clip.cpp 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. // idefics3
  151. int32_t preproc_image_size = 0;
  152. int32_t proj_scale_factor = 0;
  153. float image_mean[3];
  154. float image_std[3];
  155. // for models using dynamic image size, we need to have a smaller image size to warmup
  156. // otherwise, user will get OOM everytime they load the model
  157. int32_t warmup_image_size = 0;
  158. int32_t warmup_audio_size = 3000;
  159. ffn_op_type ffn_op = FFN_GELU;
  160. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  161. float eps = 1e-6;
  162. float rope_theta = 0.0;
  163. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  164. int32_t image_crop_resolution;
  165. std::unordered_set<int32_t> vision_feature_layer;
  166. int32_t attn_window_size = 0;
  167. int32_t n_wa_pattern = 0;
  168. int32_t spatial_merge_size = 0;
  169. // audio
  170. int32_t n_mel_bins = 0; // whisper preprocessor
  171. int32_t proj_stack_factor = 0; // ultravox
  172. // legacy
  173. bool has_llava_projector = false;
  174. int minicpmv_version = 0;
  175. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  176. };
  177. struct clip_layer {
  178. // attention
  179. ggml_tensor * k_w = nullptr;
  180. ggml_tensor * k_b = nullptr;
  181. ggml_tensor * q_w = nullptr;
  182. ggml_tensor * q_b = nullptr;
  183. ggml_tensor * v_w = nullptr;
  184. ggml_tensor * v_b = nullptr;
  185. ggml_tensor * o_w = nullptr;
  186. ggml_tensor * o_b = nullptr;
  187. ggml_tensor * k_norm = nullptr;
  188. ggml_tensor * q_norm = nullptr;
  189. // layernorm 1
  190. ggml_tensor * ln_1_w = nullptr;
  191. ggml_tensor * ln_1_b = nullptr;
  192. ggml_tensor * ff_up_w = nullptr;
  193. ggml_tensor * ff_up_b = nullptr;
  194. ggml_tensor * ff_gate_w = nullptr;
  195. ggml_tensor * ff_gate_b = nullptr;
  196. ggml_tensor * ff_down_w = nullptr;
  197. ggml_tensor * ff_down_b = nullptr;
  198. // layernorm 2
  199. ggml_tensor * ln_2_w = nullptr;
  200. ggml_tensor * ln_2_b = nullptr;
  201. // layer scale (no bias)
  202. ggml_tensor * ls_1_w = nullptr;
  203. ggml_tensor * ls_2_w = nullptr;
  204. };
  205. struct clip_model {
  206. clip_modality modality = CLIP_MODALITY_VISION;
  207. projector_type proj_type = PROJECTOR_TYPE_MLP;
  208. clip_hparams hparams;
  209. // embeddings
  210. ggml_tensor * class_embedding = nullptr;
  211. ggml_tensor * patch_embeddings_0 = nullptr;
  212. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  213. ggml_tensor * patch_bias = nullptr;
  214. ggml_tensor * position_embeddings = nullptr;
  215. ggml_tensor * pre_ln_w = nullptr;
  216. ggml_tensor * pre_ln_b = nullptr;
  217. std::vector<clip_layer> layers;
  218. ggml_tensor * post_ln_w;
  219. ggml_tensor * post_ln_b;
  220. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  221. ggml_tensor * mm_fc_w;
  222. ggml_tensor * mm_fc_b;
  223. // LLaVA projection
  224. ggml_tensor * mm_input_norm_w = nullptr;
  225. ggml_tensor * mm_input_norm_b = nullptr;
  226. ggml_tensor * mm_0_w = nullptr;
  227. ggml_tensor * mm_0_b = nullptr;
  228. ggml_tensor * mm_2_w = nullptr;
  229. ggml_tensor * mm_2_b = nullptr;
  230. ggml_tensor * image_newline = nullptr;
  231. // Yi type models with mlp+normalization projection
  232. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  233. ggml_tensor * mm_1_b = nullptr;
  234. ggml_tensor * mm_3_w = nullptr;
  235. ggml_tensor * mm_3_b = nullptr;
  236. ggml_tensor * mm_4_w = nullptr;
  237. ggml_tensor * mm_4_b = nullptr;
  238. // GLMV-Edge projection
  239. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  240. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  241. ggml_tensor * mm_glm_tok_boi = nullptr;
  242. ggml_tensor * mm_glm_tok_eoi = nullptr;
  243. // MobileVLM projection
  244. ggml_tensor * mm_model_mlp_1_w = nullptr;
  245. ggml_tensor * mm_model_mlp_1_b = nullptr;
  246. ggml_tensor * mm_model_mlp_3_w = nullptr;
  247. ggml_tensor * mm_model_mlp_3_b = nullptr;
  248. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  249. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  250. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  251. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  252. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  253. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  254. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  255. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  256. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  257. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  258. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  259. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  260. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  261. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  262. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  263. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  264. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  265. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  266. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  267. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  268. // MobileVLM_V2 projection
  269. ggml_tensor * mm_model_mlp_0_w = nullptr;
  270. ggml_tensor * mm_model_mlp_0_b = nullptr;
  271. ggml_tensor * mm_model_mlp_2_w = nullptr;
  272. ggml_tensor * mm_model_mlp_2_b = nullptr;
  273. ggml_tensor * mm_model_peg_0_w = nullptr;
  274. ggml_tensor * mm_model_peg_0_b = nullptr;
  275. // MINICPMV projection
  276. ggml_tensor * mm_model_pos_embed_k = nullptr;
  277. ggml_tensor * mm_model_query = nullptr;
  278. ggml_tensor * mm_model_proj = nullptr;
  279. ggml_tensor * mm_model_kv_proj = nullptr;
  280. ggml_tensor * mm_model_attn_q_w = nullptr;
  281. ggml_tensor * mm_model_attn_q_b = nullptr;
  282. ggml_tensor * mm_model_attn_k_w = nullptr;
  283. ggml_tensor * mm_model_attn_k_b = nullptr;
  284. ggml_tensor * mm_model_attn_v_w = nullptr;
  285. ggml_tensor * mm_model_attn_v_b = nullptr;
  286. ggml_tensor * mm_model_attn_o_w = nullptr;
  287. ggml_tensor * mm_model_attn_o_b = nullptr;
  288. ggml_tensor * mm_model_ln_q_w = nullptr;
  289. ggml_tensor * mm_model_ln_q_b = nullptr;
  290. ggml_tensor * mm_model_ln_kv_w = nullptr;
  291. ggml_tensor * mm_model_ln_kv_b = nullptr;
  292. ggml_tensor * mm_model_ln_post_w = nullptr;
  293. ggml_tensor * mm_model_ln_post_b = nullptr;
  294. // gemma3
  295. ggml_tensor * mm_input_proj_w = nullptr;
  296. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  297. // pixtral
  298. ggml_tensor * token_embd_img_break = nullptr;
  299. ggml_tensor * mm_patch_merger_w = nullptr;
  300. // ultravox / whisper encoder
  301. ggml_tensor * conv1d_1_w = nullptr;
  302. ggml_tensor * conv1d_1_b = nullptr;
  303. ggml_tensor * conv1d_2_w = nullptr;
  304. ggml_tensor * conv1d_2_b = nullptr;
  305. ggml_tensor * mm_norm_pre_w = nullptr;
  306. ggml_tensor * mm_norm_mid_w = nullptr;
  307. bool audio_has_avgpool() const {
  308. return proj_type == PROJECTOR_TYPE_QWEN2A
  309. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  310. }
  311. bool audio_has_stack_frames() const {
  312. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  313. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  314. }
  315. };
  316. struct clip_ctx {
  317. clip_model model;
  318. gguf_context_ptr ctx_gguf;
  319. ggml_context_ptr ctx_data;
  320. std::vector<uint8_t> buf_compute_meta;
  321. std::vector<ggml_backend_t> backend_ptrs;
  322. std::vector<ggml_backend_buffer_type_t> backend_buft;
  323. ggml_backend_t backend = nullptr;
  324. ggml_backend_t backend_cpu = nullptr;
  325. ggml_backend_buffer_ptr buf;
  326. int max_nodes = 8192;
  327. ggml_backend_sched_ptr sched;
  328. // for debugging
  329. bool debug_graph = false;
  330. std::vector<ggml_tensor *> debug_print_tensors;
  331. clip_ctx(clip_context_params & ctx_params) {
  332. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  333. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  334. if (!backend_cpu) {
  335. throw std::runtime_error("failed to initialize CPU backend");
  336. }
  337. if (ctx_params.use_gpu) {
  338. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  339. if (backend_name != nullptr) {
  340. backend = ggml_backend_init_by_name(backend_name, nullptr);
  341. if (!backend) {
  342. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  343. }
  344. }
  345. if (!backend) {
  346. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  347. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  348. }
  349. }
  350. if (backend) {
  351. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  352. backend_ptrs.push_back(backend);
  353. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  354. } else {
  355. backend = backend_cpu;
  356. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  357. }
  358. backend_ptrs.push_back(backend_cpu);
  359. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  360. sched.reset(
  361. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  362. );
  363. }
  364. ~clip_ctx() {
  365. ggml_backend_free(backend);
  366. if (backend != backend_cpu) {
  367. ggml_backend_free(backend_cpu);
  368. }
  369. }
  370. // this function is added so that we don't change too much of the existing code
  371. projector_type proj_type() const {
  372. return model.proj_type;
  373. }
  374. };
  375. struct clip_graph {
  376. clip_ctx * ctx;
  377. const clip_model & model;
  378. const clip_hparams & hparams;
  379. // we only support single image per batch
  380. const clip_image_f32 & img;
  381. const int patch_size;
  382. const int n_patches_x;
  383. const int n_patches_y;
  384. const int n_patches;
  385. const int n_embd;
  386. const int n_head;
  387. const int d_head;
  388. const int n_layer;
  389. const float eps;
  390. const float kq_scale;
  391. ggml_context_ptr ctx0_ptr;
  392. ggml_context * ctx0;
  393. ggml_cgraph * gf;
  394. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  395. ctx(ctx),
  396. model(ctx->model),
  397. hparams(model.hparams),
  398. img(img),
  399. patch_size(hparams.patch_size),
  400. n_patches_x(img.nx / patch_size),
  401. n_patches_y(img.ny / patch_size),
  402. n_patches(n_patches_x * n_patches_y),
  403. n_embd(hparams.n_embd),
  404. n_head(hparams.n_head),
  405. d_head(n_embd / n_head),
  406. n_layer(hparams.n_layer),
  407. eps(hparams.eps),
  408. kq_scale(1.0f / sqrtf((float)d_head)) {
  409. struct ggml_init_params params = {
  410. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  411. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  412. /*.no_alloc =*/ true,
  413. };
  414. ctx0_ptr.reset(ggml_init(params));
  415. ctx0 = ctx0_ptr.get();
  416. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  417. }
  418. ggml_cgraph * build_siglip() {
  419. ggml_tensor * inp = build_inp();
  420. ggml_tensor * learned_pos_embd = model.position_embeddings;
  421. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  422. learned_pos_embd = resize_position_embeddings();
  423. }
  424. ggml_tensor * cur = build_vit(
  425. inp, n_patches,
  426. NORM_TYPE_NORMAL,
  427. hparams.ffn_op,
  428. learned_pos_embd,
  429. nullptr);
  430. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  431. const int batch_size = 1;
  432. GGML_ASSERT(n_patches_x == n_patches_y);
  433. const int patches_per_image = n_patches_x;
  434. const int kernel_size = hparams.proj_scale_factor;
  435. cur = ggml_transpose(ctx0, cur);
  436. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  437. // doing a pool2d to reduce the number of output tokens
  438. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  439. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  440. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  441. // apply norm before projection
  442. cur = ggml_rms_norm(ctx0, cur, eps);
  443. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  444. // apply projection
  445. cur = ggml_mul_mat(ctx0,
  446. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  447. cur);
  448. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  449. // pixel_shuffle
  450. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  451. const int scale_factor = model.hparams.proj_scale_factor;
  452. cur = build_patch_merge_permute(cur, scale_factor);
  453. cur = ggml_mul_mat(ctx0, model.projection, cur);
  454. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  455. // pixel unshuffle block
  456. const int scale_factor = model.hparams.proj_scale_factor;
  457. cur = build_patch_merge_permute(cur, scale_factor);
  458. // projection
  459. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  460. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  461. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  462. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  463. cur = ggml_add(ctx0, cur, model.mm_1_b);
  464. cur = ggml_gelu(ctx0, cur);
  465. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  466. cur = ggml_add(ctx0, cur, model.mm_2_b);
  467. } else {
  468. GGML_ABORT("SigLIP: Unsupported projector type");
  469. }
  470. // build the graph
  471. ggml_build_forward_expand(gf, cur);
  472. return gf;
  473. }
  474. ggml_cgraph * build_pixtral() {
  475. const int n_merge = hparams.spatial_merge_size;
  476. // 2D input positions
  477. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  478. ggml_set_name(pos_h, "pos_h");
  479. ggml_set_input(pos_h);
  480. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  481. ggml_set_name(pos_w, "pos_w");
  482. ggml_set_input(pos_w);
  483. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  484. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  485. };
  486. ggml_tensor * inp = build_inp();
  487. ggml_tensor * cur = build_vit(
  488. inp, n_patches,
  489. NORM_TYPE_RMS,
  490. hparams.ffn_op,
  491. nullptr, // no learned pos embd
  492. add_pos);
  493. // mistral small 3.1 patch merger
  494. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  495. if (model.mm_patch_merger_w) {
  496. GGML_ASSERT(hparams.spatial_merge_size > 0);
  497. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  498. // reshape image tokens to 2D grid
  499. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  500. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  501. cur = ggml_cont(ctx0, cur);
  502. // torch.nn.functional.unfold is just an im2col under the hood
  503. // we just need a dummy kernel to make it work
  504. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  505. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  506. // project to n_embd
  507. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  508. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  509. }
  510. // LlavaMultiModalProjector (always using GELU activation)
  511. {
  512. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  513. if (model.mm_1_b) {
  514. cur = ggml_add(ctx0, cur, model.mm_1_b);
  515. }
  516. cur = ggml_gelu(ctx0, cur);
  517. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  518. if (model.mm_2_b) {
  519. cur = ggml_add(ctx0, cur, model.mm_2_b);
  520. }
  521. }
  522. // arrangement of the [IMG_BREAK] token
  523. {
  524. // not efficient, but works
  525. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  526. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  527. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  528. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  529. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  530. const int p_total = p_x * p_y;
  531. const int n_embd_text = cur->ne[0];
  532. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  533. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  534. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  535. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  536. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  537. tmp = ggml_concat(ctx0, tmp, tok, 1);
  538. cur = ggml_view_2d(ctx0, tmp,
  539. n_embd_text, n_tokens_output,
  540. ggml_row_size(tmp->type, n_embd_text), 0);
  541. }
  542. // build the graph
  543. ggml_build_forward_expand(gf, cur);
  544. return gf;
  545. }
  546. // Qwen2VL and Qwen2.5VL use M-RoPE
  547. ggml_cgraph * build_qwen2vl() {
  548. GGML_ASSERT(model.patch_bias == nullptr);
  549. GGML_ASSERT(model.class_embedding == nullptr);
  550. const int batch_size = 1;
  551. const bool use_window_attn = hparams.n_wa_pattern > 0;
  552. const int n_wa_pattern = hparams.n_wa_pattern;
  553. const int n_pos = n_patches;
  554. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  555. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  556. ? NORM_TYPE_RMS // qwen 2.5 vl
  557. : NORM_TYPE_NORMAL; // qwen 2 vl
  558. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  559. ggml_tensor * inp_raw = build_inp_raw();
  560. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  561. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  562. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  563. // second conv dimension
