common.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include "sampling.h"
  5. #define LOG_NO_FILE_LINE_FUNCTION
  6. #include "log.h"
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. #include <random>
  11. #include <thread>
  12. #include <unordered_map>
  13. #include <tuple>
  14. #ifdef _WIN32
  15. #define DIRECTORY_SEPARATOR '\\'
  16. #else
  17. #define DIRECTORY_SEPARATOR '/'
  18. #endif // _WIN32
  19. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  20. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  21. #define print_build_info() do { \
  22. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  23. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  24. } while(0)
  25. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  26. struct llama_lora_adapter_info {
  27. std::string path;
  28. float scale;
  29. };
  30. struct llama_lora_adapter_container : llama_lora_adapter_info {
  31. struct llama_lora_adapter * adapter;
  32. };
  33. // build info
  34. extern int LLAMA_BUILD_NUMBER;
  35. extern char const * LLAMA_COMMIT;
  36. extern char const * LLAMA_COMPILER;
  37. extern char const * LLAMA_BUILD_TARGET;
  38. struct llama_control_vector_load_info;
  39. //
  40. // CPU utils
  41. //
  42. int32_t cpu_get_num_physical_cores();
  43. int32_t cpu_get_num_math();
  44. //
  45. // CLI argument parsing
  46. //
  47. // dimensionality reduction methods, used by cvector-generator
  48. enum dimre_method {
  49. DIMRE_METHOD_PCA,
  50. DIMRE_METHOD_MEAN,
  51. };
  52. struct cpu_params {
  53. int n_threads = -1;
  54. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  55. bool mask_valid = false; // Default: any CPU
  56. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  57. bool strict_cpu = false; // Use strict CPU placement
  58. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  59. };
  60. struct gpt_params {
  61. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  62. int32_t n_predict = -1; // new tokens to predict
  63. int32_t n_ctx = 0; // context size
  64. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  65. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  66. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  67. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  68. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  69. int32_t n_parallel = 1; // number of parallel sequences to decode
  70. int32_t n_sequences = 1; // number of sequences to decode
  71. float p_split = 0.1f; // speculative decoding split probability
  72. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  73. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  74. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  75. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  76. int32_t grp_attn_n = 1; // group-attention factor
  77. int32_t grp_attn_w = 512; // group-attention width
  78. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  79. float rope_freq_base = 0.0f; // RoPE base frequency
  80. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  81. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  82. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  83. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  84. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  85. int32_t yarn_orig_ctx = 0; // YaRN original context length
  86. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  87. struct cpu_params cpuparams;
  88. struct cpu_params cpuparams_batch;
  89. struct cpu_params draft_cpuparams;
  90. struct cpu_params draft_cpuparams_batch;
  91. ggml_backend_sched_eval_callback cb_eval = nullptr;
  92. void * cb_eval_user_data = nullptr;
  93. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  94. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  95. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  96. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  97. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  98. // // sampling parameters
  99. struct llama_sampling_params sparams;
  100. std::string model = ""; // model path
  101. std::string model_draft = ""; // draft model for speculative decoding
  102. std::string model_alias = "unknown"; // model alias
  103. std::string model_url = ""; // model url to download
  104. std::string hf_token = ""; // HF token
  105. std::string hf_repo = ""; // HF repo
  106. std::string hf_file = ""; // HF file
  107. std::string prompt = "";
  108. std::string prompt_file = ""; // store the external prompt file name
  109. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  110. std::string input_prefix = ""; // string to prefix user inputs with
  111. std::string input_suffix = ""; // string to suffix user inputs with
  112. std::string logdir = ""; // directory in which to save YAML log files
  113. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  114. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  115. std::string logits_file = ""; // file for saving *all* logits
  116. std::string rpc_servers = ""; // comma separated list of RPC servers
  117. std::vector<std::string> in_files; // all input files
  118. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  119. std::vector<llama_model_kv_override> kv_overrides;
  120. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  121. std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  122. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  123. int32_t verbosity = 0;
  124. int32_t control_vector_layer_start = -1; // layer range for control vector
  125. int32_t control_vector_layer_end = -1; // layer range for control vector
  126. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  127. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  128. // (which is more convenient to use for plotting)
