convert_hf_to_gguf.py 185 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. if len(self.part_names) > 1:
  112. self.tensor_names = set()
  113. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  114. index_name += ".index.json"
  115. logger.info(f"gguf: loading model weight map from '{index_name}'")
  116. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  117. index: dict[str, Any] = json.load(f)
  118. weight_map = index.get("weight_map")
  119. if weight_map is None or not isinstance(weight_map, dict):
  120. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  121. self.tensor_names.update(weight_map.keys())
  122. else:
  123. self.tensor_names = tensor_names_from_parts
  124. for part_name in self.part_names:
  125. logger.info(f"gguf: loading model part '{part_name}'")
  126. ctx: ContextManager[Any]
  127. if self.is_safetensors:
  128. from safetensors import safe_open
  129. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  130. else:
  131. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  132. with ctx as model_part:
  133. tensor_names_from_parts.update(model_part.keys())
  134. for name in model_part.keys():
  135. if self.is_safetensors:
  136. if self.lazy:
  137. data = model_part.get_slice(name)
  138. data = LazyTorchTensor.from_safetensors_slice(data)
  139. else:
  140. data = model_part.get_tensor(name)
  141. else:
  142. data = model_part[name]
  143. if self.lazy:
  144. data = LazyTorchTensor.from_eager(data)
  145. yield name, data
  146. # only verify tensor name presence; it doesn't matter if they are not in the right files
  147. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  148. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  149. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  150. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  151. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  152. name: str = gguf.TENSOR_NAMES[key]
  153. if "{bid}" in name:
  154. assert bid is not None
  155. name = name.format(bid=bid)
  156. return name + suffix
  157. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  158. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  159. return False
  160. key_name: str = gguf.TENSOR_NAMES[key]
  161. if "{bid}" in key_name:
  162. if bid is None:
  163. return False
  164. key_name = key_name.format(bid=bid)
  165. else:
  166. if bid is not None:
  167. return False
  168. return name == (key_name + suffix)
  169. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  170. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  171. if new_name is None:
  172. raise ValueError(f"Can not map tensor {name!r}")
  173. return new_name
  174. def set_gguf_parameters(self):
  175. self.gguf_writer.add_block_count(self.block_count)
  176. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  177. self.gguf_writer.add_context_length(n_ctx)
  178. logger.info(f"gguf: context length = {n_ctx}")
  179. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  180. self.gguf_writer.add_embedding_length(n_embd)
  181. logger.info(f"gguf: embedding length = {n_embd}")
  182. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  183. self.gguf_writer.add_feed_forward_length(n_ff)
  184. logger.info(f"gguf: feed forward length = {n_ff}")
  185. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  186. self.gguf_writer.add_head_count(n_head)
  187. logger.info(f"gguf: head count = {n_head}")
  188. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  189. self.gguf_writer.add_head_count_kv(n_head_kv)
  190. logger.info(f"gguf: key-value head count = {n_head_kv}")
  191. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  192. self.gguf_writer.add_rope_freq_base(rope_theta)
  193. logger.info(f"gguf: rope theta = {rope_theta}")
  194. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  195. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  196. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  197. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  198. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  199. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  200. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  201. self.gguf_writer.add_expert_count(n_experts)
  202. logger.info(f"gguf: expert count = {n_experts}")
  203. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  204. self.gguf_writer.add_expert_used_count(n_experts_used)
  205. logger.info(f"gguf: experts used count = {n_experts_used}")
  206. if (head_dim := self.hparams.get("head_dim")) is not None:
  207. self.gguf_writer.add_key_length(head_dim)
  208. self.gguf_writer.add_value_length(head_dim)
  209. self.gguf_writer.add_file_type(self.ftype)
  210. logger.info(f"gguf: file type = {self.ftype}")
  211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  212. del bid # unused
  213. return [(self.map_tensor_name(name), data_torch)]
  214. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  215. del name, new_name, bid, n_dims # unused
  216. return False
  217. def prepare_tensors(self):
  218. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  219. for name, data_torch in self.get_tensors():
  220. # we don't need these
  221. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  222. continue
  223. old_dtype = data_torch.dtype
  224. # convert any unsupported data types to float32
  225. if data_torch.dtype not in (torch.float16, torch.float32):
  226. data_torch = data_torch.to(torch.float32)
  227. # use the first number-like part of the tensor name as the block id
  228. bid = None
  229. for part in name.split("."):
  230. if part.isdecimal():
  231. bid = int(part)
  232. break
  233. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  234. data: np.ndarray # type hint
  235. n_dims = len(data.shape)
  236. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  237. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  238. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  239. data_qtype = gguf.GGMLQuantizationType.F32
  240. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  241. # Some tensor types are always in float32
  242. if data_qtype is False and (
  243. any(
  244. self.match_model_tensor_name(new_name, key, bid)
  245. for key in (
  246. gguf.MODEL_TENSOR.FFN_GATE_INP,
  247. gguf.MODEL_TENSOR.POS_EMBD,
  248. gguf.MODEL_TENSOR.TOKEN_TYPES,
  249. gguf.MODEL_TENSOR.SSM_CONV1D,
  250. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  251. gguf.MODEL_TENSOR.TIME_MIX_W1,
  252. gguf.MODEL_TENSOR.TIME_MIX_W2,
  253. )
  254. )
  255. or not new_name.endswith(".weight")
  256. ):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  259. if isinstance(data_qtype, bool):
  260. if self.ftype == gguf.LlamaFileType.ALL_F32:
  261. data_qtype = gguf.GGMLQuantizationType.F32
  262. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  263. data_qtype = gguf.GGMLQuantizationType.F16
  264. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  265. data_qtype = gguf.GGMLQuantizationType.BF16
  266. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  267. data_qtype = gguf.GGMLQuantizationType.Q8_0
  268. else:
  269. raise ValueError(f"Unknown file type: {self.ftype.name}")
  270. try:
  271. data = gguf.quants.quantize(data, data_qtype)
  272. except gguf.QuantError as e:
  273. logger.warning("%s, %s", e, "falling back to F16")
  274. data_qtype = gguf.GGMLQuantizationType.F16
  275. data = gguf.quants.quantize(data, data_qtype)
  276. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  277. # reverse shape to make it similar to the internal ggml dimension order
  278. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  279. # n_dims is implicit in the shape
  280. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  281. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  282. def set_type(self):
  283. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  284. def prepare_metadata(self, vocab_only: bool):
  285. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  286. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  287. # Fallback to model directory name if metadata name is still missing
  288. if self.metadata.name is None:
  289. self.metadata.name = self.dir_model.name
  290. # Generate parameter weight class (useful for leader boards) if not yet determined
  291. if self.metadata.size_label is None and total_params > 0:
  292. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  293. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  294. output_type: str = self.ftype.name.partition("_")[2]
  295. # Filename Output
  296. if self.fname_out.is_dir():
  297. # Generate default filename based on model specification and available metadata
  298. if not vocab_only:
  299. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  300. else:
  301. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  302. # Use the default filename
  303. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  304. else:
  305. # Output path is a custom defined templated filename
  306. # Note: `not is_dir()` is used because `.is_file()` will not detect
  307. # file template strings as it doesn't actually exist as a file
  308. # Process templated file name with the output ftype, useful with the "auto" ftype
  309. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  310. self.set_type()
  311. logger.info("Set meta model")
  312. self.metadata.set_gguf_meta_model(self.gguf_writer)
  313. logger.info("Set model parameters")
  314. self.set_gguf_parameters()
  315. logger.info("Set model tokenizer")
  316. self.set_vocab()
  317. logger.info("Set model quantization version")
  318. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  319. def write(self):
  320. self.prepare_tensors()
  321. self.prepare_metadata(vocab_only=False)
  322. self.gguf_writer.write_header_to_file(path=self.fname_out)
  323. self.gguf_writer.write_kv_data_to_file()
  324. self.gguf_writer.write_tensors_to_file(progress=True)
  325. self.gguf_writer.close()
  326. def write_vocab(self):
  327. if len(self.gguf_writer.tensors) != 1:
  328. raise ValueError('Splitting the vocabulary is not supported')
  329. self.prepare_metadata(vocab_only=True)
  330. self.gguf_writer.write_header_to_file(path=self.fname_out)
  331. self.gguf_writer.write_kv_data_to_file()
  332. self.gguf_writer.close()
  333. @staticmethod
  334. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  335. part_names: list[str] = []
  336. for filename in os.listdir(dir_model):
  337. if filename.startswith(prefix) and filename.endswith(suffix):
  338. part_names.append(filename)
  339. part_names.sort()
  340. return part_names
  341. @staticmethod
  342. def load_hparams(dir_model: Path):
  343. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  344. return json.load(f)
  345. @classmethod
  346. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  347. assert names
  348. def func(modelcls: AnyModel) -> AnyModel:
  349. for name in names:
  350. cls._model_classes[name] = modelcls
  351. return modelcls
  352. return func
  353. @classmethod
  354. def from_model_architecture(cls, arch: str) -> type[Model]:
  355. try:
  356. return cls._model_classes[arch]
  357. except KeyError:
  358. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  359. def does_token_look_special(self, token: str | bytes) -> bool:
  360. if isinstance(token, (bytes, bytearray)):
  361. token_text = token.decode(encoding="utf-8")
  362. elif isinstance(token, memoryview):
  363. token_text = token.tobytes().decode(encoding="utf-8")
  364. else:
  365. token_text = token
  366. # Some models mark some added tokens which ought to be control tokens as not special.
