ASSERT(ne1 == ne11);
  8166. GGML_ASSERT(ne2 == ne02);
  8167. GGML_ASSERT(ne3 == ne03);
  8168. // nb01 >= nb00 - src0 is not transposed
  8169. // compute by src0 rows
  8170. #if defined(GGML_USE_CLBLAST)
  8171. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8172. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8173. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8174. }
  8175. return;
  8176. }
  8177. #endif
  8178. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8179. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8180. if (params->ith != 0) {
  8181. return;
  8182. }
  8183. if (params->type == GGML_TASK_INIT) {
  8184. return;
  8185. }
  8186. if (params->type == GGML_TASK_FINALIZE) {
  8187. return;
  8188. }
  8189. float * const wdata = params->wdata;
  8190. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8191. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8193. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8194. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8195. {
  8196. size_t id = 0;
  8197. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8198. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8199. id += ne00;
  8200. }
  8201. assert(id*sizeof(float) <= params->wsize);
  8202. }
  8203. const float * x = wdata;
  8204. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8205. ne11, ne01, ne10,
  8206. 1.0f, y, ne10,
  8207. x, ne00,
  8208. 0.0f, d, ne01);
  8209. }
  8210. }
  8211. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8212. return;
  8213. }
  8214. #endif
  8215. if (params->type == GGML_TASK_INIT) {
  8216. char * wdata = params->wdata;
  8217. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8218. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8219. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8220. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8221. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8222. wdata += row_size;
  8223. }
  8224. }
  8225. }
  8226. return;
  8227. }
  8228. if (params->type == GGML_TASK_FINALIZE) {
  8229. return;
  8230. }
  8231. // parallelize by src0 rows using ggml_vec_dot_q
  8232. // total rows in src0
  8233. const int nr = ne01*ne02*ne03;
  8234. // rows per thread
  8235. const int dr = (nr + nth - 1)/nth;
  8236. // row range for this thread
  8237. const int ir0 = dr*ith;
  8238. const int ir1 = MIN(ir0 + dr, nr);
  8239. void * wdata = params->wdata;
  8240. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8241. for (int ir = ir0; ir < ir1; ++ir) {
  8242. // src0 indices
  8243. const int i03 = ir/(ne02*ne01);
  8244. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8245. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8246. const int i13 = i03;
  8247. const int i12 = i02;
  8248. const int i0 = i01;
  8249. const int i2 = i02;
  8250. const int i3 = i03;
  8251. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8252. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8253. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8254. assert(ne00 % 32 == 0);
  8255. for (int64_t ic = 0; ic < ne11; ++ic) {
  8256. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8257. }
  8258. }
  8259. //int64_t t1 = ggml_time_us();
  8260. //static int64_t acc = 0;
  8261. //acc += t1 - t0;
  8262. //if (t1 - t0 > 10) {
  8263. // printf("\n");
  8264. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8265. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8266. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8267. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8268. //}
  8269. }
  8270. static void ggml_compute_forward_mul_mat(
  8271. const struct ggml_compute_params * params,
  8272. const struct ggml_tensor * src0,
  8273. const struct ggml_tensor * src1,
  8274. struct ggml_tensor * dst) {
  8275. switch (src0->type) {
  8276. case GGML_TYPE_Q4_0:
  8277. case GGML_TYPE_Q4_1:
  8278. case GGML_TYPE_Q5_0:
  8279. case GGML_TYPE_Q5_1:
  8280. case GGML_TYPE_Q8_0:
  8281. case GGML_TYPE_Q8_1:
  8282. case GGML_TYPE_Q2_K:
  8283. case GGML_TYPE_Q3_K:
  8284. case GGML_TYPE_Q4_K:
  8285. case GGML_TYPE_Q5_K:
  8286. case GGML_TYPE_Q6_K:
  8287. {
  8288. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8289. } break;
  8290. case GGML_TYPE_F16:
  8291. {
  8292. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8293. } break;
  8294. case GGML_TYPE_F32:
  8295. {
  8296. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8297. } break;
  8298. default:
  8299. {
  8300. GGML_ASSERT(false);
  8301. } break;
  8302. }
  8303. }
  8304. // ggml_compute_forward_scale
  8305. static void ggml_compute_forward_scale_f32(
  8306. const struct ggml_compute_params * params,
  8307. const struct ggml_tensor * src0,
  8308. const struct ggml_tensor * src1,
  8309. struct ggml_tensor * dst) {
  8310. GGML_ASSERT(ggml_is_contiguous(src0));
  8311. GGML_ASSERT(ggml_is_contiguous(dst));
  8312. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8313. GGML_ASSERT(ggml_is_scalar(src1));
  8314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8315. return;
  8316. }
  8317. // scale factor
  8318. const float v = *(float *) src1->data;
  8319. const int ith = params->ith;
  8320. const int nth = params->nth;
  8321. const int nc = src0->ne[0];
  8322. const int nr = ggml_nrows(src0);
  8323. // rows per thread
  8324. const int dr = (nr + nth - 1)/nth;
  8325. // row range for this thread
  8326. const int ir0 = dr*ith;
  8327. const int ir1 = MIN(ir0 + dr, nr);
  8328. const size_t nb01 = src0->nb[1];
  8329. const size_t nb1 = dst->nb[1];
  8330. for (int i1 = ir0; i1 < ir1; i1++) {
  8331. if (dst->data != src0->data) {
  8332. // src0 is same shape as dst => same indices
  8333. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8334. }
  8335. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8336. }
  8337. }
  8338. static void ggml_compute_forward_scale(
  8339. const struct ggml_compute_params * params,
  8340. const struct ggml_tensor * src0,
  8341. const struct ggml_tensor * src1,
  8342. struct ggml_tensor * dst) {
  8343. switch (src0->type) {
  8344. case GGML_TYPE_F32:
  8345. {
  8346. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8347. } break;
  8348. default:
  8349. {
  8350. GGML_ASSERT(false);
  8351. } break;
  8352. }
  8353. }
  8354. // ggml_compute_forward_set
  8355. static void ggml_compute_forward_set_f32(
  8356. const struct ggml_compute_params * params,
  8357. const struct ggml_tensor * src0,
  8358. const struct ggml_tensor * src1,
  8359. const struct ggml_tensor * opt0,
  8360. struct ggml_tensor * dst) {
  8361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8362. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8363. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8364. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8365. // view src0 and dst with these strides and data offset inbytes during set
  8366. // nb0 is implicitely element_size because src0 and dst are contiguous
  8367. size_t nb1 = ((int32_t *) opt0->data)[0];
  8368. size_t nb2 = ((int32_t *) opt0->data)[1];
  8369. size_t nb3 = ((int32_t *) opt0->data)[2];
  8370. size_t offset = ((int32_t *) opt0->data)[3];
  8371. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8372. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8373. // memcpy needs to be synchronized across threads to avoid race conditions.
  8374. // => do it in INIT phase
  8375. memcpy(
  8376. ((char *) dst->data),
  8377. ((char *) src0->data),
  8378. ggml_nbytes(dst));
  8379. }
  8380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8381. return;
  8382. }
  8383. const int ith = params->ith;
  8384. const int nth = params->nth;
  8385. const int nr = ggml_nrows(src1);
  8386. const int nc = src1->ne[0];
  8387. const int64_t ne10 = src1->ne[0];
  8388. const int64_t ne11 = src1->ne[1];
  8389. const int64_t ne12 = src1->ne[2];
  8390. const int64_t ne13 = src1->ne[3];
  8391. const size_t nb10 = src1->nb[0];
  8392. const size_t nb11 = src1->nb[1];
  8393. const size_t nb12 = src1->nb[2];
  8394. const size_t nb13 = src1->nb[3];
  8395. // src0 and dst as viewed during set
  8396. const size_t nb0 = ggml_element_size(src0);
  8397. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8398. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8399. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8400. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8401. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8402. GGML_ASSERT(nb10 == sizeof(float));
  8403. // rows per thread
  8404. const int dr = (nr + nth - 1)/nth;
  8405. // row range for this thread
  8406. const int ir0 = dr*ith;
  8407. const int ir1 = MIN(ir0 + dr, nr);
  8408. for (int ir = ir0; ir < ir1; ++ir) {
  8409. // src0 and dst are viewed with shape of src1 and offset
  8410. // => same indices
  8411. const int i3 = ir/(ne12*ne11);
  8412. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8413. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8414. ggml_vec_cpy_f32(nc,
  8415. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8416. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8417. }
  8418. }
  8419. static void ggml_compute_forward_set(
  8420. const struct ggml_compute_params * params,
  8421. const struct ggml_tensor * src0,
  8422. const struct ggml_tensor * src1,
  8423. const struct ggml_tensor * opt0,
  8424. struct ggml_tensor * dst) {
  8425. switch (src0->type) {
  8426. case GGML_TYPE_F32:
  8427. {
  8428. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8429. } break;
  8430. case GGML_TYPE_F16:
  8431. case GGML_TYPE_Q4_0:
  8432. case GGML_TYPE_Q4_1:
  8433. case GGML_TYPE_Q5_0:
  8434. case GGML_TYPE_Q5_1:
  8435. case GGML_TYPE_Q8_0:
  8436. case GGML_TYPE_Q8_1:
  8437. case GGML_TYPE_Q2_K:
  8438. case GGML_TYPE_Q3_K:
  8439. case GGML_TYPE_Q4_K:
  8440. case GGML_TYPE_Q5_K:
  8441. case GGML_TYPE_Q6_K:
  8442. default:
  8443. {
  8444. GGML_ASSERT(false);
  8445. } break;
  8446. }
  8447. }
  8448. // ggml_compute_forward_cpy
  8449. static void ggml_compute_forward_cpy(
  8450. const struct ggml_compute_params * params,
  8451. const struct ggml_tensor * src0,
  8452. struct ggml_tensor * dst) {
  8453. ggml_compute_forward_dup(params, src0, dst);
  8454. }
  8455. // ggml_compute_forward_cont
  8456. static void ggml_compute_forward_cont(
  8457. const struct ggml_compute_params * params,
  8458. const struct ggml_tensor * src0,
  8459. struct ggml_tensor * dst) {
  8460. ggml_compute_forward_dup(params, src0, dst);
  8461. }
  8462. // ggml_compute_forward_reshape
  8463. static void ggml_compute_forward_reshape(
  8464. const struct ggml_compute_params * params,
  8465. const struct ggml_tensor * src0,
  8466. struct ggml_tensor * dst) {
  8467. // NOP
  8468. UNUSED(params);
  8469. UNUSED(src0);
  8470. UNUSED(dst);
  8471. }
  8472. // ggml_compute_forward_view
  8473. static void ggml_compute_forward_view(
  8474. const struct ggml_compute_params * params,
  8475. const struct ggml_tensor * src0) {
  8476. // NOP
  8477. UNUSED(params);
  8478. UNUSED(src0);
  8479. }
  8480. // ggml_compute_forward_permute
  8481. static void ggml_compute_forward_permute(
  8482. const struct ggml_compute_params * params,
  8483. const struct ggml_tensor * src0) {
  8484. // NOP
  8485. UNUSED(params);
  8486. UNUSED(src0);
  8487. }
  8488. // ggml_compute_forward_transpose
  8489. static void ggml_compute_forward_transpose(
  8490. const struct ggml_compute_params * params,
  8491. const struct ggml_tensor * src0) {
  8492. // NOP
  8493. UNUSED(params);
  8494. UNUSED(src0);
  8495. }
  8496. // ggml_compute_forward_get_rows
  8497. static void ggml_compute_forward_get_rows_q(
  8498. const struct ggml_compute_params * params,
  8499. const struct ggml_tensor * src0,
  8500. const struct ggml_tensor * src1,
  8501. struct ggml_tensor * dst) {
  8502. assert(params->ith == 0);
  8503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8504. return;
  8505. }
  8506. const int nc = src0->ne[0];
  8507. const int nr = ggml_nelements(src1);
  8508. const enum ggml_type type = src0->type;
  8509. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8510. assert( dst->ne[0] == nc);
  8511. assert( dst->ne[1] == nr);
  8512. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8513. for (int i = 0; i < nr; ++i) {
  8514. const int r = ((int32_t *) src1->data)[i];
  8515. dequantize_row_q(
  8516. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8517. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8518. }
  8519. }
  8520. static void ggml_compute_forward_get_rows_f16(
  8521. const struct ggml_compute_params * params,
  8522. const struct ggml_tensor * src0,
  8523. const struct ggml_tensor * src1,
  8524. struct ggml_tensor * dst) {
  8525. assert(params->ith == 0);
  8526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8527. return;
  8528. }
  8529. const int nc = src0->ne[0];
  8530. const int nr = ggml_nelements(src1);
  8531. assert( dst->ne[0] == nc);
  8532. assert( dst->ne[1] == nr);
  8533. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8534. for (int i = 0; i < nr; ++i) {
  8535. const int r = ((int32_t *) src1->data)[i];
  8536. for (int j = 0; j < nc; ++j) {
  8537. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8538. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8539. }
  8540. }
  8541. }
  8542. static void ggml_compute_forward_get_rows_f32(
  8543. const struct ggml_compute_params * params,
  8544. const struct ggml_tensor * src0,
  8545. const struct ggml_tensor * src1,
  8546. struct ggml_tensor * dst) {
  8547. assert(params->ith == 0);
  8548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8549. return;
  8550. }
  8551. const int nc = src0->ne[0];
  8552. const int nr = ggml_nelements(src1);
  8553. assert( dst->ne[0] == nc);
  8554. assert( dst->ne[1] == nr);
  8555. assert(src0->nb[0] == sizeof(float));
  8556. for (int i = 0; i < nr; ++i) {
  8557. const int r = ((int32_t *) src1->data)[i];
  8558. ggml_vec_cpy_f32(nc,
  8559. (float *) ((char *) dst->data + i*dst->nb[1]),
  8560. (float *) ((char *) src0->data + r*src0->nb[1]));
  8561. }
  8562. }
  8563. static void ggml_compute_forward_get_rows(
  8564. const struct ggml_compute_params * params,
  8565. const struct ggml_tensor * src0,
  8566. const struct ggml_tensor * src1,
  8567. struct ggml_tensor * dst) {
  8568. switch (src0->type) {
  8569. case GGML_TYPE_Q4_0:
  8570. case GGML_TYPE_Q4_1:
  8571. case GGML_TYPE_Q5_0:
  8572. case GGML_TYPE_Q5_1:
  8573. case GGML_TYPE_Q8_0:
  8574. case GGML_TYPE_Q8_1:
  8575. case GGML_TYPE_Q2_K:
  8576. case GGML_TYPE_Q3_K:
  8577. case GGML_TYPE_Q4_K:
  8578. case GGML_TYPE_Q5_K:
  8579. case GGML_TYPE_Q6_K:
  8580. {
  8581. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8582. } break;
  8583. case GGML_TYPE_F16:
  8584. {
  8585. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8586. } break;
  8587. case GGML_TYPE_F32:
  8588. {
  8589. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8590. } break;
  8591. default:
  8592. {
  8593. GGML_ASSERT(false);
  8594. } break;
  8595. }
  8596. //static bool first = true;
  8597. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8598. //if (first) {
  8599. // first = false;
  8600. //} else {
  8601. // for (int k = 0; k < dst->ne[1]; ++k) {
  8602. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8603. // for (int i = 0; i < 16; ++i) {
  8604. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8605. // }
  8606. // printf("\n");
  8607. // }
  8608. // printf("\n");
  8609. // }
  8610. // printf("\n");
  8611. // exit(0);
  8612. //}
  8613. }
  8614. // ggml_compute_forward_get_rows_back
  8615. static void ggml_compute_forward_get_rows_back_f32_f16(
  8616. const struct ggml_compute_params * params,
  8617. const struct ggml_tensor * src0,
  8618. const struct ggml_tensor * src1,
  8619. const struct ggml_tensor * opt0,
  8620. struct ggml_tensor * dst) {
  8621. GGML_ASSERT(params->ith == 0);
  8622. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8623. GGML_ASSERT(ggml_is_contiguous(opt0));
  8624. GGML_ASSERT(ggml_is_contiguous(dst));
  8625. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8627. return;
  8628. }
  8629. const int nc = src0->ne[0];
  8630. const int nr = ggml_nelements(src1);
  8631. GGML_ASSERT( dst->ne[0] == nc);
  8632. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8633. for (int i = 0; i < nr; ++i) {
  8634. const int r = ((int32_t *) src1->data)[i];
  8635. for (int j = 0; j < nc; ++j) {
  8636. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8637. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8638. }
  8639. }
  8640. }
  8641. static void ggml_compute_forward_get_rows_back_f32(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * src0,
  8644. const struct ggml_tensor * src1,
  8645. const struct ggml_tensor * opt0,
  8646. struct ggml_tensor * dst) {
  8647. GGML_ASSERT(params->ith == 0);
  8648. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8649. GGML_ASSERT(ggml_is_contiguous(opt0));
  8650. GGML_ASSERT(ggml_is_contiguous(dst));
  8651. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8653. return;
  8654. }
  8655. const int nc = src0->ne[0];
  8656. const int nr = ggml_nelements(src1);
  8657. GGML_ASSERT( dst->ne[0] == nc);
  8658. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8659. for (int i = 0; i < nr; ++i) {
  8660. const int r = ((int32_t *) src1->data)[i];
  8661. ggml_vec_add_f32(nc,
  8662. (float *) ((char *) dst->data + r*dst->nb[1]),
  8663. (float *) ((char *) dst->data + r*dst->nb[1]),
  8664. (float *) ((char *) src0->data + i*src0->nb[1]));
  8665. }
  8666. }
  8667. static void ggml_compute_forward_get_rows_back(
  8668. const struct ggml_compute_params * params,
  8669. const struct ggml_tensor * src0,
  8670. const struct ggml_tensor * src1,
  8671. const struct ggml_tensor * opt0,
  8672. struct ggml_tensor * dst) {
  8673. switch (src0->type) {
  8674. case GGML_TYPE_F16:
  8675. {
  8676. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8677. } break;
  8678. case GGML_TYPE_F32:
  8679. {
  8680. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8681. } break;
  8682. default:
  8683. {
  8684. GGML_ASSERT(false);
  8685. } break;
  8686. }
  8687. //static bool first = true;
  8688. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8689. //if (first) {
  8690. // first = false;
  8691. //} else {
  8692. // for (int k = 0; k < dst->ne[1]; ++k) {
  8693. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8694. // for (int i = 0; i < 16; ++i) {
  8695. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8696. // }
  8697. // printf("\n");
  8698. // }
  8699. // printf("\n");
  8700. // }
  8701. // printf("\n");
  8702. // exit(0);
  8703. //}
  8704. }
  8705. // ggml_compute_forward_diag
  8706. static void ggml_compute_forward_diag_f32(
  8707. const struct ggml_compute_params * params,
  8708. const struct ggml_tensor * src0,
  8709. struct ggml_tensor * dst) {
  8710. GGML_ASSERT(params->ith == 0);
  8711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8712. return;
  8713. }
  8714. // TODO: handle transposed/permuted matrices
  8715. const int ne00 = src0->ne[0];
  8716. const int ne01 = src0->ne[1];
  8717. const int ne02 = src0->ne[2];
  8718. const int ne03 = src0->ne[3];
  8719. const int ne0 = dst->ne[0];
  8720. const int ne1 = dst->ne[1];
  8721. const int ne2 = dst->ne[2];
  8722. const int ne3 = dst->ne[3];
  8723. GGML_ASSERT(ne00 == ne0);
  8724. GGML_ASSERT(ne00 == ne1);
  8725. GGML_ASSERT(ne01 == 1);
  8726. GGML_ASSERT(ne02 == ne2);
  8727. GGML_ASSERT(ne03 == ne3);
  8728. const int nb00 = src0->nb[0];
  8729. //const int nb01 = src0->nb[1];
  8730. const int nb02 = src0->nb[2];
  8731. const int nb03 = src0->nb[3];
  8732. const int nb0 = dst->nb[0];
  8733. const int nb1 = dst->nb[1];
  8734. const int nb2 = dst->nb[2];
  8735. const int nb3 = dst->nb[3];
  8736. GGML_ASSERT(nb00 == sizeof(float));
  8737. GGML_ASSERT(nb0 == sizeof(float));
  8738. for (int i3 = 0; i3 < ne3; i3++) {
  8739. for (int i2 = 0; i2 < ne2; i2++) {
  8740. for (int i1 = 0; i1 < ne1; i1++) {
  8741. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8742. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8743. for (int i0 = 0; i0 < i1; i0++) {
  8744. d[i0] = 0;
  8745. }
  8746. d[i1] = s[i1];
  8747. for (int i0 = i1+1; i0 < ne0; i0++) {
  8748. d[i0] = 0;
  8749. }
  8750. }
  8751. }
  8752. }
  8753. }
  8754. static void ggml_compute_forward_diag(
  8755. const struct ggml_compute_params * params,
  8756. const struct ggml_tensor * src0,
  8757. struct ggml_tensor * dst) {
  8758. switch (src0->type) {
  8759. case GGML_TYPE_F32:
  8760. {
  8761. ggml_compute_forward_diag_f32(params, src0, dst);
  8762. } break;
  8763. default:
  8764. {
  8765. GGML_ASSERT(false);
  8766. } break;
  8767. }
  8768. }
  8769. // ggml_compute_forward_diag_mask_inf
  8770. static void ggml_compute_forward_diag_mask_f32(
  8771. const struct ggml_compute_params * params,
  8772. const struct ggml_tensor * src0,
  8773. const struct ggml_tensor * src1,
  8774. struct ggml_tensor * dst,
  8775. const float value) {
  8776. assert(src1->type == GGML_TYPE_I32);
  8777. assert(ggml_nelements(src1) == 2);
  8778. const int ith = params->ith;
  8779. const int nth = params->nth;
  8780. const int n_past = ((int32_t *) src1->data)[0];
  8781. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8782. assert(n_past >= 0);
  8783. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8784. // memcpy needs to be synchronized across threads to avoid race conditions.