  564. {
  565. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  566. inp = ggml_add(ctx0, inp, inp_1);
  567. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  568. inp = ggml_cont_4d(
  569. ctx0, inp,
  570. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  571. inp = ggml_reshape_4d(
  572. ctx0, inp,
  573. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  574. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  575. inp = ggml_cont_3d(
  576. ctx0, inp,
  577. n_embd, n_patches_x * n_patches_y, batch_size);
  578. }
  579. ggml_tensor * inpL = inp;
  580. ggml_tensor * window_mask = nullptr;
  581. ggml_tensor * window_idx = nullptr;
  582. ggml_tensor * inv_window_idx = nullptr;
  583. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  584. ggml_set_name(positions, "positions");
  585. ggml_set_input(positions);
  586. // pre-layernorm
  587. if (model.pre_ln_w) {
  588. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  589. }
  590. if (use_window_attn) {
  591. // handle window attention inputs
  592. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  593. ggml_set_name(inv_window_idx, "inv_window_idx");
  594. ggml_set_input(inv_window_idx);
  595. // mask for window attention
  596. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  597. ggml_set_name(window_mask, "window_mask");
  598. ggml_set_input(window_mask);
  599. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  600. GGML_ASSERT(batch_size == 1);
  601. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  602. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  603. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  604. }
  605. // loop over layers
  606. for (int il = 0; il < n_layer; il++) {
  607. auto & layer = model.layers[il];
  608. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  609. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  610. // layernorm1
  611. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  612. cb(cur, "ln1", il);
  613. // self-attention
  614. {
  615. ggml_tensor * Qcur = ggml_add(ctx0,
  616. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  617. ggml_tensor * Kcur = ggml_add(ctx0,
  618. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  619. ggml_tensor * Vcur = ggml_add(ctx0,
  620. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  621. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  622. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  623. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  624. cb(Qcur, "Qcur", il);
  625. cb(Kcur, "Kcur", il);
  626. cb(Vcur, "Vcur", il);
  627. // apply M-RoPE
  628. Qcur = ggml_rope_multi(
  629. ctx0, Qcur, positions, nullptr,
  630. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  631. Kcur = ggml_rope_multi(
  632. ctx0, Kcur, positions, nullptr,
  633. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  634. cb(Qcur, "Qcur_rope", il);
  635. cb(Kcur, "Kcur_rope", il);
  636. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  637. cur = build_attn(layer.o_w, layer.o_b,
  638. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  639. cb(cur, "attn_out", il);
  640. }
  641. // re-add the layer input, e.g., residual
  642. cur = ggml_add(ctx0, cur, inpL);
  643. inpL = cur; // inpL = residual, cur = hidden_states
  644. cb(cur, "ffn_inp", il);
  645. // layernorm2
  646. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  647. cb(cur, "ffn_inp_normed", il);
  648. // ffn
  649. cur = build_ffn(cur,
  650. layer.ff_up_w, layer.ff_up_b,
  651. layer.ff_gate_w, layer.ff_gate_b,
  652. layer.ff_down_w, layer.ff_down_b,
  653. hparams.ffn_op, il);
  654. cb(cur, "ffn_out", il);
  655. // residual 2
  656. cur = ggml_add(ctx0, inpL, cur);
  657. cb(cur, "layer_out", il);
  658. inpL = cur;
  659. }
  660. // post-layernorm
  661. if (model.post_ln_w) {
  662. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  663. }
  664. // multimodal projection
  665. ggml_tensor * embeddings = inpL;
  666. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  667. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  668. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  669. // GELU activation
  670. embeddings = ggml_gelu(ctx0, embeddings);
  671. // Second linear layer
  672. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  673. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  674. if (use_window_attn) {
  675. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  676. ggml_set_name(window_idx, "window_idx");
  677. ggml_set_input(window_idx);
  678. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  679. GGML_ASSERT(batch_size == 1);
  680. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  681. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  682. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  683. }
  684. // build the graph
  685. ggml_build_forward_expand(gf, embeddings);
  686. return gf;
  687. }
  688. ggml_cgraph * build_minicpmv() {
  689. const int batch_size = 1;
  690. GGML_ASSERT(model.class_embedding == nullptr);
  691. const int n_pos = n_patches;
  692. // position embeddings for the projector (not for ViT)
  693. int n_output_dim = clip_n_mmproj_embd(ctx);
  694. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  695. ggml_set_name(pos_embed, "pos_embed");
  696. ggml_set_input(pos_embed);
  697. // for selecting learned pos embd, used by ViT
  698. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  699. ggml_set_name(positions, "positions");
  700. ggml_set_input(positions);
  701. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  702. ggml_tensor * inp = build_inp();
  703. ggml_tensor * embeddings = build_vit(
  704. inp, n_patches,
  705. NORM_TYPE_NORMAL,
  706. hparams.ffn_op,
  707. learned_pos_embd,
  708. nullptr);
  709. // resampler projector (it is just another transformer)
  710. ggml_tensor * q = model.mm_model_query;
  711. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  712. // norm
  713. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  714. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  715. // k = v + pos_embed
  716. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  717. // attention
  718. {
  719. int n_embd = clip_n_mmproj_embd(ctx);
  720. const int d_head = 128;
  721. int n_head = n_embd/d_head;
  722. // Use actual config value if available, otherwise fall back to hardcoded values
  723. int num_query = ctx->model.hparams.minicpmv_query_num;
  724. ggml_tensor * Q = ggml_add(ctx0,
  725. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  726. model.mm_model_attn_q_b);
  727. ggml_tensor * K = ggml_add(ctx0,
  728. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  729. model.mm_model_attn_k_b);
  730. ggml_tensor * V = ggml_add(ctx0,
  731. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  732. model.mm_model_attn_v_b);
  733. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  734. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  735. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  736. cb(Q, "resampler_Q", -1);
  737. cb(K, "resampler_K", -1);
  738. cb(V, "resampler_V", -1);
  739. embeddings = build_attn(
  740. model.mm_model_attn_o_w,
  741. model.mm_model_attn_o_b,
  742. Q, K, V, nullptr, kq_scale, -1);
  743. cb(embeddings, "resampler_attn_out", -1);
  744. }
  745. // layernorm
  746. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  747. // projection
  748. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  749. // build the graph
  750. ggml_build_forward_expand(gf, embeddings);
  751. return gf;
  752. }
  753. ggml_cgraph * build_internvl() {
  754. GGML_ASSERT(model.class_embedding != nullptr);
  755. GGML_ASSERT(model.position_embeddings != nullptr);
  756. const int n_pos = n_patches + 1;
  757. ggml_tensor * inp = build_inp();
  758. // add CLS token
  759. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  760. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  761. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  762. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  763. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  764. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  765. ggml_tensor * cur = build_vit(
  766. inp, n_pos,
  767. norm_t,
  768. hparams.ffn_op,
  769. model.position_embeddings,
  770. nullptr);
  771. // remove CLS token
  772. cur = ggml_view_2d(ctx0, cur,
  773. n_embd, n_patches,
  774. ggml_row_size(cur->type, n_embd), 0);
  775. // pixel shuffle
  776. {
  777. const int scale_factor = model.hparams.proj_scale_factor;
  778. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  779. const int height = n_patches_y;
  780. const int width = n_patches_x;
  781. GGML_ASSERT(scale_factor > 0);
  782. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  783. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  784. cur = ggml_cont_4d(ctx0, cur,
  785. n_embd * scale_factor * scale_factor,
  786. height / scale_factor,
  787. width / scale_factor,
  788. bsz);
  789. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  790. // flatten to 2D
  791. cur = ggml_cont_2d(ctx0, cur,
  792. n_embd * scale_factor * scale_factor,
  793. cur->ne[1] * cur->ne[2]);
  794. }
  795. // projector (always using GELU activation)
  796. {
  797. // projector LayerNorm uses pytorch's default eps = 1e-5
  798. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  799. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  800. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  801. cur = ggml_add(ctx0, cur, model.mm_1_b);
  802. cur = ggml_gelu(ctx0, cur);
  803. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  804. cur = ggml_add(ctx0, cur, model.mm_3_b);
  805. }
  806. // build the graph
  807. ggml_build_forward_expand(gf, cur);
  808. return gf;
  809. }
  810. ggml_cgraph * build_llama4() {
  811. GGML_ASSERT(model.class_embedding != nullptr);
  812. GGML_ASSERT(model.position_embeddings != nullptr);
  813. const int n_pos = n_patches + 1; // +1 for [CLS]
  814. // 2D input positions
  815. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  816. ggml_set_name(pos_h, "pos_h");
  817. ggml_set_input(pos_h);
  818. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  819. ggml_set_name(pos_w, "pos_w");
  820. ggml_set_input(pos_w);
  821. ggml_tensor * inp = build_inp_raw();
  822. // Llama4UnfoldConvolution
  823. {
  824. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  825. patch_size, patch_size, 3, n_embd);
  826. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  827. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  828. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  829. cb(inp, "patch_conv", -1);
  830. }
  831. // add CLS token
  832. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  833. // build ViT with 2D position embeddings
  834. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  835. // first half is X axis and second half is Y axis
  836. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  837. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  838. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  839. };
  840. ggml_tensor * cur = build_vit(
  841. inp, n_pos,
  842. NORM_TYPE_NORMAL,
  843. hparams.ffn_op,
  844. model.position_embeddings,
  845. add_pos);
  846. // remove CLS token
  847. cur = ggml_view_2d(ctx0, cur,
  848. n_embd, n_patches,
  849. ggml_row_size(cur->type, n_embd), 0);
  850. // pixel shuffle
  851. // based on Llama4VisionPixelShuffleMLP
  852. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  853. {
  854. const int scale_factor = model.hparams.proj_scale_factor;
  855. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  856. GGML_ASSERT(scale_factor > 0);
  857. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  858. cur = ggml_reshape_4d(ctx0, cur,
  859. n_embd * scale_factor,
  860. n_patches_x / scale_factor,
  861. n_patches_y,
  862. bsz);
  863. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  864. cur = ggml_cont_4d(ctx0, cur,
  865. n_embd * scale_factor * scale_factor,
  866. n_patches_x / scale_factor,
  867. n_patches_y / scale_factor,
  868. bsz);
  869. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  870. // flatten to 2D
  871. cur = ggml_cont_2d(ctx0, cur,
  872. n_embd * scale_factor * scale_factor,
  873. n_patches / scale_factor / scale_factor);
  874. cb(cur, "pixel_shuffle", -1);
  875. }
  876. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  877. {
  878. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  879. cur = ggml_gelu(ctx0, cur);
  880. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  881. cur = ggml_gelu(ctx0, cur);
  882. cb(cur, "adapter_mlp", -1);
  883. }
  884. // Llama4MultiModalProjector
  885. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  886. cb(cur, "projected", -1);
  887. // build the graph
  888. ggml_build_forward_expand(gf, cur);
  889. return gf;
  890. }
  891. ggml_cgraph * build_kimivl() {
  892. // 2D input positions
  893. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  894. ggml_set_name(pos_h, "pos_h");
  895. ggml_set_input(pos_h);
  896. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  897. ggml_set_name(pos_w, "pos_w");
  898. ggml_set_input(pos_w);
  899. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  900. // build ViT with 2D position embeddings
  901. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  902. // first half is X axis and second half is Y axis
  903. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  904. };
  905. ggml_tensor * inp = build_inp();
  906. ggml_tensor * cur = build_vit(
  907. inp, n_patches,
  908. NORM_TYPE_NORMAL,
  909. hparams.ffn_op,
  910. learned_pos_embd,
  911. add_pos);
  912. cb(cur, "vit_out", -1);
  913. {
  914. // patch_merger
  915. const int scale_factor = model.hparams.proj_scale_factor;
  916. cur = build_patch_merge_permute(cur, scale_factor);
  917. // projection norm
  918. int proj_inp_dim = cur->ne[0];
  919. cur = ggml_view_2d(ctx0, cur,
  920. n_embd, cur->ne[1] * scale_factor * scale_factor,
  921. ggml_row_size(cur->type, n_embd), 0);
  922. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  923. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  924. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  925. cur = ggml_view_2d(ctx0, cur,
  926. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  927. ggml_row_size(cur->type, proj_inp_dim), 0);
  928. cb(cur, "proj_inp_normed", -1);
  929. // projection mlp
  930. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  931. cur = ggml_add(ctx0, cur, model.mm_1_b);
  932. cur = ggml_gelu(ctx0, cur);
  933. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  934. cur = ggml_add(ctx0, cur, model.mm_2_b);
  935. cb(cur, "proj_out", -1);
  936. }
  937. // build the graph
  938. ggml_build_forward_expand(gf, cur);
  939. return gf;
  940. }
  941. // this graph is used by llava, granite and glm
  942. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  943. ggml_cgraph * build_llava() {
  944. const int batch_size = 1;
  945. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  946. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  947. // Calculate the deepest feature layer based on hparams and projector type
  948. int max_feature_layer = n_layer;
  949. {
  950. // Get the index of the second to last layer; this is the default for models that have a llava projector
  951. int il_last = hparams.n_layer - 1;
  952. int deepest_feature_layer = -1;
  953. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  954. il_last += 1;
  955. }
  956. // If we set explicit vision feature layers, only go up to the deepest one
  957. // NOTE: only used by granite-vision models for now
  958. for (const auto & feature_layer : hparams.vision_feature_layer) {
  959. if (feature_layer > deepest_feature_layer) {
  960. deepest_feature_layer = feature_layer;
  961. }
  962. }
  963. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  964. }
  965. ggml_tensor * inp = build_inp();
  966. // concat class_embeddings and patch_embeddings
  967. if (model.class_embedding) {
  968. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  969. }
  970. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  971. ggml_set_name(positions, "positions");
  972. ggml_set_input(positions);
  973. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  974. ggml_tensor * inpL = inp;
  975. // pre-layernorm
  976. if (model.pre_ln_w) {
  977. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  978. cb(inpL, "pre_ln", -1);
  979. }
  980. std::vector<ggml_tensor *> embedding_stack;
  981. const auto & vision_feature_layer = hparams.vision_feature_layer;
  982. // loop over layers
  983. for (int il = 0; il < max_feature_layer; il++) {
  984. auto & layer = model.layers[il];
  985. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  986. // If this is an embedding feature layer, save the output.
  987. // NOTE: 0 index here refers to the input to the encoder.
