| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570 |
- from __future__ import annotations
- from typing import Sequence
- from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
- class TensorNameMap:
- mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
- # Token embeddings
- MODEL_TENSOR.TOKEN_EMBD: (
- "gpt_neox.embed_in", # gptneox
- "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
- "transformer.word_embeddings", # falcon
- "word_embeddings", # bloom
- "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
- "embed_tokens", # embeddinggemma
- "tok_embeddings", # llama-pth
- "embeddings.word_embeddings", # bert nomic-bert
- "language_model.embedding.word_embeddings", # persimmon
- "wte", # gpt2
- "transformer.embd.wte", # phi2
- "model.tok_embeddings", # internlm2
- "model.embedding", # mamba-qbert
- "backbone.embedding", # mamba
- "backbone.embeddings", # mamba-hf
- "transformer.in_out_embed", # Grok
- "embedding.word_embeddings", # chatglm
- "transformer.token_embeddings", # openelm
- "shared", # t5
- "rwkv.embeddings", # rwkv6
- "model.embeddings", # rwkv7
- "model.word_embeddings", # bailingmoe
- "language_model.model.embed_tokens", # llama4
- "encoder", # neobert
- "model.transformer.wte", # llada
- "embed_tokens", # qwen3-embedding
- ),
- # Token type embeddings
- MODEL_TENSOR.TOKEN_TYPES: (
- "embeddings.token_type_embeddings", # bert nomic-bert
- ),
- # Normalization of token embeddings
- MODEL_TENSOR.TOKEN_EMBD_NORM: (
- "word_embeddings_layernorm", # bloom
- "embeddings.LayerNorm", # bert
- "emb_ln", # nomic-bert
- "transformer.norm", # openelm
- "rwkv.blocks.0.pre_ln", # rwkv
- "rwkv.blocks.0.pre_ln", # rwkv6
- "model.pre_ln", # rwkv7
- "model.layers.0.pre_norm", # rwkv7
- "backbone.norm", # wavtokenizer
- "model.embedding_norm", # lfm2
- ),
- # Position embeddings
- MODEL_TENSOR.POS_EMBD: (
- "transformer.wpe", # gpt2
- "embeddings.position_embeddings", # bert
- "wpe", # gpt2
- ),
- # Output
- MODEL_TENSOR.OUTPUT: (
- "embed_out", # gptneox
- "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
- "output", # llama-pth bloom internlm2
- "word_embeddings_for_head", # persimmon
- "lm_head.linear", # phi2
- "output_layer", # chatglm
- "head", # rwkv
- "head.out", # wavtokenizer
- "lm_head", # llama4
- "model.transformer.ff_out", # llada
- ),
- MODEL_TENSOR.DENSE_2_OUT: (
- "dense_2_out", # embeddinggemma
- ),
- MODEL_TENSOR.DENSE_3_OUT: (
- "dense_3_out", # embeddinggemma
- ),
- # Output norm
- MODEL_TENSOR.OUTPUT_NORM: (
- "gpt_neox.final_layer_norm", # gptneox
- "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
- "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
- "norm", # llama-pth
- "transformer.norm_f", # mpt dbrx
- "ln_f", # refact bloom qwen gpt2
- "language_model.encoder.final_layernorm", # persimmon
- "model.final_layernorm", # persimmon
- "lm_head.ln", # phi2
- "model.norm_f", # mamba-qbert
- "backbone.norm_f", # mamba
- "transformer.rms_norm", # Grok
- "encoder.final_layernorm", # chatglm
- "transformer.norm", # openelm
- "model.norm", # nemotron
- "rwkv.ln_out", # rwkv6
- "model.ln_out", # rwkv7
- "backbone.final_layer_norm", # wavtokenizer
- "model.norm", # llama4
- "model.transformer.ln_f", # llada
- ),
- # Rope frequencies
- MODEL_TENSOR.ROPE_FREQS: (
- "rope.freqs", # llama-pth
- "rotary_pos_emb.inv_freq", # chatglm
- ),
- MODEL_TENSOR.ROPE_FACTORS_LONG: (),
- MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
- MODEL_TENSOR.CONV1D: (
- "backbone.embed", # roberta
- ),
- }
- block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
- # Attention norm
- MODEL_TENSOR.ATTN_NORM: (
- "gpt_neox.layers.{bid}.input_layernorm", # gptneox
- "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
- "transformer.blocks.{bid}.norm_1", # mpt
- "transformer.h.{bid}.input_layernorm", # falcon7b
- "h.{bid}.input_layernorm", # bloom
- "transformer.h.{bid}.ln_mlp", # falcon40b
- "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
- "layers.{bid}.attention_norm", # llama-pth
- "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
- "model.layers.{bid}.ln1", # yi
- "h.{bid}.ln_1", # gpt2
- "transformer.h.{bid}.ln", # phi2
- "model.layers.layers.{bid}.norm", # plamo
- "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
- "model.layers.{bid}.attention_norm", # internlm2
- "model.layers.{bid}.norm", # mamba-qbert
- "backbone.layers.{bid}.norm", # mamba
- "transformer.decoder_layer.{bid}.rms_norm", # Grok
- "model.layers.{bid}.pre_attn_norm", # grok-2
- "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
- "encoder.layers.{bid}.input_layernorm", # chatglm
- "transformer.layers.{bid}.attn_norm", # openelm
- "rwkv.blocks.{bid}.ln1", # rwkv6
- "model.layers.{bid}.ln1", # rwkv7
- "model.layers.{bid}.input_layernorm", # llama4
- "layers.{bid}.input_layernorm", # embeddinggemma
- "transformer_encoder.{bid}.attention_norm", # neobert
- "model.layers.{bid}.operator_norm", # lfm2
- "model.transformer.blocks.{bid}.attn_norm", # llada
- "layers.{bid}.input_layernorm", # qwen3-embedding
- "model.layers.{bid}.attention_layernorm" # apertus
- ),
- # Attention norm 2
- MODEL_TENSOR.ATTN_NORM_2: (
- "transformer.h.{bid}.ln_attn", # falcon40b
- "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
- "rwkv.blocks.{bid}.ln2", # rwkv6
- "model.layers.{bid}.ln2", # rwkv7
- ),
- # Attention query-key-value
- MODEL_TENSOR.ATTN_QKV: (
- "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
- "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
- "transformer.blocks.{bid}.attn.Wqkv", # mpt
- "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
- "transformer.h.{bid}.self_attention.query_key_value", # falcon
- "h.{bid}.self_attention.query_key_value", # bloom
- "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
- "model.layers.{bid}.self_attn.query_key_value", # persimmon
- "model.layers.{bid}.attention.query_key_value", # bailingmoe2
- "h.{bid}.attn.c_attn", # gpt2
- "transformer.h.{bid}.mixer.Wqkv", # phi2
- "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
- "encoder.layers.{bid}.mixer.Wqkv", # jina
- "model.layers.{bid}.self_attn.qkv_proj", # phi3
- "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
- "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