  8785. // => do it in INIT phase
  8786. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8787. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8788. memcpy(
  8789. ((char *) dst->data),
  8790. ((char *) src0->data),
  8791. ggml_nbytes(dst));
  8792. }
  8793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8794. return;
  8795. }
  8796. // TODO: handle transposed/permuted matrices
  8797. const int n = ggml_nrows(src0);
  8798. const int nc = src0->ne[0];
  8799. const int nr = src0->ne[1];
  8800. const int nz = n/nr;
  8801. assert( dst->nb[0] == sizeof(float));
  8802. assert(src0->nb[0] == sizeof(float));
  8803. for (int k = 0; k < nz; k++) {
  8804. for (int j = ith; j < nr; j += nth) {
  8805. for (int i = n_past; i < nc; i++) {
  8806. if (i > n_past + j) {
  8807. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8808. }
  8809. }
  8810. }
  8811. }
  8812. }
  8813. static void ggml_compute_forward_diag_mask_inf(
  8814. const struct ggml_compute_params * params,
  8815. const struct ggml_tensor * src0,
  8816. const struct ggml_tensor * src1,
  8817. struct ggml_tensor * dst) {
  8818. switch (src0->type) {
  8819. case GGML_TYPE_F32:
  8820. {
  8821. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8822. } break;
  8823. default:
  8824. {
  8825. GGML_ASSERT(false);
  8826. } break;
  8827. }
  8828. }
  8829. static void ggml_compute_forward_diag_mask_zero(
  8830. const struct ggml_compute_params * params,
  8831. const struct ggml_tensor * src0,
  8832. const struct ggml_tensor * src1,
  8833. struct ggml_tensor * dst) {
  8834. switch (src0->type) {
  8835. case GGML_TYPE_F32:
  8836. {
  8837. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8838. } break;
  8839. default:
  8840. {
  8841. GGML_ASSERT(false);
  8842. } break;
  8843. }
  8844. }
  8845. // ggml_compute_forward_soft_max
  8846. static void ggml_compute_forward_soft_max_f32(
  8847. const struct ggml_compute_params * params,
  8848. const struct ggml_tensor * src0,
  8849. struct ggml_tensor * dst) {
  8850. GGML_ASSERT(ggml_is_contiguous(src0));
  8851. GGML_ASSERT(ggml_is_contiguous(dst));
  8852. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8854. return;
  8855. }
  8856. // TODO: handle transposed/permuted matrices
  8857. const int ith = params->ith;
  8858. const int nth = params->nth;
  8859. const int nc = src0->ne[0];
  8860. const int nr = ggml_nrows(src0);
  8861. // rows per thread
  8862. const int dr = (nr + nth - 1)/nth;
  8863. // row range for this thread
  8864. const int ir0 = dr*ith;
  8865. const int ir1 = MIN(ir0 + dr, nr);
  8866. for (int i1 = ir0; i1 < ir1; i1++) {
  8867. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8868. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8869. #ifndef NDEBUG
  8870. for (int i = 0; i < nc; ++i) {
  8871. //printf("p[%d] = %f\n", i, p[i]);
  8872. assert(!isnan(sp[i]));
  8873. }
  8874. #endif
  8875. float max = -INFINITY;
  8876. ggml_vec_max_f32(nc, &max, sp);
  8877. ggml_float sum = 0.0;
  8878. uint16_t scvt;
  8879. for (int i = 0; i < nc; i++) {
  8880. if (sp[i] == -INFINITY) {
  8881. dp[i] = 0.0f;
  8882. } else {
  8883. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8884. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8885. memcpy(&scvt, &s, sizeof(scvt));
  8886. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8887. sum += (ggml_float)val;
  8888. dp[i] = val;
  8889. }
  8890. }
  8891. assert(sum > 0.0);
  8892. sum = 1.0/sum;
  8893. ggml_vec_scale_f32(nc, dp, sum);
  8894. #ifndef NDEBUG
  8895. for (int i = 0; i < nc; ++i) {
  8896. assert(!isnan(dp[i]));
  8897. assert(!isinf(dp[i]));
  8898. }
  8899. #endif
  8900. }
  8901. }
  8902. static void ggml_compute_forward_soft_max(
  8903. const struct ggml_compute_params * params,
  8904. const struct ggml_tensor * src0,
  8905. struct ggml_tensor * dst) {
  8906. switch (src0->type) {
  8907. case GGML_TYPE_F32:
  8908. {
  8909. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8910. } break;
  8911. default:
  8912. {
  8913. GGML_ASSERT(false);
  8914. } break;
  8915. }
  8916. }
  8917. // ggml_compute_forward_alibi
  8918. static void ggml_compute_forward_alibi_f32(
  8919. const struct ggml_compute_params * params,
  8920. const struct ggml_tensor * src0,
  8921. const struct ggml_tensor * src1,
  8922. struct ggml_tensor * dst) {
  8923. assert(params->ith == 0);
  8924. assert(src1->type == GGML_TYPE_I32);
  8925. assert(ggml_nelements(src1) == 3);
  8926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8927. return;
  8928. }
  8929. const int n_past = ((int32_t *) src1->data)[0];
  8930. const int n_head = ((int32_t *) src1->data)[1];
  8931. const float max_bias = ((float *) src1->data)[2];
  8932. assert(n_past >= 0);
  8933. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8934. const int ne1 = src0->ne[1]; // seq_len_without_past
  8935. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8936. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8937. const int n = ggml_nrows(src0);
  8938. const int ne2_ne3 = n/ne1; // ne2*ne3
  8939. const int nb0 = src0->nb[0];
  8940. const int nb1 = src0->nb[1];
  8941. const int nb2 = src0->nb[2];
  8942. //const int nb3 = src0->nb[3];
  8943. assert(nb0 == sizeof(float));
  8944. assert(ne1 + n_past == ne0); (void) n_past;
  8945. // add alibi to src0 (KQ_scaled)
  8946. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8947. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8948. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8949. for (int i = 0; i < ne0; i++) {
  8950. for (int j = 0; j < ne1; j++) {
  8951. for (int k = 0; k < ne2_ne3; k++) {
  8952. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8953. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8954. // TODO: k*nb2 or k*nb3
  8955. float m_k;
  8956. if (k < n_heads_log2_floor) {
  8957. m_k = powf(m0, k + 1);
  8958. } else {
  8959. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8960. }
  8961. pdst[0] = (i-ne0+1) * m_k + src[0];
  8962. }
  8963. }
  8964. }
  8965. }
  8966. static void ggml_compute_forward_alibi_f16(
  8967. const struct ggml_compute_params * params,
  8968. const struct ggml_tensor * src0,
  8969. const struct ggml_tensor * src1,
  8970. struct ggml_tensor * dst) {
  8971. assert(params->ith == 0);
  8972. assert(src1->type == GGML_TYPE_I32);
  8973. assert(ggml_nelements(src1) == 3);
  8974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8975. return;
  8976. }
  8977. const int n_past = ((int32_t *) src1->data)[0];
  8978. const int n_head = ((int32_t *) src1->data)[1];
  8979. const float max_bias = ((float *) src1->data)[2];
  8980. assert(n_past >= 0);
  8981. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8982. const int ne1 = src0->ne[1]; // seq_len_without_past
  8983. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8984. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8985. const int n = ggml_nrows(src0);
  8986. const int ne2_ne3 = n/ne1; // ne2*ne3
  8987. const int nb0 = src0->nb[0];
  8988. const int nb1 = src0->nb[1];
  8989. const int nb2 = src0->nb[2];
  8990. //const int nb3 = src0->nb[3];
  8991. assert(nb0 == sizeof(ggml_fp16_t));
  8992. assert(ne1 + n_past == ne0); (void) n_past;
  8993. // add alibi to src0 (KQ_scaled)
  8994. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8995. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8996. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8997. for (int i = 0; i < ne0; i++) {
  8998. for (int j = 0; j < ne1; j++) {
  8999. for (int k = 0; k < ne2_ne3; k++) {
  9000. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9001. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9002. // TODO: k*nb2 or k*nb3
  9003. float m_k;
  9004. if (k < n_heads_log2_floor) {
  9005. m_k = powf(m0, k + 1);
  9006. } else {
  9007. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9008. }
  9009. // we return F32
  9010. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9011. }
  9012. }
  9013. }
  9014. }
  9015. static void ggml_compute_forward_alibi(
  9016. const struct ggml_compute_params * params,
  9017. const struct ggml_tensor * src0,
  9018. const struct ggml_tensor * src1,
  9019. struct ggml_tensor * dst) {
  9020. switch (src0->type) {
  9021. case GGML_TYPE_F16:
  9022. {
  9023. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9024. } break;
  9025. case GGML_TYPE_F32:
  9026. {
  9027. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9028. } break;
  9029. case GGML_TYPE_Q4_0:
  9030. case GGML_TYPE_Q4_1:
  9031. case GGML_TYPE_Q5_0:
  9032. case GGML_TYPE_Q5_1:
  9033. case GGML_TYPE_Q8_0:
  9034. case GGML_TYPE_Q8_1:
  9035. case GGML_TYPE_Q2_K:
  9036. case GGML_TYPE_Q3_K:
  9037. case GGML_TYPE_Q4_K:
  9038. case GGML_TYPE_Q5_K:
  9039. case GGML_TYPE_Q6_K:
  9040. case GGML_TYPE_Q8_K:
  9041. case GGML_TYPE_I8:
  9042. case GGML_TYPE_I16:
  9043. case GGML_TYPE_I32:
  9044. case GGML_TYPE_COUNT:
  9045. {
  9046. GGML_ASSERT(false);
  9047. } break;
  9048. }
  9049. }
  9050. // ggml_compute_forward_clamp
  9051. static void ggml_compute_forward_clamp_f32(
  9052. const struct ggml_compute_params * params,
  9053. const struct ggml_tensor * src0,
  9054. const struct ggml_tensor * src1,
  9055. struct ggml_tensor * dst) {
  9056. assert(params->ith == 0);
  9057. assert(src1->type == GGML_TYPE_I32);
  9058. assert(ggml_nelements(src1) == 2);
  9059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9060. return;
  9061. }
  9062. const int min = ((float *) src1->data)[0];
  9063. const int max = ((float *) src1->data)[1];
  9064. const int ith = params->ith;
  9065. const int nth = params->nth;
  9066. const int n = ggml_nrows(src0);
  9067. const int nc = src0->ne[0];
  9068. const size_t nb00 = src0->nb[0];
  9069. const size_t nb01 = src0->nb[1];
  9070. const size_t nb0 = dst->nb[0];
  9071. const size_t nb1 = dst->nb[1];
  9072. GGML_ASSERT( nb0 == sizeof(float));
  9073. GGML_ASSERT(nb00 == sizeof(float));
  9074. for (int j = ith; j < n; j += nth) {
  9075. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9076. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9077. for (int i = 0; i < nc; i++) {
  9078. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9079. }
  9080. }
  9081. }
  9082. static void ggml_compute_forward_clamp(
  9083. const struct ggml_compute_params * params,
  9084. const struct ggml_tensor * src0,
  9085. const struct ggml_tensor * src1,
  9086. struct ggml_tensor * dst) {
  9087. switch (src0->type) {
  9088. case GGML_TYPE_F32:
  9089. {
  9090. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9091. } break;
  9092. case GGML_TYPE_F16:
  9093. case GGML_TYPE_Q4_0:
  9094. case GGML_TYPE_Q4_1:
  9095. case GGML_TYPE_Q5_0:
  9096. case GGML_TYPE_Q5_1:
  9097. case GGML_TYPE_Q8_0:
  9098. case GGML_TYPE_Q8_1:
  9099. case GGML_TYPE_Q2_K:
  9100. case GGML_TYPE_Q3_K:
  9101. case GGML_TYPE_Q4_K:
  9102. case GGML_TYPE_Q5_K:
  9103. case GGML_TYPE_Q6_K:
  9104. case GGML_TYPE_Q8_K:
  9105. case GGML_TYPE_I8:
  9106. case GGML_TYPE_I16:
  9107. case GGML_TYPE_I32:
  9108. case GGML_TYPE_COUNT:
  9109. {
  9110. GGML_ASSERT(false);
  9111. } break;
  9112. }
  9113. }
  9114. // ggml_compute_forward_rope
  9115. static void ggml_compute_forward_rope_f32(
  9116. const struct ggml_compute_params * params,
  9117. const struct ggml_tensor * src0,
  9118. const struct ggml_tensor * src1,
  9119. struct ggml_tensor * dst) {
  9120. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9121. GGML_ASSERT(ggml_nelements(src1) == 3);
  9122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9123. return;
  9124. }
  9125. const int n_past = ((int32_t *) src1->data)[0];
  9126. const int n_dims = ((int32_t *) src1->data)[1];
  9127. const int mode = ((int32_t *) src1->data)[2];
  9128. assert(n_past >= 0);
  9129. const size_t nb00 = src0->nb[0];
  9130. const size_t nb01 = src0->nb[1];
  9131. const size_t nb02 = src0->nb[2];
  9132. const size_t nb03 = src0->nb[3];
  9133. const int64_t ne0 = dst->ne[0];
  9134. const int64_t ne1 = dst->ne[1];
  9135. const int64_t ne2 = dst->ne[2];
  9136. const int64_t ne3 = dst->ne[3];
  9137. const size_t nb0 = dst->nb[0];
  9138. const size_t nb1 = dst->nb[1];
  9139. const size_t nb2 = dst->nb[2];
  9140. const size_t nb3 = dst->nb[3];
  9141. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9142. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9143. GGML_ASSERT(nb00 == sizeof(float));
  9144. const int ith = params->ith;
  9145. const int nth = params->nth;
  9146. const int nr = ggml_nrows(dst);
  9147. GGML_ASSERT(n_dims <= ne0);
  9148. GGML_ASSERT(n_dims % 2 == 0);
  9149. // rows per thread
  9150. const int dr = (nr + nth - 1)/nth;
  9151. // row range for this thread
  9152. const int ir0 = dr*ith;
  9153. const int ir1 = MIN(ir0 + dr, nr);
  9154. // row index used to determine which thread to use
  9155. int ir = 0;
  9156. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9157. const bool is_neox = mode & 2;
  9158. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9159. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9160. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9161. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9162. if (ir++ < ir0) continue;
  9163. if (ir > ir1) break;
  9164. float theta = (float)p;
  9165. if (!is_neox) {
  9166. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9167. const float cos_theta = cosf(theta);
  9168. const float sin_theta = sinf(theta);
  9169. theta *= theta_scale;
  9170. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9171. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9172. const float x0 = src[0];
  9173. const float x1 = src[1];
  9174. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9175. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9176. }
  9177. } else {
  9178. // TODO: this is probably wrong, but I can't figure it out ..
  9179. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9180. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9181. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9182. const float cos_theta = cosf(theta);
  9183. const float sin_theta = sinf(theta);
  9184. theta *= theta_scale;
  9185. const int64_t i0 = ib*n_dims + ic/2;
  9186. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9187. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9188. const float x0 = src[0];
  9189. const float x1 = src[n_dims/2];
  9190. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9191. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9192. }
  9193. }
  9194. }
  9195. }
  9196. }
  9197. }
  9198. }
  9199. static void ggml_compute_forward_rope_f16(
  9200. const struct ggml_compute_params * params,
  9201. const struct ggml_tensor * src0,
  9202. const struct ggml_tensor * src1,
  9203. struct ggml_tensor * dst) {
  9204. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9205. GGML_ASSERT(ggml_nelements(src1) == 3);
  9206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9207. return;
  9208. }
  9209. const int n_past = ((int32_t *) src1->data)[0];
  9210. const int n_dims = ((int32_t *) src1->data)[1];
  9211. const int mode = ((int32_t *) src1->data)[2];
  9212. assert(n_past >= 0);
  9213. const size_t nb00 = src0->nb[0];
  9214. const size_t nb01 = src0->nb[1];
  9215. const size_t nb02 = src0->nb[2];
  9216. const size_t nb03 = src0->nb[3];
  9217. const int64_t ne0 = dst->ne[0];
  9218. const int64_t ne1 = dst->ne[1];
  9219. const int64_t ne2 = dst->ne[2];
  9220. const int64_t ne3 = dst->ne[3];
  9221. const size_t nb0 = dst->nb[0];
  9222. const size_t nb1 = dst->nb[1];
  9223. const size_t nb2 = dst->nb[2];
  9224. const size_t nb3 = dst->nb[3];
  9225. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9226. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9227. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9228. const int ith = params->ith;
  9229. const int nth = params->nth;
  9230. const int nr = ggml_nrows(dst);
  9231. GGML_ASSERT(n_dims <= ne0);
  9232. GGML_ASSERT(n_dims % 2 == 0);
  9233. // rows per thread
  9234. const int dr = (nr + nth - 1)/nth;
  9235. // row range for this thread
  9236. const int ir0 = dr*ith;
  9237. const int ir1 = MIN(ir0 + dr, nr);
  9238. // row index used to determine which thread to use
  9239. int ir = 0;
  9240. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9241. const bool is_neox = mode & 2;
  9242. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9243. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9244. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9245. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9246. if (ir++ < ir0) continue;
  9247. if (ir > ir1) break;
  9248. float theta = (float)p;
  9249. if (!is_neox) {
  9250. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9251. const float cos_theta = cosf(theta);
  9252. const float sin_theta = sinf(theta);
  9253. theta *= theta_scale;
  9254. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9255. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9256. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9257. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9258. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9259. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9260. }
  9261. } else {
  9262. // TODO: this is probably wrong, but I can't figure it out ..