  988. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  989. embedding_stack.push_back(cur);
  990. }
  991. // layernorm1
  992. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  993. cb(cur, "layer_inp_normed", il);
  994. // self-attention
  995. {
  996. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  997. if (layer.q_b) {
  998. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  999. }
  1000. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1001. if (layer.k_b) {
  1002. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1003. }
  1004. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1005. if (layer.v_b) {
  1006. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1007. }
  1008. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1009. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1010. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1011. cb(Qcur, "Qcur", il);
  1012. cb(Kcur, "Kcur", il);
  1013. cb(Vcur, "Vcur", il);
  1014. cur = build_attn(layer.o_w, layer.o_b,
  1015. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1016. cb(cur, "attn_out", il);
  1017. }
  1018. // re-add the layer input, e.g., residual
  1019. cur = ggml_add(ctx0, cur, inpL);
  1020. inpL = cur; // inpL = residual, cur = hidden_states
  1021. cb(cur, "ffn_inp", il);
  1022. // layernorm2
  1023. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1024. cb(cur, "ffn_inp_normed", il);
  1025. // ffn
  1026. cur = build_ffn(cur,
  1027. layer.ff_up_w, layer.ff_up_b,
  1028. layer.ff_gate_w, layer.ff_gate_b,
  1029. layer.ff_down_w, layer.ff_down_b,
  1030. hparams.ffn_op, il);
  1031. cb(cur, "ffn_out", il);
  1032. // residual 2
  1033. cur = ggml_add(ctx0, inpL, cur);
  1034. cb(cur, "layer_out", il);
  1035. inpL = cur;
  1036. }
  1037. // post-layernorm
  1038. if (model.post_ln_w) {
  1039. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1040. }
  1041. ggml_tensor * embeddings = inpL;
  1042. // process vision feature layers (used by granite)
  1043. {
  1044. // final layer is a vision feature layer
  1045. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1046. embedding_stack.push_back(inpL);
  1047. }
  1048. // If feature layers are explicitly set, stack them (if we have multiple)
  1049. if (!embedding_stack.empty()) {
  1050. embeddings = embedding_stack[0];
  1051. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1052. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1053. }
  1054. }
  1055. }
  1056. // llava projector (also used by granite)
  1057. if (ctx->model.hparams.has_llava_projector) {
  1058. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1059. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1060. ggml_set_name(patches, "patches");
  1061. ggml_set_input(patches);
  1062. // shape [1, 576, 1024]
  1063. // ne is whcn, ne = [1024, 576, 1, 1]
  1064. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1065. // print_tensor_info(embeddings, "embeddings");
  1066. // llava projector
  1067. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1068. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1069. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1070. embeddings = ggml_gelu(ctx0, embeddings);
  1071. if (model.mm_2_w) {
  1072. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1073. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1074. }
  1075. }
  1076. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1077. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1078. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1079. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1080. // First LayerNorm
  1081. embeddings = ggml_norm(ctx0, embeddings, eps);
  1082. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1083. model.mm_1_b);
  1084. // GELU activation
  1085. embeddings = ggml_gelu(ctx0, embeddings);
  1086. // Second linear layer
  1087. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1088. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1089. // Second LayerNorm
  1090. embeddings = ggml_norm(ctx0, embeddings, eps);
  1091. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1092. model.mm_4_b);
  1093. }
  1094. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1095. // MobileVLM projector
  1096. int n_patch = 24;
  1097. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1098. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1099. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1100. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1101. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1102. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1103. // block 1
  1104. ggml_tensor * block_1 = nullptr;
  1105. {
  1106. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1107. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1108. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1109. // stride = 1, padding = 1, bias is nullptr
  1110. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1111. // layer norm
  1112. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1113. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1114. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1115. block_1 = ggml_norm(ctx0, block_1, eps);
  1116. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1117. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1118. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1119. // hardswish
  1120. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1121. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1122. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1123. // pointwise conv
  1124. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1125. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1126. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1127. block_1 = ggml_relu(ctx0, block_1);
  1128. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1129. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1130. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1131. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1132. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1133. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1134. int w = block_1->ne[0], h = block_1->ne[1];
  1135. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1136. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1137. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1138. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1139. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1140. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1141. block_1 = ggml_norm(ctx0, block_1, eps);
  1142. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1143. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1144. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1145. // residual
  1146. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1147. }
  1148. // block_2
  1149. {
  1150. // stride = 2
  1151. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1152. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1153. // layer norm
  1154. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1155. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1156. block_1 = ggml_norm(ctx0, block_1, eps);
  1157. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1158. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1159. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1160. // hardswish
  1161. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1162. // not sure the parameters is right for globalAvgPooling
  1163. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1164. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1165. // pointwise conv
  1166. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1167. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1168. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1169. block_1 = ggml_relu(ctx0, block_1);
  1170. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1171. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1172. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1173. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1174. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1175. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1176. int w = block_1->ne[0], h = block_1->ne[1];
  1177. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1178. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1179. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1180. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1181. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1182. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1183. block_1 = ggml_norm(ctx0, block_1, eps);
  1184. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1185. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1186. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1187. }
  1188. embeddings = block_1;
  1189. }
  1190. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1191. {
  1192. int n_patch = 24;
  1193. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1194. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1195. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1196. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1197. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1198. // mlp_2 ne = [2048, 576, 1, 1]
  1199. // // AVG Pool Layer 2*2, strides = 2
  1200. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1201. // mlp_2 ne = [576, 2048, 1, 1]
  1202. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1203. // mlp_2 ne [24, 24, 2048, 1]
  1204. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1205. // weight ne = [3, 3, 2048, 1]
  1206. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1207. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1208. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1209. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1210. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1211. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1212. embeddings = peg_0;
  1213. }
  1214. else {
  1215. GGML_ABORT("fatal error");
  1216. }
  1217. }
  1218. // glm projector
  1219. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1220. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1221. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1222. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1223. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1224. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1225. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1226. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1227. // GLU
  1228. {
  1229. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1230. embeddings = ggml_norm(ctx0, embeddings, eps);
  1231. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1232. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1233. ggml_tensor * x = embeddings;
  1234. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1235. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1236. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1237. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1238. }
  1239. // arrangement of BOI/EOI token embeddings
  1240. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1241. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1242. {
  1243. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1244. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1245. }
  1246. }
  1247. else {
  1248. GGML_ABORT("llava: unknown projector type");
  1249. }
  1250. // build the graph
  1251. ggml_build_forward_expand(gf, embeddings);
  1252. return gf;
  1253. }
  1254. // whisper encoder with custom projector
  1255. ggml_cgraph * build_whisper_enc() {
  1256. const int n_frames = img.nx;
  1257. const int n_pos = n_frames / 2;
  1258. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1259. ggml_tensor * inp = build_inp_raw(1);
  1260. // conv1d block
  1261. {
  1262. // convolution + gelu
  1263. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1264. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1265. cur = ggml_gelu_erf(ctx0, cur);
  1266. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1267. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1268. cur = ggml_gelu_erf(ctx0, cur);
  1269. // transpose
  1270. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1271. cb(inp, "after_conv1d", -1);
  1272. }
  1273. // sanity check (only check one layer, but it should be the same for all)
  1274. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1275. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1276. GGML_ASSERT(model.layers[0].q_b);
  1277. GGML_ASSERT(model.layers[0].v_b);
  1278. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1279. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1280. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1281. ctx0, model.position_embeddings,
  1282. model.position_embeddings->ne[0], n_pos,
  1283. model.position_embeddings->nb[1], 0
  1284. );
  1285. ggml_tensor * cur = build_vit(
  1286. inp, n_pos,
  1287. NORM_TYPE_NORMAL,
  1288. hparams.ffn_op,
  1289. pos_embd_selected,
  1290. nullptr);
  1291. cb(cur, "after_transformer", -1);
  1292. if (model.audio_has_stack_frames()) {
  1293. // StackAudioFrames
  1294. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1295. int64_t stride = n_embd * hparams.proj_stack_factor;
  1296. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1297. int64_t pad = padded_len - ggml_nelements(cur);
  1298. if (pad > 0) {
  1299. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1300. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1301. }
  1302. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1303. ggml_row_size(cur->type, stride), 0);
  1304. cb(cur, "after_stacked", -1);
  1305. }
  1306. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1307. // UltravoxProjector
  1308. // pre-norm
  1309. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1310. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1311. // ffn in
  1312. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1313. // swiglu
  1314. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1315. cur = ggml_swiglu_swapped(ctx0, cur);
  1316. // mid-norm
  1317. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1318. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1319. // ffn out
  1320. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1321. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1322. // projector
  1323. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1324. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1325. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1326. // projector
  1327. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1328. cur = ggml_gelu_erf(ctx0, cur);
  1329. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1330. } else {
  1331. GGML_ABORT("%s: unknown projector type", __func__);
  1332. }
  1333. cb(cur, "projected", -1);
  1334. ggml_build_forward_expand(gf, cur);
  1335. return gf;
  1336. }
  1337. private:
  1338. //
  1339. // utility functions
  1340. //
  1341. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1342. if (ctx->debug_graph) {
  1343. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1344. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1345. ggml_set_name(cur, cur_name.c_str());
  1346. ggml_set_output(cur);
  1347. ggml_build_forward_expand(gf, cur);
  1348. ctx->debug_print_tensors.push_back(cur);
  1349. }
  1350. }
  1351. // siglip2 naflex
  1352. ggml_tensor * resize_position_embeddings() {
  1353. ggml_tensor * pos_embd = model.position_embeddings;
  1354. const int height = img.ny / patch_size;
  1355. const int width = img.nx / patch_size;
  1356. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1357. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1358. GGML_ASSERT(pos_embd);
  1359. if (height == n_per_side && width == n_per_side) {
  1360. return pos_embd;
  1361. }
  1362. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1363. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1364. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1365. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1366. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1367. return pos_embd;
  1368. }
  1369. // build vision transformer (ViT) cgraph
  1370. // this function should cover most of the models
  1371. // if your model has specific features, you should probably duplicate this function
  1372. ggml_tensor * build_vit(
  1373. ggml_tensor * inp,
  1374. int64_t n_pos,
  1375. norm_type norm_t,
  1376. ffn_op_type ffn_t,
  1377. ggml_tensor * learned_pos_embd,
  1378. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1379. ) {
  1380. if (learned_pos_embd) {
  1381. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1382. cb(inp, "pos_embed", -1);
  1383. }
  1384. ggml_tensor * inpL = inp;
  1385. // pre-layernorm
  1386. if (model.pre_ln_w) {
  1387. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1388. cb(inpL, "pre_ln", -1);
  1389. }
  1390. // loop over layers
  1391. for (int il = 0; il < n_layer; il++) {
  1392. auto & layer = model.layers[il];
  1393. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1394. // layernorm1
  1395. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1396. cb(cur, "layer_inp_normed", il);
  1397. // self-attention
  1398. {
  1399. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1400. if (layer.q_b) {
  1401. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1402. }
  1403. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1404. if (layer.k_b) {
  1405. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1406. }
  1407. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1408. if (layer.v_b) {
  1409. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1410. }
  1411. if (layer.q_norm) {
  1412. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1413. cb(Qcur, "Qcur_norm", il);
  1414. }
  1415. if (layer.k_norm) {
  1416. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1417. cb(Kcur, "Kcur_norm", il);
  1418. }
  1419. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1420. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1421. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1422. cb(Qcur, "Qcur", il);
  1423. cb(Kcur, "Kcur", il);
  1424. cb(Vcur, "Vcur", il);
  1425. if (add_pos) {
  1426. Qcur = add_pos(Qcur, layer);
  1427. Kcur = add_pos(Kcur, layer);
  1428. cb(Qcur, "Qcur_pos", il);
  1429. cb(Kcur, "Kcur_pos", il);
  1430. }
  1431. cur = build_attn(layer.o_w, layer.o_b,
  1432. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1433. cb(cur, "attn_out", il);
  1434. }
  1435. if (layer.ls_1_w) {
  1436. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1437. cb(cur, "attn_out_scaled", il);
  1438. }
  1439. // re-add the layer input, e.g., residual
  1440. cur = ggml_add(ctx0, cur, inpL);
  1441. inpL = cur; // inpL = residual, cur = hidden_states
  1442. cb(cur, "ffn_inp", il);
  1443. // layernorm2
  1444. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1445. cb(cur, "ffn_inp_normed", il);
  1446. // ffn
  1447. cur = build_ffn(cur,
  1448. layer.ff_up_w, layer.ff_up_b,
  1449. layer.ff_gate_w, layer.ff_gate_b,
  1450. layer.ff_down_w, layer.ff_down_b,
  1451. ffn_t, il);
  1452. cb(cur, "ffn_out", il);
  1453. if (layer.ls_2_w) {
  1454. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1455. cb(cur, "ffn_out_scaled", il);
  1456. }
  1457. // residual 2
  1458. cur = ggml_add(ctx0, inpL, cur);
  1459. cb(cur, "layer_out", il);
  1460. inpL = cur;
  1461. }
  1462. if (ctx->model.audio_has_avgpool()) {
  1463. ggml_tensor * cur = inpL;
  1464. cur = ggml_transpose(ctx0, cur);
  1465. cur = ggml_cont(ctx0, cur);
  1466. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1467. cur = ggml_transpose(ctx0, cur);
  1468. cur = ggml_cont(ctx0, cur);
  1469. inpL = cur;
  1470. }
  1471. // post-layernorm
  1472. if (model.post_ln_w) {
  1473. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1474. }
  1475. return inpL;
  1476. }
  1477. // build the input after conv2d (inp_raw --> patches)
  1478. // returns tensor with shape [n_embd, n_patches]
  1479. ggml_tensor * build_inp() {
  1480. ggml_tensor * inp_raw = build_inp_raw();
  1481. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1482. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1483. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1484. if (model.patch_bias) {
  1485. inp = ggml_add(ctx0, inp, model.patch_bias);
  1486. cb(inp, "patch_bias", -1);
  1487. }
  1488. return inp;
  1489. }
  1490. ggml_tensor * build_inp_raw(int channels = 3) {
  1491. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1492. ggml_set_name(inp_raw, "inp_raw");
  1493. ggml_set_input(inp_raw);
  1494. return inp_raw;
  1495. }
  1496. ggml_tensor * build_norm(
  1497. ggml_tensor * cur,
  1498. ggml_tensor * mw,
  1499. ggml_tensor * mb,
  1500. norm_type type,
  1501. float norm_eps,
  1502. int il) const {
  1503. cur = type == NORM_TYPE_RMS
  1504. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1505. : ggml_norm(ctx0, cur, norm_eps);
  1506. if (mw || mb) {
  1507. cb(cur, "norm", il);
  1508. }
  1509. if (mw) {
  1510. cur = ggml_mul(ctx0, cur, mw);
  1511. if (mb) {
  1512. cb(cur, "norm_w", il);
  1513. }
  1514. }
  1515. if (mb) {
  1516. cur = ggml_add(ctx0, cur, mb);
  1517. }
  1518. return cur;
  1519. }
  1520. ggml_tensor * build_ffn(
  1521. ggml_tensor * cur,
  1522. ggml_tensor * up,
  1523. ggml_tensor * up_b,
  1524. ggml_tensor * gate,
  1525. ggml_tensor * gate_b,
  1526. ggml_tensor * down,
  1527. ggml_tensor * down_b,
  1528. ffn_op_type type_op,
  1529. int il) const {
  1530. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1531. cb(tmp, "ffn_up", il);
  1532. if (up_b) {
  1533. tmp = ggml_add(ctx0, tmp, up_b);
  1534. cb(tmp, "ffn_up_b", il);
  1535. }
  1536. if (gate) {
  1537. cur = ggml_mul_mat(ctx0, gate, cur);
  1538. cb(cur, "ffn_gate", il);
  1539. if (gate_b) {
  1540. cur = ggml_add(ctx0, cur, gate_b);
  1541. cb(cur, "ffn_gate_b", il);
  1542. }
  1543. } else {
  1544. cur = tmp;
  1545. }
  1546. // we only support parallel ffn for now
  1547. switch (type_op) {
  1548. case FFN_SILU:
  1549. if (gate) {
  1550. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1551. cb(cur, "ffn_swiglu", il);
  1552. } else {
  1553. cur = ggml_silu(ctx0, cur);
  1554. cb(cur, "ffn_silu", il);
  1555. } break;
  1556. case FFN_GELU:
  1557. if (gate) {
  1558. cur = ggml_geglu_split(ctx0, cur, tmp);
  1559. cb(cur, "ffn_geglu", il);
  1560. } else {
  1561. cur = ggml_gelu(ctx0, cur);
  1562. cb(cur, "ffn_gelu", il);
  1563. } break;
  1564. case FFN_GELU_ERF:
  1565. if (gate) {
  1566. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1567. cb(cur, "ffn_geglu_erf", il);
  1568. } else {
  1569. cur = ggml_gelu_erf(ctx0, cur);
  1570. cb(cur, "ffn_gelu_erf", il);
  1571. } break;
  1572. case FFN_GELU_QUICK:
  1573. if (gate) {
  1574. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1575. cb(cur, "ffn_geglu_quick", il);
  1576. } else {
  1577. cur = ggml_gelu_quick(ctx0, cur);
  1578. cb(cur, "ffn_gelu_quick", il);
  1579. } break;
  1580. }
  1581. if (down) {
  1582. cur = ggml_mul_mat(ctx0, down, cur);
  1583. }
  1584. if (down_b) {
  1585. cb(cur, "ffn_down", il);
  1586. }
  1587. if (down_b) {
  1588. cur = ggml_add(ctx0, cur, down_b);
  1589. }
  1590. return cur;
  1591. }
  1592. ggml_tensor * build_attn(
  1593. ggml_tensor * wo,
  1594. ggml_tensor * wo_b,
  1595. ggml_tensor * q_cur,
  1596. ggml_tensor * k_cur,
  1597. ggml_tensor * v_cur,
  1598. ggml_tensor * kq_mask,
  1599. float kq_scale,
  1600. int il) const {
  1601. // these nodes are added to the graph together so that they are not reordered
  1602. // by doing so, the number of splits in the graph is reduced
  1603. ggml_build_forward_expand(gf, q_cur);
  1604. ggml_build_forward_expand(gf, k_cur);
  1605. ggml_build_forward_expand(gf, v_cur);
  1606. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1607. //cb(q, "q", il);
  1608. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1609. //cb(k, "k", il);
  1610. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1611. v = ggml_cont(ctx0, v);
  1612. //cb(k, "v", il);
  1613. ggml_tensor * cur;
  1614. // TODO @ngxson : support flash attention
  1615. {
  1616. const auto n_tokens = q->ne[1];
  1617. const auto n_head = q->ne[2];
  1618. // const auto n_kv = k->ne[1]; // for flash attention
  1619. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1620. // F32 may not needed for vision encoders?
