| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- #!/usr/bin/env python3
- import argparse
- import os
- import importlib
- import torch
- import numpy as np
- from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
- from pathlib import Path
- unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
- parser = argparse.ArgumentParser(description='Process model with specified path')
- parser.add_argument('--model-path', '-m', help='Path to the model')
- args = parser.parse_args()
- model_path = os.environ.get('MODEL_PATH', args.model_path)
- if model_path is None:
- parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
- config = AutoConfig.from_pretrained(model_path)
- print("Model type: ", config.model_type)
- print("Vocab size: ", config.vocab_size)
- print("Hidden size: ", config.hidden_size)
- print("Number of layers: ", config.num_hidden_layers)
- print("BOS token id: ", config.bos_token_id)
- print("EOS token id: ", config.eos_token_id)
- print("Loading model and tokenizer using AutoTokenizer:", model_path)
- tokenizer = AutoTokenizer.from_pretrained(model_path)
- if unreleased_model_name:
- model_name_lower = unreleased_model_name.lower()
- unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
- class_name = f"{unreleased_model_name}ForCausalLM"
- print(f"Importing unreleased model module: {unreleased_module_path}")
- try:
- model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
- model = model_class.from_pretrained(model_path)
- except (ImportError, AttributeError) as e:
- print(f"Failed to import or load model: {e}")
- print("Falling back to AutoModelForCausalLM")
- model = AutoModelForCausalLM.from_pretrained(model_path)
- else:
- model = AutoModelForCausalLM.from_pretrained(model_path)
- print(f"Model class: {type(model)}")
- #print(f"Model file: {type(model).__module__}")
- model_name = os.path.basename(model_path)
- print(f"Model name: {model_name}")
- prompt = "Hello world today"
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids
- print(f"Input tokens: {input_ids}")
- print(f"Input text: {repr(prompt)}")
- print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
- with torch.no_grad():
- outputs = model(input_ids, output_hidden_states=True)
- # Extract hidden states from the last layer
- # outputs.hidden_states is a tuple of (num_layers + 1) tensors
- # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
- last_hidden_states = outputs.hidden_states[-1]
- # Get embeddings for all tokens
- token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
- print(f"Hidden states shape: {last_hidden_states.shape}")
- print(f"Token embeddings shape: {token_embeddings.shape}")
- print(f"Hidden dimension: {token_embeddings.shape[-1]}")
- print(f"Number of tokens: {token_embeddings.shape[0]}")
- # Save raw token embeddings
- data_dir = Path("data")
- data_dir.mkdir(exist_ok=True)
- bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
- txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
- # Save all token embeddings as binary
- print(token_embeddings)
- token_embeddings.astype(np.float32).tofile(bin_filename)
- # Save as text for inspection
- with open(txt_filename, "w") as f:
- for i, embedding in enumerate(token_embeddings):
- for j, val in enumerate(embedding):
- f.write(f"{i} {j} {val:.6f}\n")
- # Print embeddings per token in the requested format
- print("\nToken embeddings:")
- tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
- for i, embedding in enumerate(token_embeddings):
- # Format: show first few values, ..., then last few values
- if len(embedding) > 10:
- # Show first 3 and last 3 values with ... in between
- first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
- last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
- print(f"embedding {i}: {first_vals} ... {last_vals}")
- else:
- # If embedding is short, show all values
- vals = " ".join(f"{val:8.6f}" for val in embedding)
- print(f"embedding {i}: {vals}")
- # Also show token info for reference
- print(f"\nToken reference:")
- for i, token in enumerate(tokens):
- print(f" Token {i}: {repr(token)}")
- print(f"Saved bin logits to: {bin_filename}")
- print(f"Saved txt logist to: {txt_filename}")
|