  129. //
  130. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  131. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  132. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  133. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  134. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  135. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  136. bool kl_divergence = false; // compute KL divergence
  137. bool usage = false; // print usage
  138. bool use_color = false; // use color to distinguish generations and inputs
  139. bool special = false; // enable special token output
  140. bool interactive = false; // interactive mode
  141. bool interactive_first = false; // wait for user input immediately
  142. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  143. bool prompt_cache_all = false; // save user input and generations to prompt cache
  144. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  145. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  146. bool multiline_input = false; // reverse the usage of `\`
  147. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  148. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  149. bool flash_attn = false; // flash attention
  150. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  151. bool ignore_eos = false; // ignore generated EOS tokens
  152. bool logits_all = false; // return logits for all tokens in the batch
  153. bool use_mmap = true; // use mmap for faster loads
  154. bool use_mlock = false; // use mlock to keep model in memory
  155. bool verbose_prompt = false; // print prompt tokens before generation
  156. bool display_prompt = true; // print prompt before generation
  157. bool infill = false; // use infill mode
  158. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  159. bool no_kv_offload = false; // disable KV offloading
  160. bool warmup = true; // warmup run
  161. bool check_tensors = false; // validate tensor data
  162. std::string cache_type_k = "f16"; // KV cache data type for the K
  163. std::string cache_type_v = "f16"; // KV cache data type for the V
  164. // multimodal models (see examples/llava)
  165. std::string mmproj = ""; // path to multimodal projector
  166. std::vector<std::string> image; // path to image file(s)
  167. // embedding
  168. bool embedding = false; // get only sentence embedding
  169. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  170. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  171. std::string embd_sep = "\n"; // separator of embendings
  172. // server params
  173. int32_t port = 8080; // server listens on this network port
  174. int32_t timeout_read = 600; // http read timeout in seconds
  175. int32_t timeout_write = timeout_read; // http write timeout in seconds
  176. int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  177. std::string hostname = "127.0.0.1";
  178. std::string public_path = "";
  179. std::string chat_template = "";
  180. std::string system_prompt = "";
  181. bool enable_chat_template = true;
  182. std::vector<std::string> api_keys;
  183. std::string ssl_file_key = "";
  184. std::string ssl_file_cert = "";
  185. bool endpoint_slots = true;
  186. bool endpoint_metrics = false;
  187. bool log_json = false;
  188. std::string slot_save_path;
  189. float slot_prompt_similarity = 0.5f;
  190. // batched-bench params
  191. bool is_pp_shared = false;
  192. std::vector<int32_t> n_pp;
  193. std::vector<int32_t> n_tg;
  194. std::vector<int32_t> n_pl;
  195. // retrieval params
  196. std::vector<std::string> context_files; // context files to embed
  197. int32_t chunk_size = 64; // chunk size for context embedding
  198. std::string chunk_separator = "\n"; // chunk separator for context embedding
  199. // passkey params
  200. int32_t n_junk = 250; // number of times to repeat the junk text
  201. int32_t i_pos = -1; // position of the passkey in the junk text
  202. // imatrix params
  203. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  204. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  205. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  206. int32_t i_chunk = 0; // start processing from this chunk
  207. bool process_output = false; // collect data for the output tensor
  208. bool compute_ppl = true; // whether to compute perplexity
  209. // cvector-generator params
  210. int n_pca_batch = 100;
  211. int n_pca_iterations = 1000;
  212. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  213. std::string cvector_outfile = "control_vector.gguf";
  214. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  215. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  216. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  217. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  218. };
  219. void gpt_params_parse_from_env(gpt_params & params);
  220. void gpt_params_handle_model_default(gpt_params & params);
  221. bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
  222. bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
  223. bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  224. void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
  225. std::string gpt_params_get_system_info(const gpt_params & params);
  226. bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  227. bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  228. void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
  229. bool set_process_priority(enum ggml_sched_priority prio);
  230. //
  231. // String utils
  232. //
  233. std::vector<std::string> string_split(std::string input, char separator);
  234. std::string string_strip(const std::string & str);
  235. std::string string_get_sortable_timestamp();