  1621. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1622. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1623. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1624. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1625. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1626. }
  1627. cb(cur, "kqv_out", il);
  1628. if (wo) {
  1629. cur = ggml_mul_mat(ctx0, wo, cur);
  1630. }
  1631. if (wo_b) {
  1632. cur = ggml_add(ctx0, cur, wo_b);
  1633. }
  1634. return cur;
  1635. }
  1636. // implementation of the 2D RoPE without adding a new op in ggml
  1637. // this is not efficient (use double the memory), but works on all backends
  1638. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1639. static ggml_tensor * build_rope_2d(
  1640. ggml_context * ctx0,
  1641. ggml_tensor * cur,
  1642. ggml_tensor * pos_a, // first half
  1643. ggml_tensor * pos_b, // second half
  1644. const float freq_base,
  1645. const bool interleave_freq
  1646. ) {
  1647. const int64_t n_dim = cur->ne[0];
  1648. const int64_t n_head = cur->ne[1];
  1649. const int64_t n_pos = cur->ne[2];
  1650. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1651. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1652. // first half of cur will use 1e-0, 1e-2 (even)
  1653. // second half of cur will use 1e-1, 1e-3 (odd)
  1654. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1655. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1656. // then for the second half, we use freq_scale to shift the inv_freq
  1657. // ^ why? replace (2i) with (2i+1) in the above equation
  1658. const float freq_scale_odd = interleave_freq
  1659. ? std::pow(freq_base, (float)-2/n_dim)
  1660. : 1.0;
  1661. // first half
  1662. ggml_tensor * first;
  1663. {
  1664. first = ggml_view_3d(ctx0, cur,
  1665. n_dim/2, n_head, n_pos,
  1666. ggml_row_size(cur->type, n_dim),
  1667. ggml_row_size(cur->type, n_dim*n_head),
  1668. 0);
  1669. first = ggml_rope_ext(
  1670. ctx0,
  1671. first,
  1672. pos_a, // positions
  1673. nullptr, // freq factors
  1674. n_dim/2, // n_dims
  1675. 0, 0, freq_base,
  1676. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1677. );
  1678. }
  1679. // second half
  1680. ggml_tensor * second;
  1681. {
  1682. second = ggml_view_3d(ctx0, cur,
  1683. n_dim/2, n_head, n_pos,
  1684. ggml_row_size(cur->type, n_dim),
  1685. ggml_row_size(cur->type, n_dim*n_head),
  1686. n_dim/2 * ggml_element_size(cur));
  1687. second = ggml_rope_ext(
  1688. ctx0,
  1689. second,
  1690. pos_b, // positions
  1691. nullptr, // freq factors
  1692. n_dim/2, // n_dims
  1693. 0, 0, freq_base,
  1694. freq_scale_odd,
  1695. 0.0f, 1.0f, 0.0f, 0.0f
  1696. );
  1697. }
  1698. cur = ggml_concat(ctx0, first, second, 0);
  1699. return cur;
  1700. }
  1701. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  1702. // support dynamic resolution
  1703. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  1704. GGML_ASSERT(scale_factor > 1);
  1705. const int n_embd = cur->ne[0];
  1706. int width = img.nx / patch_size;
  1707. int height = img.ny / patch_size;
  1708. // pad width and height to factor
  1709. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  1710. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  1711. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  1712. if (pad_width || pad_height) {
  1713. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  1714. width += pad_width;
  1715. height += pad_height;
  1716. }
  1717. // unshuffle h
  1718. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  1719. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1720. // unshuffle w
  1721. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  1722. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1723. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  1724. cb(cur, "pixel_shuffle", -1);
  1725. return cur;
  1726. }
  1727. };
  1728. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1729. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1730. clip_graph graph(ctx, *imgs.entries[0]);
  1731. ggml_cgraph * res;
  1732. switch (ctx->proj_type()) {
  1733. case PROJECTOR_TYPE_GEMMA3:
  1734. case PROJECTOR_TYPE_IDEFICS3:
  1735. case PROJECTOR_TYPE_LFM2:
  1736. {
  1737. res = graph.build_siglip();
  1738. } break;
  1739. case PROJECTOR_TYPE_PIXTRAL:
  1740. {
  1741. res = graph.build_pixtral();
  1742. } break;
  1743. case PROJECTOR_TYPE_QWEN2VL:
  1744. case PROJECTOR_TYPE_QWEN25VL:
  1745. {
  1746. res = graph.build_qwen2vl();
  1747. } break;
  1748. case PROJECTOR_TYPE_MINICPMV:
  1749. {
  1750. res = graph.build_minicpmv();
  1751. } break;
  1752. case PROJECTOR_TYPE_INTERNVL:
  1753. {
  1754. res = graph.build_internvl();
  1755. } break;
  1756. case PROJECTOR_TYPE_LLAMA4:
  1757. {
  1758. res = graph.build_llama4();
  1759. } break;
  1760. case PROJECTOR_TYPE_ULTRAVOX:
  1761. case PROJECTOR_TYPE_VOXTRAL:
  1762. case PROJECTOR_TYPE_QWEN2A:
  1763. {
  1764. res = graph.build_whisper_enc();
  1765. } break;
  1766. case PROJECTOR_TYPE_KIMIVL:
  1767. {
  1768. res = graph.build_kimivl();
  1769. } break;
  1770. default:
  1771. {
  1772. res = graph.build_llava();
  1773. } break;
  1774. }
  1775. return res;
  1776. }
  1777. struct clip_model_loader {
  1778. ggml_context_ptr ctx_meta;
  1779. gguf_context_ptr ctx_gguf;
  1780. std::string fname;
  1781. size_t model_size = 0; // in bytes
  1782. bool has_vision = false;
  1783. bool has_audio = false;
  1784. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  1785. clip_model_loader(const char * fname) : fname(fname) {
  1786. struct ggml_context * meta = nullptr;
  1787. struct gguf_init_params params = {
  1788. /*.no_alloc = */ true,
  1789. /*.ctx = */ &meta,
  1790. };
  1791. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1792. if (!ctx_gguf.get()) {
  1793. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1794. }
  1795. ctx_meta.reset(meta);
  1796. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1797. // print gguf info
  1798. {
  1799. std::string name;
  1800. get_string(KEY_NAME, name, false);
  1801. std::string description;
  1802. get_string(KEY_DESCRIPTION, description, false);
  1803. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1804. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1805. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1806. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1807. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1808. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1809. LOG_INF("\n");
  1810. }
  1811. // modalities
  1812. {
  1813. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  1814. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  1815. if (has_vision) {
  1816. LOG_INF("%s: has vision encoder\n", __func__);
  1817. }
  1818. if (has_audio) {
  1819. LOG_INF("%s: has audio encoder\n", __func__);
  1820. }
  1821. }
  1822. // tensors
  1823. {
  1824. for (int i = 0; i < n_tensors; ++i) {
  1825. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1826. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1827. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1828. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1829. size_t tensor_size = ggml_nbytes(cur);
  1830. model_size += tensor_size;
  1831. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1832. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1833. }
  1834. }
  1835. }
  1836. void load_hparams(clip_model & model, clip_modality modality) {
  1837. auto & hparams = model.hparams;
  1838. std::string log_ffn_op; // for logging
  1839. // sanity check
  1840. if (modality == CLIP_MODALITY_VISION) {
  1841. GGML_ASSERT(has_vision);
  1842. } else if (modality == CLIP_MODALITY_AUDIO) {
  1843. GGML_ASSERT(has_audio);
  1844. }
  1845. model.modality = modality;
  1846. // projector type
  1847. std::string proj_type;
  1848. {
  1849. // default key
  1850. get_string(KEY_PROJ_TYPE, proj_type, false);
  1851. // for models with mixed modalities
  1852. if (proj_type.empty()) {
  1853. if (modality == CLIP_MODALITY_VISION) {
  1854. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  1855. } else if (modality == CLIP_MODALITY_AUDIO) {
  1856. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  1857. } else {
  1858. GGML_ABORT("unknown modality");
  1859. }
  1860. }
  1861. model.proj_type = clip_projector_type_from_string(proj_type);
  1862. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1863. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1864. }
  1865. // correct arch for multimodal models (legacy method)
  1866. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  1867. model.proj_type = modality == CLIP_MODALITY_VISION
  1868. ? PROJECTOR_TYPE_QWEN25VL
  1869. : PROJECTOR_TYPE_QWEN2A;
  1870. }
  1871. }
  1872. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  1873. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  1874. // other hparams
  1875. {
  1876. const char * prefix = is_vision ? "vision" : "audio";
  1877. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1878. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1879. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1880. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1881. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1882. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1883. if (is_vision) {
  1884. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1885. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.preproc_image_size, false);
  1886. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1887. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1888. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  1889. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  1890. if (hparams.minicpmv_query_num == 0) {
  1891. // Fallback to hardcoded values for legacy models
  1892. if (hparams.minicpmv_version == 3) {
  1893. hparams.minicpmv_query_num = 64;
  1894. } else if (hparams.minicpmv_version == 4) {
  1895. hparams.minicpmv_query_num = 64;
  1896. } else if (hparams.minicpmv_version == 5) {
  1897. hparams.minicpmv_query_num = 64;
  1898. } else if (hparams.minicpmv_version == 6) {
  1899. hparams.minicpmv_query_num = 64;
  1900. } else {
  1901. hparams.minicpmv_query_num = 96;
  1902. }
  1903. }
  1904. } else if (is_audio) {
  1905. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1906. } else {
  1907. GGML_ASSERT(false && "unknown modality");
  1908. }
  1909. // for pinpoints, we need to convert it into a list of resolution candidates
  1910. {
  1911. std::vector<int> pinpoints;
  1912. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  1913. if (!pinpoints.empty()) {
  1914. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  1915. hparams.image_res_candidates.push_back({
  1916. pinpoints[i],
  1917. pinpoints[i+1],
  1918. });
  1919. }
  1920. }
  1921. }
  1922. // default warmup value
  1923. hparams.warmup_image_size = hparams.image_size;
  1924. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  1925. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1926. || model.proj_type == PROJECTOR_TYPE_LDP
  1927. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  1928. {
  1929. bool use_gelu = false;
  1930. bool use_silu = false;
  1931. get_bool(KEY_USE_GELU, use_gelu, false);
  1932. get_bool(KEY_USE_SILU, use_silu, false);
  1933. if (use_gelu && use_silu) {
  1934. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1935. }
  1936. if (use_gelu) {
  1937. hparams.ffn_op = FFN_GELU;
  1938. log_ffn_op = "gelu";
  1939. } else if (use_silu) {
  1940. hparams.ffn_op = FFN_SILU;
  1941. log_ffn_op = "silu";
  1942. } else {
  1943. hparams.ffn_op = FFN_GELU_QUICK;
  1944. log_ffn_op = "gelu_quick";
  1945. }
  1946. }
  1947. {
  1948. std::string mm_patch_merge_type;
  1949. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1950. if (mm_patch_merge_type == "spatial_unpad") {
  1951. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1952. }
  1953. }
  1954. if (is_vision) {
  1955. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1956. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1957. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1958. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1959. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1960. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1961. for (int i = 0; i < 3; ++i) {
  1962. hparams.image_mean[i] = mean_data[i];
  1963. hparams.image_std[i] = std_data[i];
  1964. }
  1965. }
  1966. // Load the vision feature layer indices if they are explicitly provided;
  1967. // if multiple vision feature layers are present, the values will be concatenated
  1968. // to form the final visual features.