  9263. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9264. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9265. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9266. const float cos_theta = cosf(theta);
  9267. const float sin_theta = sinf(theta);
  9268. theta *= theta_scale;
  9269. const int64_t i0 = ib*n_dims + ic/2;
  9270. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9271. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9272. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9273. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9274. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9275. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9276. }
  9277. }
  9278. }
  9279. }
  9280. }
  9281. }
  9282. }
  9283. static void ggml_compute_forward_rope(
  9284. const struct ggml_compute_params * params,
  9285. const struct ggml_tensor * src0,
  9286. const struct ggml_tensor * src1,
  9287. struct ggml_tensor * dst) {
  9288. switch (src0->type) {
  9289. case GGML_TYPE_F16:
  9290. {
  9291. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9292. } break;
  9293. case GGML_TYPE_F32:
  9294. {
  9295. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9296. } break;
  9297. default:
  9298. {
  9299. GGML_ASSERT(false);
  9300. } break;
  9301. }
  9302. }
  9303. // ggml_compute_forward_rope_back
  9304. static void ggml_compute_forward_rope_back_f32(
  9305. const struct ggml_compute_params * params,
  9306. const struct ggml_tensor * src0,
  9307. const struct ggml_tensor * src1,
  9308. struct ggml_tensor * dst) {
  9309. assert(src1->type == GGML_TYPE_I32);
  9310. assert(ggml_nelements(src1) == 3);
  9311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9312. return;
  9313. }
  9314. // y = rope(x, src1)
  9315. // dx = rope_back(dy, src1)
  9316. // src0 is dy, src1 contains options
  9317. const int n_past = ((int32_t *) src1->data)[0];
  9318. const int n_dims = ((int32_t *) src1->data)[1];
  9319. const int mode = ((int32_t *) src1->data)[2];
  9320. assert(n_past >= 0);
  9321. const size_t nb00 = src0->nb[0];
  9322. const size_t nb01 = src0->nb[1];
  9323. const size_t nb02 = src0->nb[2];
  9324. const size_t nb03 = src0->nb[3];
  9325. const int64_t ne0 = dst->ne[0];
  9326. const int64_t ne1 = dst->ne[1];
  9327. const int64_t ne2 = dst->ne[2];
  9328. const int64_t ne3 = dst->ne[3];
  9329. const size_t nb0 = dst->nb[0];
  9330. const size_t nb1 = dst->nb[1];
  9331. const size_t nb2 = dst->nb[2];
  9332. const size_t nb3 = dst->nb[3];
  9333. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9334. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9335. assert(nb0 == sizeof(float));
  9336. const int ith = params->ith;
  9337. const int nth = params->nth;
  9338. const int nr = ggml_nrows(dst);
  9339. // rows per thread
  9340. const int dr = (nr + nth - 1)/nth;
  9341. // row range for this thread
  9342. const int ir0 = dr*ith;
  9343. const int ir1 = MIN(ir0 + dr, nr);
  9344. // row index used to determine which thread to use
  9345. int ir = 0;
  9346. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9347. const bool is_neox = mode & 2;
  9348. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9349. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9350. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9351. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9352. if (ir++ < ir0) continue;
  9353. if (ir > ir1) break;
  9354. float theta = (float)p;
  9355. if (!is_neox) {
  9356. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9357. const float cos_theta = cosf(theta);
  9358. const float sin_theta = sinf(theta);
  9359. theta *= theta_scale;
  9360. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9361. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9362. const float dy0 = dy[0];
  9363. const float dy1 = dy[1];
  9364. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9365. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9366. }
  9367. } else {
  9368. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9369. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9370. const float cos_theta = cosf(theta);
  9371. const float sin_theta = sinf(theta);
  9372. theta *= theta_scale;
  9373. const int64_t i0 = ib*n_dims + ic/2;
  9374. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9375. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9376. const float dy0 = dy[0];
  9377. const float dy1 = dy[n_dims/2];
  9378. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9379. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9380. }
  9381. }
  9382. }
  9383. }
  9384. }
  9385. }
  9386. }
  9387. static void ggml_compute_forward_rope_back_f16(
  9388. const struct ggml_compute_params * params,
  9389. const struct ggml_tensor * src0,
  9390. const struct ggml_tensor * src1,
  9391. struct ggml_tensor * dst) {
  9392. assert(src1->type == GGML_TYPE_I32);
  9393. assert(ggml_nelements(src1) == 3);
  9394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9395. return;
  9396. }
  9397. // y = rope(x, src1)
  9398. // dx = rope_back(dy, src1)
  9399. // src0 is dy, src1 contains options
  9400. const int n_past = ((int32_t *) src1->data)[0];
  9401. const int n_dims = ((int32_t *) src1->data)[1];
  9402. const int mode = ((int32_t *) src1->data)[2];
  9403. assert(n_past >= 0);
  9404. const size_t nb00 = src0->nb[0];
  9405. const size_t nb01 = src0->nb[1];
  9406. const size_t nb02 = src0->nb[2];
  9407. const size_t nb03 = src0->nb[3];
  9408. const int64_t ne0 = dst->ne[0];
  9409. const int64_t ne1 = dst->ne[1];
  9410. const int64_t ne2 = dst->ne[2];
  9411. const int64_t ne3 = dst->ne[3];
  9412. const size_t nb0 = dst->nb[0];
  9413. const size_t nb1 = dst->nb[1];
  9414. const size_t nb2 = dst->nb[2];
  9415. const size_t nb3 = dst->nb[3];
  9416. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9417. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9418. assert(nb0 == sizeof(ggml_fp16_t));
  9419. const int ith = params->ith;
  9420. const int nth = params->nth;
  9421. const int nr = ggml_nrows(dst);
  9422. // rows per thread
  9423. const int dr = (nr + nth - 1)/nth;
  9424. // row range for this thread
  9425. const int ir0 = dr*ith;
  9426. const int ir1 = MIN(ir0 + dr, nr);
  9427. // row index used to determine which thread to use
  9428. int ir = 0;
  9429. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9430. const bool is_neox = mode & 2;
  9431. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9432. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9433. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9434. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9435. if (ir++ < ir0) continue;
  9436. if (ir > ir1) break;
  9437. float theta = (float)p;
  9438. if (!is_neox) {
  9439. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9440. const float cos_theta = cosf(theta);
  9441. const float sin_theta = sinf(theta);
  9442. theta *= theta_scale;
  9443. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9444. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9445. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9446. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9447. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9448. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9449. }
  9450. } else {
  9451. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9452. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9453. const float cos_theta = cosf(theta);
  9454. const float sin_theta = sinf(theta);
  9455. theta *= theta_scale;
  9456. const int64_t i0 = ib*n_dims + ic/2;
  9457. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9458. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9459. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9460. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9461. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9462. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9463. }
  9464. }
  9465. }
  9466. }
  9467. }
  9468. }
  9469. }
  9470. static void ggml_compute_forward_rope_back(
  9471. const struct ggml_compute_params * params,
  9472. const struct ggml_tensor * src0,
  9473. const struct ggml_tensor * src1,
  9474. struct ggml_tensor * dst) {
  9475. switch (src0->type) {
  9476. case GGML_TYPE_F16:
  9477. {
  9478. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9479. } break;
  9480. case GGML_TYPE_F32:
  9481. {
  9482. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9483. } break;
  9484. default:
  9485. {
  9486. GGML_ASSERT(false);
  9487. } break;
  9488. }
  9489. }
  9490. // ggml_compute_forward_conv_1d_1s
  9491. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9492. const struct ggml_compute_params * params,
  9493. const struct ggml_tensor * src0,
  9494. const struct ggml_tensor * src1,
  9495. struct ggml_tensor * dst) {
  9496. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9497. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9498. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9499. int64_t t0 = ggml_perf_time_us();
  9500. UNUSED(t0);
  9501. const int64_t ne00 = src0->ne[0];
  9502. const int64_t ne01 = src0->ne[1];
  9503. const int64_t ne02 = src0->ne[2];
  9504. //const int64_t ne03 = src0->ne[3];
  9505. const int64_t ne10 = src1->ne[0];
  9506. const int64_t ne11 = src1->ne[1];
  9507. //const int64_t ne12 = src1->ne[2];
  9508. //const int64_t ne13 = src1->ne[3];
  9509. //const int64_t ne0 = dst->ne[0];
  9510. //const int64_t ne1 = dst->ne[1];
  9511. //const int64_t ne2 = dst->ne[2];
  9512. //const int64_t ne3 = dst->ne[3];
  9513. //const int64_t ne = ne0*ne1*ne2*ne3;
  9514. const int nb00 = src0->nb[0];
  9515. const int nb01 = src0->nb[1];
  9516. const int nb02 = src0->nb[2];
  9517. //const int nb03 = src0->nb[3];
  9518. const int nb10 = src1->nb[0];
  9519. const int nb11 = src1->nb[1];
  9520. //const int nb12 = src1->nb[2];
  9521. //const int nb13 = src1->nb[3];
  9522. //const int nb0 = dst->nb[0];
  9523. const int nb1 = dst->nb[1];
  9524. //const int nb2 = dst->nb[2];
  9525. //const int nb3 = dst->nb[3];
  9526. const int ith = params->ith;
  9527. const int nth = params->nth;
  9528. const int nk = ne00;
  9529. const int nh = nk/2;
  9530. const int ew0 = ggml_up32(ne01);
  9531. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9532. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9533. GGML_ASSERT(nb10 == sizeof(float));
  9534. if (params->type == GGML_TASK_INIT) {
  9535. // TODO: fix this memset (wsize is overestimated)
  9536. memset(params->wdata, 0, params->wsize);
  9537. // prepare kernel data (src0)
  9538. {
  9539. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9541. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9542. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9543. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9544. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9545. dst_data[i00*ew0 + i01] = src[i00];
  9546. }
  9547. }
  9548. }
  9549. }
  9550. // prepare source data (src1)
  9551. {
  9552. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9553. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9554. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9555. ggml_fp16_t * dst_data = wdata;
  9556. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9557. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9558. }
  9559. }
  9560. }
  9561. return;
  9562. }
  9563. if (params->type == GGML_TASK_FINALIZE) {
  9564. return;
  9565. }
  9566. // total rows in dst
  9567. const int nr = ne02;
  9568. // rows per thread
  9569. const int dr = (nr + nth - 1)/nth;
  9570. // row range for this thread
  9571. const int ir0 = dr*ith;
  9572. const int ir1 = MIN(ir0 + dr, nr);
  9573. for (int i1 = ir0; i1 < ir1; i1++) {
  9574. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9575. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9576. dst_data[i0] = 0;
  9577. for (int k = -nh; k <= nh; k++) {
  9578. float v = 0.0f;
  9579. ggml_vec_dot_f16(ew0, &v,
  9580. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9581. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9582. dst_data[i0] += v;
  9583. }
  9584. }
  9585. }
  9586. }
  9587. static void ggml_compute_forward_conv_1d_1s_f32(
  9588. const struct ggml_compute_params * params,
  9589. const struct ggml_tensor * src0,
  9590. const struct ggml_tensor * src1,
  9591. struct ggml_tensor * dst) {
  9592. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9593. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9594. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9595. int64_t t0 = ggml_perf_time_us();
  9596. UNUSED(t0);
  9597. const int64_t ne00 = src0->ne[0];
  9598. const int64_t ne01 = src0->ne[1];
  9599. const int64_t ne02 = src0->ne[2];
  9600. //const int64_t ne03 = src0->ne[3];
  9601. const int64_t ne10 = src1->ne[0];
  9602. const int64_t ne11 = src1->ne[1];
  9603. //const int64_t ne12 = src1->ne[2];
  9604. //const int64_t ne13 = src1->ne[3];
  9605. //const int64_t ne0 = dst->ne[0];
  9606. //const int64_t ne1 = dst->ne[1];
  9607. //const int64_t ne2 = dst->ne[2];
  9608. //const int64_t ne3 = dst->ne[3];
  9609. //const int64_t ne = ne0*ne1*ne2*ne3;
  9610. const int nb00 = src0->nb[0];
  9611. const int nb01 = src0->nb[1];
  9612. const int nb02 = src0->nb[2];
  9613. //const int nb03 = src0->nb[3];
  9614. const int nb10 = src1->nb[0];
  9615. const int nb11 = src1->nb[1];
  9616. //const int nb12 = src1->nb[2];
  9617. //const int nb13 = src1->nb[3];
  9618. //const int nb0 = dst->nb[0];
  9619. const int nb1 = dst->nb[1];
  9620. //const int nb2 = dst->nb[2];
  9621. //const int nb3 = dst->nb[3];
  9622. const int ith = params->ith;
  9623. const int nth = params->nth;
  9624. const int nk = ne00;
  9625. const int nh = nk/2;
  9626. const int ew0 = ggml_up32(ne01);
  9627. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9628. GGML_ASSERT(nb00 == sizeof(float));
  9629. GGML_ASSERT(nb10 == sizeof(float));
  9630. if (params->type == GGML_TASK_INIT) {
  9631. // TODO: fix this memset (wsize is overestimated)
  9632. memset(params->wdata, 0, params->wsize);
  9633. // prepare kernel data (src0)
  9634. {
  9635. float * const wdata = (float *) params->wdata + 0;
  9636. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9637. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9638. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9639. float * dst_data = wdata + i02*ew0*ne00;
  9640. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9641. dst_data[i00*ew0 + i01] = src[i00];
  9642. }
  9643. }
  9644. }
  9645. }
  9646. // prepare source data (src1)
  9647. {
  9648. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9649. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9650. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9651. float * dst_data = wdata;
  9652. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9653. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9654. }
  9655. }
  9656. }
  9657. return;
  9658. }
  9659. if (params->type == GGML_TASK_FINALIZE) {
  9660. return;
  9661. }
  9662. // total rows in dst
  9663. const int nr = ne02;
  9664. // rows per thread
  9665. const int dr = (nr + nth - 1)/nth;
  9666. // row range for this thread
  9667. const int ir0 = dr*ith;
  9668. const int ir1 = MIN(ir0 + dr, nr);
  9669. for (int i1 = ir0; i1 < ir1; i1++) {
  9670. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9671. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9672. dst_data[i0] = 0;
  9673. for (int k = -nh; k <= nh; k++) {
  9674. float v = 0.0f;
  9675. ggml_vec_dot_f32(ew0, &v,
  9676. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9677. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9678. dst_data[i0] += v;
  9679. }
  9680. }
  9681. }
  9682. }
  9683. static void ggml_compute_forward_conv_1d_1s(
  9684. const struct ggml_compute_params * params,
  9685. const struct ggml_tensor * src0,
  9686. const struct ggml_tensor * src1,
  9687. struct ggml_tensor * dst) {
  9688. switch (src0->type) {
  9689. case GGML_TYPE_F16:
  9690. {
  9691. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9692. } break;
  9693. case GGML_TYPE_F32:
  9694. {
  9695. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9696. } break;
  9697. default:
  9698. {
  9699. GGML_ASSERT(false);
  9700. } break;
  9701. }
  9702. }
  9703. // ggml_compute_forward_conv_1d_2s
  9704. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9705. const struct ggml_compute_params * params,
  9706. const struct ggml_tensor * src0,
  9707. const struct ggml_tensor * src1,
  9708. struct ggml_tensor * dst) {
  9709. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9710. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9711. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9712. int64_t t0 = ggml_perf_time_us();
  9713. UNUSED(t0);
  9714. const int64_t ne00 = src0->ne[0];
  9715. const int64_t ne01 = src0->ne[1];
  9716. const int64_t ne02 = src0->ne[2];
  9717. //const int64_t ne03 = src0->ne[3];
  9718. const int64_t ne10 = src1->ne[0];
  9719. const int64_t ne11 = src1->ne[1];
  9720. //const int64_t ne12 = src1->ne[2];
  9721. //const int64_t ne13 = src1->ne[3];
  9722. //const int64_t ne0 = dst->ne[0];
  9723. //const int64_t ne1 = dst->ne[1];
  9724. //const int64_t ne2 = dst->ne[2];
  9725. //const int64_t ne3 = dst->ne[3];
  9726. //const int64_t ne = ne0*ne1*ne2*ne3;
  9727. const int nb00 = src0->nb[0];
  9728. const int nb01 = src0->nb[1];
  9729. const int nb02 = src0->nb[2];
  9730. //const int nb03 = src0->nb[3];
  9731. const int nb10 = src1->nb[0];
  9732. const int nb11 = src1->nb[1];
  9733. //const int nb12 = src1->nb[2];
  9734. //const int nb13 = src1->nb[3];
  9735. //const int nb0 = dst->nb[0];
  9736. const int nb1 = dst->nb[1];
  9737. //const int nb2 = dst->nb[2];
  9738. //const int nb3 = dst->nb[3];
  9739. const int ith = params->ith;
  9740. const int nth = params->nth;
  9741. const int nk = ne00;
  9742. const int nh = nk/2;
  9743. const int ew0 = ggml_up32(ne01);
  9744. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9745. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9746. GGML_ASSERT(nb10 == sizeof(float));
  9747. if (params->type == GGML_TASK_INIT) {
  9748. // TODO: fix this memset (wsize is overestimated)
  9749. memset(params->wdata, 0, params->wsize);
  9750. // prepare kernel data (src0)
  9751. {
  9752. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9753. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9754. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9755. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9756. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9757. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9758. dst_data[i00*ew0 + i01] = src[i00];
  9759. }
  9760. }
  9761. }
  9762. }
  9763. // prepare source data (src1)
  9764. {
  9765. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9766. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9767. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9768. ggml_fp16_t * dst_data = wdata;
  9769. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9770. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9771. }
  9772. }
  9773. }
  9774. return;
  9775. }
  9776. if (params->type == GGML_TASK_FINALIZE) {
  9777. return;
  9778. }
  9779. // total rows in dst
  9780. const int nr = ne02;
  9781. // rows per thread
  9782. const int dr = (nr + nth - 1)/nth;
  9783. // row range for this thread
  9784. const int ir0 = dr*ith;
  9785. const int ir1 = MIN(ir0 + dr, nr);
  9786. for (int i1 = ir0; i1 < ir1; i1++) {
  9787. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9788. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9789. dst_data[i0/2] = 0;
  9790. for (int k = -nh; k <= nh; k++) {
  9791. float v = 0.0f;
  9792. ggml_vec_dot_f16(ew0, &v,
  9793. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9794. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9795. dst_data[i0/2] += v;
  9796. }
  9797. }
  9798. }
  9799. }
  9800. static void ggml_compute_forward_conv_1d_2s_f32(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. const struct ggml_tensor * src1,
  9804. struct ggml_tensor * dst) {
  9805. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9806. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9807. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9808. int64_t t0 = ggml_perf_time_us();
  9809. UNUSED(t0);
  9810. const int64_t ne00 = src0->ne[0];
  9811. const int64_t ne01 = src0->ne[1];
  9812. const int64_t ne02 = src0->ne[2];
  9813. //const int64_t ne03 = src0->ne[3];
  9814. const int64_t ne10 = src1->ne[0];
  9815. const int64_t ne11 = src1->ne[1];
  9816. //const int64_t ne12 = src1->ne[2];
  9817. //const int64_t ne13 = src1->ne[3];
  9818. //const int64_t ne0 = dst->ne[0];
  9819. //const int64_t ne1 = dst->ne[1];
  9820. //const int64_t ne2 = dst->ne[2];
  9821. //const int64_t ne3 = dst->ne[3];
  9822. //const int64_t ne = ne0*ne1*ne2*ne3;
  9823. const int nb00 = src0->nb[0];
  9824. const int nb01 = src0->nb[1];
  9825. const int nb02 = src0->nb[2];
  9826. //const int nb03 = src0->nb[3];
  9827. const int nb10 = src1->nb[0];
  9828. const int nb11 = src1->nb[1];
  9829. //const int nb12 = src1->nb[2];
  9830. //const int nb13 = src1->nb[3];
  9831. //const int nb0 = dst->nb[0];
  9832. const int nb1 = dst->nb[1];
  9833. //const int nb2 = dst->nb[2];
  9834. //const int nb3 = dst->nb[3];
  9835. const int ith = params->ith;
  9836. const int nth = params->nth;
  9837. const int nk = ne00;
  9838. const int nh = nk/2;
  9839. const int ew0 = ggml_up32(ne01);
  9840. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9841. GGML_ASSERT(nb00 == sizeof(float));
  9842. GGML_ASSERT(nb10 == sizeof(float));
  9843. if (params->type == GGML_TASK_INIT) {
  9844. // TODO: fix this memset (wsize is overestimated)
  9845. memset(params->wdata, 0, params->wsize);
  9846. // prepare kernel data (src0)
  9847. {
  9848. float * const wdata = (float *) params->wdata + 0;
  9849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9850. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9851. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9852. float * dst_data = wdata + i02*ew0*ne00;
  9853. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9854. dst_data[i00*ew0 + i01] = src[i00];
  9855. }
  9856. }
  9857. }
  9858. }
  9859. // prepare source data (src1)
  9860. {
  9861. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9862. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9863. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9864. float * dst_data = wdata;
  9865. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9866. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9867. }
  9868. }
  9869. }
  9870. return;
  9871. }
  9872. if (params->type == GGML_TASK_FINALIZE) {
  9873. return;
  9874. }
  9875. // total rows in dst
  9876. const int nr = ne02;
  9877. // rows per thread
  9878. const int dr = (nr + nth - 1)/nth;
  9879. // row range for this thread
  9880. const int ir0 = dr*ith;
  9881. const int ir1 = MIN(ir0 + dr, nr);
  9882. for (int i1 = ir0; i1 < ir1; i1++) {
  9883. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9884. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9885. dst_data[i0/2] = 0;
  9886. for (int k = -nh; k <= nh; k++) {
  9887. float v = 0.0f;
  9888. ggml_vec_dot_f32(ew0, &v,
  9889. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9890. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9891. dst_data[i0/2] += v;
  9892. }
  9893. }
  9894. }
  9895. }
  9896. static void ggml_compute_forward_conv_1d_2s(
  9897. const struct ggml_compute_params * params,
  9898. const struct ggml_tensor * src0,
  9899. const struct ggml_tensor * src1,
  9900. struct ggml_tensor * dst) {
  9901. switch (src0->type) {
  9902. case GGML_TYPE_F16:
  9903. {
  9904. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9905. } break;
  9906. case GGML_TYPE_F32:
  9907. {
  9908. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9909. } break;