- "transformer.layers.{bid}.attn.qkv_proj", # openelm
- "transformer_encoder.{bid}.qkv", # neobert
- ),
- # Attention query
- MODEL_TENSOR.ATTN_Q: (
- "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
- "layers.{bid}.self_attn.q_proj", # embeddinggemma
- "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
- "layers.{bid}.attention.wq", # llama-pth
- "encoder.layer.{bid}.attention.self.query", # bert
- "transformer.layer.{bid}.attention.q_lin", # distillbert
- "transformer.h.{bid}.attn.q_proj", # gpt-j
- "model.layers.layers.{bid}.self_attn.q_proj", # plamo
- "model.layers.{bid}.attention.wq", # internlm2
- "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
- "transformer.h.{bid}.attn.attention.q_proj", # exaone
- "model.layers.{bid}.self_attn.q_proj", # llama4
- "model.transformer.blocks.{bid}.q_proj", # llada
- "layers.{bid}.self_attn.q_proj", # qwen3-embedding
- "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
- ),
- # Attention key
- MODEL_TENSOR.ATTN_K: (
- "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
- "layers.{bid}.self_attn.k_proj", # embeddinggemma
- "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
- "layers.{bid}.attention.wk", # llama-pth
- "encoder.layer.{bid}.attention.self.key", # bert
- "transformer.layer.{bid}.attention.k_lin", # distillbert
- "transformer.h.{bid}.attn.k_proj", # gpt-j
- "transformer.h.{bid}.attn.k", # refact
- "model.layers.layers.{bid}.self_attn.k_proj", # plamo
- "model.layers.{bid}.attention.wk", # internlm2
- "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
- "transformer.h.{bid}.attn.attention.k_proj", # exaone
- "model.layers.{bid}.self_attn.k_proj", # llama4
- "model.transformer.blocks.{bid}.k_proj", # llada
- "layers.{bid}.self_attn.k_proj", # qwen3-embedding
- "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
- ),
- # Attention value
- MODEL_TENSOR.ATTN_V: (
- "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
- "layers.{bid}.self_attn.v_proj", # embeddinggemma
- "layers.{bid}.attention.wv", # llama-pth
- "encoder.layer.{bid}.attention.self.value", # bert
- "transformer.layer.{bid}.attention.v_lin", # distillbert
- "transformer.h.{bid}.attn.v_proj", # gpt-j
- "transformer.h.{bid}.attn.v", # refact
- "model.layers.layers.{bid}.self_attn.v_proj", # plamo
- "model.layers.{bid}.attention.wv", # internlm2
- "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
- "transformer.h.{bid}.attn.attention.v_proj", # exaone
- "model.layers.{bid}.self_attn.v_proj", # llama4
- "model.transformer.blocks.{bid}.v_proj", # llada
- "layers.{bid}.self_attn.v_proj", # qwen3-embedding
- "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
- ),
- # Attention output
- MODEL_TENSOR.ATTN_OUT: (
- "gpt_neox.layers.{bid}.attention.dense", # gptneox
- "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
- "transformer.blocks.{bid}.attn.out_proj", # mpt
- "transformer.h.{bid}.self_attention.dense", # falcon
- "h.{bid}.self_attention.dense", # bloom
- "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
- "layers.{bid}.self_attn.o_proj", # embeddinggemma
- "model.layers.{bid}.self_attn.out_proj", # lfm2
- "model.layers.{bid}.self_attn.linear_attn", # deci
- "layers.{bid}.attention.wo", # llama-pth
- "encoder.layer.{bid}.attention.output.dense", # bert
- "transformer.layer.{bid}.attention.out_lin", # distillbert
- "transformer.h.{bid}.attn.out_proj", # gpt-j
- "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
- "model.layers.{bid}.self_attn.dense", # persimmon
- "model.layers.{bid}.attention.dense", # bailingmoe2
- "h.{bid}.attn.c_proj", # gpt2
- "transformer.h.{bid}.mixer.out_proj", # phi2
- "model.layers.layers.{bid}.self_attn.o_proj", # plamo
- "model.layers.layers.{bid}.mixer.o_proj", # plamo2
- "model.layers.{bid}.attention.wo", # internlm2
- "encoder.layers.{bid}.attn.out_proj", # nomic-bert
- "encoder.layers.{bid}.mixer.out_proj", # jina
- "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
- "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
- "encoder.layers.{bid}.self_attention.dense", # chatglm
- "transformer.layers.{bid}.attn.out_proj", # openelm
- "transformer.h.{bid}.attn.attention.out_proj", # exaone
- "model.layers.{bid}.self_attn.o_proj", # llama4
- "transformer_encoder.{bid}.wo", # neobert
- "model.transformer.blocks.{bid}.attn_out", # llada
- "layers.{bid}.self_attn.o_proj", # qwen3-embedding
- "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
- ),
- # Attention output norm
- MODEL_TENSOR.ATTN_OUT_NORM: (
- "encoder.layer.{bid}.attention.output.LayerNorm", # bert
- "transformer.layer.{bid}.sa_layer_norm", # distillbert
- "encoder.layers.{bid}.norm1", # nomic-bert
- "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
- "model.layers.{bid}.post_attn_norm", # grok-2
- "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
- ),
- MODEL_TENSOR.ATTN_POST_NORM: (
- "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
- "layers.{bid}.post_attention_layernorm", # embeddinggemma
- "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
- "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
- ),
- # Rotary embeddings
- MODEL_TENSOR.ATTN_ROT_EMBD: (
- "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
- "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
- "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
- "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
- ),
- MODEL_TENSOR.ATTN_SINKS: (
- "model.layers.{bid}.self_attn.sinks", # openai-moe
- ),
- # Feed-forward norm
- MODEL_TENSOR.FFN_NORM: (
- "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
- "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
- "h.{bid}.post_attention_layernorm", # bloom
- "transformer.blocks.{bid}.norm_2", # mpt
- "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
- "layers.{bid}.ffn_norm", # llama-pth
- "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
- "model.layers.{bid}.ln2", # yi
- "h.{bid}.ln_2", # gpt2
- "model.layers.{bid}.ffn_norm", # internlm2
- "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
- "model.layers.{bid}.pre_moe_norm", # grok-2
- "encoder.layers.{bid}.post_attention_layernorm", # chatglm
- "transformer.layers.{bid}.ffn_norm", # openelm
- "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
