llama.cpp 113 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #include <array>
  20. #include <ctime>
  21. #include <cinttypes>
  22. #include <fstream>
  23. #include <random>
  24. #include <map>
  25. #include <unordered_map>
  26. #include <queue>
  27. #include <cassert>
  28. #include <cstring>
  29. #include <climits>
  30. #include <memory>
  31. #include <algorithm>
  32. #include <initializer_list>
  33. #include <thread>
  34. #include <atomic>
  35. #include <mutex>
  36. #include <sstream>
  37. #include <numeric>
  38. #define LLAMA_USE_SCRATCH
  39. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  40. // available llama models
  41. enum e_model {
  42. MODEL_UNKNOWN,
  43. MODEL_3B,
  44. MODEL_7B,
  45. MODEL_13B,
  46. MODEL_30B,
  47. MODEL_65B,
  48. };
  49. static const size_t MB = 1024*1024;
  50. // computed for n_ctx == 2048
  51. // TODO: dynamically determine these sizes
  52. // needs modifications in ggml
  53. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  54. void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  55. (void) tensor;
  56. }
  57. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  58. {
  59. static std::map<e_model, size_t> k_sizes = {
  60. { MODEL_3B, 256ull * MB },
  61. { MODEL_7B, 512ull * MB },
  62. { MODEL_13B, 512ull * MB },
  63. { MODEL_30B, 512ull * MB },
  64. { MODEL_65B, 1024ull * MB },
  65. };
  66. return k_sizes;
  67. }
  68. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  69. {
  70. static std::map<e_model, size_t> k_sizes = {
  71. { MODEL_3B, 256ull * MB },
  72. { MODEL_7B, 512ull * MB },
  73. { MODEL_13B, 512ull * MB },
  74. { MODEL_30B, 512ull * MB },
  75. { MODEL_65B, 1024ull * MB },
  76. };
  77. return k_sizes;
  78. }
  79. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  80. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  81. {
  82. static std::map<e_model, size_t> k_sizes = {
  83. { MODEL_3B, 682ull * MB },
  84. { MODEL_7B, 1026ull * MB },
  85. { MODEL_13B, 1608ull * MB },
  86. { MODEL_30B, 3124ull * MB },
  87. { MODEL_65B, 5120ull * MB },
  88. };
  89. return k_sizes;
  90. }
  91. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  92. // not actually needed if BLAS is disabled
  93. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  94. {
  95. static std::map<e_model, size_t> k_sizes = {
  96. { MODEL_3B, 512ull * MB },
  97. { MODEL_7B, 768ull * MB },
  98. { MODEL_13B, 1024ull * MB },
  99. { MODEL_30B, 1280ull * MB },
  100. { MODEL_65B, 1536ull * MB },
  101. };
  102. return k_sizes;
  103. }
  104. // default hparams (LLaMA 7B)
  105. struct llama_hparams {
  106. uint32_t n_vocab = 32000;
  107. uint32_t n_ctx = 512; // this is provided as user input?
  108. uint32_t n_embd = 4096;
  109. uint32_t n_mult = 256;
  110. uint32_t n_head = 32;
  111. uint32_t n_layer = 32;
  112. uint32_t n_rot = 64;
  113. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  114. bool operator!=(const llama_hparams & other) const {
  115. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  116. }
  117. };
  118. struct llama_layer {
  119. // normalization
  120. struct ggml_tensor * attention_norm;
  121. // attention
  122. struct ggml_tensor * wq;
  123. struct ggml_tensor * wk;
  124. struct ggml_tensor * wv;
  125. struct ggml_tensor * wo;
  126. // normalization
  127. struct ggml_tensor * ffn_norm;
  128. // ff
  129. struct ggml_tensor * w1;
  130. struct ggml_tensor * w2;
  131. struct ggml_tensor * w3;
  132. };
  133. struct llama_kv_cache {
  134. struct ggml_tensor * k;
  135. struct ggml_tensor * v;
  136. struct ggml_context * ctx = NULL;
  137. llama_ctx_buffer buf;
  138. int n; // number of tokens currently in the cache
  139. ~llama_kv_cache() {
  140. if (ctx) {
  141. ggml_free(ctx);
  142. }
  143. }
  144. };
  145. struct llama_model {
  146. e_model type = MODEL_UNKNOWN;
  147. llama_hparams hparams;
  148. struct ggml_tensor * tok_embeddings;
  149. struct ggml_tensor * norm;
  150. struct ggml_tensor * output;
  151. std::vector<llama_layer> layers;
  152. int n_gpu_layers;
  153. // context
  154. struct ggml_context * ctx = NULL;
  155. // key + value cache for the self attention
  156. // TODO: move to llama_state
  157. struct llama_kv_cache kv_self;
  158. // the model memory buffer
  159. llama_ctx_buffer buf;
  160. // model memory mapped file
  161. std::unique_ptr<llama_mmap> mapping;
  162. // objects representing data potentially being locked in memory
  163. llama_mlock mlock_buf;
  164. llama_mlock mlock_mmap;
  165. // for quantize-stats only
  166. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  167. ~llama_model() {
  168. if (ctx) {
  169. ggml_free(ctx);
  170. }
  171. #ifdef GGML_USE_CUBLAS
  172. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  173. ggml_cuda_free_data(tensors_by_name[i].second);
  174. }
  175. #endif // GGML_USE_CUBLAS
  176. }
  177. };
  178. struct llama_vocab {
  179. using id = int32_t;
  180. using token = std::string;
  181. struct token_score {
  182. token tok;
  183. float score;
  184. };
  185. std::unordered_map<token, id> token_to_id;
  186. std::vector<token_score> id_to_token;
  187. };
  188. struct llama_context {
  189. std::mt19937 rng;
  190. int64_t t_load_us = 0;
  191. int64_t t_start_us = 0;
  192. bool has_evaluated_once = false;
  193. int64_t t_sample_us = 0;
  194. int64_t t_eval_us = 0;
  195. int64_t t_p_eval_us = 0;
  196. int32_t n_sample = 0; // number of tokens sampled
  197. int32_t n_eval = 0; // number of eval calls
  198. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  199. llama_model model;
  200. llama_vocab vocab;
  201. size_t mem_per_token = 0;
  202. // decode output (2-dimensional array: [n_tokens][n_vocab])
  203. std::vector<float> logits;
  204. bool logits_all = false;
  205. // input embedding (1-dimensional array: [n_embd])
  206. std::vector<float> embedding;
  207. // memory buffers used to evaluate the model
  208. // TODO: move in llama_state
  209. llama_ctx_buffer buf_compute;
  210. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  211. #ifdef GGML_USE_METAL
  212. ggml_metal_context * ctx_metal = NULL;
  213. #endif
  214. int buf_last = 0;
  215. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  216. void use_buf(struct ggml_context * ctx, int i) {
  217. #if defined(LLAMA_USE_SCRATCH)
  218. size_t last_size = 0;
  219. if (i == -1) {
  220. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  221. } else {
  222. auto & buf = buf_scratch[i];
  223. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  224. }
  225. if (buf_last >= 0) {
  226. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  227. }
  228. buf_last = i;
  229. #else
  230. (void) i;
  231. (void) ctx;
  232. #endif
  233. }
  234. size_t get_buf_max_mem(int i) const {
  235. #if defined(LLAMA_USE_SCRATCH)
  236. return buf_max_size[i];
  237. #else
  238. (void) i;
  239. return 0;
  240. #endif
  241. }
  242. };
  243. template <typename T>
  244. static T checked_mul(T a, T b) {
  245. T ret = a * b;
  246. if (a != 0 && ret / a != b) {
  247. throw std::runtime_error(format("overflow multiplying %llu * %llu",
  248. (unsigned long long) a, (unsigned long long) b));
  249. }
  250. return ret;
  251. }
  252. static size_t checked_div(size_t a, size_t b) {
  253. if (b == 0 || a % b != 0) {
  254. throw std::runtime_error(format("error dividing %zu / %zu", a, b));
  255. }
  256. return a / b;
  257. }
  258. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  259. char buf[256];
  260. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  261. for (size_t i = 1; i < ne.size(); i++) {
  262. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  263. }
  264. return buf;
  265. }
  266. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  267. size_t size = ggml_type_size(type);
  268. for (uint32_t dim : ne) {
  269. size = checked_mul<size_t>(size, dim);
  270. }
  271. return size / ggml_blck_size(type);
  272. }
  273. struct llama_load_tensor_shard {
  274. std::vector<uint32_t> ne;
  275. size_t size;
  276. enum ggml_type type;
  277. size_t file_idx;
  278. size_t file_off;
  279. void calc_size() {
  280. size = llama_calc_tensor_size(ne, type);
  281. }
  282. };
  283. enum llama_split_type {
  284. SPLIT_NONE,
  285. SPLIT_BY_COLUMNS,
  286. SPLIT_BY_ROWS
  287. };
  288. struct llama_load_tensor {
  289. std::vector<llama_load_tensor_shard> shards;
  290. std::string name;
  291. enum ggml_type type = GGML_TYPE_F32;
  292. llama_split_type split_type = SPLIT_NONE;
  293. std::vector<uint32_t> ne;
  294. size_t size;
  295. struct ggml_tensor * ggml_tensor = NULL;
  296. uint8_t * data;
  297. llama_load_tensor(const std::string & name) : name(name) {}
  298. void calc_all() {
  299. calc_type();
  300. calc_split_type();
  301. calc_ne();
  302. calc_size();
  303. }
  304. void calc_type() {
  305. const auto & first_shard = shards.at(0);
  306. for (const auto & shard : shards) {
  307. if (shard.type != first_shard.type) {
  308. throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str()));
  309. }
  310. }
  311. type = first_shard.type;
  312. }
  313. void calc_split_type() {
  314. if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
  315. shards.size() == 1) { // only one file?
