metadata.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. from __future__ import annotations
  2. import re
  3. import json
  4. import yaml
  5. import logging
  6. from pathlib import Path
  7. from typing import Any, Literal, Optional
  8. from dataclasses import dataclass
  9. from .constants import Keys
  10. import gguf
  11. logger = logging.getLogger("metadata")
  12. @dataclass
  13. class Metadata:
  14. # Authorship Metadata to be written to GGUF KV Store
  15. name: Optional[str] = None
  16. author: Optional[str] = None
  17. version: Optional[str] = None
  18. organization: Optional[str] = None
  19. finetune: Optional[str] = None
  20. basename: Optional[str] = None
  21. description: Optional[str] = None
  22. quantized_by: Optional[str] = None
  23. size_label: Optional[str] = None
  24. url: Optional[str] = None
  25. doi: Optional[str] = None
  26. uuid: Optional[str] = None
  27. repo_url: Optional[str] = None
  28. source_url: Optional[str] = None
  29. source_doi: Optional[str] = None
  30. source_uuid: Optional[str] = None
  31. source_repo_url: Optional[str] = None
  32. license: Optional[str] = None
  33. license_name: Optional[str] = None
  34. license_link: Optional[str] = None
  35. base_models: Optional[list[dict]] = None
  36. tags: Optional[list[str]] = None
  37. languages: Optional[list[str]] = None
  38. datasets: Optional[list[dict]] = None
  39. @staticmethod
  40. def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
  41. # This grabs as many contextual authorship metadata as possible from the model repository
  42. # making any conversion as required to match the gguf kv store metadata format
  43. # as well as giving users the ability to override any authorship metadata that may be incorrect
  44. # Create a new Metadata instance
  45. metadata = Metadata()
  46. model_card = Metadata.load_model_card(model_path)
  47. hf_params = Metadata.load_hf_parameters(model_path)
  48. # TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
  49. # heuristics
  50. metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
  51. # Metadata Override File Provided
  52. # This is based on LLM_KV_NAMES mapping in llama.cpp
  53. metadata_override = Metadata.load_metadata_override(metadata_override_path)
  54. metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
  55. metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
  56. metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
  57. metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization)
  58. metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune)
  59. metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename)
  60. metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description)
  61. metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by)
  62. metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label)
  63. metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name)
  64. metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link)
  65. metadata.url = metadata_override.get(Keys.General.URL, metadata.url)
  66. metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi)
  67. metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid)
  68. metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url)
  69. metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url)
  70. metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi)
  71. metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid)
  72. metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url)
  73. # Base Models is received here as an array of models
  74. metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
  75. # Datasets is received here as an array of datasets
  76. metadata.datasets = metadata_override.get("general.datasets", metadata.datasets)
  77. metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
  78. metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
  79. # Direct Metadata Override (via direct cli argument)
  80. if model_name is not None:
  81. metadata.name = model_name
  82. return metadata
  83. @staticmethod
  84. def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]:
  85. if metadata_override_path is None or not metadata_override_path.is_file():
  86. return {}
  87. with open(metadata_override_path, "r", encoding="utf-8") as f:
  88. return json.load(f)
  89. @staticmethod
  90. def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
  91. if model_path is None or not model_path.is_dir():
  92. return {}