- "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
- "model.layers.{bid}.post_attention_layernorm", # llama4
- "transformer_encoder.{bid}.ffn_norm", # neobert
- "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
- "model.transformer.blocks.{bid}.ff_norm", # llada
- "layers.{bid}.post_attention_layernorm", # qwen3-embedding
- "model.layers.{bid}.feedforward_layernorm", # apertus
- ),
- # Post feed-forward norm
- MODEL_TENSOR.FFN_PRE_NORM: (
- "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
- "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
- "model.layers.{bid}.pre_ff_layernorm.weight",
- ),
- # Post feed-forward norm
- MODEL_TENSOR.FFN_POST_NORM: (
- "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
- "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
- "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
- "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
- "model.layers.{bid}.feed_forward.up_proj",
- "model.layers.{bid}.post_moe_norm", # grok-2
- ),
- MODEL_TENSOR.FFN_GATE_INP: (
- "layers.{bid}.feed_forward.gate", # mixtral
- "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
- "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
- "transformer.decoder_layer.{bid}.router", # Grok
- "transformer.blocks.{bid}.ffn.router.layer", # dbrx
- "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
- "model.layers.{bid}.feed_forward.router", # llama4 jamba
- "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
- "model.layers.{bid}.mlp.router", # openai-moe
- "model.layers.{bid}.mlp.gate.wg", # hunyuan
- "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
- "model.layers.{bid}.feed_forward.gate", # lfm2moe
- ),
- MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
- "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
- ),
- MODEL_TENSOR.FFN_EXP_PROBS_B: (
- "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
- "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
- "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
- "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
- ),
- # Feed-forward up
- MODEL_TENSOR.FFN_UP: (
- "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
- "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
- "transformer.blocks.{bid}.ffn.up_proj", # mpt
- "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
- "h.{bid}.mlp.dense_h_to_4h", # bloom
- "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
- "layers.{bid}.mlp.up_proj", # embeddinggemma
- "layers.{bid}.feed_forward.w3", # llama-pth
- "encoder.layer.{bid}.intermediate.dense", # bert
- "transformer.layer.{bid}.ffn.lin1", # distillbert
- "transformer.h.{bid}.mlp.fc_in", # gpt-j
- "transformer.h.{bid}.mlp.linear_3", # refact
- "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
- "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
- "transformer.h.{bid}.mlp.w1", # qwen
- "h.{bid}.mlp.c_fc", # gpt2
- "transformer.h.{bid}.mlp.fc1", # phi2
- "model.layers.{bid}.mlp.fc1", # phi2
- "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
- "model.layers.layers.{bid}.mlp.up_proj", # plamo
- "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
- "model.layers.{bid}.feed_forward.w3", # internlm2
- "encoder.layers.{bid}.mlp.fc11", # nomic-bert
- "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
- "model.layers.{bid}.mlp.c_fc", # starcoder2
- "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
- "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
- "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
- "model.layers.{bid}.residual_mlp.w3", # arctic
- "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
- "transformer.h.{bid}.mlp.c_fc_1", # exaone
- "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
- "transformer_encoder.{bid}.ffn.w12", # neobert
- "model.layers.{bid}.block_sparse_moe.up", # smallthinker
- "model.transformer.blocks.{bid}.up_proj", # llada
- "layers.{bid}.mlp.up_proj", # qwen3-embedding
- "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
- ),
- MODEL_TENSOR.FFN_UP_EXP: (
- "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
- "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
- "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
- "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
- "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
- "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
- ),
- MODEL_TENSOR.FFN_UP_SHEXP: (
- "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
- "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
- "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
- "model.layers.{bid}.feed_forward.down_proj",
- "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
- ),
- MODEL_TENSOR.FFN_UP_CHEXP: (
- "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
- ),
- # AWQ-activation gate
- MODEL_TENSOR.FFN_ACT: (
- "transformer.blocks.{bid}.ffn.act", # mpt
- ),
- # Feed-forward gate
- MODEL_TENSOR.FFN_GATE: (
- "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
- "layers.{bid}.mlp.gate_proj", # embeddinggemma
- "layers.{bid}.feed_forward.w1", # llama-pth
- "transformer.h.{bid}.mlp.w2", # qwen
- "transformer.h.{bid}.mlp.c_fc2", # jais
- "model.layers.layers.{bid}.mlp.gate_proj", # plamo
- "model.layers.{bid}.feed_forward.w1", # internlm2
- "encoder.layers.{bid}.mlp.fc12", # nomic-bert
- "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
- "transformer.h.{bid}.mlp.linear_1", # refact
- "model.layers.{bid}.residual_mlp.w1", # arctic
- "transformer.h.{bid}.mlp.c_fc_0", # exaone
- "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
- "model.transformer.blocks.{bid}.ff_proj", # llada
- "layers.{bid}.mlp.gate_proj", # qwen3-embedding
- ),
- MODEL_TENSOR.FFN_GATE_EXP: (
- "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
- "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
- "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
- "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
- "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
- ),
- MODEL_TENSOR.FFN_GATE_SHEXP: (
- "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
- "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
- "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
- "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