  1969. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1970. // be non-negative, since we use -1 to mark values as unset here.
  1971. std::vector<int> vision_feature_layer;
  1972. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1973. // convert std::vector to std::unordered_set
  1974. for (auto & layer : vision_feature_layer) {
  1975. hparams.vision_feature_layer.insert(layer);
  1976. }
  1977. // model-specific params
  1978. switch (model.proj_type) {
  1979. case PROJECTOR_TYPE_MINICPMV:
  1980. {
  1981. if (hparams.minicpmv_version == 0) {
  1982. hparams.minicpmv_version = 2; // default to 2 if not set
  1983. }
  1984. } break;
  1985. case PROJECTOR_TYPE_IDEFICS3:
  1986. case PROJECTOR_TYPE_LFM2:
  1987. case PROJECTOR_TYPE_INTERNVL:
  1988. {
  1989. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1990. } break;
  1991. case PROJECTOR_TYPE_PIXTRAL:
  1992. {
  1993. hparams.rope_theta = 10000.0f;
  1994. hparams.warmup_image_size = hparams.patch_size * 8;
  1995. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  1996. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  1997. hparams.image_size = 1024;
  1998. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1999. } break;
  2000. case PROJECTOR_TYPE_KIMIVL:
  2001. {
  2002. hparams.rope_theta = 10000.0f;
  2003. hparams.warmup_image_size = hparams.patch_size * 8;
  2004. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  2005. } break;
  2006. case PROJECTOR_TYPE_GEMMA3:
  2007. {
  2008. // default value (used by all model sizes in gemma 3 family)
  2009. // number of patches for each **side** is reduced by a factor of 4
  2010. hparams.proj_scale_factor = 4;
  2011. // test model (tinygemma3) has a different value, we optionally read it
  2012. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  2013. } break;
  2014. case PROJECTOR_TYPE_QWEN2VL:
  2015. {
  2016. // max image size = sqrt(max_pixels) = 3584
  2017. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  2018. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  2019. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  2020. hparams.image_size = 1024;
  2021. hparams.warmup_image_size = hparams.patch_size * 8;
  2022. } break;
  2023. case PROJECTOR_TYPE_QWEN25VL:
  2024. {
  2025. // max image size = sqrt(max_pixels)
  2026. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2027. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  2028. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  2029. hparams.image_size = 1024;
  2030. hparams.warmup_image_size = hparams.patch_size * 8;
  2031. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  2032. } break;
  2033. case PROJECTOR_TYPE_LLAMA4:
  2034. {
  2035. hparams.rope_theta = 10000.0f;
  2036. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  2037. set_llava_uhd_res_candidates(model, 3);
  2038. } break;
  2039. case PROJECTOR_TYPE_ULTRAVOX:
  2040. case PROJECTOR_TYPE_QWEN2A:
  2041. case PROJECTOR_TYPE_VOXTRAL:
  2042. {
  2043. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2044. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2045. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2046. if (hparams.n_mel_bins != 128) {
  2047. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2048. }
  2049. hparams.ffn_op = FFN_GELU_ERF;
  2050. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2051. } break;
  2052. default:
  2053. break;
  2054. }
  2055. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2056. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2057. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2058. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2059. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2060. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2061. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2062. if (is_vision) {
  2063. LOG_INF("\n--- vision hparams ---\n");
  2064. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2065. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2066. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2067. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2068. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  2069. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2070. } else if (is_audio) {
  2071. LOG_INF("\n--- audio hparams ---\n");
  2072. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2073. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2074. }
  2075. LOG_INF("\n");
  2076. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2077. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2078. }
  2079. }
  2080. void load_tensors(clip_ctx & ctx_clip) {
  2081. auto & model = ctx_clip.model;
  2082. auto & hparams = model.hparams;
  2083. std::map<std::string, size_t> tensor_offset;
  2084. std::vector<ggml_tensor *> tensors_to_load;
  2085. // TODO @ngxson : support both audio and video in the future
  2086. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2087. // get offsets
  2088. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2089. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2090. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2091. }
  2092. // create data context
  2093. struct ggml_init_params params = {
  2094. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2095. /*.mem_buffer =*/ NULL,
  2096. /*.no_alloc =*/ true,
  2097. };
  2098. ctx_clip.ctx_data.reset(ggml_init(params));
  2099. if (!ctx_clip.ctx_data) {
  2100. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2101. }
  2102. // helper function
  2103. auto get_tensor = [&](const std::string & name, bool required = true) {
  2104. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2105. if (!cur && required) {
  2106. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2107. }
  2108. if (cur) {
  2109. tensors_to_load.push_back(cur);
  2110. // add tensors to context
  2111. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2112. ggml_set_name(data_tensor, cur->name);
  2113. cur = data_tensor;
  2114. }
  2115. return cur;
  2116. };
  2117. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2118. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2119. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2120. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2121. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2122. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2123. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2124. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2125. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2126. // layers
  2127. model.layers.resize(hparams.n_layer);
  2128. for (int il = 0; il < hparams.n_layer; ++il) {
  2129. auto & layer = model.layers[il];
  2130. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  2131. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  2132. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  2133. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2134. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2135. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2136. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2137. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2138. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2139. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2140. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2141. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2142. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2143. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2144. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2145. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2146. // ffn
  2147. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2148. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2149. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2150. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2151. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2152. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2153. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2154. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2155. bool is_ffn_swapped = (
  2156. // only old models need this fix
  2157. model.proj_type == PROJECTOR_TYPE_MLP
  2158. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2159. || model.proj_type == PROJECTOR_TYPE_LDP
  2160. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2161. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2162. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2163. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2164. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2165. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2166. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2167. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2168. if (is_ffn_swapped) {
  2169. // swap up and down weights
  2170. ggml_tensor * tmp = layer.ff_up_w;
  2171. layer.ff_up_w = layer.ff_down_w;
  2172. layer.ff_down_w = tmp;
  2173. // swap up and down biases
  2174. tmp = layer.ff_up_b;
  2175. layer.ff_up_b = layer.ff_down_b;
  2176. layer.ff_down_b = tmp;
  2177. if (il == 0) {
  2178. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2179. }
  2180. }
  2181. }
  2182. switch (model.proj_type) {
  2183. case PROJECTOR_TYPE_MLP:
  2184. case PROJECTOR_TYPE_MLP_NORM:
  2185. {
  2186. // LLaVA projection
  2187. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2188. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2189. // Yi-type llava
  2190. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2191. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2192. // missing in Yi-type llava
  2193. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2194. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2195. // Yi-type llava
  2196. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2197. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2198. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2199. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2200. if (model.mm_3_w) {
  2201. // TODO: this is a hack to support Yi-type llava
  2202. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2203. }
  2204. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2205. } break;
  2206. case PROJECTOR_TYPE_LDP:
  2207. {
  2208. // MobileVLM projection
  2209. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2210. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2211. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2212. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2213. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2214. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2215. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2216. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2217. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2218. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2219. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2220. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2221. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2222. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2223. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2224. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2225. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2226. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2227. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2228. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2229. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2230. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2231. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2232. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2233. } break;
  2234. case PROJECTOR_TYPE_LDPV2:
  2235. {
  2236. // MobilVLM_V2 projection
  2237. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2238. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2239. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2240. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2241. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2242. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2243. } break;
  2244. case PROJECTOR_TYPE_MINICPMV:
  2245. {
  2246. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2247. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2248. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2249. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2250. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2251. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2252. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2253. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2254. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2255. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2256. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2257. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2258. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2259. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2260. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2261. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2262. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2263. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2264. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2265. } break;
  2266. case PROJECTOR_TYPE_GLM_EDGE:
  2267. {
  2268. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2269. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2270. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2271. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2272. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2273. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2274. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2275. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2276. model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2277. model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2278. } break;
  2279. case PROJECTOR_TYPE_QWEN2VL:
  2280. case PROJECTOR_TYPE_QWEN25VL:
  2281. {
  2282. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2283. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2284. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2285. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2286. } break;
  2287. case PROJECTOR_TYPE_GEMMA3:
  2288. {
  2289. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2290. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2291. } break;
  2292. case PROJECTOR_TYPE_IDEFICS3:
  2293. {
  2294. model.projection = get_tensor(TN_MM_PROJECTOR);
  2295. } break;
  2296. case PROJECTOR_TYPE_LFM2:
  2297. case PROJECTOR_TYPE_KIMIVL:
  2298. {
  2299. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2300. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2301. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2302. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2303. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2304. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2305. } break;
  2306. case PROJECTOR_TYPE_PIXTRAL:
  2307. {
  2308. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2309. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2310. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2311. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2312. // [IMG_BREAK] token embedding
  2313. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2314. // for mistral small 3.1
  2315. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2316. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2317. } break;
  2318. case PROJECTOR_TYPE_ULTRAVOX:
  2319. {
  2320. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2321. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2322. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2323. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2324. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2325. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2326. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2327. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2328. } break;
  2329. case PROJECTOR_TYPE_QWEN2A:
  2330. {
  2331. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2332. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2333. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2334. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2335. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2336. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2337. } break;
  2338. case PROJECTOR_TYPE_VOXTRAL:
  2339. {
  2340. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2341. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2342. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2343. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2344. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2345. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2346. } break;
  2347. case PROJECTOR_TYPE_INTERNVL:
  2348. {
  2349. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2350. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2351. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2352. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2353. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2354. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2355. } break;
  2356. case PROJECTOR_TYPE_LLAMA4:
  2357. {
  2358. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2359. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2360. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2361. } break;
  2362. default:
  2363. GGML_ASSERT(false && "unknown projector type");
  2364. }
  2365. // load data
  2366. {
  2367. std::vector<uint8_t> read_buf;
  2368. auto fin = std::ifstream(fname, std::ios::binary);
  2369. if (!fin) {
  2370. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2371. }
  2372. // alloc memory and offload data
  2373. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2374. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2375. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2376. for (auto & t : tensors_to_load) {
  2377. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2378. const size_t offset = tensor_offset[t->name];
  2379. fin.seekg(offset, std::ios::beg);
  2380. if (!fin) {
  2381. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2382. }
  2383. size_t num_bytes = ggml_nbytes(cur);
  2384. if (ggml_backend_buft_is_host(buft)) {
  2385. // for the CPU and Metal backend, we can read directly into the tensor
  2386. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2387. } else {
  2388. // read into a temporary buffer first, then copy to device memory
  2389. read_buf.resize(num_bytes);
  2390. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2391. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2392. }
  2393. }
  2394. fin.close();
  2395. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2396. }
  2397. }
  2398. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2399. const auto & hparams = ctx_clip.model.hparams;
  2400. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2401. // create a fake batch
  2402. clip_image_f32_batch batch;
  2403. clip_image_f32_ptr img(clip_image_f32_init());
  2404. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2405. img->nx = hparams.warmup_image_size;
  2406. img->ny = hparams.warmup_image_size;
  2407. } else {
  2408. img->nx = hparams.warmup_audio_size;
  2409. img->ny = hparams.n_mel_bins;
  2410. }
  2411. batch.entries.push_back(std::move(img));
  2412. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2413. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2414. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2415. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2416. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2417. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2418. if (size > 1) {
  2419. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2420. ggml_backend_buft_name(buft),
  2421. size / 1024.0 / 1024.0);
