convert_hf_to_gguf.py 441 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. dry_run: bool
  59. part_names: list[str]
  60. is_safetensors: bool
  61. hparams: dict[str, Any]
  62. tensor_names: set[str] | None
  63. gguf_writer: gguf.GGUFWriter
  64. model_name: str | None
  65. metadata_override: Path | None
  66. dir_model_card: Path
  67. remote_hf_model_id: str | None
  68. # subclasses should define this!
  69. model_arch: gguf.MODEL_ARCH
  70. # subclasses should initialize this!
  71. block_count: int
  72. tensor_map: gguf.TensorNameMap
  73. # Mistral format specifics
  74. is_mistral_format: bool = False
  75. disable_mistral_community_chat_template: bool = False
  76. sentence_transformers_dense_modules: bool = False
  77. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  78. use_temp_file: bool = False, eager: bool = False,
  79. metadata_override: Path | None = None, model_name: str | None = None,
  80. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  81. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  82. disable_mistral_community_chat_template: bool = False,
  83. sentence_transformers_dense_modules: bool = False):
  84. if type(self) is ModelBase or \
  85. type(self) is TextModel or \
  86. type(self) is MmprojModel:
  87. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  88. self.dir_model = dir_model
  89. self.ftype = ftype
  90. self.fname_out = fname_out
  91. self.is_big_endian = is_big_endian
  92. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  93. self.use_temp_file = use_temp_file
  94. self.lazy = not eager or (remote_hf_model_id is not None)
  95. self.dry_run = dry_run
  96. self.remote_hf_model_id = remote_hf_model_id
  97. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  98. if remote_hf_model_id is not None:
  99. self.is_safetensors = True
  100. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  101. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  102. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  103. self.tensor_names = set(name for name in remote_tensors.keys())
  104. for name, remote_tensor in remote_tensors.items():
  105. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  106. self.get_tensors = get_remote_tensors
  107. else:
  108. prefix = "model" if not self.is_mistral_format else "consolidated"
  109. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  110. self.is_safetensors = len(self.part_names) > 0
  111. if not self.is_safetensors:
  112. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  113. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  114. self.tensor_names = None
  115. self.metadata_override = metadata_override
  116. self.model_name = model_name
  117. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  118. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  121. _, first_tensor = next(self.get_tensors())
  122. if first_tensor.dtype == torch.float16:
  123. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  124. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  125. else:
  126. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  127. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  146. tensor_names_from_parts: set[str] = set()
  147. if not self.is_mistral_format:
  148. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  149. index_name += ".index.json"
  150. index_file = self.dir_model / index_name
  151. if index_file.is_file():
  152. self.tensor_names = set()
  153. logger.info(f"gguf: loading model weight map from '{index_name}'")
  154. with open(index_file, "r", encoding="utf-8") as f:
  155. index: dict[str, Any] = json.load(f)
  156. weight_map = index.get("weight_map")
  157. if weight_map is None or not isinstance(weight_map, dict):
  158. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  159. self.tensor_names.update(weight_map.keys())
  160. else:
  161. self.tensor_names = tensor_names_from_parts
  162. weight_map = {}
  163. else:
  164. self.tensor_names = tensor_names_from_parts
  165. weight_map = {}
  166. for part_name in self.part_names:
  167. logger.info(f"gguf: loading model part '{part_name}'")
  168. ctx: ContextManager[Any]
  169. if self.is_safetensors:
  170. from safetensors import safe_open
  171. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  172. else:
  173. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  174. with ctx as model_part:
  175. tensor_names_from_parts.update(model_part.keys())
  176. for name in model_part.keys():
  177. if self.is_safetensors:
  178. if self.lazy:
  179. data = model_part.get_slice(name)
  180. data = LazyTorchTensor.from_safetensors_slice(data)
  181. else:
  182. data = model_part.get_tensor(name)
  183. else:
  184. data = model_part[name]
  185. if self.lazy:
  186. data = LazyTorchTensor.from_eager(data)
  187. yield name, data
  188. # verify tensor name presence and identify potentially missing files
  189. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  190. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  191. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  192. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  193. if len(extra) == 0 and len(missing_files) > 0:
  194. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  195. f"Missing tensors: {missing}")
  196. else:
  197. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  198. f"Missing tensors: {missing}\n"
  199. f"Extra tensors: {extra}")
  200. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  201. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  202. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  203. name: str = gguf.TENSOR_NAMES[key]
  204. if "{bid}" in name:
  205. assert bid is not None
  206. name = name.format(bid=bid)
  207. return name + suffix
  208. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  209. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  210. return False
  211. key_name: str = gguf.TENSOR_NAMES[key]
  212. if "{bid}" in key_name:
  213. if bid is None:
  214. return False
  215. key_name = key_name.format(bid=bid)
  216. else:
  217. if bid is not None:
  218. return False
  219. return name == (key_name + suffix)
  220. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  221. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  222. if new_name is None:
  223. raise ValueError(f"Can not map tensor {name!r}")
  224. return new_name
  225. def set_gguf_parameters(self):
  226. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  228. del bid # unused
  229. return [(self.map_tensor_name(name), data_torch)]
  230. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  231. del name, new_name, bid, n_dims # unused
  232. return False
  233. # some models need extra generated tensors (like rope_freqs)
  234. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  235. return ()
  236. def prepare_tensors(self):
  237. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  238. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  239. # we don't need these
  240. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  241. continue
  242. old_dtype = data_torch.dtype
  243. # convert any unsupported data types to float32
  244. if data_torch.dtype not in (torch.float16, torch.float32):
  245. data_torch = data_torch.to(torch.float32)
  246. # use the first number-like part of the tensor name as the block id
  247. bid = None
  248. for part in name.split("."):
  249. if part.isdecimal():
  250. bid = int(part)
  251. break
  252. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  253. # TODO: why do we squeeze here?
  254. # data = data_torch.squeeze().numpy()
  255. data = data_torch.numpy()
  256. n_dims = len(data.shape)
  257. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  258. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  259. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  260. data_qtype = gguf.GGMLQuantizationType.F32
  261. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  262. # Some tensor types are always in float32
  263. if data_qtype is False and (
  264. any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.FFN_GATE_INP,
  268. gguf.MODEL_TENSOR.POS_EMBD,
  269. gguf.MODEL_TENSOR.TOKEN_TYPES,
  270. gguf.MODEL_TENSOR.SSM_CONV1D,
  271. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  272. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  273. gguf.MODEL_TENSOR.TIME_MIX_W1,
  274. gguf.MODEL_TENSOR.TIME_MIX_W2,
  275. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  276. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  277. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  278. gguf.MODEL_TENSOR.POSNET_NORM1,
  279. gguf.MODEL_TENSOR.POSNET_NORM2,
  280. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  281. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  282. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  283. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  284. )
  285. )
  286. or not new_name.endswith(".weight")
  287. ):
  288. data_qtype = gguf.GGMLQuantizationType.F32
  289. if data_qtype is False and any(
  290. self.match_model_tensor_name(new_name, key, bid)
  291. for key in (
  292. gguf.MODEL_TENSOR.TOKEN_EMBD,
  293. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  294. gguf.MODEL_TENSOR.OUTPUT,
  295. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  296. gguf.MODEL_TENSOR.LAUREL_L,
  297. gguf.MODEL_TENSOR.LAUREL_R,
  298. )
  299. ):
  300. if self.ftype in (
  301. gguf.LlamaFileType.MOSTLY_TQ1_0,
  302. gguf.LlamaFileType.MOSTLY_TQ2_0,
  303. ):
  304. # TODO: use Q4_K and Q6_K
  305. data_qtype = gguf.GGMLQuantizationType.F16
  306. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  307. if isinstance(data_qtype, bool):
  308. if self.ftype == gguf.LlamaFileType.ALL_F32:
  309. data_qtype = gguf.GGMLQuantizationType.F32
  310. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  311. data_qtype = gguf.GGMLQuantizationType.F16
  312. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  313. data_qtype = gguf.GGMLQuantizationType.BF16
  314. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  315. data_qtype = gguf.GGMLQuantizationType.Q8_0
  316. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  317. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  318. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  319. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  320. else:
  321. raise ValueError(f"Unknown file type: {self.ftype.name}")
  322. try:
  323. data = gguf.quants.quantize(data, data_qtype)
  324. except gguf.QuantError as e:
  325. logger.warning("%s, %s", e, "falling back to F16")
  326. data_qtype = gguf.GGMLQuantizationType.F16
  327. data = gguf.quants.quantize(data, data_qtype)
  328. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  329. # reverse shape to make it similar to the internal ggml dimension order
  330. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  331. # n_dims is implicit in the shape
  332. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  333. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  334. def set_type(self):
  335. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  336. def prepare_metadata(self, vocab_only: bool):
  337. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  338. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  339. # If we are using HF model id, set the metadata name to the model id
  340. if self.remote_hf_model_id:
  341. self.metadata.name = self.remote_hf_model_id
  342. # Fallback to model directory name if metadata name is still missing
  343. if self.metadata.name is None:
  344. self.metadata.name = self.dir_model.name
  345. # Generate parameter weight class (useful for leader boards) if not yet determined
  346. if self.metadata.size_label is None and total_params > 0:
  347. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  348. self.set_type()
  349. logger.info("Set meta model")
  350. self.metadata.set_gguf_meta_model(self.gguf_writer)
  351. logger.info("Set model parameters")
  352. self.set_gguf_parameters()
  353. logger.info("Set model quantization version")
  354. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  355. def write_vocab(self):
  356. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  357. def write(self):
  358. self.prepare_tensors()
  359. self.prepare_metadata(vocab_only=False)
  360. self.gguf_writer.write_header_to_file(path=self.fname_out)
  361. self.gguf_writer.write_kv_data_to_file()
  362. self.gguf_writer.write_tensors_to_file(progress=True)
  363. self.gguf_writer.close()
  364. @staticmethod
  365. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  366. part_names: list[str] = []
  367. for filename in os.listdir(dir_model):
  368. if filename.startswith(prefix) and filename.endswith(suffix):
  369. part_names.append(filename)
  370. part_names.sort()
  371. return part_names
  372. @staticmethod
  373. def load_hparams(dir_model: Path, is_mistral_format: bool):
  374. if is_mistral_format:
  375. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  376. config = json.load(f)
  377. return config
  378. try:
  379. # for security reason, we don't allow loading remote code by default
  380. # if a model need remote code, we will fallback to config.json
  381. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  382. except Exception as e:
  383. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  384. logger.warning("Trying to load config.json instead")
  385. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  386. config = json.load(f)
  387. if "llm_config" in config:
  388. # rename for InternVL
  389. config["text_config"] = config["llm_config"]
  390. if "thinker_config" in config:
  391. # rename for Qwen2.5-Omni
  392. config["text_config"] = config["thinker_config"]["text_config"]
  393. return config
  394. @classmethod
  395. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  396. assert names
  397. def func(modelcls: AnyModel) -> AnyModel:
  398. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  399. for name in names:
  400. cls._model_classes[model_type][name] = modelcls
  401. return modelcls
  402. return func
  403. @classmethod
  404. def print_registered_models(cls):
  405. for model_type, model_classes in cls._model_classes.items():
  406. logger.error(f"{model_type.name} models:")
  407. for name in sorted(model_classes.keys()):
  408. logger.error(f" - {name}")
  409. @classmethod
  410. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  411. try:
  412. return cls._model_classes[model_type][arch]
  413. except KeyError:
  414. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  415. class TextModel(ModelBase):
  416. model_type = ModelType.TEXT
  417. hf_arch: str
  418. def __init__(self, *args, **kwargs):
  419. super().__init__(*args, **kwargs)
  420. if not self.is_mistral_format:
  421. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  422. else:
  423. self.hf_arch = ""
  424. if "text_config" in self.hparams:
  425. # move the text_config to the root level
  426. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  427. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  428. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  429. @classmethod
  430. def __init_subclass__(cls):
  431. # can't use an abstract property, because overriding it without type errors
  432. # would require using decorated functions instead of simply defining the property
  433. if "model_arch" not in cls.__dict__:
  434. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  435. def set_vocab(self):
  436. self._set_vocab_gpt2()
  437. def prepare_metadata(self, vocab_only: bool):
  438. super().prepare_metadata(vocab_only=vocab_only)
  439. total_params = self.gguf_writer.get_total_parameter_count()[0]
  440. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  441. output_type: str = self.ftype.name.partition("_")[2]
  442. # Filename Output
  443. if self.fname_out.is_dir():
  444. # Generate default filename based on model specification and available metadata
  445. if not vocab_only:
  446. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  447. else:
  448. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  449. # Use the default filename
  450. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  451. else:
  452. # Output path is a custom defined templated filename
  453. # Note: `not is_dir()` is used because `.is_file()` will not detect
  454. # file template strings as it doesn't actually exist as a file
  455. # Process templated file name with the output ftype, useful with the "auto" ftype
  456. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  457. logger.info("Set model tokenizer")
  458. self.set_vocab()
  459. def set_gguf_parameters(self):
  460. self.gguf_writer.add_block_count(self.block_count)
  461. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  462. self.gguf_writer.add_context_length(n_ctx)
  463. logger.info(f"gguf: context length = {n_ctx}")
  464. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  465. self.gguf_writer.add_embedding_length(n_embd)
  466. logger.info(f"gguf: embedding length = {n_embd}")
  467. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  468. self.gguf_writer.add_feed_forward_length(n_ff)
  469. logger.info(f"gguf: feed forward length = {n_ff}")
  470. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  471. self.gguf_writer.add_head_count(n_head)
  472. logger.info(f"gguf: head count = {n_head}")
  473. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  474. self.gguf_writer.add_head_count_kv(n_head_kv)
  475. logger.info(f"gguf: key-value head count = {n_head_kv}")
  476. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  477. self.gguf_writer.add_rope_freq_base(rope_theta)
  478. logger.info(f"gguf: rope theta = {rope_theta}")
  479. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  480. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  481. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  482. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  483. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  484. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  485. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  486. self.gguf_writer.add_expert_count(n_experts)
  487. logger.info(f"gguf: expert count = {n_experts}")
  488. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  489. self.gguf_writer.add_expert_used_count(n_experts_used)
  490. logger.info(f"gguf: experts used count = {n_experts_used}")
  491. if (head_dim := self.hparams.get("head_dim")) is not None:
  492. self.gguf_writer.add_key_length(head_dim)
  493. self.gguf_writer.add_value_length(head_dim)
  494. self.gguf_writer.add_file_type(self.ftype)
  495. logger.info(f"gguf: file type = {self.ftype}")
  496. def write_vocab(self):
  497. if len(self.gguf_writer.tensors) != 1:
  498. raise ValueError('Splitting the vocabulary is not supported')
  499. self.prepare_metadata(vocab_only=True)
  500. self.gguf_writer.write_header_to_file(path=self.fname_out)
  501. self.gguf_writer.write_kv_data_to_file()
  502. self.gguf_writer.close()
  503. def does_token_look_special(self, token: str | bytes) -> bool:
  504. if isinstance(token, (bytes, bytearray)):
  505. token_text = token.decode(encoding="utf-8")
  506. elif isinstance(token, memoryview):
  507. token_text = token.tobytes().decode(encoding="utf-8")
  508. else:
  509. token_text = token
  510. # Some models mark some added tokens which ought to be control tokens as not special.
  511. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  512. seems_special = token_text in (
  513. "<pad>", # deepseek-coder
  514. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  515. )
  516. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  517. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  518. # TODO: should these be marked as UNUSED instead? (maybe not)
  519. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  520. return seems_special
  521. # used for GPT-2 BPE and WordPiece vocabs
  522. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  523. tokens: list[str] = []
  524. toktypes: list[int] = []
  525. from transformers import AutoTokenizer
  526. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  527. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  528. assert max(tokenizer.vocab.values()) < vocab_size
  529. tokpre = self.get_vocab_base_pre(tokenizer)
  530. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  531. added_vocab = tokenizer.get_added_vocab()
  532. added_tokens_decoder = tokenizer.added_tokens_decoder
  533. for i in range(vocab_size):
  534. if i not in reverse_vocab:
  535. tokens.append(f"[PAD{i}]")
  536. toktypes.append(gguf.TokenType.UNUSED)
  537. else:
  538. token: str = reverse_vocab[i]
  539. if token in added_vocab:
  540. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  541. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  542. if not added_tokens_decoder[i].normalized:
  543. previous_token = token
  544. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  545. if previous_token != token:
  546. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  547. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  548. toktypes.append(gguf.TokenType.CONTROL)
  549. else:
  550. # NOTE: this was added for Gemma.
  551. # Encoding and decoding the tokens above isn't sufficient for this case.
  552. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  553. toktypes.append(gguf.TokenType.USER_DEFINED)
  554. else:
  555. toktypes.append(gguf.TokenType.NORMAL)
  556. tokens.append(token)
  557. return tokens, toktypes, tokpre
  558. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  559. # do not modify it manually!
  560. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  561. # Marker: Start get_vocab_base_pre
  562. def get_vocab_base_pre(self, tokenizer) -> str:
  563. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  564. # is specific for the BPE pre-tokenizer used by the model
  565. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  566. # use in llama.cpp to implement the same pre-tokenizer
  567. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  568. chktok = tokenizer.encode(chktxt)
  569. chkhsh = sha256(str(chktok).encode()).hexdigest()
  570. logger.debug(f"chktok: {chktok}")
  571. logger.debug(f"chkhsh: {chkhsh}")
  572. res = None
  573. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  574. # or pull the latest version of the model from Huggingface
  575. # don't edit the hashes manually!
  576. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  577. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  578. res = "chatglm-bpe"
  579. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  580. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  581. res = "chatglm-bpe"
  582. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  583. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  584. res = "glm4"
  585. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  586. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  587. res = "glm4"
  588. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  589. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  590. res = "minerva-7b"
  591. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  592. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  593. res = "hunyuan"
  594. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  595. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  596. res = "hunyuan-dense"
  597. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  598. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  599. res = "falcon-h1"
  600. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  601. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  602. res = "falcon-h1"
  603. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  604. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  605. res = "falcon-h1"
  606. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  607. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  608. res = "falcon-h1"
  609. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  610. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  611. res = "kimi-k2"
  612. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  613. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  614. res = "qwen2"
  615. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  616. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  617. res = "grok-2"
  618. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  619. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  620. res = "llama-bpe"
  621. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  622. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  623. res = "deepseek-llm"
  624. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  625. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  626. res = "deepseek-coder"
  627. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  628. # ref: https://huggingface.co/tiiuae/falcon-7b
  629. res = "falcon"
  630. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  631. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  632. res = "bert-bge"
  633. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  634. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  635. res = "falcon3"
  636. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  637. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  638. res = "bert-bge-large"
  639. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  640. # ref: https://huggingface.co/mosaicml/mpt-7b
  641. res = "mpt"
  642. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  643. # ref: https://huggingface.co/bigcode/starcoder2-3b
  644. res = "starcoder"
  645. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  646. # ref: https://huggingface.co/openai-community/gpt2
  647. res = "gpt-2"
  648. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  649. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  650. res = "stablelm2"
  651. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  652. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  653. res = "refact"
  654. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  655. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  656. res = "command-r"
  657. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  658. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  659. res = "qwen2"
  660. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  661. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  662. res = "olmo"
  663. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  664. # ref: https://huggingface.co/databricks/dbrx-base
  665. res = "dbrx"
  666. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  667. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  668. res = "jina-v1-en"
  669. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  670. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  671. res = "jina-v2-en"
  672. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  673. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  674. res = "jina-v2-es"
  675. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  676. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  677. res = "jina-v2-de"
  678. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  679. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  680. res = "smaug-bpe"
  681. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  682. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  683. res = "poro-chat"
  684. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  685. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  686. res = "jina-v2-code"
  687. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  688. # ref: https://huggingface.co/LumiOpen/Viking-7B
  689. res = "viking"
  690. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  691. # ref: https://huggingface.co/core42/jais-13b
  692. res = "jais"
  693. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  694. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  695. res = "codeshell"
  696. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  697. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  698. res = "tekken"
  699. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  700. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  701. res = "smollm"
  702. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  703. # ref: https://huggingface.co/bigscience/bloom
  704. res = "bloom"
  705. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  706. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  707. res = "gpt3-finnish"
  708. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  709. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  710. res = "exaone"
  711. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  712. # ref: https://huggingface.co/microsoft/phi-2
  713. res = "phi-2"
  714. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  715. # ref: https://huggingface.co/facebook/chameleon-7b
  716. res = "chameleon"
  717. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  718. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  719. res = "roberta-bpe"
  720. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  721. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  722. res = "gigachat"
  723. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  724. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  725. res = "megrez"
  726. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  727. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  728. res = "deepseek-v3"
  729. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  730. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  731. res = "deepseek-r1-qwen"
  732. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  733. # ref: https://huggingface.co/Xenova/gpt-4o
  734. res = "gpt-4o"
  735. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  736. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  737. res = "superbpe"
  738. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  739. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  740. res = "trillion"
  741. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  742. # ref: https://huggingface.co/inclusionAI/Ling-lite
  743. res = "bailingmoe"
  744. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  745. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  746. res = "llama4"
  747. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  748. # ref: https://huggingface.co/mistral-community/pixtral-12b
  749. res = "pixtral"
  750. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  751. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  752. res = "seed-coder"
  753. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  754. # ref: https://huggingface.co/skt/A.X-4.0
  755. res = "a.x-4.0"
  756. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  757. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  758. res = "midm-2.0"
  759. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  760. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  761. res = "lfm2"
  762. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  763. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  764. res = "exaone4"
  765. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  766. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  767. res = "mellum"
  768. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  769. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  770. res = "bailingmoe2"
  771. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  772. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  773. res = "granite-docling"
  774. if res is None:
  775. logger.warning("\n")
  776. logger.warning("**************************************************************************************")
  777. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  778. logger.warning("** There are 2 possible reasons for this:")
  779. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  780. logger.warning("** - the pre-tokenization config has changed upstream")
  781. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  782. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  783. logger.warning("**")
  784. logger.warning(f"** chkhsh: {chkhsh}")
  785. logger.warning("**************************************************************************************")
  786. logger.warning("\n")
  787. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  788. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  789. logger.debug(f"chkhsh: {chkhsh}")
  790. return res
  791. # Marker: End get_vocab_base_pre
  792. def _set_vocab_none(self) -> None:
  793. self.gguf_writer.add_tokenizer_model("none")
  794. def _set_vocab_gpt2(self) -> None:
  795. tokens, toktypes, tokpre = self.get_vocab_base()
  796. self.gguf_writer.add_tokenizer_model("gpt2")
  797. self.gguf_writer.add_tokenizer_pre(tokpre)
  798. self.gguf_writer.add_token_list(tokens)
  799. self.gguf_writer.add_token_types(toktypes)
  800. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  801. special_vocab.add_to_gguf(self.gguf_writer)
  802. def _set_vocab_qwen(self):
  803. dir_model = self.dir_model
  804. hparams = self.hparams
  805. tokens: list[str] = []
  806. toktypes: list[int] = []
  807. from transformers import AutoTokenizer
  808. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  809. vocab_size = hparams["vocab_size"]
  810. assert max(tokenizer.get_vocab().values()) < vocab_size
  811. tokpre = self.get_vocab_base_pre(tokenizer)
  812. merges = []
  813. vocab = {}
  814. mergeable_ranks = tokenizer.mergeable_ranks
  815. for token, rank in mergeable_ranks.items():
  816. vocab[QwenModel.token_bytes_to_string(token)] = rank
  817. if len(token) == 1:
  818. continue
  819. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  820. assert len(merged) == 2
  821. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  822. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  823. added_vocab = tokenizer.special_tokens
  824. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  825. for i in range(vocab_size):
  826. if i not in reverse_vocab:
  827. tokens.append(f"[PAD{i}]")
  828. toktypes.append(gguf.TokenType.UNUSED)
  829. elif reverse_vocab[i] in added_vocab:
  830. tokens.append(reverse_vocab[i])
  831. toktypes.append(gguf.TokenType.CONTROL)
  832. else:
  833. tokens.append(reverse_vocab[i])
  834. toktypes.append(gguf.TokenType.NORMAL)
  835. self.gguf_writer.add_tokenizer_model("gpt2")
  836. self.gguf_writer.add_tokenizer_pre(tokpre)
  837. self.gguf_writer.add_token_list(tokens)
  838. self.gguf_writer.add_token_types(toktypes)
  839. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  840. special_vocab.merges = merges
  841. # only add special tokens when they were not already loaded from config.json
  842. if len(special_vocab.special_token_ids) == 0:
  843. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  844. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  845. # this one is usually not in config.json anyway
  846. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  847. special_vocab.add_to_gguf(self.gguf_writer)
  848. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  849. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  850. self.gguf_writer.add_tokenizer_model("llama")
  851. self.gguf_writer.add_tokenizer_pre("default")
  852. self.gguf_writer.add_token_list(tokens)
  853. self.gguf_writer.add_token_scores(scores)
  854. self.gguf_writer.add_token_types(toktypes)
  855. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  856. special_vocab.add_to_gguf(self.gguf_writer)
  857. def _create_vocab_sentencepiece(self):
  858. from sentencepiece import SentencePieceProcessor
  859. tokenizer_path = self.dir_model / 'tokenizer.model'
  860. if not tokenizer_path.is_file():
  861. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  862. tokenizer = SentencePieceProcessor()
  863. tokenizer.LoadFromFile(str(tokenizer_path))
  864. vocab_size = self.find_hparam([
  865. "vocab_size_per_layer_input", # gemma3n
  866. "vocab_size",
  867. ], optional=True) or tokenizer.vocab_size()
  868. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  869. scores: list[float] = [-10000.0] * vocab_size
  870. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  871. for token_id in range(tokenizer.vocab_size()):
  872. if token_id >= vocab_size:
  873. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  874. break
  875. piece = tokenizer.IdToPiece(token_id)
  876. text = piece.encode("utf-8")
  877. score = tokenizer.GetScore(token_id)
  878. toktype = SentencePieceTokenTypes.NORMAL
  879. if tokenizer.IsUnknown(token_id):
  880. toktype = SentencePieceTokenTypes.UNKNOWN
  881. elif tokenizer.IsControl(token_id):
  882. toktype = SentencePieceTokenTypes.CONTROL
  883. elif tokenizer.IsUnused(token_id):
  884. toktype = SentencePieceTokenTypes.UNUSED
  885. elif tokenizer.IsByte(token_id):
  886. toktype = SentencePieceTokenTypes.BYTE
  887. tokens[token_id] = text
  888. scores[token_id] = score
  889. toktypes[token_id] = toktype
  890. added_tokens_file = self.dir_model / 'added_tokens.json'
  891. if added_tokens_file.is_file():
  892. with open(added_tokens_file, "r", encoding="utf-8") as f:
  893. added_tokens_json = json.load(f)
  894. for key in added_tokens_json:
  895. token_id = added_tokens_json[key]
  896. if token_id >= vocab_size:
  897. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  898. continue
  899. tokens[token_id] = key.encode("utf-8")
  900. scores[token_id] = -1000.0
  901. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  902. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  903. if tokenizer_config_file.is_file():
  904. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  905. tokenizer_config_json = json.load(f)
  906. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  907. for token_id, token_data in added_tokens_decoder.items():
  908. token_id = int(token_id)
  909. token: str = token_data["content"]
  910. if token_id >= vocab_size:
  911. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  912. continue
  913. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  914. if tokens[token_id] != token.encode("utf-8"):
  915. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  916. if token_data.get("special") or self.does_token_look_special(token):
  917. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  918. else:
  919. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  920. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  921. scores[token_id] = -1000.0
  922. tokens[token_id] = token.encode("utf-8")
  923. if vocab_size > len(tokens):
  924. pad_count = vocab_size - len(tokens)
  925. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  926. for i in range(1, pad_count + 1):
  927. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  928. scores.append(-1000.0)
  929. toktypes.append(SentencePieceTokenTypes.UNUSED)
  930. return tokens, scores, toktypes
  931. def _set_vocab_llama_hf(self):
  932. vocab = gguf.LlamaHfVocab(self.dir_model)
  933. tokens = []
  934. scores = []
  935. toktypes = []
  936. for text, score, toktype in vocab.all_tokens():
  937. tokens.append(text)
  938. scores.append(score)
  939. toktypes.append(toktype)
  940. assert len(tokens) == vocab.vocab_size
  941. self.gguf_writer.add_tokenizer_model("llama")
  942. self.gguf_writer.add_tokenizer_pre("default")
  943. self.gguf_writer.add_token_list(tokens)
  944. self.gguf_writer.add_token_scores(scores)
  945. self.gguf_writer.add_token_types(toktypes)
  946. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  947. special_vocab.add_to_gguf(self.gguf_writer)
  948. def _set_vocab_rwkv_world(self):
  949. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  950. vocab_size = self.hparams.get("vocab_size", 65536)
  951. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  952. toktypes: list[int] = [gguf.TokenType.CONTROL]
  953. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  954. lines = f.readlines()
  955. for line in lines:
  956. parts = line.split(' ')
  957. assert len(parts) >= 3
  958. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  959. token = token.encode("utf-8") if isinstance(token, str) else token
  960. assert isinstance(token, bytes)
  961. assert len(token) == token_len
  962. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  963. tokens.append(token_text.encode("utf-8"))
  964. toktypes.append(gguf.TokenType.NORMAL)
  965. remainder = vocab_size - len(tokens)
  966. assert remainder >= 0
  967. for i in range(len(tokens), vocab_size):
  968. tokens.append(f"[PAD{i}]".encode("utf-8"))
  969. toktypes.append(gguf.TokenType.UNUSED)
  970. self.gguf_writer.add_tokenizer_model("rwkv")
  971. self.gguf_writer.add_token_list(tokens)
  972. self.gguf_writer.add_token_types(toktypes)
  973. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  974. if special_vocab.chat_template is None:
  975. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  976. if template_path.is_file():
  977. with open(template_path, "r", encoding="utf-8") as f:
  978. template = f.read()
  979. else:
  980. template = "rwkv-world"
  981. special_vocab.chat_template = template
  982. # hack: Add '\n\n' as the EOT token to make it chat normally
  983. special_vocab._set_special_token("eot", 261)
  984. # hack: Override these as they have already been set (incorrectly)
  985. special_vocab.special_token_ids["bos"] = 0
  986. special_vocab.special_token_ids["eos"] = 0
  987. special_vocab.add_to_gguf(self.gguf_writer)
  988. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  989. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  990. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  991. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  992. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  993. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  994. assert field # tokenizer model
  995. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  996. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  997. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  998. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  999. assert field # token list
  1000. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1001. if model_name == "llama-spm":
  1002. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1003. assert field # token scores
  1004. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1005. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1006. assert field # token types
  1007. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1008. if model_name != "llama-spm":
  1009. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1010. assert field # token merges
  1011. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1012. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1013. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1014. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1015. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1016. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1017. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1018. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1019. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1020. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1021. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1022. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1023. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1024. def _try_set_pooling_type(self) -> None:
  1025. # get pooling path
  1026. pooling_path = None
  1027. module_path = self.dir_model / "modules.json"
  1028. if module_path.is_file():
  1029. with open(module_path, encoding="utf-8") as f:
  1030. modules = json.load(f)
  1031. for mod in modules:
  1032. if mod["type"] == "sentence_transformers.models.Pooling":
  1033. pooling_path = mod["path"]
  1034. break
  1035. # get pooling type
  1036. if pooling_path is not None:
  1037. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1038. pooling = json.load(f)
  1039. if pooling["pooling_mode_mean_tokens"]:
  1040. pooling_type = gguf.PoolingType.MEAN
  1041. elif pooling["pooling_mode_cls_token"]:
  1042. pooling_type = gguf.PoolingType.CLS
  1043. elif pooling["pooling_mode_lasttoken"]:
  1044. pooling_type = gguf.PoolingType.LAST
  1045. else:
  1046. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1047. self.gguf_writer.add_pooling_type(pooling_type)
  1048. def _set_vocab_interns1(self):
  1049. tokens: list[str] = []
  1050. toktypes: list[int] = []
  1051. from transformers import AutoTokenizer
  1052. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1053. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1054. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1055. assert max(vocab.values()) < vocab_size
  1056. tokpre = self.get_vocab_base_pre(tokenizer)
  1057. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1058. added_vocab = tokenizer.get_added_vocab()
  1059. added_tokens_decoder = tokenizer.added_tokens_decoder
  1060. for i in range(vocab_size):
  1061. if i not in reverse_vocab:
  1062. tokens.append(f"[PAD{i}]")
  1063. toktypes.append(gguf.TokenType.UNUSED)
  1064. else:
  1065. token: str = reverse_vocab[i]
  1066. if token in added_vocab:
  1067. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1068. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1069. if not added_tokens_decoder[i].normalized:
  1070. previous_token = token
  1071. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1072. if previous_token != token:
  1073. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1074. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1075. toktypes.append(gguf.TokenType.CONTROL)
  1076. else:
  1077. toktypes.append(gguf.TokenType.USER_DEFINED)
  1078. else:
  1079. toktypes.append(gguf.TokenType.NORMAL)
  1080. tokens.append(token)
  1081. self.gguf_writer.add_tokenizer_model("gpt2")
  1082. self.gguf_writer.add_tokenizer_pre(tokpre)
  1083. self.gguf_writer.add_token_list(tokens)
  1084. self.gguf_writer.add_token_types(toktypes)
  1085. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1086. special_vocab._set_special_token("bos", 151643)
  1087. special_vocab.add_to_gguf(self.gguf_writer)
  1088. class MmprojModel(ModelBase):
  1089. model_type = ModelType.MMPROJ
  1090. model_arch = gguf.MODEL_ARCH.MMPROJ
  1091. preprocessor_config: dict[str, Any]
  1092. global_config: dict[str, Any]
  1093. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1094. has_vision_encoder: bool = True # by default
  1095. has_audio_encoder: bool = False
  1096. # for models having multiple encoders, we need to separate their hparams
  1097. hparams_vision: dict[str, Any] | None = None
  1098. hparams_audio: dict[str, Any] | None = None
  1099. def __init__(self, *args, **kwargs):
  1100. super().__init__(*args, **kwargs)
  1101. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1102. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1103. # get n_embd of the text model
  1104. if not self.is_mistral_format:
  1105. if "text_config" not in self.hparams:
  1106. self.hparams["text_config"] = {}
  1107. if "audio_config" not in self.hparams:
  1108. self.hparams["audio_config"] = {}
  1109. text_config = {**self.hparams, **self.hparams["text_config"]}
  1110. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1111. else:
  1112. text_config = {
  1113. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1114. }
  1115. self.n_embd_text = text_config.get("hidden_dim", 0)
  1116. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1117. # move vision config to the top level, while preserving the original hparams in global_config
  1118. import copy
  1119. self.global_config = copy.deepcopy(self.hparams)
  1120. self.hparams_vision = self.get_vision_config()
  1121. self.hparams_audio = self.get_audio_config()
  1122. if self.hparams_vision is None and self.hparams_audio is None:
  1123. raise ValueError("vision_config / audio_config not found in hparams")
  1124. # for compat with vision-only models
  1125. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1126. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1127. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1128. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1129. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1130. # load preprocessor config
  1131. self.preprocessor_config = {}
  1132. if not self.is_mistral_format:
  1133. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1134. self.preprocessor_config = json.load(f)
  1135. def get_vision_config(self) -> dict[str, Any] | None:
  1136. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1137. return self.global_config.get(config_name)
  1138. def get_audio_config(self) -> dict[str, Any] | None:
  1139. return self.global_config.get("audio_config")
  1140. def set_type(self):
  1141. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1142. def set_gguf_parameters(self):
  1143. self.gguf_writer.add_file_type(self.ftype)
  1144. if self.has_vision_encoder:
  1145. self.gguf_writer.add_clip_has_vision_encoder(True)
  1146. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1147. # vision config
  1148. self.image_size = self.find_vparam(["image_size"])
  1149. self.gguf_writer.add_vision_image_size(self.image_size)
  1150. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1151. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1152. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1153. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1154. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1155. # preprocessor config
  1156. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1157. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1158. self.gguf_writer.add_vision_image_mean(image_mean)
  1159. self.gguf_writer.add_vision_image_std(image_std)
  1160. if self.has_audio_encoder:
  1161. self.gguf_writer.add_clip_has_audio_encoder(True)
  1162. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1163. # audio config
  1164. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1165. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1166. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1167. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1168. if not self.has_vision_encoder and not self.has_audio_encoder:
  1169. raise ValueError("MmprojModel must have either vision or audio encoder")
  1170. def write_vocab(self):
  1171. raise ValueError("MmprojModel does not support vocab writing")
  1172. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1173. assert self.hparams_vision is not None
  1174. return self._find_param(self.hparams_vision, keys, optional)
  1175. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1176. assert self.hparams_audio is not None
  1177. return self._find_param(self.hparams_audio, keys, optional)
  1178. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1179. key = next((k for k in keys if k in obj), None)
  1180. if key is not None:
  1181. return obj[key]
  1182. if optional:
  1183. return None
  1184. raise KeyError(f"could not find any of: {keys}")
  1185. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1186. del bid, name, n_dims # unused
  1187. if ".patch_embd.weight" in new_name:
  1188. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1189. return False
  1190. @ModelBase.register("GPTNeoXForCausalLM")
  1191. class GPTNeoXModel(TextModel):
  1192. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1193. def set_gguf_parameters(self):
  1194. block_count = self.hparams["num_hidden_layers"]
  1195. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1196. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1197. self.gguf_writer.add_block_count(block_count)
  1198. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1199. self.gguf_writer.add_rope_dimension_count(
  1200. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1201. )
  1202. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1203. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1204. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1205. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1206. del bid # unused
  1207. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1208. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1209. tensors: list[tuple[str, Tensor]] = []
  1210. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1211. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1212. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1213. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1214. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1215. data_torch = torch.cat(
  1216. (
  1217. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1218. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1219. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1220. ),
  1221. dim=0,
  1222. )
  1223. logger.info("re-format attention.linear_qkv.weight")
  1224. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1225. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1226. data_torch = torch.cat(
  1227. (
  1228. qkv_bias[:, 0, :].reshape((n_embed,)),
  1229. qkv_bias[:, 1, :].reshape((n_embed,)),
  1230. qkv_bias[:, 2, :].reshape((n_embed,)),
  1231. ),
  1232. dim=0,
  1233. )
  1234. logger.info("re-format attention.linear_qkv.bias")
  1235. tensors.append((self.map_tensor_name(name), data_torch))
  1236. return tensors
  1237. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1238. class BloomModel(TextModel):
  1239. model_arch = gguf.MODEL_ARCH.BLOOM
  1240. def set_gguf_parameters(self):
  1241. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1242. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1243. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1244. self.gguf_writer.add_embedding_length(n_embed)
  1245. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1246. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1247. self.gguf_writer.add_head_count(n_head)
  1248. self.gguf_writer.add_head_count_kv(n_head)
  1249. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1250. self.gguf_writer.add_file_type(self.ftype)
  1251. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1252. del bid # unused
  1253. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1254. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1255. name = re.sub(r'transformer\.', '', name)
  1256. tensors: list[tuple[str, Tensor]] = []
  1257. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1258. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1259. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1260. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1261. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1262. data_torch = torch.cat(
  1263. (
  1264. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1265. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1266. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1267. ),
  1268. dim=0,
  1269. )
  1270. logger.info("re-format attention.linear_qkv.weight")
  1271. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1272. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1273. data_torch = torch.cat(
  1274. (
  1275. qkv_bias[:, 0, :].reshape((n_embed,)),
  1276. qkv_bias[:, 1, :].reshape((n_embed,)),
  1277. qkv_bias[:, 2, :].reshape((n_embed,)),
  1278. ),
  1279. dim=0,
  1280. )
  1281. logger.info("re-format attention.linear_qkv.bias")
  1282. tensors.append((self.map_tensor_name(name), data_torch))
  1283. return tensors
  1284. @ModelBase.register("MPTForCausalLM")
  1285. class MPTModel(TextModel):
  1286. model_arch = gguf.MODEL_ARCH.MPT
  1287. def set_vocab(self):
  1288. try:
  1289. self._set_vocab_gpt2()
  1290. except Exception:
  1291. # Fallback for SEA-LION model
  1292. self._set_vocab_sentencepiece()
  1293. self.gguf_writer.add_add_bos_token(False)
  1294. self.gguf_writer.add_pad_token_id(3)
  1295. self.gguf_writer.add_eos_token_id(1)
  1296. self.gguf_writer.add_unk_token_id(0)
  1297. def set_gguf_parameters(self):
  1298. block_count = self.hparams["n_layers"]
  1299. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1300. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1301. self.gguf_writer.add_block_count(block_count)
  1302. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1303. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1304. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1305. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1306. self.gguf_writer.add_layer_norm_eps(1e-5)
  1307. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1308. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1309. if self.hparams["attn_config"]["alibi"]:
  1310. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1311. else:
  1312. self.gguf_writer.add_max_alibi_bias(0.0)
  1313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1314. del bid # unused
  1315. if "scales" in name:
  1316. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1317. new_name = new_name.replace("scales", "act.scales")
  1318. else:
  1319. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1320. return [(new_name, data_torch)]
  1321. @ModelBase.register("OrionForCausalLM")
  1322. class OrionModel(TextModel):
  1323. model_arch = gguf.MODEL_ARCH.ORION
  1324. def set_vocab(self):
  1325. self._set_vocab_sentencepiece()
  1326. def set_gguf_parameters(self):
  1327. block_count = self.hparams["num_hidden_layers"]
  1328. head_count = self.hparams["num_attention_heads"]
  1329. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1330. ctx_length = 0
  1331. if "max_sequence_length" in self.hparams:
  1332. ctx_length = self.hparams["max_sequence_length"]
  1333. elif "max_position_embeddings" in self.hparams:
  1334. ctx_length = self.hparams["max_position_embeddings"]
  1335. elif "model_max_length" in self.hparams:
  1336. ctx_length = self.hparams["model_max_length"]
  1337. else:
  1338. raise ValueError("gguf: can not find ctx length parameter.")