  367. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  368. seems_special = token_text in (
  369. "<pad>", # deepseek-coder
  370. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  371. )
  372. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  373. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  374. # TODO: should these be marked as UNUSED instead? (maybe not)
  375. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  376. return seems_special
  377. # used for GPT-2 BPE and WordPiece vocabs
  378. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  379. tokens: list[str] = []
  380. toktypes: list[int] = []
  381. from transformers import AutoTokenizer
  382. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  383. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  384. assert max(tokenizer.vocab.values()) < vocab_size
  385. tokpre = self.get_vocab_base_pre(tokenizer)
  386. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  387. added_vocab = tokenizer.get_added_vocab()
  388. for i in range(vocab_size):
  389. if i not in reverse_vocab:
  390. tokens.append(f"[PAD{i}]")
  391. toktypes.append(gguf.TokenType.UNUSED)
  392. else:
  393. token: str = reverse_vocab[i]
  394. if token in added_vocab:
  395. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  396. toktypes.append(gguf.TokenType.CONTROL)
  397. else:
  398. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  399. toktypes.append(gguf.TokenType.USER_DEFINED)
  400. else:
  401. toktypes.append(gguf.TokenType.NORMAL)
  402. tokens.append(token)
  403. return tokens, toktypes, tokpre
  404. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  405. # do not modify it manually!
  406. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  407. # Marker: Start get_vocab_base_pre
  408. def get_vocab_base_pre(self, tokenizer) -> str:
  409. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  410. # is specific for the BPE pre-tokenizer used by the model
  411. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  412. # use in llama.cpp to implement the same pre-tokenizer
  413. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  414. chktok = tokenizer.encode(chktxt)
  415. chkhsh = sha256(str(chktok).encode()).hexdigest()
  416. logger.debug(f"chktok: {chktok}")
  417. logger.debug(f"chkhsh: {chkhsh}")
  418. res = None
  419. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  420. # or pull the latest version of the model from Huggingface
  421. # don't edit the hashes manually!
  422. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  423. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  424. res = "llama-bpe"
  425. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  426. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  427. res = "deepseek-llm"
  428. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  429. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  430. res = "deepseek-coder"
  431. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  432. # ref: https://huggingface.co/tiiuae/falcon-7b
  433. res = "falcon"
  434. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  435. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  436. res = "bert-bge"
  437. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  438. # ref: https://huggingface.co/mosaicml/mpt-7b
  439. res = "mpt"
  440. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  441. # ref: https://huggingface.co/bigcode/starcoder2-3b
  442. res = "starcoder"
  443. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  444. # ref: https://huggingface.co/openai-community/gpt2
  445. res = "gpt-2"
  446. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  447. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  448. res = "stablelm2"
  449. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  450. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  451. res = "refact"
  452. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  453. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  454. res = "command-r"
  455. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  456. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  457. res = "qwen2"
  458. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  459. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  460. res = "olmo"
  461. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  462. # ref: https://huggingface.co/databricks/dbrx-base
  463. res = "dbrx"
  464. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  465. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  466. res = "jina-v2-en"
  467. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  468. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  469. res = "jina-v2-es"
  470. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  471. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  472. res = "jina-v2-de"
  473. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  474. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  475. res = "smaug-bpe"
  476. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  477. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  478. res = "poro-chat"
  479. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  480. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  481. res = "jina-v2-code"
  482. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  483. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  484. res = "chatglm-bpe"
  485. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  486. # ref: https://huggingface.co/LumiOpen/Viking-7B
  487. res = "viking"
  488. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  489. # ref: https://huggingface.co/core42/jais-13b
  490. res = "jais"
  491. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  492. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  493. res = "codeshell"
  494. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  495. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  496. res = "tekken"
  497. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  498. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  499. res = "smollm"
  500. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  501. # ref: https://huggingface.co/bigscience/bloom
  502. res = "bloom"
  503. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  504. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  505. res = "gpt3-finnish"
  506. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  507. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  508. res = "exaone"
  509. if res is None:
  510. logger.warning("\n")
  511. logger.warning("**************************************************************************************")
  512. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  513. logger.warning("** There are 2 possible reasons for this:")
  514. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  515. logger.warning("** - the pre-tokenization config has changed upstream")
  516. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  517. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  518. logger.warning("**")
  519. logger.warning(f"** chkhsh: {chkhsh}")
  520. logger.warning("**************************************************************************************")
  521. logger.warning("\n")
  522. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  523. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  524. logger.debug(f"chkhsh: {chkhsh}")
  525. return res
  526. # Marker: End get_vocab_base_pre
  527. def _set_vocab_gpt2(self) -> None:
  528. tokens, toktypes, tokpre = self.get_vocab_base()
  529. self.gguf_writer.add_tokenizer_model("gpt2")
  530. self.gguf_writer.add_tokenizer_pre(tokpre)
  531. self.gguf_writer.add_token_list(tokens)
  532. self.gguf_writer.add_token_types(toktypes)
  533. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  534. special_vocab.add_to_gguf(self.gguf_writer)
  535. def _set_vocab_qwen(self):
  536. dir_model = self.dir_model
  537. hparams = self.hparams
  538. tokens: list[str] = []
  539. toktypes: list[int] = []
  540. from transformers import AutoTokenizer
  541. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  542. vocab_size = hparams["vocab_size"]
  543. assert max(tokenizer.get_vocab().values()) < vocab_size
  544. tokpre = self.get_vocab_base_pre(tokenizer)
  545. merges = []
  546. vocab = {}
  547. mergeable_ranks = tokenizer.mergeable_ranks
  548. for token, rank in mergeable_ranks.items():
  549. vocab[QwenModel.token_bytes_to_string(token)] = rank
  550. if len(token) == 1:
  551. continue
  552. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  553. assert len(merged) == 2
  554. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  555. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  556. added_vocab = tokenizer.special_tokens
  557. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  558. for i in range(vocab_size):
  559. if i not in reverse_vocab:
  560. tokens.append(f"[PAD{i}]")
  561. toktypes.append(gguf.TokenType.UNUSED)
  562. elif reverse_vocab[i] in added_vocab:
  563. tokens.append(reverse_vocab[i])
  564. toktypes.append(gguf.TokenType.CONTROL)
  565. else:
  566. tokens.append(reverse_vocab[i])
  567. toktypes.append(gguf.TokenType.NORMAL)
  568. self.gguf_writer.add_tokenizer_model("gpt2")
  569. self.gguf_writer.add_tokenizer_pre(tokpre)
  570. self.gguf_writer.add_token_list(tokens)
  571. self.gguf_writer.add_token_types(toktypes)
  572. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  573. special_vocab.merges = merges
  574. # only add special tokens when they were not already loaded from config.json
  575. if len(special_vocab.special_token_ids) == 0:
  576. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  577. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  578. # this one is usually not in config.json anyway
  579. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  580. special_vocab.add_to_gguf(self.gguf_writer)
  581. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  582. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  583. self.gguf_writer.add_tokenizer_model("llama")
  584. self.gguf_writer.add_tokenizer_pre("default")
  585. self.gguf_writer.add_token_list(tokens)
  586. self.gguf_writer.add_token_scores(scores)
  587. self.gguf_writer.add_token_types(toktypes)
  588. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  589. special_vocab.add_to_gguf(self.gguf_writer)
  590. def _create_vocab_sentencepiece(self):
  591. from sentencepiece import SentencePieceProcessor
  592. tokenizer_path = self.dir_model / 'tokenizer.model'
  593. if not tokenizer_path.is_file():
  594. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  595. tokenizer = SentencePieceProcessor()
  596. tokenizer.LoadFromFile(str(tokenizer_path))
  597. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  598. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  599. scores: list[float] = [-10000.0] * vocab_size
  600. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  601. for token_id in range(tokenizer.vocab_size()):
  602. piece = tokenizer.IdToPiece(token_id)
  603. text = piece.encode("utf-8")
  604. score = tokenizer.GetScore(token_id)
  605. toktype = SentencePieceTokenTypes.NORMAL
  606. if tokenizer.IsUnknown(token_id):
  607. toktype = SentencePieceTokenTypes.UNKNOWN
  608. elif tokenizer.IsControl(token_id):
  609. toktype = SentencePieceTokenTypes.CONTROL
  610. elif tokenizer.IsUnused(token_id):
  611. toktype = SentencePieceTokenTypes.UNUSED
  612. elif tokenizer.IsByte(token_id):
  613. toktype = SentencePieceTokenTypes.BYTE
  614. tokens[token_id] = text
  615. scores[token_id] = score
  616. toktypes[token_id] = toktype
  617. added_tokens_file = self.dir_model / 'added_tokens.json'
  618. if added_tokens_file.is_file():
  619. with open(added_tokens_file, "r", encoding="utf-8") as f:
  620. added_tokens_json = json.load(f)
  621. for key in added_tokens_json:
  622. token_id = added_tokens_json[key]
  623. if token_id >= vocab_size:
  624. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  625. continue
  626. tokens[token_id] = key.encode("utf-8")
  627. scores[token_id] = -1000.0
  628. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  629. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  630. if tokenizer_config_file.is_file():
  631. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  632. tokenizer_config_json = json.load(f)
  633. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  634. for token_id, token_data in added_tokens_decoder.items():
  635. token_id = int(token_id)
  636. token: str = token_data["content"]
  637. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  638. if tokens[token_id] != token.encode("utf-8"):
  639. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  640. if token_data.get("special") or self.does_token_look_special(token):
  641. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  642. else:
  643. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  644. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  645. scores[token_id] = -1000.0
  646. tokens[token_id] = token.encode("utf-8")
  647. if vocab_size > len(tokens):
  648. pad_count = vocab_size - len(tokens)
  649. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  650. for i in range(1, pad_count + 1):