  93. model_card_path = model_path / "README.md"
  94. if not model_card_path.is_file():
  95. return {}
  96. # The model card metadata is assumed to always be in YAML (frontmatter)
  97. # ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
  98. yaml_content: str = ""
  99. with open(model_card_path, "r", encoding="utf-8") as f:
  100. content = f.read()
  101. lines = content.splitlines()
  102. lines_yaml = []
  103. if len(lines) == 0:
  104. # Empty file
  105. return {}
  106. if len(lines) > 0 and lines[0] != "---":
  107. # No frontmatter
  108. return {}
  109. for line in lines[1:]:
  110. if line == "---":
  111. break # End of frontmatter
  112. else:
  113. lines_yaml.append(line)
  114. yaml_content = "\n".join(lines_yaml) + "\n"
  115. # Quick hack to fix the Norway problem
  116. # https://hitchdev.com/strictyaml/why/implicit-typing-removed/
  117. yaml_content = yaml_content.replace("- no\n", "- \"no\"\n")
  118. # yaml should use 2 spaces insted of tab
  119. # this issue has came up with the Qwen/Qwen3-235B-A22B-Instruct-2507 model card
  120. # (I've also sent a pr tp fix the modelcard too)
  121. yaml_content = yaml_content.replace("\t", " ")
  122. if yaml_content:
  123. data = yaml.safe_load(yaml_content)
  124. if isinstance(data, dict):
  125. return data
  126. else:
  127. logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict")
  128. return {}
  129. else:
  130. return {}
  131. @staticmethod
  132. def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:
  133. if model_path is None or not model_path.is_dir():
  134. return {}
  135. config_path = model_path / "config.json"
  136. if not config_path.is_file():
  137. return {}
  138. with open(config_path, "r", encoding="utf-8") as f:
  139. return json.load(f)
  140. @staticmethod
  141. def id_to_title(string):
  142. # Convert capitalization into title form unless acronym or version number
  143. return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()])
  144. @staticmethod
  145. def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]:
  146. # Huggingface often store model id as '<org>/<model name>'
  147. # so let's parse it and apply some heuristics if possible for model name components
  148. if model_id is None:
  149. # model ID missing
  150. return None, None, None, None, None, None
  151. if ' ' in model_id:
  152. # model ID is actually a normal human sentence
  153. # which means its most likely a normal model name only
  154. # not part of the hugging face naming standard, but whatever
  155. return model_id, None, None, None, None, None
  156. if '/' in model_id:
  157. # model ID (huggingface style)
  158. org_component, model_full_name_component = model_id.split('/', 1)
  159. else:
  160. # model ID but missing org components
  161. org_component, model_full_name_component = None, model_id
  162. # Check if we erroneously matched against './' or '../' etc...
  163. if org_component is not None and len(org_component) > 0 and org_component[0] == '.':
  164. org_component = None
  165. name_parts: list[str] = model_full_name_component.split('-')
  166. # Remove empty parts
  167. for i in reversed(range(len(name_parts))):
  168. if len(name_parts[i]) == 0:
  169. del name_parts[i]
  170. name_types: list[
  171. set[Literal["basename", "size_label", "finetune", "version", "type"]]
  172. ] = [set() for _ in name_parts]
  173. # Annotate the name
  174. for i, part in enumerate(name_parts):
  175. # Version
  176. if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE):
  177. name_types[i].add("version")
  178. # Quant type (should not be there for base models, but still annotated)
  179. elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE):
  180. name_types[i].add("type")
  181. name_parts[i] = part.upper()
  182. # Model size
  183. elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE):
  184. part = part.replace("_", ".")
  185. # Handle weird bloom-7b1 notation
  186. if part[-1].isdecimal():
  187. part = part[:-2] + "." + part[-1] + part[-2]
  188. # Normalize the size suffixes
  189. if len(part) > 1 and part[-2].isdecimal():
  190. if part[-1] in "kmbt":
  191. part = part[:-1] + part[-1].upper()
  192. if total_params != 0:
  193. try:
  194. label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1]))
  195. # Only use it as a size label if it's close or bigger than the model size
  196. # Note that LoRA adapters don't necessarily include all layers,
  197. # so this is why bigger label sizes are accepted.