  1339. self.gguf_writer.add_file_type(self.ftype)
  1340. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1341. self.gguf_writer.add_context_length(ctx_length)
  1342. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1343. self.gguf_writer.add_block_count(block_count)
  1344. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1345. self.gguf_writer.add_head_count(head_count)
  1346. self.gguf_writer.add_head_count_kv(head_count_kv)
  1347. # note: config provides rms norm but it is actually layer norm
  1348. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1349. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1350. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1351. class BaichuanModel(TextModel):
  1352. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1353. def set_vocab(self):
  1354. self._set_vocab_sentencepiece()
  1355. def set_gguf_parameters(self):
  1356. block_count = self.hparams["num_hidden_layers"]
  1357. head_count = self.hparams["num_attention_heads"]
  1358. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1359. ctx_length = 0
  1360. if "max_sequence_length" in self.hparams:
  1361. ctx_length = self.hparams["max_sequence_length"]
  1362. elif "max_position_embeddings" in self.hparams:
  1363. ctx_length = self.hparams["max_position_embeddings"]
  1364. elif "model_max_length" in self.hparams:
  1365. ctx_length = self.hparams["model_max_length"]
  1366. else:
  1367. raise ValueError("gguf: can not find ctx length parameter.")
  1368. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1369. self.gguf_writer.add_context_length(ctx_length)
  1370. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1371. self.gguf_writer.add_block_count(block_count)
  1372. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1373. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1374. self.gguf_writer.add_head_count(head_count)
  1375. self.gguf_writer.add_head_count_kv(head_count_kv)
  1376. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1377. self.gguf_writer.add_file_type(self.ftype)
  1378. rope_scaling = self.hparams.get("rope_scaling") or {}
  1379. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1380. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1381. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1382. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1383. head_count = self.hparams["num_attention_heads"]
  1384. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1385. tensors: list[tuple[str, Tensor]] = []
  1386. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1387. logger.info(f"Unpacking and permuting layer {bid}")
  1388. tensors = [
  1389. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1390. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1391. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1392. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1393. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1394. self._reverse_hf_part(data_torch, 2)),
  1395. ]
  1396. else:
  1397. tensors = [(self.map_tensor_name(name), data_torch)]
  1398. return tensors
  1399. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1400. if n_kv_head is not None and n_head != n_kv_head:
  1401. n_head //= n_kv_head
  1402. return (
  1403. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1404. .swapaxes(1, 2)
  1405. .reshape(weights.shape)
  1406. )
  1407. def _reverse_hf_permute_part(
  1408. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1409. ) -> Tensor:
  1410. r = weights.shape[0] // 3
  1411. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1412. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1413. r = weights.shape[0] // 3
  1414. return weights[r * n_part:r * n_part + r, ...]
  1415. @ModelBase.register("XverseForCausalLM")
  1416. class XverseModel(TextModel):
  1417. model_arch = gguf.MODEL_ARCH.XVERSE
  1418. def set_vocab(self):
  1419. assert (self.dir_model / "tokenizer.json").is_file()
  1420. dir_model = self.dir_model
  1421. hparams = self.hparams
  1422. tokens: list[bytes] = []
  1423. toktypes: list[int] = []
  1424. from transformers import AutoTokenizer
  1425. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1426. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1427. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1428. # because vocab_size is the count of items, and indexes start at 0.
  1429. max_vocab_index = max(tokenizer.get_vocab().values())
  1430. if max_vocab_index >= vocab_size:
  1431. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1432. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1433. added_vocab = tokenizer.get_added_vocab()
  1434. for token_id in range(vocab_size):
  1435. token_text = reverse_vocab[token_id].encode('utf-8')
  1436. # replace "\x00" to string with length > 0
  1437. if token_text == b"\x00":
  1438. toktype = gguf.TokenType.BYTE # special
  1439. token_text = f"<{token_text}>".encode('utf-8')
  1440. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1441. toktype = gguf.TokenType.BYTE # special
  1442. elif reverse_vocab[token_id] in added_vocab:
  1443. if tokenizer.added_tokens_decoder[token_id].special:
  1444. toktype = gguf.TokenType.CONTROL
  1445. else:
  1446. toktype = gguf.TokenType.USER_DEFINED
  1447. else:
  1448. toktype = gguf.TokenType.NORMAL
  1449. tokens.append(token_text)
  1450. toktypes.append(toktype)
  1451. self.gguf_writer.add_tokenizer_model("llama")
  1452. self.gguf_writer.add_tokenizer_pre("default")
  1453. self.gguf_writer.add_token_list(tokens)
  1454. self.gguf_writer.add_token_types(toktypes)
  1455. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1456. special_vocab.add_to_gguf(self.gguf_writer)
  1457. def set_gguf_parameters(self):
  1458. block_count = self.hparams["num_hidden_layers"]
  1459. head_count = self.hparams["num_attention_heads"]
  1460. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1461. ctx_length = 0
  1462. if "max_sequence_length" in self.hparams:
  1463. ctx_length = self.hparams["max_sequence_length"]
  1464. elif "max_position_embeddings" in self.hparams:
  1465. ctx_length = self.hparams["max_position_embeddings"]
  1466. elif "model_max_length" in self.hparams:
  1467. ctx_length = self.hparams["model_max_length"]
  1468. else:
  1469. raise ValueError("gguf: can not find ctx length parameter.")
  1470. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1471. self.gguf_writer.add_context_length(ctx_length)
  1472. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1473. self.gguf_writer.add_block_count(block_count)
  1474. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1475. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1476. self.gguf_writer.add_head_count(head_count)
  1477. self.gguf_writer.add_head_count_kv(head_count_kv)
  1478. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1479. self.gguf_writer.add_file_type(self.ftype)
  1480. rope_scaling = self.hparams.get("rope_scaling") or {}
  1481. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1482. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1483. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1484. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1485. del bid # unused
  1486. head_count = self.hparams["num_attention_heads"]
  1487. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1488. # HF models permute some of the tensors, so we need to undo that
  1489. if name.endswith("q_proj.weight"):
  1490. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1491. if name.endswith("k_proj.weight"):
  1492. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1493. return [(self.map_tensor_name(name), data_torch)]
  1494. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1495. if n_kv_head is not None and n_head != n_kv_head:
  1496. n_head //= n_kv_head
  1497. return (
  1498. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1499. .swapaxes(1, 2)
  1500. .reshape(weights.shape)
  1501. )
  1502. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1503. class FalconModel(TextModel):
  1504. model_arch = gguf.MODEL_ARCH.FALCON
  1505. def set_gguf_parameters(self):
  1506. block_count = self.hparams.get("num_hidden_layers")
  1507. if block_count is None:
  1508. block_count = self.hparams["n_layer"] # old name
  1509. n_head = self.hparams.get("num_attention_heads")
  1510. if n_head is None:
  1511. n_head = self.hparams["n_head"] # old name
  1512. n_head_kv = self.hparams.get("num_kv_heads")
  1513. if n_head_kv is None:
  1514. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1515. self.gguf_writer.add_context_length(2048) # not in config.json
  1516. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1517. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1518. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1519. self.gguf_writer.add_block_count(block_count)
  1520. self.gguf_writer.add_head_count(n_head)
  1521. self.gguf_writer.add_head_count_kv(n_head_kv)
  1522. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1523. self.gguf_writer.add_file_type(self.ftype)
  1524. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1525. del bid # unused
  1526. # QKV tensor transform
  1527. # The original query_key_value tensor contains n_head_kv "kv groups",
  1528. # each consisting of n_head/n_head_kv query weights followed by one key
  1529. # and one value weight (shared by all query heads in the kv group).
  1530. # This layout makes it a big pain to work with in GGML.
  1531. # So we rearrange them here,, so that we have n_head query weights
  1532. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1533. # in contiguous fashion.
  1534. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1535. if "query_key_value" in name:
  1536. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1537. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1538. head_dim = self.hparams["hidden_size"] // n_head
  1539. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1540. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1541. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1542. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1543. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1544. return [(self.map_tensor_name(name), data_torch)]
  1545. @ModelBase.register("GPTBigCodeForCausalLM")
  1546. class StarCoderModel(TextModel):
  1547. model_arch = gguf.MODEL_ARCH.STARCODER
  1548. def set_gguf_parameters(self):
  1549. block_count = self.hparams["n_layer"]
  1550. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1551. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1552. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1553. self.gguf_writer.add_block_count(block_count)
  1554. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1555. self.gguf_writer.add_head_count_kv(1)
  1556. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1557. self.gguf_writer.add_file_type(self.ftype)
  1558. @ModelBase.register("GPTRefactForCausalLM")
  1559. class RefactModel(TextModel):
  1560. model_arch = gguf.MODEL_ARCH.REFACT
  1561. def set_vocab(self):
  1562. super().set_vocab()
  1563. # TODO: how to determine special FIM tokens automatically?
  1564. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1565. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1566. special_vocab._set_special_token("prefix", 1)
  1567. special_vocab._set_special_token("suffix", 3)
  1568. special_vocab._set_special_token("middle", 2)
  1569. special_vocab.chat_template = None # do not add it twice
  1570. special_vocab.add_to_gguf(self.gguf_writer)
  1571. def set_gguf_parameters(self):
  1572. hidden_dim = self.hparams["n_embd"]
  1573. inner_dim = 4 * hidden_dim
  1574. hidden_dim = int(2 * inner_dim / 3)
  1575. multiple_of = 256
  1576. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1577. block_count = self.hparams["n_layer"]
  1578. # refact uses Alibi. So this is from config.json which might be used by training.
  1579. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1580. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1581. self.gguf_writer.add_feed_forward_length(ff_dim)
  1582. self.gguf_writer.add_block_count(block_count)
  1583. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1584. self.gguf_writer.add_head_count_kv(1)
  1585. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1586. self.gguf_writer.add_file_type(self.ftype)
  1587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1588. hidden_dim = self.hparams["n_embd"]
  1589. inner_dim = 4 * hidden_dim
  1590. hidden_dim = int(2 * inner_dim / 3)
  1591. multiple_of = 256
  1592. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1593. n_head = self.hparams["n_head"]
  1594. n_head_kv = 1
  1595. head_dim = self.hparams["n_embd"] // n_head
  1596. tensors: list[tuple[str, Tensor]] = []
  1597. if bid is not None:
  1598. if name == f"transformer.h.{bid}.attn.kv.weight":
  1599. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1600. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1601. elif name == f"transformer.h.{bid}.attn.q.weight":
  1602. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1603. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1604. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1605. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1606. if len(tensors) == 0:
  1607. tensors.append((self.map_tensor_name(name), data_torch))
  1608. return tensors
  1609. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1610. class StableLMModel(TextModel):
  1611. model_arch = gguf.MODEL_ARCH.STABLELM
  1612. def set_vocab(self):
  1613. if (self.dir_model / "tokenizer.json").is_file():
  1614. self._set_vocab_gpt2()
  1615. else:
  1616. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1617. self._set_vocab_qwen()
  1618. def set_gguf_parameters(self):
  1619. hparams = self.hparams
  1620. block_count = hparams["num_hidden_layers"]
  1621. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1622. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1623. self.gguf_writer.add_block_count(block_count)
  1624. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1625. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1626. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1627. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1628. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1629. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1630. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1631. self.gguf_writer.add_file_type(self.ftype)
  1632. _q_norms: list[dict[str, Tensor]] | None = None
  1633. _k_norms: list[dict[str, Tensor]] | None = None
  1634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1635. n_head = self.hparams["num_attention_heads"]
  1636. n_kv_head = self.hparams["num_key_value_heads"]
  1637. if name.find("q_layernorm.norms") != -1:
  1638. assert bid is not None
  1639. if self._q_norms is None:
  1640. self._q_norms = [{} for _ in range(self.block_count)]
  1641. self._q_norms[bid][name] = data_torch
  1642. if len(self._q_norms[bid]) >= n_head:
  1643. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1644. else:
  1645. return []
  1646. if name.find("k_layernorm.norms") != -1:
  1647. assert bid is not None
  1648. if self._k_norms is None:
  1649. self._k_norms = [{} for _ in range(self.block_count)]
  1650. self._k_norms[bid][name] = data_torch
  1651. if len(self._k_norms[bid]) >= n_kv_head:
  1652. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1653. else:
  1654. return []
  1655. return [(self.map_tensor_name(name), data_torch)]
  1656. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1657. datas: list[Tensor] = []
  1658. # extract the norms in order
  1659. for xid in range(n_head):
  1660. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1661. datas.append(norms[ename])
  1662. del norms[ename]
  1663. data_torch = torch.stack(datas, dim=0)
  1664. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1665. new_name = self.map_tensor_name(merged_name)
  1666. return [(new_name, data_torch)]
  1667. def prepare_tensors(self):
  1668. super().prepare_tensors()
  1669. if self._q_norms is not None or self._k_norms is not None:
  1670. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1671. norms = (
  1672. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1673. ) + (
  1674. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1675. )
  1676. if len(norms) > 0:
  1677. raise ValueError(f"Unprocessed norms: {norms}")
  1678. @ModelBase.register(
  1679. "LLaMAForCausalLM",
  1680. "LlamaForCausalLM",
  1681. "MistralForCausalLM",
  1682. "MixtralForCausalLM",
  1683. "VLlama3ForCausalLM",
  1684. "LlavaForConditionalGeneration",
  1685. "VoxtralForConditionalGeneration",
  1686. "LlamaModel")
  1687. class LlamaModel(TextModel):
  1688. model_arch = gguf.MODEL_ARCH.LLAMA
  1689. undo_permute = True
  1690. def __init__(self, *args, **kwargs):
  1691. super().__init__(*args, **kwargs)
  1692. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1693. if self.hf_arch == "VLlama3ForCausalLM":
  1694. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1695. def _set_vocab_mistral(self):
  1696. vocab = MistralVocab(self.dir_model)
  1697. logger.info(
  1698. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1699. )
  1700. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1701. tokens = []
  1702. scores = []
  1703. toktypes = []
  1704. for text, score, toktype in vocab.all_tokens():
  1705. tokens.append(text)
  1706. scores.append(score)
  1707. toktypes.append(toktype)
  1708. assert len(tokens) == vocab.vocab_size, (
  1709. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1710. )
  1711. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1712. self.gguf_writer.add_tokenizer_pre("tekken")
  1713. self.gguf_writer.add_token_merges(
  1714. vocab.extract_vocab_merges_from_model()
  1715. )
  1716. logger.info(
  1717. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1718. )
  1719. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1720. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1721. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1722. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1723. self.gguf_writer.add_token_list(tokens)
  1724. self.gguf_writer.add_token_scores(scores)
  1725. self.gguf_writer.add_token_types(toktypes)
  1726. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1727. self.gguf_writer.add_add_bos_token(True)
  1728. self.gguf_writer.add_add_eos_token(False)
  1729. template_dir = Path(__file__).parent / "models/templates/"
  1730. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1731. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1732. if self.is_mistral_format:
  1733. logger.info(
  1734. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1735. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1736. )
  1737. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1738. self.gguf_writer.add_chat_template(template)
  1739. else:
  1740. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1741. def set_vocab(self):
  1742. if self.is_mistral_format:
  1743. return self._set_vocab_mistral()
  1744. path_tekken_json = self.dir_model / "tekken.json"
  1745. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1746. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1747. self._set_vocab_mistral()
  1748. try:
  1749. self._set_vocab_sentencepiece()
  1750. except FileNotFoundError:
  1751. try:
  1752. self._set_vocab_llama_hf()
  1753. except (FileNotFoundError, TypeError):
  1754. # Llama 3
  1755. self._set_vocab_gpt2()
  1756. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1757. if self.hparams.get("vocab_size", 32000) == 32016:
  1758. special_vocab = gguf.SpecialVocab(
  1759. self.dir_model, load_merges=False,
  1760. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1761. )
  1762. special_vocab._set_special_token("prefix", 32007)
  1763. special_vocab._set_special_token("suffix", 32008)
  1764. special_vocab._set_special_token("middle", 32009)
  1765. special_vocab._set_special_token("eot", 32010)
  1766. special_vocab.add_to_gguf(self.gguf_writer)
  1767. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1768. if tokenizer_config_file.is_file():
  1769. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1770. tokenizer_config_json = json.load(f)
  1771. if "add_prefix_space" in tokenizer_config_json:
  1772. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1773. # Apply to granite small models only
  1774. if self.hparams.get("vocab_size", 32000) == 49152:
  1775. self.gguf_writer.add_add_bos_token(False)
  1776. def set_gguf_parameters(self):
  1777. super().set_gguf_parameters()
  1778. hparams = self.hparams
  1779. if not self.is_mistral_format:
  1780. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1781. if (rope_dim := hparams.get("head_dim")) is None:
  1782. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1783. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1784. rope_scaling = self.hparams.get("rope_scaling") or {}
  1785. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1786. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1787. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1788. @staticmethod
  1789. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1790. if n_head_kv is not None and n_head != n_head_kv:
  1791. n_head = n_head_kv
  1792. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1793. .swapaxes(1, 2)
  1794. .reshape(weights.shape))
  1795. _experts: list[dict[str, Tensor]] | None = None
  1796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1797. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1798. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1799. vision_prefixes = [
  1800. "vision_encoder.",
  1801. "vision_language_adapter.",
  1802. "patch_merger.",
  1803. "pre_mm_projector_norm",
  1804. ]
  1805. is_multimodal_tensor = "vision_tower" in name \
  1806. or "vision_model" in name \
  1807. or "audio_tower" in name \
  1808. or "model.connector" in name \
  1809. or "multi_modal_projector" in name \
  1810. or any(
  1811. name.startswith(prefix)
  1812. for prefix in vision_prefixes
  1813. )
  1814. if is_multimodal_tensor:
  1815. return [] # skip vision tensors
  1816. elif self.hf_arch == "LlamaModel":
  1817. name = "model." + name
  1818. elif name.startswith("model.text_model"):
  1819. name = name.replace("text_model.", "") # for SmolVLM
  1820. elif name.startswith("language_model."):
  1821. name = name.replace("language_model.", "") # for the rest
  1822. if self.undo_permute:
  1823. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1824. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1825. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1826. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1827. # process the experts separately
  1828. if name.find("block_sparse_moe.experts") != -1:
  1829. n_experts = self.hparams["num_local_experts"]
  1830. assert bid is not None
  1831. if self._experts is None:
  1832. self._experts = [{} for _ in range(self.block_count)]
  1833. self._experts[bid][name] = data_torch
  1834. if len(self._experts[bid]) >= n_experts * 3:
  1835. tensors: list[tuple[str, Tensor]] = []
  1836. # merge the experts into a single 3d tensor
  1837. for wid in ["w1", "w2", "w3"]:
  1838. datas: list[Tensor] = []
  1839. for xid in range(n_experts):
  1840. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1841. datas.append(self._experts[bid][ename])
  1842. del self._experts[bid][ename]
  1843. data_torch = torch.stack(datas, dim=0)
  1844. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1845. new_name = self.map_tensor_name(merged_name)
  1846. tensors.append((new_name, data_torch))
  1847. return tensors
  1848. else:
  1849. return []
  1850. return [(self.map_tensor_name(name), data_torch)]
  1851. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1852. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1853. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1854. base = self.hparams.get("rope_theta", 10000.0)
  1855. if (dim := self.hparams.get("head_dim")) is None:
  1856. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1857. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1858. factor = rope_scaling.get("factor", 8.0)
  1859. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1860. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1861. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1862. low_freq_wavelen = old_context_len / low_freq_factor
  1863. high_freq_wavelen = old_context_len / high_freq_factor
  1864. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1865. rope_factors = []
  1866. for freq in freqs:
  1867. wavelen = 2 * math.pi / freq
  1868. if wavelen < high_freq_wavelen:
  1869. rope_factors.append(1)
  1870. elif wavelen > low_freq_wavelen:
  1871. rope_factors.append(factor)
  1872. else:
  1873. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1874. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1875. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1876. def prepare_tensors(self):
  1877. super().prepare_tensors()
  1878. if self._experts is not None:
  1879. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1880. experts = [k for d in self._experts for k in d.keys()]
  1881. if len(experts) > 0:
  1882. raise ValueError(f"Unprocessed experts: {experts}")
  1883. @ModelBase.register("ArceeForCausalLM")
  1884. class ArceeModel(LlamaModel):
  1885. model_arch = gguf.MODEL_ARCH.ARCEE
  1886. def set_gguf_parameters(self):
  1887. super().set_gguf_parameters()
  1888. self._try_set_pooling_type()
  1889. rope_scaling = self.hparams.get("rope_scaling") or {}
  1890. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1891. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1892. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1893. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1894. @ModelBase.register(
  1895. "LlavaForConditionalGeneration", # pixtral
  1896. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1897. )
  1898. class LlavaVisionModel(MmprojModel):
  1899. img_break_tok_id = -1
  1900. def __init__(self, *args, **kwargs):
  1901. super().__init__(*args, **kwargs)
  1902. if self.hparams.get("model_type") == "pixtral":
  1903. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1904. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1905. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1906. elif self.is_mistral_format:
  1907. # hparams is already vision config here so norm_eps is only defined in global_config.