  2422. }
  2423. }
  2424. }
  2425. void get_bool(const std::string & key, bool & output, bool required = true) {
  2426. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2427. if (i < 0) {
  2428. if (required) throw std::runtime_error("Key not found: " + key);
  2429. return;
  2430. }
  2431. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2432. }
  2433. void get_i32(const std::string & key, int & output, bool required = true) {
  2434. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2435. if (i < 0) {
  2436. if (required) throw std::runtime_error("Key not found: " + key);
  2437. return;
  2438. }
  2439. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2440. }
  2441. void get_u32(const std::string & key, int & output, bool required = true) {
  2442. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2443. if (i < 0) {
  2444. if (required) throw std::runtime_error("Key not found: " + key);
  2445. return;
  2446. }
  2447. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2448. }
  2449. void get_f32(const std::string & key, float & output, bool required = true) {
  2450. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2451. if (i < 0) {
  2452. if (required) throw std::runtime_error("Key not found: " + key);
  2453. return;
  2454. }
  2455. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2456. }
  2457. void get_string(const std::string & key, std::string & output, bool required = true) {
  2458. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2459. if (i < 0) {
  2460. if (required) throw std::runtime_error("Key not found: " + key);
  2461. return;
  2462. }
  2463. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2464. }
  2465. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2466. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2467. if (i < 0) {
  2468. if (required) throw std::runtime_error("Key not found: " + key);
  2469. return;
  2470. }
  2471. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2472. output.resize(n);
  2473. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2474. for (int i = 0; i < n; ++i) {
  2475. output[i] = values[i];
  2476. }
  2477. }
  2478. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2479. auto & hparams = model.hparams;
  2480. for (int x = 1; x <= max_patches_per_side; x++) {
  2481. for (int y = 1; y <= max_patches_per_side; y++) {
  2482. if (x == 1 && y == 1) {
  2483. continue; // skip the first point
  2484. }
  2485. hparams.image_res_candidates.push_back(clip_image_size{
  2486. x*hparams.image_size,
  2487. y*hparams.image_size,
  2488. });
  2489. }
  2490. }
  2491. }
  2492. };
  2493. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2494. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2495. clip_ctx * ctx_vision = nullptr;
  2496. clip_ctx * ctx_audio = nullptr;
  2497. try {
  2498. clip_model_loader loader(fname);
  2499. if (loader.has_vision) {
  2500. ctx_vision = new clip_ctx(ctx_params);
  2501. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2502. loader.load_tensors(*ctx_vision);
  2503. loader.alloc_compute_meta(*ctx_vision);
  2504. }
  2505. if (loader.has_audio) {
  2506. ctx_audio = new clip_ctx(ctx_params);
  2507. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2508. loader.load_tensors(*ctx_audio);
  2509. loader.alloc_compute_meta(*ctx_audio);
  2510. }
  2511. } catch (const std::exception & e) {
  2512. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2513. if (ctx_vision) {
  2514. delete ctx_vision;
  2515. }
  2516. if (ctx_audio) {
  2517. delete ctx_audio;
  2518. }
  2519. return {nullptr, nullptr};
  2520. }
  2521. return {ctx_vision, ctx_audio};
  2522. }
  2523. struct clip_image_size * clip_image_size_init() {
  2524. struct clip_image_size * load_image_size = new struct clip_image_size();
  2525. load_image_size->width = 448;
  2526. load_image_size->height = 448;
  2527. return load_image_size;
  2528. }
  2529. struct clip_image_u8 * clip_image_u8_init() {
  2530. return new clip_image_u8();
  2531. }
  2532. struct clip_image_f32 * clip_image_f32_init() {
  2533. return new clip_image_f32();
  2534. }
  2535. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2536. return new clip_image_f32_batch();
  2537. }
  2538. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2539. if (nx) *nx = img->nx;
  2540. if (ny) *ny = img->ny;
  2541. return img->buf.data();
  2542. }
  2543. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2544. if (load_image_size == nullptr) {
  2545. return;
  2546. }
  2547. delete load_image_size;
  2548. }
  2549. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2550. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2551. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2552. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2553. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2554. return batch->entries.size();
  2555. }
  2556. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2557. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2558. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2559. return 0;
  2560. }
  2561. return batch->entries[idx]->nx;
  2562. }
  2563. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2564. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2565. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2566. return 0;
  2567. }
  2568. return batch->entries[idx]->ny;
  2569. }
  2570. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2571. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2572. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2573. return nullptr;
  2574. }
  2575. return batch->entries[idx].get();
  2576. }
  2577. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2578. img->nx = nx;
  2579. img->ny = ny;
  2580. img->buf.resize(3 * nx * ny);
  2581. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2582. }
  2583. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2584. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2585. dst.nx = src.nx;
  2586. dst.ny = src.ny;
  2587. dst.buf.resize(src.buf.size());
  2588. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2589. for (size_t i = 0; i < src.buf.size(); ++i) {
  2590. int c = i % 3; // rgb
  2591. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2592. }
  2593. }
  2594. // set of tools to manupulate images
  2595. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2596. struct image_manipulation {
  2597. // Bilinear resize function
  2598. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2599. dst.nx = target_width;
  2600. dst.ny = target_height;
  2601. dst.buf.resize(3 * target_width * target_height);
  2602. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2603. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2604. for (int y = 0; y < target_height; y++) {
  2605. for (int x = 0; x < target_width; x++) {
  2606. float px = x_ratio * x;
  2607. float py = y_ratio * y;
  2608. int x_floor = static_cast<int>(px);
  2609. int y_floor = static_cast<int>(py);
  2610. float x_lerp = px - x_floor;
  2611. float y_lerp = py - y_floor;
  2612. for (int c = 0; c < 3; c++) {
  2613. float top = lerp(
  2614. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2615. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2616. x_lerp
  2617. );
  2618. float bottom = lerp(
  2619. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2620. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2621. x_lerp
  2622. );
  2623. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2624. }
  2625. }
  2626. }
  2627. }
  2628. // Bicubic resize function
  2629. // part of image will be cropped if the aspect ratio is different
  2630. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2631. const int nx = img.nx;
  2632. const int ny = img.ny;
  2633. dst.nx = target_width;
  2634. dst.ny = target_height;
  2635. dst.buf.resize(3 * target_width * target_height);
  2636. float Cc;
  2637. float C[5] = {};
  2638. float d0, d2, d3, a0, a1, a2, a3;
  2639. int i, j, k, jj;
  2640. int x, y;
  2641. float dx, dy;
  2642. float tx, ty;
  2643. tx = (float)nx / (float)target_width;
  2644. ty = (float)ny / (float)target_height;
  2645. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2646. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2647. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2648. for (i = 0; i < target_height; i++) {
  2649. for (j = 0; j < target_width; j++) {
  2650. x = (int)(tx * j);
  2651. y = (int)(ty * i);
  2652. dx = tx * j - x;
  2653. dy = ty * i - y;
  2654. for (k = 0; k < 3; k++) {
  2655. for (jj = 0; jj <= 3; jj++) {
  2656. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2657. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2658. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2659. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2660. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2661. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2662. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2663. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2664. d0 = C[0] - C[1];
  2665. d2 = C[2] - C[1];
  2666. d3 = C[3] - C[1];
  2667. a0 = C[1];
  2668. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2669. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2670. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2671. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2672. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2673. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2674. }
  2675. }
  2676. }
  2677. }
  2678. return true;
  2679. }
  2680. // llava-1.6 type of resize_and_pad
  2681. // if the ratio is not 1:1, padding with pad_color will be applied
  2682. // pad_color is single channel, default is 0 (black)
  2683. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2684. int target_width = target_resolution.width;
  2685. int target_height = target_resolution.height;
  2686. float scale_w = static_cast<float>(target_width) / image.nx;
  2687. float scale_h = static_cast<float>(target_height) / image.ny;
  2688. int new_width, new_height;
  2689. if (scale_w < scale_h) {
  2690. new_width = target_width;
  2691. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2692. } else {
  2693. new_height = target_height;
  2694. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2695. }
  2696. clip_image_u8 resized_image;
  2697. bicubic_resize(image, resized_image, new_width, new_height);
  2698. clip_image_u8 padded_image;
  2699. padded_image.nx = target_width;
  2700. padded_image.ny = target_height;
  2701. padded_image.buf.resize(3 * target_width * target_height);
  2702. // Fill the padded image with the fill color
  2703. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2704. padded_image.buf[i] = pad_color[0];
  2705. padded_image.buf[i + 1] = pad_color[1];
  2706. padded_image.buf[i + 2] = pad_color[2];
  2707. }
  2708. // Calculate padding offsets
  2709. int pad_x = (target_width - new_width) / 2;
  2710. int pad_y = (target_height - new_height) / 2;
  2711. // Copy the resized image into the center of the padded buffer
  2712. for (int y = 0; y < new_height; ++y) {
  2713. for (int x = 0; x < new_width; ++x) {
  2714. for (int c = 0; c < 3; ++c) {
  2715. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2716. }
  2717. }
  2718. }
  2719. dst = std::move(padded_image);
  2720. }
  2721. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2722. dst.nx = w;
  2723. dst.ny = h;
  2724. dst.buf.resize(3 * w * h);
  2725. for (int i = 0; i < h; ++i) {
  2726. for (int j = 0; j < w; ++j) {
  2727. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2728. int dst_idx = 3 * (i*w + j);
  2729. dst.buf[dst_idx] = image.buf[src_idx];
  2730. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2731. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2732. }
  2733. }
  2734. }
  2735. // calculate the size of the **resized** image, while preserving the aspect ratio
  2736. // the calculated size will be aligned to the nearest multiple of align_size
  2737. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2738. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2739. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2740. return {0, 0};
  2741. }
  2742. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2743. static_cast<float>(max_dimension) / inp_size.height));
  2744. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2745. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2746. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2747. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2748. return {aligned_width, aligned_height};
  2749. }
  2750. private:
  2751. static inline int clip(int x, int lower, int upper) {
  2752. return std::max(lower, std::min(x, upper));
  2753. }
  2754. // Linear interpolation between two points
  2755. static inline float lerp(float s, float e, float t) {
  2756. return s + (e - s) * t;
  2757. }
  2758. };
  2759. /**
  2760. * implementation of LLaVA-UHD:
  2761. * - https://arxiv.org/pdf/2403.11703
  2762. * - https://github.com/thunlp/LLaVA-UHD
  2763. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2764. *
  2765. * overview:
  2766. * - an image always have a single overview (downscaled image)
  2767. * - an image can have 0 or multiple slices, depending on the image size
  2768. * - each slice can then be considered as a separate image
  2769. *
  2770. * for example:
  2771. *
  2772. * [overview] --> [slice 1] --> [slice 2]
  2773. * | |
  2774. * +--> [slice 3] --> [slice 4]
  2775. */
  2776. struct llava_uhd {
  2777. struct slice_coordinates {
  2778. int x;
  2779. int y;
  2780. clip_image_size size;
  2781. };
  2782. struct slice_instructions {
  2783. clip_image_size overview_size; // size of downscaled image
  2784. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2785. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2786. std::vector<slice_coordinates> slices;
  2787. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2788. };
  2789. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2790. slice_instructions res;
  2791. const int patch_size = clip_get_patch_size(ctx);
  2792. const int slice_size = clip_get_image_size(ctx);
  2793. const int original_width = original_size.width;
  2794. const int original_height = original_size.height;
  2795. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2796. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2797. if (!has_slices) {
  2798. // skip slicing logic
  2799. res.overview_size = clip_image_size{slice_size, slice_size};
  2800. res.refined_size = clip_image_size{0, 0};
  2801. res.grid_size = clip_image_size{0, 0};
  2802. return res;
  2803. }
  2804. if (has_pinpoints) {
  2805. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2806. auto refine_size = llava_uhd::select_best_resolution(
  2807. original_size,
  2808. ctx->model.hparams.image_res_candidates);
  2809. res.overview_size = clip_image_size{slice_size, slice_size};
  2810. res.refined_size = refine_size;
  2811. res.grid_size = clip_image_size{0, 0};
  2812. res.padding_refined = true;
  2813. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2814. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2815. __func__, original_width, original_height,
  2816. res.overview_size.width, res.overview_size.height,
  2817. res.refined_size.width, res.refined_size.height);
  2818. for (int y = 0; y < refine_size.height; y += slice_size) {
  2819. for (int x = 0; x < refine_size.width; x += slice_size) {
  2820. slice_coordinates slice;
  2821. slice.x = x;
  2822. slice.y = y;
  2823. slice.size.width = std::min(slice_size, refine_size.width - x);
  2824. slice.size.height = std::min(slice_size, refine_size.height - y);
  2825. res.slices.push_back(slice);
  2826. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2827. __func__, (int)res.slices.size() - 1,
  2828. slice.x, slice.y, slice.size.width, slice.size.height);
  2829. }
  2830. }
  2831. res.grid_size.height = refine_size.height / slice_size;
  2832. res.grid_size.width = refine_size.width / slice_size;
  2833. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2834. return res;
  2835. }
  2836. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2837. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2838. res.overview_size = best_size;
  2839. {
  2840. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2841. const float log_ratio = log((float)original_width / original_height);
  2842. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2843. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2844. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2845. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2846. res.grid_size = best_grid;
  2847. res.refined_size = refine_size;
  2848. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2849. __func__, original_width, original_height,
  2850. res.overview_size.width, res.overview_size.height,
  2851. res.refined_size.width, res.refined_size.height,
  2852. res.grid_size.width, res.grid_size.height);
  2853. int width = refine_size.width;
  2854. int height = refine_size.height;
  2855. int grid_x = int(width / best_grid.width);
  2856. int grid_y = int(height / best_grid.height);
  2857. for (int patches_y = 0, ic = 0;
  2858. patches_y < refine_size.height && ic < best_grid.height;
  2859. patches_y += grid_y, ic += 1) {
  2860. for (int patches_x = 0, jc = 0;
  2861. patches_x < refine_size.width && jc < best_grid.width;
  2862. patches_x += grid_x, jc += 1) {
  2863. slice_coordinates slice;
  2864. slice.x = patches_x;
  2865. slice.y = patches_y;
  2866. slice.size.width = grid_x;
  2867. slice.size.height = grid_y;
  2868. res.slices.push_back(slice);
  2869. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2870. __func__, (int)res.slices.size() - 1,
  2871. slice.x, slice.y, slice.size.width, slice.size.height);
  2872. }
  2873. }
  2874. }
  2875. return res;
  2876. }
  2877. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2878. std::vector<clip_image_u8_ptr> output;
  2879. // resize to overview size
  2880. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2881. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2882. output.push_back(std::move(resized_img));
  2883. if (inst.slices.empty()) {
  2884. // no slices, just return the resized image
  2885. return output;
  2886. }
  2887. // resize to refined size
  2888. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2889. if (inst.padding_refined) {
  2890. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2891. } else {
  2892. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2893. }
  2894. // create slices
  2895. for (const auto & slice : inst.slices) {
  2896. int x = slice.x;
  2897. int y = slice.y;
  2898. int w = slice.size.width;
  2899. int h = slice.size.height;
  2900. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2901. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2902. output.push_back(std::move(img_slice));
  2903. }
  2904. return output;
  2905. }
  2906. private:
  2907. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2908. int width = original_size.width;
  2909. int height = original_size.height;
  2910. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2911. float r = static_cast<float>(width) / height;
  2912. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2913. width = static_cast<int>(height * r);
  2914. }
  2915. clip_image_size res;
  2916. res.width = ensure_divide(width, patch_size);
  2917. res.height = ensure_divide(height, patch_size);
  2918. return res;
  2919. }
  2920. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2921. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2922. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2923. float scale = std::min(scale_width, scale_height);
  2924. return clip_image_size{
  2925. static_cast<int>(orig.width * scale),
  2926. static_cast<int>(orig.height * scale),
  2927. };
  2928. }
  2929. /**
  2930. * Selects the best resolution from a list of possible resolutions based on the original size.
