| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import logging
- import argparse
- import os
- import re
- import sys
- from pathlib import Path
- from typing import Any
- # Necessary to load the local gguf package
- if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
- sys.path.insert(0, str(Path(__file__).parent.parent.parent))
- from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
- logger = logging.getLogger("gguf-dump")
- def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
- file_endian = reader.endianess.name
- if reader.byte_order == 'S':
- host_endian = 'BIG' if file_endian == 'LITTLE' else 'LITTLE'
- else:
- host_endian = file_endian
- return (host_endian, file_endian)
- # For more information about what field.parts and field.data represent,
- # please see the comments in the modify_gguf.py example.
- def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
- host_endian, file_endian = get_file_host_endian(reader)
- print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
- print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
- for n, field in enumerate(reader.fields.values(), 1):
- if not field.types:
- pretty_type = 'N/A'
- elif field.types[0] == GGUFValueType.ARRAY:
- nest_count = len(field.types) - 1
- pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
- else:
- pretty_type = str(field.types[-1].name)
- log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
- if field.types:
- curr_type = field.types[0]
- if curr_type == GGUFValueType.STRING:
- content = field.contents()
- if len(content) > 60:
- content = content[:57] + '...'
- log_message += ' = {0}'.format(repr(content))
- elif curr_type in reader.gguf_scalar_to_np:
- log_message += ' = {0}'.format(field.contents())
- else:
- content = repr(field.contents(slice(6)))
- if len(field.data) > 6:
- content = content[:-1] + ', ...]'
- log_message += ' = {0}'.format(content)
- print(log_message) # noqa: NP100
- if args.no_tensors:
- return
- print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
- for n, tensor in enumerate(reader.tensors, 1):
- prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
- print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
- def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
- import json
- host_endian, file_endian = get_file_host_endian(reader)
- metadata: dict[str, Any] = {}
- tensors: dict[str, Any] = {}
- result = {
- "filename": args.model,
- "endian": file_endian,
- "metadata": metadata,
- "tensors": tensors,
- }
- for idx, field in enumerate(reader.fields.values()):
- curr: dict[str, Any] = {
- "index": idx,
- "type": field.types[0].name if field.types else 'UNKNOWN',
- "offset": field.offset,
- }
- metadata[field.name] = curr
- if field.types[:1] == [GGUFValueType.ARRAY]:
- curr["array_types"] = [t.name for t in field.types][1:]
- if not args.json_array:
- continue
- curr["value"] = field.contents()
- else:
- curr["value"] = field.contents()
- if not args.no_tensors:
- for idx, tensor in enumerate(reader.tensors):
- tensors[tensor.name] = {
- "index": idx,
- "shape": tensor.shape.tolist(),
- "type": tensor.tensor_type.name,
- "offset": tensor.field.offset,
- }
- json.dump(result, sys.stdout)
- def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
- # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
- # Alignment Utility Function
- def strAlign(padding: int, alignMode: str | None, strVal: str):
- if alignMode == 'center':
- return strVal.center(padding)
- elif alignMode == 'right':
- return strVal.rjust(padding - 1) + ' '
- elif alignMode == 'left':
- return ' ' + strVal.ljust(padding - 1)
- else: # default left
- return ' ' + strVal.ljust(padding - 1)
- def dashAlign(padding: int, alignMode: str | None):
- if alignMode == 'center':
- return ':' + '-' * (padding - 2) + ':'
- elif alignMode == 'right':
- return '-' * (padding - 1) + ':'
- elif alignMode == 'left':
- return ':' + '-' * (padding - 1)
- else: # default left
- return '-' * (padding)
- # Calculate Padding For Each Column Based On Header and Data Length
- rowsPadding = {}
- for index, columnEntry in enumerate(header_map):
- padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
- headerPadCount = len(columnEntry['header_name']) + 2
- rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
- # Render Markdown Header
- rows = []
- rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
- rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
- # Render Tabular Data
- for item in data:
- rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
- # Convert Tabular String Rows Into String
- tableString = ""
- for row in rows:
- tableString += f'|{row}|\n'
- return tableString
- def element_count_rounded_notation(count: int) -> str:
- if count > 1e15 :
- # Quadrillion
- scaled_amount = count * 1e-15
- scale_suffix = "Q"
- elif count > 1e12 :
- # Trillions
- scaled_amount = count * 1e-12
- scale_suffix = "T"
- elif count > 1e9 :
- # Billions
- scaled_amount = count * 1e-9
- scale_suffix = "B"
- elif count > 1e6 :
- # Millions
- scaled_amount = count * 1e-6
- scale_suffix = "M"
- elif count > 1e3 :
- # Thousands
- scaled_amount = count * 1e-3
- scale_suffix = "K"
- else:
- # Under Thousands
- scaled_amount = count
- scale_suffix = ""
- return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
- def translate_tensor_name(name):
- words = name.split(".")