  9910. default:
  9911. {
  9912. GGML_ASSERT(false);
  9913. } break;
  9914. }
  9915. }
  9916. // ggml_compute_forward_flash_attn
  9917. static void ggml_compute_forward_flash_attn_f32(
  9918. const struct ggml_compute_params * params,
  9919. const struct ggml_tensor * q,
  9920. const struct ggml_tensor * k,
  9921. const struct ggml_tensor * v,
  9922. const bool masked,
  9923. struct ggml_tensor * dst) {
  9924. int64_t t0 = ggml_perf_time_us();
  9925. UNUSED(t0);
  9926. const int64_t neq0 = q->ne[0];
  9927. const int64_t neq1 = q->ne[1];
  9928. const int64_t neq2 = q->ne[2];
  9929. const int64_t neq3 = q->ne[3];
  9930. const int64_t nek0 = k->ne[0];
  9931. const int64_t nek1 = k->ne[1];
  9932. //const int64_t nek2 = k->ne[2];
  9933. //const int64_t nek3 = k->ne[3];
  9934. //const int64_t nev0 = v->ne[0];
  9935. const int64_t nev1 = v->ne[1];
  9936. //const int64_t nev2 = v->ne[2];
  9937. //const int64_t nev3 = v->ne[3];
  9938. const int64_t ne0 = dst->ne[0];
  9939. const int64_t ne1 = dst->ne[1];
  9940. //const int64_t ne2 = dst->ne[2];
  9941. //const int64_t ne3 = dst->ne[3];
  9942. const int nbk0 = k->nb[0];
  9943. const int nbk1 = k->nb[1];
  9944. const int nbk2 = k->nb[2];
  9945. const int nbk3 = k->nb[3];
  9946. const int nbq0 = q->nb[0];
  9947. const int nbq1 = q->nb[1];
  9948. const int nbq2 = q->nb[2];
  9949. const int nbq3 = q->nb[3];
  9950. const int nbv0 = v->nb[0];
  9951. const int nbv1 = v->nb[1];
  9952. const int nbv2 = v->nb[2];
  9953. const int nbv3 = v->nb[3];
  9954. const int nb0 = dst->nb[0];
  9955. const int nb1 = dst->nb[1];
  9956. const int nb2 = dst->nb[2];
  9957. const int nb3 = dst->nb[3];
  9958. const int ith = params->ith;
  9959. const int nth = params->nth;
  9960. const int64_t D = neq0;
  9961. const int64_t N = neq1;
  9962. const int64_t P = nek1 - N;
  9963. const int64_t M = P + N;
  9964. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9965. GGML_ASSERT(ne0 == D);
  9966. GGML_ASSERT(ne1 == N);
  9967. GGML_ASSERT(P >= 0);
  9968. GGML_ASSERT(nbq0 == sizeof(float));
  9969. GGML_ASSERT(nbk0 == sizeof(float));
  9970. GGML_ASSERT(nbv0 == sizeof(float));
  9971. GGML_ASSERT(neq0 == D);
  9972. GGML_ASSERT(nek0 == D);
  9973. GGML_ASSERT(nev1 == D);
  9974. GGML_ASSERT(neq1 == N);
  9975. GGML_ASSERT(nek1 == N + P);
  9976. GGML_ASSERT(nev1 == D);
  9977. // dst cannot be transposed or permuted
  9978. GGML_ASSERT(nb0 == sizeof(float));
  9979. GGML_ASSERT(nb0 <= nb1);
  9980. GGML_ASSERT(nb1 <= nb2);
  9981. GGML_ASSERT(nb2 <= nb3);
  9982. if (params->type == GGML_TASK_INIT) {
  9983. return;
  9984. }
  9985. if (params->type == GGML_TASK_FINALIZE) {
  9986. return;
  9987. }
  9988. // parallelize by q rows using ggml_vec_dot_f32
  9989. // total rows in q
  9990. const int nr = neq1*neq2*neq3;
  9991. // rows per thread
  9992. const int dr = (nr + nth - 1)/nth;
  9993. // row range for this thread
  9994. const int ir0 = dr*ith;
  9995. const int ir1 = MIN(ir0 + dr, nr);
  9996. const float scale = 1.0f/sqrtf(D);
  9997. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9998. for (int ir = ir0; ir < ir1; ++ir) {
  9999. // q indices
  10000. const int iq3 = ir/(neq2*neq1);
  10001. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10002. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10003. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10004. for (int i = M; i < Mup; ++i) {
  10005. S[i] = -INFINITY;
  10006. }
  10007. for (int64_t ic = 0; ic < nek1; ++ic) {
  10008. // k indices
  10009. const int ik3 = iq3;
  10010. const int ik2 = iq2;
  10011. const int ik1 = ic;
  10012. // S indices
  10013. const int i1 = ik1;
  10014. ggml_vec_dot_f32(neq0,
  10015. S + i1,
  10016. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10017. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10018. }
  10019. // scale
  10020. ggml_vec_scale_f32(nek1, S, scale);
  10021. if (masked) {
  10022. for (int64_t i = P; i < M; i++) {
  10023. if (i > P + iq1) {
  10024. S[i] = -INFINITY;
  10025. }
  10026. }
  10027. }
  10028. // softmax
  10029. {
  10030. float max = -INFINITY;
  10031. ggml_vec_max_f32(M, &max, S);
  10032. ggml_float sum = 0.0;
  10033. {
  10034. #ifdef GGML_SOFT_MAX_ACCELERATE
  10035. max = -max;
  10036. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10037. vvexpf(S, S, &Mup);
  10038. ggml_vec_sum_f32(Mup, &sum, S);
  10039. #else
  10040. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10041. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10042. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10043. float * SS = S + i;
  10044. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10045. if (SS[j] == -INFINITY) {
  10046. SS[j] = 0.0f;
  10047. } else {
  10048. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10049. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10050. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10051. sump[j] += (ggml_float)val;
  10052. SS[j] = val;
  10053. }
  10054. }
  10055. }
  10056. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10057. sum += sump[i];
  10058. }
  10059. #endif
  10060. }
  10061. assert(sum > 0.0);
  10062. sum = 1.0/sum;
  10063. ggml_vec_scale_f32(M, S, sum);
  10064. #ifndef NDEBUG
  10065. for (int i = 0; i < M; ++i) {
  10066. assert(!isnan(S[i]));
  10067. assert(!isinf(S[i]));
  10068. }
  10069. #endif
  10070. }
  10071. for (int64_t ic = 0; ic < nev1; ++ic) {
  10072. // dst indices
  10073. const int i1 = iq1;
  10074. const int i2 = iq2;
  10075. const int i3 = iq3;
  10076. ggml_vec_dot_f32(nek1,
  10077. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10078. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10079. S);
  10080. }
  10081. }
  10082. }
  10083. static void ggml_compute_forward_flash_attn_f16(
  10084. const struct ggml_compute_params * params,
  10085. const struct ggml_tensor * q,
  10086. const struct ggml_tensor * k,
  10087. const struct ggml_tensor * v,
  10088. const bool masked,
  10089. struct ggml_tensor * dst) {
  10090. int64_t t0 = ggml_perf_time_us();
  10091. UNUSED(t0);
  10092. const int64_t neq0 = q->ne[0];
  10093. const int64_t neq1 = q->ne[1];
  10094. const int64_t neq2 = q->ne[2];
  10095. const int64_t neq3 = q->ne[3];
  10096. const int64_t nek0 = k->ne[0];
  10097. const int64_t nek1 = k->ne[1];
  10098. //const int64_t nek2 = k->ne[2];
  10099. //const int64_t nek3 = k->ne[3];
  10100. //const int64_t nev0 = v->ne[0];
  10101. const int64_t nev1 = v->ne[1];
  10102. //const int64_t nev2 = v->ne[2];
  10103. //const int64_t nev3 = v->ne[3];
  10104. const int64_t ne0 = dst->ne[0];
  10105. const int64_t ne1 = dst->ne[1];
  10106. //const int64_t ne2 = dst->ne[2];
  10107. //const int64_t ne3 = dst->ne[3];
  10108. const int nbk0 = k->nb[0];
  10109. const int nbk1 = k->nb[1];
  10110. const int nbk2 = k->nb[2];
  10111. const int nbk3 = k->nb[3];
  10112. const int nbq0 = q->nb[0];
  10113. const int nbq1 = q->nb[1];
  10114. const int nbq2 = q->nb[2];
  10115. const int nbq3 = q->nb[3];
  10116. const int nbv0 = v->nb[0];
  10117. const int nbv1 = v->nb[1];
  10118. const int nbv2 = v->nb[2];
  10119. const int nbv3 = v->nb[3];
  10120. const int nb0 = dst->nb[0];
  10121. const int nb1 = dst->nb[1];
  10122. const int nb2 = dst->nb[2];
  10123. const int nb3 = dst->nb[3];
  10124. const int ith = params->ith;
  10125. const int nth = params->nth;
  10126. const int64_t D = neq0;
  10127. const int64_t N = neq1;
  10128. const int64_t P = nek1 - N;
  10129. const int64_t M = P + N;
  10130. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10131. GGML_ASSERT(ne0 == D);
  10132. GGML_ASSERT(ne1 == N);
  10133. GGML_ASSERT(P >= 0);
  10134. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10135. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10136. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10137. GGML_ASSERT(neq0 == D);
  10138. GGML_ASSERT(nek0 == D);
  10139. GGML_ASSERT(nev1 == D);
  10140. GGML_ASSERT(neq1 == N);
  10141. GGML_ASSERT(nek1 == N + P);
  10142. GGML_ASSERT(nev1 == D);
  10143. // dst cannot be transposed or permuted
  10144. GGML_ASSERT(nb0 == sizeof(float));
  10145. GGML_ASSERT(nb0 <= nb1);
  10146. GGML_ASSERT(nb1 <= nb2);
  10147. GGML_ASSERT(nb2 <= nb3);
  10148. if (params->type == GGML_TASK_INIT) {
  10149. return;
  10150. }
  10151. if (params->type == GGML_TASK_FINALIZE) {
  10152. return;
  10153. }
  10154. // parallelize by q rows using ggml_vec_dot_f32
  10155. // total rows in q
  10156. const int nr = neq1*neq2*neq3;
  10157. // rows per thread
  10158. const int dr = (nr + nth - 1)/nth;
  10159. // row range for this thread
  10160. const int ir0 = dr*ith;
  10161. const int ir1 = MIN(ir0 + dr, nr);
  10162. const float scale = 1.0f/sqrtf(D);
  10163. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10164. for (int ir = ir0; ir < ir1; ++ir) {
  10165. // q indices
  10166. const int iq3 = ir/(neq2*neq1);
  10167. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10168. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10169. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10170. for (int i = M; i < Mup; ++i) {
  10171. S[i] = -INFINITY;
  10172. }
  10173. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10174. for (int64_t ic = 0; ic < nek1; ++ic) {
  10175. // k indices
  10176. const int ik3 = iq3;
  10177. const int ik2 = iq2;
  10178. const int ik1 = ic;
  10179. // S indices
  10180. const int i1 = ik1;
  10181. ggml_vec_dot_f16(neq0,
  10182. S + i1,
  10183. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10184. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10185. }
  10186. } else {
  10187. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10188. // k indices
  10189. const int ik3 = iq3;
  10190. const int ik2 = iq2;
  10191. const int ik1 = ic;
  10192. // S indices
  10193. const int i1 = ik1;
  10194. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10195. S + i1,
  10196. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10197. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10198. }
  10199. }
  10200. // scale
  10201. ggml_vec_scale_f32(nek1, S, scale);
  10202. if (masked) {
  10203. for (int64_t i = P; i < M; i++) {
  10204. if (i > P + iq1) {
  10205. S[i] = -INFINITY;
  10206. }
  10207. }
  10208. }
  10209. // softmax
  10210. {
  10211. float max = -INFINITY;
  10212. ggml_vec_max_f32(M, &max, S);
  10213. ggml_float sum = 0.0;
  10214. {
  10215. #ifdef GGML_SOFT_MAX_ACCELERATE
  10216. max = -max;
  10217. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10218. vvexpf(S, S, &Mup);
  10219. ggml_vec_sum_f32(Mup, &sum, S);
  10220. #else
  10221. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10222. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10223. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10224. float * SS = S + i;
  10225. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10226. if (SS[j] == -INFINITY) {
  10227. SS[j] = 0.0f;
  10228. } else {
  10229. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10230. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10231. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10232. sump[j] += (ggml_float)val;
  10233. SS[j] = val;
  10234. }
  10235. }
  10236. }
  10237. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10238. sum += sump[i];
  10239. }
  10240. #endif
  10241. }
  10242. assert(sum > 0.0);
  10243. sum = 1.0/sum;
  10244. ggml_vec_scale_f32(M, S, sum);
  10245. #ifndef NDEBUG
  10246. for (int i = 0; i < M; ++i) {
  10247. assert(!isnan(S[i]));
  10248. assert(!isinf(S[i]));
  10249. }
  10250. #endif
  10251. }
  10252. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10253. for (int64_t i = 0; i < M; i++) {
  10254. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10255. }
  10256. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10257. for (int64_t ic = 0; ic < nev1; ++ic) {
  10258. // dst indices
  10259. const int i1 = iq1;
  10260. const int i2 = iq2;
  10261. const int i3 = iq3;
  10262. ggml_vec_dot_f16(nek1,
  10263. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10264. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10265. S16);
  10266. }
  10267. } else {
  10268. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10269. // dst indices
  10270. const int i1 = iq1;
  10271. const int i2 = iq2;
  10272. const int i3 = iq3;
  10273. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10274. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10275. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10276. S16);
  10277. }
  10278. }
  10279. }
  10280. }
  10281. static void ggml_compute_forward_flash_attn(
  10282. const struct ggml_compute_params * params,
  10283. const struct ggml_tensor * q,
  10284. const struct ggml_tensor * k,
  10285. const struct ggml_tensor * v,
  10286. const bool masked,
  10287. struct ggml_tensor * dst) {
  10288. switch (q->type) {
  10289. case GGML_TYPE_F16:
  10290. {
  10291. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10292. } break;
  10293. case GGML_TYPE_F32:
  10294. {
  10295. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10296. } break;
  10297. default:
  10298. {
  10299. GGML_ASSERT(false);
  10300. } break;
  10301. }
  10302. }
  10303. // ggml_compute_forward_flash_ff
  10304. static void ggml_compute_forward_flash_ff_f16(
  10305. const struct ggml_compute_params * params,
  10306. const struct ggml_tensor * a, // F16
  10307. const struct ggml_tensor * b0, // F16 fc_w
  10308. const struct ggml_tensor * b1, // F32 fc_b
  10309. const struct ggml_tensor * c0, // F16 proj_w
  10310. const struct ggml_tensor * c1, // F32 proj_b
  10311. struct ggml_tensor * dst) {
  10312. int64_t t0 = ggml_perf_time_us();
  10313. UNUSED(t0);
  10314. const int64_t nea0 = a->ne[0];
  10315. const int64_t nea1 = a->ne[1];
  10316. const int64_t nea2 = a->ne[2];
  10317. const int64_t nea3 = a->ne[3];
  10318. const int64_t neb00 = b0->ne[0];
  10319. const int64_t neb01 = b0->ne[1];
  10320. //const int64_t neb02 = b0->ne[2];
  10321. //const int64_t neb03 = b0->ne[3];
  10322. const int64_t neb10 = b1->ne[0];
  10323. const int64_t neb11 = b1->ne[1];
  10324. //const int64_t neb12 = b1->ne[2];
  10325. //const int64_t neb13 = b1->ne[3];
  10326. const int64_t nec00 = c0->ne[0];
  10327. const int64_t nec01 = c0->ne[1];
  10328. //const int64_t nec02 = c0->ne[2];
  10329. //const int64_t nec03 = c0->ne[3];
  10330. const int64_t nec10 = c1->ne[0];
  10331. const int64_t nec11 = c1->ne[1];
  10332. //const int64_t nec12 = c1->ne[2];
  10333. //const int64_t nec13 = c1->ne[3];
  10334. const int64_t ne0 = dst->ne[0];
  10335. const int64_t ne1 = dst->ne[1];
  10336. const int64_t ne2 = dst->ne[2];
  10337. //const int64_t ne3 = dst->ne[3];
  10338. const int nba0 = a->nb[0];
  10339. const int nba1 = a->nb[1];
  10340. const int nba2 = a->nb[2];
  10341. const int nba3 = a->nb[3];
  10342. const int nbb00 = b0->nb[0];
  10343. const int nbb01 = b0->nb[1];
  10344. const int nbb02 = b0->nb[2];
  10345. const int nbb03 = b0->nb[3];
  10346. const int nbb10 = b1->nb[0];
  10347. //const int nbb11 = b1->nb[1];
  10348. //const int nbb12 = b1->nb[2];
  10349. //const int nbb13 = b1->nb[3];
  10350. const int nbc00 = c0->nb[0];
  10351. const int nbc01 = c0->nb[1];
  10352. const int nbc02 = c0->nb[2];
  10353. const int nbc03 = c0->nb[3];
  10354. const int nbc10 = c1->nb[0];
  10355. //const int nbc11 = c1->nb[1];
  10356. //const int nbc12 = c1->nb[2];
  10357. //const int nbc13 = c1->nb[3];
  10358. const int nb0 = dst->nb[0];
  10359. const int nb1 = dst->nb[1];
  10360. const int nb2 = dst->nb[2];
  10361. const int nb3 = dst->nb[3];
  10362. const int ith = params->ith;
  10363. const int nth = params->nth;
  10364. const int64_t D = nea0;
  10365. //const int64_t N = nea1;
  10366. const int64_t M = neb01;
  10367. GGML_ASSERT(ne0 == nea0);
  10368. GGML_ASSERT(ne1 == nea1);
  10369. GGML_ASSERT(ne2 == nea2);
  10370. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10371. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10372. GGML_ASSERT(nbb10 == sizeof(float));
  10373. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10374. GGML_ASSERT(nbc10 == sizeof(float));
  10375. GGML_ASSERT(neb00 == D);
  10376. GGML_ASSERT(neb01 == M);
  10377. GGML_ASSERT(neb10 == M);
  10378. GGML_ASSERT(neb11 == 1);
  10379. GGML_ASSERT(nec00 == M);
  10380. GGML_ASSERT(nec01 == D);
  10381. GGML_ASSERT(nec10 == D);
  10382. GGML_ASSERT(nec11 == 1);
  10383. // dst cannot be transposed or permuted
  10384. GGML_ASSERT(nb0 == sizeof(float));
  10385. GGML_ASSERT(nb0 <= nb1);
  10386. GGML_ASSERT(nb1 <= nb2);
  10387. GGML_ASSERT(nb2 <= nb3);
  10388. if (params->type == GGML_TASK_INIT) {
  10389. return;
  10390. }
  10391. if (params->type == GGML_TASK_FINALIZE) {
  10392. return;
  10393. }
  10394. // parallelize by a rows using ggml_vec_dot_f32
  10395. // total rows in a
  10396. const int nr = nea1*nea2*nea3;
  10397. // rows per thread
  10398. const int dr = (nr + nth - 1)/nth;
  10399. // row range for this thread
  10400. const int ir0 = dr*ith;
  10401. const int ir1 = MIN(ir0 + dr, nr);
  10402. for (int ir = ir0; ir < ir1; ++ir) {
  10403. // a indices
  10404. const int ia3 = ir/(nea2*nea1);
  10405. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10406. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10407. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10408. for (int64_t ic = 0; ic < neb01; ++ic) {
  10409. // b0 indices
  10410. const int ib03 = ia3;
  10411. const int ib02 = ia2;
  10412. const int ib01 = ic;
  10413. // S indices
  10414. const int i1 = ib01;
  10415. ggml_vec_dot_f16(nea0,
  10416. S + i1,
  10417. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10418. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10419. }
  10420. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10421. //ggml_vec_gelu_f32(neb01, S, S);
  10422. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10423. for (int64_t i = 0; i < M; i++) {
  10424. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10425. }
  10426. ggml_vec_gelu_f16(neb01, S16, S16);
  10427. {
  10428. // dst indices
  10429. const int i1 = ia1;
  10430. const int i2 = ia2;
  10431. const int i3 = ia3;
  10432. for (int64_t ic = 0; ic < nec01; ++ic) {
  10433. ggml_vec_dot_f16(neb01,
  10434. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10435. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10436. S16);
  10437. }
  10438. ggml_vec_add_f32(nec01,
  10439. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10440. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10441. (float *) c1->data);
  10442. }
  10443. }
  10444. }
  10445. static void ggml_compute_forward_flash_ff(
  10446. const struct ggml_compute_params * params,
  10447. const struct ggml_tensor * a,
  10448. const struct ggml_tensor * b0,
  10449. const struct ggml_tensor * b1,
  10450. const struct ggml_tensor * c0,
  10451. const struct ggml_tensor * c1,
  10452. struct ggml_tensor * dst) {
  10453. switch (b0->type) {
  10454. case GGML_TYPE_F16:
  10455. {
  10456. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10457. } break;
  10458. case GGML_TYPE_F32:
  10459. {
  10460. GGML_ASSERT(false); // TODO
  10461. } break;
  10462. default:
  10463. {
  10464. GGML_ASSERT(false);
  10465. } break;
  10466. }
  10467. }
  10468. // ggml_compute_forward_map_unary
  10469. static void ggml_compute_forward_map_unary_f32(
  10470. const struct ggml_compute_params * params,
  10471. const struct ggml_tensor * src0,
  10472. struct ggml_tensor * dst,
  10473. const ggml_unary_op_f32_t fun) {
  10474. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10476. return;
  10477. }
  10478. const int n = ggml_nrows(src0);
  10479. const int nc = src0->ne[0];
  10480. assert( dst->nb[0] == sizeof(float));
  10481. assert(src0->nb[0] == sizeof(float));
  10482. for (int i = 0; i < n; i++) {
  10483. fun(nc,
  10484. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10485. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10486. }
  10487. }
  10488. static void ggml_compute_forward_map_unary(
  10489. const struct ggml_compute_params * params,
  10490. const struct ggml_tensor * src0,
  10491. struct ggml_tensor * dst,
  10492. const ggml_unary_op_f32_t fun) {
  10493. switch (src0->type) {
  10494. case GGML_TYPE_F32:
  10495. {
  10496. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10497. } break;
  10498. default:
  10499. {
  10500. GGML_ASSERT(false);
  10501. } break;
  10502. }
  10503. }
  10504. // ggml_compute_forward_map_binary
  10505. static void ggml_compute_forward_map_binary_f32(
  10506. const struct ggml_compute_params * params,
  10507. const struct ggml_tensor * src0,
  10508. const struct ggml_tensor * src1,
  10509. struct ggml_tensor * dst,
  10510. const ggml_binary_op_f32_t fun) {
  10511. assert(params->ith == 0);
  10512. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10514. return;
  10515. }
  10516. const int n = ggml_nrows(src0);
  10517. const int nc = src0->ne[0];
  10518. assert( dst->nb[0] == sizeof(float));
  10519. assert(src0->nb[0] == sizeof(float));
  10520. assert(src1->nb[0] == sizeof(float));
  10521. for (int i = 0; i < n; i++) {
  10522. fun(nc,
  10523. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10524. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10525. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10526. }
  10527. }
  10528. static void ggml_compute_forward_map_binary(
  10529. const struct ggml_compute_params * params,
  10530. const struct ggml_tensor * src0,
  10531. const struct ggml_tensor * src1,
  10532. struct ggml_tensor * dst,
  10533. const ggml_binary_op_f32_t fun) {
  10534. switch (src0->type) {
  10535. case GGML_TYPE_F32:
  10536. {
  10537. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10538. } break;
  10539. default:
  10540. {
  10541. GGML_ASSERT(false);
  10542. } break;
  10543. }
  10544. }
  10545. /////////////////////////////////
  10546. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10547. GGML_ASSERT(params);
  10548. #ifdef GGML_USE_CUBLAS
  10549. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  10550. if (skip_cpu) {
  10551. return;
  10552. }
  10553. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  10554. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  10555. #endif // GGML_USE_CUBLAS
  10556. switch (tensor->op) {
  10557. case GGML_OP_DUP:
  10558. {
  10559. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10560. } break;
  10561. case GGML_OP_ADD:
  10562. {
  10563. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10564. } break;
  10565. case GGML_OP_ADD1:
  10566. {
  10567. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10568. } break;
  10569. case GGML_OP_ACC:
  10570. {
  10571. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10572. } break;
  10573. case GGML_OP_SUB:
  10574. {
  10575. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10576. } break;
  10577. case GGML_OP_MUL:
  10578. {
  10579. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10580. } break;
  10581. case GGML_OP_DIV:
  10582. {
  10583. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10584. } break;
  10585. case GGML_OP_SQR:
  10586. {
  10587. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10588. } break;
  10589. case GGML_OP_SQRT:
  10590. {
  10591. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10592. } break;
  10593. case GGML_OP_LOG:
  10594. {
  10595. ggml_compute_forward_log(params, tensor->src0, tensor);
  10596. } break;
  10597. case GGML_OP_SUM:
  10598. {
  10599. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10600. } break;
  10601. case GGML_OP_SUM_ROWS:
  10602. {
  10603. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10604. } break;
  10605. case GGML_OP_MEAN:
  10606. {
  10607. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10608. } break;
  10609. case GGML_OP_REPEAT:
  10610. {
  10611. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10612. } break;
  10613. case GGML_OP_ABS:
  10614. {