- ),
- MODEL_TENSOR.FFN_GATE_CHEXP: (
- "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
- ),
- # Feed-forward down
- MODEL_TENSOR.FFN_DOWN: (
- "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
- "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
- "transformer.blocks.{bid}.ffn.down_proj", # mpt
- "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
- "h.{bid}.mlp.dense_4h_to_h", # bloom
- "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
- "layers.{bid}.mlp.down_proj", # embeddinggemma
- "layers.{bid}.feed_forward.w2", # llama-pth
- "encoder.layer.{bid}.output.dense", # bert
- "transformer.layer.{bid}.ffn.lin2", # distillbert
- "transformer.h.{bid}.mlp.fc_out", # gpt-j
- "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
- "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
- "h.{bid}.mlp.c_proj", # gpt2
- "transformer.h.{bid}.mlp.fc2", # phi2
- "model.layers.{bid}.mlp.fc2", # phi2
- "model.layers.layers.{bid}.mlp.down_proj", # plamo
- "model.layers.{bid}.feed_forward.w2", # internlm2
- "encoder.layers.{bid}.mlp.fc2", # nomic-bert
- "model.layers.{bid}.mlp.c_proj", # starcoder2
- "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
- "transformer.layers.{bid}.ffn.proj_2", # openelm
- "model.layers.{bid}.residual_mlp.w2", # arctic
- "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
- "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
- "model.layers.h.{bid}.mlp.c_proj", # exaone
- "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
- "transformer_encoder.{bid}.ffn.w3", # neobert
- "model.layers.{bid}.block_sparse_moe.down", # smallthinker
- "model.transformer.blocks.{bid}.ff_out", # llada
- "layers.{bid}.mlp.down_proj", # qwen3-embedding
- "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
- ),
- MODEL_TENSOR.FFN_DOWN_EXP: (
- "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
- "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
- "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
- "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
- "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
- "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
- "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
- ),
- MODEL_TENSOR.FFN_DOWN_SHEXP: (
- "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
- "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
- "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
- "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
- "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
- ),
- MODEL_TENSOR.FFN_DOWN_CHEXP: (
- "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
- ),
- MODEL_TENSOR.ATTN_Q_NORM: (
- "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
- "model.layers.{bid}.self_attn.q_layernorm", # persimmon
- "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
- "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
- "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
- "layers.{bid}.self_attn.q_norm", # embeddinggemma
- "transformer.blocks.{bid}.attn.q_ln", # sea-lion
- "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
- "transformer.layers.{bid}.attn.q_norm", # openelm
- "model.layers.layers.{bid}.mixer.q", # plamo2
- "layers.{bid}.self_attn.q_norm", # qwen3-embedding
- "model.layers.{bid}.attention.query_layernorm", # apertus
- ),
- MODEL_TENSOR.ATTN_K_NORM: (
- "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
- "model.layers.{bid}.self_attn.k_layernorm", # persimmon
- "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
- "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
- "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
- "layers.{bid}.self_attn.k_norm", # embeddinggemma
- "transformer.blocks.{bid}.attn.k_ln", # sea-lion
- "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
- "transformer.layers.{bid}.attn.k_norm", # openelm
- "model.layers.layers.{bid}.mixer.k", # plamo2
- "layers.{bid}.self_attn.k_norm", # qwen3-embedding
- "model.layers.{bid}.attention.key_layernorm", # apertus
- ),
- MODEL_TENSOR.ROPE_FREQS: (
- "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
- ),
- MODEL_TENSOR.LAYER_OUT_NORM: (
- "encoder.layer.{bid}.output.LayerNorm", # bert
- "transformer.layer.{bid}.output_layer_norm", # distillbert
- "encoder.layers.{bid}.norm2", # nomic-bert
- "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
- "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
- "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
- "model.layers.{bid}.final_layernorm", # bailingmoe2
- ),
- MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
- "model.embed_tokens_per_layer", # gemma3n
- ),
- MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
- "model.per_layer_model_projection", # gemma3n
- ),
- MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
- "model.per_layer_projection_norm", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_PROJ: (
- "model.altup_projections", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
- "model.altup_unembed_projections", # gemma3n
- ),
- MODEL_TENSOR.PER_LAYER_INP_GATE: (
- "model.layers.{bid}.per_layer_input_gate", # gemma3n
- ),
- MODEL_TENSOR.PER_LAYER_PROJ: (
- "model.layers.{bid}.per_layer_projection", # gemma3n
- ),
- MODEL_TENSOR.PER_LAYER_POST_NORM: (
- "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_CORRECT_COEF: (
- "model.layers.{bid}.altup.correction_coefs", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
- "model.layers.{bid}.altup.correct_output_scale", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_PREDICT_COEF: (
- "model.layers.{bid}.altup.prediction_coefs", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_ROUTER: (
- "model.layers.{bid}.altup.modality_router", # gemma3n
- ),
- MODEL_TENSOR.ALTUP_ROUTER_NORM: (
- "model.layers.{bid}.altup.router_norm", # gemma3n
- ),
- MODEL_TENSOR.LAUREL_L: (
- "model.layers.{bid}.laurel.linear_left", # gemma3n
- ),
- MODEL_TENSOR.LAUREL_R: (
- "model.layers.{bid}.laurel.linear_right", # gemma3n
- ),
- MODEL_TENSOR.LAUREL_POST_NORM: (
- "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
- ),
- MODEL_TENSOR.SSM_IN: (
- "model.layers.{bid}.in_proj", # mamba-hf
- "backbone.layers.{bid}.mixer.in_proj", # mamba