  316. split_type = SPLIT_NONE;
  317. } else if (name.find("tok_embeddings.") == 0 ||
  318. name.find(".attention.wo.weight") != std::string::npos ||
  319. name.find(".feed_forward.w2.weight") != std::string::npos) {
  320. split_type = SPLIT_BY_COLUMNS;
  321. } else {
  322. split_type = SPLIT_BY_ROWS;
  323. }
  324. }
  325. void calc_ne() {
  326. const auto & first_shard = shards.at(0);
  327. for (const auto & shard : shards) {
  328. if (shard.ne != first_shard.ne) {
  329. throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
  330. name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str()));
  331. }
  332. }
  333. ne = first_shard.ne;
  334. LLAMA_ASSERT(shards.size() <= UINT32_MAX);
  335. uint32_t n_shards = (uint32_t) shards.size();
  336. switch (split_type) {
  337. case SPLIT_NONE:
  338. ne = first_shard.ne;
  339. break;
  340. case SPLIT_BY_COLUMNS:
  341. ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
  342. first_shard.ne[1]};
  343. break;
  344. case SPLIT_BY_ROWS:
  345. ne = {first_shard.ne[0],
  346. checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
  347. break;
  348. }
  349. }
  350. void calc_size() {
  351. size = llama_calc_tensor_size(ne, type);
  352. }
  353. };
  354. struct llama_load_tensors_map {
  355. // tensors is kept in a separate vector to preserve file order
  356. std::vector<llama_load_tensor> tensors;
  357. std::unordered_map<std::string, size_t> name_to_idx;
  358. };
  359. enum llama_file_version {
  360. LLAMA_FILE_VERSION_GGML,
  361. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  362. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  363. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  364. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  365. };
  366. struct llama_file_loader {
  367. llama_file file;
  368. llama_file_version file_version;
  369. llama_hparams hparams;
  370. llama_vocab vocab;
  371. llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
  372. : file(fname, "rb") {
  373. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  374. read_magic();
  375. read_hparams();
  376. read_vocab();
  377. read_tensor_metadata(file_idx, tensors_map);
  378. }
  379. void read_magic() {
  380. uint32_t magic = file.read_u32();
  381. if (magic == LLAMA_FILE_MAGIC_GGML) {
  382. file_version = LLAMA_FILE_VERSION_GGML;
  383. return;
  384. }
  385. uint32_t version = file.read_u32();
  386. switch (magic) {
  387. case LLAMA_FILE_MAGIC_GGMF:
  388. switch (version) {
  389. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  390. }
  391. break;
  392. case LLAMA_FILE_MAGIC_GGJT:
  393. switch (version) {
  394. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  395. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  396. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  397. }
  398. }
  399. throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  400. magic, version));
  401. }
  402. void read_hparams() {
  403. hparams.n_vocab = file.read_u32();
  404. hparams.n_embd = file.read_u32();
  405. hparams.n_mult = file.read_u32();
  406. hparams.n_head = file.read_u32();
  407. hparams.n_layer = file.read_u32();
  408. hparams.n_rot = file.read_u32();
  409. hparams.ftype = (enum llama_ftype) file.read_u32();
  410. }
  411. void read_vocab() {
  412. vocab.id_to_token.resize(hparams.n_vocab);
  413. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  414. uint32_t len = file.read_u32();
  415. std::string word = file.read_string(len);
  416. float score = 0.0f;
  417. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  418. file.read_raw(&score, sizeof(score));
  419. }
  420. vocab.token_to_id[word] = i;
  421. auto & tok_score = vocab.id_to_token[i];
  422. tok_score.tok = std::move(word);
  423. tok_score.score = score;
  424. }
  425. }
  426. void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
  427. while (file.tell() < file.size) {
  428. llama_load_tensor_shard shard;
  429. uint32_t n_dims = file.read_u32();
  430. uint32_t name_len = file.read_u32();
  431. shard.type = (enum ggml_type) file.read_u32();
  432. shard.ne.resize(n_dims);
  433. file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
  434. std::string name = file.read_string(name_len);
  435. if (n_dims < 1 || n_dims > 2) {
  436. throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
  437. }
  438. switch (shard.type) {
  439. case GGML_TYPE_F32:
  440. case GGML_TYPE_F16:
  441. case GGML_TYPE_Q4_0:
  442. case GGML_TYPE_Q4_1:
  443. case GGML_TYPE_Q5_0:
  444. case GGML_TYPE_Q5_1:
  445. case GGML_TYPE_Q8_0:
  446. case GGML_TYPE_Q2_K:
  447. case GGML_TYPE_Q3_K:
  448. case GGML_TYPE_Q4_K:
  449. case GGML_TYPE_Q5_K:
  450. case GGML_TYPE_Q6_K:
  451. break;
  452. default: {
  453. throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type));
  454. }
  455. }
  456. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  457. // skip to the next multiple of 32 bytes
  458. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  459. }
  460. shard.file_idx = file_idx;
  461. shard.file_off = file.tell();
  462. shard.calc_size();
  463. file.seek(shard.size, SEEK_CUR);
  464. auto it = tensors_map.name_to_idx.find(name);
  465. size_t idx;
  466. if (it != tensors_map.name_to_idx.end()) {
  467. idx = it->second;
  468. } else {
  469. tensors_map.tensors.emplace_back(name);
  470. idx = tensors_map.tensors.size() - 1;
  471. tensors_map.name_to_idx.emplace(name, idx);
  472. }
  473. tensors_map.tensors.at(idx).shards.push_back(shard);
  474. }
  475. }
  476. };
  477. struct llama_file_saver {
  478. llama_file file;
  479. llama_file_loader * any_file_loader;
  480. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  481. : file(fname, "wb"), any_file_loader(any_file_loader) {
  482. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  483. write_magic();
  484. write_hparams(new_ftype);
  485. write_vocab();
  486. }
  487. void write_magic() {
  488. file.write_u32(LLAMA_FILE_MAGIC); // magic
  489. file.write_u32(LLAMA_FILE_VERSION); // version
  490. }
  491. void write_hparams(enum llama_ftype new_ftype) {
  492. const llama_hparams & hparams = any_file_loader->hparams;
  493. file.write_u32(hparams.n_vocab);
  494. file.write_u32(hparams.n_embd);
  495. file.write_u32(hparams.n_mult);
  496. file.write_u32(hparams.n_head);
  497. file.write_u32(hparams.n_layer);
  498. file.write_u32(hparams.n_rot);
  499. file.write_u32(new_ftype);
  500. }
  501. void write_vocab() {
  502. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  503. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  504. }
  505. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  506. for (uint32_t i = 0; i < n_vocab; i++) {
  507. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  508. file.write_u32((uint32_t) token_score.tok.size());
  509. file.write_raw(token_score.tok.data(), token_score.tok.size());
  510. file.write_raw(&token_score.score, sizeof(token_score.score));
  511. }
  512. }
  513. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  514. switch (new_type) {
  515. case GGML_TYPE_F32:
  516. case GGML_TYPE_F16:
  517. case GGML_TYPE_Q4_0:
  518. case GGML_TYPE_Q4_1:
  519. case GGML_TYPE_Q5_0:
  520. case GGML_TYPE_Q5_1:
  521. case GGML_TYPE_Q8_0:
  522. case GGML_TYPE_Q2_K:
  523. case GGML_TYPE_Q3_K:
  524. case GGML_TYPE_Q4_K:
  525. case GGML_TYPE_Q5_K:
  526. case GGML_TYPE_Q6_K:
  527. break;
  528. default: LLAMA_ASSERT(false);
  529. }
  530. file.write_u32((uint32_t) tensor.ne.size());
  531. file.write_u32((uint32_t) tensor.name.size());
  532. file.write_u32(new_type);
  533. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  534. file.write_raw(tensor.name.data(), tensor.name.size());
  535. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  536. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  537. file.write_raw(new_data, new_size);
  538. }
  539. };
  540. struct llama_model_loader {
  541. std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
  542. llama_load_tensors_map tensors_map;
  543. bool use_mmap;
  544. size_t num_ggml_tensors_created = 0;
  545. struct ggml_context * ggml_ctx = NULL;
  546. std::unique_ptr<llama_mmap> mapping;
  547. llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
  548. auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
  549. file_loaders.emplace_back(first_file);
  550. uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
  551. for (uint32_t i = 1; i < n_parts; i++) {
  552. std::string fname = fname_base + "." + std::to_string(i);
  553. auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
  554. file_loaders.emplace_back(ith_file);
  555. if (ith_file->hparams != first_file->hparams) {
  556. throw std::runtime_error(format("llama.cpp: hparams inconsistent between files"));
  557. }
  558. }
  559. if (!llama_mmap::SUPPORTED) {
  560. use_mmap = false;
  561. }
  562. if (use_mmap && alignment_prevents_mmap()) {
  563. fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
  564. use_mmap = false;
  565. }
  566. this->use_mmap = use_mmap;
  567. for (llama_load_tensor & lt : tensors_map.tensors) {
  568. lt.calc_all();
  569. }
  570. }
  571. bool alignment_prevents_mmap() {
  572. for (const llama_load_tensor & lt : tensors_map.tensors) {
  573. for (const llama_load_tensor_shard & shard : lt.shards) {
  574. if (shard.file_off & 3) {
  575. return true;
  576. }
  577. }
  578. }
  579. return false;
  580. }
  581. uint32_t guess_n_parts() const {
  582. auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
  583. if (it == tensors_map.name_to_idx.end()) {
  584. throw std::runtime_error(std::string("missing tok_embeddings.weight"));
  585. }
  586. const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  587. return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
  588. }
  589. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  590. *ctx_size_p = *mmapped_size_p = 0;
  591. for (const llama_load_tensor & lt : tensors_map.tensors) {
  592. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  593. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  594. }
  595. }
  596. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  597. auto it = tensors_map.name_to_idx.find(name);
  598. if (it == tensors_map.name_to_idx.end()) {
  599. throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
  600. }
  601. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  602. if (lt.ne != ne) {
  603. throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  604. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
  605. }
  606. return get_tensor_for(lt, backend);
  607. }
  608. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  609. struct ggml_tensor * tensor;
  610. if (lt.ne.size() == 2) {
  611. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  612. } else {
  613. LLAMA_ASSERT(lt.ne.size() == 1);
  614. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  615. }
  616. ggml_set_name(tensor, lt.name.c_str());
  617. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  618. tensor->backend = backend;
  619. lt.ggml_tensor = tensor;
  620. num_ggml_tensors_created++;
  621. return tensor;
  622. }
  623. void done_getting_tensors() const {
  624. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  625. throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
  626. }
  627. }
  628. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  629. size_t data_size = 0;
  630. size_t prefetch_size = 0;
  631. for (const llama_load_tensor & lt : tensors_map.tensors) {
  632. data_size += lt.size;
  633. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  634. prefetch_size += lt.size;
  635. }
  636. }
  637. if (use_mmap) {
  638. mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
  639. if (!lmlock) {
  640. // Don't call the callback since the actual loading will be lazy
  641. // and we can't measure it.
  642. progress_callback = NULL;
  643. }
  644. if (lmlock) {
  645. lmlock->init(mapping->addr);
  646. }
  647. }
  648. size_t done_size = 0;
  649. for (llama_load_tensor & lt : tensors_map.tensors) {
  650. if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
  651. continue;
  652. }
  653. if (progress_callback) {
  654. progress_callback((float) done_size / data_size, progress_callback_user_data);
  655. }
  656. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  657. lt.data = (uint8_t *) lt.ggml_tensor->data;
  658. load_data_for(lt);
  659. lt.ggml_tensor->data = lt.data;
  660. done_size += lt.size;
  661. if (use_mmap && lmlock) {
  662. lmlock->grow_to(done_size);
  663. }
  664. }
  665. }
  666. void load_data_for(llama_load_tensor & lt) {
  667. if (use_mmap) {
  668. LLAMA_ASSERT(lt.shards.size() == 1);
  669. lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
  670. } else if (lt.split_type == SPLIT_NONE) {
  671. llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
  672. file.seek(lt.shards.at(0).file_off, SEEK_SET);
  673. file.read_raw(lt.data, lt.size);
  674. } else if (lt.split_type == SPLIT_BY_ROWS) {
  675. size_t offset = 0;
  676. for (llama_load_tensor_shard & shard : lt.shards) {
  677. llama_file & file = file_loaders.at(shard.file_idx)->file;
  678. file.seek(shard.file_off, SEEK_SET);
  679. file.read_raw(lt.data + offset, shard.size);
  680. offset += shard.size;
  681. }
  682. LLAMA_ASSERT(offset == lt.size);
  683. } else if (lt.split_type == SPLIT_BY_COLUMNS) {
  684. // Let's load the data into temporary buffers to ensure the OS performs large loads.