  10615. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10616. } break;
  10617. case GGML_OP_SGN:
  10618. {
  10619. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10620. } break;
  10621. case GGML_OP_NEG:
  10622. {
  10623. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10624. } break;
  10625. case GGML_OP_STEP:
  10626. {
  10627. ggml_compute_forward_step(params, tensor->src0, tensor);
  10628. } break;
  10629. case GGML_OP_RELU:
  10630. {
  10631. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10632. } break;
  10633. case GGML_OP_GELU:
  10634. {
  10635. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10636. } break;
  10637. case GGML_OP_SILU:
  10638. {
  10639. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10640. } break;
  10641. case GGML_OP_SILU_BACK:
  10642. {
  10643. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10644. } break;
  10645. case GGML_OP_NORM:
  10646. {
  10647. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10648. } break;
  10649. case GGML_OP_RMS_NORM:
  10650. {
  10651. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10652. } break;
  10653. case GGML_OP_RMS_NORM_BACK:
  10654. {
  10655. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10656. } break;
  10657. case GGML_OP_MUL_MAT:
  10658. {
  10659. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10660. } break;
  10661. case GGML_OP_SCALE:
  10662. {
  10663. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10664. } break;
  10665. case GGML_OP_SET:
  10666. {
  10667. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10668. } break;
  10669. case GGML_OP_CPY:
  10670. {
  10671. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10672. } break;
  10673. case GGML_OP_CONT:
  10674. {
  10675. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10676. } break;
  10677. case GGML_OP_RESHAPE:
  10678. {
  10679. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10680. } break;
  10681. case GGML_OP_VIEW:
  10682. {
  10683. ggml_compute_forward_view(params, tensor->src0);
  10684. } break;
  10685. case GGML_OP_PERMUTE:
  10686. {
  10687. ggml_compute_forward_permute(params, tensor->src0);
  10688. } break;
  10689. case GGML_OP_TRANSPOSE:
  10690. {
  10691. ggml_compute_forward_transpose(params, tensor->src0);
  10692. } break;
  10693. case GGML_OP_GET_ROWS:
  10694. {
  10695. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10696. } break;
  10697. case GGML_OP_GET_ROWS_BACK:
  10698. {
  10699. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10700. } break;
  10701. case GGML_OP_DIAG:
  10702. {
  10703. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10704. } break;
  10705. case GGML_OP_DIAG_MASK_INF:
  10706. {
  10707. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10708. } break;
  10709. case GGML_OP_DIAG_MASK_ZERO:
  10710. {
  10711. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10712. } break;
  10713. case GGML_OP_SOFT_MAX:
  10714. {
  10715. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10716. } break;
  10717. case GGML_OP_ROPE:
  10718. {
  10719. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10720. } break;
  10721. case GGML_OP_ROPE_BACK:
  10722. {
  10723. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10724. } break;
  10725. case GGML_OP_ALIBI:
  10726. {
  10727. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10728. } break;
  10729. case GGML_OP_CLAMP:
  10730. {
  10731. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10732. } break;
  10733. case GGML_OP_CONV_1D_1S:
  10734. {
  10735. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10736. } break;
  10737. case GGML_OP_CONV_1D_2S:
  10738. {
  10739. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10740. } break;
  10741. case GGML_OP_FLASH_ATTN:
  10742. {
  10743. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10744. GGML_ASSERT(t == 0 || t == 1);
  10745. bool masked = t != 0;
  10746. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10747. } break;
  10748. case GGML_OP_FLASH_FF:
  10749. {
  10750. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10751. } break;
  10752. case GGML_OP_MAP_UNARY:
  10753. {
  10754. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10755. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10756. }
  10757. break;
  10758. case GGML_OP_MAP_BINARY:
  10759. {
  10760. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10761. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10762. }
  10763. break;
  10764. case GGML_OP_NONE:
  10765. {
  10766. // nop
  10767. } break;
  10768. case GGML_OP_COUNT:
  10769. {
  10770. GGML_ASSERT(false);
  10771. } break;
  10772. }
  10773. }
  10774. ////////////////////////////////////////////////////////////////////////////////
  10775. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10776. struct ggml_tensor * src0 = tensor->src0;
  10777. struct ggml_tensor * src1 = tensor->src1;
  10778. switch (tensor->op) {
  10779. case GGML_OP_DUP:
  10780. {
  10781. if (src0->grad) {
  10782. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10783. }
  10784. } break;
  10785. case GGML_OP_ADD:
  10786. {
  10787. if (src0->grad) {
  10788. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10789. }
  10790. if (src1->grad) {
  10791. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10792. }
  10793. } break;
  10794. case GGML_OP_ADD1:
  10795. {
  10796. if (src0->grad) {
  10797. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10798. }
  10799. if (src1->grad) {
  10800. src1->grad = ggml_add_impl(ctx,
  10801. src1->grad,
  10802. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10803. inplace);
  10804. }
  10805. } break;
  10806. case GGML_OP_ACC:
  10807. {
  10808. if (src0->grad) {
  10809. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10810. }
  10811. if (src1->grad) {
  10812. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10813. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10814. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10815. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10816. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10817. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10818. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10819. tensor->grad,
  10820. src1->grad->ne[0],
  10821. src1->grad->ne[1],
  10822. src1->grad->ne[2],
  10823. src1->grad->ne[3],
  10824. nb1, nb2, nb3, offset);
  10825. src1->grad =
  10826. ggml_add_impl(ctx,
  10827. src1->grad,
  10828. ggml_reshape(ctx,
  10829. ggml_cont(ctx, tensor_grad_view),
  10830. src1->grad),
  10831. inplace);
  10832. }
  10833. } break;
  10834. case GGML_OP_SUB:
  10835. {
  10836. if (src0->grad) {
  10837. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10838. }
  10839. if (src1->grad) {
  10840. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10841. }
  10842. } break;
  10843. case GGML_OP_MUL:
  10844. {
  10845. if (src0->grad) {
  10846. src0->grad =
  10847. ggml_add_impl(ctx,
  10848. src0->grad,
  10849. ggml_mul(ctx, src1, tensor->grad),
  10850. inplace);
  10851. }
  10852. if (src1->grad) {
  10853. src1->grad =
  10854. ggml_add_impl(ctx,
  10855. src1->grad,
  10856. ggml_mul(ctx, src0, tensor->grad),
  10857. inplace);
  10858. }
  10859. } break;
  10860. case GGML_OP_DIV:
  10861. {
  10862. if (src0->grad) {
  10863. src0->grad =
  10864. ggml_add_impl(ctx,
  10865. src0->grad,
  10866. ggml_div(ctx, tensor->grad, src1),
  10867. inplace);
  10868. }
  10869. if (src1->grad) {
  10870. src1->grad =
  10871. ggml_sub_impl(ctx,
  10872. src1->grad,
  10873. ggml_mul(ctx,
  10874. tensor->grad,
  10875. ggml_div(ctx, tensor, src1)),
  10876. inplace);
  10877. }
  10878. } break;
  10879. case GGML_OP_SQR:
  10880. {
  10881. if (src0->grad) {
  10882. src0->grad =
  10883. ggml_add_impl(ctx,
  10884. src0->grad,
  10885. ggml_scale(ctx,
  10886. ggml_mul(ctx, src0, tensor->grad),
  10887. ggml_new_f32(ctx, 2.0f)),
  10888. inplace);
  10889. }
  10890. } break;
  10891. case GGML_OP_SQRT:
  10892. {
  10893. if (src0->grad) {
  10894. src0->grad =
  10895. ggml_add_impl(ctx,
  10896. src0->grad,
  10897. ggml_mul(ctx,
  10898. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10899. ggml_div(ctx,
  10900. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10901. tensor)),
  10902. inplace);
  10903. }
  10904. } break;
  10905. case GGML_OP_LOG:
  10906. {
  10907. if (src0->grad) {
  10908. src0->grad =
  10909. ggml_add_impl(ctx,
  10910. src0->grad,
  10911. ggml_div(ctx,
  10912. tensor->grad,
  10913. src0),
  10914. inplace);
  10915. }
  10916. } break;
  10917. case GGML_OP_SUM:
  10918. {
  10919. if (src0->grad) {
  10920. src0->grad =
  10921. ggml_add1_impl(ctx,
  10922. src0->grad,
  10923. tensor->grad,
  10924. inplace);
  10925. }
  10926. } break;
  10927. case GGML_OP_SUM_ROWS:
  10928. {
  10929. if (src0->grad) {
  10930. src0->grad =
  10931. ggml_add_impl(ctx,
  10932. src0->grad,
  10933. ggml_repeat(ctx,
  10934. tensor->grad,
  10935. src0->grad),
  10936. inplace);
  10937. }
  10938. } break;
  10939. case GGML_OP_MEAN:
  10940. {
  10941. GGML_ASSERT(false); // TODO: implement
  10942. } break;
  10943. case GGML_OP_REPEAT:
  10944. {
  10945. // necessary for llama
  10946. if (src0->grad) {
  10947. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10948. const int nc = tensor->ne[0];
  10949. const int nr = tensor->ne[1];
  10950. const int nc0 = src0->ne[0];
  10951. const int nr0 = src0->ne[1];
  10952. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10953. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10954. // tensor->grad [nc,nr,1,1]
  10955. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10956. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10957. // substitute [nc0,nr0,ncr,nrr]
  10958. // reshape [nc0*nr0,ncr*nrr,1,1]
  10959. // transpose [ncr*nrr,nc0*nr0,1,1]
  10960. // sum rows [1,nc0*nr0,1,1]
  10961. // transpose [nc0*nr0,1,1]
  10962. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10963. // add to src0->grad
  10964. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10965. struct ggml_tensor* F00 = tensor->grad;
  10966. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10967. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10968. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10969. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10970. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10971. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10972. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10973. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10974. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10975. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10976. src0->grad =
  10977. ggml_add_impl(ctx,
  10978. src0->grad,
  10979. F10,
  10980. inplace);
  10981. }
  10982. } break;
  10983. case GGML_OP_ABS:
  10984. {
  10985. if (src0->grad) {
  10986. src0->grad =
  10987. ggml_add_impl(ctx,
  10988. src0->grad,
  10989. ggml_mul(ctx,
  10990. ggml_sgn(ctx, src0),
  10991. tensor->grad),
  10992. inplace);
  10993. }
  10994. } break;
  10995. case GGML_OP_SGN:
  10996. {
  10997. if (src0->grad) {
  10998. // noop
  10999. }
  11000. } break;
  11001. case GGML_OP_NEG:
  11002. {
  11003. if (src0->grad) {
  11004. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  11005. }
  11006. } break;
  11007. case GGML_OP_STEP:
  11008. {
  11009. if (src0->grad) {
  11010. // noop
  11011. }
  11012. } break;
  11013. case GGML_OP_RELU:
  11014. {
  11015. if (src0->grad) {
  11016. src0->grad = ggml_sub_impl(ctx,
  11017. src0->grad,
  11018. ggml_mul(ctx,
  11019. ggml_step(ctx, src0),
  11020. tensor->grad),
  11021. inplace);
  11022. }
  11023. } break;
  11024. case GGML_OP_GELU:
  11025. {
  11026. GGML_ASSERT(false); // TODO: not implemented
  11027. } break;
  11028. case GGML_OP_ALIBI:
  11029. {
  11030. GGML_ASSERT(false); // TODO: not implemented
  11031. } break;
  11032. case GGML_OP_CLAMP:
  11033. {
  11034. GGML_ASSERT(false); // TODO: not implemented
  11035. } break;
  11036. case GGML_OP_SILU:
  11037. {
  11038. // necessary for llama
  11039. if (src0->grad) {
  11040. src0->grad = ggml_add_impl(ctx,
  11041. src0->grad,
  11042. ggml_silu_back(ctx, src0, tensor->grad),
  11043. inplace);
  11044. }
  11045. } break;
  11046. case GGML_OP_SILU_BACK:
  11047. {
  11048. GGML_ASSERT(false); // TODO: not implemented
  11049. } break;
  11050. case GGML_OP_NORM:
  11051. {
  11052. GGML_ASSERT(false); // TODO: not implemented
  11053. } break;
  11054. case GGML_OP_RMS_NORM:
  11055. {
  11056. // necessary for llama
  11057. if (src0->grad) {
  11058. src0->grad = ggml_add_impl(ctx,
  11059. src0->grad,
  11060. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11061. inplace);
  11062. }
  11063. } break;
  11064. case GGML_OP_RMS_NORM_BACK:
  11065. {
  11066. GGML_ASSERT(false); // TODO: not implemented
  11067. } break;
  11068. case GGML_OP_MUL_MAT:
  11069. {
  11070. // https://cs231n.github.io/optimization-2/#staged
  11071. // # forward pass
  11072. // s0 = np.random.randn(5, 10)
  11073. // s1 = np.random.randn(10, 3)
  11074. // t = s0.dot(s1)
  11075. // # now suppose we had the gradient on t from above in the circuit
  11076. // dt = np.random.randn(*t.shape) # same shape as t
  11077. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11078. // ds1 = t.T.dot(dt)
  11079. // tensor.shape [m,p]
  11080. // src0.shape [n,m]
  11081. // src1.shape [n,p]
  11082. // necessary for llama
  11083. if (src0->grad) {
  11084. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11085. src0->grad =
  11086. ggml_add_impl(ctx,
  11087. src0->grad,
  11088. // ds0 = dt.dot(s1.T)
  11089. // ggml_out_prod(ctx, // [n,m]
  11090. // src1, // [n,p]
  11091. // tensor->grad), // [m,p]
  11092. // for now just using A*B==(B.T*A.T).T
  11093. ggml_cont(ctx, // [n,m]
  11094. ggml_transpose(ctx, // [n,m]
  11095. ggml_mul_mat(ctx, // [m,n]
  11096. ggml_cont(ctx, // [p,m]
  11097. ggml_transpose(ctx, // [p,m]
  11098. tensor->grad)), // [m,p]
  11099. ggml_cont(ctx, // [p,n]
  11100. ggml_transpose(ctx, // [p,n]
  11101. src1))))), // [n,p]
  11102. inplace);
  11103. }
  11104. if (src1->grad) {
  11105. src1->grad =
  11106. ggml_add_impl(ctx,
  11107. src1->grad,
  11108. // ds1 = s0.T.dot(dt):
  11109. ggml_mul_mat(ctx, // [n,p]
  11110. ggml_cont(ctx, // [m,n]
  11111. ggml_transpose(ctx, src0)), // [m,n]
  11112. tensor->grad), // [m,p]
  11113. inplace);
  11114. }
  11115. } break;
  11116. case GGML_OP_SCALE:
  11117. {
  11118. // necessary for llama
  11119. if (src0->grad) {
  11120. src0->grad =
  11121. ggml_add_impl(ctx,
  11122. src0->grad,
  11123. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11124. inplace);
  11125. }
  11126. if (src1->grad) {
  11127. src1->grad =
  11128. ggml_add_impl(ctx,
  11129. src1->grad,
  11130. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11131. inplace);
  11132. }
  11133. } break;
  11134. case GGML_OP_SET:
  11135. {
  11136. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11137. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11138. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11139. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11140. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11141. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11142. struct ggml_tensor * tensor_grad_view = NULL;
  11143. if (src0->grad || src1->grad) {
  11144. GGML_ASSERT(src0->type == tensor->type);
  11145. GGML_ASSERT(tensor->grad->type == tensor->type);
  11146. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11147. tensor_grad_view = ggml_view_4d(ctx,
  11148. tensor->grad,
  11149. src1->grad->ne[0],
  11150. src1->grad->ne[1],
  11151. src1->grad->ne[2],
  11152. src1->grad->ne[3],
  11153. nb1, nb2, nb3, offset);
  11154. }
  11155. if (src0->grad) {
  11156. src0->grad = ggml_add_impl(ctx,
  11157. src0->grad,
  11158. ggml_acc_impl(ctx,
  11159. tensor->grad,
  11160. ggml_neg(ctx, tensor_grad_view),
  11161. nb1, nb2, nb3, offset, false),
  11162. inplace);
  11163. }
  11164. if (src1->grad) {
  11165. src1->grad =
  11166. ggml_add_impl(ctx,
  11167. src1->grad,
  11168. ggml_reshape(ctx,
  11169. ggml_cont(ctx, tensor_grad_view),
  11170. src1->grad),
  11171. inplace);
  11172. }
  11173. } break;
  11174. case GGML_OP_CPY:
  11175. {
  11176. // necessary for llama
  11177. // cpy overwrites value of src1 by src0 and returns view(src1)
  11178. // the overwriting is mathematically equivalent to:
  11179. // tensor = src0 * 1 + src1 * 0
  11180. if (src0->grad) {
  11181. // dsrc0 = dtensor * 1
  11182. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11183. }
  11184. if (src1->grad) {
  11185. // dsrc1 = dtensor * 0 -> noop
  11186. }
  11187. } break;
  11188. case GGML_OP_CONT:
  11189. {
  11190. // same as cpy
  11191. if (src0->grad) {
  11192. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11193. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11194. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11195. }
  11196. } break;
  11197. case GGML_OP_RESHAPE:
  11198. {
  11199. // necessary for llama
  11200. if (src0->grad) {
  11201. src0->grad =
  11202. ggml_add_impl(ctx, src0->grad,
  11203. ggml_reshape(ctx, tensor->grad, src0->grad),
  11204. inplace);
  11205. }
  11206. } break;
  11207. case GGML_OP_VIEW:
  11208. {
  11209. // necessary for llama
  11210. if (src0->grad) {
  11211. size_t offset;
  11212. memcpy(&offset, tensor->padding, sizeof(offset));
  11213. size_t nb1 = tensor->nb[1];
  11214. size_t nb2 = tensor->nb[2];
  11215. size_t nb3 = tensor->nb[3];
  11216. if (src0->type != src0->grad->type) {
  11217. // gradient is typically F32, but src0 could be other type
  11218. size_t ng = ggml_element_size(src0->grad);
  11219. size_t n0 = ggml_element_size(src0);
  11220. GGML_ASSERT(offset % n0 == 0);
  11221. GGML_ASSERT(nb1 % n0 == 0);
  11222. GGML_ASSERT(nb2 % n0 == 0);
  11223. GGML_ASSERT(nb3 % n0 == 0);
  11224. offset = (offset / n0) * ng;
  11225. nb1 = (nb1 / n0) * ng;
  11226. nb2 = (nb2 / n0) * ng;
  11227. nb3 = (nb3 / n0) * ng;
  11228. }
  11229. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11230. }
  11231. } break;
  11232. case GGML_OP_PERMUTE:
  11233. {
  11234. // necessary for llama
  11235. if (src0->grad) {
  11236. int axis0 = tensor->padding[0] & 0x3;
  11237. int axis1 = tensor->padding[1] & 0x3;
  11238. int axis2 = tensor->padding[2] & 0x3;
  11239. int axis3 = tensor->padding[3] & 0x3;
  11240. int axes_backward[4] = {0,0,0,0};
  11241. axes_backward[axis0] = 0;
  11242. axes_backward[axis1] = 1;
  11243. axes_backward[axis2] = 2;
  11244. axes_backward[axis3] = 3;
  11245. src0->grad =
  11246. ggml_add_impl(ctx, src0->grad,
  11247. ggml_permute(ctx,
  11248. tensor->grad,
  11249. axes_backward[0],
  11250. axes_backward[1],
  11251. axes_backward[2],
  11252. axes_backward[3]),
  11253. inplace);
  11254. }
  11255. } break;
  11256. case GGML_OP_TRANSPOSE:
  11257. {
  11258. // necessary for llama
  11259. if (src0->grad) {
  11260. src0->grad =
  11261. ggml_add_impl(ctx, src0->grad,
  11262. ggml_transpose(ctx, tensor->grad),
  11263. inplace);
  11264. }
  11265. } break;
  11266. case GGML_OP_GET_ROWS:
  11267. {
  11268. // necessary for llama (only for tokenizer)
  11269. if (src0->grad) {
  11270. src0->grad =
  11271. ggml_add_impl(ctx, src0->grad,
  11272. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11273. inplace);
  11274. }
  11275. if (src1->grad) {
  11276. // noop
  11277. }
  11278. } break;
  11279. case GGML_OP_GET_ROWS_BACK:
  11280. {
  11281. GGML_ASSERT(false); // TODO: not implemented
  11282. } break;
  11283. case GGML_OP_DIAG:
  11284. {
  11285. GGML_ASSERT(false); // TODO: not implemented
  11286. } break;
  11287. case GGML_OP_DIAG_MASK_INF:
  11288. {
  11289. // necessary for llama
  11290. if (src0->grad) {
  11291. assert(src1->type == GGML_TYPE_I32);
  11292. assert(ggml_nelements(src1) == 2);
  11293. const int n_past = ((int32_t *) src1->data)[0];
  11294. src0->grad =
  11295. ggml_add_impl(ctx, src0->grad,
  11296. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11297. inplace);
  11298. }
  11299. if (src1->grad) {
  11300. // noop
  11301. }
  11302. } break;
  11303. case GGML_OP_DIAG_MASK_ZERO:
  11304. {
  11305. // necessary for llama
  11306. if (src0->grad) {
  11307. assert(src1->type == GGML_TYPE_I32);
  11308. assert(ggml_nelements(src1) == 2);
  11309. const int n_past = ((int32_t *) src1->data)[0];
  11310. src0->grad =
  11311. ggml_add_impl(ctx, src0->grad,
  11312. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11313. inplace);
  11314. }
  11315. if (src1->grad) {
  11316. // noop
  11317. }
  11318. } break;
  11319. case GGML_OP_SOFT_MAX:
  11320. {
  11321. // necessary for llama
  11322. if (src0->grad) {
  11323. // y = softmax(x)
  11324. //
  11325. // Jii = yi - yi*yi
  11326. // Jij = -yi*yj
  11327. // J = diag(y)-y.*y
  11328. // dx = J * dy
  11329. // dxk = sum(Jkj * dyk)
  11330. int64_t ne2[4] = {
  11331. tensor->ne[0],
  11332. 1,
  11333. tensor->ne[1]*tensor->ne[2],
  11334. tensor->ne[3]
  11335. };
  11336. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11337. ggml_reshape_4d(ctx,
  11338. ggml_cont(ctx, tensor),
  11339. ne2[0], ne2[1], ne2[2], ne2[3]));
  11340. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11341. ggml_reshape_4d(ctx,
  11342. ggml_cont(ctx, tensor->grad),
  11343. ne2[0], ne2[1], ne2[2], ne2[3]));
  11344. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11345. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11346. tensor2, // [ne0,1,ne1*ne2,ne3]
  11347. 1, 0, 2, 3));
  11348. src0->grad =
  11349. ggml_add_impl(ctx,
  11350. src0->grad, // [ne0,ne1,ne2,ne3]
  11351. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11352. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11353. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11354. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11355. tensor2), // [ne0,1,ne1*ne2,ne3]
  11356. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11357. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11358. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11359. grad2), // [ne0,1,ne1*ne2,ne3]
  11360. src0->grad),
  11361. inplace);
  11362. }
  11363. } break;
  11364. case GGML_OP_ROPE:
  11365. {
  11366. // necessary for llama
  11367. if (src0->grad) {
  11368. assert(src1->type == GGML_TYPE_I32);
  11369. assert(ggml_nelements(src1) == 3);
  11370. const int n_past = ((int32_t *) src1->data)[0];
  11371. const int n_dims = ((int32_t *) src1->data)[1];
  11372. const int mode = ((int32_t *) src1->data)[2];
  11373. src0->grad = ggml_add_impl(ctx,
  11374. src0->grad,
  11375. ggml_rope_back(ctx,
  11376. tensor->grad,
  11377. n_past,
  11378. n_dims,
  11379. mode),
  11380. inplace);
  11381. }
  11382. if (src1->grad) {
  11383. // noop
  11384. }
  11385. } break;
  11386. case GGML_OP_ROPE_BACK:
  11387. {
  11388. if (src0->grad) {
  11389. assert(src1->type == GGML_TYPE_I32);
  11390. assert(ggml_nelements(src1) == 3);
  11391. const int n_past = ((int32_t *) src1->data)[0];
  11392. const int n_dims = ((int32_t *) src1->data)[1];
  11393. const int mode = ((int32_t *) src1->data)[2];
  11394. src0->grad = ggml_add_impl(ctx,
  11395. src0->grad,
  11396. ggml_rope(ctx,
  11397. tensor->grad,
  11398. n_past,
  11399. n_dims,
  11400. mode),
  11401. inplace);
  11402. }
  11403. if (src1->grad) {
  11404. // noop
  11405. }
  11406. } break;
  11407. case GGML_OP_CONV_1D_1S:
  11408. {
  11409. GGML_ASSERT(false); // TODO: not implemented
  11410. } break;
  11411. case GGML_OP_CONV_1D_2S:
  11412. {
  11413. GGML_ASSERT(false); // TODO: not implemented
  11414. } break;
  11415. case GGML_OP_FLASH_ATTN:
  11416. {
  11417. GGML_ASSERT(false); // not supported
  11418. } break;
  11419. case GGML_OP_FLASH_FF:
  11420. {
  11421. GGML_ASSERT(false); // not supported
  11422. } break;
  11423. case GGML_OP_MAP_UNARY:
  11424. case GGML_OP_MAP_BINARY:
  11425. {
  11426. GGML_ASSERT(false); // not supported
  11427. } break;