- "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
- "model.layers.layers.{bid}.mixer.in_proj", # plamo2
- ),
- MODEL_TENSOR.SSM_CONV1D: (
- "model.layers.{bid}.conv1d", # mamba-hf
- "backbone.layers.{bid}.mixer.conv1d", # mamba
- "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
- "model.layers.layers.{bid}.mixer.conv1d", # plamo2
- ),
- MODEL_TENSOR.SSM_X: (
- "model.layers.{bid}.x_proj", # mamba-hf
- "backbone.layers.{bid}.mixer.x_proj", # mamba
- "model.layers.{bid}.mamba.x_proj", # jamba
- "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
- ),
- MODEL_TENSOR.SSM_DT: (
- "model.layers.{bid}.dt_proj", # mamba-hf
- "backbone.layers.{bid}.mixer.dt_proj", # mamba
- "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
- "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
- ),
- MODEL_TENSOR.SSM_DT_NORM: (
- "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
- "model.layers.{bid}.mamba.dt_layernorm", # jamba
- ),
- MODEL_TENSOR.SSM_A: (
- "model.layers.{bid}.A_log", # mamba-hf
- "backbone.layers.{bid}.mixer.A_log", # mamba
- "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
- "model.layers.layers.{bid}.mixer.A_log", # plamo2
- ),
- MODEL_TENSOR.SSM_B_NORM: (
- "model.layers.{bid}.mamba.b_layernorm", # jamba
- "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
- "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
- ),
- MODEL_TENSOR.SSM_C_NORM: (
- "model.layers.{bid}.mamba.c_layernorm", # jamba
- "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
- "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
- ),
- MODEL_TENSOR.SSM_D: (
- "model.layers.{bid}.D", # mamba-hf
- "backbone.layers.{bid}.mixer.D", # mamba
- "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
- "model.layers.layers.{bid}.mixer.D", # plamo2
- ),
- MODEL_TENSOR.SSM_NORM: (
- "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
- "backbone.layers.{bid}.mixer.norm", # mamba2
- ),
- MODEL_TENSOR.SSM_OUT: (
- "model.layers.{bid}.out_proj", # mamba-hf
- "backbone.layers.{bid}.mixer.out_proj", # mamba
- "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
- "model.layers.layers.{bid}.mixer.out_proj", # plamo2
- ),
- MODEL_TENSOR.TIME_MIX_W0: (
- "model.layers.{bid}.attention.w0", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_W1: (
- "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
- "model.layers.{bid}.attention.w1", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_W2: (
- "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
- "model.layers.{bid}.attention.w2", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_A0: (
- "model.layers.{bid}.attention.a0", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_A1: (
- "model.layers.{bid}.attention.a1", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_A2: (
- "model.layers.{bid}.attention.a2", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_V0: (
- "model.layers.{bid}.attention.v0", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_V1: (
- "model.layers.{bid}.attention.v1", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_V2: (
- "model.layers.{bid}.attention.v2", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_G1: (
- "model.layers.{bid}.attention.g1", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_G2: (
- "model.layers.{bid}.attention.g2", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_K_K: (
- "model.layers.{bid}.attention.k_k", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_K_A: (
- "model.layers.{bid}.attention.k_a", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_R_K: (
- "model.layers.{bid}.attention.r_k", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_LERP_X: (
- "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_LERP_K: (
- "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_LERP_V: (
- "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_LERP_R: (
- "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_LERP_G: (
- "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_LERP_W: (
- "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
- "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_FIRST: (
- "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
- ),
- MODEL_TENSOR.TIME_MIX_DECAY: (
- "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
- "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_DECAY_W1: (
- "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
- "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_DECAY_W2: (
- "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
- "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_KEY: (
- "rwkv.blocks.{bid}.attention.key", # rwkv6
- "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
- "model.layers.{bid}.attention.key", # rwkv7
- "model.layers.{bid}.attention.k_proj", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_VALUE: (
- "rwkv.blocks.{bid}.attention.value", # rwkv6
- "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
- "model.layers.{bid}.attention.value", # rwkv7
- "model.layers.{bid}.attention.v_proj", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
- "rwkv.blocks.{bid}.attention.receptance", # rwkv6
- "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
- "model.layers.{bid}.attention.receptance", # rwkv7
- "model.layers.{bid}.attention.r_proj", # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_GATE: (
- "rwkv.blocks.{bid}.attention.gate", # rwkv6
- "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
- ),
- MODEL_TENSOR.TIME_MIX_LN: (
- "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
- "model.layers.{bid}.attention.ln_x" # rwkv7
- ),
- MODEL_TENSOR.TIME_MIX_OUTPUT: (
- "rwkv.blocks.{bid}.attention.output", # rwkv6
- "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
- "model.layers.{bid}.attention.output", # rwkv7
- "model.layers.{bid}.attention.o_proj", # rwkv7
- ),
- MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
- "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
- "model.layers.{bid}.feed_forward.x_k", # rwkv7
- ),
- MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
- "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
- ),
- MODEL_TENSOR.CHANNEL_MIX_KEY: (
- "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
- "model.layers.{bid}.feed_forward.key", # rwkv7