  651. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  652. scores.append(-1000.0)
  653. toktypes.append(SentencePieceTokenTypes.UNUSED)
  654. return tokens, scores, toktypes
  655. def _set_vocab_llama_hf(self):
  656. vocab = gguf.LlamaHfVocab(self.dir_model)
  657. tokens = []
  658. scores = []
  659. toktypes = []
  660. for text, score, toktype in vocab.all_tokens():
  661. tokens.append(text)
  662. scores.append(score)
  663. toktypes.append(toktype)
  664. assert len(tokens) == vocab.vocab_size
  665. self.gguf_writer.add_tokenizer_model("llama")
  666. self.gguf_writer.add_tokenizer_pre("default")
  667. self.gguf_writer.add_token_list(tokens)
  668. self.gguf_writer.add_token_scores(scores)
  669. self.gguf_writer.add_token_types(toktypes)
  670. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  671. special_vocab.add_to_gguf(self.gguf_writer)
  672. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  673. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  674. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  675. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  676. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  677. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  678. assert field # tokenizer model
  679. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  680. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  681. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  682. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  683. assert field # token list
  684. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  685. if model_name == "llama-spm":
  686. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  687. assert field # token scores
  688. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  689. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  690. assert field # token types
  691. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  692. if model_name != "llama-spm":
  693. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  694. assert field # token merges
  695. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  696. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  697. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  698. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  699. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  700. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  701. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  702. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  703. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  704. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  705. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  706. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  707. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  708. @Model.register("GPTNeoXForCausalLM")
  709. class GPTNeoXModel(Model):
  710. model_arch = gguf.MODEL_ARCH.GPTNEOX
  711. def set_gguf_parameters(self):
  712. block_count = self.hparams["num_hidden_layers"]
  713. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  714. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  715. self.gguf_writer.add_block_count(block_count)
  716. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  717. self.gguf_writer.add_rope_dimension_count(
  718. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  719. )
  720. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  721. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  722. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  723. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  724. del bid # unused
  725. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  726. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  727. tensors: list[tuple[str, Tensor]] = []
  728. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  729. # Map bloom-style qkv_linear to gpt-style qkv_linear
  730. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  731. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  732. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  733. data_torch = torch.cat(
  734. (
  735. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  736. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  737. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  738. ),
  739. dim=0,
  740. )
  741. logger.info("re-format attention.linear_qkv.weight")
  742. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  743. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  744. data_torch = torch.cat(
  745. (
  746. qkv_bias[:, 0, :].reshape((n_embed,)),
  747. qkv_bias[:, 1, :].reshape((n_embed,)),
  748. qkv_bias[:, 2, :].reshape((n_embed,)),
  749. ),
  750. dim=0,
  751. )
  752. logger.info("re-format attention.linear_qkv.bias")
  753. tensors.append((self.map_tensor_name(name), data_torch))
  754. return tensors
  755. @Model.register("BloomForCausalLM", "BloomModel")
  756. class BloomModel(Model):
  757. model_arch = gguf.MODEL_ARCH.BLOOM
  758. def set_gguf_parameters(self):
  759. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  760. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  761. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  762. self.gguf_writer.add_embedding_length(n_embed)
  763. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  764. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  765. self.gguf_writer.add_head_count(n_head)
  766. self.gguf_writer.add_head_count_kv(n_head)
  767. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  768. self.gguf_writer.add_file_type(self.ftype)
  769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  770. del bid # unused
  771. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  772. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  773. name = re.sub(r'transformer\.', '', name)
  774. tensors: list[tuple[str, Tensor]] = []
  775. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  776. # Map bloom-style qkv_linear to gpt-style qkv_linear
  777. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  778. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  779. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  780. data_torch = torch.cat(
  781. (
  782. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  783. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  784. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  785. ),
  786. dim=0,
  787. )
  788. logger.info("re-format attention.linear_qkv.weight")
  789. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  790. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  791. data_torch = torch.cat(
  792. (
  793. qkv_bias[:, 0, :].reshape((n_embed,)),
  794. qkv_bias[:, 1, :].reshape((n_embed,)),
  795. qkv_bias[:, 2, :].reshape((n_embed,)),
  796. ),
  797. dim=0,
  798. )
  799. logger.info("re-format attention.linear_qkv.bias")
  800. tensors.append((self.map_tensor_name(name), data_torch))
  801. if name == "word_embeddings.weight":
  802. assert self.tensor_names is not None
  803. # TODO: tie them at runtime, don't duplicate in the model file
  804. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  805. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  806. return tensors
  807. @Model.register("MPTForCausalLM")
  808. class MPTModel(Model):
  809. model_arch = gguf.MODEL_ARCH.MPT
  810. def set_vocab(self):
  811. try:
  812. self._set_vocab_gpt2()
  813. except Exception:
  814. # Fallback for SEA-LION model
  815. self._set_vocab_sentencepiece()
  816. self.gguf_writer.add_add_bos_token(False)
  817. self.gguf_writer.add_pad_token_id(3)
  818. self.gguf_writer.add_eos_token_id(1)
  819. self.gguf_writer.add_unk_token_id(0)
  820. def set_gguf_parameters(self):
  821. block_count = self.hparams["n_layers"]
  822. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  823. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  824. self.gguf_writer.add_block_count(block_count)
  825. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  826. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  827. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  828. self.gguf_writer.add_head_count_kv(kv_n_heads)
  829. self.gguf_writer.add_layer_norm_eps(1e-5)
  830. if self.hparams["attn_config"]["clip_qkv"] is not None:
  831. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  832. if self.hparams["attn_config"]["alibi"]:
  833. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  834. else:
  835. self.gguf_writer.add_max_alibi_bias(0.0)
  836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  837. del bid # unused
  838. if "scales" in name:
  839. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  840. new_name = new_name.replace("scales", "act.scales")
  841. else:
  842. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  843. return [(new_name, data_torch)]
  844. @Model.register("OrionForCausalLM")
  845. class OrionModel(Model):
  846. model_arch = gguf.MODEL_ARCH.ORION
  847. def set_vocab(self):
  848. self._set_vocab_sentencepiece()
  849. def set_gguf_parameters(self):
  850. block_count = self.hparams["num_hidden_layers"]
  851. head_count = self.hparams["num_attention_heads"]
  852. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  853. ctx_length = 0
  854. if "max_sequence_length" in self.hparams:
  855. ctx_length = self.hparams["max_sequence_length"]
  856. elif "max_position_embeddings" in self.hparams:
  857. ctx_length = self.hparams["max_position_embeddings"]
  858. elif "model_max_length" in self.hparams:
  859. ctx_length = self.hparams["model_max_length"]
  860. else:
  861. raise ValueError("gguf: can not find ctx length parameter.")
  862. self.gguf_writer.add_file_type(self.ftype)
  863. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  864. self.gguf_writer.add_context_length(ctx_length)
  865. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  866. self.gguf_writer.add_block_count(block_count)
  867. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  868. self.gguf_writer.add_head_count(head_count)
  869. self.gguf_writer.add_head_count_kv(head_count_kv)
  870. # note: config provides rms norm but it is actually layer norm
  871. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  872. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  873. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  874. class BaichuanModel(Model):
  875. model_arch = gguf.MODEL_ARCH.BAICHUAN
  876. def set_vocab(self):
  877. self._set_vocab_sentencepiece()
  878. def set_gguf_parameters(self):
  879. block_count = self.hparams["num_hidden_layers"]
  880. head_count = self.hparams["num_attention_heads"]
  881. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  882. ctx_length = 0
  883. if "max_sequence_length" in self.hparams:
  884. ctx_length = self.hparams["max_sequence_length"]
  885. elif "max_position_embeddings" in self.hparams:
  886. ctx_length = self.hparams["max_position_embeddings"]
  887. elif "model_max_length" in self.hparams:
  888. ctx_length = self.hparams["model_max_length"]
  889. else:
  890. raise ValueError("gguf: can not find ctx length parameter.")
  891. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  892. self.gguf_writer.add_context_length(ctx_length)
  893. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  894. self.gguf_writer.add_block_count(block_count)
  895. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  896. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  897. self.gguf_writer.add_head_count(head_count)
  898. self.gguf_writer.add_head_count_kv(head_count_kv)
  899. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  900. self.gguf_writer.add_file_type(self.ftype)
  901. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  902. if self.hparams["rope_scaling"].get("type") == "linear":
  903. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  904. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  906. head_count = self.hparams["num_attention_heads"]
  907. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  908. tensors: list[tuple[str, Tensor]] = []
  909. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  910. logger.info(f"Unpacking and permuting layer {bid}")
  911. tensors = [
  912. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  913. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  914. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  915. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  916. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  917. self._reverse_hf_part(data_torch, 2)),
  918. ]
  919. else:
  920. tensors = [(self.map_tensor_name(name), data_torch)]
  921. return tensors
  922. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  923. if n_kv_head is not None and n_head != n_kv_head:
  924. n_head //= n_kv_head
  925. return (
  926. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  927. .swapaxes(1, 2)
  928. .reshape(weights.shape)
  929. )
  930. def _reverse_hf_permute_part(
  931. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  932. ) -> Tensor:
  933. r = weights.shape[0] // 3
  934. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  935. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  936. r = weights.shape[0] // 3
  937. return weights[r * n_part:r * n_part + r, ...]