  2931. *
  2932. * For example, when given a list of resolutions:
  2933. * - 100x100
  2934. * - 200x100
  2935. * - 100x200
  2936. * - 200x200
  2937. *
  2938. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2939. *
  2940. * @param original_size The original size of the image
  2941. * @param possible_resolutions A list of possible resolutions
  2942. * @return The best fit resolution
  2943. */
  2944. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2945. clip_image_size best_fit;
  2946. int min_wasted_area = std::numeric_limits<int>::max();
  2947. int max_effective_resolution = 0;
  2948. for (const clip_image_size & candidate : possible_resolutions) {
  2949. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2950. int effective_resolution = std::min(
  2951. target_size.width * target_size.height,
  2952. original_size.width * original_size.height);
  2953. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2954. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2955. max_effective_resolution = effective_resolution;
  2956. min_wasted_area = wasted_area;
  2957. best_fit = candidate;
  2958. }
  2959. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2960. }
  2961. return best_fit;
  2962. }
  2963. static int ensure_divide(int length, int patch_size) {
  2964. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2965. }
  2966. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2967. int width = original_size.width;
  2968. int height = original_size.height;
  2969. int grid_x = grid.width;
  2970. int grid_y = grid.height;
  2971. int refine_width = ensure_divide(width, grid_x);
  2972. int refine_height = ensure_divide(height, grid_y);
  2973. clip_image_size grid_size;
  2974. grid_size.width = refine_width / grid_x;
  2975. grid_size.height = refine_height / grid_y;
  2976. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2977. int best_grid_width = best_grid_size.width;
  2978. int best_grid_height = best_grid_size.height;
  2979. clip_image_size refine_size;
  2980. refine_size.width = best_grid_width * grid_x;
  2981. refine_size.height = best_grid_height * grid_y;
  2982. return refine_size;
  2983. }
  2984. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2985. std::vector<int> candidate_split_grids_nums;
  2986. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2987. if (i == 1 || i > max_slice_nums) {
  2988. continue;
  2989. }
  2990. candidate_split_grids_nums.push_back(i);
  2991. }
  2992. std::vector<clip_image_size> candidate_grids;
  2993. for (int split_grids_nums : candidate_split_grids_nums) {
  2994. int m = 1;
  2995. while (m <= split_grids_nums) {
  2996. if (split_grids_nums % m == 0) {
  2997. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2998. }
  2999. ++m;
  3000. }
  3001. }
  3002. clip_image_size best_grid{1, 1};
  3003. float min_error = std::numeric_limits<float>::infinity();
  3004. for (const auto& grid : candidate_grids) {
  3005. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3006. if (error < min_error) {
  3007. best_grid = grid;
  3008. min_error = error;
  3009. }
  3010. }
  3011. return best_grid;
  3012. }
  3013. };
  3014. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3015. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3016. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3017. clip_image_size original_size{img->nx, img->ny};
  3018. bool pad_to_square = true;
  3019. auto & params = ctx->model.hparams;
  3020. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3021. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  3022. pad_to_square = false;
  3023. }
  3024. if (clip_is_minicpmv(ctx)) {
  3025. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3026. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3027. for (size_t i = 0; i < imgs.size(); ++i) {
  3028. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3029. clip_image_f32_ptr res(clip_image_f32_init());
  3030. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3031. res_imgs->entries.push_back(std::move(res));
  3032. }
  3033. res_imgs->grid_x = inst.grid_size.width;
  3034. res_imgs->grid_y = inst.grid_size.height;
  3035. return true;
  3036. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3037. clip_image_u8 resized;
  3038. auto patch_size = params.patch_size * 2;
  3039. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  3040. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  3041. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3042. // clip_image_f32_ptr res(clip_image_f32_init());
  3043. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3044. // res_imgs->data[0] = *res;
  3045. res_imgs->entries.push_back(std::move(img_f32));
  3046. return true;
  3047. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  3048. // The refined size has two steps:
  3049. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3050. // the preprocessor longest size
  3051. // 2. Resize w/out preserving aspect ratio such that both sides are
  3052. // multiples of image_size (always rounding up)
  3053. //
  3054. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3055. const clip_image_size refined_size = image_manipulation::calc_size_preserved_ratio(
  3056. original_size, params.image_size, params.preproc_image_size);
  3057. llava_uhd::slice_instructions instructions;
  3058. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3059. instructions.refined_size = refined_size;
  3060. instructions.grid_size = clip_image_size{
  3061. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3062. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3063. };
  3064. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3065. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3066. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3067. /* x */x,
  3068. /* y */y,
  3069. /* size */clip_image_size{
  3070. std::min(params.image_size, refined_size.width - x),
  3071. std::min(params.image_size, refined_size.height - y)
  3072. }
  3073. });
  3074. }
  3075. }
  3076. auto imgs = llava_uhd::slice_image(img, instructions);
  3077. // cast and normalize to f32
  3078. for (size_t i = 0; i < imgs.size(); ++i) {
  3079. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3080. clip_image_f32_ptr res(clip_image_f32_init());
  3081. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3082. res_imgs->entries.push_back(std::move(res));
  3083. }
  3084. res_imgs->grid_x = instructions.grid_size.width;
  3085. res_imgs->grid_y = instructions.grid_size.height;
  3086. return true;
  3087. } else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  3088. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  3089. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  3090. ) {
  3091. clip_image_u8 resized_image;
  3092. int sz = params.image_size;
  3093. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  3094. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3095. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3096. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3097. res_imgs->entries.push_back(std::move(img_f32));
  3098. return true;
  3099. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
  3100. clip_image_u8 resized_image;
  3101. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  3102. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  3103. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3104. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3105. res_imgs->entries.push_back(std::move(img_f32));
  3106. return true;
  3107. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  3108. GGML_ASSERT(!params.image_res_candidates.empty());
  3109. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3110. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3111. for (size_t i = 0; i < imgs.size(); ++i) {
  3112. clip_image_f32_ptr res(clip_image_f32_init());
  3113. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3114. res_imgs->entries.push_back(std::move(res));
  3115. }
  3116. res_imgs->grid_x = inst.grid_size.width;
  3117. res_imgs->grid_y = inst.grid_size.height;
  3118. return true;
  3119. } else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2
  3120. || ctx->proj_type() == PROJECTOR_TYPE_KIMIVL
  3121. ) {
  3122. GGML_ASSERT(params.proj_scale_factor);
  3123. // smart resize
  3124. const int width = img->nx;
  3125. const int height = img->ny;
  3126. const int total_factor = params.patch_size * params.proj_scale_factor;
  3127. constexpr int min_image_tokens = 64;
  3128. constexpr int max_image_tokens = 1024;
  3129. const float min_pixels = min_image_tokens * total_factor * total_factor;
  3130. const float max_pixels = max_image_tokens * total_factor * total_factor;
  3131. auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
  3132. auto ceil_by_factor = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3133. auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3134. int h_bar = std::max(total_factor, round_by_factor(height));
  3135. int w_bar = std::max(total_factor, round_by_factor(width));
  3136. if (h_bar * w_bar > max_pixels) {
  3137. const auto beta = std::sqrt((height * width) / max_pixels);
  3138. h_bar = std::max(total_factor, floor_by_factor(height / beta));
  3139. w_bar = std::max(total_factor, floor_by_factor(width / beta));
  3140. } else if (h_bar * w_bar < min_pixels) {
  3141. const auto beta = std::sqrt(min_pixels / (height * width));
  3142. h_bar = ceil_by_factor(height * beta);
  3143. w_bar = ceil_by_factor(width * beta);
  3144. }
  3145. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3146. clip_image_u8 resized_img;
  3147. image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
  3148. clip_image_f32_ptr res(clip_image_f32_init());
  3149. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3150. res_imgs->entries.push_back(std::move(res));
  3151. return true;
  3152. }
  3153. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3154. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3155. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3156. if (pad_to_square) {
  3157. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3158. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3159. const int longer_side = std::max(img->nx, img->ny);
  3160. temp->nx = longer_side;
  3161. temp->ny = longer_side;
  3162. temp->buf.resize(3 * longer_side * longer_side);
  3163. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3164. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3165. // resize the image to the target_size
  3166. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  3167. clip_image_f32_ptr res(clip_image_f32_init());
  3168. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3169. res_imgs->entries.push_back(std::move(res));
  3170. return true;
  3171. } else if (!params.image_res_candidates.empty()) {
  3172. // "spatial_unpad" with "anyres" processing for llava-1.6
  3173. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3174. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3175. for (size_t i = 0; i < imgs.size(); ++i) {
  3176. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3177. clip_image_f32_ptr res(clip_image_f32_init());
  3178. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3179. res_imgs->entries.push_back(std::move(res));
  3180. }
  3181. return true;
  3182. } else {
  3183. GGML_ABORT("Unknown image preprocessing type");
  3184. }
  3185. }
  3186. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3187. return ctx->model.image_newline;
  3188. }
  3189. void clip_free(clip_ctx * ctx) {
  3190. if (ctx == nullptr) {
  3191. return;
  3192. }
  3193. delete ctx;
  3194. }
  3195. // deprecated
  3196. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3197. const int32_t nx = ctx->model.hparams.image_size;
  3198. const int32_t ny = ctx->model.hparams.image_size;
  3199. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3200. }
  3201. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3202. clip_image_f32 img;
  3203. img.nx = img_w;
  3204. img.ny = img_h;
  3205. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3206. }
  3207. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3208. return ctx->model.hparams.image_size;
  3209. }
  3210. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3211. return ctx->model.hparams.patch_size;
  3212. }
  3213. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3214. return ctx->model.hparams.n_embd;
  3215. }
  3216. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3217. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3218. }
  3219. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3220. const auto & params = ctx->model.hparams;
  3221. const int n_total = clip_n_output_tokens(ctx, img);
  3222. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3223. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  3224. }
  3225. return n_total;
  3226. }
  3227. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3228. const auto & params = ctx->model.hparams;
  3229. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3230. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  3231. }
  3232. return 1;
  3233. }
  3234. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3235. const auto & params = ctx->model.hparams;
  3236. // for models with fixed size image, the input image is already pre-processed and resized to square
  3237. int patch_size = params.patch_size;
  3238. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3239. projector_type proj = ctx->proj_type();
  3240. switch (proj) {
  3241. case PROJECTOR_TYPE_MLP:
  3242. case PROJECTOR_TYPE_MLP_NORM:
  3243. {
  3244. // do nothing
  3245. } break;
  3246. case PROJECTOR_TYPE_LDP:
  3247. case PROJECTOR_TYPE_LDPV2:
  3248. case PROJECTOR_TYPE_GLM_EDGE:
  3249. {
  3250. n_patches /= 4;
  3251. if (ctx->model.mm_glm_tok_boi) {
  3252. n_patches += 2; // for BOI and EOI token embeddings
  3253. }
  3254. } break;
  3255. case PROJECTOR_TYPE_MINICPMV:
  3256. {
  3257. // Use actual config value if available, otherwise fall back to hardcoded values
  3258. if (params.minicpmv_query_num > 0) {
  3259. n_patches = params.minicpmv_query_num;
  3260. } else {
  3261. // Fallback to hardcoded values for legacy models
  3262. if (params.minicpmv_version == 2) {
  3263. n_patches = 96;
  3264. } else if (params.minicpmv_version == 3) {
  3265. n_patches = 64;
  3266. } else if (params.minicpmv_version == 4) {
  3267. n_patches = 64;
  3268. } else if (params.minicpmv_version == 5) {
  3269. // MiniCPM-V 4.0
  3270. n_patches = 64;
  3271. } else if (params.minicpmv_version == 6) {
  3272. // MiniCPM-V 4.5
  3273. n_patches = 64;
  3274. } else {
  3275. GGML_ABORT("Unknown minicpmv version");
  3276. }
  3277. }
  3278. } break;
  3279. case PROJECTOR_TYPE_QWEN2VL:
  3280. case PROJECTOR_TYPE_QWEN25VL:
  3281. {
  3282. // dynamic size (2 conv, so double patch size)
  3283. int patch_size = params.patch_size * 2;
  3284. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3285. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3286. n_patches = x_patch * y_patch;
  3287. } break;
  3288. case PROJECTOR_TYPE_GEMMA3:
  3289. case PROJECTOR_TYPE_IDEFICS3:
  3290. case PROJECTOR_TYPE_INTERNVL:
  3291. case PROJECTOR_TYPE_LLAMA4:
  3292. {
  3293. // both X and Y are downscaled by the scale factor
  3294. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3295. n_patches /= (scale_factor * scale_factor);
  3296. } break;
  3297. case PROJECTOR_TYPE_LFM2:
  3298. case PROJECTOR_TYPE_KIMIVL:
  3299. {
  3300. // dynamic size
  3301. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3302. int out_patch_size = params.patch_size * scale_factor;
  3303. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3304. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3305. n_patches = x_patch * y_patch;
  3306. } break;
  3307. case PROJECTOR_TYPE_PIXTRAL:
  3308. {
  3309. // dynamic size
  3310. int n_merge = params.spatial_merge_size;
  3311. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3312. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3313. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3314. } break;
  3315. case PROJECTOR_TYPE_VOXTRAL:
  3316. case PROJECTOR_TYPE_ULTRAVOX:
  3317. case PROJECTOR_TYPE_QWEN2A:
  3318. {
  3319. n_patches = img->nx;
  3320. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3321. if (ctx->model.audio_has_stack_frames()) {
  3322. GGML_ASSERT(proj_stack_factor > 0);
  3323. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3324. n_patches = n_len / proj_stack_factor;
  3325. }
  3326. // whisper downscales input token by half after conv1d
  3327. n_patches /= 2;
  3328. if (ctx->model.audio_has_avgpool()) {
  3329. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3330. n_patches /= 2;
  3331. }
  3332. } break;
  3333. default:
  3334. GGML_ABORT("unsupported projector type");
  3335. }
  3336. return n_patches;
  3337. }
  3338. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3339. assert(embed_dim % 2 == 0);
  3340. int H = pos.size();
  3341. int W = pos[0].size();
  3342. std::vector<float> omega(embed_dim / 2);
  3343. for (int i = 0; i < embed_dim / 2; ++i) {
  3344. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3345. }
  3346. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3347. for (int h = 0; h < H; ++h) {
  3348. for (int w = 0; w < W; ++w) {
  3349. for (int d = 0; d < embed_dim / 2; ++d) {
  3350. float out_value = pos[h][w] * omega[d];
  3351. emb[h][w][d] = sin(out_value);
  3352. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3353. }
  3354. }
  3355. }
  3356. return emb;
  3357. }
  3358. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3359. assert(embed_dim % 2 == 0);
  3360. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3361. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3362. int H = emb_h.size();
  3363. int W = emb_h[0].size();
  3364. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3365. for (int h = 0; h < H; ++h) {
  3366. for (int w = 0; w < W; ++w) {
  3367. for (int d = 0; d < embed_dim / 2; ++d) {
  3368. emb[h][w][d] = emb_h[h][w][d];