  685. std::vector<llama_buffer> tmp_bufs(lt.shards.size());
  686. for (size_t i = 0; i < lt.shards.size(); i++) {
  687. llama_load_tensor_shard & shard = lt.shards.at(i);
  688. llama_file & file = file_loaders.at(shard.file_idx)->file;
  689. file.seek(shard.file_off, SEEK_SET);
  690. tmp_bufs.at(i).resize(shard.size);
  691. file.read_raw(tmp_bufs.at(i).addr, shard.size);
  692. }
  693. // Then reshape.
  694. size_t num_rows = lt.ne.at(1);
  695. size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
  696. size_t out_offset = 0;
  697. for (size_t row = 0; row < num_rows; row++) {
  698. for (llama_buffer & tmp_buf : tmp_bufs) {
  699. memcpy(lt.data + out_offset,
  700. tmp_buf.addr + row * per_shard_row_size,
  701. per_shard_row_size);
  702. out_offset += per_shard_row_size;
  703. }
  704. }
  705. LLAMA_ASSERT(out_offset == lt.size);
  706. }
  707. if (0) {
  708. print_checksum(lt);
  709. }
  710. }
  711. static void print_checksum(llama_load_tensor & lt) {
  712. uint32_t sum = 0;
  713. for (size_t i = 0; i < lt.size; i++) {
  714. uint8_t byte = lt.data[i];
  715. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  716. }
  717. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  718. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  719. }
  720. };
  721. //
  722. // kv cache
  723. //
  724. static bool kv_cache_init(
  725. const struct llama_hparams & hparams,
  726. struct llama_kv_cache & cache,
  727. ggml_type wtype,
  728. int n_ctx) {
  729. const int n_embd = hparams.n_embd;
  730. const int n_layer = hparams.n_layer;
  731. const int64_t n_mem = n_layer*n_ctx;
  732. const int64_t n_elements = n_embd*n_mem;
  733. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  734. struct ggml_init_params params;
  735. params.mem_size = cache.buf.size;
  736. params.mem_buffer = cache.buf.addr;
  737. params.no_alloc = false;
  738. cache.ctx = ggml_init(params);
  739. if (!cache.ctx) {
  740. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  741. return false;
  742. }
  743. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  744. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  745. ggml_set_name(cache.k, "cache_k");
  746. ggml_set_name(cache.v, "cache_v");
  747. return true;
  748. }
  749. struct llama_context_params llama_context_default_params() {
  750. struct llama_context_params result = {
  751. /*.n_ctx =*/ 512,
  752. /*.n_batch =*/ 512,
  753. /*.gpu_layers =*/ 0,
  754. /*.main_gpu =*/ 0,
  755. /*.tensor_split =*/ {0},
  756. /*.seed =*/ -1,
  757. /*.f16_kv =*/ true,
  758. /*.logits_all =*/ false,
  759. /*.vocab_only =*/ false,
  760. /*.use_mmap =*/ true,
  761. /*.use_mlock =*/ false,
  762. /*.embedding =*/ false,
  763. /*.progress_callback =*/ nullptr,
  764. /*.progress_callback_user_data =*/ nullptr,
  765. };
  766. return result;
  767. }
  768. bool llama_mmap_supported() {
  769. return llama_mmap::SUPPORTED;
  770. }
  771. bool llama_mlock_supported() {
  772. return llama_mlock::SUPPORTED;
  773. }
  774. void llama_init_backend() {
  775. ggml_time_init();
  776. // needed to initialize f16 tables
  777. {
  778. struct ggml_init_params params = { 0, NULL, false };
  779. struct ggml_context * ctx = ggml_init(params);
  780. ggml_free(ctx);
  781. }
  782. }
  783. int64_t llama_time_us() {
  784. return ggml_time_us();
  785. }
  786. //
  787. // model loading
  788. //
  789. static const char *llama_file_version_name(llama_file_version version) {
  790. switch (version) {
  791. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  792. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  793. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  794. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  795. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  796. }
  797. return "unknown";
  798. }
  799. static const char *llama_ftype_name(enum llama_ftype ftype) {
  800. switch (ftype) {
  801. case LLAMA_FTYPE_ALL_F32: return "all F32";
  802. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  803. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  804. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  805. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  806. return "mostly Q4_1, some F16";
  807. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  808. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  809. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  810. // K-quants
  811. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  812. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  813. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  814. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  815. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  816. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  817. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  818. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  819. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  820. default: return "unknown, may not work";
  821. }
  822. }
  823. static const char *llama_model_type_name(e_model type) {
  824. switch (type) {
  825. case MODEL_3B: return "3B";
  826. case MODEL_7B: return "7B";
  827. case MODEL_13B: return "13B";
  828. case MODEL_30B: return "30B";
  829. case MODEL_65B: return "65B";
  830. default: LLAMA_ASSERT(false);
  831. }
  832. }
  833. static void llama_model_load_internal(
  834. const std::string & fname,
  835. llama_context & lctx,
  836. int n_ctx,
  837. int n_batch,
  838. int n_gpu_layers,
  839. int main_gpu,
  840. const float * tensor_split,
  841. ggml_type memory_type,
  842. bool use_mmap,
  843. bool use_mlock,
  844. bool vocab_only,
  845. llama_progress_callback progress_callback,
  846. void * progress_callback_user_data) {
  847. lctx.t_start_us = ggml_time_us();
  848. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
  849. lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
  850. auto & model = lctx.model;
  851. model.hparams = ml->file_loaders.at(0)->hparams;
  852. model.n_gpu_layers = n_gpu_layers;
  853. llama_file_version file_version = ml->file_loaders.at(0)->file_version;
  854. auto & hparams = model.hparams;
  855. {
  856. switch (hparams.n_layer) {
  857. case 26: model.type = e_model::MODEL_3B; break;
  858. case 32: model.type = e_model::MODEL_7B; break;
  859. case 40: model.type = e_model::MODEL_13B; break;
  860. case 60: model.type = e_model::MODEL_30B; break;
  861. case 80: model.type = e_model::MODEL_65B; break;
  862. }
  863. hparams.n_ctx = n_ctx;
  864. }
  865. const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  866. {
  867. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  868. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  869. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  870. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  871. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  872. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  873. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  874. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  875. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  876. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  877. fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
  878. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  879. }
  880. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  881. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  882. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  883. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  884. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
  885. }
  886. }
  887. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  888. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  889. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  890. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  891. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
  892. }
  893. }
  894. if (vocab_only) {
  895. return;
  896. }
  897. auto & ctx = model.ctx;
  898. size_t ctx_size;
  899. size_t mmapped_size;
  900. ml->calc_sizes(&ctx_size, &mmapped_size);
  901. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  902. // create the ggml context
  903. {
  904. lctx.model.buf.resize(ctx_size);
  905. if (use_mlock) {
  906. lctx.model.mlock_buf.init(lctx.model.buf.addr);
  907. lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
  908. }
  909. struct ggml_init_params params = {
  910. /*.mem_size =*/ lctx.model.buf.size,
  911. /*.mem_buffer =*/ lctx.model.buf.addr,
  912. /*.no_alloc =*/ ml->use_mmap,
  913. };
  914. model.ctx = ggml_init(params);
  915. if (!model.ctx) {
  916. throw std::runtime_error(format("ggml_init() failed"));
  917. }
  918. }
  919. (void) main_gpu;
  920. #if defined(GGML_USE_CUBLAS)
  921. fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
  922. ggml_cuda_set_main_device(main_gpu);
  923. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  924. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  925. #elif defined(GGML_USE_CLBLAST)
  926. fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
  927. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  928. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  929. #else
  930. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  931. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  932. #endif
  933. // prepare memory for the weights
  934. size_t vram_weights = 0;
  935. size_t vram_scratch = 0;
  936. {
  937. const uint32_t n_embd = hparams.n_embd;
  938. const uint32_t n_layer = hparams.n_layer;
  939. const uint32_t n_vocab = hparams.n_vocab;
  940. ml->ggml_ctx = ctx;
  941. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  942. model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU);
  943. // "output" tensor
  944. {
  945. ggml_backend backend_output;
  946. if (n_gpu_layers > int(n_layer)) { // NOLINT
  947. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  948. } else {
  949. backend_output = GGML_BACKEND_CPU;
  950. }
  951. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  952. }
  953. const int i_gpu_start = n_layer - n_gpu_layers;
  954. model.layers.resize(n_layer);
  955. for (uint32_t i = 0; i < n_layer; ++i) {
  956. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  957. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  958. auto & layer = model.layers[i];
  959. std::string layers_i = "layers." + std::to_string(i);
  960. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  961. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
  962. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
  963. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
  964. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
  965. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  966. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
  967. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
  968. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
  969. if (backend == GGML_BACKEND_GPU) {
  970. vram_weights +=
  971. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  972. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
  973. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  974. }
  975. }
  976. }
  977. ml->done_getting_tensors();
  978. // print memory requirements
  979. {
  980. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  981. // this is the total memory required to run the inference
  982. const size_t mem_required =
  983. ctx_size +
  984. mmapped_size - vram_weights + // weights in VRAM not in memory
  985. MEM_REQ_SCRATCH0().at(model.type) +
  986. MEM_REQ_SCRATCH1().at(model.type) +
  987. MEM_REQ_EVAL().at (model.type);
  988. // this is the memory required by one llama_state
  989. const size_t mem_required_state =
  990. scale*MEM_REQ_KV_SELF().at(model.type);
  991. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  992. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  993. (void) vram_scratch;
  994. #ifdef GGML_USE_CUBLAS
  995. vram_scratch = n_batch * MB;
  996. ggml_cuda_set_scratch_size(vram_scratch);
  997. if (n_gpu_layers > 0) {
  998. fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n",
  999. __func__, vram_scratch / MB);
  1000. }
  1001. #endif // GGML_USE_CUBLAS
  1002. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1003. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1004. fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu);
  1005. if (n_gpu_layers > (int) hparams.n_layer) {
  1006. fprintf(stderr, "%s: offloading output layer to GPU\n", __func__);
  1007. }