  938. @Model.register("XverseForCausalLM")
  939. class XverseModel(Model):
  940. model_arch = gguf.MODEL_ARCH.XVERSE
  941. def set_vocab(self):
  942. assert (self.dir_model / "tokenizer.json").is_file()
  943. dir_model = self.dir_model
  944. hparams = self.hparams
  945. tokens: list[bytes] = []
  946. toktypes: list[int] = []
  947. from transformers import AutoTokenizer
  948. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  949. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  950. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  951. # because vocab_size is the count of items, and indexes start at 0.
  952. max_vocab_index = max(tokenizer.get_vocab().values())
  953. if max_vocab_index >= vocab_size:
  954. raise ValueError("Vocabulary size exceeds expected maximum size.")
  955. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  956. added_vocab = tokenizer.get_added_vocab()
  957. for token_id in range(vocab_size):
  958. token_text = reverse_vocab[token_id].encode('utf-8')
  959. # replace "\x00" to string with length > 0
  960. if token_text == b"\x00":
  961. toktype = gguf.TokenType.BYTE # special
  962. token_text = f"<{token_text}>".encode('utf-8')
  963. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  964. toktype = gguf.TokenType.BYTE # special
  965. elif reverse_vocab[token_id] in added_vocab:
  966. if tokenizer.added_tokens_decoder[token_id].special:
  967. toktype = gguf.TokenType.CONTROL
  968. else:
  969. toktype = gguf.TokenType.USER_DEFINED
  970. else:
  971. toktype = gguf.TokenType.NORMAL
  972. tokens.append(token_text)
  973. toktypes.append(toktype)
  974. self.gguf_writer.add_tokenizer_model("llama")
  975. self.gguf_writer.add_tokenizer_pre("default")
  976. self.gguf_writer.add_token_list(tokens)
  977. self.gguf_writer.add_token_types(toktypes)
  978. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  979. special_vocab.add_to_gguf(self.gguf_writer)
  980. def set_gguf_parameters(self):
  981. block_count = self.hparams["num_hidden_layers"]
  982. head_count = self.hparams["num_attention_heads"]
  983. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  984. ctx_length = 0
  985. if "max_sequence_length" in self.hparams:
  986. ctx_length = self.hparams["max_sequence_length"]
  987. elif "max_position_embeddings" in self.hparams:
  988. ctx_length = self.hparams["max_position_embeddings"]
  989. elif "model_max_length" in self.hparams:
  990. ctx_length = self.hparams["model_max_length"]
  991. else:
  992. raise ValueError("gguf: can not find ctx length parameter.")
  993. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  994. self.gguf_writer.add_context_length(ctx_length)
  995. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  996. self.gguf_writer.add_block_count(block_count)
  997. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  998. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  999. self.gguf_writer.add_head_count(head_count)
  1000. self.gguf_writer.add_head_count_kv(head_count_kv)
  1001. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1002. self.gguf_writer.add_file_type(self.ftype)
  1003. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1004. if self.hparams["rope_scaling"].get("type") == "linear":
  1005. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1006. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1007. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1008. del bid # unused
  1009. head_count = self.hparams["num_attention_heads"]
  1010. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1011. # HF models permute some of the tensors, so we need to undo that
  1012. if name.endswith("q_proj.weight"):
  1013. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1014. if name.endswith("k_proj.weight"):
  1015. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1016. return [(self.map_tensor_name(name), data_torch)]
  1017. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1018. if n_kv_head is not None and n_head != n_kv_head:
  1019. n_head //= n_kv_head
  1020. return (
  1021. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1022. .swapaxes(1, 2)
  1023. .reshape(weights.shape)
  1024. )
  1025. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1026. class FalconModel(Model):
  1027. model_arch = gguf.MODEL_ARCH.FALCON
  1028. def set_gguf_parameters(self):
  1029. block_count = self.hparams.get("num_hidden_layers")
  1030. if block_count is None:
  1031. block_count = self.hparams["n_layer"] # old name
  1032. n_head = self.hparams.get("num_attention_heads")
  1033. if n_head is None:
  1034. n_head = self.hparams["n_head"] # old name
  1035. n_head_kv = self.hparams.get("num_kv_heads")
  1036. if n_head_kv is None:
  1037. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1038. self.gguf_writer.add_context_length(2048) # not in config.json
  1039. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1040. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1041. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1042. self.gguf_writer.add_block_count(block_count)
  1043. self.gguf_writer.add_head_count(n_head)
  1044. self.gguf_writer.add_head_count_kv(n_head_kv)
  1045. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1046. self.gguf_writer.add_file_type(self.ftype)
  1047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1048. del bid # unused
  1049. # QKV tensor transform
  1050. # The original query_key_value tensor contains n_head_kv "kv groups",
  1051. # each consisting of n_head/n_head_kv query weights followed by one key
  1052. # and one value weight (shared by all query heads in the kv group).
  1053. # This layout makes it a big pain to work with in GGML.
  1054. # So we rearrange them here,, so that we have n_head query weights
  1055. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1056. # in contiguous fashion.
  1057. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1058. if "query_key_value" in name:
  1059. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1060. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1061. head_dim = self.hparams["hidden_size"] // n_head
  1062. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1063. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1064. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1065. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1066. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1067. return [(self.map_tensor_name(name), data_torch)]
  1068. @Model.register("GPTBigCodeForCausalLM")
  1069. class StarCoderModel(Model):
  1070. model_arch = gguf.MODEL_ARCH.STARCODER
  1071. def set_gguf_parameters(self):
  1072. block_count = self.hparams["n_layer"]
  1073. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1074. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1075. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1076. self.gguf_writer.add_block_count(block_count)
  1077. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1078. self.gguf_writer.add_head_count_kv(1)
  1079. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1080. self.gguf_writer.add_file_type(self.ftype)
  1081. @Model.register("GPTRefactForCausalLM")
  1082. class RefactModel(Model):
  1083. model_arch = gguf.MODEL_ARCH.REFACT
  1084. def set_vocab(self):
  1085. super().set_vocab()
  1086. # TODO: how to determine special FIM tokens automatically?
  1087. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1088. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1089. special_vocab._set_special_token("prefix", 1)
  1090. special_vocab._set_special_token("suffix", 3)
  1091. special_vocab._set_special_token("middle", 2)
  1092. special_vocab.chat_template = None # do not add it twice
  1093. special_vocab.add_to_gguf(self.gguf_writer)
  1094. def set_gguf_parameters(self):
  1095. hidden_dim = self.hparams["n_embd"]
  1096. inner_dim = 4 * hidden_dim
  1097. hidden_dim = int(2 * inner_dim / 3)
  1098. multiple_of = 256
  1099. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1100. block_count = self.hparams["n_layer"]
  1101. # refact uses Alibi. So this is from config.json which might be used by training.