- # Source: https://github.com/ggml-org/ggml/blob/master/docs/gguf.md#standardized-tensor-names
- abbreviation_dictionary = {
- 'token_embd': 'Token embedding',
- 'pos_embd': 'Position embedding',
- 'output_norm': 'Output normalization',
- 'output': 'Output',
- 'attn_norm': 'Attention normalization',
- 'attn_norm_2': 'Attention normalization',
- 'attn_qkv': 'Attention query-key-value',
- 'attn_q': 'Attention query',
- 'attn_k': 'Attention key',
- 'attn_v': 'Attention value',
- 'attn_output': 'Attention output',
- 'ffn_norm': 'Feed-forward network normalization',
- 'ffn_up': 'Feed-forward network "up"',
- 'ffn_gate': 'Feed-forward network "gate"',
- 'ffn_down': 'Feed-forward network "down"',
- 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
- 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
- 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
- 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
- 'ssm_in': 'State space model input projections',
- 'ssm_conv1d': 'State space model rolling/shift',
- 'ssm_x': 'State space model selective parametrization',
- 'ssm_a': 'State space model state compression',
- 'ssm_d': 'State space model skip connection',
- 'ssm_dt': 'State space model time step',
- 'ssm_out': 'State space model output projection',
- 'blk': 'Block',
- 'enc': 'Encoder',
- 'dec': 'Decoder',
- }
- expanded_words = []
- for word in words:
- word_norm = word.strip().lower()
- if word_norm in abbreviation_dictionary:
- expanded_words.append(abbreviation_dictionary[word_norm].title())
- else:
- expanded_words.append(word.title())
- return ' '.join(expanded_words)
- def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
- host_endian, file_endian = get_file_host_endian(reader)
- markdown_content = ""
- markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
- markdown_content += f'- Endian: {file_endian} endian\n'
- markdown_content += '\n'
- markdown_content += '## Key Value Metadata Store\n\n'
- markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
- markdown_content += '\n'
- total_model_bytes = 0
- total_model_elements = 0
- kv_dump_table: list[dict[str, str | int]] = []
- for n, field in enumerate(reader.fields.values(), 1):
- if not field.types:
- pretty_type = 'N/A'
- elif field.types[0] == GGUFValueType.ARRAY:
- nest_count = len(field.types) - 1
- pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
- else:
- pretty_type = str(field.types[-1].name)
- def escape_markdown_inline_code(value_string):
- # Find the longest contiguous sequence of backticks in the string then
- # wrap string with appropriate number of backticks required to escape it
- max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
- inline_code_marker = '`' * (max_backticks + 1)
- # If the string starts or ends with a backtick, add a space at the beginning and end
- if value_string.startswith('`') or value_string.endswith('`'):
- value_string = f" {value_string} "
- return f"{inline_code_marker}{value_string}{inline_code_marker}"
- total_elements = len(field.data)
- value = ""
- if len(field.types) == 1:
- curr_type = field.types[0]
- if curr_type == GGUFValueType.STRING:
- truncate_length = 60
- value_string = str(bytes(field.parts[-1]), encoding='utf-8')
- if len(value_string) > truncate_length:
- head = escape_markdown_inline_code(value_string[:truncate_length // 2])
- tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
- value = "{head}...{tail}".format(head=head, tail=tail)
- else:
- value = escape_markdown_inline_code(value_string)
- elif curr_type in reader.gguf_scalar_to_np:
- value = str(field.parts[-1][0])
- else:
- if field.types[0] == GGUFValueType.ARRAY:
- curr_type = field.types[1]
- array_elements = []
- if curr_type == GGUFValueType.STRING:
- render_element = min(5, total_elements)
- for element_pos in range(render_element):
- truncate_length = 30
- value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
- if len(value_string) > truncate_length:
- head = escape_markdown_inline_code(value_string[:truncate_length // 2])
- tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
- value = "{head}...{tail}".format(head=head, tail=tail)
- else:
- value = escape_markdown_inline_code(value_string)
- array_elements.append(value)
- elif curr_type in reader.gguf_scalar_to_np:
- render_element = min(7, total_elements)
- for element_pos in range(render_element):
- array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
- value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
- kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
- kv_dump_table_header_map = [
- {'key_name':'n', 'header_name':'POS', 'align':'right'},
- {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
- {'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
- {'key_name':'field_name', 'header_name':'Key', 'align':'left'},
- {'key_name':'value', 'header_name':'Value', 'align':'left'},
- ]
- markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
- markdown_content += "\n"
- if not args.no_tensors:
- # Group tensors by their prefix and maintain order
- tensor_prefix_order: list[str] = []
- tensor_name_to_key: dict[str, int] = {}
- tensor_groups: dict[str, list[ReaderTensor]] = {}
- total_elements = sum(tensor.n_elements for tensor in reader.tensors)
- # Parsing Tensors Record
- for key, tensor in enumerate(reader.tensors):
- tensor_components = tensor.name.split('.')