  1008. fprintf(stderr, "%s: total VRAM used: %zu MB\n",
  1009. __func__, (vram_weights + vram_scratch + MB - 1) / MB); // round up
  1010. #else
  1011. (void) n_gpu_layers;
  1012. #endif
  1013. }
  1014. // populate `tensors_by_name`
  1015. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1016. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  1017. }
  1018. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
  1019. #if defined(GGML_USE_CUBLAS)
  1020. {
  1021. ggml_cuda_set_tensor_split(tensor_split);
  1022. size_t done_size = 0;
  1023. size_t data_size = 0;
  1024. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1025. data_size += lt.size;
  1026. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  1027. done_size += lt.size;
  1028. }
  1029. }
  1030. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1031. ggml_backend backend = lt.ggml_tensor->backend;
  1032. if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) {
  1033. continue;
  1034. }
  1035. if (progress_callback) {
  1036. progress_callback((float) done_size / data_size, progress_callback_user_data);
  1037. }
  1038. ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
  1039. done_size += lt.size;
  1040. }
  1041. }
  1042. #elif defined(GGML_USE_CLBLAST)
  1043. {
  1044. size_t done_size = 0;
  1045. size_t data_size = 0;
  1046. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1047. data_size += lt.size;
  1048. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  1049. done_size += lt.size;
  1050. }
  1051. }
  1052. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1053. if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) {
  1054. continue;
  1055. }
  1056. if (progress_callback) {
  1057. progress_callback((float) done_size / data_size, progress_callback_user_data);
  1058. }
  1059. ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
  1060. done_size += lt.size;
  1061. }
  1062. }
  1063. #else
  1064. (void) n_batch;
  1065. (void) tensor_split;
  1066. #endif
  1067. if (progress_callback) {
  1068. progress_callback(1.0f, progress_callback_user_data);
  1069. }
  1070. model.mapping = std::move(ml->mapping);
  1071. // loading time will be recalculate after the first eval, so
  1072. // we take page faults deferred by mmap() into consideration
  1073. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  1074. }
  1075. static bool llama_model_load(
  1076. const std::string & fname,
  1077. llama_context & lctx,
  1078. int n_ctx,
  1079. int n_batch,
  1080. int n_gpu_layers,
  1081. int main_gpu,
  1082. float * tensor_split,
  1083. ggml_type memory_type,
  1084. bool use_mmap,
  1085. bool use_mlock,
  1086. bool vocab_only,
  1087. llama_progress_callback progress_callback,
  1088. void *progress_callback_user_data) {
  1089. try {
  1090. llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type,
  1091. use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
  1092. return true;
  1093. } catch (const std::exception & err) {
  1094. fprintf(stderr, "error loading model: %s\n", err.what());
  1095. return false;
  1096. }
  1097. }
  1098. // evaluate the transformer
  1099. //
  1100. // - lctx: llama context
  1101. // - tokens: new batch of tokens to process
  1102. // - n_past: the context size so far
  1103. // - n_threads: number of threads to use
  1104. // - cgraph_fname: filename of the exported computation graph
  1105. //
  1106. static bool llama_eval_internal(
  1107. llama_context & lctx,
  1108. const llama_token * tokens,
  1109. const int n_tokens,
  1110. const int n_past,
  1111. const int n_threads,
  1112. const char * cgraph_fname) {
  1113. // enforce that the first token is BOS
  1114. if (n_past == 0 && tokens[0] != llama_token_bos()) {
  1115. fprintf(stderr, "%s: first token must be BOS\n", __func__);
  1116. return false;
  1117. }
  1118. const int64_t t_start_us = ggml_time_us();
  1119. const int N = n_tokens;
  1120. const auto & model = lctx.model;
  1121. const auto & hparams = model.hparams;
  1122. const auto & kv_self = model.kv_self;
  1123. LLAMA_ASSERT(!!kv_self.ctx);
  1124. const int n_embd = hparams.n_embd;
  1125. const int n_layer = hparams.n_layer;
  1126. const int n_ctx = hparams.n_ctx;
  1127. const int n_head = hparams.n_head;
  1128. const int n_vocab = hparams.n_vocab;
  1129. const int n_rot = hparams.n_embd/hparams.n_head;
  1130. const int n_gpu_layers = model.n_gpu_layers;
  1131. auto & mem_per_token = lctx.mem_per_token;
  1132. auto & buf_compute = lctx.buf_compute;
  1133. struct ggml_init_params params = {
  1134. /*.mem_size =*/ buf_compute.size,
  1135. /*.mem_buffer =*/ buf_compute.addr,
  1136. /*.no_alloc =*/ false,
  1137. };
  1138. struct ggml_context * ctx0 = ggml_init(params);
  1139. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1140. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1141. ggml_cgraph gf = {};
  1142. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1143. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1144. ggml_set_name(embd, "embd");
  1145. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  1146. struct ggml_tensor * cur;
  1147. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  1148. const int i_gpu_start = n_layer - n_gpu_layers;
  1149. (void) i_gpu_start;
  1150. for (int il = 0; il < n_layer; ++il) {
  1151. offload_func_t offload_func = llama_nop;
  1152. #ifdef GGML_USE_CUBLAS
  1153. if (il >= i_gpu_start) {
  1154. offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU
  1155. }
  1156. #endif // GGML_USE_CUBLAS
  1157. struct ggml_tensor * inpSA = inpL;
  1158. lctx.use_buf(ctx0, 0);
  1159. // norm
  1160. {
  1161. cur = ggml_rms_norm(ctx0, inpL);
  1162. offload_func(cur);
  1163. ggml_set_name(cur, "rms_norm_0");
  1164. // cur = cur*attention_norm(broadcasted)
  1165. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1166. offload_func(cur);
  1167. ggml_set_name(cur, "attention_norm_0");
  1168. }
  1169. // self-attention
  1170. {
  1171. // compute Q and K and RoPE them
  1172. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  1173. // offload_func(tmpq);
  1174. ggml_set_name(tmpq, "tmpq");
  1175. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  1176. // offload_func(tmpk);
  1177. ggml_set_name(tmpk, "tmpk");
  1178. struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1179. ggml_set_name(Kcur, "Kcur");
  1180. struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1181. ggml_set_name(Qcur, "Qcur");
  1182. // store key and value to memory
  1183. {
  1184. // compute the transposed [N, n_embd] V matrix
  1185. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
  1186. ggml_set_name(Vcur, "Vcur");
  1187. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1188. ggml_set_name(k, "k");
  1189. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1190. ( n_ctx)*ggml_element_size(kv_self.v),
  1191. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1192. ggml_set_name(v, "v");
  1193. // important: storing RoPE-ed version of K in the KV cache!
  1194. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1195. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1196. }
  1197. struct ggml_tensor * Q =
  1198. ggml_permute(ctx0,
  1199. Qcur,
  1200. 0, 2, 1, 3);
  1201. ggml_set_name(Q, "Q");
  1202. struct ggml_tensor * K =
  1203. ggml_permute(ctx0,
  1204. ggml_reshape_3d(ctx0,
  1205. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1206. n_embd/n_head, n_head, n_past + N),
  1207. 0, 2, 1, 3);
  1208. ggml_set_name(K, "K");
  1209. // K * Q
  1210. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1211. ggml_set_name(KQ, "KQ");
  1212. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1213. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1214. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1215. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1216. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1217. ggml_set_name(KQ_scaled, "KQ_scaled");
  1218. // KQ_masked = mask_past(KQ_scaled)
  1219. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1220. ggml_set_name(KQ_masked, "KQ_masked");
  1221. // KQ = soft_max(KQ_masked)
  1222. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1223. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1224. // split cached V into n_head heads
  1225. struct ggml_tensor * V =
  1226. ggml_view_3d(ctx0, kv_self.v,
  1227. n_past + N, n_embd/n_head, n_head,
  1228. n_ctx*ggml_element_size(kv_self.v),
  1229. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1230. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1231. ggml_set_name(V, "V");
  1232. #if 1
  1233. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1234. ggml_set_name(KQV, "KQV");
  1235. #else
  1236. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1237. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1238. // is there a better way?
  1239. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1240. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1241. #endif
  1242. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1243. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1244. ggml_set_name(KQV_merged, "KQV_merged");
  1245. // cur = KQV_merged.contiguous().view(n_embd, N)
  1246. cur = ggml_cpy(ctx0,
  1247. KQV_merged,
  1248. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1249. ggml_set_name(cur, "KQV_merged_contiguous");
  1250. // projection (no bias)
  1251. cur = ggml_mul_mat(ctx0,
  1252. model.layers[il].wo,
  1253. cur);
  1254. offload_func(cur);
  1255. ggml_set_name(cur, "result_wo");
  1256. }
  1257. lctx.use_buf(ctx0, 1);
  1258. //ggml_cuda_set_scratch(1);
  1259. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1260. offload_func(inpFF);
  1261. ggml_set_name(inpFF, "inpFF");
  1262. // feed-forward network
  1263. {
  1264. // norm
  1265. {
  1266. cur = ggml_rms_norm(ctx0, inpFF);
  1267. offload_func(cur);
  1268. ggml_set_name(cur, "rms_norm_1");
  1269. // cur = cur*ffn_norm(broadcasted)
  1270. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1271. offload_func(cur);
  1272. ggml_set_name(cur, "ffn_norm");
  1273. }
  1274. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1275. model.layers[il].w3,
  1276. cur);
  1277. offload_func(tmp);
  1278. ggml_set_name(tmp, "result_w3");
  1279. cur = ggml_mul_mat(ctx0,
  1280. model.layers[il].w1,
  1281. cur);
  1282. offload_func(cur);
  1283. ggml_set_name(cur, "result_w2");
  1284. // SILU activation
  1285. cur = ggml_silu(ctx0, cur);
  1286. offload_func(cur);
  1287. ggml_set_name(cur, "silu");
  1288. cur = ggml_mul(ctx0, cur, tmp);
  1289. offload_func(cur);
  1290. ggml_set_name(cur, "silu_x_result_w3");
  1291. cur = ggml_mul_mat(ctx0,
  1292. model.layers[il].w2,
  1293. cur);
  1294. offload_func(cur);
  1295. ggml_set_name(cur, "result_w2");
  1296. }
  1297. cur = ggml_add(ctx0, cur, inpFF);
  1298. offload_func(cur);
  1299. ggml_set_name(cur, "inpFF_+_result_w2");
  1300. // input for next layer
  1301. inpL = cur;
  1302. }
  1303. lctx.use_buf(ctx0, 0);
  1304. //ggml_cuda_set_scratch(0);
  1305. // used at the end to optionally extract the embeddings
  1306. struct ggml_tensor * embeddings = NULL;
  1307. offload_func_t offload_func = llama_nop;
  1308. #ifdef GGML_USE_CUBLAS
  1309. if (n_gpu_layers > n_layer) {
  1310. offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU
  1311. }
  1312. #endif // GGML_USE_CUBLAS
  1313. // norm
  1314. {
  1315. cur = ggml_rms_norm(ctx0, inpL);
  1316. offload_func(cur);
  1317. ggml_set_name(cur, "rms_norm_inpL");
  1318. cur = ggml_rms_norm(ctx0, cur);
  1319. offload_func(cur);
  1320. ggml_set_name(cur, "rms_norm_after");
  1321. // cur = cur*norm(broadcasted)
  1322. cur = ggml_mul(ctx0, cur, model.norm);
  1323. offload_func(cur);
  1324. ggml_set_name(cur, "result_norm");
  1325. embeddings = cur;
  1326. }
  1327. // lm_head
  1328. cur = ggml_mul_mat(ctx0, model.output, cur);
  1329. ggml_set_name(cur, "result_output");
  1330. lctx.use_buf(ctx0, -1);
  1331. // logits -> probs
  1332. //cur = ggml_soft_max_inplace(ctx0, cur);
  1333. // run the computation
  1334. ggml_build_forward_expand(&gf, cur);
  1335. #ifdef GGML_USE_METAL
  1336. if (lctx.ctx_metal && N == 1) {
  1337. ggml_metal_graph_compute(lctx.ctx_metal, &gf);
  1338. ggml_metal_get_tensor (lctx.ctx_metal, cur);
  1339. } else {
  1340. // IMPORTANT:
  1341. // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
  1342. // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
  1343. // coprocessor.
  1344. //
  1345. // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
  1346. // But for now, we have focused only on Matrix x Vector Metal multiplication.