  11428. case GGML_OP_NONE:
  11429. {
  11430. // nop
  11431. } break;
  11432. case GGML_OP_COUNT:
  11433. {
  11434. GGML_ASSERT(false);
  11435. } break;
  11436. }
  11437. }
  11438. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11439. if (node->grad == NULL) {
  11440. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11441. // it can also happen during forward pass, if the user performs computations with constants
  11442. if (node->op != GGML_OP_NONE) {
  11443. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11444. }
  11445. }
  11446. // check if already visited
  11447. for (int i = 0; i < cgraph->n_nodes; i++) {
  11448. if (cgraph->nodes[i] == node) {
  11449. return;
  11450. }
  11451. }
  11452. for (int i = 0; i < cgraph->n_leafs; i++) {
  11453. if (cgraph->leafs[i] == node) {
  11454. return;
  11455. }
  11456. }
  11457. if (node->src0) {
  11458. ggml_visit_parents(cgraph, node->src0);
  11459. }
  11460. if (node->src1) {
  11461. ggml_visit_parents(cgraph, node->src1);
  11462. }
  11463. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11464. if (node->opt[i]) {
  11465. ggml_visit_parents(cgraph, node->opt[i]);
  11466. }
  11467. }
  11468. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11469. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11470. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11471. if (strlen(node->name) == 0) {
  11472. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11473. }
  11474. cgraph->leafs[cgraph->n_leafs] = node;
  11475. cgraph->n_leafs++;
  11476. } else {
  11477. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11478. if (strlen(node->name) == 0) {
  11479. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11480. }
  11481. cgraph->nodes[cgraph->n_nodes] = node;
  11482. cgraph->grads[cgraph->n_nodes] = node->grad;
  11483. cgraph->n_nodes++;
  11484. }
  11485. }
  11486. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11487. if (!expand) {
  11488. cgraph->n_nodes = 0;
  11489. cgraph->n_leafs = 0;
  11490. }
  11491. const int n0 = cgraph->n_nodes;
  11492. UNUSED(n0);
  11493. ggml_visit_parents(cgraph, tensor);
  11494. const int n_new = cgraph->n_nodes - n0;
  11495. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11496. if (n_new > 0) {
  11497. // the last added node should always be starting point
  11498. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11499. }
  11500. }
  11501. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11502. ggml_build_forward_impl(cgraph, tensor, true);
  11503. }
  11504. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11505. struct ggml_cgraph result = {
  11506. /*.n_nodes =*/ 0,
  11507. /*.n_leafs =*/ 0,
  11508. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11509. /*.work_size =*/ 0,
  11510. /*.work =*/ NULL,
  11511. /*.nodes =*/ { NULL },
  11512. /*.grads =*/ { NULL },
  11513. /*.leafs =*/ { NULL },
  11514. /*.perf_runs =*/ 0,
  11515. /*.perf_cycles =*/ 0,
  11516. /*.perf_time_us =*/ 0,
  11517. };
  11518. ggml_build_forward_impl(&result, tensor, false);
  11519. return result;
  11520. }
  11521. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11522. struct ggml_cgraph result = *gf;
  11523. GGML_ASSERT(gf->n_nodes > 0);
  11524. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11525. if (keep) {
  11526. for (int i = 0; i < gf->n_nodes; i++) {
  11527. struct ggml_tensor * node = gf->nodes[i];
  11528. if (node->grad) {
  11529. node->grad = ggml_dup_tensor(ctx, node);
  11530. gf->grads[i] = node->grad;
  11531. }
  11532. }
  11533. }
  11534. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11535. struct ggml_tensor * node = gf->nodes[i];
  11536. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11537. if (node->grad) {
  11538. ggml_compute_backward(ctx, node, keep);
  11539. }
  11540. }
  11541. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11542. struct ggml_tensor * node = gf->nodes[i];
  11543. if (node->is_param) {
  11544. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11545. ggml_build_forward_impl(&result, node->grad, true);
  11546. }
  11547. }
  11548. return result;
  11549. }
  11550. //
  11551. // thread data
  11552. //
  11553. // synchronization is done via busy loops
  11554. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11555. //
  11556. #ifdef __APPLE__
  11557. //#include <os/lock.h>
  11558. //
  11559. //typedef os_unfair_lock ggml_lock_t;
  11560. //
  11561. //#define ggml_lock_init(x) UNUSED(x)
  11562. //#define ggml_lock_destroy(x) UNUSED(x)
  11563. //#define ggml_lock_lock os_unfair_lock_lock
  11564. //#define ggml_lock_unlock os_unfair_lock_unlock
  11565. //
  11566. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11567. typedef int ggml_lock_t;
  11568. #define ggml_lock_init(x) UNUSED(x)
  11569. #define ggml_lock_destroy(x) UNUSED(x)
  11570. #define ggml_lock_lock(x) UNUSED(x)
  11571. #define ggml_lock_unlock(x) UNUSED(x)
  11572. #define GGML_LOCK_INITIALIZER 0
  11573. typedef pthread_t ggml_thread_t;
  11574. #define ggml_thread_create pthread_create
  11575. #define ggml_thread_join pthread_join
  11576. #else
  11577. //typedef pthread_spinlock_t ggml_lock_t;
  11578. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11579. //#define ggml_lock_destroy pthread_spin_destroy
  11580. //#define ggml_lock_lock pthread_spin_lock
  11581. //#define ggml_lock_unlock pthread_spin_unlock
  11582. typedef int ggml_lock_t;
  11583. #define ggml_lock_init(x) UNUSED(x)
  11584. #define ggml_lock_destroy(x) UNUSED(x)
  11585. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11586. #define ggml_lock_lock(x) _mm_pause()
  11587. #else
  11588. #define ggml_lock_lock(x) UNUSED(x)
  11589. #endif
  11590. #define ggml_lock_unlock(x) UNUSED(x)
  11591. #define GGML_LOCK_INITIALIZER 0
  11592. typedef pthread_t ggml_thread_t;
  11593. #define ggml_thread_create pthread_create
  11594. #define ggml_thread_join pthread_join
  11595. #endif
  11596. struct ggml_compute_state_shared {
  11597. ggml_lock_t spin;
  11598. int n_threads;
  11599. // synchronization primitives
  11600. atomic_int n_ready;
  11601. atomic_bool has_work;
  11602. atomic_bool stop; // stop all threads
  11603. };
  11604. struct ggml_compute_state {
  11605. ggml_thread_t thrd;
  11606. struct ggml_compute_params params;
  11607. struct ggml_tensor * node;
  11608. struct ggml_compute_state_shared * shared;
  11609. };
  11610. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11611. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11612. const int n_threads = state->shared->n_threads;
  11613. while (true) {
  11614. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11615. atomic_store(&state->shared->has_work, false);
  11616. } else {
  11617. while (atomic_load(&state->shared->has_work)) {
  11618. if (atomic_load(&state->shared->stop)) {
  11619. return 0;
  11620. }
  11621. ggml_lock_lock (&state->shared->spin);
  11622. ggml_lock_unlock(&state->shared->spin);
  11623. }
  11624. }
  11625. atomic_fetch_sub(&state->shared->n_ready, 1);
  11626. // wait for work
  11627. while (!atomic_load(&state->shared->has_work)) {
  11628. if (atomic_load(&state->shared->stop)) {
  11629. return 0;
  11630. }
  11631. ggml_lock_lock (&state->shared->spin);
  11632. ggml_lock_unlock(&state->shared->spin);
  11633. }
  11634. // check if we should stop
  11635. if (atomic_load(&state->shared->stop)) {
  11636. break;
  11637. }
  11638. if (state->node) {
  11639. if (state->params.ith < state->params.nth) {
  11640. ggml_compute_forward(&state->params, state->node);
  11641. }
  11642. state->node = NULL;
  11643. } else {
  11644. break;
  11645. }
  11646. }
  11647. return 0;
  11648. }
  11649. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11650. const int n_threads = cgraph->n_threads;
  11651. struct ggml_compute_state_shared state_shared = {
  11652. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11653. /*.n_threads =*/ n_threads,
  11654. /*.n_ready =*/ 0,
  11655. /*.has_work =*/ false,
  11656. /*.stop =*/ false,
  11657. };
  11658. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11659. // create thread pool
  11660. if (n_threads > 1) {
  11661. ggml_lock_init(&state_shared.spin);
  11662. atomic_store(&state_shared.has_work, true);
  11663. for (int j = 0; j < n_threads - 1; j++) {
  11664. workers[j] = (struct ggml_compute_state) {
  11665. .thrd = 0,
  11666. .params = {
  11667. .type = GGML_TASK_COMPUTE,
  11668. .ith = j + 1,
  11669. .nth = n_threads,
  11670. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11671. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11672. },
  11673. .node = NULL,
  11674. .shared = &state_shared,
  11675. };
  11676. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11677. GGML_ASSERT(rc == 0);
  11678. UNUSED(rc);
  11679. }
  11680. }
  11681. // initialize tasks + work buffer
  11682. {
  11683. size_t work_size = 0;
  11684. // thread scheduling for the different operations
  11685. for (int i = 0; i < cgraph->n_nodes; i++) {
  11686. struct ggml_tensor * node = cgraph->nodes[i];
  11687. switch (node->op) {
  11688. case GGML_OP_CPY:
  11689. case GGML_OP_DUP:
  11690. {
  11691. node->n_tasks = n_threads;
  11692. size_t cur = 0;
  11693. if (ggml_is_quantized(node->type)) {
  11694. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11695. }
  11696. work_size = MAX(work_size, cur);
  11697. } break;
  11698. case GGML_OP_ADD:
  11699. case GGML_OP_ADD1:
  11700. {
  11701. node->n_tasks = n_threads;
  11702. size_t cur = 0;
  11703. if (ggml_is_quantized(node->src0->type)) {
  11704. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11705. }
  11706. work_size = MAX(work_size, cur);
  11707. } break;
  11708. case GGML_OP_ACC:
  11709. {
  11710. node->n_tasks = n_threads;
  11711. size_t cur = 0;
  11712. if (ggml_is_quantized(node->src0->type)) {
  11713. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11714. }
  11715. work_size = MAX(work_size, cur);
  11716. } break;
  11717. case GGML_OP_SUB:
  11718. case GGML_OP_DIV:
  11719. case GGML_OP_SQR:
  11720. case GGML_OP_SQRT:
  11721. case GGML_OP_LOG:
  11722. case GGML_OP_SUM:
  11723. case GGML_OP_SUM_ROWS:
  11724. case GGML_OP_MEAN:
  11725. case GGML_OP_REPEAT:
  11726. case GGML_OP_ABS:
  11727. case GGML_OP_SGN:
  11728. case GGML_OP_NEG:
  11729. case GGML_OP_STEP:
  11730. case GGML_OP_RELU:
  11731. {
  11732. node->n_tasks = 1;
  11733. } break;
  11734. case GGML_OP_MUL:
  11735. case GGML_OP_GELU:
  11736. case GGML_OP_SILU:
  11737. case GGML_OP_SILU_BACK:
  11738. case GGML_OP_NORM:
  11739. case GGML_OP_RMS_NORM:
  11740. case GGML_OP_RMS_NORM_BACK:
  11741. {
  11742. node->n_tasks = n_threads;
  11743. } break;
  11744. case GGML_OP_MUL_MAT:
  11745. {
  11746. node->n_tasks = n_threads;
  11747. // TODO: use different scheduling for different matrix sizes
  11748. //const int nr0 = ggml_nrows(node->src0);
  11749. //const int nr1 = ggml_nrows(node->src1);
  11750. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11751. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11752. size_t cur = 0;
  11753. #if defined(GGML_USE_CUBLAS)
  11754. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11755. node->n_tasks = 1; // TODO: this actually is doing nothing
  11756. // the threads are still spinning
  11757. }
  11758. else
  11759. #elif defined(GGML_USE_CLBLAST)
  11760. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11761. node->n_tasks = 1; // TODO: this actually is doing nothing
  11762. // the threads are still spinning
  11763. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11764. }
  11765. else
  11766. #endif
  11767. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11768. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11769. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11770. node->n_tasks = 1; // TODO: this actually is doing nothing
  11771. // the threads are still spinning
  11772. // here we need memory just for single 2D matrix from src0
  11773. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11774. } else {
  11775. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11776. }
  11777. #else
  11778. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11779. #endif
  11780. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11781. cur = 0;
  11782. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11783. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11784. node->n_tasks = 1;
  11785. }
  11786. #endif
  11787. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11788. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11789. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11790. node->n_tasks = 1;
  11791. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11792. } else
  11793. #endif
  11794. {
  11795. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11796. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11797. }
  11798. } else {
  11799. GGML_ASSERT(false);
  11800. }
  11801. work_size = MAX(work_size, cur);
  11802. } break;
  11803. case GGML_OP_SCALE:
  11804. {
  11805. node->n_tasks = n_threads;
  11806. } break;
  11807. case GGML_OP_SET:
  11808. case GGML_OP_CONT:
  11809. case GGML_OP_RESHAPE:
  11810. case GGML_OP_VIEW:
  11811. case GGML_OP_PERMUTE:
  11812. case GGML_OP_TRANSPOSE:
  11813. case GGML_OP_GET_ROWS:
  11814. case GGML_OP_GET_ROWS_BACK:
  11815. case GGML_OP_DIAG:
  11816. case GGML_OP_DIAG_MASK_ZERO:
  11817. {
  11818. node->n_tasks = 1;
  11819. } break;
  11820. case GGML_OP_DIAG_MASK_INF:
  11821. case GGML_OP_SOFT_MAX:
  11822. case GGML_OP_ROPE:
  11823. case GGML_OP_ROPE_BACK:
  11824. {
  11825. node->n_tasks = n_threads;
  11826. } break;
  11827. case GGML_OP_ALIBI:
  11828. {
  11829. node->n_tasks = 1; //TODO
  11830. } break;
  11831. case GGML_OP_CLAMP:
  11832. {
  11833. node->n_tasks = 1; //TODO
  11834. } break;
  11835. case GGML_OP_CONV_1D_1S:
  11836. case GGML_OP_CONV_1D_2S:
  11837. {
  11838. node->n_tasks = n_threads;
  11839. GGML_ASSERT(node->src0->ne[3] == 1);
  11840. GGML_ASSERT(node->src1->ne[2] == 1);
  11841. GGML_ASSERT(node->src1->ne[3] == 1);
  11842. size_t cur = 0;
  11843. const int nk = node->src0->ne[0];
  11844. if (node->src0->type == GGML_TYPE_F16 &&
  11845. node->src1->type == GGML_TYPE_F32) {
  11846. cur = sizeof(ggml_fp16_t)*(
  11847. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11848. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11849. );
  11850. } else if (node->src0->type == GGML_TYPE_F32 &&
  11851. node->src1->type == GGML_TYPE_F32) {
  11852. cur = sizeof(float)*(
  11853. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11854. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11855. );
  11856. } else {
  11857. GGML_ASSERT(false);
  11858. }
  11859. work_size = MAX(work_size, cur);
  11860. } break;
  11861. case GGML_OP_FLASH_ATTN:
  11862. {
  11863. node->n_tasks = n_threads;
  11864. size_t cur = 0;
  11865. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11866. if (node->src1->type == GGML_TYPE_F32) {
  11867. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11868. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11869. }
  11870. if (node->src1->type == GGML_TYPE_F16) {
  11871. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11872. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11873. }
  11874. work_size = MAX(work_size, cur);
  11875. } break;
  11876. case GGML_OP_FLASH_FF:
  11877. {
  11878. node->n_tasks = n_threads;
  11879. size_t cur = 0;
  11880. if (node->src1->type == GGML_TYPE_F32) {
  11881. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11882. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11883. }
  11884. if (node->src1->type == GGML_TYPE_F16) {
  11885. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11886. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11887. }
  11888. work_size = MAX(work_size, cur);
  11889. } break;
  11890. case GGML_OP_MAP_UNARY:
  11891. case GGML_OP_MAP_BINARY:
  11892. {
  11893. node->n_tasks = 1;
  11894. } break;
  11895. case GGML_OP_NONE:
  11896. {
  11897. node->n_tasks = 1;
  11898. } break;
  11899. case GGML_OP_COUNT:
  11900. {
  11901. GGML_ASSERT(false);
  11902. } break;
  11903. }
  11904. }
  11905. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11906. GGML_ASSERT(false); // TODO: better handling
  11907. }
  11908. if (work_size > 0 && cgraph->work == NULL) {
  11909. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11910. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11911. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11912. }
  11913. }
  11914. const int64_t perf_start_cycles = ggml_perf_cycles();
  11915. const int64_t perf_start_time_us = ggml_perf_time_us();
  11916. for (int i = 0; i < cgraph->n_nodes; i++) {
  11917. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11918. struct ggml_tensor * node = cgraph->nodes[i];
  11919. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11920. //if (node->grad == NULL && node->perf_runs > 0) {
  11921. // continue;
  11922. //}
  11923. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11924. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11925. // INIT
  11926. struct ggml_compute_params params = {
  11927. /*.type =*/ GGML_TASK_INIT,
  11928. /*.ith =*/ 0,
  11929. /*.nth =*/ node->n_tasks,
  11930. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11931. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11932. };
  11933. ggml_compute_forward(&params, node);
  11934. // COMPUTE
  11935. if (node->n_tasks > 1) {
  11936. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11937. atomic_store(&state_shared.has_work, false);
  11938. }
  11939. while (atomic_load(&state_shared.has_work)) {
  11940. ggml_lock_lock (&state_shared.spin);
  11941. ggml_lock_unlock(&state_shared.spin);
  11942. }
  11943. // launch thread pool
  11944. for (int j = 0; j < n_threads - 1; j++) {
  11945. workers[j].params = (struct ggml_compute_params) {
  11946. .type = GGML_TASK_COMPUTE,
  11947. .ith = j + 1,
  11948. .nth = node->n_tasks,
  11949. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11950. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11951. };
  11952. workers[j].node = node;
  11953. }
  11954. atomic_fetch_sub(&state_shared.n_ready, 1);
  11955. while (atomic_load(&state_shared.n_ready) > 0) {
  11956. ggml_lock_lock (&state_shared.spin);
  11957. ggml_lock_unlock(&state_shared.spin);
  11958. }
  11959. atomic_store(&state_shared.has_work, true);
  11960. }
  11961. params.type = GGML_TASK_COMPUTE;
  11962. ggml_compute_forward(&params, node);
  11963. // wait for thread pool
  11964. if (node->n_tasks > 1) {
  11965. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11966. atomic_store(&state_shared.has_work, false);
  11967. }
  11968. while (atomic_load(&state_shared.has_work)) {
  11969. ggml_lock_lock (&state_shared.spin);
  11970. ggml_lock_unlock(&state_shared.spin);
  11971. }
  11972. atomic_fetch_sub(&state_shared.n_ready, 1);
  11973. while (atomic_load(&state_shared.n_ready) != 0) {
  11974. ggml_lock_lock (&state_shared.spin);
  11975. ggml_lock_unlock(&state_shared.spin);
  11976. }
  11977. }
  11978. // FINALIZE
  11979. if (node->n_tasks > 1) {
  11980. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11981. atomic_store(&state_shared.has_work, false);
  11982. }
  11983. while (atomic_load(&state_shared.has_work)) {
  11984. ggml_lock_lock (&state_shared.spin);
  11985. ggml_lock_unlock(&state_shared.spin);
  11986. }
  11987. // launch thread pool
  11988. for (int j = 0; j < n_threads - 1; j++) {
  11989. workers[j].params = (struct ggml_compute_params) {
  11990. .type = GGML_TASK_FINALIZE,
  11991. .ith = j + 1,
  11992. .nth = node->n_tasks,
  11993. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11994. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11995. };
  11996. workers[j].node = node;
  11997. }
  11998. atomic_fetch_sub(&state_shared.n_ready, 1);
  11999. while (atomic_load(&state_shared.n_ready) > 0) {
  12000. ggml_lock_lock (&state_shared.spin);
  12001. ggml_lock_unlock(&state_shared.spin);
  12002. }
  12003. atomic_store(&state_shared.has_work, true);
  12004. }
  12005. params.type = GGML_TASK_FINALIZE;
  12006. ggml_compute_forward(&params, node);
  12007. // wait for thread pool
  12008. if (node->n_tasks > 1) {
  12009. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12010. atomic_store(&state_shared.has_work, false);
  12011. }
  12012. while (atomic_load(&state_shared.has_work)) {
  12013. ggml_lock_lock (&state_shared.spin);
  12014. ggml_lock_unlock(&state_shared.spin);
  12015. }
  12016. atomic_fetch_sub(&state_shared.n_ready, 1);
  12017. while (atomic_load(&state_shared.n_ready) != 0) {
  12018. ggml_lock_lock (&state_shared.spin);
  12019. ggml_lock_unlock(&state_shared.spin);
  12020. }
  12021. }
  12022. // performance stats (node)
  12023. {
  12024. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12025. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12026. node->perf_runs++;
  12027. node->perf_cycles += perf_cycles_cur;
  12028. node->perf_time_us += perf_time_us_cur;
  12029. }
  12030. }
  12031. // join thread pool
  12032. if (n_threads > 1) {
  12033. atomic_store(&state_shared.stop, true);
  12034. atomic_store(&state_shared.has_work, true);
  12035. for (int j = 0; j < n_threads - 1; j++) {
  12036. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12037. GGML_ASSERT(rc == 0);
  12038. UNUSED(rc);
  12039. }
  12040. ggml_lock_destroy(&state_shared.spin);
  12041. }
  12042. // performance stats (graph)
  12043. {
  12044. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12045. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12046. cgraph->perf_runs++;
  12047. cgraph->perf_cycles += perf_cycles_cur;
  12048. cgraph->perf_time_us += perf_time_us_cur;
  12049. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12050. __func__, cgraph->perf_runs,
  12051. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12052. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12053. (double) perf_time_us_cur / 1000.0,
  12054. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12055. }
  12056. }
  12057. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12058. for (int i = 0; i < cgraph->n_nodes; i++) {
  12059. struct ggml_tensor * grad = cgraph->grads[i];
  12060. if (grad) {
  12061. ggml_set_zero(grad);
  12062. }
  12063. }
  12064. }
  12065. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12066. for (int i = 0; i < cgraph->n_leafs; i++) {
  12067. struct ggml_tensor * leaf = cgraph->leafs[i];
  12068. if (strcmp(leaf->name, name) == 0) {
  12069. return leaf;
  12070. }
  12071. }
  12072. for (int i = 0; i < cgraph->n_nodes; i++) {
  12073. struct ggml_tensor * node = cgraph->nodes[i];
  12074. if (strcmp(node->name, name) == 0) {
  12075. return node;
  12076. }
  12077. }
  12078. return NULL;
  12079. }
  12080. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12081. const int64_t * ne = tensor->ne;
  12082. const size_t * nb = tensor->nb;
  12083. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  12084. ggml_type_name(tensor->type),
  12085. ggml_op_name (tensor->op),
  12086. tensor->n_dims,
  12087. ne[0], ne[1], ne[2], ne[3],
  12088. nb[0], nb[1], nb[2], nb[3],
  12089. tensor->data,
  12090. tensor->name);
  12091. }
  12092. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12093. const int64_t * ne = tensor->ne;
  12094. const size_t * nb = tensor->nb;
  12095. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12096. arg,
  12097. ggml_type_name(tensor->type),
  12098. ggml_op_name (tensor->op),
  12099. tensor->n_dims,
  12100. ne[0], ne[1], ne[2], ne[3],
  12101. nb[0], nb[1], nb[2], nb[3],
  12102. tensor->n_tasks,
  12103. tensor->data,
  12104. tensor->name);
  12105. }
  12106. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12107. //assert(cgraph->work == NULL);
  12108. //assert(cgraph->work_size == 0);
  12109. uint64_t size_eval = 0;
  12110. // compute size of intermediate results
  12111. // TODO: does not take into account scratch buffers !!!!