  1908. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1909. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1910. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1911. else:
  1912. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1913. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1914. def get_token_id(self, token: str) -> int:
  1915. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1916. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1917. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1918. for id_, token_data in added_tokens_decoder.items():
  1919. if token_data["content"] == token:
  1920. return int(id_)
  1921. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1922. def set_gguf_parameters(self):
  1923. super().set_gguf_parameters()
  1924. hparams = self.hparams
  1925. if hparams.get("model_type") == "pixtral":
  1926. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1927. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1928. # hidden_act
  1929. if hparams["hidden_act"] == "silu":
  1930. self.gguf_writer.add_vision_use_silu(True)
  1931. elif hparams["hidden_act"] == "gelu":
  1932. self.gguf_writer.add_vision_use_gelu(True)
  1933. else:
  1934. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1935. # spatial_merge_size
  1936. if "spatial_merge_size" in self.global_config:
  1937. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1939. del bid # unused
  1940. n_head = (
  1941. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1942. )
  1943. n_kv_head = n_head
  1944. valid_prefixes = (
  1945. "multi_modal_projector.",
  1946. "vision_tower.",
  1947. "vision_encoder.",
  1948. "vision_language_adapter.",
  1949. "patch_merger.",
  1950. "pre_mm_projector_norm",
  1951. )
  1952. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1953. # process vision tensors
  1954. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1955. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1956. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1957. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1958. return [(self.map_tensor_name(name), data_torch)]
  1959. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1960. if self.img_break_tok_id > 0 and embed_key in name:
  1961. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1962. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1963. img_break_embd = data_torch[self.img_break_tok_id]
  1964. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1965. return [(self.map_tensor_name(name), img_break_embd)]
  1966. return [] # skip other tensors
  1967. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1968. class SmolVLMModel(MmprojModel):
  1969. def __init__(self, *args, **kwargs):
  1970. super().__init__(*args, **kwargs)
  1971. if self.hparams["model_type"] == "smolvlm_vision":
  1972. # fix for SmolVLM2, missing some keys in config.json
  1973. # default values are taken from transformers code
  1974. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1975. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1976. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1977. def set_gguf_parameters(self):
  1978. super().set_gguf_parameters()
  1979. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1980. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1981. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1982. self.gguf_writer.add_vision_use_gelu(True)
  1983. # Add the preprocessor longest edge size
  1984. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  1985. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  1986. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1987. if ".embeddings." in name:
  1988. return gguf.GGMLQuantizationType.F32
  1989. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1991. del bid # unused
  1992. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1993. if is_vision_tensor:
  1994. return [(self.map_tensor_name(name), data_torch)]
  1995. return [] # skip other tensors
  1996. @ModelBase.register(
  1997. "Llama4ForConditionalGeneration",
  1998. "Llama4ForCausalLM",
  1999. )
  2000. class Llama4Model(LlamaModel):
  2001. model_arch = gguf.MODEL_ARCH.LLAMA4
  2002. undo_permute = False
  2003. def __init__(self, *args, **kwargs):
  2004. super().__init__(*args, **kwargs)
  2005. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2006. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2007. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2008. def set_vocab(self):
  2009. self._set_vocab_gpt2()
  2010. def set_gguf_parameters(self):
  2011. super().set_gguf_parameters()
  2012. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2013. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2014. if "layer_types" in self.hparams:
  2015. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2016. # all layers are full attention (for MobileLLM), disable swa
  2017. self.gguf_writer.add_sliding_window(0)
  2018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2019. if name.startswith("language_model."):
  2020. name = name.replace("language_model.", "")
  2021. # split the gate_up into gate and up
  2022. if "gate_up_proj" in name:
  2023. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2024. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2025. dim_half = data_torch.shape[-1] // 2
  2026. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2027. return [
  2028. (self.map_tensor_name(name_gate), gate_proj_weight),
  2029. (self.map_tensor_name(name_up), up_proj_weight)
  2030. ]
  2031. if name.endswith("down_proj"):
  2032. name += ".weight"
  2033. data_torch = data_torch.transpose(-1, -2)
  2034. if "multi_modal_projector" in name or "vision_model" in name:
  2035. return []
  2036. return super().modify_tensors(data_torch, name, bid)
  2037. @ModelBase.register("Llama4ForConditionalGeneration")
  2038. class Llama4VisionModel(MmprojModel):
  2039. def set_gguf_parameters(self):
  2040. super().set_gguf_parameters()
  2041. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2042. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2043. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2044. assert self.hparams["hidden_act"] == "gelu"
  2045. self.gguf_writer.add_vision_use_gelu(True)
  2046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2047. del bid # unused
  2048. if "multi_modal_projector" in name or "vision_model" in name:
  2049. # process vision tensors
  2050. if "positional_embedding_vlm" in name and ".weight" not in name:
  2051. name += ".weight"
  2052. if "multi_modal_projector.linear_1" in name:
  2053. # despite the name with number postfix, this is a single fully connected layer
  2054. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2055. return [(self.map_tensor_name(name), data_torch)]
  2056. return []
  2057. @ModelBase.register("Mistral3ForConditionalGeneration")
  2058. class Mistral3Model(LlamaModel):
  2059. model_arch = gguf.MODEL_ARCH.LLAMA
  2060. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2061. name = name.replace("language_model.", "")
  2062. if "multi_modal_projector" in name or "vision_tower" in name:
  2063. return []
  2064. return super().modify_tensors(data_torch, name, bid)
  2065. @ModelBase.register("DeciLMForCausalLM")
  2066. class DeciModel(TextModel):
  2067. model_arch = gguf.MODEL_ARCH.DECI
  2068. @staticmethod
  2069. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2070. # DeciLM-specific code
  2071. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2072. return DeciModel._find_multiple(intermediate_size, 256)
  2073. @staticmethod
  2074. def _find_multiple(n: int, k: int) -> int:
  2075. # DeciLM-specific code
  2076. if n % k == 0:
  2077. return n
  2078. return n + k - (n % k)
  2079. def __init__(self, *args, **kwargs):
  2080. super().__init__(*args, **kwargs)
  2081. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2082. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2083. assert self.block_count == len(_block_configs)
  2084. self._num_kv_heads = list()
  2085. self._num_heads = list()
  2086. _ffn_multipliers = list()
  2087. # ***linear attention layer***
  2088. # if n_heads_in_group is None and replace_with_linear is True
  2089. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2090. # ***attention-free layer***
  2091. # if n_heads_in_group is None and replace_with_linear is False
  2092. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2093. # ***normal attention-layer***
  2094. # if n_heads_in_group is not None, then
  2095. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2096. # _num_heads[il] is num_attention_head
  2097. # ***dummy layer*** for nemotron 253B
  2098. # if n_heads_in_group is None and ffn_mult is None
  2099. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2100. for il in range(len(_block_configs)):
  2101. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2102. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2103. self._num_kv_heads.append(0)
  2104. self._num_heads.append(self.hparams["num_attention_heads"])
  2105. else:
  2106. self._num_kv_heads.append(0)
  2107. self._num_heads.append(0)
  2108. else:
  2109. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2110. self._num_heads.append(self.hparams["num_attention_heads"])
  2111. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2112. _ffn_multipliers.append(0.0)
  2113. else:
  2114. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2115. assert self.block_count == len(self._num_kv_heads)
  2116. assert self.block_count == len(self._num_heads)
  2117. assert self.block_count == len(_ffn_multipliers)
  2118. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2119. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2120. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2121. self._ffn_dims: list[int] = [
  2122. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2123. for multiplier in _ffn_multipliers
  2124. ]
  2125. def set_vocab(self):
  2126. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2127. # eos_token from '|eot_id|' to '|end_of_text|'
  2128. if self.hparams.get("vocab_size", 128256) == 128256:
  2129. tokens, toktypes, tokpre = self.get_vocab_base()
  2130. self.gguf_writer.add_tokenizer_model("gpt2")
  2131. self.gguf_writer.add_tokenizer_pre(tokpre)
  2132. self.gguf_writer.add_token_list(tokens)
  2133. self.gguf_writer.add_token_types(toktypes)
  2134. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2135. special_vocab.add_to_gguf(self.gguf_writer)
  2136. else:
  2137. # DeciLM-7B
  2138. self._set_vocab_llama_hf()
  2139. def set_gguf_parameters(self):
  2140. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2141. assert self.block_count == len(self._num_kv_heads)
  2142. assert self.block_count == len(self._num_heads)
  2143. assert self.block_count == len(self._ffn_dims)
  2144. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2145. self.gguf_writer.add_rope_freq_base(rope_theta)
  2146. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2147. self.gguf_writer.add_head_count(self._num_heads)
  2148. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2149. self.gguf_writer.add_block_count(self.block_count)
  2150. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2151. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2152. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2153. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2154. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2155. self.gguf_writer.add_file_type(self.ftype)
  2156. else: # DeciLM-7B
  2157. super().set_gguf_parameters()
  2158. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2159. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2160. assert self.block_count == len(self._num_kv_heads)
  2161. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2162. hparams = self.hparams
  2163. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2164. if (rope_dim := hparams.get("head_dim")) is None:
  2165. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2166. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2167. rope_scaling = self.hparams.get("rope_scaling") or {}
  2168. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2169. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2170. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2171. @staticmethod
  2172. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2173. if n_head_kv is not None and n_head != n_head_kv:
  2174. n_head = n_head_kv
  2175. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2176. .swapaxes(1, 2)
  2177. .reshape(weights.shape))
  2178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2179. n_head = self.hparams["num_attention_heads"]
  2180. if bid is not None:
  2181. if "num_key_value_heads_per_layer" in self.hparams:
  2182. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2183. elif "block_configs" in self.hparams:
  2184. n_kv_head = self._num_kv_heads[bid]
  2185. n_head = self._num_heads[bid]
  2186. else:
  2187. n_kv_head = self.hparams.get("num_key_value_heads")
  2188. else:
  2189. n_kv_head = self.hparams.get("num_key_value_heads")
  2190. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2191. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2192. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2193. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2194. return [(self.map_tensor_name(name), data_torch)]
  2195. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2196. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2197. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2198. base = self.hparams.get("rope_theta", 10000.0)
  2199. if (dim := self.hparams.get("head_dim")) is None:
  2200. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2201. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2202. factor = rope_scaling.get("factor", 8.0)
  2203. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2204. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2205. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2206. low_freq_wavelen = old_context_len / low_freq_factor
  2207. high_freq_wavelen = old_context_len / high_freq_factor
  2208. assert low_freq_wavelen != high_freq_wavelen
  2209. rope_factors = []
  2210. for freq in freqs:
  2211. wavelen = 2 * math.pi / freq
  2212. if wavelen < high_freq_wavelen:
  2213. rope_factors.append(1)
  2214. elif wavelen > low_freq_wavelen:
  2215. rope_factors.append(factor)
  2216. else:
  2217. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2218. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2219. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2220. def prepare_tensors(self):
  2221. super().prepare_tensors()
  2222. @ModelBase.register("BitnetForCausalLM")
  2223. class BitnetModel(TextModel):
  2224. model_arch = gguf.MODEL_ARCH.BITNET
  2225. def set_vocab(self):
  2226. self._set_vocab_sentencepiece()
  2227. def set_gguf_parameters(self):
  2228. super().set_gguf_parameters()
  2229. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2230. self.gguf_writer.add_rope_scaling_factor(1.0)
  2231. def weight_quant(self, weight: Tensor) -> Tensor:
  2232. dtype = weight.dtype
  2233. weight = weight.float()
  2234. scale = weight.abs().mean().clamp(min=1e-5)
  2235. iscale = 1 / scale
  2236. # TODO: multiply by the scale directly instead of inverting it twice
  2237. # (this is also unnecessarily doubly inverted upstream)
  2238. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2239. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2240. return result.type(dtype)
  2241. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2242. new_name = self.map_tensor_name(name)
  2243. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2244. gguf.MODEL_TENSOR.ATTN_Q,
  2245. gguf.MODEL_TENSOR.ATTN_K,
  2246. gguf.MODEL_TENSOR.ATTN_V,
  2247. gguf.MODEL_TENSOR.ATTN_OUT,
  2248. gguf.MODEL_TENSOR.FFN_UP,
  2249. gguf.MODEL_TENSOR.FFN_DOWN,
  2250. gguf.MODEL_TENSOR.FFN_GATE,
  2251. ]):
  2252. # transform weight into 1/0/-1 (in fp32)
  2253. data_torch = self.weight_quant(data_torch)
  2254. yield (new_name, data_torch)
  2255. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2256. class GrokModel(TextModel):
  2257. model_arch = gguf.MODEL_ARCH.GROK
  2258. def set_vocab(self):
  2259. if (self.dir_model / 'tokenizer.model').is_file():
  2260. self._set_vocab_sentencepiece()
  2261. return
  2262. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2263. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2264. sys.exit(1)
  2265. self._set_vocab_gpt2()
  2266. def __init__(self, *args, **kwargs):
  2267. super().__init__(*args, **kwargs)
  2268. def set_gguf_parameters(self):
  2269. super().set_gguf_parameters()
  2270. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2271. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2272. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2273. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2274. if (rope_dim := self.hparams.get("head_dim")) is None:
  2275. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2276. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2277. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2278. # Treat "original" as "yarn", seems to have been a mistake
  2279. if self.hparams.get("rope_type") in ("yarn", "original"):
  2280. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2281. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2282. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2283. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2284. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2285. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2286. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2287. if temp_len := self.hparams.get("attn_temperature_len"):
  2288. self.gguf_writer.add_attn_temperature_length(temp_len)
  2289. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2290. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2291. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2292. _experts: list[dict[str, list[Tensor]]] | None = None
  2293. _cur_expert = ""
  2294. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2295. tensors: list[tuple[str, Tensor]] = []
  2296. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2297. if not is_expert:
  2298. tensors.append((self.map_tensor_name(name), data_torch))
  2299. # process the experts separately
  2300. if is_expert or self._cur_expert:
  2301. n_experts = self.hparams["num_local_experts"]
  2302. assert bid is not None
  2303. if self._experts is None:
  2304. self._experts = [{} for _ in range(self.block_count)]
  2305. # concatenate split tensors
  2306. if name in self._experts[bid]:
  2307. self._cur_expert = name
  2308. self._experts[bid][name].append(data_torch)
  2309. return []
  2310. elif is_expert:
  2311. self._cur_expert = name
  2312. self._experts[bid][name] = [data_torch]
  2313. return []
  2314. else:
  2315. self._cur_expert = ""
  2316. for bid in range(self.block_count):
  2317. if len(self._experts[bid]) >= n_experts * 3:
  2318. # merge the experts into a single 3d tensor
  2319. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2320. datas: list[Tensor] = []
  2321. for xid in range(n_experts):
  2322. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2323. if ename not in self._experts[bid]:
  2324. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2325. tensor_list = self._experts[bid][ename]
  2326. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2327. del self._experts[bid][ename]
  2328. data_torch = torch.stack(datas, dim=0)
  2329. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2330. new_name = self.map_tensor_name(merged_name)
  2331. yield (new_name, data_torch)
  2332. yield from tensors
  2333. @ModelBase.register("DbrxForCausalLM")
  2334. class DbrxModel(TextModel):
  2335. model_arch = gguf.MODEL_ARCH.DBRX
  2336. def set_gguf_parameters(self):
  2337. ffn_config = self.hparams["ffn_config"]
  2338. attn_config = self.hparams["attn_config"]
  2339. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2340. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2341. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2342. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2343. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2344. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2345. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2346. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2347. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2348. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2349. self.gguf_writer.add_layer_norm_eps(1e-5)
  2350. self.gguf_writer.add_file_type(self.ftype)
  2351. logger.info(f"gguf: file type = {self.ftype}")
  2352. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2353. del bid # unused
  2354. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2355. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2356. n_embd = self.hparams["d_model"]
  2357. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2358. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2359. # But llama.cpp moe graph works differently
  2360. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2361. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2362. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2363. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2364. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2365. experts = False
  2366. for exp_tensor_name in exp_tensor_names.keys():
  2367. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2368. experts = True
  2369. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2370. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2371. data_torch = data_torch.permute(*permute_tensor)
  2372. break
  2373. # map tensor names
  2374. # In MoE models the ffn tensors are typically most of the model weights,
  2375. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2376. # Every other model has the weight names ending in .weight,
  2377. # let's assume that is the convention which is not the case for dbrx:
  2378. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2379. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2380. return [(new_name, data_torch)]
  2381. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2382. del name, new_name, bid # unused
  2383. return n_dims > 1
  2384. @ModelBase.register("MiniCPMForCausalLM")
  2385. class MiniCPMModel(TextModel):
  2386. model_arch = gguf.MODEL_ARCH.MINICPM
  2387. def set_gguf_parameters(self):
  2388. super().set_gguf_parameters()
  2389. embedding_scale = float(self.hparams["scale_emb"])
  2390. self.gguf_writer.add_embedding_scale(embedding_scale)
  2391. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2392. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2393. self.gguf_writer.add_residual_scale(residual_scale)
  2394. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2395. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2396. self.gguf_writer.add_logit_scale(logit_scale)
  2397. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2398. rope_scaling = self.hparams.get("rope_scaling") or {}
  2399. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2400. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2401. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2402. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2403. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2404. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2405. if rope_scaling is not None:
  2406. long_factors = rope_scaling.get('long_factor', None)
  2407. short_factors = rope_scaling.get('short_factor', None)
  2408. if long_factors is None or short_factors is None:
  2409. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2410. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2411. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2412. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2413. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2414. def set_vocab(self):
  2415. self._set_vocab_sentencepiece()
  2416. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2417. del bid # unused
  2418. n_head = self.hparams["num_attention_heads"]
  2419. n_kv_head = self.hparams.get("num_key_value_heads")
  2420. # HF models permute some of the tensors, so we need to undo that
  2421. if name.endswith(("q_proj.weight")):
  2422. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2423. if name.endswith(("k_proj.weight")):
  2424. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2425. return [(self.map_tensor_name(name), data_torch)]
  2426. @ModelBase.register("MiniCPM3ForCausalLM")
  2427. class MiniCPM3Model(TextModel):
  2428. model_arch = gguf.MODEL_ARCH.MINICPM3
  2429. def set_gguf_parameters(self):
  2430. hparams = self.hparams
  2431. self.gguf_writer.add_file_type(self.ftype)
  2432. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2433. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2434. self.gguf_writer.add_block_count(self.block_count)
  2435. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2436. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2437. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2438. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2439. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2440. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2441. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2442. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2443. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2444. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2445. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2446. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2447. if rope_scaling is not None:
  2448. rope_dims = self.hparams["qk_rope_head_dim"]
  2449. long_factors = rope_scaling.get('long_factor', None)
  2450. short_factors = rope_scaling.get('short_factor', None)
  2451. if long_factors is None or short_factors is None:
  2452. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2453. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2454. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2455. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2456. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2457. def set_vocab(self):
  2458. self._set_vocab_sentencepiece()
  2459. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2460. if n_kv_head is not None and n_head != n_kv_head:
  2461. n_head //= n_kv_head
  2462. return (
  2463. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2464. .swapaxes(1, 2)
  2465. .reshape(weights.shape)
  2466. )
  2467. @ModelBase.register("QWenLMHeadModel")
  2468. class QwenModel(TextModel):
  2469. model_arch = gguf.MODEL_ARCH.QWEN
  2470. @staticmethod
  2471. def token_bytes_to_string(b):
  2472. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2473. byte_encoder = bytes_to_unicode()
  2474. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2475. @staticmethod
  2476. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2477. parts = [bytes([b]) for b in token]
  2478. while True:
  2479. min_idx = None
  2480. min_rank = None
  2481. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2482. rank = mergeable_ranks.get(pair[0] + pair[1])
  2483. if rank is not None and (min_rank is None or rank < min_rank):
  2484. min_idx = i
  2485. min_rank = rank
  2486. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2487. break
  2488. assert min_idx is not None
  2489. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2490. return parts
  2491. def set_vocab(self):
  2492. self._set_vocab_qwen()
  2493. def set_gguf_parameters(self):
  2494. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2495. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2496. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2497. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2498. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2499. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2500. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2501. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2502. self.gguf_writer.add_file_type(self.ftype)
  2503. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2504. class Qwen2Model(TextModel):
  2505. model_arch = gguf.MODEL_ARCH.QWEN2
  2506. def set_vocab(self):
  2507. try:
  2508. self._set_vocab_sentencepiece()
  2509. except FileNotFoundError:
  2510. self._set_vocab_gpt2()
  2511. def set_gguf_parameters(self):
  2512. super().set_gguf_parameters()
  2513. self._try_set_pooling_type()
  2514. rope_scaling = self.hparams.get("rope_scaling") or {}
  2515. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2516. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2517. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2518. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2520. if self.hf_arch == "Qwen2Model":
  2521. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2522. if "language_model." in name:
  2523. name = name.replace("language_model.", "") # for InternVL
  2524. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2525. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2526. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2527. # skip vision and audio tensors
  2528. return []
  2529. yield from super().modify_tensors(data_torch, name, bid)
  2530. @ModelBase.register("DreamModel")
  2531. class DreamModel(TextModel):
  2532. model_arch = gguf.MODEL_ARCH.DREAM
  2533. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2534. tokens: list[str] = []
  2535. toktypes: list[int] = []
  2536. from transformers import AutoTokenizer
  2537. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2538. vocab_dict = tokenizer.get_vocab()
  2539. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2540. assert max(vocab_dict.values()) < vocab_size
  2541. tokpre = self.get_vocab_base_pre(tokenizer)
  2542. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2543. added_vocab = tokenizer.get_added_vocab()
  2544. for i in range(vocab_size):
  2545. if i not in reverse_vocab:
  2546. tokens.append(f"[PAD{i}]")
  2547. toktypes.append(gguf.TokenType.UNUSED)
  2548. elif reverse_vocab[i] in added_vocab:
  2549. tokens.append(reverse_vocab[i])
  2550. # Check if it's a special token - treat special tokens as CONTROL tokens
  2551. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2552. if tokenizer.added_tokens_decoder[i].special:
  2553. toktypes.append(gguf.TokenType.CONTROL)
  2554. else:
  2555. toktypes.append(gguf.TokenType.USER_DEFINED)
  2556. else:
  2557. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2558. toktypes.append(gguf.TokenType.CONTROL)
  2559. else:
  2560. tokens.append(reverse_vocab[i])
  2561. toktypes.append(gguf.TokenType.NORMAL)
  2562. return tokens, toktypes, tokpre
  2563. def set_vocab(self):
  2564. try:
  2565. self._set_vocab_sentencepiece()
  2566. except FileNotFoundError:
  2567. self._set_vocab_gpt2()
  2568. def set_gguf_parameters(self):
  2569. super().set_gguf_parameters()
  2570. self._try_set_pooling_type()
  2571. # Dream models use non-causal attention for diffusion
  2572. self.gguf_writer.add_causal_attention(False)
  2573. # Handle RoPE scaling similar to Qwen2
  2574. rope_scaling = self.hparams.get("rope_scaling") or {}
  2575. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2576. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2577. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2578. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2579. # Add Dream-specific parameters
  2580. mask_token_id = self.hparams.get("mask_token_id")
  2581. if mask_token_id is not None:
  2582. self.gguf_writer.add_mask_token_id(mask_token_id)
  2583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2584. # Dream model tensors should be mapped directly since it's the base model
  2585. yield from super().modify_tensors(data_torch, name, bid)
  2586. @ModelBase.register("LLaDAModelLM")
  2587. class LLaDAModel(TextModel):
  2588. model_arch = gguf.MODEL_ARCH.LLADA
  2589. undo_permute = True
  2590. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2591. tokens: list[str] = []
  2592. toktypes: list[int] = []
  2593. from transformers import AutoTokenizer
  2594. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2595. vocab_dict = tokenizer.get_vocab()
  2596. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2597. assert max(vocab_dict.values()) < vocab_size
  2598. tokpre = self.get_vocab_base_pre(tokenizer)
  2599. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2600. added_vocab = tokenizer.get_added_vocab()
  2601. for i in range(vocab_size):
  2602. if i not in reverse_vocab:
  2603. tokens.append(f"[PAD{i}]")
  2604. toktypes.append(gguf.TokenType.UNUSED)
  2605. elif reverse_vocab[i] in added_vocab:
  2606. tokens.append(reverse_vocab[i])
  2607. # Check if it's a special token - treat special tokens as CONTROL tokens
  2608. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2609. if tokenizer.added_tokens_decoder[i].special:
  2610. toktypes.append(gguf.TokenType.CONTROL)
  2611. else:
  2612. toktypes.append(gguf.TokenType.USER_DEFINED)
  2613. else:
  2614. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2615. toktypes.append(gguf.TokenType.CONTROL)
  2616. else:
  2617. tokens.append(reverse_vocab[i])
  2618. toktypes.append(gguf.TokenType.NORMAL)
  2619. return tokens, toktypes, tokpre
  2620. def set_vocab(self):
  2621. self._set_vocab_gpt2()
  2622. # LLaDA specific parameters
  2623. self.gguf_writer.add_add_bos_token(True)
  2624. def set_gguf_parameters(self):
  2625. super().set_gguf_parameters()
  2626. self._try_set_pooling_type()
  2627. # Add parameters similar to LlamaModel
  2628. hparams = self.hparams
  2629. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2630. if (rope_dim := hparams.get("head_dim")) is None:
  2631. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2632. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2633. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2634. # Set context length for LLaDA
  2635. context_length = self.hparams.get("max_sequence_length", 4096)
  2636. self.gguf_writer.add_context_length(context_length)
  2637. # Set embedding length (dimension size)
  2638. embedding_length = self.hparams.get("d_model", 4096)
  2639. self.gguf_writer.add_embedding_length(embedding_length)
  2640. # Set feed forward length (MLP hidden size)
  2641. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2642. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2643. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2644. self.gguf_writer.add_causal_attention(False)
  2645. # LLaDA models don't shift their logits
  2646. self.gguf_writer.add_diffusion_shift_logits(False)
  2647. @staticmethod
  2648. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2649. if n_head_kv is not None and n_head != n_head_kv:
  2650. n_head = n_head_kv
  2651. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2652. .swapaxes(1, 2)
  2653. .reshape(weights.shape))
  2654. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2655. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2656. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2657. if self.undo_permute:
  2658. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2659. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2660. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2661. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2662. # LLaDA model tensors should be mapped directly since it's the base model
  2663. yield from super().modify_tensors(data_torch, name, bid)
  2664. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2665. class Ernie4_5Model(TextModel):
  2666. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2667. def set_vocab(self):
  2668. self._set_vocab_sentencepiece()
  2669. def set_gguf_parameters(self):
  2670. super().set_gguf_parameters()
  2671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2672. num_heads = self.hparams["num_attention_heads"]
  2673. num_kv_heads = self.hparams["num_key_value_heads"]
  2674. if (head_dim := self.hparams.get("head_dim")) is None:
  2675. head_dim = self.hparams["hidden_size"] // num_heads
  2676. if "ernie." in name:
  2677. name = name.replace("ernie.", "model.")
  2678. # split the qkv weights
  2679. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2680. if "qkv_proj" in name:
  2681. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2682. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2683. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2684. total_q_dim = num_heads * head_dim
  2685. total_k_dim = num_kv_heads * head_dim
  2686. total_v_dim = num_kv_heads * head_dim
  2687. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2688. return [
  2689. (self.map_tensor_name(name_q), q_proj_weight),
  2690. (self.map_tensor_name(name_k), k_proj_weight),
  2691. (self.map_tensor_name(name_v), v_proj_weight)
  2692. ]
  2693. # split the up_gate_proj into gate and up
  2694. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2695. if "up_gate_proj" in name:
  2696. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2697. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2698. dim_half = data_torch.shape[0] // 2
  2699. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2700. return [
  2701. (self.map_tensor_name(name_gate), gate_proj_weight),
  2702. (self.map_tensor_name(name_up), up_proj_weight)
  2703. ]
  2704. return [(self.map_tensor_name(name), data_torch)]
  2705. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2706. class Ernie4_5MoeModel(Ernie4_5Model):
  2707. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2708. _experts: list[dict[str, Tensor]] | None = None
  2709. def __init__(self, *args, **kwargs):
  2710. super().__init__(*args, **kwargs)
  2711. self._experts = [{} for _ in range(self.block_count)]
  2712. def set_gguf_parameters(self):
  2713. super().set_gguf_parameters()
  2714. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2715. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2716. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2717. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2718. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2719. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2720. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2721. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2722. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2723. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. # Modify correction bias name as in DeepseekV2
  2726. if name.endswith("e_score_correction_bias"):
  2727. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2728. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2729. match = re.match(r"model.mtp_block.(\d+)", name)
  2730. if match:
  2731. return []
  2732. # skip all other MTP tensors for now
  2733. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2734. if match:
  2735. return []
  2736. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2737. if match:
  2738. return []
  2739. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2740. if match:
  2741. return []
  2742. # process the experts separately
  2743. if name.find("mlp.experts") != -1:
  2744. n_experts = self.hparams["moe_num_experts"]
  2745. assert bid is not None
  2746. if self._experts is None:
  2747. self._experts = [{} for _ in range(self.block_count)]
  2748. self._experts[bid][name] = data_torch
  2749. if len(self._experts[bid]) >= n_experts * 3:
  2750. tensors: list[tuple[str, Tensor]] = []
  2751. # merge the experts into a single 3d tensor
  2752. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2753. datas: list[Tensor] = []
  2754. for xid in range(n_experts):
  2755. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2756. datas.append(self._experts[bid][ename_to_retrieve])
  2757. del self._experts[bid][ename_to_retrieve]
  2758. data_torch = torch.stack(datas, dim=0)
  2759. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2760. new_name = self.map_tensor_name(merged_name)
  2761. tensors.append((new_name, data_torch))
  2762. return tensors
  2763. else:
  2764. return []
  2765. return [(self.map_tensor_name(name), data_torch)]
  2766. def prepare_tensors(self):
  2767. super().prepare_tensors()
  2768. if self._experts is not None:
  2769. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2770. experts = [k for d in self._experts for k in d.keys()]
  2771. if len(experts) > 0:
  2772. raise ValueError(f"Unprocessed experts: {experts}")
  2773. @ModelBase.register(
  2774. "Qwen2VLModel",
  2775. "Qwen2VLForConditionalGeneration",
  2776. "Qwen2_5_VLForConditionalGeneration",
  2777. "Qwen2_5OmniModel",
  2778. )
  2779. class Qwen2VLModel(TextModel):
  2780. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2781. def set_gguf_parameters(self):
  2782. super().set_gguf_parameters()
  2783. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2784. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2785. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2786. def set_vocab(self):
  2787. try:
  2788. self._set_vocab_sentencepiece()
  2789. except FileNotFoundError:
  2790. self._set_vocab_gpt2()
  2791. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2792. del bid # unused
  2793. if name.startswith("thinker."):
  2794. name = name.replace("thinker.", "")
  2795. if name.startswith("visual") or name.startswith("audio") or \
  2796. name.startswith("talker") or name.startswith("token2wav"):
  2797. # skip multimodal tensors
  2798. return []
  2799. return [(self.map_tensor_name(name), data_torch)]
  2800. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2801. class Qwen2VLVisionModel(MmprojModel):
  2802. def __init__(self, *args, **kwargs):
  2803. super().__init__(*args, **kwargs)
  2804. assert self.hparams_vision is not None
  2805. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2806. # rename config.json values
  2807. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2808. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2809. if "embed_dim" in self.hparams_vision: # qwen2vl
  2810. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2811. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2812. def set_gguf_parameters(self):
  2813. super().set_gguf_parameters()
  2814. assert self.hparams_vision is not None
  2815. hparams = self.hparams_vision
  2816. model_type = self.global_config['model_type']
  2817. if model_type == 'qwen2_vl':
  2818. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2819. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2820. if model_type == 'qwen2_5_omni':
  2821. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2822. else:
  2823. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2824. self.gguf_writer.add_vision_use_silu(True)
  2825. # find n_wa_pattern (window attention pattern)
  2826. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2827. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2828. n_wa_pattern = fullatt_block_indexes[0] + 1
  2829. # validate n_wa_pattern
  2830. for i in range(1, len(fullatt_block_indexes)):
  2831. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2832. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2833. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2834. else:
  2835. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2836. # default values below are taken from HF tranformers code
  2837. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2838. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2839. if ".position_embd." in new_name:
  2840. return gguf.GGMLQuantizationType.F32
  2841. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2843. del bid # unused
  2844. if name.startswith("visual."):
  2845. # process visual tensors
  2846. # split QKV tensors if needed
  2847. if ".qkv." in name:
  2848. if data_torch.ndim == 2: # weight
  2849. c3, _ = data_torch.shape
  2850. else: # bias
  2851. c3 = data_torch.shape[0]
  2852. assert c3 % 3 == 0
  2853. c = c3 // 3
  2854. wq = data_torch[:c]
  2855. wk = data_torch[c: c * 2]
  2856. wv = data_torch[c * 2:]
  2857. return [
  2858. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2859. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2860. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2861. ]
  2862. elif 'patch_embed.proj.weight' in name:
  2863. # split Conv3D into Conv2Ds
  2864. c1, c2, kt, kh, kw = data_torch.shape
  2865. del c1, c2, kh, kw # unused
  2866. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2867. return [
  2868. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2869. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2870. ]
  2871. else:
  2872. return [(self.map_tensor_name(name), data_torch)]
  2873. return [] # skip other tensors
  2874. @ModelBase.register("Qwen2_5OmniModel")
  2875. class Qwen25OmniModel(Qwen2VLVisionModel):
  2876. has_vision_encoder = True
  2877. has_audio_encoder = True
  2878. def __init__(self, *args, **kwargs):
  2879. super().__init__(*args, **kwargs)
  2880. assert self.hparams_audio is not None
  2881. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2882. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2883. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2884. def set_gguf_parameters(self):
  2885. super().set_gguf_parameters()
  2886. assert self.hparams_audio is not None
  2887. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2888. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2889. def get_vision_config(self) -> dict[str, Any] | None:
  2890. return self.global_config["thinker_config"].get("vision_config")
  2891. def get_audio_config(self) -> dict[str, Any] | None:
  2892. return self.global_config["thinker_config"].get("audio_config")
  2893. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2894. # SinusoidsPositionEmbedding
  2895. assert self.hparams_audio is not None
  2896. max_timescale = 10000
  2897. length = 1500
  2898. channels = self.hparams_audio["hidden_size"]
  2899. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2900. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2901. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2902. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2903. yield ("audio_tower.embed_positions.weight", pos_embd)
  2904. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2905. if ".conv" in name and ".weight" in name:
  2906. return gguf.GGMLQuantizationType.F16
  2907. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2908. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2909. if name.startswith("thinker."):
  2910. name = name.replace("thinker.", "")
  2911. if name.startswith("audio_tower"):
  2912. # process audio tensors
  2913. if "conv1.bias" in name or "conv2.bias" in name:
  2914. # transpose conv1 and conv2 bias
  2915. data_torch = data_torch.unsqueeze(-1)
  2916. if "audio_bos_eos_token" in name:
  2917. # this tensor is left unused in transformers code
  2918. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2919. return []
  2920. return [(self.map_tensor_name(name), data_torch)]
  2921. return super().modify_tensors(data_torch, name, bid)
  2922. @ModelBase.register("InternVisionModel")
  2923. class InternVisionModel(MmprojModel):
  2924. def set_gguf_parameters(self):
  2925. assert self.hparams_vision is not None
  2926. if isinstance(self.hparams_vision['image_size'], list):
  2927. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2928. if isinstance(self.hparams_vision['patch_size'], list):
  2929. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2930. super().set_gguf_parameters()
  2931. hparams = self.hparams
  2932. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2933. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2934. # hidden_act
  2935. if hparams["hidden_act"] == "silu":
  2936. self.gguf_writer.add_vision_use_silu(True)
  2937. elif hparams["hidden_act"] == "gelu":
  2938. self.gguf_writer.add_vision_use_gelu(True)
  2939. else:
  2940. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2941. # downsample_ratio
  2942. downsample_ratio = self.global_config.get("downsample_ratio")
  2943. assert downsample_ratio is not None
  2944. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2945. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2946. if ".position_embd." in new_name:
  2947. return gguf.GGMLQuantizationType.F32
  2948. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2949. def _mapping_interns1_name(self, name):
  2950. names_map = {
  2951. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2952. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2953. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2954. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2955. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2956. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2957. }
  2958. if name in names_map:
  2959. name = names_map[name]
  2960. return name
  2961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2962. del bid # unused
  2963. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2964. # deal with intern-s1 special case
  2965. name = self._mapping_interns1_name(name)
  2966. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2967. # process visual tensors
  2968. # correct name
  2969. if name.startswith("vision_model"):
  2970. name = "vision_tower." + name
  2971. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2972. name += ".weight"
  2973. # split QKV tensors if needed
  2974. if ".qkv." in name:
  2975. if data_torch.ndim == 2: # weight
  2976. c3, _ = data_torch.shape
  2977. else: # bias
  2978. c3 = data_torch.shape[0]
  2979. assert c3 % 3 == 0
  2980. c = c3 // 3
  2981. wq = data_torch[:c]
  2982. wk = data_torch[c: c * 2]
  2983. wv = data_torch[c * 2:]
  2984. return [
  2985. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2986. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2987. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2988. ]
  2989. return [(self.map_tensor_name(name), data_torch)]
  2990. return [] # skip other tensors
  2991. @ModelBase.register("WavTokenizerDec")
  2992. class WavTokenizerDecModel(TextModel):
  2993. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2995. del bid # unused
  2996. if \
  2997. name.endswith("codebook.cluster_size") or \
  2998. name.endswith("codebook.embed_avg") or \
  2999. name.endswith("codebook.inited"):