  3369. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3370. }
  3371. }
  3372. }
  3373. return emb;
  3374. }
  3375. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3376. int grid_h_size = image_size.first;
  3377. int grid_w_size = image_size.second;
  3378. std::vector<float> grid_h(grid_h_size);
  3379. std::vector<float> grid_w(grid_w_size);
  3380. for (int i = 0; i < grid_h_size; ++i) {
  3381. grid_h[i] = static_cast<float>(i);
  3382. }
  3383. for (int i = 0; i < grid_w_size; ++i) {
  3384. grid_w[i] = static_cast<float>(i);
  3385. }
  3386. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3387. for (int h = 0; h < grid_h_size; ++h) {
  3388. for (int w = 0; w < grid_w_size; ++w) {
  3389. grid[h][w] = grid_w[w];
  3390. }
  3391. }
  3392. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3393. for (int h = 0; h < grid_h_size; ++h) {
  3394. for (int w = 0; w < grid_w_size; ++w) {
  3395. grid_2d[0][h][w] = grid_h[h];
  3396. grid_2d[1][h][w] = grid_w[w];
  3397. }
  3398. }
  3399. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3400. int H = image_size.first;
  3401. int W = image_size.second;
  3402. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3403. for (int h = 0; h < H; ++h) {
  3404. for (int w = 0; w < W; ++w) {
  3405. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3406. }
  3407. }
  3408. return pos_embed_2d;
  3409. }
  3410. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3411. clip_image_f32_batch imgs;
  3412. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3413. *img_copy = *img;
  3414. imgs.entries.push_back(std::move(img_copy));
  3415. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3416. }
  3417. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3418. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3419. int batch_size = imgs.entries.size();
  3420. // TODO @ngxson : implement batch size > 1 as a loop
  3421. // we don't need true batching support because the cgraph will gonna be big anyway
  3422. if (batch_size != 1) {
  3423. return false; // only support batch size of 1
  3424. }
  3425. // build the inference graph
  3426. ctx->debug_print_tensors.clear();
  3427. ggml_backend_sched_reset(ctx->sched.get());
  3428. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3429. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3430. // set inputs
  3431. const auto & model = ctx->model;
  3432. const auto & hparams = model.hparams;
  3433. const int image_size_width = imgs.entries[0]->nx;
  3434. const int image_size_height = imgs.entries[0]->ny;
  3435. const int patch_size = hparams.patch_size;
  3436. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3437. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3438. const int pos_w = image_size_width / patch_size;
  3439. const int pos_h = image_size_height / patch_size;
  3440. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3441. auto get_inp_tensor = [&gf](const char * name) {
  3442. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3443. if (inp == nullptr) {
  3444. GGML_ABORT("Failed to get tensor %s", name);
  3445. }
  3446. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3447. GGML_ABORT("Tensor %s is not an input tensor", name);
  3448. }
  3449. return inp;
  3450. };
  3451. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3452. ggml_tensor * cur = get_inp_tensor(name);
  3453. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3454. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3455. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3456. };
  3457. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3458. ggml_tensor * cur = get_inp_tensor(name);
  3459. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3460. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3461. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3462. };
  3463. // set input pixel values
  3464. if (!imgs.is_audio) {
  3465. size_t nelem = 0;
  3466. for (const auto & img : imgs.entries) {
  3467. nelem += img->nx * img->ny * 3;
  3468. }
  3469. std::vector<float> inp_raw(nelem);
  3470. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3471. //
  3472. // ┌──W──┐
  3473. // │ H │ channel = R
  3474. // ├─────┤ │
  3475. // │ H │ channel = G
  3476. // ├─────┤ │
  3477. // │ H │ channel = B
  3478. // └─────┘ │
  3479. // ──────┘ x B
  3480. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3481. const int nx = imgs.entries[i]->nx;
  3482. const int ny = imgs.entries[i]->ny;
  3483. const int n = nx * ny;
  3484. for (int b = 0; b < batch_size; b++) {
  3485. float * batch_entry = inp_raw.data() + b * (3*n);
  3486. for (int y = 0; y < ny; y++) {
  3487. for (int x = 0; x < nx; x++) {
  3488. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3489. size_t base_dst = y * nx + x; // idx of the first channel
  3490. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3491. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3492. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3493. }
  3494. }
  3495. }
  3496. }
  3497. set_input_f32("inp_raw", inp_raw);
  3498. } else {
  3499. // audio input
  3500. GGML_ASSERT(imgs.entries.size() == 1);
  3501. const auto & mel_inp = imgs.entries[0];
  3502. const int n_step = mel_inp->nx;
  3503. const int n_mel = mel_inp->ny;
  3504. std::vector<float> inp_raw(n_step * n_mel);
  3505. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3506. set_input_f32("inp_raw", inp_raw);
  3507. }
  3508. // set input per projector
  3509. switch (ctx->model.proj_type) {
  3510. case PROJECTOR_TYPE_MINICPMV:
  3511. {
  3512. // inspired from siglip:
  3513. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3514. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3515. std::vector<int32_t> positions(pos_h * pos_w);
  3516. int bucket_coords_h[1024];
  3517. int bucket_coords_w[1024];
  3518. for (int i = 0; i < pos_h; i++){
  3519. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3520. }
  3521. for (int i = 0; i < pos_w; i++){
  3522. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3523. }
  3524. for (int i = 0, id = 0; i < pos_h; i++){
  3525. for (int j = 0; j < pos_w; j++){
  3526. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3527. }
  3528. }
  3529. set_input_i32("positions", positions);
  3530. // inspired from resampler of Qwen-VL:
  3531. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3532. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3533. int embed_dim = clip_n_mmproj_embd(ctx);
  3534. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3535. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3536. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3537. for(int i = 0; i < pos_w * pos_h; ++i){
  3538. for(int j = 0; j < embed_dim; ++j){
  3539. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3540. }
  3541. }
  3542. set_input_f32("pos_embed", pos_embed);
  3543. } break;
  3544. case PROJECTOR_TYPE_QWEN2VL:
  3545. {
  3546. const int merge_ratio = 2;
  3547. const int pw = image_size_width / patch_size;
  3548. const int ph = image_size_height / patch_size;
  3549. std::vector<int> positions(n_pos * 4);
  3550. int ptr = 0;
  3551. for (int y = 0; y < ph; y += merge_ratio) {
  3552. for (int x = 0; x < pw; x += merge_ratio) {
  3553. for (int dy = 0; dy < 2; dy++) {
  3554. for (int dx = 0; dx < 2; dx++) {
  3555. positions[ ptr] = y + dy;
  3556. positions[ num_patches + ptr] = x + dx;
  3557. positions[2 * num_patches + ptr] = y + dy;
  3558. positions[3 * num_patches + ptr] = x + dx;
  3559. ptr++;
  3560. }
  3561. }
  3562. }
  3563. }
  3564. set_input_i32("positions", positions);
  3565. } break;
  3566. case PROJECTOR_TYPE_QWEN25VL:
  3567. {
  3568. // pw * ph = number of tokens output by ViT after apply patch merger
  3569. // ipw * ipw = number of vision token been processed inside ViT
  3570. const int merge_ratio = 2;
  3571. const int pw = image_size_width / patch_size / merge_ratio;
  3572. const int ph = image_size_height / patch_size / merge_ratio;
  3573. const int ipw = image_size_width / patch_size;
  3574. const int iph = image_size_height / patch_size;
  3575. std::vector<int> idx (ph * pw);
  3576. std::vector<int> inv_idx(ph * pw);
  3577. if (use_window_attn) {
  3578. const int attn_window_size = 112;
  3579. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3580. int dst = 0;
  3581. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3582. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3583. int mask_row = 0;
  3584. for (int y = 0; y < ph; y += grid_window) {
  3585. for (int x = 0; x < pw; x += grid_window) {
  3586. const int win_h = std::min(grid_window, ph - y);
  3587. const int win_w = std::min(grid_window, pw - x);
  3588. const int dst_0 = dst;
  3589. // group all tokens belong to the same window togather (to a continue range)
  3590. for (int dy = 0; dy < win_h; dy++) {
  3591. for (int dx = 0; dx < win_w; dx++) {
  3592. const int src = (y + dy) * pw + (x + dx);
  3593. GGML_ASSERT(src < (int)idx.size());
  3594. GGML_ASSERT(dst < (int)inv_idx.size());
  3595. idx [src] = dst;
  3596. inv_idx[dst] = src;
  3597. dst++;
  3598. }
  3599. }
  3600. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3601. int row_offset = mask_row * (ipw * iph);
  3602. std::fill(
  3603. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3604. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3605. 0.0);
  3606. mask_row++;
  3607. }
  3608. }
  3609. }
  3610. set_input_i32("window_idx", idx);
  3611. set_input_i32("inv_window_idx", inv_idx);
  3612. set_input_f32("window_mask", mask);
  3613. } else {
  3614. for (int i = 0; i < ph * pw; i++) {
  3615. idx[i] = i;
  3616. }
  3617. }
  3618. const int mpow = merge_ratio * merge_ratio;
  3619. std::vector<int> positions(n_pos * 4);
  3620. int ptr = 0;
  3621. for (int y = 0; y < iph; y += merge_ratio) {
  3622. for (int x = 0; x < ipw; x += merge_ratio) {
  3623. for (int dy = 0; dy < 2; dy++) {
  3624. for (int dx = 0; dx < 2; dx++) {
  3625. auto remap = idx[ptr / mpow];
  3626. remap = (remap * mpow) + (ptr % mpow);
  3627. positions[ remap] = y + dy;
  3628. positions[ num_patches + remap] = x + dx;
  3629. positions[2 * num_patches + remap] = y + dy;
  3630. positions[3 * num_patches + remap] = x + dx;
  3631. ptr++;
  3632. }
  3633. }
  3634. }
  3635. }
  3636. set_input_i32("positions", positions);
  3637. } break;
  3638. case PROJECTOR_TYPE_PIXTRAL:
  3639. case PROJECTOR_TYPE_KIMIVL:
  3640. {
  3641. // set the 2D positions
  3642. int n_patches_per_col = image_size_width / patch_size;
  3643. std::vector<int> pos_data(n_pos);
  3644. // dimension H
  3645. for (int i = 0; i < n_pos; i++) {
  3646. pos_data[i] = i / n_patches_per_col;
  3647. }
  3648. set_input_i32("pos_h", pos_data);
  3649. // dimension W
  3650. for (int i = 0; i < n_pos; i++) {
  3651. pos_data[i] = i % n_patches_per_col;
  3652. }
  3653. set_input_i32("pos_w", pos_data);
  3654. } break;
  3655. case PROJECTOR_TYPE_GLM_EDGE:
  3656. {
  3657. // llava and other models
  3658. std::vector<int32_t> positions(n_pos);
  3659. for (int i = 0; i < n_pos; i++) {
  3660. positions[i] = i;
  3661. }
  3662. set_input_i32("positions", positions);
  3663. } break;
  3664. case PROJECTOR_TYPE_MLP:
  3665. case PROJECTOR_TYPE_MLP_NORM:
  3666. case PROJECTOR_TYPE_LDP:
  3667. case PROJECTOR_TYPE_LDPV2:
  3668. {
  3669. // llava and other models
  3670. std::vector<int32_t> positions(n_pos);
  3671. for (int i = 0; i < n_pos; i++) {
  3672. positions[i] = i;
  3673. }
  3674. set_input_i32("positions", positions);
  3675. // The patches vector is used to get rows to index into the embeds with;
  3676. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3677. // when retrieving the rows.
  3678. int patch_offset = model.class_embedding ? 1 : 0;
  3679. std::vector<int32_t> patches(num_patches);
  3680. for (int i = 0; i < num_patches; i++) {
  3681. patches[i] = i + patch_offset;
  3682. }
  3683. set_input_i32("patches", patches);
  3684. } break;
  3685. case PROJECTOR_TYPE_GEMMA3:
  3686. case PROJECTOR_TYPE_IDEFICS3:
  3687. case PROJECTOR_TYPE_INTERNVL:
  3688. case PROJECTOR_TYPE_QWEN2A:
  3689. case PROJECTOR_TYPE_ULTRAVOX:
  3690. case PROJECTOR_TYPE_LFM2:
  3691. case PROJECTOR_TYPE_VOXTRAL:
  3692. {
  3693. // do nothing
  3694. } break;
  3695. case PROJECTOR_TYPE_LLAMA4:
  3696. {
  3697. // set the 2D positions
  3698. int n_patches_per_col = image_size_width / patch_size;
  3699. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3700. // last pos is always kept 0, it's for CLS
  3701. // dimension H
  3702. for (int i = 0; i < num_patches; i++) {
  3703. pos_data[i] = (i / n_patches_per_col) + 1;
  3704. }
  3705. set_input_i32("pos_h", pos_data);
  3706. // dimension W
  3707. for (int i = 0; i < num_patches; i++) {
  3708. pos_data[i] = (i % n_patches_per_col) + 1;
  3709. }
  3710. set_input_i32("pos_w", pos_data);
  3711. } break;
  3712. default:
  3713. GGML_ABORT("Unknown projector type");
  3714. }
  3715. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3716. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3717. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3718. if (reg) {
  3719. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3720. if (ggml_backend_set_n_threads_fn) {
  3721. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3722. }
  3723. }
  3724. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3725. if (status != GGML_STATUS_SUCCESS) {
  3726. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3727. return false;
  3728. }
  3729. // print debug nodes
  3730. if (ctx->debug_graph) {
  3731. LOG_INF("\n\n---\n\n");
  3732. LOG_INF("\n\nDebug graph:\n\n");
  3733. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3734. std::vector<uint8_t> data(ggml_nbytes(t));
  3735. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3736. print_tensor_shape(t);
  3737. print_tensor_data(t, data.data(), 3);
  3738. }
  3739. }
  3740. // the last node is the embedding tensor
  3741. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3742. // sanity check (only support batch size of 1 for now)
  3743. const int n_tokens_out = embeddings->ne[1];
  3744. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3745. if (n_tokens_out != expected_n_tokens_out) {
  3746. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3747. GGML_ABORT("Invalid number of output tokens");
  3748. }
  3749. // copy the embeddings to the location passed by the user
  3750. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3751. return true;
  3752. }
  3753. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3754. switch (ctx->model.proj_type) {
  3755. case PROJECTOR_TYPE_LDP:
  3756. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3757. case PROJECTOR_TYPE_LDPV2:
  3758. return ctx->model.mm_model_peg_0_b->ne[0];
  3759. case PROJECTOR_TYPE_MLP:
  3760. case PROJECTOR_TYPE_PIXTRAL:
  3761. return ctx->model.mm_2_w->ne[1];
  3762. case PROJECTOR_TYPE_MLP_NORM:
  3763. return ctx->model.mm_3_b->ne[0];
  3764. case PROJECTOR_TYPE_MINICPMV:
  3765. return ctx->model.mm_model_proj->ne[0];
  3766. case PROJECTOR_TYPE_GLM_EDGE:
  3767. return ctx->model.mm_model_mlp_3_w->ne[1];
  3768. case PROJECTOR_TYPE_QWEN2VL:
  3769. case PROJECTOR_TYPE_QWEN25VL:
  3770. return ctx->model.mm_1_b->ne[0];
  3771. case PROJECTOR_TYPE_GEMMA3:
  3772. return ctx->model.mm_input_proj_w->ne[0];
  3773. case PROJECTOR_TYPE_IDEFICS3:
  3774. return ctx->model.projection->ne[1];
  3775. case PROJECTOR_TYPE_ULTRAVOX:
  3776. case PROJECTOR_TYPE_VOXTRAL:
  3777. return ctx->model.mm_2_w->ne[1];
  3778. case PROJECTOR_TYPE_INTERNVL:
  3779. return ctx->model.mm_3_w->ne[1];
  3780. case PROJECTOR_TYPE_LLAMA4:
  3781. return ctx->model.mm_model_proj->ne[1];
  3782. case PROJECTOR_TYPE_QWEN2A:
  3783. return ctx->model.mm_fc_w->ne[1];
  3784. case PROJECTOR_TYPE_LFM2:
  3785. case PROJECTOR_TYPE_KIMIVL:
  3786. return ctx->model.mm_2_w->ne[1];
  3787. default:
  3788. GGML_ABORT("Unknown projector type");
  3789. }
  3790. }
  3791. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3792. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3793. return ctx->model.hparams.minicpmv_version;
  3794. }
  3795. return 0;
  3796. }
  3797. bool clip_is_glm(const struct clip_ctx * ctx) {
  3798. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3799. }
  3800. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3801. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3802. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
  3803. }
  3804. bool clip_is_llava(const struct clip_ctx * ctx) {
  3805. return ctx->model.hparams.has_llava_projector;
  3806. }
  3807. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3808. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3809. }
  3810. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3811. return ctx->model.modality == CLIP_MODALITY_VISION;
  3812. }
  3813. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3814. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3815. }
  3816. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3817. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3818. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  3819. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  3820. }
  3821. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3822. clip_image_f32 clip_img;
  3823. clip_img.buf.resize(h * w * 3);
  3824. for (int i = 0; i < h*w*3; i++)
  3825. {
  3826. clip_img.buf[i] = img[i];
  3827. }
  3828. clip_img.nx = w;
  3829. clip_img.ny = h;
  3830. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3831. return true;
  3832. }
  3833. //
  3834. // API used internally with mtmd
  3835. //
  3836. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3837. return ctx->proj_type();
  3838. }
  3839. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3840. clip_image_f32 * audio = new clip_image_f32;
  3841. audio->nx = n_frames;
  3842. audio->ny = n_mel;
  3843. audio->buf.resize(n_frames * n_mel);
  3844. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3845. batch->entries.push_back(clip_image_f32_ptr(audio));
  3846. batch->is_audio = true;
  3847. }