| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- #include "llama.h"
- #include "common.h"
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <vector>
- #include <ctype.h>
- #include <filesystem>
- static void print_usage(int, char ** argv) {
- printf("\nexample usage:\n");
- printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm <norm>] [prompt]\n", argv[0]);
- printf("\n");
- printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n");
- printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n");
- printf("\n");
- }
- int main(int argc, char ** argv) {
- std::string model_path;
- std::string prompt = "Hello, my name is";
- int ngl = 0;
- bool embedding_mode = false;
- bool pooling_enabled = false;
- int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
- {
- int i = 1;
- for (; i < argc; i++) {
- if (strcmp(argv[i], "-m") == 0) {
- if (i + 1 < argc) {
- model_path = argv[++i];
- } else {
- print_usage(argc, argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-ngl") == 0) {
- if (i + 1 < argc) {
- try {
- ngl = std::stoi(argv[++i]);
- } catch (...) {
- print_usage(argc, argv);
- return 1;
- }
- } else {
- print_usage(argc, argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-embd-mode") == 0) {
- embedding_mode = true;
- } else if (strcmp(argv[i], "-pooling") == 0) {
- pooling_enabled = true;
- } else if (strcmp(argv[i], "-embd-norm") == 0) {
- if (i + 1 < argc) {
- try {
- embd_norm = std::stoi(argv[++i]);
- } catch (...) {
- print_usage(argc, argv);
- return 1;
- }
- } else {
- print_usage(argc, argv);
- return 1;
- }
- } else {
- // prompt starts here
- break;
- }
- }
- if (model_path.empty()) {
- print_usage(argc, argv);
- return 1;
- }
- if (i < argc) {
- prompt = argv[i++];
- for (; i < argc; i++) {
- prompt += " ";
- prompt += argv[i];
- }
- }
- }
- ggml_backend_load_all();
- llama_model_params model_params = llama_model_default_params();
- model_params.n_gpu_layers = ngl;
- llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- // Extract basename from model_path
- const char * basename = strrchr(model_path.c_str(), '/');
- basename = (basename == NULL) ? model_path.c_str() : basename + 1;
- char model_name[256];
- strncpy(model_name, basename, 255);
- model_name[255] = '\0';
- char * dot = strrchr(model_name, '.');
- if (dot != NULL && strcmp(dot, ".gguf") == 0) {
- *dot = '\0';
- }
- printf("Model name: %s\n", model_name);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
- std::vector<llama_token> prompt_tokens(n_prompt);
- if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
- fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
- return 1;
- }
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.n_ctx = n_prompt;
- ctx_params.n_batch = n_prompt;
- ctx_params.no_perf = false;
- if (embedding_mode) {
- ctx_params.embeddings = true;
- ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE;
- ctx_params.n_ubatch = ctx_params.n_batch;
- }
- llama_context * ctx = llama_init_from_model(model, ctx_params);
- if (ctx == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- printf("Input prompt: \"%s\"\n", prompt.c_str());
- printf("Tokenized prompt (%d tokens): ", n_prompt);
- for (auto id : prompt_tokens) {
- char buf[128];
- int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
- if (n < 0) {
- fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
- return 1;
- }
- std::string s(buf, n);
- printf("%s", s.c_str());
- }
- printf("\n");
- llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
- if (llama_decode(ctx, batch)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- float * data_ptr;
- int data_size;
- const char * type;
- std::vector<float> embd_out;
- if (embedding_mode) {
- const int n_embd = llama_model_n_embd(model);
- const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
- const int n_embeddings = n_embd * n_embd_count;
- float * embeddings;
- type = "-embeddings";
- if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
- embeddings = llama_get_embeddings_seq(ctx, 0);
- embd_out.resize(n_embeddings);
- printf("Normalizing embeddings using norm: %d\n", embd_norm);
- common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm);
- embeddings = embd_out.data();
- } else {
- embeddings = llama_get_embeddings(ctx);
- }
- printf("Embedding dimension: %d\n", n_embd);
- printf("\n");
- // Print embeddings in the specified format
- for (int j = 0; j < n_embd_count; j++) {
- printf("embedding %d: ", j);
- // Print first 3 values
- for (int i = 0; i < 3 && i < n_embd; i++) {
- printf("%9.6f ", embeddings[j * n_embd + i]);
- }
- printf(" ... ");
- // Print last 3 values
- for (int i = n_embd - 3; i < n_embd; i++) {
- if (i >= 0) {
- printf("%9.6f ", embeddings[j * n_embd + i]);
- }
- }
- printf("\n");
- }
- printf("\n");
- printf("Embeddings size: %d\n", n_embeddings);
- data_ptr = embeddings;
- data_size = n_embeddings;
- } else {
- float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
- const int n_logits = llama_vocab_n_tokens(vocab);
- type = "";
- printf("Vocab size: %d\n", n_logits);
- data_ptr = logits;
- data_size = n_logits;
- }
- std::filesystem::create_directory("data");
- // Save data to binary file
- char bin_filename[512];
- snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
- printf("Saving data to %s\n", bin_filename);
- FILE * f = fopen(bin_filename, "wb");
- if (f == NULL) {
- fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
- return 1;
- }
- fwrite(data_ptr, sizeof(float), data_size, f);
- fclose(f);
- // Also save as text for debugging
- char txt_filename[512];
- snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type);
- f = fopen(txt_filename, "w");
- if (f == NULL) {
- fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
- return 1;
- }
- for (int i = 0; i < data_size; i++) {
- fprintf(f, "%d: %.6f\n", i, data_ptr[i]);
- }
- fclose(f);
- if (!embedding_mode) {
- printf("First 10 logits: ");
- for (int i = 0; i < 10 && i < data_size; i++) {
- printf("%.6f ", data_ptr[i]);
- }
- printf("\n");
- printf("Last 10 logits: ");
- for (int i = data_size - 10; i < data_size; i++) {
- if (i >= 0) printf("%.6f ", data_ptr[i]);
- }
- printf("\n\n");
- }
- printf("Data saved to %s\n", bin_filename);
- printf("Data saved to %s\n", txt_filename);
- llama_free(ctx);
- llama_model_free(model);
- return 0;
- }
|