  198. # Do not use the size label when it's smaller than 1/8 of the model size
  199. if (total_params < 0 and label_params < abs(total_params) // 8) or (
  200. # Check both directions when the current model isn't a LoRA adapter
  201. total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8
  202. ):
  203. # Likely a context length
  204. name_types[i].add("finetune")
  205. # Lowercase the size when it's a context length
  206. part = part[:-1] + part[-1].lower()
  207. except ValueError:
  208. # Failed to convert the size label to float, use it anyway
  209. pass
  210. if len(name_types[i]) == 0:
  211. name_types[i].add("size_label")
  212. name_parts[i] = part
  213. # Some easy to recognize finetune names
  214. elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
  215. if total_params < 0 and part.lower() == "lora":
  216. # ignore redundant "lora" in the finetune part when the output is a lora adapter
  217. name_types[i].add("type")
  218. else:
  219. name_types[i].add("finetune")
  220. # Ignore word-based size labels when there is at least a number-based one present
  221. # TODO: should word-based size labels always be removed instead?
  222. if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n):
  223. for n, t in zip(name_parts, name_types):
  224. if "size_label" in t:
  225. if all(c.isalpha() for c in n):
  226. t.remove("size_label")
  227. at_start = True
  228. # Find the basename through the annotated name
  229. for part, t in zip(name_parts, name_types):
  230. if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t):
  231. t.add("basename")
  232. else:
  233. if at_start:
  234. at_start = False
  235. if len(t) == 0:
  236. t.add("finetune")
  237. # Remove the basename annotation from trailing version
  238. for part, t in zip(reversed(name_parts), reversed(name_types)):
  239. if "basename" in t and len(t) > 1:
  240. t.remove("basename")
  241. else:
  242. break
  243. basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
  244. # Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys)
  245. size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None
  246. finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
  247. # TODO: should the basename version always be excluded?
  248. # NOTE: multiple finetune versions are joined together
  249. version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None
  250. if size_label is None and finetune is None and version is None:
  251. # Too ambiguous, output nothing
  252. basename = None
  253. return model_full_name_component, org_component, basename, finetune, version, size_label
  254. @staticmethod
  255. def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata:
  256. # Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
  257. # Model Card Heuristics
  258. ########################
  259. if model_card is not None:
  260. def use_model_card_metadata(metadata_key: str, model_card_key: str):
  261. if model_card_key in model_card and getattr(metadata, metadata_key, None) is None:
  262. setattr(metadata, metadata_key, model_card.get(model_card_key))
  263. def use_array_model_card_metadata(metadata_key: str, model_card_key: str):
  264. # Note: Will append rather than replace if already exist
  265. tags_value = model_card.get(model_card_key, None)
  266. if tags_value is None:
  267. return
  268. current_value = getattr(metadata, metadata_key, None)
  269. if current_value is None:
  270. current_value = []
  271. if isinstance(tags_value, str):
  272. current_value.append(tags_value)
  273. elif isinstance(tags_value, list):
  274. current_value.extend(tags_value)
  275. setattr(metadata, metadata_key, current_value)
  276. # LLAMA.cpp's direct internal convention
  277. # (Definitely not part of hugging face formal/informal standard)
  278. #########################################
  279. use_model_card_metadata("name", "name")
  280. use_model_card_metadata("author", "author")
  281. use_model_card_metadata("version", "version")
  282. use_model_card_metadata("organization", "organization")
  283. use_model_card_metadata("description", "description")
  284. use_model_card_metadata("finetune", "finetune")
  285. use_model_card_metadata("basename", "basename")
  286. use_model_card_metadata("size_label", "size_label")
  287. use_model_card_metadata("source_url", "url")
  288. use_model_card_metadata("source_doi", "doi")
  289. use_model_card_metadata("source_uuid", "uuid")