- ),
- MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
- "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
- ),
- MODEL_TENSOR.CHANNEL_MIX_VALUE: (
- "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
- "model.layers.{bid}.feed_forward.value", # rwkv7
- ),
- MODEL_TENSOR.ATTN_Q_A: (
- "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
- ),
- MODEL_TENSOR.ATTN_Q_B: (
- "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
- ),
- MODEL_TENSOR.ATTN_KV_A_MQA: (
- "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
- ),
- MODEL_TENSOR.ATTN_KV_B: (
- "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
- ),
- MODEL_TENSOR.ATTN_K_B: (
- "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
- ),
- MODEL_TENSOR.ATTN_V_B: (
- "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
- ),
- MODEL_TENSOR.ATTN_Q_A_NORM: (
- "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
- ),
- MODEL_TENSOR.ATTN_KV_A_NORM: (
- "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
- ),
- MODEL_TENSOR.ATTN_SUB_NORM: (
- "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
- ),
- MODEL_TENSOR.FFN_SUB_NORM: (
- "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
- ),
- MODEL_TENSOR.DEC_ATTN_NORM: (
- "decoder.block.{bid}.layer.0.layer_norm", # t5
- ),
- MODEL_TENSOR.DEC_ATTN_Q: (
- "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
- ),
- MODEL_TENSOR.DEC_ATTN_K: (
- "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
- ),
- MODEL_TENSOR.DEC_ATTN_V: (
- "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
- ),
- MODEL_TENSOR.DEC_ATTN_OUT: (
- "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
- ),
- MODEL_TENSOR.DEC_ATTN_REL_B: (
- "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
- ),
- MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
- "decoder.block.{bid}.layer.1.layer_norm", # t5
- ),
- MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
- "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
- ),
- MODEL_TENSOR.DEC_CROSS_ATTN_K: (
- "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
- ),
- MODEL_TENSOR.DEC_CROSS_ATTN_V: (
- "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
- ),
- MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
- "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
- ),
- MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
- "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
- ),
- MODEL_TENSOR.DEC_FFN_NORM: (
- "decoder.block.{bid}.layer.2.layer_norm", # t5
- ),
- MODEL_TENSOR.DEC_FFN_GATE: (
- "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
- ),
- MODEL_TENSOR.DEC_FFN_UP: (
- "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
- "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
- ),
- MODEL_TENSOR.DEC_FFN_DOWN: (
- "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
- ),
- MODEL_TENSOR.DEC_OUTPUT_NORM: (
- "decoder.final_layer_norm", # t5
- ),
- MODEL_TENSOR.ENC_ATTN_NORM: (
- "encoder.block.{bid}.layer.0.layer_norm", # t5
- ),
- MODEL_TENSOR.ENC_ATTN_Q: (
- "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
- ),
- MODEL_TENSOR.ENC_ATTN_K: (
- "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
- ),
- MODEL_TENSOR.ENC_ATTN_V: (
- "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
- ),
- MODEL_TENSOR.ENC_ATTN_OUT: (
- "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
- ),
- MODEL_TENSOR.ENC_ATTN_REL_B: (
- "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
- ),
- MODEL_TENSOR.ENC_FFN_NORM: (
- "encoder.block.{bid}.layer.1.layer_norm", # t5
- ),
- MODEL_TENSOR.ENC_FFN_GATE: (
- "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
- ),
- MODEL_TENSOR.ENC_FFN_UP: (
- "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
- "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
- ),
- MODEL_TENSOR.ENC_FFN_DOWN: (
- "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
- ),
- ############################################################################
- # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
- MODEL_TENSOR.ENC_OUTPUT_NORM: (
- "encoder.final_layer_norm", # t5
- "layer_norm", # neobert
- ),
- MODEL_TENSOR.CLS: (
- "classifier", # jina
- "classifier.dense", # roberta
- "pre_classifier", # distillbert
- "dense", # neobert
- ),
- MODEL_TENSOR.CLS_OUT: (
- "classifier.out_proj", # roberta
- ),
- #############################################################################
- MODEL_TENSOR.CONVNEXT_DW: (
- "backbone.convnext.{bid}.dwconv", # wavtokenizer
- ),
- MODEL_TENSOR.CONVNEXT_NORM: (
- "backbone.convnext.{bid}.norm", # wavtokenizer
- ),
- MODEL_TENSOR.CONVNEXT_PW1: (
- "backbone.convnext.{bid}.pwconv1", # wavtokenizer
- ),
- MODEL_TENSOR.CONVNEXT_PW2: (
- "backbone.convnext.{bid}.pwconv2", # wavtokenizer
- ),
- MODEL_TENSOR.CONVNEXT_GAMMA: (
- "backbone.convnext.{bid}.gamma", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_CONV1: (
- "backbone.posnet.{bid}.conv1", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_CONV2: (
- "backbone.posnet.{bid}.conv2", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_NORM: (
- "backbone.posnet.{bid}.norm", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_NORM1: (
- "backbone.posnet.{bid}.norm1", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_NORM2: (
- "backbone.posnet.{bid}.norm2", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_ATTN_NORM: (
- "backbone.posnet.{bid}.norm", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_ATTN_Q: (
- "backbone.posnet.{bid}.q", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_ATTN_K: (
- "backbone.posnet.{bid}.k", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_ATTN_V: (
- "backbone.posnet.{bid}.v", # wavtokenizer
- ),
- MODEL_TENSOR.POSNET_ATTN_OUT: (
- "backbone.posnet.{bid}.proj_out", # wavtokenizer
- ),
- MODEL_TENSOR.SHORTCONV_CONV: (
- "model.layers.{bid}.conv.conv",
- ),
- MODEL_TENSOR.SHORTCONV_INPROJ: (
- "model.layers.{bid}.conv.in_proj",
- ),
- MODEL_TENSOR.SHORTCONV_OUTPROJ: (
- "model.layers.{bid}.conv.out_proj",
- ),
- #############################################################################
- ## Vision encoder
- MODEL_TENSOR.V_MMPROJ: (
- "multi_modal_projector.linear_{bid}",
- "visual.merger.mlp.{bid}", # qwen2vl
- ),
- MODEL_TENSOR.V_MMPROJ_FC: (