  1347. //
  1348. // TODO: avoid these syncs via shared memory (ref #1696)
  1349. //
  1350. if (lctx.ctx_metal) {
  1351. // We need to sync the GPU KV cache with the CPU KV cache
  1352. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
  1353. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
  1354. }
  1355. ggml_graph_compute(ctx0, &gf);
  1356. }
  1357. #else
  1358. ggml_graph_compute(ctx0, &gf);
  1359. #endif
  1360. if (cgraph_fname) {
  1361. ggml_graph_export(&gf, cgraph_fname);
  1362. }
  1363. #ifdef GGML_PERF
  1364. // print timing information per ggml operation (for debugging purposes)
  1365. // requires GGML_PERF to be defined
  1366. ggml_graph_print(&gf);
  1367. #endif
  1368. // plot the computation graph in dot format (for debugging purposes)
  1369. //if (n_past%100 == 0) {
  1370. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1371. //}
  1372. //embd_w.resize(n_vocab*N);
  1373. //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1374. // update kv token count
  1375. lctx.model.kv_self.n = n_past + N;
  1376. // extract logits
  1377. {
  1378. auto & logits_out = lctx.logits;
  1379. if (lctx.logits_all) {
  1380. logits_out.resize(n_vocab * N);
  1381. memcpy(logits_out.data(), (float *) ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1382. } else {
  1383. // return result for just the last token
  1384. logits_out.resize(n_vocab);
  1385. memcpy(logits_out.data(), (float *) ggml_get_data(cur) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1386. }
  1387. }
  1388. // extract embeddings
  1389. if (!lctx.embedding.empty()) {
  1390. auto & embedding_out = lctx.embedding;
  1391. embedding_out.resize(n_embd);
  1392. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1393. }
  1394. if (mem_per_token == 0) {
  1395. mem_per_token = ggml_used_mem(ctx0)/N;
  1396. }
  1397. #if 0
  1398. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1399. ggml_used_mem(ctx0)/1024.0/1024.0,
  1400. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1401. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1402. #endif
  1403. ggml_free(ctx0);
  1404. // measure the performance only for the single-token evals
  1405. if (N == 1) {
  1406. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1407. lctx.n_eval++;
  1408. }
  1409. else if (N > 1) {
  1410. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1411. lctx.n_p_eval += N;
  1412. }
  1413. return true;
  1414. }
  1415. //
  1416. // tokenizer
  1417. //
  1418. static size_t utf8_len(char src) {
  1419. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1420. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1421. return lookup[highbits];
  1422. }
  1423. struct llama_sp_symbol {
  1424. using index = int;
  1425. index prev;
  1426. index next;
  1427. const char * text;
  1428. size_t n;
  1429. };
  1430. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1431. struct llama_sp_bigram {
  1432. struct comparator {
  1433. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1434. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1435. }
  1436. };
  1437. using queue_storage = std::vector<llama_sp_bigram>;
  1438. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1439. llama_sp_symbol::index left;
  1440. llama_sp_symbol::index right;
  1441. float score;
  1442. size_t size;
  1443. };
  1444. // original implementation:
  1445. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1446. struct llama_tokenizer {
  1447. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1448. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1449. // split string into utf8 chars
  1450. int index = 0;
  1451. size_t offs = 0;
  1452. while (offs < text.size()) {
  1453. llama_sp_symbol sym;
  1454. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1455. sym.text = text.c_str() + offs;
  1456. sym.n = char_len;
  1457. offs += char_len;
  1458. sym.prev = index - 1;
  1459. sym.next = offs == text.size() ? -1 : index + 1;
  1460. index++;
  1461. symbols_.emplace_back(sym);
  1462. }
  1463. // seed the work queue with all possible 2-character tokens.
  1464. for (size_t i = 1; i < symbols_.size(); ++i) {
  1465. try_add_bigram(i - 1, i);
  1466. }
  1467. // keep substituting the highest frequency pairs for as long as we can.
  1468. while (!work_queue_.empty()) {
  1469. auto bigram = work_queue_.top();
  1470. work_queue_.pop();
  1471. auto & left_sym = symbols_[bigram.left];
  1472. auto & right_sym = symbols_[bigram.right];
  1473. // if one of the symbols already got merged, skip it.
  1474. if (left_sym.n == 0 || right_sym.n == 0 ||
  1475. left_sym.n + right_sym.n != bigram.size) {
  1476. continue;
  1477. }
  1478. // merge the right sym into the left one
  1479. left_sym.n += right_sym.n;
  1480. right_sym.n = 0;
  1481. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1482. // remove the right sym from the chain
  1483. left_sym.next = right_sym.next;
  1484. if (right_sym.next >= 0) {
  1485. symbols_[right_sym.next].prev = bigram.left;
  1486. }
  1487. // find more substitutions
  1488. try_add_bigram(left_sym.prev, bigram.left);
  1489. try_add_bigram(bigram.left, left_sym.next);
  1490. }
  1491. for (int i = 0; i != -1; i = symbols_[i].next) {
  1492. auto & symbol = symbols_[i];
  1493. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1494. if (token == vocab_.token_to_id.end()) {
  1495. // output any symbols that did not form tokens as bytes.
  1496. for (int j = 0; j < (int) symbol.n; ++j) {
  1497. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1498. output.push_back(token_id);
  1499. }
  1500. } else {
  1501. output.push_back((*token).second);
  1502. }
  1503. }
  1504. }
  1505. private:
  1506. void try_add_bigram(int left, int right) {
  1507. if (left == -1 || right == -1) {
  1508. return;
  1509. }
  1510. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1511. auto token = vocab_.token_to_id.find(text);
  1512. if (token == vocab_.token_to_id.end()) {
  1513. return;
  1514. }
  1515. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1516. return;
  1517. }
  1518. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1519. llama_sp_bigram bigram;
  1520. bigram.left = left;
  1521. bigram.right = right;
  1522. bigram.score = tok_score.score;
  1523. bigram.size = text.size();
  1524. work_queue_.push(bigram);
  1525. }
  1526. const llama_vocab & vocab_;
  1527. std::vector<llama_sp_symbol> symbols_;
  1528. llama_sp_bigram::queue work_queue_;
  1529. };
  1530. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1531. llama_tokenizer tokenizer(vocab);
  1532. std::vector<llama_vocab::id> output;
  1533. if (text.empty()) {
  1534. return output;
  1535. }
  1536. if (bos) {
  1537. output.push_back(llama_token_bos());
  1538. }
  1539. tokenizer.tokenize(text, output);
  1540. return output;
  1541. }
  1542. //
  1543. // sampling
  1544. //
  1545. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1546. assert(candidates->size > 0);
  1547. const int64_t t_start_sample_us = ggml_time_us();
  1548. // Sort the logits in descending order
  1549. if (!candidates->sorted) {
  1550. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1551. return a.logit > b.logit;
  1552. });
  1553. candidates->sorted = true;
  1554. }
  1555. float max_l = candidates->data[0].logit;
  1556. float cum_sum = 0.0f;
  1557. for (size_t i = 0; i < candidates->size; ++i) {
  1558. float p = expf(candidates->data[i].logit - max_l);
  1559. candidates->data[i].p = p;
  1560. cum_sum += p;
  1561. }
  1562. for (size_t i = 0; i < candidates->size; ++i) {
  1563. candidates->data[i].p /= cum_sum;
  1564. }
  1565. if (ctx) {
  1566. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1567. }
  1568. }
  1569. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1570. const int64_t t_start_sample_us = ggml_time_us();
  1571. k = std::max(k, (int) min_keep);
  1572. k = std::min(k, (int) candidates->size);
  1573. // Sort scores in descending order
  1574. if (!candidates->sorted) {
  1575. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1576. return a.logit > b.logit;
  1577. };
  1578. if (k == (int) candidates->size) {
  1579. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1580. } else {
  1581. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1582. }
  1583. candidates->sorted = true;
  1584. }
  1585. candidates->size = k;
  1586. if (ctx) {
  1587. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1588. }
  1589. }
  1590. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1591. if (p >= 1.0f) {
  1592. return;
  1593. }
  1594. const int64_t t_start_sample_us = ggml_time_us();
  1595. llama_sample_softmax(ctx, candidates);
  1596. // Compute the cumulative probabilities
  1597. float cum_sum = 0.0f;
  1598. size_t last_idx = candidates->size;
  1599. for (size_t i = 0; i < candidates->size; ++i) {
  1600. cum_sum += candidates->data[i].p;
  1601. // Check if the running sum is greater than p or if we have kept at least min_keep tokens
  1602. if (cum_sum > p && i >= min_keep) {
  1603. last_idx = i;
  1604. break;
  1605. }
  1606. }
  1607. // Resize the output vector to keep only the top-p tokens
  1608. candidates->size = last_idx;
  1609. if (ctx) {
  1610. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1611. }
  1612. }
  1613. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1614. if (z >= 1.0f || candidates->size <= 2) {
  1615. return;
  1616. }
  1617. const int64_t t_start_sample_us = ggml_time_us();
  1618. llama_sample_softmax(nullptr, candidates);
  1619. // Compute the first and second derivatives
  1620. std::vector<float> first_derivatives(candidates->size - 1);
  1621. std::vector<float> second_derivatives(candidates->size - 2);
  1622. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1623. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1624. }
  1625. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1626. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1627. }
  1628. // Calculate absolute value of second derivatives
  1629. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1630. second_derivatives[i] = abs(second_derivatives[i]);
  1631. }
  1632. // Normalize the second derivatives
  1633. float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1634. for (float & value : second_derivatives) {
  1635. value /= second_derivatives_sum;
  1636. }
  1637. float cum_sum = 0.0f;
  1638. size_t last_idx = candidates->size;
  1639. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1640. cum_sum += second_derivatives[i];
  1641. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1642. if (cum_sum > z && i >= min_keep) {
  1643. last_idx = i;
  1644. break;
  1645. }
  1646. }
  1647. // Resize the output vector to keep only the tokens above the tail location
  1648. candidates->size = last_idx;
  1649. if (ctx) {
  1650. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1651. }
  1652. }
  1653. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1654. // Reference implementation:
  1655. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1656. if (p >= 1.0f) {
  1657. return;
  1658. }
  1659. const int64_t t_start_sample_us = ggml_time_us();
  1660. // Compute the softmax of logits and calculate entropy
  1661. llama_sample_softmax(nullptr, candidates);
  1662. float entropy = 0.0f;
  1663. for (size_t i = 0; i < candidates->size; ++i) {
  1664. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1665. }
  1666. // Compute the absolute difference between negative log probability and entropy for each candidate
  1667. std::vector<float> shifted_scores;
  1668. for (size_t i = 0; i < candidates->size; ++i) {
  1669. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1670. shifted_scores.push_back(shifted_score);
  1671. }
  1672. // Sort tokens based on the shifted_scores and their corresponding indices
  1673. std::vector<size_t> indices(candidates->size);
  1674. std::iota(indices.begin(), indices.end(), 0);
  1675. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1676. return shifted_scores[a] < shifted_scores[b];
  1677. });
  1678. // Compute the cumulative probabilities
  1679. float cum_sum = 0.0f;
  1680. size_t last_idx = indices.size();
  1681. for (size_t i = 0; i < indices.size(); ++i) {
  1682. size_t idx = indices[i];
  1683. cum_sum += candidates->data[idx].p;
  1684. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1685. if (cum_sum > p && i >= min_keep - 1) {
  1686. last_idx = i + 1;
  1687. break;
  1688. }
  1689. }
  1690. // Resize the output vector to keep only the locally typical tokens
  1691. std::vector<llama_token_data> new_candidates;
  1692. for (size_t i = 0; i < last_idx; ++i) {
  1693. size_t idx = indices[i];
  1694. new_candidates.push_back(candidates->data[idx]);
  1695. }
  1696. // Replace the data in candidates with the new_candidates data
  1697. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1698. candidates->size = new_candidates.size();
  1699. if (ctx) {
  1700. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1701. }
  1702. }
  1703. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1704. const int64_t t_start_sample_us = ggml_time_us();