  1102. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1103. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1104. self.gguf_writer.add_feed_forward_length(ff_dim)
  1105. self.gguf_writer.add_block_count(block_count)
  1106. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1107. self.gguf_writer.add_head_count_kv(1)
  1108. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1109. self.gguf_writer.add_file_type(self.ftype)
  1110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1111. hidden_dim = self.hparams["n_embd"]
  1112. inner_dim = 4 * hidden_dim
  1113. hidden_dim = int(2 * inner_dim / 3)
  1114. multiple_of = 256
  1115. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1116. n_head = self.hparams["n_head"]
  1117. n_head_kv = 1
  1118. head_dim = self.hparams["n_embd"] // n_head
  1119. tensors: list[tuple[str, Tensor]] = []
  1120. if bid is not None:
  1121. if name == f"transformer.h.{bid}.attn.kv.weight":
  1122. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1123. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1124. elif name == f"transformer.h.{bid}.attn.q.weight":
  1125. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1126. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1127. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1128. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1129. if len(tensors) == 0:
  1130. tensors.append((self.map_tensor_name(name), data_torch))
  1131. return tensors
  1132. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1133. class StableLMModel(Model):
  1134. model_arch = gguf.MODEL_ARCH.STABLELM
  1135. def set_vocab(self):
  1136. if (self.dir_model / "tokenizer.json").is_file():
  1137. self._set_vocab_gpt2()
  1138. else:
  1139. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1140. self._set_vocab_qwen()
  1141. def set_gguf_parameters(self):
  1142. hparams = self.hparams
  1143. block_count = hparams["num_hidden_layers"]
  1144. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1145. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1146. self.gguf_writer.add_block_count(block_count)
  1147. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1148. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1149. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1150. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1151. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1152. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1153. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1154. self.gguf_writer.add_file_type(self.ftype)
  1155. _q_norms: list[dict[str, Tensor]] | None = None
  1156. _k_norms: list[dict[str, Tensor]] | None = None
  1157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1158. n_head = self.hparams["num_attention_heads"]
  1159. n_kv_head = self.hparams["num_key_value_heads"]
  1160. if name.find("q_layernorm.norms") != -1:
  1161. assert bid is not None
  1162. if self._q_norms is None:
  1163. self._q_norms = [{} for _ in range(self.block_count)]
  1164. self._q_norms[bid][name] = data_torch
  1165. if len(self._q_norms[bid]) >= n_head:
  1166. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1167. else:
  1168. return []
  1169. if name.find("k_layernorm.norms") != -1:
  1170. assert bid is not None
  1171. if self._k_norms is None:
  1172. self._k_norms = [{} for _ in range(self.block_count)]
  1173. self._k_norms[bid][name] = data_torch
  1174. if len(self._k_norms[bid]) >= n_kv_head:
  1175. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1176. else:
  1177. return []
  1178. return [(self.map_tensor_name(name), data_torch)]
  1179. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1180. datas: list[Tensor] = []
  1181. # extract the norms in order
  1182. for xid in range(n_head):
  1183. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1184. datas.append(norms[ename])
  1185. del norms[ename]
  1186. data_torch = torch.stack(datas, dim=0)
  1187. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1188. new_name = self.map_tensor_name(merged_name)
  1189. return [(new_name, data_torch)]
  1190. def prepare_tensors(self):
  1191. super().prepare_tensors()
  1192. if self._q_norms is not None or self._k_norms is not None:
  1193. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1194. norms = (
  1195. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1196. ) + (
  1197. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1198. )
  1199. if len(norms) > 0:
  1200. raise ValueError(f"Unprocessed norms: {norms}")
  1201. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1202. class LlamaModel(Model):
  1203. model_arch = gguf.MODEL_ARCH.LLAMA
  1204. def set_vocab(self):
  1205. try:
  1206. self._set_vocab_sentencepiece()
  1207. except FileNotFoundError:
  1208. try:
  1209. self._set_vocab_llama_hf()
  1210. except (FileNotFoundError, TypeError):
  1211. # Llama 3
  1212. self._set_vocab_gpt2()
  1213. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1214. if self.hparams.get("vocab_size", 32000) == 32016:
  1215. special_vocab = gguf.SpecialVocab(
  1216. self.dir_model, load_merges=False,
  1217. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1218. )
  1219. special_vocab._set_special_token("prefix", 32007)
  1220. special_vocab._set_special_token("suffix", 32008)
  1221. special_vocab._set_special_token("middle", 32009)
  1222. special_vocab._set_special_token("eot", 32010)
  1223. special_vocab.add_to_gguf(self.gguf_writer)
  1224. def set_gguf_parameters(self):
  1225. super().set_gguf_parameters()
  1226. hparams = self.hparams
  1227. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1228. if "head_dim" in hparams:
  1229. rope_dim = hparams["head_dim"]
  1230. else:
  1231. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1232. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1233. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1234. if self.hparams["rope_scaling"].get("type") == "linear":
  1235. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1236. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1237. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1238. if tokenizer_config_file.is_file():
  1239. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1240. tokenizer_config_json = json.load(f)
  1241. if "add_prefix_space" in tokenizer_config_json:
  1242. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1243. # Apply to granite small models only
  1244. if self.hparams.get("vocab_size", 32000) == 49152:
  1245. self.gguf_writer.add_add_bos_token(False)
  1246. @staticmethod
  1247. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1248. if n_head_kv is not None and n_head != n_head_kv:
  1249. n_head = n_head_kv
  1250. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1251. .swapaxes(1, 2)
  1252. .reshape(weights.shape))
  1253. _experts: list[dict[str, Tensor]] | None = None
  1254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1255. n_head = self.hparams["num_attention_heads"]
  1256. n_kv_head = self.hparams.get("num_key_value_heads")
  1257. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1258. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1259. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1260. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1261. # process the experts separately
  1262. if name.find("block_sparse_moe.experts") != -1:
  1263. n_experts = self.hparams["num_local_experts"]
  1264. assert bid is not None
  1265. if self._experts is None:
  1266. self._experts = [{} for _ in range(self.block_count)]
  1267. self._experts[bid][name] = data_torch
  1268. if len(self._experts[bid]) >= n_experts * 3:
  1269. tensors: list[tuple[str, Tensor]] = []
  1270. # merge the experts into a single 3d tensor
  1271. for wid in ["w1", "w2", "w3"]:
  1272. datas: list[Tensor] = []
  1273. for xid in range(n_experts):
  1274. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1275. datas.append(self._experts[bid][ename])
  1276. del self._experts[bid][ename]
  1277. data_torch = torch.stack(datas, dim=0)
  1278. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1279. new_name = self.map_tensor_name(merged_name)
  1280. tensors.append((new_name, data_torch))
  1281. return tensors
  1282. else:
  1283. return []
  1284. return [(self.map_tensor_name(name), data_torch)]
  1285. def prepare_tensors(self):
  1286. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1287. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1288. base = self.hparams.get("rope_theta", 10000.0)
  1289. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1290. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1291. factor = rope_scaling.get("factor", 8.0)
  1292. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1293. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1294. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1295. low_freq_wavelen = old_context_len / low_freq_factor
  1296. high_freq_wavelen = old_context_len / high_freq_factor
  1297. assert low_freq_wavelen != high_freq_wavelen
  1298. rope_factors = []
  1299. for freq in freqs:
  1300. wavelen = 2 * math.pi / freq
  1301. if wavelen < high_freq_wavelen:
  1302. rope_factors.append(1)
  1303. elif wavelen > low_freq_wavelen:
  1304. rope_factors.append(factor)
  1305. else:
  1306. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1307. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1308. if not self.is_lora:
  1309. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1310. super().prepare_tensors()
  1311. if self._experts is not None:
  1312. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1313. experts = [k for d in self._experts for k in d.keys()]
  1314. if len(experts) > 0:
  1315. raise ValueError(f"Unprocessed experts: {experts}")
  1316. @Model.register("BitnetForCausalLM")
  1317. class BitnetModel(Model):
  1318. model_arch = gguf.MODEL_ARCH.BITNET
  1319. def set_vocab(self):
  1320. self._set_vocab_sentencepiece()
  1321. def set_gguf_parameters(self):
  1322. super().set_gguf_parameters()
  1323. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1324. self.gguf_writer.add_rope_scaling_factor(1.0)
  1325. def weight_quant(self, weight):
  1326. dtype = weight.dtype
  1327. weight = weight.float()
  1328. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1329. weight = (weight * s).round().clamp(-1, 1) / s
  1330. scale = weight.abs().max().unsqueeze(0)
  1331. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1332. weight = torch.sign(weight).type(dtype)
  1333. return weight.type(dtype), scale.type(torch.float32)
  1334. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1335. new_name = self.map_tensor_name(name)
  1336. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1337. gguf.MODEL_TENSOR.ATTN_Q,
  1338. gguf.MODEL_TENSOR.ATTN_K,
  1339. gguf.MODEL_TENSOR.ATTN_V,
  1340. gguf.MODEL_TENSOR.ATTN_OUT,
  1341. gguf.MODEL_TENSOR.FFN_UP,
  1342. gguf.MODEL_TENSOR.FFN_DOWN,
  1343. gguf.MODEL_TENSOR.FFN_GATE,
  1344. ]):
  1345. # transform weight into 1/0/-1 (in fp32)
  1346. weight_torch, scale_torch = self.weight_quant(data_torch)
  1347. yield (new_name, weight_torch)
  1348. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1349. else:
  1350. yield (new_name, data_torch)
  1351. @Model.register("GrokForCausalLM")
  1352. class GrokModel(Model):
  1353. model_arch = gguf.MODEL_ARCH.GROK
  1354. def set_vocab(self):
  1355. self._set_vocab_sentencepiece()
  1356. def __init__(self, *args, **kwargs):
  1357. super().__init__(*args, **kwargs)
  1358. def set_gguf_parameters(self):
  1359. super().set_gguf_parameters()
  1360. _experts: list[dict[str, Tensor]] | None = None
  1361. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1362. # process the experts separately
  1363. if name.find(".moe.") != -1:
  1364. n_experts = self.hparams["num_local_experts"]
  1365. assert bid is not None
  1366. if self._experts is None:
  1367. self._experts = [{} for _ in range(self.block_count)]
  1368. self._experts[bid][name] = data_torch
  1369. if len(self._experts[bid]) >= n_experts * 3:
  1370. tensors: list[tuple[str, Tensor]] = []
  1371. # merge the experts into a single 3d tensor
  1372. for wid in ["linear", "linear_1", "linear_v"]:
  1373. datas: list[Tensor] = []
  1374. for xid in range(n_experts):
  1375. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1376. datas.append(self._experts[bid][ename])
  1377. del self._experts[bid][ename]
  1378. data_torch = torch.stack(datas, dim=0)
  1379. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1380. new_name = self.map_tensor_name(merged_name)
  1381. tensors.append((new_name, data_torch))
  1382. return tensors
  1383. else:
  1384. return []
  1385. return [(self.map_tensor_name(name), data_torch)]
  1386. @Model.register("DbrxForCausalLM")
  1387. class DbrxModel(Model):
  1388. model_arch = gguf.MODEL_ARCH.DBRX
  1389. def set_gguf_parameters(self):
  1390. ffn_config = self.hparams["ffn_config"]