- # Classify Tensor Group
- tensor_group_name = "base"
- if tensor_components[0] == 'blk':
- tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
- elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
- tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
- elif tensor_components[0] in ['enc', 'dec']:
- tensor_group_name = f"{tensor_components[0]}"
- # Check if new Tensor Group
- if tensor_group_name not in tensor_groups:
- tensor_groups[tensor_group_name] = []
- tensor_prefix_order.append(tensor_group_name)
- # Record Tensor and Tensor Position
- tensor_groups[tensor_group_name].append(tensor)
- tensor_name_to_key[tensor.name] = key
- # Tensors Mapping Dump
- markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
- markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
- markdown_content += '\n'
- for group in tensor_prefix_order:
- tensors = tensor_groups[group]
- group_elements = sum(tensor.n_elements for tensor in tensors)
- markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
- markdown_content += "\n"
- markdown_content += "### Tensor Data Offset\n"
- markdown_content += '\n'
- markdown_content += 'This table contains the offset and data segment relative to start of file\n'
- markdown_content += '\n'
- tensor_mapping_table: list[dict[str, str | int]] = []
- for key, tensor in enumerate(reader.tensors):
- data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
- data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
- tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
- tensors_mapping_table_header_map = [
- {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
- {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
- {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'},
- {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'},
- ]
- markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
- markdown_content += "\n"
- for group in tensor_prefix_order:
- tensors = tensor_groups[group]
- group_elements = sum(tensor.n_elements for tensor in tensors)
- group_percentage = group_elements / total_elements * 100
- total_group_bytes = 0
- total_group_elements = 0
- markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
- # Precalculate column sizing for visual consistency
- prettify_element_est_count_size: int = 1
- prettify_element_count_size: int = 1
- prettify_dimension_max_widths: dict[int, int] = {}
- for tensor in tensors:
- prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
- prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
- for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
- prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
- # Generate Tensor Layer Table Content
- tensor_dump_table: list[dict[str, str | int]] = []
- for tensor in tensors:
- human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
- pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
- element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
- element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
- type_name_string = f"{tensor.tensor_type.name}"
- if tensor.n_elements > 0:
- bpw = (tensor.n_bytes * 8) / tensor.n_elements
- else:
- bpw = float('nan')
- tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string, "bpw": f"{bpw:.4f}"})
- total_group_bytes += tensor.n_bytes
- total_group_elements += tensor.n_elements
- tensor_dump_table_header_map = [
- {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
- {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
- {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
- {'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
- {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
- {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
- {'key_name':'bpw', 'header_name':'BPW', 'align':'right'},
- ]
- markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
- markdown_content += "\n"
- markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
- markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
- if total_group_elements > 0:
- total_group_bpw = (total_group_bytes * 8) / total_group_elements
- markdown_content += f"- Bits per Weight (BPW) for {group}: {total_group_bpw:.4f} bits\n"
- else:
- markdown_content += f"- Bits per Weight (BPW) for {group}: undefined (no elements)\n"
- markdown_content += "\n\n"
- total_model_bytes += total_group_bytes
- total_model_elements += total_group_elements
- if total_model_elements > 0:
- total_model_bpw = (total_model_bytes * 8) / total_model_elements
- markdown_content += f"Total BPW for {os.path.basename(args.model)}: {total_model_bpw:.4f} bits"
- else:
- markdown_content += f"Total BPW for {os.path.basename(args.model)}: undefined (no elements)"
- print(markdown_content) # noqa: NP100
- def main() -> None:
- parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
- parser.add_argument("model", type=str, help="GGUF format model filename")
- parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
- parser.add_argument("--json", action="store_true", help="Produce JSON output")
- parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
- parser.add_argument("--data-offset", action="store_true", help="Start of data offset")
- parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
- parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
- logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
- if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
- logger.info(f'* Loading: {args.model}')
- reader = GGUFReader(args.model, 'r')
- if args.json:
- dump_metadata_json(reader, args)
- elif args.markdown:
- dump_markdown_metadata(reader, args)
- elif args.data_offset:
- print(reader.data_offset) # noqa: NP100
- elif args.data_alignment:
- print(reader.alignment) # noqa: NP100
- else:
- dump_metadata(reader, args)
- if __name__ == '__main__':
- main()
|