  1705. for (size_t i = 0; i < candidates_p->size; ++i) {
  1706. candidates_p->data[i].logit /= temp;
  1707. }
  1708. if (ctx) {
  1709. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1710. }
  1711. }
  1712. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1713. if (last_tokens_size == 0 || penalty == 1.0f) {
  1714. return;
  1715. }
  1716. const int64_t t_start_sample_us = ggml_time_us();
  1717. for (size_t i = 0; i < candidates->size; ++i) {
  1718. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1719. if (token_iter == last_tokens + last_tokens_size) {
  1720. continue;
  1721. }
  1722. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1723. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1724. if (candidates->data[i].logit <= 0) {
  1725. candidates->data[i].logit *= penalty;
  1726. } else {
  1727. candidates->data[i].logit /= penalty;
  1728. }
  1729. }
  1730. candidates->sorted = false;
  1731. if (ctx) {
  1732. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1733. }
  1734. }
  1735. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1736. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1737. return;
  1738. }
  1739. const int64_t t_start_sample_us = ggml_time_us();
  1740. // Create a frequency map to count occurrences of each token in last_tokens
  1741. std::unordered_map<llama_token, int> token_count;
  1742. for (size_t i = 0; i < last_tokens_size; ++i) {
  1743. token_count[last_tokens_p[i]]++;
  1744. }
  1745. // Apply frequency and presence penalties to the candidates
  1746. for (size_t i = 0; i < candidates->size; ++i) {
  1747. auto token_iter = token_count.find(candidates->data[i].id);
  1748. if (token_iter == token_count.end()) {
  1749. continue;
  1750. }
  1751. int count = token_iter->second;
  1752. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1753. }
  1754. candidates->sorted = false;
  1755. if (ctx) {
  1756. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1757. }
  1758. }
  1759. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1760. assert(ctx);
  1761. auto N = float(llama_n_vocab(ctx));
  1762. int64_t t_start_sample_us;
  1763. t_start_sample_us = ggml_time_us();
  1764. llama_sample_softmax(nullptr, candidates);
  1765. // Estimate s_hat using the most probable m tokens
  1766. float s_hat = 0.0;
  1767. float sum_ti_bi = 0.0;
  1768. float sum_ti_sq = 0.0;
  1769. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1770. float t_i = logf(float(i + 2) / float(i + 1));
  1771. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1772. sum_ti_bi += t_i * b_i;
  1773. sum_ti_sq += t_i * t_i;
  1774. }
  1775. s_hat = sum_ti_bi / sum_ti_sq;
  1776. // Compute k from the estimated s_hat and target surprise value
  1777. float epsilon_hat = s_hat - 1;
  1778. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1779. // Sample the next word X using top-k sampling
  1780. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1781. if (ctx) {
  1782. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1783. }
  1784. llama_token X = llama_sample_token(ctx, candidates);
  1785. t_start_sample_us = ggml_time_us();
  1786. // Compute error as the difference between observed surprise and target surprise value
  1787. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1788. return candidate.id == X;
  1789. }));
  1790. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1791. float e = observed_surprise - tau;
  1792. // Update mu using the learning rate and error
  1793. *mu = *mu - eta * e;
  1794. if (ctx) {
  1795. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1796. ctx->n_sample++;
  1797. }
  1798. return X;
  1799. }
  1800. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1801. assert(ctx);
  1802. int64_t t_start_sample_us;
  1803. t_start_sample_us = ggml_time_us();
  1804. llama_sample_softmax(ctx, candidates);
  1805. // Truncate the words with surprise values greater than mu
  1806. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1807. return -log2f(candidate.p) > *mu;
  1808. }));
  1809. // Normalize the probabilities of the remaining words
  1810. llama_sample_softmax(ctx, candidates);
  1811. // Sample the next word X from the remaining words
  1812. if (ctx) {
  1813. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1814. }
  1815. llama_token X = llama_sample_token(ctx, candidates);
  1816. t_start_sample_us = ggml_time_us();
  1817. // Compute error as the difference between observed surprise and target surprise value
  1818. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1819. return candidate.id == X;
  1820. }));
  1821. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1822. float e = observed_surprise - tau;
  1823. // Update mu using the learning rate and error
  1824. *mu = *mu - eta * e;
  1825. if (ctx) {
  1826. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1827. }
  1828. return X;
  1829. }
  1830. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1831. const int64_t t_start_sample_us = ggml_time_us();
  1832. // Find max element
  1833. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1834. return a.logit < b.logit;
  1835. });
  1836. llama_token result = max_iter->id;
  1837. if (ctx) {
  1838. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1839. ctx->n_sample++;
  1840. }
  1841. return result;
  1842. }
  1843. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1844. assert(ctx);
  1845. const int64_t t_start_sample_us = ggml_time_us();
  1846. llama_sample_softmax(nullptr, candidates);
  1847. std::vector<float> probs;
  1848. probs.reserve(candidates->size);
  1849. for (size_t i = 0; i < candidates->size; ++i) {
  1850. probs.push_back(candidates->data[i].p);
  1851. }
  1852. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1853. auto & rng = ctx->rng;
  1854. int idx = dist(rng);
  1855. llama_token result = candidates->data[idx].id;
  1856. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1857. ctx->n_sample++;
  1858. return result;
  1859. }
  1860. //
  1861. // quantization
  1862. //
  1863. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
  1864. ggml_type quantized_type;
  1865. switch (ftype) {
  1866. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  1867. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  1868. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  1869. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  1870. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  1871. // K-quants
  1872. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  1873. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  1874. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  1875. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  1876. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  1877. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  1878. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  1879. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  1880. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  1881. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  1882. }
  1883. if (nthread <= 0) {
  1884. nthread = std::thread::hardware_concurrency();
  1885. }
  1886. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false,
  1887. /*vocab_only*/ false));
  1888. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
  1889. int n_attention_wv = 0;
  1890. int n_feed_forward_w2 = 0;
  1891. for (auto& tensor : model_loader->tensors_map.tensors) {
  1892. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  1893. ++n_attention_wv;
  1894. }
  1895. else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  1896. ++n_feed_forward_w2;
  1897. }
  1898. }
  1899. int i_attention_wv = 0;
  1900. int i_feed_forward_w2 = 0;
  1901. size_t total_size_org = 0;
  1902. size_t total_size_new = 0;
  1903. std::vector<int64_t> hist_all(1 << 4, 0);
  1904. std::vector<std::thread> workers;
  1905. std::mutex mutex;
  1906. size_t idx = 0;
  1907. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  1908. llama_buffer read_data;
  1909. read_data.resize(tensor.size);
  1910. tensor.data = read_data.addr;
  1911. model_loader->load_data_for(tensor);
  1912. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  1913. ++idx, model_loader->tensors_map.tensors.size(),
  1914. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  1915. ggml_type_name(tensor.type));
  1916. // This used to be a regex, but <regex> has an extreme cost to compile times.
  1917. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  1918. // quantize only 2D tensors
  1919. quantize &= (tensor.ne.size() == 2);
  1920. // uncomment this to keep the output layer in FP16
  1921. //if (tensor.name == "output.weight") {
  1922. // quantize = false;
  1923. //}
  1924. enum ggml_type new_type;
  1925. void * new_data;
  1926. size_t new_size;
  1927. llama_buffer work;
  1928. if (!quantize) {
  1929. new_type = tensor.type;
  1930. new_data = tensor.data;
  1931. new_size = tensor.size;
  1932. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  1933. } else {
  1934. new_type = quantized_type;
  1935. // TODO: temporary disabled until Metal / OpenCL support is available
  1936. // ref: https://github.com/ggerganov/llama.cpp/issues/1711
  1937. //if (tensor.name == "output.weight") {
  1938. // new_type = GGML_TYPE_Q6_K;
  1939. //}
  1940. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  1941. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  1942. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  1943. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  1944. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
  1945. (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
  1946. ++i_attention_wv;
  1947. }
  1948. if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  1949. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  1950. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  1951. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  1952. (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
  1953. (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
  1954. ++i_feed_forward_w2;
  1955. }
  1956. if (tensor.name.find("attention.wo.weight") != std::string::npos) {
  1957. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  1958. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  1959. }
  1960. float * f32_data;
  1961. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  1962. llama_buffer f32_conv_buf;
  1963. if (tensor.type == GGML_TYPE_F32) {
  1964. f32_data = (float *) tensor.data;
  1965. } else if (tensor.type == GGML_TYPE_F16) {
  1966. f32_conv_buf.resize(nelements * sizeof(float));
  1967. f32_data = (float *) f32_conv_buf.addr;
  1968. const auto * f16_data = (const ggml_fp16_t *) tensor.data;
  1969. for (size_t i = 0; i < nelements; i++) {
  1970. f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
  1971. }
  1972. } else {
  1973. throw std::runtime_error(format("type %s unsupported for integer quantization", ggml_type_name(tensor.type)));
  1974. }
  1975. printf("quantizing .. ");
  1976. fflush(stdout);
  1977. work.resize(nelements * 4); // upper bound on size
  1978. new_data = work.addr;
  1979. std::vector<int64_t> hist_cur(1 << 4, 0);
  1980. int chunk_size = 32 * 512;
  1981. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  1982. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  1983. if (nthread_use < 2) {
  1984. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  1985. } else {
  1986. size_t counter = 0;
  1987. new_size = 0;
  1988. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  1989. std::vector<int64_t> local_hist;
  1990. size_t local_size = 0;
  1991. while (true) {
  1992. std::unique_lock<std::mutex> lock(mutex);
  1993. size_t first = counter; counter += chunk_size;
  1994. if (first >= nelements) {
  1995. if (!local_hist.empty()) {
  1996. for (int j=0; j<int(local_hist.size()); ++j) {
  1997. hist_cur[j] += local_hist[j];
  1998. }
  1999. new_size += local_size;
  2000. }
  2001. break;
  2002. }
  2003. lock.unlock();
  2004. size_t last = std::min(nelements, first + chunk_size);
  2005. if (local_hist.empty()) {
  2006. local_hist.resize(hist_cur.size(), 0);
  2007. }
  2008. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  2009. }
  2010. };
  2011. if ((int) workers.size() < nthread_use - 1) {
  2012. workers.resize(nthread_use - 1);
  2013. }
  2014. for (int it = 0; it < nthread_use - 1; ++it) {
  2015. workers[it] = std::thread(compute);
  2016. }
  2017. compute();
  2018. for (int it = 0; it < nthread_use - 1; ++it) {
  2019. workers[it].join();
  2020. }
  2021. }
  2022. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  2023. int64_t tot_count = 0;
  2024. for (size_t i = 0; i < hist_cur.size(); i++) {
  2025. hist_all[i] += hist_cur[i];
  2026. tot_count += hist_cur[i];
  2027. }
  2028. if (tot_count > 0) {
  2029. for (size_t i = 0; i < hist_cur.size(); i++) {
  2030. printf("%5.3f ", hist_cur[i] / float(nelements));
  2031. }
  2032. }
  2033. printf("\n");
  2034. }
  2035. total_size_org += tensor.size;