  3000. logger.debug(f"Skipping {name!r}")
  3001. return []
  3002. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3003. return [(self.map_tensor_name(name), data_torch)]
  3004. def set_vocab(self):
  3005. self._set_vocab_none()
  3006. def set_gguf_parameters(self):
  3007. super().set_gguf_parameters()
  3008. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3009. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3010. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3011. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3012. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3013. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3014. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3015. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3016. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3017. self.gguf_writer.add_causal_attention(False)
  3018. @ModelBase.register("Qwen2MoeForCausalLM")
  3019. class Qwen2MoeModel(TextModel):
  3020. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3021. def set_gguf_parameters(self):
  3022. super().set_gguf_parameters()
  3023. if (n_experts := self.hparams.get("num_experts")) is not None:
  3024. self.gguf_writer.add_expert_count(n_experts)
  3025. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3026. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3027. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3028. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3029. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3030. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3031. # YaRN is not enabled by default
  3032. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3033. rope_scaling = self.hparams.get("rope_scaling") or {}
  3034. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3035. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3036. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3037. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3038. _experts: list[dict[str, Tensor]] | None = None
  3039. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3040. # process the experts separately
  3041. name = name.replace("language_model.", "") # InternVL
  3042. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3043. # skip visual tensors
  3044. return []
  3045. if name.find("experts") != -1:
  3046. n_experts = self.hparams["num_experts"]
  3047. assert bid is not None
  3048. if self._experts is None:
  3049. self._experts = [{} for _ in range(self.block_count)]
  3050. self._experts[bid][name] = data_torch
  3051. if len(self._experts[bid]) >= n_experts * 3:
  3052. tensors: list[tuple[str, Tensor]] = []
  3053. # merge the experts into a single 3d tensor
  3054. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3055. datas: list[Tensor] = []
  3056. for xid in range(n_experts):
  3057. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3058. datas.append(self._experts[bid][ename])
  3059. del self._experts[bid][ename]
  3060. data_torch = torch.stack(datas, dim=0)
  3061. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3062. new_name = self.map_tensor_name(merged_name)
  3063. tensors.append((new_name, data_torch))
  3064. return tensors
  3065. else:
  3066. return []
  3067. return [(self.map_tensor_name(name), data_torch)]
  3068. def prepare_tensors(self):
  3069. super().prepare_tensors()
  3070. if self._experts is not None:
  3071. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3072. experts = [k for d in self._experts for k in d.keys()]
  3073. if len(experts) > 0:
  3074. raise ValueError(f"Unprocessed experts: {experts}")
  3075. @ModelBase.register("Qwen3ForCausalLM")
  3076. class Qwen3Model(Qwen2Model):
  3077. model_arch = gguf.MODEL_ARCH.QWEN3
  3078. # extra logic for rerank models
  3079. is_rerank: bool = False
  3080. is_tied_embeddings: bool = False
  3081. token_false_id: int | None = None
  3082. token_true_id: int | None = None
  3083. def __init__(self, *args, **kwargs):
  3084. super().__init__(*args, **kwargs)
  3085. # track for intern-s1-mini
  3086. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3087. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3088. # a bit hacky, but currently the only way to detect if this is a rerank model
  3089. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3090. readme_path = self.dir_model / "README.md"
  3091. readme_text = ""
  3092. if readme_path.exists():
  3093. with readme_path.open("r", encoding="utf-8") as f:
  3094. readme_text = f.read()
  3095. if "# Qwen3-Reranker" in readme_text:
  3096. self._find_rerank_config()
  3097. def set_vocab(self):
  3098. # deal with intern-s1-mini
  3099. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3100. self._set_vocab_interns1()
  3101. return
  3102. super().set_vocab()
  3103. def _find_rerank_config(self):
  3104. from transformers import AutoTokenizer
  3105. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3106. self.is_rerank = True
  3107. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3108. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3109. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3110. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3111. assert self.token_false_id is not None and self.token_true_id is not None
  3112. def set_gguf_parameters(self):
  3113. super().set_gguf_parameters()
  3114. if self.is_rerank:
  3115. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3116. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3117. self.gguf_writer.add_chat_template([{
  3118. "name": "rerank",
  3119. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3120. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3121. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3122. }])
  3123. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3124. # extract "yes" and "no" tokens from the output lm_head tensor
  3125. false_row = data_torch[self.token_false_id]
  3126. true_row = data_torch[self.token_true_id]
  3127. return torch.stack([true_row, false_row], dim=0)
  3128. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3129. if self.is_rerank:
  3130. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3131. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3132. if is_tied_head or is_real_head:
  3133. cls_out_head = (
  3134. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3135. self._get_cls_out_tensor(data_torch),
  3136. )
  3137. if is_tied_head:
  3138. embed = (self.map_tensor_name(name), data_torch)
  3139. return [cls_out_head, embed]
  3140. if is_real_head:
  3141. return [cls_out_head]
  3142. return super().modify_tensors(data_torch, name, bid)
  3143. @ModelBase.register("Qwen3MoeForCausalLM")
  3144. class Qwen3MoeModel(Qwen2MoeModel):
  3145. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3146. def __init__(self, *args, **kwargs):
  3147. super().__init__(*args, **kwargs)
  3148. hparams = ModelBase.load_hparams(self.dir_model, False)
  3149. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3150. def set_vocab(self):
  3151. # deal with intern-s1
  3152. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3153. self._set_vocab_interns1()
  3154. return
  3155. super().set_vocab()
  3156. @ModelBase.register("GPT2LMHeadModel")
  3157. class GPT2Model(TextModel):
  3158. model_arch = gguf.MODEL_ARCH.GPT2
  3159. def set_gguf_parameters(self):
  3160. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3161. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3162. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3163. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3164. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3165. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3166. self.gguf_writer.add_file_type(self.ftype)
  3167. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3168. del bid # unused
  3169. tensors: list[tuple[str, Tensor]] = []
  3170. # we don't need these
  3171. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3172. return tensors
  3173. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3174. data_torch = data_torch.transpose(1, 0)
  3175. new_name = self.map_tensor_name(name)
  3176. tensors.append((new_name, data_torch))
  3177. return tensors
  3178. @ModelBase.register("PhiForCausalLM")
  3179. class Phi2Model(TextModel):
  3180. model_arch = gguf.MODEL_ARCH.PHI2
  3181. def set_gguf_parameters(self):
  3182. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3183. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3184. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3185. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3186. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3187. self.gguf_writer.add_embedding_length(n_embd)
  3188. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3189. self.gguf_writer.add_block_count(block_count)
  3190. self.gguf_writer.add_head_count(n_head)
  3191. self.gguf_writer.add_head_count_kv(n_head)
  3192. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3193. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3194. self.gguf_writer.add_file_type(self.ftype)
  3195. self.gguf_writer.add_add_bos_token(False)
  3196. @ModelBase.register("Phi3ForCausalLM")
  3197. class Phi3MiniModel(TextModel):
  3198. model_arch = gguf.MODEL_ARCH.PHI3
  3199. def set_vocab(self):
  3200. # Phi-4 model uses GPT2Tokenizer
  3201. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3202. if tokenizer_config_file.is_file():
  3203. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3204. tokenizer_config_json = json.load(f)
  3205. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3206. if tokenizer_class == 'GPT2Tokenizer':
  3207. return self._set_vocab_gpt2()
  3208. from sentencepiece import SentencePieceProcessor
  3209. tokenizer_path = self.dir_model / 'tokenizer.model'
  3210. if not tokenizer_path.is_file():
  3211. raise ValueError(f'Error: Missing {tokenizer_path}')
  3212. tokenizer = SentencePieceProcessor()
  3213. tokenizer.LoadFromFile(str(tokenizer_path))
  3214. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3215. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3216. scores: list[float] = [-10000.0] * vocab_size
  3217. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3218. for token_id in range(tokenizer.vocab_size()):
  3219. piece = tokenizer.IdToPiece(token_id)
  3220. text = piece.encode("utf-8")
  3221. score = tokenizer.GetScore(token_id)
  3222. toktype = SentencePieceTokenTypes.NORMAL
  3223. if tokenizer.IsUnknown(token_id):
  3224. toktype = SentencePieceTokenTypes.UNKNOWN
  3225. elif tokenizer.IsControl(token_id):
  3226. toktype = SentencePieceTokenTypes.CONTROL
  3227. elif tokenizer.IsUnused(token_id):
  3228. toktype = SentencePieceTokenTypes.UNUSED
  3229. elif tokenizer.IsByte(token_id):
  3230. toktype = SentencePieceTokenTypes.BYTE
  3231. tokens[token_id] = text
  3232. scores[token_id] = score
  3233. toktypes[token_id] = toktype
  3234. added_tokens_file = self.dir_model / 'added_tokens.json'
  3235. if added_tokens_file.is_file():
  3236. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3237. added_tokens_json = json.load(f)
  3238. for key in added_tokens_json:
  3239. token_id = added_tokens_json[key]
  3240. if token_id >= vocab_size:
  3241. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3242. continue
  3243. tokens[token_id] = key.encode("utf-8")
  3244. scores[token_id] = -1000.0
  3245. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3246. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3247. if tokenizer_config_file.is_file():
  3248. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3249. tokenizer_config_json = json.load(f)
  3250. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3251. for token_id, foken_data in added_tokens_decoder.items():
  3252. token_id = int(token_id)
  3253. token = foken_data["content"].encode("utf-8")
  3254. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3255. if tokens[token_id] != token:
  3256. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3257. tokens[token_id] = token
  3258. scores[token_id] = -1000.0
  3259. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3260. if foken_data.get("special"):
  3261. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3262. tokenizer_file = self.dir_model / 'tokenizer.json'
  3263. if tokenizer_file.is_file():
  3264. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3265. tokenizer_json = json.load(f)
  3266. added_tokens = tokenizer_json.get("added_tokens", [])
  3267. for foken_data in added_tokens:
  3268. token_id = int(foken_data["id"])
  3269. token = foken_data["content"].encode("utf-8")
  3270. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3271. if tokens[token_id] != token:
  3272. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3273. tokens[token_id] = token
  3274. scores[token_id] = -1000.0
  3275. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3276. if foken_data.get("special"):
  3277. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3278. self.gguf_writer.add_tokenizer_model("llama")
  3279. self.gguf_writer.add_tokenizer_pre("default")
  3280. self.gguf_writer.add_token_list(tokens)
  3281. self.gguf_writer.add_token_scores(scores)
  3282. self.gguf_writer.add_token_types(toktypes)
  3283. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3284. special_vocab.add_to_gguf(self.gguf_writer)
  3285. def set_gguf_parameters(self):
  3286. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3287. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3288. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3289. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3290. rms_eps = self.find_hparam(["rms_norm_eps"])
  3291. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3292. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3293. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3294. rope_dims = int(rot_pct * n_embd) // n_head
  3295. self.gguf_writer.add_context_length(max_pos_embds)
  3296. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3297. self.gguf_writer.add_embedding_length(n_embd)
  3298. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3299. self.gguf_writer.add_block_count(block_count)
  3300. self.gguf_writer.add_head_count(n_head)
  3301. self.gguf_writer.add_head_count_kv(n_head_kv)
  3302. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3303. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3304. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3305. self.gguf_writer.add_file_type(self.ftype)
  3306. sliding_window = self.hparams.get("sliding_window")
  3307. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3308. if sliding_window is None:
  3309. sliding_window = 0
  3310. self.gguf_writer.add_sliding_window(sliding_window)
  3311. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3312. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3313. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3314. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3315. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3316. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3317. rope_dims = int(rot_pct * n_embd) // n_head
  3318. # write rope scaling for long context (128k) model
  3319. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3320. if rope_scaling is None:
  3321. return
  3322. scale = max_pos_embds / orig_max_pos_embds
  3323. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3324. if len(rope_scaling_type) == 0:
  3325. raise KeyError('Missing the required key rope_scaling.type')
  3326. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3327. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3328. elif rope_scaling_type == 'yarn':
  3329. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3330. else:
  3331. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3332. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3333. long_factors = rope_scaling.get('long_factor', None)
  3334. short_factors = rope_scaling.get('short_factor', None)
  3335. if long_factors is None or short_factors is None:
  3336. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3337. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3338. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3339. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3340. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3341. @ModelBase.register("PhiMoEForCausalLM")
  3342. class PhiMoeModel(Phi3MiniModel):
  3343. model_arch = gguf.MODEL_ARCH.PHIMOE
  3344. _experts: list[dict[str, Tensor]] | None = None
  3345. def set_gguf_parameters(self):
  3346. super().set_gguf_parameters()
  3347. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3348. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3350. # process the experts separately
  3351. if name.find("block_sparse_moe.experts") != -1:
  3352. n_experts = self.hparams["num_local_experts"]
  3353. assert bid is not None
  3354. if self._experts is None:
  3355. self._experts = [{} for _ in range(self.block_count)]
  3356. self._experts[bid][name] = data_torch
  3357. if len(self._experts[bid]) >= n_experts * 3:
  3358. tensors: list[tuple[str, Tensor]] = []
  3359. # merge the experts into a single 3d tensor
  3360. for w_name in ["w1", "w2", "w3"]:
  3361. datas: list[Tensor] = []
  3362. for xid in range(n_experts):
  3363. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3364. datas.append(self._experts[bid][ename])
  3365. del self._experts[bid][ename]
  3366. data_torch = torch.stack(datas, dim=0)
  3367. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3368. new_name = self.map_tensor_name(merged_name)
  3369. tensors.append((new_name, data_torch))
  3370. return tensors
  3371. else:
  3372. return []
  3373. return [(self.map_tensor_name(name), data_torch)]
  3374. def prepare_tensors(self):
  3375. super().prepare_tensors()
  3376. if self._experts is not None:
  3377. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3378. experts = [k for d in self._experts for k in d.keys()]
  3379. if len(experts) > 0:
  3380. raise ValueError(f"Unprocessed experts: {experts}")
  3381. @ModelBase.register("PlamoForCausalLM")
  3382. class PlamoModel(TextModel):
  3383. model_arch = gguf.MODEL_ARCH.PLAMO
  3384. def set_vocab(self):
  3385. self._set_vocab_sentencepiece()
  3386. def set_gguf_parameters(self):
  3387. hparams = self.hparams
  3388. block_count = hparams["num_hidden_layers"]
  3389. self.gguf_writer.add_context_length(4096) # not in config.json
  3390. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3391. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3392. self.gguf_writer.add_block_count(block_count)
  3393. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3394. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3395. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3396. self.gguf_writer.add_file_type(self.ftype)
  3397. def shuffle_attn_q_weight(self, data_torch):
  3398. assert data_torch.size() == (5120, 5120)
  3399. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3400. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3401. data_torch = torch.reshape(data_torch, (5120, 5120))
  3402. return data_torch
  3403. def shuffle_attn_output_weight(self, data_torch):
  3404. assert data_torch.size() == (5120, 5120)
  3405. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3406. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3407. data_torch = torch.reshape(data_torch, (5120, 5120))
  3408. return data_torch
  3409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3410. del bid # unused
  3411. new_name = self.map_tensor_name(name)
  3412. # shuffle for broadcasting of gqa in ggml_mul_mat
  3413. if new_name.endswith("attn_q.weight"):
  3414. data_torch = self.shuffle_attn_q_weight(data_torch)
  3415. elif new_name.endswith("attn_output.weight"):
  3416. data_torch = self.shuffle_attn_output_weight(data_torch)
  3417. return [(new_name, data_torch)]
  3418. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3419. class Plamo2Model(TextModel):
  3420. model_arch = gguf.MODEL_ARCH.PLAMO2
  3421. def set_vocab(self):
  3422. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3423. # We need to handle this specially
  3424. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3425. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3426. if not tokenizer_jsonl_path.is_file():
  3427. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3428. # Load tokenizer config
  3429. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3430. tokenizer_config = json.load(f)
  3431. # Load tokens from JSONL file (actually a list format)
  3432. tokens = []
  3433. scores = []
  3434. toktypes = []
  3435. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3436. for line_num, line in enumerate(f):
  3437. if line.strip():
  3438. token_data = json.loads(line)
  3439. # Format: [token, score, type, ?, ?, ?, ?]
  3440. token = token_data[0].encode("utf-8")
  3441. score = float(token_data[1])
  3442. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3443. tokens.append(token)
  3444. scores.append(score)
  3445. # Map token type strings to GGUF token types
  3446. if token_type_str == "UNKNOWN":
  3447. toktypes.append(gguf.TokenType.UNKNOWN)
  3448. elif token_type_str == "CONTROL":
  3449. toktypes.append(gguf.TokenType.CONTROL)
  3450. elif token_type_str == "BYTE":
  3451. toktypes.append(gguf.TokenType.BYTE)
  3452. else:
  3453. # Check for PLaMo-2 special tokens
  3454. token_str = token_data[0]
  3455. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3456. toktypes.append(gguf.TokenType.CONTROL)
  3457. else:
  3458. toktypes.append(gguf.TokenType.NORMAL)
  3459. vocab_size = self.hparams["vocab_size"]
  3460. if vocab_size > len(tokens):
  3461. pad_count = vocab_size - len(tokens)
  3462. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3463. for i in range(1, pad_count + 1):
  3464. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3465. scores.append(-1000.0)
  3466. toktypes.append(gguf.TokenType.UNUSED)
  3467. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3468. self.gguf_writer.add_tokenizer_model("plamo2")
  3469. self.gguf_writer.add_tokenizer_pre("default")
  3470. self.gguf_writer.add_token_list(tokens)
  3471. self.gguf_writer.add_token_scores(scores)
  3472. self.gguf_writer.add_token_types(toktypes)
  3473. # Add special tokens from config
  3474. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3475. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3476. self.gguf_writer.add_bos_token_id(token_id)
  3477. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3478. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3479. self.gguf_writer.add_eos_token_id(token_id)
  3480. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3481. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3482. self.gguf_writer.add_pad_token_id(token_id)
  3483. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3484. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3485. self.gguf_writer.add_sep_token_id(token_id)
  3486. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3487. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3488. self.gguf_writer.add_unk_token_id(token_id)
  3489. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3490. self.gguf_writer.add_eot_token_id(4)
  3491. self.gguf_writer.add_add_space_prefix(False)
  3492. def set_gguf_parameters(self):
  3493. hparams = self.hparams
  3494. block_count = hparams["num_hidden_layers"]
  3495. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3496. # Which layers are Mamba layers
  3497. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3498. # This logic matches modeling_plamo.py's is_mamba function
  3499. mamba_step = hparams.get("mamba_step", 2)
  3500. mamba_enabled = hparams.get("mamba_enabled", True)
  3501. num_key_value_heads = []
  3502. num_attention_heads = []
  3503. if mamba_enabled:
  3504. for i in range(block_count):
  3505. if block_count <= (mamba_step // 2):
  3506. # use attention in last layer
  3507. is_mamba = (i != block_count - 1)
  3508. else:
  3509. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3510. if is_mamba:
  3511. num_key_value_heads.append(0)
  3512. num_attention_heads.append(0)
  3513. else:
  3514. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3515. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3516. if num_key_value_heads and num_attention_heads:
  3517. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3518. self.gguf_writer.add_head_count(num_attention_heads)
  3519. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3520. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3521. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3522. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3523. self.gguf_writer.add_block_count(block_count)
  3524. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3525. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3526. # Mamba parameters
  3527. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3528. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3529. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3530. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3531. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3532. self.gguf_writer.add_ssm_group_count(0)
  3533. # MLP feed forward parameters (for attention layers)
  3534. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3535. self.gguf_writer.add_file_type(self.ftype)
  3536. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3537. del bid # unused
  3538. if name.endswith(".A_log"):
  3539. data_torch = -torch.exp(data_torch)
  3540. elif name.endswith(".dt_bias"):
  3541. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3542. elif name.endswith(".dt_norm_weight"):
  3543. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3544. elif name.endswith(".B_norm_weight"):
  3545. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3546. elif name.endswith(".C_norm_weight"):
  3547. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3548. elif name.endswith(".k_weight"):
  3549. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3550. elif name.endswith(".q_weight"):
  3551. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3552. elif name.endswith(".conv1d.weight"):
  3553. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3554. assert data_torch.ndim == 2
  3555. elif name.endswith(".pre_mixer_norm.weight"):
  3556. data_torch += 1.0
  3557. elif name.endswith(".post_mixer_norm.weight"):
  3558. data_torch += 1.0 / 5
  3559. elif name.endswith(".pre_mlp_norm.weight"):
  3560. data_torch += 1.0
  3561. elif name.endswith(".post_mlp_norm.weight"):
  3562. data_torch += 1.0 / (5**1.5)
  3563. elif name.endswith(".norm.weight"):
  3564. data_torch += 1.0
  3565. new_name = self.map_tensor_name(name)
  3566. return [(new_name, data_torch)]
  3567. @ModelBase.register("CodeShellForCausalLM")
  3568. class CodeShellModel(TextModel):
  3569. model_arch = gguf.MODEL_ARCH.CODESHELL
  3570. def set_gguf_parameters(self):
  3571. block_count = self.hparams["n_layer"]
  3572. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3573. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3574. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3575. self.gguf_writer.add_block_count(block_count)
  3576. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3577. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3578. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3579. self.gguf_writer.add_file_type(self.ftype)
  3580. self.gguf_writer.add_rope_freq_base(10000.0)
  3581. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3582. self.gguf_writer.add_rope_scaling_factor(1.0)
  3583. _has_tok_embd = False
  3584. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3585. del bid # unused
  3586. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3587. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3588. new_name = self.map_tensor_name(name)
  3589. # assuming token_embd.weight is seen before output.weight
  3590. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3591. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3592. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3593. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3594. self.tensor_names.remove("transformer.wte.weight")
  3595. elif new_name == tok_embd_name:
  3596. self._has_tok_embd = True
  3597. return [(new_name, data_torch)]
  3598. @ModelBase.register("InternLM2ForCausalLM")
  3599. class InternLM2Model(TextModel):
  3600. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3601. def set_vocab(self):
  3602. # (TODO): Is there a better way?
  3603. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3604. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3605. # recognized as an empty string in C++.
  3606. from sentencepiece import SentencePieceProcessor
  3607. from sentencepiece import sentencepiece_model_pb2 as model
  3608. tokenizer_path = self.dir_model / 'tokenizer.model'
  3609. tokens: list[bytes] = []
  3610. scores: list[float] = []
  3611. toktypes: list[int] = []
  3612. if not tokenizer_path.is_file():
  3613. logger.error(f'Error: Missing {tokenizer_path}')
  3614. sys.exit(1)
  3615. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3616. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3617. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3618. tokenizer = SentencePieceProcessor()
  3619. tokenizer.LoadFromFile(str(tokenizer_path))
  3620. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3621. for token_id in range(vocab_size):
  3622. piece = tokenizer.IdToPiece(token_id)
  3623. text = piece.encode("utf-8")
  3624. score = tokenizer.GetScore(token_id)
  3625. if text == b"\x00":
  3626. # (TODO): fixme
  3627. # Hack here and replace the \x00 characters.
  3628. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3629. text = "🐉".encode("utf-8")
  3630. toktype = SentencePieceTokenTypes.NORMAL
  3631. if tokenizer.IsUnknown(token_id):
  3632. toktype = SentencePieceTokenTypes.UNKNOWN
  3633. elif tokenizer.IsControl(token_id):
  3634. toktype = SentencePieceTokenTypes.CONTROL
  3635. elif tokenizer.IsUnused(token_id):
  3636. toktype = SentencePieceTokenTypes.UNUSED
  3637. elif tokenizer.IsByte(token_id):
  3638. toktype = SentencePieceTokenTypes.BYTE
  3639. # take care of ununsed raw token
  3640. if piece.startswith('[UNUSED'):
  3641. toktype = SentencePieceTokenTypes.UNUSED
  3642. tokens.append(text)
  3643. scores.append(score)
  3644. toktypes.append(toktype)
  3645. added_tokens_file = self.dir_model / 'added_tokens.json'
  3646. if added_tokens_file.is_file():
  3647. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3648. added_tokens_json = json.load(f)
  3649. for key in added_tokens_json:
  3650. tokens.append(key.encode("utf-8"))
  3651. scores.append(-1000.0)
  3652. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3653. chat_eos_token = '<|im_end|>'
  3654. chat_eos_token_id = None
  3655. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3656. if tokenizer_config_file.is_file():
  3657. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3658. tokenizer_config_json = json.load(f)
  3659. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3660. for token_id, foken_data in added_tokens_decoder.items():
  3661. token_id = int(token_id)
  3662. token = foken_data["content"]
  3663. if token == chat_eos_token:
  3664. chat_eos_token_id = token_id
  3665. token = token.encode("utf-8")
  3666. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3667. if tokens[token_id] != token:
  3668. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3669. tokens[token_id] = token
  3670. scores[token_id] = -1000.0
  3671. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3672. if foken_data.get("special"):
  3673. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3674. tokenizer_file = self.dir_model / 'tokenizer.json'
  3675. if tokenizer_file.is_file():
  3676. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3677. tokenizer_json = json.load(f)
  3678. added_tokens = tokenizer_json.get("added_tokens", [])
  3679. for foken_data in added_tokens:
  3680. token_id = int(foken_data["id"])
  3681. token = foken_data["content"]
  3682. if token == chat_eos_token:
  3683. chat_eos_token_id = token_id
  3684. token = token.encode("utf-8")
  3685. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3686. if tokens[token_id] != token:
  3687. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3688. tokens[token_id] = token
  3689. scores[token_id] = -1000.0
  3690. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3691. if foken_data.get("special"):
  3692. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3693. self.gguf_writer.add_tokenizer_model("llama")
  3694. self.gguf_writer.add_tokenizer_pre("default")
  3695. self.gguf_writer.add_token_list(tokens)
  3696. self.gguf_writer.add_token_scores(scores)
  3697. self.gguf_writer.add_token_types(toktypes)
  3698. self.gguf_writer.add_add_space_prefix(add_prefix)
  3699. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3700. old_eos = special_vocab.special_token_ids["eos"]
  3701. if chat_eos_token_id is not None:
  3702. # For the chat model, we replace the eos with '<|im_end|>'.
  3703. # TODO: this is a hack, should be fixed
  3704. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3705. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3706. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3707. " in chat mode so that the conversation can end normally.")
  3708. special_vocab.add_to_gguf(self.gguf_writer)
  3709. def set_gguf_parameters(self):
  3710. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3711. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3712. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3713. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3714. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3715. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3716. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3717. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3718. self.gguf_writer.add_file_type(self.ftype)
  3719. rope_scaling = self.hparams.get("rope_scaling") or {}
  3720. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3721. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3722. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3723. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3724. num_heads = self.hparams["num_attention_heads"]
  3725. num_kv_heads = self.hparams["num_key_value_heads"]
  3726. n_embd = self.hparams["hidden_size"]
  3727. q_per_kv = num_heads // num_kv_heads
  3728. head_dim = n_embd // num_heads
  3729. num_groups = num_heads // q_per_kv
  3730. name = name.replace("language_model.", "") # InternVL
  3731. if name.startswith("mlp") or name.startswith("vision_model"):
  3732. # skip visual tensors
  3733. return []
  3734. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3735. qkv = data_torch
  3736. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3737. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3738. # The model weights of q and k equire additional reshape.
  3739. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3740. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3741. v = v.reshape((-1, v.shape[-1]))
  3742. return [
  3743. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3744. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3745. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3746. ]
  3747. else:
  3748. return [(self.map_tensor_name(name), data_torch)]
  3749. @ModelBase.register("InternLM3ForCausalLM")
  3750. class InternLM3Model(TextModel):
  3751. model_arch = gguf.MODEL_ARCH.LLAMA
  3752. def set_vocab(self):
  3753. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3754. self.gguf_writer.add_tokenizer_model("llama")
  3755. self.gguf_writer.add_tokenizer_pre("default")
  3756. self.gguf_writer.add_token_list(tokens)
  3757. self.gguf_writer.add_token_scores(scores)
  3758. self.gguf_writer.add_token_types(toktypes)
  3759. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3760. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3761. if tokenizer_config_file.is_file():
  3762. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3763. tokenizer_config_json = json.load(f)
  3764. if "add_prefix_space" in tokenizer_config_json:
  3765. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3766. if "added_tokens_decoder" in tokenizer_config_json:
  3767. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3768. if token_data.get("special"):
  3769. token_id = int(token_id)
  3770. token = token_data["content"]
  3771. special_vocab._set_special_token(token, token_id)
  3772. # update eos token
  3773. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3774. special_vocab.special_token_ids["eos"] = token_id
  3775. special_vocab.add_to_gguf(self.gguf_writer)
  3776. def set_gguf_parameters(self):
  3777. super().set_gguf_parameters()
  3778. hparams = self.hparams
  3779. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3780. if (rope_dim := hparams.get("head_dim")) is None:
  3781. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3782. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3783. rope_scaling = self.hparams.get("rope_scaling") or {}
  3784. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3785. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3786. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3788. n_head = self.hparams["num_attention_heads"]
  3789. n_kv_head = self.hparams.get("num_key_value_heads")
  3790. name = name.replace("language_model.", "") # InternVL
  3791. if name.startswith("mlp") or name.startswith("vision_model"):
  3792. # skip visual tensors
  3793. return []
  3794. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3795. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3796. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3797. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3798. return [(self.map_tensor_name(name), data_torch)]
  3799. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3800. class BertModel(TextModel):
  3801. model_arch = gguf.MODEL_ARCH.BERT
  3802. def __init__(self, *args, **kwargs):
  3803. super().__init__(*args, **kwargs)
  3804. self.vocab_size = None
  3805. if cls_out_labels := self.hparams.get("id2label"):
  3806. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3807. # Remove dummy labels added by AutoConfig
  3808. cls_out_labels = None
  3809. self.cls_out_labels = cls_out_labels
  3810. def set_gguf_parameters(self):
  3811. super().set_gguf_parameters()
  3812. self.gguf_writer.add_causal_attention(False)
  3813. self._try_set_pooling_type()
  3814. if self.cls_out_labels:
  3815. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3816. def set_vocab(self):
  3817. tokens, toktypes, tokpre = self.get_vocab_base()
  3818. self.vocab_size = len(tokens)
  3819. # we need this to validate the size of the token_type embeddings
  3820. # though currently we are passing all zeros to the token_type embeddings
  3821. # "Sequence A" or "Sequence B"
  3822. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3823. # convert to phantom space vocab
  3824. def phantom(tok):
  3825. if tok.startswith("[") and tok.endswith("]"):
  3826. return tok
  3827. if tok.startswith("##"):
  3828. return tok[2:]
  3829. return "\u2581" + tok
  3830. tokens = list(map(phantom, tokens))
  3831. # add vocab to gguf
  3832. self.gguf_writer.add_tokenizer_model("bert")
  3833. self.gguf_writer.add_tokenizer_pre(tokpre)
  3834. self.gguf_writer.add_token_list(tokens)
  3835. self.gguf_writer.add_token_types(toktypes)
  3836. # handle special tokens
  3837. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3838. special_vocab.add_to_gguf(self.gguf_writer)
  3839. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3840. del bid # unused
  3841. if name.startswith("bert."):
  3842. name = name[5:]
  3843. if name.endswith(".gamma"):
  3844. name = name[:-6] + ".weight"
  3845. if name.endswith(".beta"):
  3846. name = name[:-5] + ".bias"
  3847. # we are only using BERT for embeddings so we don't need the pooling layer
  3848. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3849. return [] # we don't need these
  3850. if name.startswith("cls.predictions"):
  3851. return []
  3852. if name.startswith("cls.seq_relationship"):
  3853. return []
  3854. if self.cls_out_labels:
  3855. # For BertForSequenceClassification (direct projection layer)
  3856. if name == "classifier.weight":
  3857. name = "classifier.out_proj.weight"
  3858. if name == "classifier.bias":
  3859. name = "classifier.out_proj.bias"
  3860. return [(self.map_tensor_name(name), data_torch)]
  3861. def _xlmroberta_tokenizer_init(self) -> None:
  3862. # we need the pad_token_id to know how to chop down position_embd matrix
  3863. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3864. self._position_offset = 1 + pad_token_id
  3865. if "max_position_embeddings" in self.hparams:
  3866. self.hparams["max_position_embeddings"] -= self._position_offset
  3867. else:
  3868. self._position_offset = None
  3869. def _xlmroberta_set_vocab(self) -> None:
  3870. # to avoid TypeError: Descriptors cannot be created directly
  3871. # exception when importing sentencepiece_model_pb2
  3872. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3873. from sentencepiece import SentencePieceProcessor
  3874. from sentencepiece import sentencepiece_model_pb2 as model
  3875. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3876. tokenizer_json = {}
  3877. tokenizer_config_json = {}
  3878. if not tokenizer_path.is_file():
  3879. tokenizer_path = self.dir_model / 'tokenizer.json'
  3880. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3881. if not tokenizer_path.is_file():
  3882. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3883. from base64 import b64decode
  3884. from transformers import AutoTokenizer
  3885. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3886. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3887. tokenizer_json = json.load(fp)
  3888. if tokenizer_config_path.is_file():
  3889. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3890. tokenizer_config_json = json.load(fp)
  3891. add_prefix = tokenizer.add_prefix_space
  3892. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3893. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3894. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3895. else:
  3896. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3897. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3898. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3899. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3900. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3901. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3902. tokenizer = SentencePieceProcessor()
  3903. tokenizer.LoadFromFile(str(tokenizer_path))
  3904. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3905. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3906. scores: list[float] = [-10000.0] * vocab_size
  3907. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3908. if isinstance(tokenizer, SentencePieceProcessor):
  3909. for token_id in range(tokenizer.vocab_size()):
  3910. piece = tokenizer.IdToPiece(token_id)
  3911. text = piece.encode("utf-8")
  3912. score = tokenizer.GetScore(token_id)
  3913. toktype = SentencePieceTokenTypes.NORMAL
  3914. if tokenizer.IsUnknown(token_id):
  3915. toktype = SentencePieceTokenTypes.UNKNOWN
  3916. elif tokenizer.IsControl(token_id):
  3917. toktype = SentencePieceTokenTypes.CONTROL
  3918. elif tokenizer.IsUnused(token_id):
  3919. toktype = SentencePieceTokenTypes.UNUSED
  3920. elif tokenizer.IsByte(token_id):
  3921. toktype = SentencePieceTokenTypes.BYTE
  3922. tokens[token_id] = text
  3923. scores[token_id] = score
  3924. toktypes[token_id] = toktype
  3925. else:
  3926. added_vocab = tokenizer.get_added_vocab()
  3927. unk_token = tokenizer_config_json.get("unk_token")
  3928. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3929. for token_id in range(tokenizer.vocab_size):
  3930. piece = tokenizer._convert_id_to_token(token_id)
  3931. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3932. text = piece.encode("utf-8")
  3933. score = tokenizer_json["model"]["vocab"][token_id][1]
  3934. toktype = SentencePieceTokenTypes.NORMAL
  3935. if token_id == unk_token_id:
  3936. toktype = SentencePieceTokenTypes.UNKNOWN
  3937. elif token_id in tokenizer.all_special_ids:
  3938. toktype = SentencePieceTokenTypes.CONTROL
  3939. elif token_id in added_vocab.values():
  3940. toktype = SentencePieceTokenTypes.USER_DEFINED
  3941. # No reliable way to detect this, but jina doesn't have any
  3942. # elif tokenizer.IsByte(token_id):
  3943. # toktype = SentencePieceTokenTypes.BYTE
  3944. tokens[token_id] = text
  3945. scores[token_id] = score
  3946. toktypes[token_id] = toktype
  3947. if isinstance(tokenizer, SentencePieceProcessor):
  3948. # realign tokens (see HF tokenizer code)
  3949. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3950. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3951. toktypes = [
  3952. SentencePieceTokenTypes.CONTROL,
  3953. SentencePieceTokenTypes.CONTROL,
  3954. SentencePieceTokenTypes.CONTROL,
  3955. SentencePieceTokenTypes.UNKNOWN,
  3956. ] + toktypes[3:-1]
  3957. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3958. # Add mask token missing from sentencepiece.bpe.model
  3959. tokens[250001] = b'<mask>'
  3960. scores[250001] = 0.0
  3961. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3962. self.gguf_writer.add_tokenizer_model("t5")
  3963. self.gguf_writer.add_tokenizer_pre("default")
  3964. self.gguf_writer.add_token_list(tokens)
  3965. self.gguf_writer.add_token_scores(scores)
  3966. self.gguf_writer.add_token_types(toktypes)
  3967. self.gguf_writer.add_add_space_prefix(add_prefix)
  3968. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3969. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3970. if precompiled_charsmap:
  3971. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3972. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3973. special_vocab.add_to_gguf(self.gguf_writer)
  3974. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3975. class DistilBertModel(BertModel):
  3976. model_arch = gguf.MODEL_ARCH.BERT
  3977. def set_gguf_parameters(self):
  3978. self.gguf_writer.add_layer_norm_eps(1e-12)
  3979. logger.info("gguf: layer norm epsilon = 1e-12")
  3980. super().set_gguf_parameters()
  3981. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3982. if name.startswith("distilbert."):
  3983. name = name[11:]
  3984. # These layers act as MLM head, so we don't need them
  3985. if name.startswith("vocab_"):
  3986. return []
  3987. return super().modify_tensors(data_torch, name, bid)
  3988. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3989. class RobertaModel(BertModel):
  3990. model_arch = gguf.MODEL_ARCH.BERT
  3991. def __init__(self, *args, **kwargs):
  3992. super().__init__(*args, **kwargs)
  3993. # we need the pad_token_id to know how to chop down position_embd matrix
  3994. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3995. self._position_offset = 1 + pad_token_id
  3996. if "max_position_embeddings" in self.hparams:
  3997. self.hparams["max_position_embeddings"] -= self._position_offset
  3998. else:
  3999. self._position_offset = None
  4000. def set_vocab(self):
  4001. """Support BPE tokenizers for roberta models"""
  4002. bpe_tok_path = self.dir_model / "tokenizer.json"
  4003. if bpe_tok_path.exists():
  4004. self._set_vocab_gpt2()
  4005. # we need this to validate the size of the token_type embeddings
  4006. # though currently we are passing all zeros to the token_type embeddings
  4007. # "Sequence A" or "Sequence B"
  4008. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4009. else:
  4010. return super().set_vocab()
  4011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4012. # if name starts with "roberta.", remove the prefix
  4013. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4014. if name.startswith("roberta."):
  4015. name = name[8:]
  4016. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4017. if name == "embeddings.position_embeddings.weight":
  4018. if self._position_offset is not None:
  4019. data_torch = data_torch[self._position_offset:,:]
  4020. return super().modify_tensors(data_torch, name, bid)
  4021. @ModelBase.register("NomicBertModel")
  4022. class NomicBertModel(BertModel):
  4023. model_arch = gguf.MODEL_ARCH.BERT
  4024. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4025. hparams = kwargs.pop("hparams", None)
  4026. if hparams is None:
  4027. hparams = ModelBase.load_hparams(dir_model, False)
  4028. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4029. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4030. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4031. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4032. if self._tokenizer_is_xlmroberta:
  4033. self._xlmroberta_tokenizer_init()
  4034. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4035. if npos == 8192 and mtp == 2048:
  4036. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4037. elif npos == 2048 and mtp == 2048:
  4038. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4039. else:
  4040. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4041. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4042. # this doesn't do anything in the HF version
  4043. assert self.hparams["causal"] is False
  4044. # no bias tensors unless MoE
  4045. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4046. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4047. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4048. # norm at end of layer
  4049. assert self.hparams["prenorm"] is False
  4050. # standard RoPE
  4051. assert self.hparams["rotary_emb_fraction"] == 1.0
  4052. assert self.hparams["rotary_emb_interleaved"] is False
  4053. assert self.hparams["rotary_emb_scale_base"] is None
  4054. def set_vocab(self) -> None:
  4055. if self._tokenizer_is_xlmroberta:
  4056. return self._xlmroberta_set_vocab()
  4057. return super().set_vocab()
  4058. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4059. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4060. if "mlp.experts.bias" in name:
  4061. return [] # Explicitly return an empty list.