  290. use_model_card_metadata("source_repo_url", "repo_url")
  291. # LLAMA.cpp's huggingface style convention
  292. # (Definitely not part of hugging face formal/informal standard... but with model_ appended to match their style)
  293. ###########################################
  294. use_model_card_metadata("name", "model_name")
  295. use_model_card_metadata("author", "model_author")
  296. use_model_card_metadata("version", "model_version")
  297. use_model_card_metadata("organization", "model_organization")
  298. use_model_card_metadata("description", "model_description")
  299. use_model_card_metadata("finetune", "model_finetune")
  300. use_model_card_metadata("basename", "model_basename")
  301. use_model_card_metadata("size_label", "model_size_label")
  302. use_model_card_metadata("source_url", "model_url")
  303. use_model_card_metadata("source_doi", "model_doi")
  304. use_model_card_metadata("source_uuid", "model_uuid")
  305. use_model_card_metadata("source_repo_url", "model_repo_url")
  306. # Hugging Face Direct Convention
  307. #################################
  308. # Not part of huggingface model card standard but notice some model creator using it
  309. # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
  310. use_model_card_metadata("name", "model_name")
  311. use_model_card_metadata("author", "model_creator")
  312. use_model_card_metadata("basename", "model_type")
  313. if "base_model" in model_card or "base_models" in model_card or "base_model_sources" in model_card:
  314. # This represents the parent models that this is based on
  315. # Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
  316. # Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
  317. metadata_base_models = []
  318. base_model_value = model_card.get("base_model", model_card.get("base_models", model_card.get("base_model_sources", None)))
  319. if base_model_value is not None:
  320. if isinstance(base_model_value, str):
  321. metadata_base_models.append(base_model_value)
  322. elif isinstance(base_model_value, list):
  323. metadata_base_models.extend(base_model_value)
  324. if metadata.base_models is None:
  325. metadata.base_models = []
  326. for model_id in metadata_base_models:
  327. # NOTE: model size of base model is assumed to be similar to the size of the current model
  328. base_model = {}
  329. if isinstance(model_id, str):
  330. if model_id.startswith("http://") or model_id.startswith("https://") or model_id.startswith("ssh://"):
  331. base_model["repo_url"] = model_id
  332. # Check if Hugging Face ID is present in URL
  333. if "huggingface.co" in model_id:
  334. match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", model_id)
  335. if match:
  336. model_id_component = match.group(1)
  337. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id_component, total_params)
  338. # Populate model dictionary with extracted components
  339. if model_full_name_component is not None:
  340. base_model["name"] = Metadata.id_to_title(model_full_name_component)
  341. if org_component is not None:
  342. base_model["organization"] = Metadata.id_to_title(org_component)
  343. if version is not None:
  344. base_model["version"] = version
  345. else:
  346. # Likely a Hugging Face ID
  347. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
  348. # Populate model dictionary with extracted components
  349. if model_full_name_component is not None:
  350. base_model["name"] = Metadata.id_to_title(model_full_name_component)
  351. if org_component is not None:
  352. base_model["organization"] = Metadata.id_to_title(org_component)
  353. if version is not None:
  354. base_model["version"] = version
  355. if org_component is not None and model_full_name_component is not None:
  356. base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
  357. elif isinstance(model_id, dict):
  358. base_model = model_id
  359. else:
  360. logger.error(f"base model entry '{str(model_id)}' not in a known format")
  361. metadata.base_models.append(base_model)
  362. if "datasets" in model_card or "dataset" in model_card or "dataset_sources" in model_card:
  363. # This represents the datasets that this was trained from
  364. metadata_datasets = []
  365. dataset_value = model_card.get("datasets", model_card.get("dataset", model_card.get("dataset_sources", None)))
  366. if dataset_value is not None:
  367. if isinstance(dataset_value, str):
  368. metadata_datasets.append(dataset_value)
  369. elif isinstance(dataset_value, list):
  370. metadata_datasets.extend(dataset_value)
  371. if metadata.datasets is None:
  372. metadata.datasets = []
  373. for dataset_id in metadata_datasets:
  374. # NOTE: model size of base model is assumed to be similar to the size of the current model
  375. dataset = {}
  376. if isinstance(dataset_id, str):
  377. if dataset_id.startswith(("http://", "https://", "ssh://")):
  378. dataset["repo_url"] = dataset_id
  379. # Check if Hugging Face ID is present in URL
  380. if "huggingface.co" in dataset_id:
  381. match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", dataset_id)
  382. if match:
  383. dataset_id_component = match.group(1)
  384. dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id_component, total_params)
  385. # Populate dataset dictionary with extracted components
  386. if dataset_name_component is not None:
  387. dataset["name"] = Metadata.id_to_title(dataset_name_component)
  388. if org_component is not None:
  389. dataset["organization"] = Metadata.id_to_title(org_component)
  390. if version is not None:
  391. dataset["version"] = version
  392. else:
  393. # Likely a Hugging Face ID
  394. dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id, total_params)
  395. # Populate dataset dictionary with extracted components
  396. if dataset_name_component is not None:
  397. dataset["name"] = Metadata.id_to_title(dataset_name_component)
  398. if org_component is not None:
  399. dataset["organization"] = Metadata.id_to_title(org_component)
  400. if version is not None:
  401. dataset["version"] = version
  402. if org_component is not None and dataset_name_component is not None:
  403. dataset["repo_url"] = f"https://huggingface.co/{org_component}/{dataset_name_component}"
  404. elif isinstance(dataset_id, dict):
  405. dataset = dataset_id
  406. else:
  407. logger.error(f"dataset entry '{str(dataset_id)}' not in a known format")
  408. metadata.datasets.append(dataset)
  409. use_model_card_metadata("license", "license")
  410. use_model_card_metadata("license_name", "license_name")
  411. use_model_card_metadata("license_link", "license_link")
  412. use_array_model_card_metadata("tags", "tags")
  413. use_array_model_card_metadata("tags", "pipeline_tag")
  414. use_array_model_card_metadata("languages", "languages")
  415. use_array_model_card_metadata("languages", "language")
  416. # Hugging Face Parameter Heuristics
  417. ####################################
  418. if hf_params is not None:
  419. hf_name_or_path = hf_params.get("_name_or_path")
  420. if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1:
  421. # Use _name_or_path only if its actually a model name and not some computer path
  422. # e.g. 'meta-llama/Llama-2-7b-hf'
  423. model_id = hf_name_or_path
  424. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
  425. if metadata.name is None and model_full_name_component is not None:
  426. metadata.name = Metadata.id_to_title(model_full_name_component)
  427. if metadata.organization is None and org_component is not None:
  428. metadata.organization = Metadata.id_to_title(org_component)
  429. if metadata.basename is None and basename is not None:
  430. metadata.basename = basename
  431. if metadata.finetune is None and finetune is not None:
  432. metadata.finetune = finetune
  433. if metadata.version is None and version is not None:
  434. metadata.version = version
  435. if metadata.size_label is None and size_label is not None:
  436. metadata.size_label = size_label
  437. # Directory Folder Name Fallback Heuristics
  438. ############################################
  439. if model_path is not None:
  440. model_id = model_path.name
  441. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
  442. if metadata.name is None and model_full_name_component is not None:
  443. metadata.name = Metadata.id_to_title(model_full_name_component)
  444. if metadata.organization is None and org_component is not None:
  445. metadata.organization = Metadata.id_to_title(org_component)
  446. if metadata.basename is None and basename is not None:
  447. metadata.basename = basename
  448. if metadata.finetune is None and finetune is not None:
  449. metadata.finetune = finetune
  450. if metadata.version is None and version is not None:
  451. metadata.version = version