  12112. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12113. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12114. }
  12115. // print
  12116. {
  12117. FILE * fout = stdout;
  12118. fprintf(fout, "\n");
  12119. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12120. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12121. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12122. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12123. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  12124. // header
  12125. fprintf(fout, "\n");
  12126. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12127. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12128. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12129. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12130. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12131. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12132. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12133. }
  12134. // header
  12135. fprintf(fout, "\n");
  12136. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12137. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12138. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12139. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12140. if (cgraph->nodes[i]->src0) {
  12141. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12142. }
  12143. if (cgraph->nodes[i]->src1) {
  12144. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12145. }
  12146. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12147. if (cgraph->nodes[i]->opt[j]) {
  12148. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12149. }
  12150. }
  12151. fprintf(fout, "\n");
  12152. }
  12153. fprintf(fout, "\n");
  12154. }
  12155. // write binary data
  12156. {
  12157. FILE * fout = fopen(fname, "wb");
  12158. if (!fout) {
  12159. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12160. return;
  12161. }
  12162. // header
  12163. {
  12164. const uint32_t magic = GGML_FILE_MAGIC;
  12165. const uint32_t version = GGML_FILE_VERSION;
  12166. const uint32_t n_leafs = cgraph->n_leafs;
  12167. const uint32_t nodes = cgraph->n_nodes;
  12168. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12169. fwrite(&version, sizeof(uint32_t), 1, fout);
  12170. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12171. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12172. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12173. }
  12174. // leafs
  12175. {
  12176. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12177. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12178. const uint32_t type = tensor->type;
  12179. const uint32_t op = tensor->op;
  12180. const uint32_t n_dims = tensor->n_dims;
  12181. fwrite(&type, sizeof(uint32_t), 1, fout);
  12182. fwrite(&op, sizeof(uint32_t), 1, fout);
  12183. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12184. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12185. const uint64_t ne = tensor->ne[j];
  12186. const uint64_t nb = tensor->nb[j];
  12187. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12188. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12189. }
  12190. // store the pointer address
  12191. {
  12192. const uint64_t ptr = (uint64_t) tensor->data;
  12193. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12194. }
  12195. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12196. // dump the data
  12197. // TODO: pad this to 32 byte boundary
  12198. {
  12199. const size_t size = ggml_nbytes(tensor);
  12200. fwrite(tensor->data, sizeof(char), size, fout);
  12201. }
  12202. }
  12203. }
  12204. // nodes
  12205. {
  12206. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12207. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12208. const uint32_t type = tensor->type;
  12209. const uint32_t op = tensor->op;
  12210. const uint32_t n_dims = tensor->n_dims;
  12211. fwrite(&type, sizeof(uint32_t), 1, fout);
  12212. fwrite(&op, sizeof(uint32_t), 1, fout);
  12213. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12214. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12215. const uint64_t ne = tensor->ne[j];
  12216. const uint64_t nb = tensor->nb[j];
  12217. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12218. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12219. }
  12220. // store the pointer address
  12221. {
  12222. const uint64_t ptr = (uint64_t) tensor->data;
  12223. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12224. }
  12225. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12226. // output the op arguments
  12227. {
  12228. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12229. args[0] = tensor->src0;
  12230. args[1] = tensor->src1;
  12231. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12232. args[2 + j] = tensor->opt[j];
  12233. }
  12234. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12235. if (args[j]) {
  12236. int32_t idx = -1;
  12237. // check if leaf
  12238. {
  12239. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12240. if (args[j] == cgraph->leafs[k]) {
  12241. idx = k;
  12242. break;
  12243. }
  12244. }
  12245. }
  12246. // check if node
  12247. if (idx == -1) {
  12248. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12249. if (args[j] == cgraph->nodes[k]) {
  12250. idx = GGML_MAX_NODES + k;
  12251. break;
  12252. }
  12253. }
  12254. }
  12255. if (idx == -1) {
  12256. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12257. return;
  12258. }
  12259. fwrite(&idx, sizeof(int32_t), 1, fout);
  12260. } else {
  12261. const int32_t nul = -1;
  12262. fwrite(&nul, sizeof(int32_t), 1, fout);
  12263. }
  12264. }
  12265. }
  12266. }
  12267. }
  12268. fclose(fout);
  12269. }
  12270. }
  12271. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12272. assert(*ctx_data == NULL);
  12273. assert(*ctx_eval == NULL);
  12274. struct ggml_cgraph result = { 0 };
  12275. struct ggml_tensor * data = NULL;
  12276. // read file into data
  12277. {
  12278. FILE * fin = fopen(fname, "rb");
  12279. if (!fin) {
  12280. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12281. return result;
  12282. }
  12283. size_t fsize = 0;
  12284. fseek(fin, 0, SEEK_END);
  12285. fsize = ftell(fin);
  12286. fseek(fin, 0, SEEK_SET);
  12287. // create the data context
  12288. {
  12289. const size_t overhead = 1*ggml_tensor_overhead();
  12290. struct ggml_init_params params = {
  12291. .mem_size = fsize + overhead,
  12292. .mem_buffer = NULL,
  12293. .no_alloc = false,
  12294. };
  12295. *ctx_data = ggml_init(params);
  12296. if (!*ctx_data) {
  12297. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12298. return result;
  12299. }
  12300. }
  12301. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12302. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  12303. if (ret != fsize) {
  12304. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  12305. return result;
  12306. }
  12307. fclose(fin);
  12308. }
  12309. // populate result
  12310. {
  12311. char * ptr = (char *) data->data;
  12312. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12313. if (magic != GGML_FILE_MAGIC) {
  12314. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12315. return result;
  12316. }
  12317. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12318. if (version != GGML_FILE_VERSION) {
  12319. fprintf(stderr, "%s: invalid version number\n", __func__);
  12320. return result;
  12321. }
  12322. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12323. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12324. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12325. result.n_leafs = n_leafs;
  12326. result.n_nodes = n_nodes;
  12327. // create the data context
  12328. {
  12329. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12330. struct ggml_init_params params = {
  12331. .mem_size = size_eval + overhead,
  12332. .mem_buffer = NULL,
  12333. .no_alloc = true,
  12334. };
  12335. *ctx_eval = ggml_init(params);
  12336. if (!*ctx_eval) {
  12337. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12338. return result;
  12339. }
  12340. }
  12341. // leafs
  12342. {
  12343. uint32_t type;
  12344. uint32_t op;
  12345. uint32_t n_dims;
  12346. for (uint32_t i = 0; i < n_leafs; ++i) {
  12347. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12348. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12349. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12350. int64_t ne[GGML_MAX_DIMS];
  12351. size_t nb[GGML_MAX_DIMS];
  12352. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12353. uint64_t ne_cur;
  12354. uint64_t nb_cur;
  12355. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12356. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12357. ne[j] = ne_cur;
  12358. nb[j] = nb_cur;
  12359. }
  12360. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12361. tensor->op = (enum ggml_op) op;
  12362. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12363. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12364. tensor->data = (void *) ptr;
  12365. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12366. tensor->nb[j] = nb[j];
  12367. }
  12368. result.leafs[i] = tensor;
  12369. ptr += ggml_nbytes(tensor);
  12370. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12371. }
  12372. }
  12373. ggml_set_no_alloc(*ctx_eval, false);
  12374. // nodes
  12375. {
  12376. uint32_t type;
  12377. uint32_t op;
  12378. uint32_t n_dims;
  12379. for (uint32_t i = 0; i < n_nodes; ++i) {
  12380. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12381. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12382. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12383. enum ggml_op eop = (enum ggml_op) op;
  12384. int64_t ne[GGML_MAX_DIMS];
  12385. size_t nb[GGML_MAX_DIMS];
  12386. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12387. uint64_t ne_cur;
  12388. uint64_t nb_cur;
  12389. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12390. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12391. ne[j] = ne_cur;
  12392. nb[j] = nb_cur;
  12393. }
  12394. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12395. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12396. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12397. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12398. // parse args
  12399. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12400. const int32_t arg_idx = ptr_arg_idx[j];
  12401. if (arg_idx == -1) {
  12402. continue;
  12403. }
  12404. if (arg_idx < GGML_MAX_NODES) {
  12405. args[j] = result.leafs[arg_idx];
  12406. } else {
  12407. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12408. }
  12409. }
  12410. // create the tensor
  12411. // "view" operations are handled differently
  12412. // TODO: handle inplace ops - currently a copy is always made
  12413. struct ggml_tensor * tensor = NULL;
  12414. switch (eop) {
  12415. // TODO: implement other view ops
  12416. case GGML_OP_RESHAPE:
  12417. {
  12418. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12419. } break;
  12420. case GGML_OP_VIEW:
  12421. {
  12422. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12423. uint64_t offs;
  12424. memcpy(&offs, args[2]->data, sizeof(offs));
  12425. tensor->data = ((char *) tensor->data) + offs;
  12426. } break;
  12427. case GGML_OP_TRANSPOSE:
  12428. {
  12429. tensor = ggml_transpose(*ctx_eval, args[0]);
  12430. } break;
  12431. case GGML_OP_PERMUTE:
  12432. {
  12433. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12434. } break;
  12435. default:
  12436. {
  12437. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12438. tensor->op = eop;
  12439. } break;
  12440. }
  12441. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12442. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12443. tensor->nb[j] = nb[j];
  12444. }
  12445. tensor->src0 = args[0];
  12446. tensor->src1 = args[1];
  12447. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12448. tensor->opt[j] = args[2 + j];
  12449. }
  12450. result.nodes[i] = tensor;
  12451. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12452. }
  12453. }
  12454. }
  12455. return result;
  12456. }
  12457. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12458. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12459. GGML_PRINT("=== GRAPH ===\n");
  12460. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12461. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12462. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12463. for (int i = 0; i < cgraph->n_nodes; i++) {
  12464. struct ggml_tensor * node = cgraph->nodes[i];
  12465. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12466. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12467. i,
  12468. node->ne[0], node->ne[1], node->ne[2],
  12469. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12470. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12471. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12472. (double) node->perf_time_us / 1000.0,
  12473. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12474. }
  12475. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12476. for (int i = 0; i < cgraph->n_leafs; i++) {
  12477. struct ggml_tensor * node = cgraph->leafs[i];
  12478. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12479. i,
  12480. node->ne[0], node->ne[1],
  12481. GGML_OP_NAME[node->op]);
  12482. }
  12483. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12484. if (perf_total_per_op_us[i] == 0) {
  12485. continue;
  12486. }
  12487. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12488. }
  12489. GGML_PRINT("========================================\n");
  12490. }
  12491. // check if node is part of the graph
  12492. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12493. if (cgraph == NULL) {
  12494. return true;
  12495. }
  12496. for (int i = 0; i < cgraph->n_nodes; i++) {
  12497. if (cgraph->nodes[i] == node) {
  12498. return true;
  12499. }
  12500. }
  12501. return false;
  12502. }
  12503. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12504. for (int i = 0; i < cgraph->n_nodes; i++) {
  12505. struct ggml_tensor * parent = cgraph->nodes[i];
  12506. if (parent->grad == node) {
  12507. return parent;
  12508. }
  12509. }
  12510. return NULL;
  12511. }
  12512. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12513. char color[16];
  12514. FILE * fp = fopen(filename, "w");
  12515. GGML_ASSERT(fp);
  12516. fprintf(fp, "digraph G {\n");
  12517. fprintf(fp, " newrank = true;\n");
  12518. fprintf(fp, " rankdir = LR;\n");
  12519. for (int i = 0; i < gb->n_nodes; i++) {
  12520. struct ggml_tensor * node = gb->nodes[i];
  12521. if (ggml_graph_get_parent(gb, node) != NULL) {
  12522. continue;
  12523. }
  12524. if (node->is_param) {
  12525. snprintf(color, sizeof(color), "yellow");
  12526. } else if (node->grad) {
  12527. if (ggml_graph_find(gf, node)) {
  12528. snprintf(color, sizeof(color), "green");
  12529. } else {
  12530. snprintf(color, sizeof(color), "lightblue");
  12531. }
  12532. } else {
  12533. snprintf(color, sizeof(color), "white");
  12534. }
  12535. fprintf(fp, " \"%p\" [ "
  12536. "style = filled; fillcolor = %s; shape = record; "
  12537. "label=\"",
  12538. (void *) node, color);
  12539. if (strlen(node->name) > 0) {
  12540. fprintf(fp, "%s |", node->name);
  12541. }
  12542. if (node->n_dims == 2) {
  12543. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12544. } else {
  12545. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12546. }
  12547. if (node->grad) {
  12548. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12549. } else {
  12550. fprintf(fp, "\"; ]\n");
  12551. }
  12552. }
  12553. for (int i = 0; i < gb->n_leafs; i++) {
  12554. struct ggml_tensor * node = gb->leafs[i];
  12555. snprintf(color, sizeof(color), "pink");
  12556. fprintf(fp, " \"%p\" [ "
  12557. "style = filled; fillcolor = %s; shape = record; "
  12558. "label=\"<x>",
  12559. (void *) node, color);
  12560. if (strlen(node->name) > 0) {
  12561. fprintf(fp, "%s | ", node->name);
  12562. }
  12563. if (ggml_nelements(node) == 1) {
  12564. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12565. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12566. }
  12567. else {
  12568. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12569. }
  12570. }
  12571. else {
  12572. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12573. }
  12574. fprintf(fp, "\"; ]\n");
  12575. }
  12576. for (int i = 0; i < gb->n_nodes; i++) {
  12577. struct ggml_tensor * node = gb->nodes[i];
  12578. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12579. if (node->src0) {
  12580. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12581. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12582. parent0 ? (void *) parent0 : (void *) node->src0,
  12583. parent0 ? "g" : "x",
  12584. parent ? (void *) parent : (void *) node,
  12585. parent ? "g" : "x",
  12586. parent ? "empty" : "vee",
  12587. parent ? "dashed" : "solid");
  12588. }
  12589. if (node->src1) {
  12590. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12591. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12592. parent1 ? (void *) parent1 : (void *) node->src1,
  12593. parent1 ? "g" : "x",
  12594. parent ? (void *) parent : (void *) node,
  12595. parent ? "g" : "x",
  12596. parent ? "empty" : "vee",
  12597. parent ? "dashed" : "solid");
  12598. }
  12599. }
  12600. for (int i = 0; i < gb->n_leafs; i++) {
  12601. struct ggml_tensor * node = gb->leafs[i];
  12602. if (node->src0) {
  12603. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12604. (void *) node->src0, "x",
  12605. (void *) node, "x");
  12606. }
  12607. if (node->src1) {
  12608. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12609. (void *) node->src1, "x",
  12610. (void *) node, "x");
  12611. }
  12612. }
  12613. fprintf(fp, "}\n");
  12614. fclose(fp);
  12615. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12616. }
  12617. ////////////////////////////////////////////////////////////////////////////////
  12618. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12619. int i = 0;
  12620. for (int p = 0; p < np; ++p) {
  12621. const int64_t ne = ggml_nelements(ps[p]) ;
  12622. // TODO: add function to set tensor from array
  12623. for (int64_t j = 0; j < ne; ++j) {
  12624. ggml_set_f32_1d(ps[p], j, x[i++]);
  12625. }
  12626. }
  12627. }
  12628. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12629. int i = 0;
  12630. for (int p = 0; p < np; ++p) {
  12631. const int64_t ne = ggml_nelements(ps[p]) ;
  12632. // TODO: add function to get all elements at once
  12633. for (int64_t j = 0; j < ne; ++j) {
  12634. x[i++] = ggml_get_f32_1d(ps[p], j);
  12635. }
  12636. }
  12637. }
  12638. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12639. int i = 0;
  12640. for (int p = 0; p < np; ++p) {
  12641. const int64_t ne = ggml_nelements(ps[p]) ;
  12642. // TODO: add function to get all elements at once
  12643. for (int64_t j = 0; j < ne; ++j) {
  12644. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12645. }
  12646. }
  12647. }
  12648. //
  12649. // ADAM
  12650. //
  12651. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12652. //
  12653. static enum ggml_opt_result ggml_opt_adam(
  12654. struct ggml_context * ctx,
  12655. struct ggml_opt_params params,
  12656. struct ggml_tensor * f,
  12657. struct ggml_cgraph * gf,
  12658. struct ggml_cgraph * gb) {
  12659. GGML_ASSERT(ggml_is_scalar(f));
  12660. gf->n_threads = params.n_threads;
  12661. gb->n_threads = params.n_threads;
  12662. // these will store the parameters we want to optimize
  12663. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12664. int np = 0;
  12665. int nx = 0;
  12666. for (int i = 0; i < gf->n_nodes; ++i) {
  12667. if (gf->nodes[i]->is_param) {
  12668. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12669. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12670. ps[np++] = gf->nodes[i];
  12671. nx += ggml_nelements(gf->nodes[i]);
  12672. }
  12673. }
  12674. // constants
  12675. const float alpha = params.adam.alpha;
  12676. const float beta1 = params.adam.beta1;
  12677. const float beta2 = params.adam.beta2;
  12678. const float eps = params.adam.eps;
  12679. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12680. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12681. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12682. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12683. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12684. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12685. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12686. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12687. // initialize
  12688. ggml_vec_set_f32(nx, m, 0.0f);
  12689. ggml_vec_set_f32(nx, v, 0.0f);
  12690. // update view
  12691. ggml_opt_get_params(np, ps, x);
  12692. // compute the function value
  12693. ggml_graph_reset (gf);
  12694. ggml_set_f32 (f->grad, 1.0f);
  12695. ggml_graph_compute(ctx, gb);
  12696. float fx_prev = ggml_get_f32_1d(f, 0);
  12697. if (pf) {
  12698. pf[0] = fx_prev;
  12699. }
  12700. int n_no_improvement = 0;
  12701. float fx_best = fx_prev;
  12702. // run the optimizer
  12703. for (int t = 0; t < params.adam.n_iter; ++t) {
  12704. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12705. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12706. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12707. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12708. for (int i = 0; i < np; ++i) {
  12709. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12710. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12711. }
  12712. const int64_t t_start_wall = ggml_time_us();
  12713. const int64_t t_start_cpu = ggml_cycles();
  12714. UNUSED(t_start_wall);
  12715. UNUSED(t_start_cpu);
  12716. {
  12717. // update the gradient
  12718. ggml_opt_get_grad(np, ps, g1);
  12719. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12720. ggml_vec_scale_f32(nx, m, beta1);
  12721. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12722. // g2 = g1^2
  12723. ggml_vec_sqr_f32 (nx, g2, g1);
  12724. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12725. ggml_vec_scale_f32(nx, v, beta2);
  12726. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12727. // m^hat = m_t / (1 - beta1^t)
  12728. // v^hat = v_t / (1 - beta2^t)
  12729. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12730. ggml_vec_cpy_f32 (nx, mh, m);