- "model.connector.modality_projection.proj", # SmolVLM
- ),
- MODEL_TENSOR.V_MMPROJ_MLP: (
- "model.mm_projector.mlp.mlp.{bid}",
- "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
- "mlp1.{bid}", # InternVL
- ),
- MODEL_TENSOR.V_MMPROJ_PEG: (
- "model.mm_projector.peg.peg.{bid}",
- ),
- MODEL_TENSOR.V_ENC_EMBD_CLS: (
- "vision_tower.vision_model.embeddings.class_embedding",
- "model.vision_tower.embeddings.cls_token", # Intern-S1
- "vision_model.class_embedding", # llama 4
- ),
- MODEL_TENSOR.V_ENC_EMBD_PATCH: (
- "vision_tower.vision_model.embeddings.patch_embedding",
- "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
- "vpm.embeddings.patch_embedding",
- "model.vision_model.embeddings.patch_embedding", # SmolVLM
- "vision_tower.patch_conv", # pixtral-hf
- "vision_encoder.patch_conv", # pixtral
- "vision_model.patch_embedding.linear", # llama 4
- "visual.patch_embed.proj", # qwen2vl
- "vision_tower.patch_embed.proj", # kimi-vl
- ),
- MODEL_TENSOR.V_ENC_EMBD_POS: (
- "vision_tower.vision_model.embeddings.position_embedding",
- "model.vision_tower.embeddings.position_embeddings", # Intern-S1
- "vpm.embeddings.position_embedding",
- "model.vision_model.embeddings.position_embedding", # SmolVLM
- "vision_model.positional_embedding_vlm", # llama 4
- "vision_tower.patch_embed.pos_emb", # kimi-vl
- ),
- MODEL_TENSOR.V_ENC_ATTN_Q: (
- "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
- "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
- "vpm.encoder.layers.{bid}.self_attn.q_proj",
- "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
- "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
- "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
- "visual.blocks.{bid}.attn.q", # qwen2vl, generated
- "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
- ),
- MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
- "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
- "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
- ),
- MODEL_TENSOR.V_ENC_ATTN_K: (
- "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
- "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
- "vpm.encoder.layers.{bid}.self_attn.k_proj",
- "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
- "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
- "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
- "visual.blocks.{bid}.attn.k", # qwen2vl, generated
- "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
- ),
- MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
- "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
- "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
- ),
- MODEL_TENSOR.V_ENC_ATTN_V: (
- "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
- "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
- "vpm.encoder.layers.{bid}.self_attn.v_proj",
- "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
- "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
- "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
- "visual.blocks.{bid}.attn.v", # qwen2vl, generated
- "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
- ),
- MODEL_TENSOR.V_ENC_INPUT_NORM: (
- "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
- "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
- "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
- "vpm.encoder.layers.{bid}.layer_norm1",
- "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
- "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
- "vision_model.model.layers.{bid}.input_layernorm", # llama4
- "visual.blocks.{bid}.norm1", # qwen2vl
- "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
- ),
- MODEL_TENSOR.V_ENC_ATTN_O: (
- "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
- "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
- "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
- "vpm.encoder.layers.{bid}.self_attn.out_proj",
- "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
- "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
- "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
- "visual.blocks.{bid}.attn.proj", # qwen2vl
- "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
- ),
- MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
- "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
- "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
- "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
- "vpm.encoder.layers.{bid}.layer_norm2",
- "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
- "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
- "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
- "visual.blocks.{bid}.norm2", # qwen2vl
- "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
- ),
- MODEL_TENSOR.V_ENC_FFN_UP: (
- "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
- "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
- "vpm.encoder.layers.{bid}.mlp.fc1",
- "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
- "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
- "vision_model.model.layers.{bid}.mlp.fc1", # llama4
- "visual.blocks.{bid}.mlp.fc1", # qwen2vl
- "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
- "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
- ),
- MODEL_TENSOR.V_ENC_FFN_GATE: (
- "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
- "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
- ),
- MODEL_TENSOR.V_ENC_FFN_DOWN: (
- "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
- "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
- "vpm.encoder.layers.{bid}.mlp.fc2",
- "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
- "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
- "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
- "vision_model.model.layers.{bid}.mlp.fc2", # llama4
- "visual.blocks.{bid}.mlp.fc2", # qwen2vl
- "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
- "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
- ),
- MODEL_TENSOR.V_LAYER_SCALE_1: (
- "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
- "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
- ),
- MODEL_TENSOR.V_LAYER_SCALE_2: (
- "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
- "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