  4062. if "mlp.experts.mlp.w1" in name:
  4063. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4064. name += ".weight"
  4065. if "mlp.experts.mlp.w2" in name:
  4066. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4067. data_torch = data_torch.transpose(1, 2)
  4068. name += ".weight"
  4069. return [(self.map_tensor_name(name), data_torch)]
  4070. def set_gguf_parameters(self):
  4071. super().set_gguf_parameters()
  4072. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4073. if self.is_moe:
  4074. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4075. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4076. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4077. def _is_tokenizer_xlmroberta(self) -> bool:
  4078. with open(self.dir_model / "tokenizer.json") as f:
  4079. tokenizer_json = json.load(f)
  4080. toktyp = tokenizer_json["model"]["type"]
  4081. if toktyp == "Unigram":
  4082. return True
  4083. if toktyp == "WordPiece":
  4084. return False
  4085. raise ValueError(f"unknown tokenizer: {toktyp}")
  4086. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4087. class NeoBert(BertModel):
  4088. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4089. def set_gguf_parameters(self):
  4090. super().set_gguf_parameters()
  4091. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4092. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4093. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4094. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4095. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4096. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4097. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4098. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4099. def modify_tensors(self, data_torch, name, bid):
  4100. if name.startswith("decoder."):
  4101. return []
  4102. if name.startswith("model."):
  4103. name = name[6:]
  4104. return super().modify_tensors(data_torch, name, bid)
  4105. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4106. class XLMRobertaModel(BertModel):
  4107. model_arch = gguf.MODEL_ARCH.BERT
  4108. _lora_files = {}
  4109. _lora_names = []
  4110. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4111. hparams = kwargs.pop("hparams", None)
  4112. if hparams is None:
  4113. hparams = ModelBase.load_hparams(dir_model, False)
  4114. if lora_names := hparams.get("lora_adaptations"):
  4115. self._lora_names = lora_names
  4116. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4117. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4118. self._xlmroberta_tokenizer_init()
  4119. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4120. if self._lora_names:
  4121. for name in self._lora_names:
  4122. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4123. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4124. return super().generate_extra_tensors()
  4125. def set_type(self):
  4126. for lora_writer in self._lora_files.values():
  4127. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4128. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4129. super().set_type()
  4130. def set_vocab(self):
  4131. self._xlmroberta_set_vocab()
  4132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4133. # if name starts with "roberta.", remove the prefix
  4134. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4135. if name.startswith("roberta."):
  4136. name = name[8:]
  4137. # jina-embeddings-v3
  4138. if ".parametrizations." in name:
  4139. name = name.replace(".parametrizations.", ".")
  4140. if name.endswith(".original"):
  4141. name = name[:-9]
  4142. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4143. if name == "embeddings.position_embeddings.weight":
  4144. if self._position_offset is not None:
  4145. data_torch = data_torch[self._position_offset:,:]
  4146. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4147. if name.startswith("pooler.dense"):
  4148. return []
  4149. num_loras = data_torch.size(0)
  4150. assert num_loras == len(self._lora_names)
  4151. # Split out each LoRA in their own GGUF
  4152. for i, lora_writer in enumerate(self._lora_files.values()):
  4153. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4154. data = data_torch[i, :, :]
  4155. # Transpose/flip token_embd/types into correct shape
  4156. if new_name == "token_embd.weight.lora_b":
  4157. data = data.T
  4158. elif new_name.startswith("token_types.weight."):
  4159. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4160. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4161. return []
  4162. return super().modify_tensors(data_torch, name, bid)
  4163. def set_gguf_parameters(self):
  4164. super().set_gguf_parameters()
  4165. # jina-embeddings-v3
  4166. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4167. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4168. lora_alpha = self.hparams.get("lora_alpha")
  4169. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4170. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4171. for lora_name, lora_writer in self._lora_files.items():
  4172. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4173. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4174. if lora_prompt_prefixes:
  4175. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4176. def write(self):
  4177. super().write()
  4178. for lora_writer in self._lora_files.values():
  4179. lora_writer.write_header_to_file()
  4180. lora_writer.write_kv_data_to_file()
  4181. lora_writer.write_tensors_to_file(progress=True)
  4182. lora_writer.close()
  4183. @ModelBase.register("GemmaForCausalLM")
  4184. class GemmaModel(TextModel):
  4185. model_arch = gguf.MODEL_ARCH.GEMMA
  4186. def set_vocab(self):
  4187. self._set_vocab_sentencepiece()
  4188. # TODO: these special tokens should be exported only for the CodeGemma family
  4189. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4190. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4191. special_vocab._set_special_token("prefix", 67)
  4192. special_vocab._set_special_token("suffix", 69)
  4193. special_vocab._set_special_token("middle", 68)
  4194. special_vocab._set_special_token("fsep", 70)
  4195. special_vocab._set_special_token("eot", 107)
  4196. special_vocab.chat_template = None # do not add it twice
  4197. special_vocab.add_to_gguf(self.gguf_writer)
  4198. self.gguf_writer.add_add_space_prefix(False)
  4199. def set_gguf_parameters(self):
  4200. hparams = self.hparams
  4201. block_count = hparams["num_hidden_layers"]
  4202. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4203. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4204. self.gguf_writer.add_block_count(block_count)
  4205. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4206. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4207. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4208. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4209. self.gguf_writer.add_key_length(hparams["head_dim"])
  4210. self.gguf_writer.add_value_length(hparams["head_dim"])
  4211. self.gguf_writer.add_file_type(self.ftype)
  4212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4213. del bid # unused
  4214. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4215. # To prevent errors, skip loading lm_head.weight.
  4216. if name == "lm_head.weight":
  4217. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4218. return []
  4219. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4220. if name.endswith("norm.weight"):
  4221. data_torch = data_torch + 1
  4222. return [(self.map_tensor_name(name), data_torch)]
  4223. @ModelBase.register("Gemma2ForCausalLM")
  4224. class Gemma2Model(TextModel):
  4225. model_arch = gguf.MODEL_ARCH.GEMMA2
  4226. def set_vocab(self):
  4227. self._set_vocab_sentencepiece()
  4228. self.gguf_writer.add_add_space_prefix(False)
  4229. def set_gguf_parameters(self):
  4230. hparams = self.hparams
  4231. block_count = hparams["num_hidden_layers"]
  4232. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4233. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4234. self.gguf_writer.add_block_count(block_count)
  4235. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4236. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4237. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4238. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4239. self.gguf_writer.add_key_length(hparams["head_dim"])
  4240. self.gguf_writer.add_value_length(hparams["head_dim"])
  4241. self.gguf_writer.add_file_type(self.ftype)
  4242. self.gguf_writer.add_attn_logit_softcapping(
  4243. self.hparams["attn_logit_softcapping"]
  4244. )
  4245. self.gguf_writer.add_final_logit_softcapping(
  4246. self.hparams["final_logit_softcapping"]
  4247. )
  4248. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4249. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4250. del bid # unused
  4251. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4252. # To prevent errors, skip loading lm_head.weight.
  4253. if name == "lm_head.weight":
  4254. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4255. return []
  4256. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4257. if name.endswith("norm.weight"):
  4258. data_torch = data_torch + 1
  4259. return [(self.map_tensor_name(name), data_torch)]
  4260. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4261. class Gemma3Model(TextModel):
  4262. model_arch = gguf.MODEL_ARCH.GEMMA3
  4263. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4264. def set_vocab(self):
  4265. self._set_vocab_sentencepiece()
  4266. self.gguf_writer.add_add_space_prefix(False)
  4267. def set_gguf_parameters(self):
  4268. hparams = self.hparams
  4269. block_count = hparams["num_hidden_layers"]
  4270. # some default values are not specified in the hparams
  4271. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4272. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4273. self.gguf_writer.add_block_count(block_count)
  4274. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4275. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4276. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4277. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4278. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4279. self.gguf_writer.add_file_type(self.ftype)
  4280. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4281. # attn_logit_softcapping is removed in Gemma3
  4282. assert hparams.get("attn_logit_softcapping") is None
  4283. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4284. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4285. if hparams.get("rope_scaling") is not None:
  4286. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4287. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4288. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4289. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4291. del bid # unused
  4292. if "language_model." in name:
  4293. name = name.replace("language_model.", "")
  4294. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4295. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4296. return [] # skip vision tensors
  4297. # remove OOV (out-of-vocabulary) rows in token_embd
  4298. if "embed_tokens.weight" in name:
  4299. vocab = self._create_vocab_sentencepiece()
  4300. tokens = vocab[0]
  4301. data_torch = data_torch[:len(tokens)]
  4302. # ref code in Gemma3RMSNorm
  4303. # output = output * (1.0 + self.weight.float())
  4304. # note: this is not the case on gemma3n
  4305. if name.endswith("norm.weight"):
  4306. data_torch = data_torch + self.norm_shift
  4307. return [(self.map_tensor_name(name), data_torch)]
  4308. @ModelBase.register("Gemma3TextModel")
  4309. class EmbeddingGemma(Gemma3Model):
  4310. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4311. module_paths = []
  4312. dense_features_dims = {}
  4313. def __init__(self, *args, **kwargs):
  4314. super().__init__(*args, **kwargs)
  4315. if self.sentence_transformers_dense_modules:
  4316. # read modules.json to determine if model has Dense layers
  4317. modules_file = self.dir_model / "modules.json"
  4318. if modules_file.is_file():
  4319. with open(modules_file, encoding="utf-8") as modules_json_file:
  4320. mods = json.load(modules_json_file)
  4321. for mod in mods:
  4322. if mod["type"] == "sentence_transformers.models.Dense":
  4323. mod_path = mod["path"]
  4324. # check if model.safetensors file for Dense layer exists
  4325. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4326. if model_tensors_file.is_file():
  4327. self.module_paths.append(mod_path)
  4328. # read config.json of the Dense layer to get in/out features
  4329. mod_conf_file = self.dir_model / mod_path / "config.json"
  4330. if mod_conf_file.is_file():
  4331. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4332. mod_conf = json.load(mod_conf_json_file)
  4333. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4334. prefix = self._get_dense_prefix(mod_path)
  4335. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4336. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4337. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4338. from safetensors.torch import load_file
  4339. module_paths = list(self.module_paths)
  4340. for i, module_path in enumerate(module_paths):
  4341. tensors_file = self.dir_model / module_path / "model.safetensors"
  4342. local_tensors = load_file(tensors_file)
  4343. tensor_name = self._get_dense_prefix(module_path)
  4344. for name, local_tensor in local_tensors.items():
  4345. if not name.endswith(".weight"):
  4346. continue
  4347. orig_name = name.replace("linear", tensor_name)
  4348. name = self.map_tensor_name(orig_name)
  4349. yield name, local_tensor.clone()
  4350. @staticmethod
  4351. def _get_dense_prefix(module_path) -> str:
  4352. """Get the tensor name prefix for the Dense layer from module path."""
  4353. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4354. return tensor_name
  4355. def set_gguf_parameters(self):
  4356. super().set_gguf_parameters()
  4357. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4358. # constructor. We want to use the value from the original model's config.json.
  4359. # ref: https://github.com/huggingface/transformers/pull/40700
  4360. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4361. config = json.load(f)
  4362. orig_sliding_window = config.get("sliding_window")
  4363. if orig_sliding_window is None:
  4364. raise ValueError("sliding_window not found in model config - this is required for the model")
  4365. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4366. f"instead of {self.hparams['sliding_window']}")
  4367. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4368. if self.sentence_transformers_dense_modules:
  4369. for dense, dims in self.dense_features_dims.items():
  4370. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4371. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4372. self._try_set_pooling_type()
  4373. @ModelBase.register("Gemma3ForConditionalGeneration")
  4374. class Gemma3VisionModel(MmprojModel):
  4375. def set_gguf_parameters(self):
  4376. super().set_gguf_parameters()
  4377. hparams = self.hparams
  4378. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4379. # default values below are taken from HF tranformers code
  4380. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4381. self.gguf_writer.add_vision_use_gelu(True)
  4382. # calculate proj_scale_factor (used by tinygemma3 test model)
  4383. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4384. n_per_side = int(image_seq_length ** 0.5)
  4385. image_size = self.hparams["image_size"]
  4386. patch_size = self.hparams["patch_size"]
  4387. proj_scale_factor = (image_size // patch_size) // n_per_side
  4388. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4389. # we only need to write this if it's not the default value
  4390. # in this case, we are converting a test model
  4391. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4392. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4393. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4394. if "input_projection" in name:
  4395. return gguf.GGMLQuantizationType.F16
  4396. if ".embeddings." in name:
  4397. return gguf.GGMLQuantizationType.F32
  4398. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4399. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4400. del bid # unused
  4401. if "vision_model.head." in name:
  4402. return [] # skip redundant tensors for tinygemma3
  4403. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4404. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4405. # process vision tensors
  4406. name = name.replace("_weight", ".weight")
  4407. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4408. # the other norm values are part of SigLIP model, and they are already correct
  4409. # ref code: Gemma3RMSNorm
  4410. if "soft_emb_norm.weight" in name:
  4411. logger.info(f"Correcting norm value for '{name}'")
  4412. data_torch = data_torch + 1
  4413. return [(self.map_tensor_name(name), data_torch)]
  4414. return [] # skip other tensors
  4415. @ModelBase.register("Gemma3nForConditionalGeneration")
  4416. class Gemma3NModel(Gemma3Model):
  4417. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4418. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4419. _altup_proj: list[Tensor] = []
  4420. _altup_unembd: list[Tensor] = []
  4421. def __init__(self, *args, **kwargs):
  4422. super().__init__(*args, **kwargs)
  4423. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4424. self._altup_proj = [
  4425. torch.Tensor(), # to be replaced
  4426. torch.Tensor(), # to be replaced
  4427. torch.Tensor(), # to be replaced
  4428. ]
  4429. self._altup_unembd = [
  4430. torch.Tensor(), # to be replaced
  4431. torch.Tensor(), # to be replaced
  4432. torch.Tensor(), # to be replaced
  4433. ]
  4434. def set_vocab(self):
  4435. super().set_vocab()
  4436. def set_gguf_parameters(self):
  4437. super().set_gguf_parameters()
  4438. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4439. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4440. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4441. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4442. activation_sparsity_scale = []
  4443. for s in self.hparams["activation_sparsity_pattern"]:
  4444. normal_dist = torch.distributions.normal.Normal(0, 1)
  4445. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4446. activation_sparsity_scale.append(std_multiplier.item())
  4447. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4448. sliding_window_pattern = []
  4449. for t in self.hparams["layer_types"]:
  4450. sliding_window_pattern.append(t == "sliding_attention")
  4451. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4452. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4453. has_all = all(m.numel() > 0 for m in matrices)
  4454. if not has_all:
  4455. return None
  4456. else:
  4457. return torch.stack(matrices, dim=0)
  4458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4459. if name.endswith("_scale"):
  4460. name = name + ".weight"
  4461. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4462. if "language_model." not in name:
  4463. return [] # skip non-language model tensors
  4464. if "altup_unembed_projections" in name:
  4465. data_torch = data_torch.to(device="cpu")
  4466. if ".0." in name:
  4467. self._altup_unembd[0] = data_torch
  4468. elif ".1." in name:
  4469. self._altup_unembd[1] = data_torch
  4470. elif ".2." in name:
  4471. self._altup_unembd[2] = data_torch
  4472. else:
  4473. raise ValueError(f"Unknown name: {name}")
  4474. out = self._stack_matrices(self._altup_unembd)
  4475. if out is not None:
  4476. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4477. else:
  4478. return []
  4479. if "altup_projections" in name:
  4480. data_torch = data_torch.to(device="cpu")
  4481. if ".0." in name:
  4482. self._altup_proj[0] = data_torch
  4483. elif ".1." in name:
  4484. self._altup_proj[1] = data_torch
  4485. elif ".2." in name:
  4486. self._altup_proj[2] = data_torch
  4487. else:
  4488. raise ValueError(f"Unknown name: {name}")
  4489. out = self._stack_matrices(self._altup_proj)
  4490. if out is not None:
  4491. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4492. else:
  4493. return []
  4494. return super().modify_tensors(data_torch, name, bid)
  4495. @ModelBase.register("Starcoder2ForCausalLM")
  4496. class StarCoder2Model(TextModel):
  4497. model_arch = gguf.MODEL_ARCH.STARCODER2
  4498. @ModelBase.register("Rwkv6ForCausalLM")
  4499. class Rwkv6Model(TextModel):
  4500. model_arch = gguf.MODEL_ARCH.RWKV6
  4501. def set_vocab(self):
  4502. self._set_vocab_rwkv_world()
  4503. def set_gguf_parameters(self):
  4504. block_count = self.hparams["num_hidden_layers"]
  4505. head_size = self.hparams["head_size"]
  4506. hidden_size = self.hparams["hidden_size"]
  4507. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4508. rescale_every_n_layers = self.hparams["rescale_every"]
  4509. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4510. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4511. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4512. # RWKV isn't context limited
  4513. self.gguf_writer.add_context_length(1048576)
  4514. self.gguf_writer.add_embedding_length(hidden_size)
  4515. self.gguf_writer.add_block_count(block_count)
  4516. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4517. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4518. self.gguf_writer.add_wkv_head_size(head_size)
  4519. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4520. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4521. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4522. self.gguf_writer.add_file_type(self.ftype)
  4523. # required by llama.cpp, unused
  4524. self.gguf_writer.add_head_count(0)
  4525. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4527. new_name = self.map_tensor_name(name)
  4528. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4529. new_name += ".weight"
  4530. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4531. data_torch = data_torch.transpose(0, 1)
  4532. if new_name.endswith("time_mix_w2.weight"):
  4533. data_torch = data_torch.permute(0, 2, 1)
  4534. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4535. data_torch = data_torch.squeeze()
  4536. try:
  4537. rescale_every_n_layers = self.hparams["rescale_every"]
  4538. if rescale_every_n_layers > 0:
  4539. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4540. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4541. except KeyError:
  4542. pass
  4543. # concat time_mix_lerp weights to reduce some cpu overhead
  4544. # also reduces the number of tensors in the model
  4545. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4546. try:
  4547. self.lerp_weights[bid][new_name] = data_torch
  4548. except KeyError:
  4549. self.lerp_weights[bid] = {new_name: data_torch}
  4550. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4551. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4552. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4553. yield (new_name, data)
  4554. return
  4555. yield (new_name, data_torch)
  4556. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4557. class RWKV6Qwen2Model(Rwkv6Model):
  4558. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4559. def set_vocab(self):
  4560. try:
  4561. self._set_vocab_sentencepiece()
  4562. except FileNotFoundError:
  4563. self._set_vocab_gpt2()
  4564. def set_gguf_parameters(self):
  4565. block_count = self.hparams["num_hidden_layers"]
  4566. num_attention_heads = self.hparams["num_attention_heads"]
  4567. num_key_value_heads = self.hparams["num_key_value_heads"]
  4568. hidden_size = self.hparams["hidden_size"]
  4569. head_size = hidden_size // num_attention_heads
  4570. rms_norm_eps = self.hparams["rms_norm_eps"]
  4571. intermediate_size = self.hparams["intermediate_size"]
  4572. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4573. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4574. # RWKV isn't context limited
  4575. self.gguf_writer.add_context_length(1048576)
  4576. self.gguf_writer.add_embedding_length(hidden_size)
  4577. self.gguf_writer.add_block_count(block_count)
  4578. self.gguf_writer.add_wkv_head_size(head_size)
  4579. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4580. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4581. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4582. self.gguf_writer.add_file_type(self.ftype)
  4583. # special parameters for time_mixing in RWKV6QWEN2
  4584. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4585. self.gguf_writer.add_token_shift_count(1)
  4586. # RWKV6QWEN2 use grouped key/value like GQA
  4587. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4588. # required by llama.cpp, unused
  4589. self.gguf_writer.add_head_count(0)
  4590. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4591. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4592. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4593. data = data.view(5, -1, data.shape[-1])
  4594. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4595. # permute them here to avoid code changes
  4596. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4597. if "w2" in new_name:
  4598. data = data.view(5, -1, data.shape[-1])
  4599. yield (new_name, data)
  4600. continue
  4601. yield (new_name, data)
  4602. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4603. class Rwkv7Model(TextModel):
  4604. model_arch = gguf.MODEL_ARCH.RWKV7
  4605. def set_vocab(self):
  4606. self._set_vocab_rwkv_world()
  4607. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4608. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4609. def set_gguf_parameters(self):
  4610. block_count = self.hparams["num_hidden_layers"]
  4611. try:
  4612. head_size = self.hparams["head_size"]
  4613. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4614. except KeyError:
  4615. head_size = self.hparams["head_dim"]
  4616. layer_norm_eps = self.hparams["norm_eps"]
  4617. hidden_size = self.hparams["hidden_size"]
  4618. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4619. # ICLR: In-Context-Learning-Rate
  4620. try:
  4621. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4622. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4623. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4624. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4625. except KeyError:
  4626. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4627. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4628. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4629. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4630. # RWKV isn't context limited
  4631. self.gguf_writer.add_context_length(1048576)
  4632. self.gguf_writer.add_embedding_length(hidden_size)
  4633. self.gguf_writer.add_block_count(block_count)
  4634. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4635. self.gguf_writer.add_wkv_head_size(head_size)
  4636. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4637. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4638. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4639. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4640. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4641. self.gguf_writer.add_file_type(self.ftype)
  4642. # required by llama.cpp, unused
  4643. self.gguf_writer.add_head_count(0)
  4644. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4645. lora_needs_transpose: bool = True
  4646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4647. # unify tensor names here to make life easier
  4648. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4649. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4650. name = name.replace("time_mixer.", "")
  4651. # lora layer names in fla-hub's impl
  4652. if "_lora.lora" in name:
  4653. self.lora_needs_transpose = False
  4654. name = name.replace("_lora.lora.0.weight", "1.weight")
  4655. name = name.replace("_lora.lora.2.weight", "2.weight")
  4656. name = name.replace("_lora.lora.2.bias", "0.weight")
  4657. name = name.replace("feed_forward_norm", "ln2")
  4658. name = name.replace("g_norm", "ln_x")
  4659. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4660. # some models have dummy v0/v1/v2 on first layer while others don't
  4661. # ignore them all since they are not used
  4662. return
  4663. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4664. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4665. if bid is not None and "attention.x_" in name:
  4666. if "attention.x_x" in name:
  4667. # already concatenated
  4668. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4669. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4670. yield (new_name, data)
  4671. else:
  4672. try:
  4673. self.lerp_weights[bid][name] = data_torch
  4674. except KeyError:
  4675. self.lerp_weights[bid] = {name: data_torch}
  4676. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4677. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4678. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4679. yield (new_name, data)
  4680. return
  4681. else:
  4682. data_torch = data_torch.squeeze()
  4683. new_name = self.map_tensor_name(name)
  4684. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4685. new_name += ".weight"
  4686. if self.lora_needs_transpose and any(
  4687. new_name.endswith(t) for t in [
  4688. "time_mix_w1.weight", "time_mix_w2.weight",
  4689. "time_mix_a1.weight", "time_mix_a2.weight",
  4690. "time_mix_v1.weight", "time_mix_v2.weight",
  4691. "time_mix_g1.weight", "time_mix_g2.weight",
  4692. ]
  4693. ):
  4694. data_torch = data_torch.transpose(0, 1)
  4695. if 'r_k' in new_name:
  4696. data_torch = data_torch.flatten()
  4697. if bid == 0 and "time_mix_a" in new_name:
  4698. # dummy v0/v1/v2 on first layer
  4699. # easist way to make llama happy
  4700. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4701. yield (new_name, data_torch)
  4702. @ModelBase.register("RwkvHybridForCausalLM")
  4703. class ARwkv7Model(Rwkv7Model):
  4704. model_arch = gguf.MODEL_ARCH.ARWKV7
  4705. def set_vocab(self):
  4706. try:
  4707. self._set_vocab_sentencepiece()
  4708. except FileNotFoundError:
  4709. self._set_vocab_gpt2()
  4710. def set_gguf_parameters(self):
  4711. block_count = self.hparams["num_hidden_layers"]
  4712. hidden_size = self.hparams["hidden_size"]
  4713. head_size = self.hparams["head_size"]
  4714. rms_norm_eps = self.hparams["rms_norm_eps"]
  4715. intermediate_size = self.hparams["intermediate_size"]
  4716. wkv_has_gate = self.hparams["wkv_has_gate"]
  4717. assert self.hparams["wkv_version"] == 7
  4718. # ICLR: In-Context-Learning-Rate
  4719. lora_rank_decay = 64
  4720. lora_rank_iclr = 64
  4721. lora_rank_value_residual_mix = 32
  4722. lora_rank_gate = 128 if wkv_has_gate else 0
  4723. # RWKV isn't context limited
  4724. self.gguf_writer.add_context_length(1048576)
  4725. self.gguf_writer.add_embedding_length(hidden_size)
  4726. self.gguf_writer.add_block_count(block_count)
  4727. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4728. self.gguf_writer.add_wkv_head_size(head_size)
  4729. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4730. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4731. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4732. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4733. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4734. self.gguf_writer.add_file_type(self.ftype)
  4735. self.gguf_writer.add_token_shift_count(1)
  4736. # required by llama.cpp, unused
  4737. self.gguf_writer.add_head_count(0)
  4738. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4739. class MambaModel(TextModel):
  4740. model_arch = gguf.MODEL_ARCH.MAMBA
  4741. def __init__(self, dir_model: Path, *args, **kwargs):
  4742. # Avoid using AutoConfig for hparams
  4743. hparams = kwargs.pop("hparams", None)
  4744. if hparams is None:
  4745. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4746. hparams = json.load(f)
  4747. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4748. def set_vocab(self):
  4749. vocab_size = self.hparams["vocab_size"]
  4750. # Round vocab size to next multiple of 8
  4751. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4752. # pad using ceiling division
  4753. # ref: https://stackoverflow.com/a/17511341/22827863
  4754. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4755. self.hparams["vocab_size"] = vocab_size
  4756. if (self.dir_model / "tokenizer.json").is_file():
  4757. self._set_vocab_gpt2()
  4758. elif (self.dir_model / "tokenizer.model").is_file():
  4759. self._set_vocab_sentencepiece()
  4760. else:
  4761. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4762. self._set_vocab_builtin("gpt-neox", vocab_size)
  4763. def set_gguf_parameters(self):
  4764. d_model = self.find_hparam(["hidden_size", "d_model"])
  4765. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4766. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4767. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4768. # ceiling division
  4769. # ref: https://stackoverflow.com/a/17511341/22827863
  4770. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4771. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4772. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4773. use_dt_b_c_norm = False
  4774. # For falconmamba we do apply RMS norm on B / DT and C layers
  4775. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4776. use_dt_b_c_norm = True
  4777. # Fail early for models which don't have a block expansion factor of 2
  4778. assert d_inner == 2 * d_model
  4779. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4780. self.gguf_writer.add_embedding_length(d_model)
  4781. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4782. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4783. self.gguf_writer.add_block_count(self.block_count)
  4784. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4785. self.gguf_writer.add_ssm_inner_size(d_inner)
  4786. self.gguf_writer.add_ssm_state_size(d_state)
  4787. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4788. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4789. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4790. self.gguf_writer.add_file_type(self.ftype)
  4791. _tok_embd = None
  4792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4793. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4794. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4795. new_name = self.map_tensor_name(name)
  4796. if name.endswith(".A_log"):
  4797. logger.debug("A_log --> A ==> " + new_name)
  4798. data_torch = -torch.exp(data_torch)
  4799. # [4 1 8192 1] -> [4 8192 1 1]
  4800. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4801. data_torch = data_torch.squeeze()
  4802. # assuming token_embd.weight is seen before output.weight
  4803. if self._tok_embd is not None and new_name == output_name:
  4804. if torch.equal(self._tok_embd, data_torch):
  4805. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4806. return []
  4807. elif new_name == tok_embd_name:
  4808. self._tok_embd = data_torch
  4809. return [(new_name, data_torch)]
  4810. @ModelBase.register("Mamba2ForCausalLM")
  4811. class Mamba2Model(TextModel):
  4812. model_arch = gguf.MODEL_ARCH.MAMBA2
  4813. def __init__(self, dir_model: Path, *args, **kwargs):
  4814. # Avoid using AutoConfig for hparams
  4815. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4816. hparams = kwargs.pop("hparams", None)
  4817. if hparams is None:
  4818. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4819. hparams = json.load(f)
  4820. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4821. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4822. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4823. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4824. def set_vocab(self):
  4825. vocab_size = self.hparams["vocab_size"]
  4826. # Round vocab size to next multiple of 16
  4827. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4828. # pad using ceiling division
  4829. # ref: https://stackoverflow.com/a/17511341/22827863
  4830. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4831. self.hparams["vocab_size"] = vocab_size
  4832. if (self.dir_model / "tokenizer.model").is_file():
  4833. self._set_vocab_sentencepiece()
  4834. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4835. # mamba-codestral
  4836. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4837. elif (self.dir_model / "tokenizer.json").is_file():
  4838. self._set_vocab_gpt2()
  4839. else:
  4840. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4841. self._set_vocab_builtin("gpt-neox", vocab_size)
  4842. def set_gguf_parameters(self):
  4843. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4844. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4845. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4846. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4847. # Fail early for models which don't have a block expansion factor of 2
  4848. # TODO: does this really matter?
  4849. # skip the assertion for FalconH1 Model
  4850. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4851. assert self.d_inner == 2 * self.d_model
  4852. assert self.d_inner % head_dim == 0
  4853. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4854. self.gguf_writer.add_embedding_length(self.d_model)
  4855. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4856. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4857. self.gguf_writer.add_block_count(self.block_count)
  4858. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4859. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4860. self.gguf_writer.add_ssm_state_size(d_state)
  4861. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4862. self.gguf_writer.add_ssm_group_count(self.n_group)
  4863. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4864. self.gguf_writer.add_file_type(self.ftype)
  4865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4866. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4867. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4868. name = name.removeprefix("model.")
  4869. if name.endswith(".dt_bias"):
  4870. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4871. new_name = self.map_tensor_name(name)
  4872. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4873. data_torch = data_torch.squeeze()
  4874. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4875. gguf.MODEL_TENSOR.SSM_A,
  4876. gguf.MODEL_TENSOR.SSM_D,
  4877. ]):
  4878. # unsqueeze A to use similar shape semantics as Mamba-1
  4879. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4880. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4881. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4882. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4883. if name.endswith(".A_log"):
  4884. logger.debug("A_log --> A ==> " + new_name)
  4885. data_torch = -torch.exp(data_torch)
  4886. yield (new_name, data_torch)
  4887. @ModelBase.register("JambaForCausalLM")
  4888. class JambaModel(TextModel):
  4889. model_arch = gguf.MODEL_ARCH.JAMBA
  4890. def set_vocab(self):
  4891. if (self.dir_model / "tokenizer.model").is_file():
  4892. self._set_vocab_sentencepiece()
  4893. else:
  4894. self._set_vocab_llama_hf()
  4895. self.gguf_writer.add_add_space_prefix(False)
  4896. def set_gguf_parameters(self):
  4897. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4898. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4899. d_inner = self.hparams["mamba_expand"] * d_model
  4900. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4901. # ceiling division
  4902. # ref: https://stackoverflow.com/a/17511341/22827863
  4903. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4904. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4905. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4906. n_kv_head = self.hparams["num_key_value_heads"]
  4907. attn_offset = self.hparams["attn_layer_offset"]
  4908. attn_period = self.hparams["attn_layer_period"]
  4909. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4910. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4911. ]
  4912. self.gguf_writer.add_block_count(self.block_count)
  4913. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4914. self.gguf_writer.add_embedding_length(d_model)
  4915. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4916. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4917. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4918. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4919. self.gguf_writer.add_ssm_inner_size(d_inner)
  4920. self.gguf_writer.add_ssm_state_size(d_state)
  4921. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4922. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4923. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4924. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4925. self.gguf_writer.add_file_type(self.ftype)
  4926. _experts: list[dict[str, Tensor]] | None = None
  4927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4928. # Mini-Jamba
  4929. name = name.replace(".moe.", ".feed_forward.")
  4930. if bid is not None:
  4931. moe_offset = self.hparams["expert_layer_offset"]
  4932. moe_period = self.hparams["expert_layer_period"]
  4933. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4934. name = name.replace(".experts.0.", ".")