  1391. attn_config = self.hparams["attn_config"]
  1392. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1393. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1394. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1395. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1396. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1397. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1398. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1399. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1400. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1401. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1402. self.gguf_writer.add_layer_norm_eps(1e-5)
  1403. self.gguf_writer.add_file_type(self.ftype)
  1404. logger.info(f"gguf: file type = {self.ftype}")
  1405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1406. del bid # unused
  1407. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1408. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1409. n_embd = self.hparams["d_model"]
  1410. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1411. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1412. # But llama.cpp moe graph works differently
  1413. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1414. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1415. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1416. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1417. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1418. experts = False
  1419. for exp_tensor_name in exp_tensor_names.keys():
  1420. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1421. experts = True
  1422. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1423. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1424. data_torch = data_torch.permute(*permute_tensor)
  1425. break
  1426. # map tensor names
  1427. # In MoE models the ffn tensors are typically most of the model weights,
  1428. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1429. # Every other model has the weight names ending in .weight,
  1430. # let's assume that is the convention which is not the case for dbrx:
  1431. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1432. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1433. return [(new_name, data_torch)]
  1434. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1435. del name, new_name, bid # unused
  1436. return n_dims > 1
  1437. @Model.register("MiniCPMForCausalLM")
  1438. class MiniCPMModel(Model):
  1439. model_arch = gguf.MODEL_ARCH.MINICPM
  1440. def set_gguf_parameters(self):
  1441. block_count = self.hparams["num_hidden_layers"]
  1442. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1443. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1444. self.gguf_writer.add_block_count(block_count)
  1445. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1446. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1447. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1448. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1449. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1450. self.gguf_writer.add_file_type(self.ftype)
  1451. def set_vocab(self):
  1452. self._set_vocab_llama_hf()
  1453. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1454. if n_kv_head is not None and n_head != n_kv_head:
  1455. n_head //= n_kv_head
  1456. return (
  1457. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1458. .swapaxes(1, 2)
  1459. .reshape(weights.shape)
  1460. )
  1461. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1462. del bid # unused
  1463. n_head = self.hparams["num_attention_heads"]
  1464. n_kv_head = self.hparams.get("num_key_value_heads")
  1465. # HF models permute some of the tensors, so we need to undo that
  1466. if name.endswith(("q_proj.weight")):
  1467. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1468. if name.endswith(("k_proj.weight")):
  1469. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1470. return [(self.map_tensor_name(name), data_torch)]
  1471. @Model.register("QWenLMHeadModel")
  1472. class QwenModel(Model):
  1473. model_arch = gguf.MODEL_ARCH.QWEN
  1474. @staticmethod
  1475. def token_bytes_to_string(b):
  1476. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1477. byte_encoder = bytes_to_unicode()
  1478. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1479. @staticmethod
  1480. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1481. parts = [bytes([b]) for b in token]
  1482. while True:
  1483. min_idx = None
  1484. min_rank = None
  1485. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1486. rank = mergeable_ranks.get(pair[0] + pair[1])
  1487. if rank is not None and (min_rank is None or rank < min_rank):
  1488. min_idx = i
  1489. min_rank = rank
  1490. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1491. break
  1492. assert min_idx is not None
  1493. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1494. return parts
  1495. def set_vocab(self):
  1496. self._set_vocab_qwen()
  1497. def set_gguf_parameters(self):
  1498. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1499. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1500. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1501. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1502. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1503. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1504. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1505. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1506. self.gguf_writer.add_file_type(self.ftype)
  1507. @Model.register("Qwen2ForCausalLM")
  1508. class Qwen2Model(Model):
  1509. model_arch = gguf.MODEL_ARCH.QWEN2
  1510. def set_vocab(self):
  1511. try:
  1512. self._set_vocab_sentencepiece()
  1513. except FileNotFoundError:
  1514. self._set_vocab_gpt2()
  1515. @Model.register("Qwen2MoeForCausalLM")
  1516. class Qwen2MoeModel(Model):
  1517. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1518. def set_gguf_parameters(self):
  1519. super().set_gguf_parameters()
  1520. if (n_experts := self.hparams.get("num_experts")) is not None:
  1521. self.gguf_writer.add_expert_count(n_experts)
  1522. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1523. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1524. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1525. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1526. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1527. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1528. _experts: list[dict[str, Tensor]] | None = None
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. # process the experts separately
  1531. if name.find("experts") != -1:
  1532. n_experts = self.hparams["num_experts"]
  1533. assert bid is not None
  1534. if self._experts is None:
  1535. self._experts = [{} for _ in range(self.block_count)]
  1536. self._experts[bid][name] = data_torch
  1537. if len(self._experts[bid]) >= n_experts * 3:
  1538. tensors: list[tuple[str, Tensor]] = []
  1539. # merge the experts into a single 3d tensor
  1540. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1541. datas: list[Tensor] = []
  1542. for xid in range(n_experts):
  1543. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1544. datas.append(self._experts[bid][ename])
  1545. del self._experts[bid][ename]
  1546. data_torch = torch.stack(datas, dim=0)
  1547. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1548. new_name = self.map_tensor_name(merged_name)
  1549. tensors.append((new_name, data_torch))
  1550. return tensors
  1551. else:
  1552. return []
  1553. return [(self.map_tensor_name(name), data_torch)]
  1554. def prepare_tensors(self):
  1555. super().prepare_tensors()
  1556. if self._experts is not None:
  1557. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1558. experts = [k for d in self._experts for k in d.keys()]
  1559. if len(experts) > 0:
  1560. raise ValueError(f"Unprocessed experts: {experts}")
  1561. @Model.register("GPT2LMHeadModel")
  1562. class GPT2Model(Model):
  1563. model_arch = gguf.MODEL_ARCH.GPT2
  1564. def set_gguf_parameters(self):
  1565. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1566. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1567. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1568. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1569. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1570. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1571. self.gguf_writer.add_file_type(self.ftype)
  1572. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1573. del bid # unused
  1574. tensors: list[tuple[str, Tensor]] = []
  1575. # we don't need these
  1576. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1577. return tensors
  1578. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1579. data_torch = data_torch.transpose(1, 0)
  1580. new_name = self.map_tensor_name(name)
  1581. tensors.append((new_name, data_torch))
  1582. # note: GPT2 output is tied to (same as) wte in original model
  1583. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1584. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1585. return tensors
  1586. @Model.register("PhiForCausalLM")
  1587. class Phi2Model(Model):
  1588. model_arch = gguf.MODEL_ARCH.PHI2
  1589. def set_gguf_parameters(self):
  1590. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1591. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1592. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1593. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1594. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1595. self.gguf_writer.add_embedding_length(n_embd)
  1596. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1597. self.gguf_writer.add_block_count(block_count)
  1598. self.gguf_writer.add_head_count(n_head)
  1599. self.gguf_writer.add_head_count_kv(n_head)
  1600. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1601. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1602. self.gguf_writer.add_file_type(self.ftype)
  1603. self.gguf_writer.add_add_bos_token(False)
  1604. @Model.register("Phi3ForCausalLM")
  1605. class Phi3MiniModel(Model):
  1606. model_arch = gguf.MODEL_ARCH.PHI3
  1607. def set_vocab(self):
  1608. from sentencepiece import SentencePieceProcessor
  1609. tokenizer_path = self.dir_model / 'tokenizer.model'
  1610. if not tokenizer_path.is_file():
  1611. raise ValueError(f'Error: Missing {tokenizer_path}')
  1612. tokenizer = SentencePieceProcessor()
  1613. tokenizer.LoadFromFile(str(tokenizer_path))
  1614. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1615. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1616. scores: list[float] = [-10000.0] * vocab_size
  1617. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1618. for token_id in range(tokenizer.vocab_size()):
  1619. piece = tokenizer.IdToPiece(token_id)
  1620. text = piece.encode("utf-8")
  1621. score = tokenizer.GetScore(token_id)
  1622. toktype = SentencePieceTokenTypes.NORMAL
  1623. if tokenizer.IsUnknown(token_id):
  1624. toktype = SentencePieceTokenTypes.UNKNOWN
  1625. elif tokenizer.IsControl(token_id):
  1626. toktype = SentencePieceTokenTypes.CONTROL
  1627. elif tokenizer.IsUnused(token_id):
  1628. toktype = SentencePieceTokenTypes.UNUSED
  1629. elif tokenizer.IsByte(token_id):
  1630. toktype = SentencePieceTokenTypes.BYTE
  1631. tokens[token_id] = text
  1632. scores[token_id] = score
  1633. toktypes[token_id] = toktype
  1634. added_tokens_file = self.dir_model / 'added_tokens.json'
  1635. if added_tokens_file.is_file():
  1636. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1637. added_tokens_json = json.load(f)
  1638. for key in added_tokens_json:
  1639. token_id = added_tokens_json[key]
  1640. if token_id >= vocab_size:
  1641. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1642. continue
  1643. tokens[token_id] = key.encode("utf-8")
  1644. scores[token_id] = -1000.0
  1645. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1646. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1647. if tokenizer_config_file.is_file():
  1648. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1649. tokenizer_config_json = json.load(f)
  1650. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1651. for token_id, foken_data in added_tokens_decoder.items():
  1652. token_id = int(token_id)
  1653. token = foken_data["content"].encode("utf-8")
  1654. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1655. if tokens[token_id] != token:
  1656. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1657. tokens[token_id] = token
  1658. scores[token_id] = -1000.0
  1659. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1660. if foken_data.get("special"):
  1661. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1662. tokenizer_file = self.dir_model / 'tokenizer.json'
  1663. if tokenizer_file.is_file():
  1664. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1665. tokenizer_json = json.load(f)