  2036. total_size_new += new_size;
  2037. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  2038. }
  2039. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  2040. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  2041. {
  2042. int64_t sum_all = 0;
  2043. for (size_t i = 0; i < hist_all.size(); i++) {
  2044. sum_all += hist_all[i];
  2045. }
  2046. if (sum_all > 0) {
  2047. printf("%s: hist: ", __func__);
  2048. for (size_t i = 0; i < hist_all.size(); i++) {
  2049. printf("%5.3f ", hist_all[i] / float(sum_all));
  2050. }
  2051. printf("\n");
  2052. }
  2053. }
  2054. }
  2055. //
  2056. // interface implementation
  2057. //
  2058. struct llama_context * llama_init_from_file(
  2059. const char * path_model,
  2060. struct llama_context_params params) {
  2061. ggml_time_init();
  2062. llama_context * ctx = new llama_context;
  2063. if (params.seed < 0) {
  2064. params.seed = time(NULL);
  2065. }
  2066. unsigned cur_percentage = 0;
  2067. if (params.progress_callback == NULL) {
  2068. params.progress_callback_user_data = &cur_percentage;
  2069. params.progress_callback = [](float progress, void * ctx) {
  2070. unsigned * cur_percentage_p = (unsigned *) ctx;
  2071. unsigned percentage = (unsigned) (100 * progress);
  2072. while (percentage > *cur_percentage_p) {
  2073. *cur_percentage_p = percentage;
  2074. fprintf(stderr, ".");
  2075. fflush(stderr);
  2076. if (percentage >= 100) {
  2077. fprintf(stderr, "\n");
  2078. }
  2079. }
  2080. };
  2081. }
  2082. ctx->rng = std::mt19937(params.seed);
  2083. ctx->logits_all = params.logits_all;
  2084. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2085. if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers,
  2086. params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock,
  2087. params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
  2088. fprintf(stderr, "%s: failed to load model\n", __func__);
  2089. llama_free(ctx);
  2090. return nullptr;
  2091. }
  2092. // reserve memory for context buffers
  2093. if (!params.vocab_only) {
  2094. if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
  2095. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  2096. llama_free(ctx);
  2097. return nullptr;
  2098. }
  2099. {
  2100. const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
  2101. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  2102. }
  2103. const auto & hparams = ctx->model.hparams;
  2104. // resized during inference
  2105. if (params.logits_all) {
  2106. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  2107. } else {
  2108. ctx->logits.reserve(hparams.n_vocab);
  2109. }
  2110. if (params.embedding){
  2111. ctx->embedding.resize(hparams.n_embd);
  2112. }
  2113. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  2114. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  2115. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  2116. }
  2117. #ifdef GGML_USE_METAL
  2118. if (params.n_gpu_layers > 0) {
  2119. // this allocates all Metal resources and memory buffers
  2120. ctx->ctx_metal = ggml_metal_init();
  2121. void *data_ptr = NULL;
  2122. size_t data_size = 0;
  2123. if (params.use_mmap) {
  2124. data_ptr = ctx->model.mapping->addr;
  2125. data_size= ctx->model.mapping->size;
  2126. } else {
  2127. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  2128. data_size= ggml_get_mem_size(ctx->model.ctx);
  2129. }
  2130. #define LLAMA_METAL_CHECK_BUF(result) \
  2131. if (!(result)) { \
  2132. fprintf(stderr, "%s: failed to add buffer\n", __func__); \
  2133. llama_free(ctx); \
  2134. return NULL; \
  2135. }
  2136. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size));
  2137. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
  2138. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size));
  2139. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size));
  2140. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size));
  2141. #undef LLAMA_METAL_CHECK_BUF
  2142. }
  2143. #endif
  2144. return ctx;
  2145. }
  2146. void llama_free(struct llama_context * ctx) {
  2147. delete ctx;
  2148. }
  2149. int llama_model_quantize(
  2150. const char * fname_inp,
  2151. const char * fname_out,
  2152. enum llama_ftype ftype,
  2153. int nthread) {
  2154. try {
  2155. llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
  2156. return 0;
  2157. } catch (const std::exception & err) {
  2158. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
  2159. return 1;
  2160. }
  2161. }
  2162. int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2163. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  2164. auto & model = ctx->model;
  2165. const int64_t t_start_lora_us = ggml_time_us();
  2166. auto fin = std::ifstream(path_lora, std::ios::binary);
  2167. if (!fin) {
  2168. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  2169. return 1;
  2170. }
  2171. // verify magic and version
  2172. {
  2173. uint32_t magic;
  2174. fin.read((char *) &magic, sizeof(magic));
  2175. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  2176. fprintf(stderr, "%s: bad file magic\n", __func__);
  2177. return 1;
  2178. }
  2179. uint32_t format_version;
  2180. fin.read((char *) &format_version, sizeof(format_version));
  2181. if (format_version != 1) {
  2182. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  2183. return 1;
  2184. }
  2185. }
  2186. int32_t lora_r;
  2187. int32_t lora_alpha;
  2188. fin.read((char *) &lora_r, sizeof(lora_r));
  2189. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  2190. float scaling = (float)lora_alpha / (float)lora_r;
  2191. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  2192. // create a temporary ggml context to store the lora tensors
  2193. // todo: calculate size from biggest possible tensor
  2194. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  2195. struct ggml_init_params params;
  2196. params.mem_size = lora_buf.size();
  2197. params.mem_buffer = lora_buf.data();
  2198. params.no_alloc = false;
  2199. ggml_context * lora_ctx = ggml_init(params);
  2200. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  2201. // create a name -> tensor map of the model to accelerate lookups
  2202. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  2203. for (auto & kv: model.tensors_by_name) {
  2204. model_tensors.insert(kv);
  2205. }
  2206. // load base model
  2207. std::unique_ptr<llama_model_loader> model_loader;
  2208. ggml_context * base_ctx = NULL;
  2209. llama_buffer base_buf;
  2210. if (path_base_model) {
  2211. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  2212. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
  2213. size_t ctx_size;
  2214. size_t mmapped_size;
  2215. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  2216. base_buf.resize(ctx_size);
  2217. ggml_init_params base_params;
  2218. base_params.mem_size = base_buf.size;
  2219. base_params.mem_buffer = base_buf.addr;
  2220. base_params.no_alloc = model_loader->use_mmap;
  2221. base_ctx = ggml_init(base_params);
  2222. model_loader->ggml_ctx = base_ctx;
  2223. // maybe this should in llama_model_loader
  2224. if (model_loader->use_mmap) {
  2225. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
  2226. }
  2227. }
  2228. // read tensors and apply
  2229. bool warned = false;
  2230. int n_tensors = 0;
  2231. while (true) {
  2232. int32_t n_dims;
  2233. int32_t length;
  2234. int32_t ftype;
  2235. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  2236. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  2237. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  2238. if (fin.eof()) {
  2239. break;
  2240. }
  2241. int32_t ne[2] = { 1, 1 };
  2242. for (int i = 0; i < n_dims; ++i) {
  2243. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  2244. }
  2245. std::string name;
  2246. {
  2247. char buf[1024];
  2248. fin.read(buf, length);
  2249. name = std::string(buf, length);
  2250. }
  2251. // check for lora suffix and get the type of tensor
  2252. const std::string lora_suffix = ".lora";
  2253. size_t pos = name.rfind(lora_suffix);
  2254. if (pos == std::string::npos) {
  2255. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2256. return 1;
  2257. }
  2258. std::string lora_type = name.substr(pos + lora_suffix.length());
  2259. std::string base_name = name;
  2260. base_name.erase(pos);
  2261. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2262. if (model_tensors.find(base_name) == model_tensors.end()) {
  2263. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2264. return 1;
  2265. }
  2266. // create ggml tensor
  2267. ggml_type wtype;
  2268. switch (ftype) {
  2269. case 0: wtype = GGML_TYPE_F32; break;
  2270. case 1: wtype = GGML_TYPE_F16; break;
  2271. default:
  2272. {
  2273. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2274. __func__, ftype);
  2275. return false;
  2276. }
  2277. }
  2278. ggml_tensor* lora_tensor;
  2279. if (n_dims == 2) {
  2280. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2281. }
  2282. else {
  2283. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2284. return 1;
  2285. }
  2286. // load tensor data
  2287. size_t offset = fin.tellg();
  2288. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2289. offset = (offset + 31) & -32;
  2290. fin.seekg(offset);
  2291. fin.read((char*)lora_tensor->data, tensor_data_size);
  2292. lora_tensors[name] = lora_tensor;
  2293. // check if we have both A and B tensors and apply
  2294. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2295. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2296. ggml_tensor * dest_t = model_tensors[base_name];
  2297. ggml_tensor * base_t;
  2298. if (model_loader) {
  2299. // load from base model
  2300. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2301. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2302. return 1;
  2303. }
  2304. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2305. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2306. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2307. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2308. model_loader->load_data_for(lt);
  2309. lt.ggml_tensor->data = lt.data;
  2310. }
  2311. else {
  2312. base_t = dest_t;
  2313. }
  2314. if (ggml_is_quantized(base_t->type)) {
  2315. if (!warned) {
  2316. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2317. "use a f16 or f32 base model with --lora-base\n", __func__);
  2318. warned = true;
  2319. }
  2320. }
  2321. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2322. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2323. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2324. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2325. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2326. return 1;
  2327. }
  2328. // w = w + BA*s
  2329. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2330. if (scaling != 1.0f) {
  2331. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2332. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2333. }
  2334. ggml_tensor * r;
  2335. if (base_t == dest_t) {
  2336. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2337. }
  2338. else {
  2339. r = ggml_add(lora_ctx, base_t, BA);
  2340. r = ggml_cpy(lora_ctx, r, dest_t);
  2341. }
  2342. struct ggml_cgraph gf = ggml_build_forward(r);
  2343. gf.n_threads = n_threads;
  2344. ggml_graph_compute(lora_ctx, &gf);
  2345. // we won't need these tensors again, reset the context to save memory
  2346. ggml_free(lora_ctx);
  2347. lora_ctx = ggml_init(params);
  2348. lora_tensors.clear();
  2349. n_tensors++;
  2350. if (n_tensors % 4 == 0) {
  2351. fprintf(stderr, ".");
  2352. }
  2353. }
  2354. }
  2355. // TODO: this should be in a destructor, it will leak on failure
  2356. ggml_free(lora_ctx);
  2357. if (base_ctx) {
  2358. ggml_free(base_ctx);
  2359. }
  2360. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2361. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2362. return 0;
  2363. }
  2364. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2365. try {
  2366. return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
  2367. } catch (const std::exception & err) {
  2368. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2369. return 1;
  2370. }
  2371. }
  2372. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2373. return ctx->model.kv_self.n;
  2374. }
  2375. #define LLAMA_MAX_RNG_STATE (64*1024)
  2376. void llama_set_rng_seed(struct llama_context * ctx, int seed) {
  2377. if (seed < 0) {
  2378. seed = time(NULL);
  2379. }
  2380. ctx->rng.seed(seed);
  2381. }
  2382. // Returns the *maximum* size of the state
  2383. size_t llama_get_state_size(const struct llama_context * ctx) {
  2384. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2385. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2386. const size_t s_rng_size = sizeof(size_t);
  2387. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2388. const size_t s_logits_capacity = sizeof(size_t);
  2389. const size_t s_logits_size = sizeof(size_t);
  2390. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2391. const size_t s_embedding_size = sizeof(size_t);