  4935. # process the experts separately
  4936. if ".feed_forward.experts." in name:
  4937. n_experts = self.hparams["num_experts"]
  4938. assert bid is not None
  4939. if self._experts is None:
  4940. self._experts = [{} for _ in range(self.block_count)]
  4941. self._experts[bid][name] = data_torch
  4942. if len(self._experts[bid]) >= n_experts * 3:
  4943. # merge the experts into a single 3d tensor
  4944. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4945. datas: list[Tensor] = []
  4946. for xid in range(n_experts):
  4947. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4948. datas.append(self._experts[bid][ename])
  4949. del self._experts[bid][ename]
  4950. data_torch = torch.stack(datas, dim=0)
  4951. # using the same merged name as qwen2moe
  4952. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4953. new_name = self.map_tensor_name(merged_name)
  4954. yield new_name, data_torch
  4955. return
  4956. new_name = self.map_tensor_name(name)
  4957. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4958. data_torch = data_torch.squeeze()
  4959. if name.endswith(".A_log"):
  4960. logger.debug("A_log --> A ==> " + new_name)
  4961. data_torch = -torch.exp(data_torch)
  4962. yield (new_name, data_torch)
  4963. def prepare_tensors(self):
  4964. super().prepare_tensors()
  4965. if self._experts is not None:
  4966. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4967. experts = [k for d in self._experts for k in d.keys()]
  4968. if len(experts) > 0:
  4969. raise ValueError(f"Unprocessed experts: {experts}")
  4970. @ModelBase.register("CohereForCausalLM")
  4971. class CommandR2Model(TextModel):
  4972. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4973. def __init__(self, *args, **kwargs):
  4974. super().__init__(*args, **kwargs)
  4975. # max_position_embeddings = 8192 in config.json but model was actually
  4976. # trained on 128k context length
  4977. # aya-23 models don't have model_max_length specified
  4978. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4979. def set_gguf_parameters(self):
  4980. super().set_gguf_parameters()
  4981. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4982. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4983. @ModelBase.register("Cohere2ForCausalLM")
  4984. class Cohere2Model(TextModel):
  4985. model_arch = gguf.MODEL_ARCH.COHERE2
  4986. def set_gguf_parameters(self):
  4987. super().set_gguf_parameters()
  4988. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4989. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4990. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4991. rotary_pct = self.hparams["rotary_pct"]
  4992. hidden_size = self.hparams["hidden_size"]
  4993. num_attention_heads = self.hparams["num_attention_heads"]
  4994. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4995. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4996. @ModelBase.register("OlmoForCausalLM")
  4997. @ModelBase.register("OLMoForCausalLM")
  4998. class OlmoModel(TextModel):
  4999. model_arch = gguf.MODEL_ARCH.OLMO
  5000. def set_gguf_parameters(self):
  5001. super().set_gguf_parameters()
  5002. self.gguf_writer.add_layer_norm_eps(1e-5)
  5003. clip_qkv = self.hparams.get("clip_qkv")
  5004. if clip_qkv is not None:
  5005. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5006. # Same as super class, but permuting q_proj, k_proj
  5007. # Copied from: LlamaModel
  5008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5009. del bid # unused
  5010. n_head = self.hparams["num_attention_heads"]
  5011. n_kv_head = self.hparams.get("num_key_value_heads")
  5012. if name.endswith("q_proj.weight"):
  5013. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5014. if name.endswith("k_proj.weight"):
  5015. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5016. return [(self.map_tensor_name(name), data_torch)]
  5017. @ModelBase.register("SeedOssForCausalLM")
  5018. class SeedOssModel(TextModel):
  5019. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5020. @ModelBase.register("Olmo2ForCausalLM")
  5021. @ModelBase.register("Olmo3ForCausalLM")
  5022. class Olmo2Model(TextModel):
  5023. model_arch = gguf.MODEL_ARCH.OLMO2
  5024. def set_gguf_parameters(self):
  5025. super().set_gguf_parameters()
  5026. rope_scaling = self.hparams.get("rope_scaling") or {}
  5027. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5029. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5030. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5031. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5032. if "sliding_window" in self.hparams:
  5033. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5034. sliding_window_pattern = []
  5035. if "layer_types" in self.hparams:
  5036. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5037. else:
  5038. # Olmo2 does not use sliding window attention.
  5039. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5040. for i in range(self.hparams["num_hidden_layers"]):
  5041. sliding_window_pattern.append((i + 1) % 4 != 0)
  5042. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5043. @ModelBase.register("OlmoeForCausalLM")
  5044. class OlmoeModel(TextModel):
  5045. model_arch = gguf.MODEL_ARCH.OLMOE
  5046. def set_gguf_parameters(self):
  5047. super().set_gguf_parameters()
  5048. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5049. if (n_experts := self.hparams.get("num_experts")) is not None:
  5050. self.gguf_writer.add_expert_count(n_experts)
  5051. _experts: list[dict[str, Tensor]] | None = None
  5052. # Copied from: Qwen2MoeModel
  5053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5054. # process the experts separately
  5055. if name.find("experts") != -1:
  5056. n_experts = self.hparams["num_experts"]
  5057. assert bid is not None
  5058. if self._experts is None:
  5059. self._experts = [{} for _ in range(self.block_count)]
  5060. self._experts[bid][name] = data_torch
  5061. if len(self._experts[bid]) >= n_experts * 3:
  5062. tensors: list[tuple[str, Tensor]] = []
  5063. # merge the experts into a single 3d tensor
  5064. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5065. datas: list[Tensor] = []
  5066. for xid in range(n_experts):
  5067. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5068. datas.append(self._experts[bid][ename])
  5069. del self._experts[bid][ename]
  5070. data_torch = torch.stack(datas, dim=0)
  5071. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5072. new_name = self.map_tensor_name(merged_name)
  5073. tensors.append((new_name, data_torch))
  5074. return tensors
  5075. else:
  5076. return []
  5077. return [(self.map_tensor_name(name), data_torch)]
  5078. # Copied from: Qwen2MoeModel
  5079. def prepare_tensors(self):
  5080. super().prepare_tensors()
  5081. if self._experts is not None:
  5082. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5083. experts = [k for d in self._experts for k in d.keys()]
  5084. if len(experts) > 0:
  5085. raise ValueError(f"Unprocessed experts: {experts}")
  5086. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5087. class JinaBertV2Model(BertModel):
  5088. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5089. def set_vocab(self):
  5090. tokenizer_class = 'BertTokenizer'
  5091. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5092. tokenizer_class = json.load(f)['tokenizer_class']
  5093. if tokenizer_class == 'BertTokenizer':
  5094. super().set_vocab()
  5095. elif tokenizer_class == 'RobertaTokenizer':
  5096. self._set_vocab_gpt2()
  5097. self.gguf_writer.add_token_type_count(2)
  5098. else:
  5099. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5100. @ModelBase.register("OpenELMForCausalLM")
  5101. class OpenELMModel(TextModel):
  5102. model_arch = gguf.MODEL_ARCH.OPENELM
  5103. @staticmethod
  5104. def _make_divisible(v: float | int, divisor: int) -> int:
  5105. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5106. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5107. # Make sure that round down does not go down by more than 10%.
  5108. if new_v < 0.9 * v:
  5109. new_v += divisor
  5110. return new_v
  5111. def __init__(self, *args, **kwargs):
  5112. super().__init__(*args, **kwargs)
  5113. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5114. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5115. self._n_embd: int = self.hparams["model_dim"]
  5116. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5117. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5118. self._ffn_dims: list[int] = [
  5119. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5120. for multiplier in ffn_multipliers
  5121. ]
  5122. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5123. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5124. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5125. def set_vocab(self):
  5126. try:
  5127. self._set_vocab_sentencepiece()
  5128. except FileNotFoundError:
  5129. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5130. def set_gguf_parameters(self):
  5131. n_embd = self._n_embd
  5132. head_dim = self.hparams["head_dim"]
  5133. rot_pct = 1.0
  5134. assert self.block_count == len(self._num_kv_heads)
  5135. assert self.block_count == len(self._num_query_heads)
  5136. assert self.block_count == len(self._ffn_dims)
  5137. self.gguf_writer.add_block_count(self.block_count)
  5138. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5139. self.gguf_writer.add_embedding_length(n_embd)
  5140. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5141. self.gguf_writer.add_head_count(self._num_query_heads)
  5142. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5143. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5144. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5145. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5146. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5147. self.gguf_writer.add_key_length(head_dim)
  5148. self.gguf_writer.add_value_length(head_dim)
  5149. self.gguf_writer.add_file_type(self.ftype)
  5150. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5151. if "n_layers" in keys:
  5152. return self.hparams["num_transformer_layers"]
  5153. return super().find_hparam(keys, optional)
  5154. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5155. # split ff
  5156. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5157. ff_dim = self._ffn_dims[bid]
  5158. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5159. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5160. return
  5161. yield (self.map_tensor_name(name), data_torch)
  5162. @ModelBase.register("ArcticForCausalLM")
  5163. class ArcticModel(TextModel):
  5164. model_arch = gguf.MODEL_ARCH.ARCTIC
  5165. def set_vocab(self):
  5166. # The reason for using a custom implementation here is that the
  5167. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5168. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5169. from sentencepiece import SentencePieceProcessor
  5170. tokenizer_path = self.dir_model / 'tokenizer.model'
  5171. if not tokenizer_path.is_file():
  5172. logger.error(f'Error: Missing {tokenizer_path}')
  5173. sys.exit(1)
  5174. # Read the whole vocabulary from the tokenizer.model file
  5175. tokenizer = SentencePieceProcessor()
  5176. tokenizer.LoadFromFile(str(tokenizer_path))
  5177. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5178. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5179. scores: list[float] = [-10000.0] * vocab_size
  5180. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5181. for token_id in range(tokenizer.vocab_size()):
  5182. piece = tokenizer.IdToPiece(token_id)
  5183. text = piece.encode("utf-8")
  5184. score = tokenizer.GetScore(token_id)
  5185. toktype = SentencePieceTokenTypes.NORMAL
  5186. if tokenizer.IsUnknown(token_id):
  5187. toktype = SentencePieceTokenTypes.UNKNOWN
  5188. elif tokenizer.IsControl(token_id):
  5189. toktype = SentencePieceTokenTypes.CONTROL
  5190. elif tokenizer.IsUnused(token_id):
  5191. toktype = SentencePieceTokenTypes.UNUSED
  5192. elif tokenizer.IsByte(token_id):
  5193. toktype = SentencePieceTokenTypes.BYTE
  5194. tokens[token_id] = text
  5195. scores[token_id] = score
  5196. toktypes[token_id] = toktype
  5197. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5198. # of information about added/redefined tokens and modify them accordingly.
  5199. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5200. if tokenizer_config_file.is_file():
  5201. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5202. tokenizer_config_json = json.load(f)
  5203. if "added_tokens_decoder" in tokenizer_config_json:
  5204. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5205. for token_id, token_json in added_tokens_decoder.items():
  5206. token_id = int(token_id)
  5207. if token_id >= vocab_size:
  5208. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5209. continue
  5210. token_content = token_json["content"]
  5211. token_type = SentencePieceTokenTypes.USER_DEFINED
  5212. token_score = -10000.0
  5213. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5214. # Set the score to 0.0 as in the original tokenizer.model
  5215. if ("special" in token_json) and token_json["special"]:
  5216. if token_content == tokenizer_config_json["unk_token"]:
  5217. token_type = SentencePieceTokenTypes.UNKNOWN
  5218. else:
  5219. token_type = SentencePieceTokenTypes.CONTROL
  5220. token_score = 0.0
  5221. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5222. tokens[token_id] = token_content.encode("utf-8")
  5223. toktypes[token_id] = token_type
  5224. scores[token_id] = token_score
  5225. self.gguf_writer.add_tokenizer_model("llama")
  5226. self.gguf_writer.add_tokenizer_pre("default")
  5227. self.gguf_writer.add_token_list(tokens)
  5228. self.gguf_writer.add_token_scores(scores)
  5229. self.gguf_writer.add_token_types(toktypes)
  5230. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5231. special_vocab.add_to_gguf(self.gguf_writer)
  5232. def set_gguf_parameters(self):
  5233. super().set_gguf_parameters()
  5234. hparams = self.hparams
  5235. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5236. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5237. _experts: list[dict[str, Tensor]] | None = None
  5238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5239. n_head = self.hparams["num_attention_heads"]
  5240. n_kv_head = self.hparams.get("num_key_value_heads")
  5241. if name.endswith("q_proj.weight"):
  5242. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5243. if name.endswith("k_proj.weight"):
  5244. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5245. # process the experts separately
  5246. if name.find("block_sparse_moe.experts") != -1:
  5247. n_experts = self.hparams["num_local_experts"]
  5248. assert bid is not None
  5249. if self._experts is None:
  5250. self._experts = [{} for _ in range(self.block_count)]
  5251. self._experts[bid][name] = data_torch
  5252. if len(self._experts[bid]) >= n_experts * 3:
  5253. tensors: list[tuple[str, Tensor]] = []
  5254. # merge the experts into a single 3d tensor
  5255. for wid in ["w1", "w2", "w3"]:
  5256. datas: list[Tensor] = []
  5257. for xid in range(n_experts):
  5258. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5259. datas.append(self._experts[bid][ename])
  5260. del self._experts[bid][ename]
  5261. data_torch = torch.stack(datas, dim=0)
  5262. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5263. new_name = self.map_tensor_name(merged_name)
  5264. tensors.append((new_name, data_torch))
  5265. return tensors
  5266. else:
  5267. return []
  5268. return [(self.map_tensor_name(name), data_torch)]
  5269. def prepare_tensors(self):
  5270. super().prepare_tensors()
  5271. if self._experts is not None:
  5272. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5273. experts = [k for d in self._experts for k in d.keys()]
  5274. if len(experts) > 0:
  5275. raise ValueError(f"Unprocessed experts: {experts}")
  5276. @ModelBase.register("DeepseekForCausalLM")
  5277. class DeepseekModel(TextModel):
  5278. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5279. def set_vocab(self):
  5280. try:
  5281. self._set_vocab_sentencepiece()
  5282. except FileNotFoundError:
  5283. self._set_vocab_gpt2()
  5284. def set_gguf_parameters(self):
  5285. super().set_gguf_parameters()
  5286. hparams = self.hparams
  5287. if (rope_dim := hparams.get("head_dim")) is None:
  5288. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5289. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5290. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5291. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5292. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5293. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5294. self.gguf_writer.add_expert_weights_scale(1.0)
  5295. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5296. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5297. _experts: list[dict[str, Tensor]] | None = None
  5298. @staticmethod
  5299. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5300. if n_head_kv is not None and n_head != n_head_kv:
  5301. n_head = n_head_kv
  5302. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5303. .swapaxes(1, 2)
  5304. .reshape(weights.shape))
  5305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5306. n_head = self.hparams["num_attention_heads"]
  5307. n_kv_head = self.hparams.get("num_key_value_heads")
  5308. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5309. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5310. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5311. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5312. # process the experts separately
  5313. if name.find("mlp.experts") != -1:
  5314. n_experts = self.hparams["n_routed_experts"]
  5315. assert bid is not None
  5316. if self._experts is None:
  5317. self._experts = [{} for _ in range(self.block_count)]
  5318. self._experts[bid][name] = data_torch
  5319. if len(self._experts[bid]) >= n_experts * 3:
  5320. tensors: list[tuple[str, Tensor]] = []
  5321. # merge the experts into a single 3d tensor
  5322. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5323. datas: list[Tensor] = []
  5324. for xid in range(n_experts):
  5325. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5326. datas.append(self._experts[bid][ename])
  5327. del self._experts[bid][ename]
  5328. data_torch = torch.stack(datas, dim=0)
  5329. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5330. new_name = self.map_tensor_name(merged_name)
  5331. tensors.append((new_name, data_torch))
  5332. return tensors
  5333. else:
  5334. return []
  5335. return [(self.map_tensor_name(name), data_torch)]
  5336. def prepare_tensors(self):
  5337. super().prepare_tensors()
  5338. if self._experts is not None:
  5339. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5340. experts = [k for d in self._experts for k in d.keys()]
  5341. if len(experts) > 0:
  5342. raise ValueError(f"Unprocessed experts: {experts}")
  5343. @ModelBase.register(
  5344. "DeepseekV2ForCausalLM",
  5345. "DeepseekV3ForCausalLM",
  5346. "KimiVLForConditionalGeneration",
  5347. )
  5348. class DeepseekV2Model(TextModel):
  5349. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5350. def set_vocab(self):
  5351. try:
  5352. self._set_vocab_gpt2()
  5353. return
  5354. except Exception:
  5355. pass
  5356. from transformers import AutoTokenizer
  5357. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5358. tokpre = self.get_vocab_base_pre(tokenizer)
  5359. if tokpre == "kimi-k2":
  5360. # Build merges list using the approach similar to HunYuanMoE
  5361. merges = []
  5362. vocab = {}
  5363. mergeable_ranks = tokenizer.model._mergeable_ranks
  5364. for token, rank in mergeable_ranks.items():
  5365. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5366. if len(token) == 1:
  5367. continue
  5368. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5369. if len(merged) == 2:
  5370. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5371. # Build token list
  5372. vocab_size = self.hparams["vocab_size"]
  5373. special_tokens = tokenizer.special_tokens
  5374. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5375. tokens: list[str] = []
  5376. toktypes: list[int] = []
  5377. for i in range(vocab_size):
  5378. if i not in reverse_vocab:
  5379. tokens.append(f"[PAD{i}]")
  5380. toktypes.append(gguf.TokenType.UNUSED)
  5381. else:
  5382. token = reverse_vocab[i]
  5383. tokens.append(token)
  5384. if i in special_tokens.values():
  5385. toktypes.append(gguf.TokenType.CONTROL)
  5386. else:
  5387. toktypes.append(gguf.TokenType.NORMAL)
  5388. self.gguf_writer.add_tokenizer_model("gpt2")
  5389. self.gguf_writer.add_tokenizer_pre(tokpre)
  5390. self.gguf_writer.add_token_list(tokens)
  5391. self.gguf_writer.add_token_types(toktypes)
  5392. self.gguf_writer.add_token_merges(merges)
  5393. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5394. special_vocab.add_to_gguf(self.gguf_writer)
  5395. else:
  5396. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5397. def set_gguf_parameters(self):
  5398. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5399. self.hparams["num_key_value_heads"] = 1
  5400. super().set_gguf_parameters()
  5401. hparams = self.hparams
  5402. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5403. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5404. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5405. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5406. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5407. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5408. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5409. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5410. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5411. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5412. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5413. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5414. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5415. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5416. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5417. if hparams["scoring_func"] == "sigmoid":
  5418. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5419. elif hparams["scoring_func"] == "softmax":
  5420. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5421. else:
  5422. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5423. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5424. rope_scaling = self.hparams.get("rope_scaling") or {}
  5425. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5426. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5427. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5428. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5429. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5430. _experts: list[dict[str, Tensor]] | None = None
  5431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5432. # skip vision tensors and remove "language_model." for Kimi-VL
  5433. if "vision_tower" in name or "multi_modal_projector" in name:
  5434. return []
  5435. if name.startswith("language_model."):
  5436. name = name.replace("language_model.", "")
  5437. # rename e_score_correction_bias tensors
  5438. if name.endswith("e_score_correction_bias"):
  5439. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5440. # skip Multi-Token Prediction (MTP) layers
  5441. block_count = self.hparams["num_hidden_layers"]
  5442. match = re.match(r"model.layers.(\d+)", name)
  5443. if match and int(match.group(1)) >= block_count:
  5444. return []
  5445. # process the experts separately
  5446. if name.find("mlp.experts") != -1:
  5447. n_experts = self.hparams["n_routed_experts"]
  5448. assert bid is not None
  5449. if self._experts is None:
  5450. self._experts = [{} for _ in range(self.block_count)]
  5451. self._experts[bid][name] = data_torch
  5452. if len(self._experts[bid]) >= n_experts * 3:
  5453. tensors: list[tuple[str, Tensor]] = []
  5454. # merge the experts into a single 3d tensor
  5455. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5456. datas: list[Tensor] = []
  5457. for xid in range(n_experts):
  5458. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5459. datas.append(self._experts[bid][ename])
  5460. del self._experts[bid][ename]
  5461. data_torch = torch.stack(datas, dim=0)
  5462. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5463. new_name = self.map_tensor_name(merged_name)
  5464. tensors.append((new_name, data_torch))
  5465. return tensors
  5466. else:
  5467. return []
  5468. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5469. if name.endswith("kv_b_proj.weight"):
  5470. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5471. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5472. n_head_kv = self.hparams["num_key_value_heads"]
  5473. v_head_dim = self.hparams["v_head_dim"]
  5474. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5475. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5476. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5477. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5478. k_b = k_b.transpose(1, 2)
  5479. return [
  5480. (self.map_tensor_name(name_kb), k_b),
  5481. (self.map_tensor_name(name_vb), v_b)
  5482. ]
  5483. return [(self.map_tensor_name(name), data_torch)]
  5484. def prepare_tensors(self):
  5485. super().prepare_tensors()
  5486. if self._experts is not None:
  5487. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5488. experts = [k for d in self._experts for k in d.keys()]
  5489. if len(experts) > 0:
  5490. raise ValueError(f"Unprocessed experts: {experts}")
  5491. @ModelBase.register("Dots1ForCausalLM")
  5492. class Dots1Model(Qwen2MoeModel):
  5493. model_arch = gguf.MODEL_ARCH.DOTS1
  5494. def __init__(self, *args, **kwargs):
  5495. super().__init__(*args, **kwargs)
  5496. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5497. def set_gguf_parameters(self):
  5498. super().set_gguf_parameters()
  5499. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5500. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5501. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5502. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5503. if self.hparams["scoring_func"] == "noaux_tc":
  5504. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5505. else:
  5506. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5507. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5508. if name.endswith("e_score_correction_bias"):
  5509. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5510. if "shared_experts" in name:
  5511. return [(self.map_tensor_name(name), data_torch)]
  5512. return super().modify_tensors(data_torch, name, bid)
  5513. @ModelBase.register("PLMForCausalLM")
  5514. class PLMModel(TextModel):
  5515. model_arch = gguf.MODEL_ARCH.PLM
  5516. def set_vocab(self):
  5517. self._set_vocab_gpt2()
  5518. def set_gguf_parameters(self):
  5519. super().set_gguf_parameters()
  5520. hparams = self.hparams
  5521. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5522. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5523. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5524. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5525. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5527. return [(self.map_tensor_name(name), data_torch)]
  5528. def prepare_tensors(self):
  5529. super().prepare_tensors()
  5530. @ModelBase.register("T5WithLMHeadModel")
  5531. @ModelBase.register("T5ForConditionalGeneration")
  5532. @ModelBase.register("MT5ForConditionalGeneration")
  5533. @ModelBase.register("UMT5ForConditionalGeneration")
  5534. class T5Model(TextModel):
  5535. model_arch = gguf.MODEL_ARCH.T5
  5536. def __init__(self, *args, **kwargs):
  5537. super().__init__(*args, **kwargs)
  5538. self.shared_token_embeddings_found = False
  5539. def set_vocab(self):
  5540. # to avoid TypeError: Descriptors cannot be created directly
  5541. # exception when importing sentencepiece_model_pb2
  5542. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5543. from sentencepiece import SentencePieceProcessor
  5544. from sentencepiece import sentencepiece_model_pb2 as model
  5545. tokenizer_path = self.dir_model / 'tokenizer.model'
  5546. # many older models use spiece.model tokenizer model filename
  5547. if not tokenizer_path.is_file():
  5548. tokenizer_path = self.dir_model / 'spiece.model'
  5549. if not tokenizer_path.is_file():
  5550. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5551. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5552. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5553. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5554. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5555. # assure the tokenizer model file name is correct
  5556. assert tokenizer_path.name == 'tokenizer.model'
  5557. return self._set_vocab_sentencepiece()
  5558. else:
  5559. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5560. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5561. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5562. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5563. tokenizer = SentencePieceProcessor()
  5564. tokenizer.LoadFromFile(str(tokenizer_path))
  5565. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5566. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5567. scores: list[float] = [-10000.0] * vocab_size
  5568. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5569. for token_id in range(tokenizer.vocab_size()):
  5570. piece = tokenizer.IdToPiece(token_id)
  5571. text = piece.encode("utf-8")
  5572. score = tokenizer.GetScore(token_id)
  5573. toktype = SentencePieceTokenTypes.NORMAL
  5574. if tokenizer.IsUnknown(token_id):
  5575. toktype = SentencePieceTokenTypes.UNKNOWN
  5576. elif tokenizer.IsControl(token_id):
  5577. toktype = SentencePieceTokenTypes.CONTROL
  5578. elif tokenizer.IsUnused(token_id):
  5579. toktype = SentencePieceTokenTypes.UNUSED
  5580. elif tokenizer.IsByte(token_id):
  5581. toktype = SentencePieceTokenTypes.BYTE
  5582. tokens[token_id] = text
  5583. scores[token_id] = score
  5584. toktypes[token_id] = toktype
  5585. added_tokens_file = self.dir_model / 'added_tokens.json'
  5586. if added_tokens_file.is_file():
  5587. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5588. added_tokens_json = json.load(f)
  5589. for key in added_tokens_json:
  5590. token_id = added_tokens_json[key]
  5591. if token_id >= vocab_size:
  5592. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5593. continue
  5594. tokens[token_id] = key.encode("utf-8")
  5595. scores[token_id] = -1000.0
  5596. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5597. if vocab_size > len(tokens):
  5598. pad_count = vocab_size - len(tokens)
  5599. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5600. for i in range(1, pad_count + 1):
  5601. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5602. scores.append(-1000.0)
  5603. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5604. self.gguf_writer.add_tokenizer_model("t5")
  5605. self.gguf_writer.add_tokenizer_pre("default")
  5606. self.gguf_writer.add_token_list(tokens)
  5607. self.gguf_writer.add_token_scores(scores)
  5608. self.gguf_writer.add_token_types(toktypes)
  5609. self.gguf_writer.add_add_space_prefix(add_prefix)
  5610. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5611. if precompiled_charsmap:
  5612. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5613. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5614. special_vocab.add_to_gguf(self.gguf_writer)
  5615. def set_gguf_parameters(self):
  5616. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5617. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5618. n_ctx = 512
  5619. self.gguf_writer.add_context_length(n_ctx)
  5620. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5621. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5622. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5623. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5624. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5625. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5626. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5627. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5628. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5629. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5630. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5631. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5632. self.gguf_writer.add_file_type(self.ftype)
  5633. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5634. del bid # unused
  5635. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5636. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5637. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5638. # and decoder and ignore the remaining ones.
  5639. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5640. if not self.shared_token_embeddings_found:
  5641. name = "shared.weight"
  5642. self.shared_token_embeddings_found = True
  5643. else:
  5644. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5645. return []
  5646. return [(self.map_tensor_name(name), data_torch)]
  5647. @ModelBase.register("T5EncoderModel")
  5648. class T5EncoderModel(TextModel):
  5649. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5650. def __init__(self, *args, **kwargs):
  5651. super().__init__(*args, **kwargs)
  5652. self.shared_token_embeddings_found = False
  5653. def set_vocab(self):
  5654. # to avoid TypeError: Descriptors cannot be created directly
  5655. # exception when importing sentencepiece_model_pb2
  5656. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5657. from sentencepiece import SentencePieceProcessor
  5658. from sentencepiece import sentencepiece_model_pb2 as model
  5659. tokenizer_path = self.dir_model / 'tokenizer.model'
  5660. # many older models use spiece.model tokenizer model filename
  5661. if not tokenizer_path.is_file():
  5662. tokenizer_path = self.dir_model / 'spiece.model'
  5663. if not tokenizer_path.is_file():
  5664. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5665. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5666. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5667. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5668. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5669. # assure the tokenizer model file name is correct
  5670. assert tokenizer_path.name == 'tokenizer.model'
  5671. return self._set_vocab_sentencepiece()
  5672. else:
  5673. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5674. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5675. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5676. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5677. tokenizer = SentencePieceProcessor()
  5678. tokenizer.LoadFromFile(str(tokenizer_path))
  5679. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5680. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5681. scores: list[float] = [-10000.0] * vocab_size
  5682. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5683. for token_id in range(tokenizer.vocab_size()):
  5684. piece = tokenizer.IdToPiece(token_id)
  5685. text = piece.encode("utf-8")
  5686. score = tokenizer.GetScore(token_id)
  5687. toktype = SentencePieceTokenTypes.NORMAL
  5688. if tokenizer.IsUnknown(token_id):
  5689. toktype = SentencePieceTokenTypes.UNKNOWN
  5690. elif tokenizer.IsControl(token_id):
  5691. toktype = SentencePieceTokenTypes.CONTROL
  5692. elif tokenizer.IsUnused(token_id):
  5693. toktype = SentencePieceTokenTypes.UNUSED
  5694. elif tokenizer.IsByte(token_id):
  5695. toktype = SentencePieceTokenTypes.BYTE
  5696. tokens[token_id] = text
  5697. scores[token_id] = score
  5698. toktypes[token_id] = toktype
  5699. added_tokens_file = self.dir_model / 'added_tokens.json'
  5700. if added_tokens_file.is_file():
  5701. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5702. added_tokens_json = json.load(f)
  5703. for key in added_tokens_json:
  5704. token_id = added_tokens_json[key]
  5705. if token_id >= vocab_size:
  5706. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5707. continue
  5708. tokens[token_id] = key.encode("utf-8")
  5709. scores[token_id] = -1000.0
  5710. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5711. if vocab_size > len(tokens):
  5712. pad_count = vocab_size - len(tokens)
  5713. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5714. for i in range(1, pad_count + 1):
  5715. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5716. scores.append(-1000.0)
  5717. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5718. self.gguf_writer.add_tokenizer_model("t5")
  5719. self.gguf_writer.add_tokenizer_pre("default")
  5720. self.gguf_writer.add_token_list(tokens)
  5721. self.gguf_writer.add_token_scores(scores)
  5722. self.gguf_writer.add_token_types(toktypes)
  5723. self.gguf_writer.add_add_space_prefix(add_prefix)
  5724. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5725. if precompiled_charsmap:
  5726. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5727. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5728. special_vocab.add_to_gguf(self.gguf_writer)
  5729. def set_gguf_parameters(self):
  5730. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5731. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5732. n_ctx = 512
  5733. self.gguf_writer.add_context_length(n_ctx)
  5734. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5735. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5736. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5737. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5738. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5739. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5740. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5741. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5742. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5743. self.gguf_writer.add_file_type(self.ftype)
  5744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5745. del bid # unused
  5746. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5747. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5748. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5749. # and decoder and ignore the remaining ones.