  452. if metadata.size_label is None and size_label is not None:
  453. metadata.size_label = size_label
  454. return metadata
  455. def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
  456. assert self.name is not None
  457. gguf_writer.add_name(self.name)
  458. if self.author is not None:
  459. gguf_writer.add_author(self.author)
  460. if self.version is not None:
  461. gguf_writer.add_version(self.version)
  462. if self.organization is not None:
  463. gguf_writer.add_organization(self.organization)
  464. if self.finetune is not None:
  465. gguf_writer.add_finetune(self.finetune)
  466. if self.basename is not None:
  467. gguf_writer.add_basename(self.basename)
  468. if self.description is not None:
  469. gguf_writer.add_description(self.description)
  470. if self.quantized_by is not None:
  471. gguf_writer.add_quantized_by(self.quantized_by)
  472. if self.size_label is not None:
  473. gguf_writer.add_size_label(self.size_label)
  474. if self.license is not None:
  475. if isinstance(self.license, list):
  476. gguf_writer.add_license(",".join(self.license))
  477. else:
  478. gguf_writer.add_license(self.license)
  479. if self.license_name is not None:
  480. gguf_writer.add_license_name(self.license_name)
  481. if self.license_link is not None:
  482. gguf_writer.add_license_link(self.license_link)
  483. if self.url is not None:
  484. gguf_writer.add_url(self.url)
  485. if self.doi is not None:
  486. gguf_writer.add_doi(self.doi)
  487. if self.uuid is not None:
  488. gguf_writer.add_uuid(self.uuid)
  489. if self.repo_url is not None:
  490. gguf_writer.add_repo_url(self.repo_url)
  491. if self.source_url is not None:
  492. gguf_writer.add_source_url(self.source_url)
  493. if self.source_doi is not None:
  494. gguf_writer.add_source_doi(self.source_doi)
  495. if self.source_uuid is not None:
  496. gguf_writer.add_source_uuid(self.source_uuid)
  497. if self.source_repo_url is not None:
  498. gguf_writer.add_source_repo_url(self.source_repo_url)
  499. if self.base_models is not None:
  500. gguf_writer.add_base_model_count(len(self.base_models))
  501. for key, base_model_entry in enumerate(self.base_models):
  502. if "name" in base_model_entry:
  503. gguf_writer.add_base_model_name(key, base_model_entry["name"])
  504. if "author" in base_model_entry:
  505. gguf_writer.add_base_model_author(key, base_model_entry["author"])
  506. if "version" in base_model_entry:
  507. gguf_writer.add_base_model_version(key, base_model_entry["version"])
  508. if "organization" in base_model_entry:
  509. gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
  510. if "description" in base_model_entry:
  511. gguf_writer.add_base_model_description(key, base_model_entry["description"])
  512. if "url" in base_model_entry:
  513. gguf_writer.add_base_model_url(key, base_model_entry["url"])
  514. if "doi" in base_model_entry:
  515. gguf_writer.add_base_model_doi(key, base_model_entry["doi"])
  516. if "uuid" in base_model_entry:
  517. gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"])
  518. if "repo_url" in base_model_entry:
  519. gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
  520. if self.datasets is not None:
  521. gguf_writer.add_dataset_count(len(self.datasets))
  522. for key, dataset_entry in enumerate(self.datasets):
  523. if "name" in dataset_entry:
  524. gguf_writer.add_dataset_name(key, dataset_entry["name"])
  525. if "author" in dataset_entry:
  526. gguf_writer.add_dataset_author(key, dataset_entry["author"])
  527. if "version" in dataset_entry:
  528. gguf_writer.add_dataset_version(key, dataset_entry["version"])
  529. if "organization" in dataset_entry:
  530. gguf_writer.add_dataset_organization(key, dataset_entry["organization"])
  531. if "description" in dataset_entry:
  532. gguf_writer.add_dataset_description(key, dataset_entry["description"])
  533. if "url" in dataset_entry:
  534. gguf_writer.add_dataset_url(key, dataset_entry["url"])
  535. if "doi" in dataset_entry:
  536. gguf_writer.add_dataset_doi(key, dataset_entry["doi"])
  537. if "uuid" in dataset_entry:
  538. gguf_writer.add_dataset_uuid(key, dataset_entry["uuid"])
  539. if "repo_url" in dataset_entry:
  540. gguf_writer.add_dataset_repo_url(key, dataset_entry["repo_url"])
  541. if self.tags is not None:
  542. gguf_writer.add_tags(self.tags)
  543. if self.languages is not None:
  544. gguf_writer.add_languages(self.languages)