  1666. added_tokens = tokenizer_json.get("added_tokens", [])
  1667. for foken_data in added_tokens:
  1668. token_id = int(foken_data["id"])
  1669. token = foken_data["content"].encode("utf-8")
  1670. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1671. if tokens[token_id] != token:
  1672. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1673. tokens[token_id] = token
  1674. scores[token_id] = -1000.0
  1675. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1676. if foken_data.get("special"):
  1677. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1678. self.gguf_writer.add_tokenizer_model("llama")
  1679. self.gguf_writer.add_tokenizer_pre("default")
  1680. self.gguf_writer.add_token_list(tokens)
  1681. self.gguf_writer.add_token_scores(scores)
  1682. self.gguf_writer.add_token_types(toktypes)
  1683. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1684. special_vocab.add_to_gguf(self.gguf_writer)
  1685. def set_gguf_parameters(self):
  1686. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1687. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1688. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1689. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1690. rms_eps = self.find_hparam(["rms_norm_eps"])
  1691. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1692. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1693. rope_dims = n_embd // n_head
  1694. self.gguf_writer.add_context_length(max_pos_embds)
  1695. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1696. self.gguf_writer.add_embedding_length(n_embd)
  1697. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1698. self.gguf_writer.add_block_count(block_count)
  1699. self.gguf_writer.add_head_count(n_head)
  1700. self.gguf_writer.add_head_count_kv(n_head_kv)
  1701. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1702. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1703. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1704. self.gguf_writer.add_file_type(self.ftype)
  1705. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1706. # write rope scaling for long context (128k) model
  1707. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1708. if rope_scaling is None:
  1709. return
  1710. scale = max_pos_embds / orig_max_pos_embds
  1711. rope_scaling_type = rope_scaling.get('type', '').lower()
  1712. if len(rope_scaling_type) == 0:
  1713. raise KeyError('Missing the required key rope_scaling.type')
  1714. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1715. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1716. elif rope_scaling_type == 'yarn':
  1717. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1718. else:
  1719. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1720. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1721. long_factors = rope_scaling.get('long_factor', None)
  1722. short_factors = rope_scaling.get('short_factor', None)
  1723. if long_factors is None or short_factors is None:
  1724. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1725. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1726. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1727. if not self.is_lora:
  1728. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1729. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1730. @Model.register("PlamoForCausalLM")
  1731. class PlamoModel(Model):
  1732. model_arch = gguf.MODEL_ARCH.PLAMO
  1733. def set_vocab(self):
  1734. self._set_vocab_sentencepiece()
  1735. def set_gguf_parameters(self):
  1736. hparams = self.hparams
  1737. block_count = hparams["num_hidden_layers"]
  1738. self.gguf_writer.add_context_length(4096) # not in config.json
  1739. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1740. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1741. self.gguf_writer.add_block_count(block_count)
  1742. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1743. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1744. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1745. self.gguf_writer.add_file_type(self.ftype)
  1746. def shuffle_attn_q_weight(self, data_torch):
  1747. assert data_torch.size() == (5120, 5120)
  1748. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1749. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1750. data_torch = torch.reshape(data_torch, (5120, 5120))
  1751. return data_torch
  1752. def shuffle_attn_output_weight(self, data_torch):
  1753. assert data_torch.size() == (5120, 5120)
  1754. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1755. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1756. data_torch = torch.reshape(data_torch, (5120, 5120))
  1757. return data_torch
  1758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1759. del bid # unused
  1760. new_name = self.map_tensor_name(name)
  1761. # shuffle for broadcasting of gqa in ggml_mul_mat
  1762. if new_name.endswith("attn_q.weight"):
  1763. data_torch = self.shuffle_attn_q_weight(data_torch)
  1764. elif new_name.endswith("attn_output.weight"):
  1765. data_torch = self.shuffle_attn_output_weight(data_torch)
  1766. return [(new_name, data_torch)]
  1767. @Model.register("CodeShellForCausalLM")
  1768. class CodeShellModel(Model):
  1769. model_arch = gguf.MODEL_ARCH.CODESHELL
  1770. def set_gguf_parameters(self):
  1771. block_count = self.hparams["n_layer"]
  1772. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1773. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1774. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1775. self.gguf_writer.add_block_count(block_count)
  1776. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1777. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1778. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1779. self.gguf_writer.add_file_type(self.ftype)
  1780. self.gguf_writer.add_rope_freq_base(10000.0)
  1781. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1782. self.gguf_writer.add_rope_scaling_factor(1.0)
  1783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1784. del bid # unused
  1785. new_name = self.map_tensor_name(name)
  1786. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1787. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1788. assert self.tensor_names is not None
  1789. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1790. # copy tok_embd.weight to output.weight
  1791. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1792. return tensors
  1793. @Model.register("InternLM2ForCausalLM")
  1794. class InternLM2Model(Model):
  1795. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1796. def set_vocab(self):
  1797. # (TODO): Is there a better way?
  1798. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1799. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1800. # recognized as an empty string in C++.
  1801. from sentencepiece import SentencePieceProcessor
  1802. from sentencepiece import sentencepiece_model_pb2 as model
  1803. tokenizer_path = self.dir_model / 'tokenizer.model'
  1804. tokens: list[bytes] = []
  1805. scores: list[float] = []
  1806. toktypes: list[int] = []
  1807. if not tokenizer_path.is_file():
  1808. logger.error(f'Error: Missing {tokenizer_path}')
  1809. sys.exit(1)
  1810. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1811. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1812. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1813. tokenizer = SentencePieceProcessor()
  1814. tokenizer.LoadFromFile(str(tokenizer_path))
  1815. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1816. for token_id in range(vocab_size):
  1817. piece = tokenizer.IdToPiece(token_id)
  1818. text = piece.encode("utf-8")
  1819. score = tokenizer.GetScore(token_id)
  1820. if text == b"\x00":
  1821. # (TODO): fixme
  1822. # Hack here and replace the \x00 characters.
  1823. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1824. text = "🐉".encode("utf-8")
  1825. toktype = SentencePieceTokenTypes.NORMAL
  1826. if tokenizer.IsUnknown(token_id):
  1827. toktype = SentencePieceTokenTypes.UNKNOWN
  1828. elif tokenizer.IsControl(token_id):
  1829. toktype = SentencePieceTokenTypes.CONTROL
  1830. elif tokenizer.IsUnused(token_id):
  1831. toktype = SentencePieceTokenTypes.UNUSED
  1832. elif tokenizer.IsByte(token_id):
  1833. toktype = SentencePieceTokenTypes.BYTE
  1834. # take care of ununsed raw token
  1835. if piece.startswith('[UNUSED'):
  1836. toktype = SentencePieceTokenTypes.UNUSED
  1837. tokens.append(text)
  1838. scores.append(score)
  1839. toktypes.append(toktype)
  1840. added_tokens_file = self.dir_model / 'added_tokens.json'
  1841. if added_tokens_file.is_file():
  1842. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1843. added_tokens_json = json.load(f)
  1844. for key in added_tokens_json:
  1845. tokens.append(key.encode("utf-8"))
  1846. scores.append(-1000.0)
  1847. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1848. chat_eos_token = '<|im_end|>'
  1849. chat_eos_token_id = None
  1850. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1851. if tokenizer_config_file.is_file():
  1852. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1853. tokenizer_config_json = json.load(f)
  1854. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1855. for token_id, foken_data in added_tokens_decoder.items():
  1856. token_id = int(token_id)
  1857. token = foken_data["content"]
  1858. if token == chat_eos_token:
  1859. chat_eos_token_id = token_id
  1860. token = token.encode("utf-8")
  1861. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1862. if tokens[token_id] != token:
  1863. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1864. tokens[token_id] = token
  1865. scores[token_id] = -1000.0
  1866. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1867. if foken_data.get("special"):
  1868. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1869. tokenizer_file = self.dir_model / 'tokenizer.json'
  1870. if tokenizer_file.is_file():
  1871. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1872. tokenizer_json = json.load(f)
  1873. added_tokens = tokenizer_json.get("added_tokens", [])
  1874. for foken_data in added_tokens:
  1875. token_id = int(foken_data["id"])
  1876. token = foken_data["content"]
  1877. if token == chat_eos_token:
  1878. chat_eos_token_id = token_id
  1879. token = token.encode("utf-8")
  1880. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1881. if tokens[token_id] != token:
  1882. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1883. tokens[token_id] = token
  1884. scores[token_id] = -1000.0
  1885. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1886. if foken_data.get("special"):
  1887. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1888. self.gguf_writer.add_tokenizer_model("llama")
  1889. self.gguf_writer.add_tokenizer_pre("default")
  1890. self.gguf_writer.add_token_list(tokens)
  1891. self.gguf_writer.add_token_scores(scores)
  1892. self.gguf_writer.add_token_types(toktypes)
  1893. self.gguf_writer.add_add_space_prefix(add_prefix)
  1894. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1895. old_eos = special_vocab.special_token_ids["eos"]
  1896. if chat_eos_token_id is not None:
  1897. # For the chat model, we replace the eos with '<|im_end|>'.
  1898. # TODO: this is a hack, should be fixed
  1899. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1900. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1901. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1902. " in chat mode so that the conversation can end normally.")
  1903. special_vocab.add_to_gguf(self.gguf_writer)
  1904. def set_gguf_parameters(self):
  1905. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1906. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1907. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1908. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1909. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1910. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1911. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1912. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1913. self.gguf_writer.add_file_type(self.ftype)
  1914. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1915. if self.hparams["rope_scaling"].get("type") == "linear":
  1916. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1917. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1918. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1919. num_heads = self.hparams["num_attention_heads"]
  1920. num_kv_heads = self.hparams["num_key_value_heads"]
  1921. n_embd = self.hparams["hidden_size"]
  1922. q_per_kv = num_heads // num_kv_heads
  1923. head_dim = n_embd // num_heads
  1924. num_groups = num_heads // q_per_kv
  1925. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1926. qkv = data_torch
  1927. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1928. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1929. # The model weights of q and k equire additional reshape.