  2392. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2393. const size_t s_kv_size = sizeof(size_t);
  2394. const size_t s_kv_ntok = sizeof(int);
  2395. const size_t s_kv = ctx->model.kv_self.buf.size;
  2396. const size_t s_total = (
  2397. + s_rng_size
  2398. + s_rng
  2399. + s_logits_capacity
  2400. + s_logits_size
  2401. + s_logits
  2402. + s_embedding_size
  2403. + s_embedding
  2404. + s_kv_size
  2405. + s_kv_ntok
  2406. + s_kv
  2407. );
  2408. return s_total;
  2409. }
  2410. // Copies the state to the specified destination address
  2411. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2412. uint8_t * out = dst;
  2413. // copy rng
  2414. {
  2415. std::stringstream rng_ss;
  2416. rng_ss << ctx->rng;
  2417. const size_t rng_size = rng_ss.str().size();
  2418. char rng_buf[LLAMA_MAX_RNG_STATE];
  2419. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2420. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2421. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2422. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2423. }
  2424. // copy logits
  2425. {
  2426. const size_t logits_cap = ctx->logits.capacity();
  2427. const size_t logits_size = ctx->logits.size();
  2428. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2429. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2430. if (logits_size) {
  2431. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2432. }
  2433. out += logits_cap * sizeof(float);
  2434. }
  2435. // copy embeddings
  2436. {
  2437. const size_t embedding_size = ctx->embedding.size();
  2438. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2439. if (embedding_size) {
  2440. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2441. out += embedding_size * sizeof(float);
  2442. }
  2443. }
  2444. // copy kv cache
  2445. {
  2446. const auto & kv_self = ctx->model.kv_self;
  2447. const auto & hparams = ctx->model.hparams;
  2448. const int n_layer = hparams.n_layer;
  2449. const int n_embd = hparams.n_embd;
  2450. const int n_ctx = hparams.n_ctx;
  2451. const size_t kv_size = kv_self.buf.size;
  2452. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2453. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2454. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2455. if (kv_size) {
  2456. const size_t elt_size = ggml_element_size(kv_self.k);
  2457. char buffer[4096];
  2458. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2459. ggml_cgraph gf{};
  2460. gf.n_threads = 1;
  2461. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2462. kout3d->data = out;
  2463. out += ggml_nbytes(kout3d);
  2464. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2465. vout3d->data = out;
  2466. out += ggml_nbytes(vout3d);
  2467. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2468. n_embd, kv_ntok, n_layer,
  2469. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2470. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2471. kv_ntok, n_embd, n_layer,
  2472. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2473. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2474. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2475. ggml_graph_compute(cpy_ctx, &gf);
  2476. ggml_free(cpy_ctx);
  2477. }
  2478. }
  2479. const size_t written = out - dst;
  2480. const size_t max_size = llama_get_state_size(ctx);
  2481. LLAMA_ASSERT(written <= max_size);
  2482. return written;
  2483. }
  2484. // Sets the state reading from the specified source address
  2485. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2486. uint8_t * inp = src;
  2487. // set rng
  2488. {
  2489. size_t rng_size;
  2490. char rng_buf[LLAMA_MAX_RNG_STATE];
  2491. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2492. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2493. std::stringstream rng_ss;
  2494. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2495. rng_ss >> ctx->rng;
  2496. LLAMA_ASSERT(rng_ss.fail() == false);
  2497. }
  2498. // set logits
  2499. {
  2500. size_t logits_cap;
  2501. size_t logits_size;
  2502. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2503. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2504. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2505. if (logits_size) {
  2506. ctx->logits.resize(logits_size);
  2507. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2508. }
  2509. inp += logits_cap * sizeof(float);
  2510. }
  2511. // set embeddings
  2512. {
  2513. size_t embedding_size;
  2514. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2515. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2516. if (embedding_size) {
  2517. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2518. inp += embedding_size * sizeof(float);
  2519. }
  2520. }
  2521. // set kv cache
  2522. {
  2523. const auto & kv_self = ctx->model.kv_self;
  2524. const auto & hparams = ctx->model.hparams;
  2525. const int n_layer = hparams.n_layer;
  2526. const int n_embd = hparams.n_embd;
  2527. const int n_ctx = hparams.n_ctx;
  2528. size_t kv_size;
  2529. int kv_ntok;
  2530. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2531. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2532. if (kv_size) {
  2533. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2534. const size_t elt_size = ggml_element_size(kv_self.k);
  2535. char buffer[4096];
  2536. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2537. ggml_cgraph gf{};
  2538. gf.n_threads = 1;
  2539. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2540. kin3d->data = (void *) inp;
  2541. inp += ggml_nbytes(kin3d);
  2542. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2543. vin3d->data = (void *) inp;
  2544. inp += ggml_nbytes(vin3d);
  2545. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2546. n_embd, kv_ntok, n_layer,
  2547. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2548. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2549. kv_ntok, n_embd, n_layer,
  2550. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2551. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2552. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2553. ggml_graph_compute(cpy_ctx, &gf);
  2554. ggml_free(cpy_ctx);
  2555. }
  2556. ctx->model.kv_self.n = kv_ntok;
  2557. }
  2558. const size_t nread = inp - src;
  2559. const size_t max_size = llama_get_state_size(ctx);
  2560. LLAMA_ASSERT(nread <= max_size);
  2561. return nread;
  2562. }
  2563. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2564. llama_file file(path_session, "rb");
  2565. // sanity checks
  2566. {
  2567. const uint32_t magic = file.read_u32();
  2568. const uint32_t version = file.read_u32();
  2569. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2570. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2571. return false;
  2572. }
  2573. llama_hparams session_hparams;
  2574. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2575. if (session_hparams != ctx->model.hparams) {
  2576. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2577. return false;
  2578. }
  2579. }
  2580. // load the prompt
  2581. {
  2582. const uint32_t n_token_count = file.read_u32();
  2583. if (n_token_count > n_token_capacity) {
  2584. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2585. return false;
  2586. }
  2587. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2588. *n_token_count_out = n_token_count;
  2589. }
  2590. // restore the context state
  2591. {
  2592. const size_t n_state_size_cur = file.size - file.tell();
  2593. const size_t n_state_size_max = llama_get_state_size(ctx);
  2594. if (n_state_size_cur > n_state_size_max) {
  2595. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2596. return false;
  2597. }
  2598. std::vector<uint8_t> state_data(n_state_size_max);
  2599. file.read_raw(state_data.data(), n_state_size_cur);
  2600. llama_set_state_data(ctx, state_data.data());
  2601. }
  2602. return true;
  2603. }
  2604. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2605. llama_file file(path_session, "wb");
  2606. file.write_u32(LLAMA_SESSION_MAGIC);
  2607. file.write_u32(LLAMA_SESSION_VERSION);
  2608. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2609. // save the prompt
  2610. file.write_u32((uint32_t) n_token_count);
  2611. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2612. // save the context state
  2613. {
  2614. const size_t n_state_size_max = llama_get_state_size(ctx);
  2615. std::vector<uint8_t> state_data(n_state_size_max);
  2616. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2617. file.write_raw(state_data.data(), n_state_size_cur);
  2618. }
  2619. return true;
  2620. }
  2621. int llama_eval(
  2622. struct llama_context * ctx,
  2623. const llama_token * tokens,
  2624. int n_tokens,
  2625. int n_past,
  2626. int n_threads) {
  2627. if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) {
  2628. fprintf(stderr, "%s: failed to eval\n", __func__);
  2629. return 1;
  2630. }
  2631. // get a more accurate load time, upon first eval
  2632. // TODO: fix this
  2633. if (!ctx->has_evaluated_once) {
  2634. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2635. ctx->has_evaluated_once = true;
  2636. }
  2637. return 0;
  2638. }
  2639. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  2640. const int n_batch = 1;
  2641. const int n_ctx = 512 - n_batch;
  2642. const std::vector<llama_token> tmp(n_batch, llama_token_bos());
  2643. if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) {
  2644. fprintf(stderr, "%s: failed to eval\n", __func__);
  2645. return 1;
  2646. }
  2647. return 0;
  2648. }
  2649. int llama_tokenize(
  2650. struct llama_context * ctx,
  2651. const char * text,
  2652. llama_token * tokens,
  2653. int n_max_tokens,
  2654. bool add_bos) {
  2655. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  2656. if (n_max_tokens < (int) res.size()) {
  2657. fprintf(stderr, "%s: too many tokens\n", __func__);
  2658. return -((int) res.size());
  2659. }
  2660. for (size_t i = 0; i < res.size(); i++) {
  2661. tokens[i] = res[i];
  2662. }
  2663. return res.size();
  2664. }
  2665. int llama_n_vocab(const struct llama_context * ctx) {
  2666. return ctx->vocab.id_to_token.size();
  2667. }
  2668. int llama_n_ctx(const struct llama_context * ctx) {
  2669. return ctx->model.hparams.n_ctx;
  2670. }
  2671. int llama_n_embd(const struct llama_context * ctx) {
  2672. return ctx->model.hparams.n_embd;
  2673. }
  2674. float * llama_get_logits(struct llama_context * ctx) {
  2675. return ctx->logits.data();
  2676. }
  2677. float * llama_get_embeddings(struct llama_context * ctx) {
  2678. return ctx->embedding.data();
  2679. }
  2680. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  2681. if (token >= llama_n_vocab(ctx)) {
  2682. return nullptr;
  2683. }
  2684. return ctx->vocab.id_to_token[token].tok.c_str();
  2685. }
  2686. llama_token llama_token_bos() {
  2687. return 1;
  2688. }
  2689. llama_token llama_token_eos() {
  2690. return 2;
  2691. }
  2692. llama_token llama_token_nl() {
  2693. return 13;
  2694. }
  2695. void llama_print_timings(struct llama_context * ctx) {
  2696. const int64_t t_end_us = ggml_time_us();
  2697. const int32_t n_sample = std::max(1, ctx->n_sample);
  2698. const int32_t n_eval = std::max(1, ctx->n_eval);
  2699. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  2700. fprintf(stderr, "\n");
  2701. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  2702. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
  2703. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
  2704. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
  2705. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  2706. }
  2707. void llama_reset_timings(struct llama_context * ctx) {
  2708. ctx->t_start_us = ggml_time_us();
  2709. ctx->t_sample_us = ctx->n_sample = 0;
  2710. ctx->t_eval_us = ctx->n_eval = 0;
  2711. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  2712. }
  2713. const char * llama_print_system_info(void) {
  2714. static std::string s;
  2715. s = "";
  2716. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  2717. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  2718. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  2719. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  2720. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  2721. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  2722. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  2723. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  2724. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  2725. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  2726. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  2727. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  2728. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  2729. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  2730. return s.c_str();
  2731. }
  2732. // For internal test use
  2733. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  2734. return ctx->model.tensors_by_name;
  2735. }