  5750. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5751. if not self.shared_token_embeddings_found:
  5752. name = "shared.weight"
  5753. self.shared_token_embeddings_found = True
  5754. else:
  5755. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5756. return []
  5757. return [(self.map_tensor_name(name), data_torch)]
  5758. @ModelBase.register("JAISLMHeadModel")
  5759. class JaisModel(TextModel):
  5760. model_arch = gguf.MODEL_ARCH.JAIS
  5761. def __init__(self, *args, **kwargs):
  5762. super().__init__(*args, **kwargs)
  5763. # SwigLU activation
  5764. assert self.hparams["activation_function"] == "swiglu"
  5765. # ALiBi position embedding
  5766. assert self.hparams["position_embedding_type"] == "alibi"
  5767. # Embeddings scale
  5768. self.embeddings_scale = 1.0
  5769. if 'mup_embeddings_scale' in self.hparams:
  5770. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5771. elif 'embeddings_scale' in self.hparams:
  5772. self.embeddings_scale = self.hparams['embeddings_scale']
  5773. else:
  5774. assert False
  5775. self.width_scale = 1.0
  5776. if 'mup_output_alpha' in self.hparams:
  5777. assert 'mup_width_scale' in self.hparams
  5778. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5779. elif 'width_scale' in self.hparams:
  5780. self.width_scale = self.hparams['width_scale']
  5781. else:
  5782. assert False
  5783. self.max_alibi_bias = 8.0
  5784. def set_vocab(self):
  5785. self._set_vocab_gpt2()
  5786. def set_gguf_parameters(self):
  5787. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5788. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5789. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5790. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5791. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5792. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5793. self.gguf_writer.add_file_type(self.ftype)
  5794. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5795. del bid # unused
  5796. tensors: list[tuple[str, Tensor]] = []
  5797. # we don't need these
  5798. if name.endswith((".attn.bias")):
  5799. return tensors
  5800. if name.endswith(("relative_pe.slopes")):
  5801. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5802. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5803. # but Jais's PyTorch model simply precalculates the slope values and places them
  5804. # in relative_pes.slopes
  5805. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5806. first_val = float(data_torch[0].item())
  5807. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5808. return tensors
  5809. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5810. data_torch = data_torch.transpose(1, 0)
  5811. new_name = self.map_tensor_name(name)
  5812. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5813. tensors.append((new_name, data_torch * self.embeddings_scale))
  5814. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5815. tensors.append((new_name, data_torch * self.width_scale))
  5816. else:
  5817. tensors.append((new_name, data_torch))
  5818. return tensors
  5819. def prepare_tensors(self):
  5820. super().prepare_tensors()
  5821. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5822. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5823. class Glm4Model(TextModel):
  5824. model_arch = gguf.MODEL_ARCH.GLM4
  5825. def set_vocab(self):
  5826. from transformers import AutoTokenizer
  5827. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5828. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5829. tokens, toktypes, tokpre = self.get_vocab_base()
  5830. self.gguf_writer.add_tokenizer_model("gpt2")
  5831. self.gguf_writer.add_tokenizer_pre(tokpre)
  5832. self.gguf_writer.add_token_list(tokens)
  5833. self.gguf_writer.add_token_types(toktypes)
  5834. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5835. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5836. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5837. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5838. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5839. special_vocab.add_to_gguf(self.gguf_writer)
  5840. def set_gguf_parameters(self):
  5841. super().set_gguf_parameters()
  5842. if (rope_dim := self.hparams.get("head_dim")) is None:
  5843. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5844. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5845. rope_scaling = self.hparams.get("rope_scaling") or {}
  5846. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5848. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5849. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5850. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5851. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5852. return []
  5853. elif name.startswith("model.language_model."):
  5854. name = name.replace("language_model.", "") # for Glm4v
  5855. return super().modify_tensors(data_torch, name, bid)
  5856. @ModelBase.register("Glm4MoeForCausalLM")
  5857. class Glm4MoeModel(TextModel):
  5858. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5859. def __init__(self, *args, **kwargs):
  5860. super().__init__(*args, **kwargs)
  5861. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5862. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5863. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5864. def set_vocab(self):
  5865. from transformers import AutoTokenizer
  5866. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5867. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5868. tokens, toktypes, tokpre = self.get_vocab_base()
  5869. self.gguf_writer.add_tokenizer_model("gpt2")
  5870. self.gguf_writer.add_tokenizer_pre(tokpre)
  5871. self.gguf_writer.add_token_list(tokens)
  5872. self.gguf_writer.add_token_types(toktypes)
  5873. # Special tokens
  5874. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5875. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5876. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5877. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5878. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5879. # Patch broken chat template
  5880. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5881. special_vocab.chat_template = special_vocab.chat_template.replace(
  5882. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5883. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5884. special_vocab.add_to_gguf(self.gguf_writer)
  5885. def set_gguf_parameters(self):
  5886. super().set_gguf_parameters()
  5887. if (rope_dim := self.hparams.get("head_dim")) is None:
  5888. rope_dim = (
  5889. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5890. )
  5891. self.gguf_writer.add_rope_dimension_count(
  5892. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5893. )
  5894. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5895. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5896. self.gguf_writer.add_expert_count(n_routed_experts)
  5897. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5898. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5899. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5900. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5901. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5902. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5903. # Expert gating function (sigmoid for GLM4_MOE)
  5904. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5905. # Routed scaling factor
  5906. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5907. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5908. # Normalise topk probabilities
  5909. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5910. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5911. # NextN/MTP prediction layers
  5912. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5913. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5914. _experts: list[dict[str, Tensor]] | None = None
  5915. def modify_tensors(
  5916. self, data_torch: Tensor, name: str, bid: int | None
  5917. ) -> Iterable[tuple[str, Tensor]]:
  5918. if name.startswith("model.visual."): # ignore visual part
  5919. return []
  5920. elif name.startswith("model.language_model."):
  5921. name = name.replace("language_model.", "") # for multimodal variants
  5922. # Handle main token embedding (but not layer-specific NextN embeddings)
  5923. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5924. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5925. # Handle routed experts
  5926. if name.find("mlp.experts") != -1:
  5927. n_experts = self.hparams["n_routed_experts"]
  5928. assert bid is not None
  5929. if self._experts is None:
  5930. self._experts = [{} for _ in range(self.block_count)]
  5931. self._experts[bid][name] = data_torch
  5932. if len(self._experts[bid]) >= n_experts * 3:
  5933. tensors: list[tuple[str, Tensor]] = []
  5934. # merge the experts into a single 3d tensor
  5935. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5936. datas: list[Tensor] = []
  5937. for xid in range(n_experts):
  5938. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5939. datas.append(self._experts[bid][ename])
  5940. del self._experts[bid][ename]
  5941. data_torch = torch.stack(datas, dim=0)
  5942. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5943. new_name = self.map_tensor_name(merged_name)
  5944. tensors.append((new_name, data_torch))
  5945. return tensors
  5946. else:
  5947. return []
  5948. if name.endswith("e_score_correction_bias"):
  5949. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5950. new_name = self.map_tensor_name(name)
  5951. return [(new_name, data_torch)]
  5952. def prepare_tensors(self):
  5953. super().prepare_tensors()
  5954. if self._experts is not None:
  5955. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5956. experts = [k for d in self._experts for k in d.keys()]
  5957. if len(experts) > 0:
  5958. raise ValueError(f"Unprocessed experts: {experts}")
  5959. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5960. class ChatGLMModel(TextModel):
  5961. model_arch = gguf.MODEL_ARCH.CHATGLM
  5962. def set_vocab_chatglm3(self):
  5963. dir_model = self.dir_model
  5964. hparams = self.hparams
  5965. tokens: list[bytes] = []
  5966. toktypes: list[int] = []
  5967. scores: list[float] = []
  5968. from transformers import AutoTokenizer
  5969. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5970. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5971. assert max(tokenizer.get_vocab().values()) < vocab_size
  5972. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5973. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5974. for token_id in range(vocab_size):
  5975. piece = tokenizer._convert_id_to_token(token_id)
  5976. if token_id == 0:
  5977. piece = "<unk>"
  5978. elif token_id == 1:
  5979. piece = "<bos>"
  5980. elif token_id == 2:
  5981. piece = "<eos>"
  5982. text = piece.encode("utf-8")
  5983. score = 0.0
  5984. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5985. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5986. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5987. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5988. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5989. if piece in special_tokens:
  5990. toktype = SentencePieceTokenTypes.CONTROL
  5991. elif len(piece) == 0:
  5992. text = f"[PAD{token_id}]".encode("utf-8")
  5993. toktype = SentencePieceTokenTypes.UNUSED
  5994. else:
  5995. toktype = SentencePieceTokenTypes.USER_DEFINED
  5996. tokens.append(text)
  5997. scores.append(score)
  5998. toktypes.append(toktype)
  5999. continue
  6000. toktype = SentencePieceTokenTypes.NORMAL
  6001. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6002. toktype = SentencePieceTokenTypes.UNKNOWN
  6003. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6004. toktype = SentencePieceTokenTypes.CONTROL
  6005. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6006. toktype = SentencePieceTokenTypes.UNUSED
  6007. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6008. toktype = SentencePieceTokenTypes.BYTE
  6009. tokens.append(text)
  6010. scores.append(score)
  6011. toktypes.append(toktype)
  6012. self.gguf_writer.add_tokenizer_model("llama")
  6013. # glm3 needs prefix and suffix formatted as:
  6014. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6015. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6016. self.gguf_writer.add_token_list(tokens)
  6017. self.gguf_writer.add_token_scores(scores)
  6018. self.gguf_writer.add_token_types(toktypes)
  6019. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6020. special_vocab.add_to_gguf(self.gguf_writer)
  6021. @staticmethod
  6022. def token_bytes_to_string(b):
  6023. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6024. byte_encoder = bytes_to_unicode()
  6025. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6026. @staticmethod
  6027. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6028. parts = [bytes([b]) for b in token]
  6029. while True:
  6030. min_idx = None
  6031. min_rank = None
  6032. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6033. rank = mergeable_ranks.get(pair[0] + pair[1])
  6034. if rank is not None and (min_rank is None or rank < min_rank):
  6035. min_idx = i
  6036. min_rank = rank
  6037. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6038. break
  6039. assert min_idx is not None
  6040. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6041. return parts
  6042. def set_vocab(self):
  6043. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6044. self.set_vocab_chatglm3()
  6045. return
  6046. dir_model = self.dir_model
  6047. hparams = self.hparams
  6048. tokens: list[str] = []
  6049. toktypes: list[int] = []
  6050. from transformers import AutoTokenizer
  6051. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6052. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6053. assert max(tokenizer.get_vocab().values()) < vocab_size
  6054. tokens, toktypes, tokpre = self.get_vocab_base()
  6055. self.gguf_writer.add_tokenizer_model("gpt2")
  6056. self.gguf_writer.add_tokenizer_pre(tokpre)
  6057. self.gguf_writer.add_token_list(tokens)
  6058. self.gguf_writer.add_token_types(toktypes)
  6059. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6060. # only add special tokens when they were not already loaded from config.json
  6061. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6062. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6063. # this one is usually not in config.json anyway
  6064. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6065. special_vocab.add_to_gguf(self.gguf_writer)
  6066. def set_gguf_parameters(self):
  6067. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6068. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6069. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6070. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6071. self.gguf_writer.add_embedding_length(n_embed)
  6072. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6073. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6074. self.gguf_writer.add_head_count(n_head)
  6075. self.gguf_writer.add_head_count_kv(n_head_kv)
  6076. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6077. self.gguf_writer.add_file_type(self.ftype)
  6078. if "attention_dim" in self.hparams:
  6079. rope_dim = self.hparams["attention_dim"]
  6080. else:
  6081. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6082. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6083. self.gguf_writer.add_add_bos_token(False)
  6084. rope_freq = 10000
  6085. if "rope_ratio" in self.hparams:
  6086. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6087. self.gguf_writer.add_rope_freq_base(rope_freq)
  6088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6089. del bid # unused
  6090. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6091. return []
  6092. name = name.removeprefix("transformer.")
  6093. return [(self.map_tensor_name(name), data_torch)]
  6094. @ModelBase.register("NemotronForCausalLM")
  6095. class NemotronModel(TextModel):
  6096. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6097. def set_vocab(self):
  6098. self._set_vocab_sentencepiece()
  6099. self.gguf_writer.add_pad_token_id(0)
  6100. self.gguf_writer.add_unk_token_id(1)
  6101. def set_gguf_parameters(self):
  6102. super().set_gguf_parameters()
  6103. hparams = self.hparams
  6104. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6105. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6106. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6107. # * Partial RoPE
  6108. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6109. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6110. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6111. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6112. # * RopeScaling for Nemotron
  6113. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6114. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6115. else:
  6116. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6117. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6119. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6120. # model.layers.{l}.input_layernorm.weight
  6121. # model.layers.{l}.post_attention_layernorm.weight
  6122. # model.norm.weight
  6123. if name.endswith("norm.weight"):
  6124. data_torch = data_torch + 1
  6125. return [(self.map_tensor_name(name), data_torch)]
  6126. @ModelBase.register("ExaoneForCausalLM")
  6127. class ExaoneModel(TextModel):
  6128. model_arch = gguf.MODEL_ARCH.EXAONE
  6129. def set_gguf_parameters(self):
  6130. hparams = self.hparams
  6131. assert (hparams["activation_function"] == "silu")
  6132. max_position_embeddings = hparams["max_position_embeddings"]
  6133. embed_dim = hparams["hidden_size"]
  6134. num_heads = hparams["num_attention_heads"]
  6135. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6136. layer_norm_eps = hparams["layer_norm_epsilon"]
  6137. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6138. num_layers = hparams["num_layers"]
  6139. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6140. # attention_dropout_rate = hparams["attention_dropout"]
  6141. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6142. # embed_dropout_rate = hparams["embed_dropout"]
  6143. self.gguf_writer.add_embedding_length(embed_dim)
  6144. self.gguf_writer.add_head_count(num_heads)
  6145. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6146. self.gguf_writer.add_context_length(max_position_embeddings)
  6147. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6148. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6149. self.gguf_writer.add_block_count(num_layers)
  6150. self.gguf_writer.add_file_type(self.ftype)
  6151. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6152. self.gguf_writer.add_rope_freq_base(rope_theta)
  6153. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6154. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6155. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6156. rope_scaling = self.hparams.get("rope_scaling") or {}
  6157. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6158. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6159. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6160. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6161. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6162. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6163. base = self.hparams.get("rope_theta", 10000.0)
  6164. if (dim := self.hparams.get("head_dim")) is None:
  6165. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6166. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6167. factor = rope_scaling.get("factor", 8.0)
  6168. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6169. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6170. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6171. low_freq_wavelen = old_context_len / low_freq_factor
  6172. high_freq_wavelen = old_context_len / high_freq_factor
  6173. assert low_freq_wavelen != high_freq_wavelen
  6174. rope_factors = []
  6175. for freq in freqs:
  6176. wavelen = 2 * math.pi / freq
  6177. if wavelen < high_freq_wavelen:
  6178. rope_factors.append(1)
  6179. elif wavelen > low_freq_wavelen:
  6180. rope_factors.append(factor)
  6181. else:
  6182. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6183. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6184. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6185. @ModelBase.register("Exaone4ForCausalLM")
  6186. class Exaone4Model(TextModel):
  6187. model_arch = gguf.MODEL_ARCH.EXAONE4
  6188. def set_vocab(self):
  6189. tokens, toktypes, tokpre = self.get_vocab_base()
  6190. self.gguf_writer.add_tokenizer_model("gpt2")
  6191. self.gguf_writer.add_tokenizer_pre(tokpre)
  6192. self.gguf_writer.add_token_list(tokens)
  6193. self.gguf_writer.add_token_types(toktypes)
  6194. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6195. special_vocab.add_to_gguf(self.gguf_writer)
  6196. def set_gguf_parameters(self):
  6197. super().set_gguf_parameters()
  6198. hparams = self.hparams
  6199. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6200. if hparams.get("sliding_window") is not None:
  6201. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6202. if "layer_types" in hparams:
  6203. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6204. elif "sliding_window_pattern" in hparams:
  6205. sliding_window_pattern = []
  6206. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6207. for i in range(hparams["num_hidden_layers"]):
  6208. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6209. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6210. for i in range(hparams["num_hidden_layers"]):
  6211. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6212. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6213. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6214. rope_scaling = self.hparams.get("rope_scaling") or {}
  6215. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6216. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6217. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6218. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6219. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6220. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6221. base = self.hparams.get("rope_theta", 10_000.0)
  6222. if (dim := self.hparams.get("head_dim")) is None:
  6223. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6224. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6225. factor = rope_scaling.get("factor", 16.0)
  6226. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6227. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6228. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6229. low_freq_wavelen = old_context_len / low_freq_factor
  6230. high_freq_wavelen = old_context_len / high_freq_factor
  6231. rope_factors = []
  6232. for freq in freqs:
  6233. wavelen = 2 * math.pi / freq
  6234. if wavelen < high_freq_wavelen:
  6235. rope_factors.append(1)
  6236. elif wavelen > low_freq_wavelen:
  6237. rope_factors.append(factor)
  6238. else:
  6239. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6240. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6241. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6242. @ModelBase.register("GraniteForCausalLM")
  6243. class GraniteModel(LlamaModel):
  6244. """Conversion for IBM's GraniteForCausalLM"""
  6245. model_arch = gguf.MODEL_ARCH.GRANITE
  6246. def set_gguf_parameters(self):
  6247. """Granite uses standard llama parameters with the following differences:
  6248. - No head_dim support
  6249. - New multiplier params:
  6250. - attention_scale
  6251. - embedding_scale
  6252. - residual_scale
  6253. - logits_scaling
  6254. """
  6255. if head_dim := self.hparams.pop("head_dim", None):
  6256. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6257. super().set_gguf_parameters()
  6258. # NOTE: Convert _multiplier params to _scale params for naming
  6259. # consistency
  6260. if attention_scale := self.hparams.get("attention_multiplier"):
  6261. self.gguf_writer.add_attention_scale(attention_scale)
  6262. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6263. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6264. self.gguf_writer.add_embedding_scale(embedding_scale)
  6265. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6266. if residual_scale := self.hparams.get("residual_multiplier"):
  6267. self.gguf_writer.add_residual_scale(residual_scale)
  6268. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6269. if logits_scale := self.hparams.get("logits_scaling"):
  6270. self.gguf_writer.add_logit_scale(logits_scale)
  6271. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6272. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6273. class GraniteMoeModel(GraniteModel):
  6274. """Conversion for IBM's GraniteMoeForCausalLM"""
  6275. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6276. def set_gguf_parameters(self):
  6277. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6278. - shared_intermediate_size
  6279. """
  6280. super().set_gguf_parameters()
  6281. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6282. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6283. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6285. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6286. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6287. the hidden size that is then split during forward. To keep compatibility
  6288. with existing mixtral support, we pull them apart here.
  6289. """
  6290. if name.endswith("block_sparse_moe.input_linear.weight"):
  6291. ffn_dim = self.hparams["intermediate_size"]
  6292. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6293. gate, up = data_torch.split(ffn_dim, dim=-2)
  6294. return [
  6295. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6296. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6297. ]
  6298. has_experts = bool(self.hparams.get('num_local_experts'))
  6299. if name.endswith("shared_mlp.input_linear.weight"):
  6300. ffn_dim = self.hparams["shared_intermediate_size"]
  6301. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6302. gate, up = data_torch.split(ffn_dim, dim=-2)
  6303. if has_experts:
  6304. return [
  6305. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6306. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6307. ]
  6308. return [
  6309. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6310. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6311. ]
  6312. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6313. return [
  6314. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6315. ]
  6316. return super().modify_tensors(data_torch, name, bid)
  6317. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6318. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6319. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6320. layers and optionally uses MoE w/ a shared expert"""
  6321. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6322. undo_permute = True
  6323. def __init__(self, *args, **kwargs):
  6324. # Hybrid mamba models use a prefix for the mamba-specific params.
  6325. # TODO: Extend this if the prefix(es) need to be configurable
  6326. self.hparam_prefixes = ["mamba"]
  6327. super().__init__(*args, **kwargs)
  6328. # Lists of which layers use ssm vs attention
  6329. self._attn_layers = self.get_attn_layers()
  6330. self._ssm_layers = [
  6331. i for i in range(self.block_count)
  6332. if i not in self._attn_layers
  6333. ]
  6334. # There are some models in this family that are non-hybrid, but keep the
  6335. # same parent class by setting all layers to "attention." If this is the
  6336. # case, the model architecture needs to be updated to a standard
  6337. # "granite" or "granitemoe" model
  6338. if not self._ssm_layers:
  6339. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6340. new_arch = (
  6341. gguf.MODEL_ARCH.GRANITE_MOE
  6342. if has_experts else
  6343. gguf.MODEL_ARCH.GRANITE
  6344. )
  6345. self.model_arch = new_arch
  6346. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6347. self.gguf_writer.add_architecture()
  6348. # n_group and d_inner are used during reshape_tensors for mamba2
  6349. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6350. # disambiguate with top-level head_dim
  6351. # NOTE 2: If needed for future models, this can be isolated in a method
  6352. # to separate the prefix setting and teh keys used
  6353. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6354. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6355. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6356. def get_attn_layers(self):
  6357. # Explicit list of layer type names
  6358. if layer_types := self.hparams.get("layer_types"):
  6359. return [
  6360. i for i, typ in enumerate(layer_types)
  6361. if typ == "attention"
  6362. ]
  6363. # Layer types indicated by index or period
  6364. attn_layers = self.hparams.get("attn_layer_indices", [])
  6365. if not attn_layers:
  6366. attn_period = self.hparams.get("attn_layer_period")
  6367. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6368. attn_offset = self.hparams.get("attn_layer_offset")
  6369. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6370. attn_layers = [
  6371. i for i in range(self.block_count)
  6372. if i % attn_period == attn_offset
  6373. ]
  6374. return attn_layers
  6375. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6376. prefixed = []
  6377. for pfx in self.hparam_prefixes:
  6378. prefixed.extend(
  6379. "_".join([pfx, k])
  6380. for k in keys
  6381. )
  6382. keys = list(keys) + prefixed
  6383. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6384. def modify_tensors(
  6385. self, data_torch: Tensor, name: str, bid: int | None
  6386. ) -> Iterable[tuple[str, Tensor]]:
  6387. if (
  6388. name.endswith("block_sparse_moe.input_linear.weight")
  6389. or "shared_mlp" in name
  6390. ):
  6391. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6392. # Determine whether this is a mamba layer or an attention layer
  6393. if bid in self._ssm_layers:
  6394. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6395. elif bid in self._attn_layers:
  6396. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6397. return [(self.map_tensor_name(name), data_torch)]
  6398. def set_gguf_parameters(self):
  6399. """This method merges params from both parents and some that are
  6400. specific to this model. The result is some duplication of how the params
  6401. get set. The following warnings are expected during conversion:
  6402. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6403. WARNING:Duplicated key name 'granitehybrid.context_length'
  6404. """
  6405. GraniteMoeModel.set_gguf_parameters(self)
  6406. ## Mamba mixer params ##
  6407. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6408. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6409. self.gguf_writer.add_ssm_group_count(self.n_group)
  6410. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6411. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6412. # in llama.cpp
  6413. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6414. ## Attention params ##
  6415. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6416. head_count_kv_vec = [
  6417. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6418. ]
  6419. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6420. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6421. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6422. ## If Bamba or non-hybrid, use rope, otherwise don't
  6423. use_rope = (
  6424. "BambaForCausalLM" in self.hparams["architectures"]
  6425. or not self._ssm_layers
  6426. )
  6427. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6428. if not use_rope:
  6429. self.gguf_writer.add_context_length(2**20)
  6430. ## Validation ##
  6431. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6432. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6433. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6434. def set_vocab(self):
  6435. self.hparams["pad_vocab_size_multiple"] = 8
  6436. Mamba2Model.set_vocab(self)
  6437. @ModelBase.register("NemotronHForCausalLM")
  6438. class NemotronHModel(GraniteHybridModel):
  6439. """Hybrid mamba2/attention model from NVIDIA"""
  6440. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6441. def __init__(self, *args, **kwargs):
  6442. super().__init__(*args, **kwargs)
  6443. # Save the top-level head_dim for later
  6444. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6445. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6446. # Don't use expand to calculate d_inner
  6447. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6448. # Update the ssm / attn / mlp layers
  6449. # M: Mamba2, *: Attention, -: MLP
  6450. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6451. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6452. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6453. def get_attn_layers(self):
  6454. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6455. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6456. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6457. def set_gguf_parameters(self):
  6458. super().set_gguf_parameters()
  6459. self.gguf_writer.add_key_length(self.head_dim)
  6460. self.gguf_writer.add_value_length(self.head_dim)
  6461. # Set feed_forward_length
  6462. # NOTE: This will trigger an override warning. This is preferrable to
  6463. # duplicating all the parent logic
  6464. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6465. self.gguf_writer.add_feed_forward_length([
  6466. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6467. ])
  6468. def set_vocab(self):
  6469. super().set_vocab()
  6470. # The tokenizer _does_ add a BOS token (via post_processor type
  6471. # TemplateProcessing) but does not set add_bos_token to true in the
  6472. # config, so we need to explicitly override it here.
  6473. self.gguf_writer.add_add_bos_token(True)
  6474. @ModelBase.register("BailingMoeForCausalLM")
  6475. class BailingMoeModel(TextModel):
  6476. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6477. def set_vocab(self):
  6478. self._set_vocab_gpt2()
  6479. def set_gguf_parameters(self):
  6480. super().set_gguf_parameters()
  6481. hparams = self.hparams
  6482. if (rope_dim := hparams.get("head_dim")) is None:
  6483. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6484. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6485. rope_scaling = self.hparams.get("rope_scaling") or {}
  6486. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6487. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6488. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6489. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6490. else:
  6491. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6492. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6493. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6494. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6495. self.gguf_writer.add_expert_weights_scale(1.0)
  6496. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6497. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6498. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6499. _experts: list[dict[str, Tensor]] | None = None
  6500. @staticmethod
  6501. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6502. if n_head_kv is not None and n_head != n_head_kv:
  6503. n_head = n_head_kv
  6504. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6505. .swapaxes(1, 2)
  6506. .reshape(weights.shape))
  6507. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6508. n_head = self.hparams["num_attention_heads"]
  6509. n_kv_head = self.hparams.get("num_key_value_heads")
  6510. n_embd = self.hparams["hidden_size"]
  6511. if (head_dim := self.hparams.get("head_dim")) is None:
  6512. head_dim = n_embd // n_head
  6513. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6514. if name.endswith("attention.dense.weight"):
  6515. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6516. elif name.endswith("query_key_value.weight"):
  6517. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6518. return [
  6519. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6520. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6521. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6522. ]
  6523. elif name.find("mlp.experts") != -1:
  6524. n_experts = self.hparams["num_experts"]
  6525. assert bid is not None
  6526. tensors: list[tuple[str, Tensor]] = []
  6527. if self._experts is None:
  6528. self._experts = [{} for _ in range(self.block_count)]
  6529. self._experts[bid][name] = data_torch
  6530. if len(self._experts[bid]) >= n_experts * 3:
  6531. # merge the experts into a single 3d tensor
  6532. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6533. datas: list[Tensor] = []
  6534. for xid in range(n_experts):
  6535. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6536. datas.append(self._experts[bid][ename])
  6537. del self._experts[bid][ename]
  6538. data_torch = torch.stack(datas, dim=0)
  6539. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6540. new_name = self.map_tensor_name(merged_name)
  6541. tensors.append((new_name, data_torch))
  6542. return tensors
  6543. new_name = self.map_tensor_name(name)
  6544. if new_name == output_name and self.hparams.get("norm_head"):
  6545. data_torch = data_torch.float()
  6546. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6547. return [(new_name, data_torch)]
  6548. def prepare_tensors(self):
  6549. super().prepare_tensors()
  6550. if self._experts is not None:
  6551. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6552. experts = [k for d in self._experts for k in d.keys()]
  6553. if len(experts) > 0:
  6554. raise ValueError(f"Unprocessed experts: {experts}")
  6555. @ModelBase.register("BailingMoeV2ForCausalLM")
  6556. class BailingMoeV2Model(TextModel):
  6557. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  6558. def __init__(self, *args, **kwargs):
  6559. super().__init__(*args, **kwargs)
  6560. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  6561. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  6562. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6563. def set_vocab(self):
  6564. self._set_vocab_gpt2()
  6565. def set_gguf_parameters(self):
  6566. super().set_gguf_parameters()
  6567. hparams = self.hparams
  6568. if (rope_dim := hparams.get("head_dim")) is None:
  6569. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6570. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6571. rope_scaling = self.hparams.get("rope_scaling") or {}
  6572. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6573. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6574. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6575. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6576. else:
  6577. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6578. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6579. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6580. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6581. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  6582. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  6583. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6584. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6585. self.gguf_writer.add_expert_group_count(hparams["n_group"])
  6586. self.gguf_writer.add_expert_group_used_count(hparams["topk_group"])
  6587. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6588. if hparams["score_function"] == "sigmoid":
  6589. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6590. elif hparams["score_function"] == "softmax":
  6591. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6592. else:
  6593. raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
  6594. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6595. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  6596. _experts: list[dict[str, Tensor]] | None = None
  6597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6598. if "mlp.experts" in name:
  6599. n_experts = self.hparams["num_experts"]
  6600. assert bid is not None
  6601. tensors: list[tuple[str, Tensor]] = []
  6602. if self._experts is None:
  6603. self._experts = [{} for _ in range(self.block_count)]
  6604. self._experts[bid][name] = data_torch
  6605. if len(self._experts[bid]) >= n_experts * 3:
  6606. # merge the experts into a single 3d tensor
  6607. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6608. datas: list[Tensor] = []
  6609. for xid in range(n_experts):
  6610. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6611. datas.append(self._experts[bid][ename])
  6612. del self._experts[bid][ename]
  6613. data_torch = torch.stack(datas, dim=0)
  6614. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6615. new_name = self.map_tensor_name(merged_name)
  6616. tensors.append((new_name, data_torch))
  6617. return tensors
  6618. if name.endswith(".expert_bias"):
  6619. name = name.replace(".expert_bias", ".expert_bias.bias")
  6620. return [(self.map_tensor_name(name), data_torch)]
  6621. def prepare_tensors(self):
  6622. super().prepare_tensors()
  6623. if self._experts is not None:
  6624. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6625. experts = [k for d in self._experts for k in d.keys()]
  6626. if len(experts) > 0:
  6627. raise ValueError(f"Unprocessed experts: {experts}")
  6628. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6629. class GroveMoeModel(TextModel):
  6630. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6631. def set_gguf_parameters(self):
  6632. super().set_gguf_parameters()
  6633. if (n_experts := self.hparams.get("num_experts")) is not None:
  6634. self.gguf_writer.add_expert_count(n_experts)
  6635. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6636. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6637. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6638. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6639. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6640. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6641. self.gguf_writer.add_experts_per_group(2)
  6642. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6643. self.gguf_writer.add_expert_group_scale(0.05)
  6644. # YaRN is not enabled by default
  6645. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6646. rope_scaling = self.hparams.get("rope_scaling") or {}
  6647. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6648. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6649. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6650. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6651. _experts: list[dict[str, Tensor]] | None = None
  6652. _chunk_experts: list[dict[str, Tensor]] | None = None
  6653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6654. if name.endswith(".expert_bias"):
  6655. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  6656. return []
  6657. # process the experts separately
  6658. if name.find("chunk_experts") != -1:
  6659. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  6660. assert bid is not None
  6661. if self._chunk_experts is None:
  6662. self._chunk_experts = [{} for _ in range(self.block_count)]
  6663. self._chunk_experts[bid][name] = data_torch
  6664. if len(self._chunk_experts[bid]) >= n_experts * 3:
  6665. tensors: list[tuple[str, Tensor]] = []
  6666. # merge the experts into a single 3d tensor
  6667. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6668. datas: list[Tensor] = []
  6669. for xid in range(n_experts):
  6670. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  6671. datas.append(self._chunk_experts[bid][ename])
  6672. del self._chunk_experts[bid][ename]
  6673. data_torch = torch.stack(datas, dim=0)
  6674. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  6675. new_name = self.map_tensor_name(merged_name)
  6676. tensors.append((new_name, data_torch))
  6677. return tensors
  6678. else:
  6679. return []
  6680. elif name.find("experts") != -1:
  6681. n_experts = self.hparams["num_experts"]
  6682. assert bid is not None
  6683. if self._experts is None:
  6684. self._experts = [{} for _ in range(self.block_count)]
  6685. self._experts[bid][name] = data_torch
  6686. if len(self._experts[bid]) >= n_experts * 3:
  6687. tensors: list[tuple[str, Tensor]] = []
  6688. # merge the experts into a single 3d tensor
  6689. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6690. datas: list[Tensor] = []
  6691. for xid in range(n_experts):
  6692. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6693. datas.append(self._experts[bid][ename])
  6694. del self._experts[bid][ename]
  6695. data_torch = torch.stack(datas, dim=0)
  6696. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6697. new_name = self.map_tensor_name(merged_name)
  6698. tensors.append((new_name, data_torch))
  6699. return tensors
  6700. else:
  6701. return []
  6702. return [(self.map_tensor_name(name), data_torch)]
  6703. def prepare_tensors(self):
  6704. super().prepare_tensors()
  6705. if self._chunk_experts is not None:
  6706. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6707. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  6708. if len(chunk_experts) > 0:
  6709. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  6710. if self._experts is not None:
  6711. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6712. experts = [k for d in self._experts for k in d.keys()]
  6713. if len(experts) > 0:
  6714. raise ValueError(f"Unprocessed experts: {experts}")
  6715. @ModelBase.register("ChameleonForConditionalGeneration")
  6716. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6717. class ChameleonModel(TextModel):
  6718. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6719. def set_gguf_parameters(self):
  6720. super().set_gguf_parameters()
  6721. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6722. def set_vocab(self):
  6723. self._set_vocab_gpt2()
  6724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6725. # ignore image tokenizer for now
  6726. # TODO: remove this once image support is implemented for Chameleon
  6727. if name.startswith("model.vqmodel"):
  6728. return []
  6729. n_head = self.hparams["num_attention_heads"]
  6730. n_kv_head = self.hparams.get("num_key_value_heads")
  6731. hidden_dim = self.hparams.get("hidden_size")
  6732. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6733. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6734. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6735. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6736. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6737. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6738. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6739. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6740. return [(self.map_tensor_name(name), data_torch)]
  6741. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6742. @staticmethod
  6743. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6744. head_dim = hidden_dim // n_heads
  6745. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6746. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6747. return data_torch
  6748. @ModelBase.register("UltravoxModel")
  6749. class UltravoxModel(TextModel):
  6750. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6751. def __init__(self, *args, **kwargs):
  6752. super().__init__(*args, **kwargs)
  6753. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6754. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6755. class WhisperEncoderModel(MmprojModel):
  6756. has_vision_encoder = False # no vision encoder
  6757. has_audio_encoder = True
  6758. def __init__(self, *args, **kwargs):
  6759. super().__init__(*args, **kwargs)
  6760. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6761. self.hparams["hidden_size"] = self.hparams["d_model"]