  12731. ggml_vec_cpy_f32 (nx, vh, v);
  12732. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12733. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12734. ggml_vec_sqrt_f32 (nx, vh, vh);
  12735. ggml_vec_acc1_f32 (nx, vh, eps);
  12736. ggml_vec_div_f32 (nx, mh, mh, vh);
  12737. ggml_vec_sub_f32 (nx, x, x, mh);
  12738. // update the parameters
  12739. ggml_opt_set_params(np, ps, x);
  12740. }
  12741. ggml_graph_reset (gf);
  12742. ggml_set_f32 (f->grad, 1.0f);
  12743. ggml_graph_compute(ctx, gb);
  12744. const float fx = ggml_get_f32_1d(f, 0);
  12745. // check convergence
  12746. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12747. GGML_PRINT_DEBUG("converged\n");
  12748. return GGML_OPT_OK;
  12749. }
  12750. // delta-based convergence test
  12751. if (pf != NULL) {
  12752. // need at least params.past iterations to start checking for convergence
  12753. if (params.past <= t) {
  12754. const float rate = (pf[t%params.past] - fx)/fx;
  12755. if (fabsf(rate) < params.delta) {
  12756. return GGML_OPT_OK;
  12757. }
  12758. }
  12759. pf[t%params.past] = fx;
  12760. }
  12761. // check for improvement
  12762. if (params.max_no_improvement > 0) {
  12763. if (fx_best > fx) {
  12764. fx_best = fx;
  12765. n_no_improvement = 0;
  12766. } else {
  12767. ++n_no_improvement;
  12768. if (n_no_improvement >= params.max_no_improvement) {
  12769. return GGML_OPT_OK;
  12770. }
  12771. }
  12772. }
  12773. fx_prev = fx;
  12774. {
  12775. const int64_t t_end_cpu = ggml_cycles();
  12776. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12777. UNUSED(t_end_cpu);
  12778. const int64_t t_end_wall = ggml_time_us();
  12779. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12780. UNUSED(t_end_wall);
  12781. }
  12782. }
  12783. return GGML_OPT_DID_NOT_CONVERGE;
  12784. }
  12785. //
  12786. // L-BFGS
  12787. //
  12788. // the L-BFGS implementation below is based on the following implementation:
  12789. //
  12790. // https://github.com/chokkan/liblbfgs
  12791. //
  12792. struct ggml_lbfgs_iteration_data {
  12793. float alpha;
  12794. float ys;
  12795. float * s;
  12796. float * y;
  12797. };
  12798. static enum ggml_opt_result linesearch_backtracking(
  12799. struct ggml_context * ctx,
  12800. const struct ggml_opt_params * params,
  12801. int nx,
  12802. float * x,
  12803. float * fx,
  12804. float * g,
  12805. float * d,
  12806. float * step,
  12807. const float * xp,
  12808. struct ggml_tensor * f,
  12809. struct ggml_cgraph * gf,
  12810. struct ggml_cgraph * gb,
  12811. const int np,
  12812. struct ggml_tensor * ps[]) {
  12813. int count = 0;
  12814. float width = 0.0f;
  12815. float dg = 0.0f;
  12816. float finit = 0.0f;
  12817. float dginit = 0.0f;
  12818. float dgtest = 0.0f;
  12819. const float dec = 0.5f;
  12820. const float inc = 2.1f;
  12821. if (*step <= 0.f) {
  12822. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12823. }
  12824. // compute the initial gradient in the search direction
  12825. ggml_vec_dot_f32(nx, &dginit, g, d);
  12826. // make sure that d points to a descent direction
  12827. if (0 < dginit) {
  12828. return GGML_LINESEARCH_FAIL;
  12829. }
  12830. // initialize local variables
  12831. finit = *fx;
  12832. dgtest = params->lbfgs.ftol*dginit;
  12833. while (true) {
  12834. ggml_vec_cpy_f32(nx, x, xp);
  12835. ggml_vec_mad_f32(nx, x, d, *step);
  12836. // evaluate the function and gradient values
  12837. {
  12838. ggml_opt_set_params(np, ps, x);
  12839. ggml_graph_reset (gf);
  12840. ggml_set_f32 (f->grad, 1.0f);
  12841. ggml_graph_compute(ctx, gb);
  12842. ggml_opt_get_grad(np, ps, g);
  12843. *fx = ggml_get_f32_1d(f, 0);
  12844. }
  12845. ++count;
  12846. if (*fx > finit + (*step)*dgtest) {
  12847. width = dec;
  12848. } else {
  12849. // Armijo condition is satisfied
  12850. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12851. return count;
  12852. }
  12853. ggml_vec_dot_f32(nx, &dg, g, d);
  12854. // check the Wolfe condition
  12855. if (dg < params->lbfgs.wolfe * dginit) {
  12856. width = inc;
  12857. } else {
  12858. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12859. // regular Wolfe conditions
  12860. return count;
  12861. }
  12862. if(dg > -params->lbfgs.wolfe*dginit) {
  12863. width = dec;
  12864. } else {
  12865. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12866. return count;
  12867. }
  12868. return count;
  12869. }
  12870. }
  12871. if (*step < params->lbfgs.min_step) {
  12872. return GGML_LINESEARCH_MINIMUM_STEP;
  12873. }
  12874. if (*step > params->lbfgs.max_step) {
  12875. return GGML_LINESEARCH_MAXIMUM_STEP;
  12876. }
  12877. if (params->lbfgs.max_linesearch <= count) {
  12878. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12879. }
  12880. (*step) *= width;
  12881. }
  12882. return GGML_LINESEARCH_FAIL;
  12883. }
  12884. static enum ggml_opt_result ggml_opt_lbfgs(
  12885. struct ggml_context * ctx,
  12886. struct ggml_opt_params params,
  12887. struct ggml_tensor * f,
  12888. struct ggml_cgraph * gf,
  12889. struct ggml_cgraph * gb) {
  12890. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12891. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12892. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12893. return GGML_OPT_INVALID_WOLFE;
  12894. }
  12895. }
  12896. gf->n_threads = params.n_threads;
  12897. gb->n_threads = params.n_threads;
  12898. const int m = params.lbfgs.m;
  12899. // these will store the parameters we want to optimize
  12900. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12901. int np = 0;
  12902. int nx = 0;
  12903. for (int i = 0; i < gf->n_nodes; ++i) {
  12904. if (gf->nodes[i]->is_param) {
  12905. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12906. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12907. ps[np++] = gf->nodes[i];
  12908. nx += ggml_nelements(gf->nodes[i]);
  12909. }
  12910. }
  12911. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12912. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12913. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12914. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12915. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12916. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12917. float fx = 0.0f; // cost function value
  12918. float xnorm = 0.0f; // ||x||
  12919. float gnorm = 0.0f; // ||g||
  12920. float step = 0.0f;
  12921. // initialize x from the graph nodes
  12922. ggml_opt_get_params(np, ps, x);
  12923. // the L-BFGS memory
  12924. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12925. for (int i = 0; i < m; ++i) {
  12926. lm[i].alpha = 0.0f;
  12927. lm[i].ys = 0.0f;
  12928. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12929. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12930. }
  12931. // evaluate the function value and its gradient
  12932. {
  12933. ggml_opt_set_params(np, ps, x);
  12934. ggml_graph_reset (gf);
  12935. ggml_set_f32 (f->grad, 1.0f);
  12936. ggml_graph_compute(ctx, gb);
  12937. ggml_opt_get_grad(np, ps, g);
  12938. fx = ggml_get_f32_1d(f, 0);
  12939. }
  12940. if (pf) {
  12941. pf[0] = fx;
  12942. }
  12943. float fx_best = fx;
  12944. // search direction = -gradient
  12945. ggml_vec_neg_f32(nx, d, g);
  12946. // ||x||, ||g||
  12947. ggml_vec_norm_f32(nx, &xnorm, x);
  12948. ggml_vec_norm_f32(nx, &gnorm, g);
  12949. if (xnorm < 1.0f) {
  12950. xnorm = 1.0f;
  12951. }
  12952. // already optimized
  12953. if (gnorm/xnorm <= params.lbfgs.eps) {
  12954. return GGML_OPT_OK;
  12955. }
  12956. // initial step
  12957. ggml_vec_norm_inv_f32(nx, &step, d);
  12958. int j = 0;
  12959. int k = 1;
  12960. int ls = 0;
  12961. int end = 0;
  12962. int bound = 0;
  12963. int n_no_improvement = 0;
  12964. float ys = 0.0f;
  12965. float yy = 0.0f;
  12966. float beta = 0.0f;
  12967. while (true) {
  12968. // store the current position and gradient vectors
  12969. ggml_vec_cpy_f32(nx, xp, x);
  12970. ggml_vec_cpy_f32(nx, gp, g);
  12971. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12972. if (ls < 0) {
  12973. // linesearch failed - go back to the previous point and return
  12974. ggml_vec_cpy_f32(nx, x, xp);
  12975. ggml_vec_cpy_f32(nx, g, gp);
  12976. return ls;
  12977. }
  12978. ggml_vec_norm_f32(nx, &xnorm, x);
  12979. ggml_vec_norm_f32(nx, &gnorm, g);
  12980. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12981. if (xnorm < 1.0f) {
  12982. xnorm = 1.0f;
  12983. }
  12984. if (gnorm/xnorm <= params.lbfgs.eps) {
  12985. // converged
  12986. return GGML_OPT_OK;
  12987. }
  12988. // delta-based convergence test
  12989. if (pf != NULL) {
  12990. // need at least params.past iterations to start checking for convergence
  12991. if (params.past <= k) {
  12992. const float rate = (pf[k%params.past] - fx)/fx;
  12993. if (fabsf(rate) < params.delta) {
  12994. return GGML_OPT_OK;
  12995. }
  12996. }
  12997. pf[k%params.past] = fx;
  12998. }
  12999. // check for improvement
  13000. if (params.max_no_improvement > 0) {
  13001. if (fx < fx_best) {
  13002. fx_best = fx;
  13003. n_no_improvement = 0;
  13004. } else {
  13005. n_no_improvement++;
  13006. if (n_no_improvement >= params.max_no_improvement) {
  13007. return GGML_OPT_OK;
  13008. }
  13009. }
  13010. }
  13011. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13012. // reached the maximum number of iterations
  13013. return GGML_OPT_DID_NOT_CONVERGE;
  13014. }
  13015. // update vectors s and y:
  13016. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13017. // y_{k+1} = g_{k+1} - g_{k}.
  13018. //
  13019. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13020. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13021. // compute scalars ys and yy:
  13022. // ys = y^t \cdot s -> 1 / \rho.
  13023. // yy = y^t \cdot y.
  13024. //
  13025. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13026. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13027. lm[end].ys = ys;
  13028. // find new search direction
  13029. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13030. bound = (m <= k) ? m : k;
  13031. k++;
  13032. end = (end + 1)%m;
  13033. // initialize search direction with -g
  13034. ggml_vec_neg_f32(nx, d, g);
  13035. j = end;
  13036. for (int i = 0; i < bound; ++i) {
  13037. j = (j + m - 1) % m;
  13038. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13039. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13040. lm[j].alpha /= lm[j].ys;
  13041. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13042. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13043. }
  13044. ggml_vec_scale_f32(nx, d, ys/yy);
  13045. for (int i = 0; i < bound; ++i) {
  13046. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13047. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13048. beta /= lm[j].ys;
  13049. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13050. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13051. j = (j + 1)%m;
  13052. }
  13053. step = 1.0;
  13054. }
  13055. return GGML_OPT_DID_NOT_CONVERGE;
  13056. }
  13057. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13058. struct ggml_opt_params result;
  13059. switch (type) {
  13060. case GGML_OPT_ADAM:
  13061. {
  13062. result = (struct ggml_opt_params) {
  13063. .type = GGML_OPT_ADAM,
  13064. .n_threads = 1,
  13065. .past = 0,
  13066. .delta = 1e-5f,
  13067. .max_no_improvement = 100,
  13068. .print_forward_graph = true,
  13069. .print_backward_graph = true,
  13070. .adam = {
  13071. .n_iter = 10000,
  13072. .alpha = 0.001f,
  13073. .beta1 = 0.9f,
  13074. .beta2 = 0.999f,
  13075. .eps = 1e-8f,
  13076. .eps_f = 1e-5f,
  13077. .eps_g = 1e-3f,
  13078. },
  13079. };
  13080. } break;
  13081. case GGML_OPT_LBFGS:
  13082. {
  13083. result = (struct ggml_opt_params) {
  13084. .type = GGML_OPT_LBFGS,
  13085. .n_threads = 1,
  13086. .past = 0,
  13087. .delta = 1e-5f,
  13088. .max_no_improvement = 0,
  13089. .print_forward_graph = true,
  13090. .print_backward_graph = true,
  13091. .lbfgs = {
  13092. .m = 6,
  13093. .n_iter = 100,
  13094. .max_linesearch = 20,
  13095. .eps = 1e-5f,
  13096. .ftol = 1e-4f,
  13097. .wolfe = 0.9f,
  13098. .min_step = 1e-20f,
  13099. .max_step = 1e+20f,
  13100. .linesearch = GGML_LINESEARCH_DEFAULT,
  13101. },
  13102. };
  13103. } break;
  13104. }
  13105. return result;
  13106. }
  13107. enum ggml_opt_result ggml_opt(
  13108. struct ggml_context * ctx,
  13109. struct ggml_opt_params params,
  13110. struct ggml_tensor * f) {
  13111. bool free_ctx = false;
  13112. if (ctx == NULL) {
  13113. struct ggml_init_params params_ctx = {
  13114. .mem_size = 16*1024*1024,
  13115. .mem_buffer = NULL,
  13116. .no_alloc = false,
  13117. };
  13118. ctx = ggml_init(params_ctx);
  13119. if (ctx == NULL) {
  13120. return GGML_OPT_NO_CONTEXT;
  13121. }
  13122. free_ctx = true;
  13123. }
  13124. enum ggml_opt_result result = GGML_OPT_OK;
  13125. // build forward + backward compute graphs
  13126. struct ggml_cgraph gf = ggml_build_forward (f);
  13127. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13128. switch (params.type) {
  13129. case GGML_OPT_ADAM:
  13130. {
  13131. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13132. } break;
  13133. case GGML_OPT_LBFGS:
  13134. {
  13135. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13136. } break;
  13137. }
  13138. if (params.print_forward_graph) {
  13139. ggml_graph_print (&gf);
  13140. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13141. }
  13142. if (params.print_backward_graph) {
  13143. ggml_graph_print (&gb);
  13144. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13145. }
  13146. if (free_ctx) {
  13147. ggml_free(ctx);
  13148. }
  13149. return result;
  13150. }
  13151. ////////////////////////////////////////////////////////////////////////////////
  13152. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13153. assert(k % QK4_0 == 0);
  13154. const int nb = k / QK4_0;
  13155. for (int b = 0; b < n; b += k) {
  13156. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13157. quantize_row_q4_0_reference(src + b, y, k);
  13158. for (int i = 0; i < nb; i++) {
  13159. for (int j = 0; j < QK4_0; j += 2) {
  13160. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13161. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13162. hist[vi0]++;
  13163. hist[vi1]++;
  13164. }
  13165. }
  13166. }
  13167. return (n/QK4_0*sizeof(block_q4_0));
  13168. }
  13169. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13170. assert(k % QK4_1 == 0);
  13171. const int nb = k / QK4_1;
  13172. for (int b = 0; b < n; b += k) {
  13173. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13174. quantize_row_q4_1_reference(src + b, y, k);
  13175. for (int i = 0; i < nb; i++) {
  13176. for (int j = 0; j < QK4_1; j += 2) {
  13177. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13178. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13179. hist[vi0]++;
  13180. hist[vi1]++;
  13181. }
  13182. }
  13183. }
  13184. return (n/QK4_1*sizeof(block_q4_1));
  13185. }
  13186. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13187. assert(k % QK5_0 == 0);
  13188. const int nb = k / QK5_0;
  13189. for (int b = 0; b < n; b += k) {
  13190. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13191. quantize_row_q5_0_reference(src + b, y, k);
  13192. for (int i = 0; i < nb; i++) {
  13193. uint32_t qh;
  13194. memcpy(&qh, &y[i].qh, sizeof(qh));
  13195. for (int j = 0; j < QK5_0; j += 2) {
  13196. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13197. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13198. // cast to 16 bins
  13199. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13200. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13201. hist[vi0]++;
  13202. hist[vi1]++;
  13203. }
  13204. }
  13205. }
  13206. return (n/QK5_0*sizeof(block_q5_0));
  13207. }
  13208. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13209. assert(k % QK5_1 == 0);
  13210. const int nb = k / QK5_1;
  13211. for (int b = 0; b < n; b += k) {
  13212. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13213. quantize_row_q5_1_reference(src + b, y, k);
  13214. for (int i = 0; i < nb; i++) {
  13215. uint32_t qh;
  13216. memcpy(&qh, &y[i].qh, sizeof(qh));
  13217. for (int j = 0; j < QK5_1; j += 2) {
  13218. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13219. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13220. // cast to 16 bins
  13221. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13222. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13223. hist[vi0]++;
  13224. hist[vi1]++;
  13225. }
  13226. }
  13227. }
  13228. return (n/QK5_1*sizeof(block_q5_1));
  13229. }
  13230. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13231. assert(k % QK8_0 == 0);
  13232. const int nb = k / QK8_0;
  13233. for (int b = 0; b < n; b += k) {
  13234. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13235. quantize_row_q8_0_reference(src + b, y, k);
  13236. for (int i = 0; i < nb; i++) {
  13237. for (int j = 0; j < QK8_0; ++j) {
  13238. const int8_t vi = y[i].qs[j];
  13239. hist[vi/16 + 8]++;
  13240. }
  13241. }
  13242. }
  13243. return (n/QK8_0*sizeof(block_q8_0));
  13244. }
  13245. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13246. size_t result = 0;
  13247. switch (type) {
  13248. case GGML_TYPE_Q4_0:
  13249. {
  13250. GGML_ASSERT(start % QK4_0 == 0);
  13251. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13252. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13253. } break;
  13254. case GGML_TYPE_Q4_1:
  13255. {
  13256. GGML_ASSERT(start % QK4_1 == 0);
  13257. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13258. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13259. } break;
  13260. case GGML_TYPE_Q5_0:
  13261. {
  13262. GGML_ASSERT(start % QK5_0 == 0);
  13263. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13264. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13265. } break;
  13266. case GGML_TYPE_Q5_1:
  13267. {
  13268. GGML_ASSERT(start % QK5_1 == 0);
  13269. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13270. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13271. } break;
  13272. case GGML_TYPE_Q8_0:
  13273. {
  13274. GGML_ASSERT(start % QK8_0 == 0);
  13275. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13276. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13277. } break;
  13278. #ifdef GGML_USE_K_QUANTS
  13279. case GGML_TYPE_Q2_K:
  13280. {
  13281. GGML_ASSERT(start % QK_K == 0);
  13282. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  13283. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  13284. } break;
  13285. case GGML_TYPE_Q3_K:
  13286. {
  13287. GGML_ASSERT(start % QK_K == 0);
  13288. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  13289. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  13290. } break;
  13291. case GGML_TYPE_Q4_K:
  13292. {
  13293. GGML_ASSERT(start % QK_K == 0);
  13294. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  13295. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  13296. } break;
  13297. case GGML_TYPE_Q5_K:
  13298. {
  13299. GGML_ASSERT(start % QK_K == 0);
  13300. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  13301. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  13302. } break;
  13303. case GGML_TYPE_Q6_K:
  13304. {
  13305. GGML_ASSERT(start % QK_K == 0);
  13306. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  13307. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  13308. } break;
  13309. #endif
  13310. default:
  13311. assert(false);
  13312. }
  13313. return result;
  13314. }
  13315. ////////////////////////////////////////////////////////////////////////////////
  13316. int ggml_cpu_has_avx(void) {
  13317. #if defined(__AVX__)
  13318. return 1;
  13319. #else
  13320. return 0;
  13321. #endif
  13322. }
  13323. int ggml_cpu_has_avx2(void) {
  13324. #if defined(__AVX2__)
  13325. return 1;
  13326. #else
  13327. return 0;
  13328. #endif
  13329. }
  13330. int ggml_cpu_has_avx512(void) {
  13331. #if defined(__AVX512F__)
  13332. return 1;
  13333. #else
  13334. return 0;
  13335. #endif
  13336. }
  13337. int ggml_cpu_has_avx512_vbmi(void) {
  13338. #if defined(__AVX512VBMI__)
  13339. return 1;
  13340. #else
  13341. return 0;
  13342. #endif
  13343. }
  13344. int ggml_cpu_has_avx512_vnni(void) {
  13345. #if defined(__AVX512VNNI__)
  13346. return 1;
  13347. #else
  13348. return 0;
  13349. #endif
  13350. }
  13351. int ggml_cpu_has_fma(void) {
  13352. #if defined(__FMA__)
  13353. return 1;
  13354. #else
  13355. return 0;
  13356. #endif
  13357. }
  13358. int ggml_cpu_has_neon(void) {
  13359. #if defined(__ARM_NEON)
  13360. return 1;
  13361. #else
  13362. return 0;
  13363. #endif
  13364. }
  13365. int ggml_cpu_has_arm_fma(void) {
  13366. #if defined(__ARM_FEATURE_FMA)
  13367. return 1;
  13368. #else
  13369. return 0;
  13370. #endif
  13371. }
  13372. int ggml_cpu_has_f16c(void) {
  13373. #if defined(__F16C__)
  13374. return 1;
  13375. #else
  13376. return 0;
  13377. #endif
  13378. }
  13379. int ggml_cpu_has_fp16_va(void) {
  13380. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13381. return 1;
  13382. #else
  13383. return 0;
  13384. #endif
  13385. }
  13386. int ggml_cpu_has_wasm_simd(void) {
  13387. #if defined(__wasm_simd128__)
  13388. return 1;
  13389. #else
  13390. return 0;
  13391. #endif
  13392. }
  13393. int ggml_cpu_has_blas(void) {
  13394. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13395. return 1;
  13396. #else
  13397. return 0;
  13398. #endif
  13399. }
  13400. int ggml_cpu_has_cublas(void) {
  13401. #if defined(GGML_USE_CUBLAS)
  13402. return 1;
  13403. #else
  13404. return 0;
  13405. #endif
  13406. }
  13407. int ggml_cpu_has_clblast(void) {
  13408. #if defined(GGML_USE_CLBLAST)
  13409. return 1;
  13410. #else
  13411. return 0;
  13412. #endif
  13413. }
  13414. int ggml_cpu_has_gpublas(void) {
  13415. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13416. }
  13417. int ggml_cpu_has_sse3(void) {
  13418. #if defined(__SSE3__)
  13419. return 1;
  13420. #else
  13421. return 0;
  13422. #endif
  13423. }
  13424. int ggml_cpu_has_vsx(void) {
  13425. #if defined(__POWER9_VECTOR__)
  13426. return 1;
  13427. #else
  13428. return 0;
  13429. #endif
  13430. }
  13431. ////////////////////////////////////////////////////////////////////////////////