  236. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  237. template<class T>
  238. static std::vector<T> string_split(const std::string & str, char delim) {
  239. std::vector<T> values;
  240. std::istringstream str_stream(str);
  241. std::string token;
  242. while (std::getline(str_stream, token, delim)) {
  243. T value;
  244. std::istringstream token_stream(token);
  245. token_stream >> value;
  246. values.push_back(value);
  247. }
  248. return values;
  249. }
  250. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  251. void string_process_escapes(std::string & input);
  252. //
  253. // Filesystem utils
  254. //
  255. bool fs_validate_filename(const std::string & filename);
  256. bool fs_create_directory_with_parents(const std::string & path);
  257. std::string fs_get_cache_directory();
  258. std::string fs_get_cache_file(const std::string & filename);
  259. //
  260. // Model utils
  261. //
  262. struct llama_init_result {
  263. struct llama_model * model = nullptr;
  264. struct llama_context * context = nullptr;
  265. std::vector<llama_lora_adapter_container> lora_adapters;
  266. };
  267. struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
  268. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  269. struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
  270. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  271. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  272. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  273. // clear LoRA adapters from context, then apply new list of adapters
  274. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
  275. // Batch utils
  276. void llama_batch_clear(struct llama_batch & batch);
  277. void llama_batch_add(
  278. struct llama_batch & batch,
  279. llama_token id,
  280. llama_pos pos,
  281. const std::vector<llama_seq_id> & seq_ids,
  282. bool logits);
  283. //
  284. // Vocab utils
  285. //
  286. // tokenizes a string into a vector of tokens
  287. // should work similar to Python's `tokenizer.encode`
  288. std::vector<llama_token> llama_tokenize(
  289. const struct llama_context * ctx,
  290. const std::string & text,
  291. bool add_special,
  292. bool parse_special = false);
  293. std::vector<llama_token> llama_tokenize(
  294. const struct llama_model * model,
  295. const std::string & text,
  296. bool add_special,
  297. bool parse_special = false);
  298. // tokenizes a token into a piece, optionally renders special/control tokens
  299. // should work similar to Python's `tokenizer.id_to_piece`
  300. std::string llama_token_to_piece(
  301. const struct llama_context * ctx,
  302. llama_token token,
  303. bool special = true);
  304. // detokenizes a vector of tokens into a string
  305. // should work similar to Python's `tokenizer.decode`
  306. // optionally renders special/control tokens
  307. std::string llama_detokenize(
  308. llama_context * ctx,
  309. const std::vector<llama_token> & tokens,
  310. bool special = true);
  311. //
  312. // Chat template utils
  313. //
  314. // same with llama_chat_message, but uses std::string
  315. struct llama_chat_msg {
  316. std::string role;
  317. std::string content;
  318. };
  319. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  320. bool llama_chat_verify_template(const std::string & tmpl);
  321. // CPP wrapper for llama_chat_apply_template
  322. // If the built-in template is not supported, we default to chatml
  323. // If the custom "tmpl" is not supported, we throw an error
  324. std::string llama_chat_apply_template(const struct llama_model * model,
  325. const std::string & tmpl,
  326. const std::vector<llama_chat_msg> & chat,
  327. bool add_ass);
  328. // Format single message, while taking into account the position of that message in chat history
  329. std::string llama_chat_format_single(const struct llama_model * model,
  330. const std::string & tmpl,
  331. const std::vector<llama_chat_msg> & past_msg,
  332. const llama_chat_msg & new_msg,
  333. bool add_ass);
  334. // Returns an example of formatted chat
  335. std::string llama_chat_format_example(const struct llama_model * model,
  336. const std::string & tmpl);
  337. //
  338. // KV cache utils
  339. //
  340. // Dump the KV cache view with the number of sequences per cell.
  341. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  342. // Dump the KV cache view showing individual sequences in each cell (long output).
  343. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  344. //
  345. // Embedding utils
  346. //
  347. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  348. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  349. //
  350. // Control vector utils
  351. //
  352. struct llama_control_vector_data {
  353. int n_embd;
  354. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  355. std::vector<float> data;
  356. };
  357. struct llama_control_vector_load_info {
  358. float strength;
  359. std::string fname;
  360. };
  361. // Load control vectors, scale each by strength, and add them together.
  362. // On error, returns {-1, empty}
  363. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  364. //
  365. // Split utils
  366. //
  367. static const char * const LLM_KV_SPLIT_NO = "split.no";
  368. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  369. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  370. //
  371. // YAML utils
  372. //
  373. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  374. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  375. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  376. void yaml_dump_non_result_info(
  377. FILE * stream, const gpt_params & params, const llama_context * lctx,
  378. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);