  6762. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6763. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6764. def set_gguf_parameters(self):
  6765. super().set_gguf_parameters()
  6766. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6767. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6768. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6769. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6770. if ".conv" in name and ".weight" in name:
  6771. return gguf.GGMLQuantizationType.F16
  6772. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6773. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6774. del bid # unused
  6775. if name.startswith("language_model."):
  6776. # skip language model tensors
  6777. return []
  6778. # prevent clash naming with vision tensors
  6779. if name.startswith("multi_modal_projector"):
  6780. name = "audio." + name
  6781. if "conv1.bias" in name or "conv2.bias" in name:
  6782. # transpose conv1 and conv2 bias
  6783. data_torch = data_torch.unsqueeze(-1)
  6784. return [(self.map_tensor_name(name), data_torch)]
  6785. @ModelBase.register("UltravoxModel")
  6786. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6787. has_vision_encoder = False # no vision encoder
  6788. has_audio_encoder = True
  6789. def set_gguf_parameters(self):
  6790. super().set_gguf_parameters()
  6791. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6792. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6793. @ModelBase.register("VoxtralForConditionalGeneration")
  6794. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6795. has_vision_encoder = False # no vision encoder
  6796. has_audio_encoder = True
  6797. def set_gguf_parameters(self):
  6798. super().set_gguf_parameters()
  6799. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6800. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6801. @ModelBase.register("FalconH1ForCausalLM")
  6802. class FalconH1Model(Mamba2Model):
  6803. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6804. def __init__(self, *args, **kwargs):
  6805. # Set the hparam prefixes for Falcon Mamba2
  6806. self.hparam_prefixes = ["mamba"]
  6807. # Initialize the base Mamba2Model
  6808. super().__init__(*args, **kwargs)
  6809. # Use Llama conversion for attention
  6810. self._transformer_model_class = LlamaModel
  6811. # n_group and d_inner are used during reshape_tensors for mamba2
  6812. self.n_group = self.find_hparam(["n_groups"])
  6813. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6814. self.d_head = self.find_hparam(["d_head"])
  6815. # Initialize any Falcon Mamba2 specific attributes
  6816. self.has_attention = True # Falcon Mamba2 has attention components
  6817. # Load Falcon-H1 multipliers from hyperparameters
  6818. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6819. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6820. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6821. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6822. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6823. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6824. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6825. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6826. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6827. prefixed = []
  6828. for pfx in self.hparam_prefixes:
  6829. prefixed.extend(
  6830. "_".join([pfx, k])
  6831. for k in keys
  6832. )
  6833. keys = list(keys) + prefixed
  6834. return super().find_hparam(keys, *args, **kwargs)
  6835. def set_vocab(self):
  6836. self._set_vocab_gpt2()
  6837. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6838. tensors = list(super().modify_tensors(data_torch, name, bid))
  6839. tensor = tensors[0][1]
  6840. if "down_proj" in name:
  6841. tensor = tensor * self.mlp_multipliers[1]
  6842. elif "gate_proj" in name:
  6843. tensor = tensor * self.mlp_multipliers[0]
  6844. elif "k_proj" in name:
  6845. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6846. elif "q_proj" in name:
  6847. tensor = tensor * self.attention_in_multiplier
  6848. elif "v_proj" in name:
  6849. tensor = tensor * self.attention_in_multiplier
  6850. elif "o_proj" in name:
  6851. tensor = tensor * self.attention_out_multiplier
  6852. elif "out_proj" in name:
  6853. tensor = tensor * self.ssm_out_multiplier
  6854. elif "in_proj" in name:
  6855. tensor = tensor * self.ssm_in_multiplier
  6856. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6857. intermediate_size = self.hparams["mamba_d_ssm"]
  6858. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6859. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6860. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6861. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6862. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6863. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6864. elif "lm_head" in name:
  6865. tensor = tensor * self.hparams["lm_head_multiplier"]
  6866. elif "embed_tokens" in name:
  6867. tensor = tensor * self.hparams["embedding_multiplier"]
  6868. elif "mamba.norm" in name:
  6869. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6870. tensors = [(tensors[0][0], tensor)]
  6871. return tensors
  6872. def set_gguf_parameters(self):
  6873. super().set_gguf_parameters()
  6874. ## General Params ##
  6875. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6876. # Override some Mamba2 defaults
  6877. self.gguf_writer.add_block_count(self.block_count)
  6878. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6879. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6880. ## Attention params ##
  6881. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6882. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6883. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6884. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6885. ## Validation ##
  6886. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6887. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6888. # Add any other Falcon Mamba2 specific configuration
  6889. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6890. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6891. class HunYuanMoEModel(TextModel):
  6892. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6893. def set_vocab(self):
  6894. from transformers import AutoTokenizer
  6895. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6896. # 1. Get the pre-tokenizer identifier hash
  6897. tokpre = self.get_vocab_base_pre(tokenizer)
  6898. # 2. Reverse-engineer the merges list from mergeable_ranks
  6899. merges = []
  6900. vocab = {}
  6901. mergeable_ranks = tokenizer.mergeable_ranks
  6902. for token, rank in mergeable_ranks.items():
  6903. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6904. if len(token) == 1:
  6905. continue
  6906. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6907. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6908. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6909. # 3. Generate the tokens and toktypes lists
  6910. vocab_size = self.hparams["vocab_size"]
  6911. assert tokenizer.vocab_size == vocab_size
  6912. special_tokens = tokenizer.special_tokens
  6913. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6914. tokens: list[str] = []
  6915. toktypes: list[int] = []
  6916. for i in range(vocab_size):
  6917. if i not in reverse_vocab:
  6918. tokens.append(f"[PAD{i}]")
  6919. toktypes.append(gguf.TokenType.UNUSED)
  6920. else:
  6921. token = reverse_vocab[i]
  6922. tokens.append(token)
  6923. if i in special_tokens.values():
  6924. toktypes.append(gguf.TokenType.CONTROL)
  6925. else:
  6926. toktypes.append(gguf.TokenType.NORMAL)
  6927. # 4. Write all vocab-related fields to the GGUF writer
  6928. self.gguf_writer.add_tokenizer_model("gpt2")
  6929. self.gguf_writer.add_tokenizer_pre(tokpre)
  6930. self.gguf_writer.add_token_list(tokens)
  6931. self.gguf_writer.add_token_types(toktypes)
  6932. self.gguf_writer.add_token_merges(merges)
  6933. # 5. Add special tokens and chat templates
  6934. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6935. special_vocab.add_to_gguf(self.gguf_writer)
  6936. # FIX for BOS token: Overwrite incorrect id read from config.json
  6937. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6938. def set_gguf_parameters(self):
  6939. super().set_gguf_parameters()
  6940. hparams = self.hparams
  6941. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6942. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6943. moe_intermediate_size = hparams["moe_intermediate_size"]
  6944. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6945. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6946. moe_topk = hparams["moe_topk"]
  6947. assert all(topk == moe_topk[0] for topk in moe_topk)
  6948. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6949. moe_shared_expert = hparams["num_shared_expert"]
  6950. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6951. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6952. # Rope
  6953. rope_scaling = hparams.get("rope_scaling", {})
  6954. if rope_scaling.get("type") == "dynamic":
  6955. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6956. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6957. alpha = rope_scaling.get("alpha", 1000)
  6958. base = hparams.get("rope_theta", 10000.0)
  6959. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6960. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6961. self.gguf_writer.add_rope_freq_base(scaled_base)
  6962. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6963. self.gguf_writer.add_rope_scaling_factor(1)
  6964. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6965. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6966. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6967. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6968. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6969. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6970. _experts: list[dict[str, Tensor]] | None = None
  6971. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6972. if name == "lm_head.weight":
  6973. if self.hparams.get("tie_word_embeddings", False):
  6974. logger.info("Skipping tied output layer 'lm_head.weight'")
  6975. return []
  6976. if name.find("mlp.experts") != -1:
  6977. n_experts = self.hparams["num_experts"]
  6978. assert bid is not None
  6979. if self._experts is None:
  6980. self._experts = [{} for _ in range(self.block_count)]
  6981. self._experts[bid][name] = data_torch
  6982. if len(self._experts[bid]) >= n_experts * 3:
  6983. # merge the experts into a single 3d tensor
  6984. tensors: list[tuple[str, Tensor]] = []
  6985. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6986. datas: list[Tensor] = []
  6987. for xid in range(n_experts):
  6988. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6989. datas.append(self._experts[bid][ename])
  6990. del self._experts[bid][ename]
  6991. data_torch = torch.stack(datas, dim=0)
  6992. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6993. new_name = self.map_tensor_name(merged_name)
  6994. tensors.append((new_name, data_torch))
  6995. return tensors
  6996. else:
  6997. return []
  6998. return [(self.map_tensor_name(name), data_torch)]
  6999. def prepare_tensors(self):
  7000. super().prepare_tensors()
  7001. if self._experts is not None:
  7002. experts = [k for d in self._experts for k in d.keys()]
  7003. if len(experts) > 0:
  7004. raise ValueError(f"Unprocessed experts: {experts}")
  7005. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7006. class LLaDAMoEModel(TextModel):
  7007. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7008. def set_gguf_parameters(self):
  7009. super().set_gguf_parameters()
  7010. if (n_experts := self.hparams.get("num_experts")) is not None:
  7011. self.gguf_writer.add_expert_count(n_experts)
  7012. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7013. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7014. # number of experts used per token (top-k)
  7015. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7016. self.gguf_writer.add_expert_used_count(n_experts_used)
  7017. self.gguf_writer.add_mask_token_id(156895)
  7018. self.gguf_writer.add_causal_attention(False)
  7019. self.gguf_writer.add_diffusion_shift_logits(False)
  7020. _experts: list[dict[str, Tensor]] | None = None
  7021. # Copied from: Qwen2MoeModel
  7022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7023. # process the experts separately
  7024. if name.find("experts") != -1:
  7025. n_experts = self.hparams["num_experts"]
  7026. assert bid is not None
  7027. if self._experts is None:
  7028. self._experts = [{} for _ in range(self.block_count)]
  7029. self._experts[bid][name] = data_torch
  7030. if len(self._experts[bid]) >= n_experts * 3:
  7031. tensors: list[tuple[str, Tensor]] = []
  7032. # merge the experts into a single 3d tensor
  7033. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7034. datas: list[Tensor] = []
  7035. for xid in range(n_experts):
  7036. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7037. datas.append(self._experts[bid][ename])
  7038. del self._experts[bid][ename]
  7039. data_torch = torch.stack(datas, dim=0)
  7040. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7041. new_name = self.map_tensor_name(merged_name)
  7042. tensors.append((new_name, data_torch))
  7043. return tensors
  7044. else:
  7045. return []
  7046. return [(self.map_tensor_name(name), data_torch)]
  7047. # Copied from: Qwen2MoeModel
  7048. def prepare_tensors(self):
  7049. super().prepare_tensors()
  7050. if self._experts is not None:
  7051. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7052. experts = [k for d in self._experts for k in d.keys()]
  7053. if len(experts) > 0:
  7054. raise ValueError(f"Unprocessed experts: {experts}")
  7055. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7056. class HunYuanModel(TextModel):
  7057. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7058. def set_vocab(self):
  7059. if (self.dir_model / "tokenizer.json").is_file():
  7060. self._set_vocab_gpt2()
  7061. else:
  7062. from transformers import AutoTokenizer
  7063. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7064. # 1. Get the pre-tokenizer identifier hash
  7065. tokpre = self.get_vocab_base_pre(tokenizer)
  7066. # 2. Reverse-engineer the merges list from mergeable_ranks
  7067. merges = []
  7068. vocab = {}
  7069. mergeable_ranks = tokenizer.mergeable_ranks
  7070. for token, rank in mergeable_ranks.items():
  7071. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7072. if len(token) == 1:
  7073. continue
  7074. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7075. if len(merged) == 2:
  7076. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7077. # 3. Generate the tokens and toktypes lists
  7078. vocab_size = self.hparams["vocab_size"]
  7079. assert tokenizer.vocab_size == vocab_size
  7080. special_tokens = tokenizer.special_tokens
  7081. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7082. tokens: list[str] = []
  7083. toktypes: list[int] = []
  7084. for i in range(vocab_size):
  7085. if i not in reverse_vocab:
  7086. tokens.append(f"[PAD{i}]")
  7087. toktypes.append(gguf.TokenType.UNUSED)
  7088. else:
  7089. token = reverse_vocab[i]
  7090. tokens.append(token)
  7091. if i in special_tokens.values():
  7092. toktypes.append(gguf.TokenType.CONTROL)
  7093. else:
  7094. toktypes.append(gguf.TokenType.NORMAL)
  7095. # 4. Write all vocab-related fields to the GGUF writer
  7096. self.gguf_writer.add_tokenizer_model("gpt2")
  7097. self.gguf_writer.add_tokenizer_pre(tokpre)
  7098. self.gguf_writer.add_token_list(tokens)
  7099. self.gguf_writer.add_token_types(toktypes)
  7100. self.gguf_writer.add_token_merges(merges)
  7101. # 5. Add special tokens and chat templates
  7102. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7103. special_vocab.add_to_gguf(self.gguf_writer)
  7104. # FIX for BOS token: Overwrite incorrect id read from config.json
  7105. if self.hparams['hidden_size'] == 4096:
  7106. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7107. def set_gguf_parameters(self):
  7108. super().set_gguf_parameters()
  7109. hparams = self.hparams
  7110. # Rope
  7111. rope_scaling = hparams.get("rope_scaling", {})
  7112. if rope_scaling.get("type") == "dynamic":
  7113. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7114. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7115. alpha = rope_scaling.get("alpha", 50)
  7116. base = hparams.get("rope_theta", 10000.0)
  7117. dim = hparams["head_dim"]
  7118. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7119. self.gguf_writer.add_rope_freq_base(scaled_base)
  7120. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7121. self.gguf_writer.add_rope_scaling_factor(1)
  7122. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7123. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7124. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7125. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7126. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7127. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7128. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7129. if name == "lm_head.weight":
  7130. if self.hparams.get("tie_word_embeddings", False):
  7131. logger.info("Skipping tied output layer 'lm_head.weight'")
  7132. return []
  7133. return [(self.map_tensor_name(name), data_torch)]
  7134. @ModelBase.register("SmolLM3ForCausalLM")
  7135. class SmolLM3Model(LlamaModel):
  7136. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7137. def set_vocab(self):
  7138. super().set_vocab()
  7139. # remove unsupported array slicing in chat template
  7140. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7141. from transformers import AutoTokenizer
  7142. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7143. if tokenizer.chat_template is not None:
  7144. chat_template = tokenizer.chat_template.replace("[:]", "")
  7145. self.gguf_writer.add_chat_template(chat_template)
  7146. @ModelBase.register("GptOssForCausalLM")
  7147. class GptOssModel(TextModel):
  7148. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7149. def transform_nibble_layout(self, tensor):
  7150. assert tensor.dtype == torch.uint8
  7151. assert tensor.shape[-1] == 16
  7152. # swap nibbles
  7153. t_lo = tensor & 0x0F
  7154. t_hi = tensor & 0xF0
  7155. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7156. tensor = t_swapped
  7157. # transform aaaa...bbbb... to abababab...
  7158. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7159. # get a_
  7160. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7161. blk_a1 = (blk_a << 4).view(-1, 1)
  7162. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7163. # get _b
  7164. blk_b0 = (blk_b >> 4).view(-1, 1)
  7165. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7166. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7167. # swap once more
  7168. out = blk_a | blk_b
  7169. out_h = out & 0xF0
  7170. out_l = out & 0x0F
  7171. out = (out_h >> 4) | (out_l << 4)
  7172. return out
  7173. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7174. assert blocks.dtype == torch.uint8
  7175. assert scales.dtype == torch.uint8
  7176. scales = scales.unsqueeze(-1)
  7177. assert len(blocks.shape) == 4
  7178. assert len(scales.shape) == 4
  7179. blocks = self.transform_nibble_layout(blocks)
  7180. new_data = torch.concat((scales, blocks), dim=-1)
  7181. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7182. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7183. # flatten last dim
  7184. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7185. new_data = new_data.numpy()
  7186. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7187. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7188. blocks0: Tensor = torch.zeros(1)
  7189. blocks1: Tensor = torch.zeros(1)
  7190. # we assume that tensors are loaded in the correct order
  7191. for name, data_torch in self.get_tensors():
  7192. if "mlp.experts.down_proj_blocks" in name:
  7193. blocks0 = data_torch
  7194. elif "mlp.experts.down_proj_scales" in name:
  7195. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7196. self.repack_mxfp4(new_name, blocks0, data_torch)
  7197. elif "mlp.experts.gate_up_proj_blocks" in name:
  7198. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7199. elif "mlp.experts.gate_up_proj_scales" in name:
  7200. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7201. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7202. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7203. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7204. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7205. return []
  7206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7207. del bid # unused
  7208. if "sinks" in name:
  7209. name += ".weight"
  7210. # correct naming for down_proj
  7211. if "down_proj" in name:
  7212. if name.endswith("_bias"):
  7213. name = name.replace("down_proj_bias", "down_proj.bias")
  7214. elif "_blocks" not in name and "_scales" not in name:
  7215. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7216. name = name.replace("down_proj", "down_proj.weight")
  7217. data_torch = data_torch.transpose(-1, -2)
  7218. else:
  7219. # otherwise, it should already be repacked to ggml MXFP4 format
  7220. return []
  7221. # split the gate_up into gate and up
  7222. if "gate_up_proj" in name:
  7223. if name.endswith("_bias"):
  7224. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7225. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7226. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7227. return [
  7228. (self.map_tensor_name(name_gate), gate_proj_bias),
  7229. (self.map_tensor_name(name_up), up_proj_bias)
  7230. ]
  7231. elif "_blocks" not in name and "_scales" not in name:
  7232. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7233. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7234. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7235. data_torch = data_torch.transpose(-1, -2)
  7236. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7237. return [
  7238. (self.map_tensor_name(name_gate), gate_proj_weight),
  7239. (self.map_tensor_name(name_up), up_proj_weight)
  7240. ]
  7241. else:
  7242. # otherwise, it should already be repacked to ggml MXFP4 format
  7243. return []
  7244. return [(self.map_tensor_name(name), data_torch)]
  7245. def set_vocab(self):
  7246. self._set_vocab_gpt2()
  7247. def set_gguf_parameters(self):
  7248. super().set_gguf_parameters()
  7249. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7250. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7251. rope_scaling = self.hparams.get("rope_scaling") or {}
  7252. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7253. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7254. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7255. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7256. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7257. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7258. class LFM2Model(TextModel):
  7259. model_arch = gguf.MODEL_ARCH.LFM2
  7260. def _add_feed_forward_length(self):
  7261. ff_dim = self.hparams["block_ff_dim"]
  7262. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7263. ff_dim = self.hparams["block_ff_dim"]
  7264. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7265. multiple_of = self.hparams["block_multiple_of"]
  7266. if auto_adjust_ff_dim:
  7267. ff_dim = int(2 * ff_dim / 3)
  7268. # custom dim factor multiplier
  7269. if ffn_dim_multiplier is not None:
  7270. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7271. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7272. self.gguf_writer.add_feed_forward_length(ff_dim)
  7273. def set_gguf_parameters(self):
  7274. # set num_key_value_heads only for attention layers
  7275. self.hparams["num_key_value_heads"] = [
  7276. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7277. for layer_type in self.hparams["layer_types"]
  7278. ]
  7279. super().set_gguf_parameters()
  7280. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7281. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7282. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7283. self._add_feed_forward_length()
  7284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7285. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7286. if is_vision_tensor:
  7287. # skip vision tensors
  7288. return []
  7289. name = name.replace("language_model.", "")
  7290. # conv op requires 2d tensor
  7291. if 'conv.conv' in name:
  7292. data_torch = data_torch.squeeze(1)
  7293. return [(self.map_tensor_name(name), data_torch)]
  7294. @ModelBase.register("Lfm2MoeForCausalLM")
  7295. class LFM2MoeModel(TextModel):
  7296. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7297. def set_gguf_parameters(self):
  7298. # set num_key_value_heads only for attention layers
  7299. self.hparams["num_key_value_heads"] = [
  7300. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7301. for layer_type in self.hparams["layer_types"]
  7302. ]
  7303. super().set_gguf_parameters()
  7304. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7305. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7306. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7307. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7308. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7309. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7310. # cache for experts weights for merging
  7311. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7313. # conv op requires 2d tensor
  7314. if 'conv.conv' in name:
  7315. data_torch = data_torch.squeeze(1)
  7316. if name.endswith(".expert_bias"):
  7317. name = name.replace(".expert_bias", ".expert_bias.bias")
  7318. # merge expert weights
  7319. if 'experts' in name:
  7320. n_experts = self.hparams["num_experts"]
  7321. assert bid is not None
  7322. expert_cache = self._experts_cache.setdefault(bid, {})
  7323. expert_cache[name] = data_torch
  7324. expert_weights = ["w1", "w2", "w3"]
  7325. # not enough expert weights to merge
  7326. if len(expert_cache) < n_experts * len(expert_weights):
  7327. return []
  7328. tensors: list[tuple[str, Tensor]] = []
  7329. for w_name in expert_weights:
  7330. datas: list[Tensor] = []
  7331. for xid in range(n_experts):
  7332. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7333. datas.append(expert_cache[ename])
  7334. del expert_cache[ename]
  7335. data_torch = torch.stack(datas, dim=0)
  7336. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7337. new_name = self.map_tensor_name(merged_name)
  7338. tensors.append((new_name, data_torch))
  7339. del self._experts_cache[bid]
  7340. return tensors
  7341. return [(self.map_tensor_name(name), data_torch)]
  7342. def prepare_tensors(self):
  7343. super().prepare_tensors()
  7344. assert not self._experts_cache
  7345. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7346. class LFM2VLModel(MmprojModel):
  7347. def __init__(self, *args, **kwargs):
  7348. super().__init__(*args, **kwargs)
  7349. assert self.hparams_vision is not None
  7350. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7351. self.hparams_vision["image_size"] = 256
  7352. def set_gguf_parameters(self):
  7353. super().set_gguf_parameters()
  7354. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7355. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7356. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7357. self.gguf_writer.add_vision_use_gelu(True)
  7358. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7359. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7360. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7361. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7362. del bid # unused
  7363. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7364. if is_vision_tensor:
  7365. # remove "model." prefix
  7366. name = name.replace("model.vision_tower.", "vision_tower.")
  7367. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7368. if "patch_embedding.weight" in name:
  7369. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7370. return [(self.map_tensor_name(name), data_torch)]
  7371. return [] # skip other tensors
  7372. @ModelBase.register("SmallThinkerForCausalLM")
  7373. class SmallThinkerModel(TextModel):
  7374. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7375. def set_gguf_parameters(self):
  7376. super().set_gguf_parameters()
  7377. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7378. self.gguf_writer.add_expert_count(n_experts)
  7379. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7380. self.gguf_writer.add_expert_used_count(n_experts_used)
  7381. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7382. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7383. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7384. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7385. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7386. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7387. else:
  7388. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7389. # YaRN is not enabled by default
  7390. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7391. rope_scaling = self.hparams.get("rope_scaling") or {}
  7392. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7393. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7394. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7395. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7396. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7397. if sliding_window_layout:
  7398. for i in sliding_window_layout:
  7399. if i != 0:
  7400. sliding_window = self.hparams.get("sliding_window_size")
  7401. if sliding_window:
  7402. self.gguf_writer.add_sliding_window(sliding_window)
  7403. break
  7404. _experts: list[dict[str, Tensor]] | None = None
  7405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7406. # process the experts separately
  7407. if name.find("experts") != -1:
  7408. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7409. assert bid is not None
  7410. if self._experts is None:
  7411. self._experts = [{} for _ in range(self.block_count)]
  7412. self._experts[bid][name] = data_torch
  7413. if len(self._experts[bid]) >= n_experts * 3:
  7414. tensors: list[tuple[str, Tensor]] = []
  7415. # merge the experts into a single 3d tensor
  7416. for w_name in ["down", "gate", "up"]:
  7417. datas: list[Tensor] = []
  7418. for xid in range(n_experts):
  7419. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7420. datas.append(self._experts[bid][ename])
  7421. del self._experts[bid][ename]
  7422. data_torch = torch.stack(datas, dim=0)
  7423. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7424. new_name = self.map_tensor_name(merged_name)
  7425. tensors.append((new_name, data_torch))
  7426. return tensors
  7427. else:
  7428. return []
  7429. return [(self.map_tensor_name(name), data_torch)]
  7430. def prepare_tensors(self):
  7431. super().prepare_tensors()
  7432. if self._experts is not None:
  7433. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7434. experts = [k for d in self._experts for k in d.keys()]
  7435. if len(experts) > 0:
  7436. raise ValueError(f"Unprocessed experts: {experts}")
  7437. @ModelBase.register("ApertusForCausalLM")
  7438. class ApertusModel(LlamaModel):
  7439. model_arch = gguf.MODEL_ARCH.APERTUS
  7440. undo_permute = False
  7441. _alpha_n = {}
  7442. _alpha_p = {}
  7443. _beta = {}
  7444. _eps = {}
  7445. def modify_tensors(self, data_torch, name, bid):
  7446. # Handle xIELU activation parameters
  7447. n_layers = self.hparams["num_hidden_layers"]
  7448. if name.endswith(".act_fn.alpha_n"):
  7449. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7450. if (len(self._alpha_n) == n_layers):
  7451. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7452. return []
  7453. if name.endswith(".act_fn.alpha_p"):
  7454. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7455. if (len(self._alpha_p) == n_layers):
  7456. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7457. return []
  7458. if name.endswith(".act_fn.beta"):
  7459. self._beta[bid] = data_torch.to("cpu").float().item()
  7460. if (len(self._beta) == n_layers):
  7461. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7462. return []
  7463. if name.endswith(".act_fn.eps"):
  7464. self._eps[bid] = data_torch.to("cpu").float().item()
  7465. if (len(self._eps) == n_layers):
  7466. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7467. return []
  7468. return super().modify_tensors(data_torch, name, bid)
  7469. class MistralModel(LlamaModel):
  7470. model_arch = gguf.MODEL_ARCH.LLAMA
  7471. model_name = "Mistral"
  7472. hf_arch = ""
  7473. is_mistral_format = True
  7474. undo_permute = False
  7475. @staticmethod
  7476. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7477. assert TokenizerVersion is not None, "mistral_common is not installed"
  7478. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7479. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7480. )
  7481. if vocab.tokenizer.version == TokenizerVersion.v1:
  7482. return "mistral-v1"
  7483. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7484. return "mistral-v3"
  7485. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7486. return "mistral-v3-tekken"
  7487. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7488. return "mistral-v7"
  7489. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7490. return "mistral-v7-tekken"
  7491. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7492. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7493. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7494. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7495. else:
  7496. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7497. if is_mistral_format:
  7498. err_message += (
  7499. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7500. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7501. )
  7502. raise ValueError(err_message)
  7503. template_path = templates_dir / template_file
  7504. if not template_path.exists():
  7505. raise FileNotFoundError(f"Template file not found: {template_path}")
  7506. with open(template_path, "r", encoding="utf-8") as f:
  7507. template = f.read()
  7508. return template
  7509. class PixtralModel(LlavaVisionModel):
  7510. model_name = "Pixtral"
  7511. hf_arch = ""
  7512. is_mistral_format = True
  7513. def set_gguf_parameters(self):
  7514. super().set_gguf_parameters()
  7515. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7516. self.gguf_writer.add_vision_attention_layernorm_eps(
  7517. self.find_hparam(["norm_eps"])
  7518. )
  7519. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7520. self.gguf_writer.add_vision_use_silu(True)
  7521. # spatial_merge_size
  7522. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7523. self.gguf_writer.add_vision_spatial_merge_size(
  7524. self.find_vparam(["spatial_merge_size"])
  7525. )
  7526. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7527. if name == "vision_language_adapter.w_in.weight":
  7528. return "mm.1.weight"
  7529. elif name == "vision_language_adapter.w_out.weight":
  7530. return "mm.2.weight"
  7531. return super().map_tensor_name(name, try_suffixes)
  7532. @ModelBase.register("KimiVLForConditionalGeneration")
  7533. class KimiVLModel(MmprojModel):
  7534. def __init__(self, *args, **kwargs):
  7535. super().__init__(*args, **kwargs)
  7536. assert self.hparams_vision is not None
  7537. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7538. def set_gguf_parameters(self):
  7539. super().set_gguf_parameters()
  7540. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7541. self.gguf_writer.add_vision_use_gelu(True)
  7542. self.gguf_writer.add_vision_projector_scale_factor(2)
  7543. # eps is the same as pytorch's default value
  7544. assert self.hparams_vision is not None
  7545. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7546. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7547. del bid # unused
  7548. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7549. if is_vision_tensor:
  7550. if "pos_emb.weight" in name:
  7551. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7552. elif "wqkv" in name:
  7553. split_dim = 0 if "weight" in name else -1
  7554. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7555. return [
  7556. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7557. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7558. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7559. ]
  7560. return [(self.map_tensor_name(name), data_torch)]
  7561. return [] # skip other tensors
  7562. ###### CONVERSION LOGIC ######
  7563. # tree of lazy tensors
  7564. class LazyTorchTensor(gguf.LazyBase):
  7565. _tensor_type = torch.Tensor
  7566. # to keep the type-checker happy
  7567. dtype: torch.dtype
  7568. shape: torch.Size
  7569. # only used when converting a torch.Tensor to a np.ndarray
  7570. _dtype_map: dict[torch.dtype, type] = {
  7571. torch.float16: np.float16,
  7572. torch.float32: np.float32,
  7573. torch.uint8: np.uint8,
  7574. }
  7575. # used for safetensors slices
  7576. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7577. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7578. _dtype_str_map: dict[str, torch.dtype] = {
  7579. "F64": torch.float64,
  7580. "F32": torch.float32,
  7581. "BF16": torch.bfloat16,
  7582. "F16": torch.float16,
  7583. # "U64": torch.uint64,
  7584. "I64": torch.int64,
  7585. # "U32": torch.uint32,
  7586. "I32": torch.int32,
  7587. # "U16": torch.uint16,
  7588. "I16": torch.int16,
  7589. "U8": torch.uint8,
  7590. "I8": torch.int8,
  7591. "BOOL": torch.bool,
  7592. "F8_E4M3": torch.float8_e4m3fn,
  7593. "F8_E5M2": torch.float8_e5m2,
  7594. }
  7595. def numpy(self) -> gguf.LazyNumpyTensor:
  7596. dtype = self._dtype_map[self.dtype]
  7597. return gguf.LazyNumpyTensor(
  7598. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7599. args=(self,),
  7600. func=(lambda s: s.numpy())
  7601. )
  7602. @classmethod
  7603. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7604. return torch.empty(size=shape, dtype=dtype, device="meta")
  7605. @classmethod
  7606. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7607. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7608. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7609. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  7610. return cast(torch.Tensor, lazy)
  7611. @classmethod
  7612. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7613. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7614. shape = remote_tensor.shape
  7615. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7616. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7617. return cast(torch.Tensor, lazy)
  7618. @classmethod
  7619. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7620. del types # unused
  7621. if kwargs is None:
  7622. kwargs = {}
  7623. if func is torch.Tensor.numpy:
  7624. return args[0].numpy()
  7625. return cls._wrap_fn(func)(*args, **kwargs)
  7626. def parse_args() -> argparse.Namespace:
  7627. parser = argparse.ArgumentParser(
  7628. description="Convert a huggingface model to a GGML compatible file")
  7629. parser.add_argument(
  7630. "--vocab-only", action="store_true",
  7631. help="extract only the vocab",
  7632. )
  7633. parser.add_argument(
  7634. "--outfile", type=Path,
  7635. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7636. )
  7637. parser.add_argument(
  7638. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7639. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7640. )
  7641. parser.add_argument(
  7642. "--bigendian", action="store_true",
  7643. help="model is executed on big endian machine",
  7644. )
  7645. parser.add_argument(
  7646. "model", type=str,
  7647. help="directory containing model file or huggingface repository ID (if --remote)",
  7648. nargs="?",
  7649. )
  7650. parser.add_argument(
  7651. "--use-temp-file", action="store_true",
  7652. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7653. )
  7654. parser.add_argument(
  7655. "--no-lazy", action="store_true",
  7656. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7657. )
  7658. parser.add_argument(
  7659. "--model-name", type=str, default=None,
  7660. help="name of the model",
  7661. )
  7662. parser.add_argument(
  7663. "--verbose", action="store_true",
  7664. help="increase output verbosity",
  7665. )
  7666. parser.add_argument(
  7667. "--split-max-tensors", type=int, default=0,
  7668. help="max tensors in each split",
  7669. )
  7670. parser.add_argument(
  7671. "--split-max-size", type=str, default="0",
  7672. help="max size per split N(M|G)",
  7673. )
  7674. parser.add_argument(
  7675. "--dry-run", action="store_true",
  7676. help="only print out a split plan and exit, without writing any new files",
  7677. )
  7678. parser.add_argument(
  7679. "--no-tensor-first-split", action="store_true",
  7680. help="do not add tensors to the first split (disabled by default)"
  7681. )
  7682. parser.add_argument(
  7683. "--metadata", type=Path,
  7684. help="Specify the path for an authorship metadata override file"
  7685. )
  7686. parser.add_argument(
  7687. "--print-supported-models", action="store_true",
  7688. help="Print the supported models"
  7689. )
  7690. parser.add_argument(
  7691. "--remote", action="store_true",
  7692. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7693. )
  7694. parser.add_argument(
  7695. "--mmproj", action="store_true",
  7696. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7697. )
  7698. parser.add_argument(
  7699. "--mistral-format", action="store_true",
  7700. help="Whether the model is stored following the Mistral format.",
  7701. )
  7702. parser.add_argument(
  7703. "--disable-mistral-community-chat-template", action="store_true",
  7704. help=(
  7705. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7706. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7707. )
  7708. )
  7709. parser.add_argument(
  7710. "--sentence-transformers-dense-modules", action="store_true",
  7711. help=("Whether to include sentence-transformers dense modules."
  7712. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  7713. "Default these modules are not included.")
  7714. )
  7715. args = parser.parse_args()
  7716. if not args.print_supported_models and args.model is None:
  7717. parser.error("the following arguments are required: model")
  7718. return args
  7719. def split_str_to_n_bytes(split_str: str) -> int:
  7720. if split_str.endswith("K"):
  7721. n = int(split_str[:-1]) * 1000
  7722. elif split_str.endswith("M"):
  7723. n = int(split_str[:-1]) * 1000 * 1000
  7724. elif split_str.endswith("G"):
  7725. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7726. elif split_str.isnumeric():
  7727. n = int(split_str)
  7728. else:
  7729. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7730. if n < 0:
  7731. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7732. return n
  7733. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7734. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7735. # maybe we should fallback to text model's arch in that case, since not many models have both
  7736. text_config = hparams.get("text_config", {})
  7737. vision_config = hparams.get("vision_config", {})
  7738. arch = None
  7739. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7740. arch = arches[0]
  7741. elif "ssm_cfg" in hparams:
  7742. # For non-hf Mamba and Mamba2 models
  7743. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7744. # if "architectures" is found in the sub-config, use that instead
  7745. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7746. arch = text_config["architectures"][0]
  7747. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7748. arch = vision_config["architectures"][0]
  7749. if arch is None:
  7750. raise ValueError("Failed to detect model architecture")
  7751. return arch
  7752. def main() -> None:
  7753. args = parse_args()
  7754. if args.print_supported_models:
  7755. logger.error("Supported models:")
  7756. ModelBase.print_registered_models()
  7757. sys.exit(0)
  7758. if args.verbose:
  7759. logging.basicConfig(level=logging.DEBUG)
  7760. else:
  7761. logging.basicConfig(level=logging.INFO)
  7762. if args.remote:
  7763. hf_repo_id = args.model
  7764. from huggingface_hub import snapshot_download
  7765. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  7766. if args.sentence_transformers_dense_modules:
  7767. # include sentence-transformers dense modules safetensors files
  7768. allowed_patterns.append("*.safetensors")
  7769. local_dir = snapshot_download(
  7770. repo_id=hf_repo_id,
  7771. allow_patterns=allowed_patterns)
  7772. dir_model = Path(local_dir)
  7773. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7774. else:
  7775. hf_repo_id = None
  7776. dir_model = Path(args.model)
  7777. if not dir_model.is_dir():
  7778. logger.error(f'Error: {dir_model} is not a directory')
  7779. sys.exit(1)
  7780. ftype_map: dict[str, gguf.LlamaFileType] = {
  7781. "f32": gguf.LlamaFileType.ALL_F32,
  7782. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7783. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7784. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7785. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7786. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7787. "auto": gguf.LlamaFileType.GUESSED,
  7788. }
  7789. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7790. if args.use_temp_file and is_split:
  7791. logger.error("Error: Cannot use temp file when splitting")
  7792. sys.exit(1)
  7793. if args.outfile is not None:
  7794. fname_out = args.outfile
  7795. elif hf_repo_id:
  7796. # if remote, use the model ID as the output file name
  7797. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7798. else:
  7799. fname_out = dir_model
  7800. logger.info(f"Loading model: {dir_model.name}")
  7801. if args.mmproj:
  7802. if "mmproj" not in fname_out.name:
  7803. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7804. is_mistral_format = args.mistral_format
  7805. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7806. with torch.inference_mode():
  7807. output_type = ftype_map[args.outtype]
  7808. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7809. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7810. if not is_mistral_format:
  7811. model_architecture = get_model_architecture(hparams, model_type)
  7812. logger.info(f"Model architecture: {model_architecture}")
  7813. try:
  7814. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7815. except NotImplementedError:
  7816. logger.error(f"Model {model_architecture} is not supported")
  7817. sys.exit(1)
  7818. elif args.mmproj:
  7819. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7820. model_class = PixtralModel
  7821. else:
  7822. model_class = MistralModel
  7823. model_instance = model_class(dir_model, output_type, fname_out,
  7824. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7825. eager=args.no_lazy,
  7826. metadata_override=args.metadata, model_name=args.model_name,
  7827. split_max_tensors=args.split_max_tensors,
  7828. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7829. small_first_shard=args.no_tensor_first_split,
  7830. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  7831. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  7832. )
  7833. if args.vocab_only:
  7834. logger.info("Exporting model vocab...")
  7835. model_instance.write_vocab()
  7836. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7837. else:
  7838. logger.info("Exporting model...")
  7839. model_instance.write()
  7840. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7841. logger.info(f"Model successfully exported to {out_path}")
  7842. if __name__ == '__main__':
  7843. main()