- ),
- MODEL_TENSOR.V_PRE_NORM: (
- "vision_tower.vision_model.pre_layrnorm",
- "vision_tower.ln_pre", # pixtral-hf
- "vision_encoder.ln_pre", # pixtral
- "vision_model.layernorm_pre", # llama4
- ),
- MODEL_TENSOR.V_POST_NORM: (
- "vision_tower.vision_model.post_layernorm",
- "model.vision_model.post_layernorm", # SmolVLM
- "vision_model.layernorm_post", # llama4
- "visual.merger.ln_q", # qwen2vl
- "vision_tower.encoder.final_layernorm", # kimi-vl
- ),
- MODEL_TENSOR.V_MM_INP_PROJ: (
- "multi_modal_projector.mm_input_projection",
- ),
- MODEL_TENSOR.V_MM_INP_NORM: (
- "multi_modal_projector.norm",
- "multi_modal_projector.layer_norm",
- "multi_modal_projector.pre_norm",
- "pre_mm_projector_norm",
- ),
- MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
- "multi_modal_projector.mm_soft_emb_norm",
- ),
- MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
- "resampler.pos_embed_k",
- ),
- MODEL_TENSOR.V_RESMPL_ATTN_Q: (
- "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
- ),
- MODEL_TENSOR.V_RESMPL_ATTN_K: (
- "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
- ),
- MODEL_TENSOR.V_RESMPL_ATTN_V: (
- "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
- ),
- MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
- "resampler.attn.out_proj",
- ),
- MODEL_TENSOR.V_RESMPL_KV: (
- "resampler.kv_proj",
- ),
- MODEL_TENSOR.V_RESMPL_POST_NORM: (
- "resampler.ln_post",
- ),
- MODEL_TENSOR.V_RESMPL_KV_NORM: (
- "resampler.ln_kv",
- ),
- MODEL_TENSOR.V_RESMPL_Q_NORM: (
- "resampler.ln_q",
- ),
- MODEL_TENSOR.V_RESMPL_PROJ: (
- "resampler.proj",
- ),
- MODEL_TENSOR.V_RESMPL_QUERY: (
- "resampler.query",
- ),
- MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
- "v.token_embd.img_break", # for pixtral, this is a generated vector
- ),
- MODEL_TENSOR.V_MM_PATCH_MERGER: (
- "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
- "patch_merger.merging_layer", # mistral
- ),
- # audio (mtmd)
- MODEL_TENSOR.A_ENC_EMBD_POS: (
- "audio_tower.embed_positions", # ultravox
- ),
- MODEL_TENSOR.A_ENC_CONV1D: (
- "audio_tower.conv{bid}", # ultravox
- ),
- MODEL_TENSOR.A_PRE_NORM: (),
- MODEL_TENSOR.A_POST_NORM: (
- "audio_tower.layer_norm", # ultravox
- "audio_tower.ln_post", # qwen2omni
- ),
- MODEL_TENSOR.A_ENC_ATTN_Q: (
- "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
- ),
- MODEL_TENSOR.A_ENC_ATTN_K: (
- "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
- ),
- MODEL_TENSOR.A_ENC_ATTN_V: (
- "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
- ),
- MODEL_TENSOR.A_ENC_INPUT_NORM: (
- "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
- ),
- MODEL_TENSOR.A_ENC_OUTPUT: (
- "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
- ),
- MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
- "audio_tower.layers.{bid}.final_layer_norm", # ultravox
- ),
- MODEL_TENSOR.A_ENC_FFN_UP: (
- "audio_tower.layers.{bid}.fc1", # ultravox
- ),
- MODEL_TENSOR.A_ENC_FFN_GATE: (),
- MODEL_TENSOR.A_ENC_FFN_DOWN: (
- "audio_tower.layers.{bid}.fc2", # ultravox
- ),
- # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
- # this prefix is added in the conversion code in modify_tensors()
- MODEL_TENSOR.A_MMPROJ: (
- "audio.multi_modal_projector.linear_{bid}", # ultravox
- ),
- MODEL_TENSOR.A_MMPROJ_FC: (
- "audio.multi_modal_projector.linear", # qwen2audio
- "audio_tower.proj", # qwen2omni
- ),
- MODEL_TENSOR.A_MM_NORM_PRE: (
- "audio.multi_modal_projector.ln_pre", # ultravox
- ),
- MODEL_TENSOR.A_MM_NORM_MID: (
- "audio.multi_modal_projector.ln_mid", # ultravox
- ),
- # NextN/MTP tensors for GLM4_MOE
- MODEL_TENSOR.NEXTN_EH_PROJ: (
- "model.layers.{bid}.eh_proj",
- ),
- MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
- "model.layers.{bid}.embed_tokens",
- ),
- MODEL_TENSOR.NEXTN_ENORM: (
- "model.layers.{bid}.enorm",
- ),
- MODEL_TENSOR.NEXTN_HNORM: (
- "model.layers.{bid}.hnorm",
- ),
- MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
- "model.layers.{bid}.shared_head.head",
- ),
- MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
- "model.layers.{bid}.shared_head.norm",
- ),
- }
- # architecture-specific block mappings
- arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
- MODEL_ARCH.ARCTIC: {
- MODEL_TENSOR.FFN_NORM: (
- "model.layers.{bid}.residual_layernorm",
- ),
- MODEL_TENSOR.FFN_NORM_EXP: (
- "model.layers.{bid}.post_attention_layernorm",
- ),
- },
- }
- mapping: dict[str, tuple[MODEL_TENSOR, str]]
- def __init__(self, arch: MODEL_ARCH, n_blocks: int):
- self.mapping = {}
- for tensor, keys in self.mappings_cfg.items():
- if tensor not in MODEL_TENSORS[arch]:
- continue
- tensor_name = TENSOR_NAMES[tensor]
- self.mapping[tensor_name] = (tensor, tensor_name)
- for key in keys:
- self.mapping[key] = (tensor, tensor_name)
- if arch in self.arch_block_mappings_cfg:
- self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
- for bid in range(n_blocks):
- for tensor, keys in self.block_mappings_cfg.items():
- if tensor not in MODEL_TENSORS[arch]:
- continue
- tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
- self.mapping[tensor_name] = (tensor, tensor_name)
- for key in keys:
- key = key.format(bid = bid)
- self.mapping[key] = (tensor, tensor_name)
- def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
- result = self.mapping.get(key)
- if result is not None:
- return result
- for suffix in try_suffixes:
- if key.endswith(suffix):
- result = self.mapping.get(key[:-len(suffix)])
- if result is not None:
- return result[0], result[1] + suffix
- return None
- def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
- result = self.get_type_and_name(key, try_suffixes = try_suffixes)
- if result is None:
- return None
- return result[1]
- def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
- result = self.get_type_and_name(key, try_suffixes = try_suffixes)
- if result is None:
- return None
- return result[0]
- def __getitem__(self, key: str) -> str:
- try:
- return self.mapping[key][1]
- except KeyError:
- raise KeyError(key)
- def __contains__(self, key: str) -> bool:
- return key in self.mapping
- def __repr__(self) -> str:
- return repr(self.mapping)
- def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
- return TensorNameMap(arch, n_blocks)
|