  1930. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1931. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1932. v = v.reshape((-1, v.shape[-1]))
  1933. return [
  1934. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1935. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1936. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1937. ]
  1938. else:
  1939. return [(self.map_tensor_name(name), data_torch)]
  1940. @Model.register("BertModel", "CamembertModel")
  1941. class BertModel(Model):
  1942. model_arch = gguf.MODEL_ARCH.BERT
  1943. def __init__(self, *args, **kwargs):
  1944. super().__init__(*args, **kwargs)
  1945. self.vocab_size = None
  1946. def set_gguf_parameters(self):
  1947. super().set_gguf_parameters()
  1948. self.gguf_writer.add_causal_attention(False)
  1949. # get pooling path
  1950. pooling_path = None
  1951. module_path = self.dir_model / "modules.json"
  1952. if module_path.is_file():
  1953. with open(module_path, encoding="utf-8") as f:
  1954. modules = json.load(f)
  1955. for mod in modules:
  1956. if mod["type"] == "sentence_transformers.models.Pooling":
  1957. pooling_path = mod["path"]
  1958. break
  1959. # get pooling type
  1960. if pooling_path is not None:
  1961. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1962. pooling = json.load(f)
  1963. if pooling["pooling_mode_mean_tokens"]:
  1964. pooling_type = gguf.PoolingType.MEAN
  1965. elif pooling["pooling_mode_cls_token"]:
  1966. pooling_type = gguf.PoolingType.CLS
  1967. else:
  1968. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1969. self.gguf_writer.add_pooling_type(pooling_type)
  1970. def set_vocab(self):
  1971. tokens, toktypes, tokpre = self.get_vocab_base()
  1972. self.vocab_size = len(tokens)
  1973. # we need this to validate the size of the token_type embeddings
  1974. # though currently we are passing all zeros to the token_type embeddings
  1975. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1976. # convert to phantom space vocab
  1977. def phantom(tok):
  1978. if tok.startswith("[") and tok.endswith("]"):
  1979. return tok
  1980. if tok.startswith("##"):
  1981. return tok[2:]
  1982. return "\u2581" + tok
  1983. tokens = list(map(phantom, tokens))
  1984. # add vocab to gguf
  1985. self.gguf_writer.add_tokenizer_model("bert")
  1986. self.gguf_writer.add_tokenizer_pre(tokpre)
  1987. self.gguf_writer.add_token_list(tokens)
  1988. self.gguf_writer.add_token_types(toktypes)
  1989. # handle special tokens
  1990. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1991. special_vocab.add_to_gguf(self.gguf_writer)
  1992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1993. del bid # unused
  1994. # we are only using BERT for embeddings so we don't need the pooling layer
  1995. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1996. return [] # we don't need these
  1997. return [(self.map_tensor_name(name), data_torch)]
  1998. @Model.register("NomicBertModel")
  1999. class NomicBertModel(BertModel):
  2000. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2001. def __init__(self, *args, **kwargs):
  2002. super().__init__(*args, **kwargs)
  2003. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2004. self.hparams["n_ctx"] = 2048
  2005. # SwigLU activation
  2006. assert self.hparams["activation_function"] == "swiglu"
  2007. # this doesn't do anything in the HF version
  2008. assert self.hparams["causal"] is False
  2009. # no bias tensors
  2010. assert self.hparams["qkv_proj_bias"] is False
  2011. assert self.hparams["mlp_fc1_bias"] is False
  2012. assert self.hparams["mlp_fc2_bias"] is False
  2013. # norm at end of layer
  2014. assert self.hparams["prenorm"] is False
  2015. # standard RoPE
  2016. assert self.hparams["rotary_emb_fraction"] == 1.0
  2017. assert self.hparams["rotary_emb_interleaved"] is False
  2018. assert self.hparams["rotary_emb_scale_base"] is None
  2019. def set_gguf_parameters(self):
  2020. super().set_gguf_parameters()
  2021. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2022. @Model.register("XLMRobertaModel")
  2023. class XLMRobertaModel(BertModel):
  2024. model_arch = gguf.MODEL_ARCH.BERT
  2025. def __init__(self, *args, **kwargs):
  2026. super().__init__(*args, **kwargs)
  2027. # we need the pad_token_id to know how to chop down position_embd matrix
  2028. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2029. self._position_offset = 1 + pad_token_id
  2030. if "max_position_embeddings" in self.hparams:
  2031. self.hparams["max_position_embeddings"] -= self._position_offset
  2032. else:
  2033. self._position_offset = None
  2034. def set_vocab(self):
  2035. # to avoid TypeError: Descriptors cannot be created directly
  2036. # exception when importing sentencepiece_model_pb2
  2037. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2038. from sentencepiece import SentencePieceProcessor
  2039. from sentencepiece import sentencepiece_model_pb2 as model
  2040. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2041. if not tokenizer_path.is_file():
  2042. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2043. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2044. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2045. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2046. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2047. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2048. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2049. tokenizer = SentencePieceProcessor()
  2050. tokenizer.LoadFromFile(str(tokenizer_path))
  2051. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2052. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2053. scores: list[float] = [-10000.0] * vocab_size
  2054. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2055. for token_id in range(tokenizer.vocab_size()):
  2056. piece = tokenizer.IdToPiece(token_id)
  2057. text = piece.encode("utf-8")
  2058. score = tokenizer.GetScore(token_id)
  2059. toktype = SentencePieceTokenTypes.NORMAL
  2060. if tokenizer.IsUnknown(token_id):
  2061. toktype = SentencePieceTokenTypes.UNKNOWN
  2062. elif tokenizer.IsControl(token_id):
  2063. toktype = SentencePieceTokenTypes.CONTROL
  2064. elif tokenizer.IsUnused(token_id):
  2065. toktype = SentencePieceTokenTypes.UNUSED
  2066. elif tokenizer.IsByte(token_id):
  2067. toktype = SentencePieceTokenTypes.BYTE
  2068. tokens[token_id] = text
  2069. scores[token_id] = score
  2070. toktypes[token_id] = toktype
  2071. if vocab_size > len(tokens):
  2072. pad_count = vocab_size - len(tokens)
  2073. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2074. for i in range(1, pad_count + 1):
  2075. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2076. scores.append(-1000.0)
  2077. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2078. # realign tokens (see HF tokenizer code)
  2079. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2080. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2081. toktypes = [
  2082. SentencePieceTokenTypes.CONTROL,
  2083. SentencePieceTokenTypes.CONTROL,
  2084. SentencePieceTokenTypes.CONTROL,
  2085. SentencePieceTokenTypes.UNKNOWN,
  2086. ] + toktypes[3:-1]
  2087. self.gguf_writer.add_tokenizer_model("t5")
  2088. self.gguf_writer.add_tokenizer_pre("default")
  2089. self.gguf_writer.add_token_list(tokens)
  2090. self.gguf_writer.add_token_scores(scores)
  2091. self.gguf_writer.add_token_types(toktypes)
  2092. self.gguf_writer.add_add_space_prefix(add_prefix)
  2093. self.gguf_writer.add_token_type_count(1)
  2094. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2095. if precompiled_charsmap:
  2096. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2097. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2098. special_vocab.add_to_gguf(self.gguf_writer)
  2099. self.gguf_writer.add_add_bos_token(True)
  2100. self.gguf_writer.add_add_eos_token(True)
  2101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2102. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2103. if name == "embeddings.position_embeddings.weight":
  2104. if self._position_offset is not None:
  2105. data_torch = data_torch[self._position_offset:,:]
  2106. return super().modify_tensors(data_torch, name, bid)
  2107. @Model.register("GemmaForCausalLM")
  2108. class GemmaModel(Model):
  2109. model_arch = gguf.MODEL_ARCH.GEMMA
  2110. def set_vocab(self):
  2111. self._set_vocab_sentencepiece()
  2112. # TODO: these special tokens should be exported only for the CodeGemma family
  2113. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2114. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2115. special_vocab._set_special_token("prefix", 67)
  2116. special_vocab._set_special_token("suffix", 69)
  2117. special_vocab._set_special_token("middle", 68)
  2118. special_vocab._set_special_token("fsep", 70)
  2119. special_vocab._set_special_token("eot", 107)
  2120. special_vocab.chat_template = None # do not add it twice
  2121. special_vocab.add_to_gguf(self.gguf_writer)
  2122. self.gguf_writer.add_add_space_prefix(False)
  2123. def set_gguf_parameters(self):
  2124. hparams = self.hparams
  2125. block_count = hparams["num_hidden_layers"]
  2126. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2127. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2128. self.gguf_writer.add_block_count(block_count)
  2129. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2130. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2131. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2132. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2133. self.gguf_writer.add_key_length(hparams["head_dim"])
  2134. self.gguf_writer.add_value_length(hparams["head_dim"])
  2135. self.gguf_writer.add_file_type(self.ftype)
  2136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2137. del bid # unused
  2138. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2139. # To prevent errors, skip loading lm_head.weight.
  2140. if name == "lm_head.weight":
  2141. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2142. return []
  2143. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2144. if name.endswith("norm.weight"):
  2145. data_torch = data_torch + 1
  2146. return [(self.map_tensor_name(name), data_torch)]
  2147. @Model.register("Gemma2ForCausalLM")
  2148. class Gemma2Model(Model):
  2149. model_arch = gguf.MODEL_ARCH.GEMMA2
  2150. def set_vocab(self):
  2151. self._set_vocab_sentencepiece()
  2152. self.gguf_writer.add_add_space_prefix(False)
  2153. def set_gguf_parameters(self):
  2154. hparams = self.hparams
  2155. block_count = hparams["num_hidden_layers"]
  2156. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2157. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2158. self.gguf_writer.add_block_count(block_count)
  2159. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2160. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2161. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2162. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2163. self.gguf_writer.add_key_length(hparams["head_dim"])
  2164. self.gguf_writer.add_value_length(hparams["head_dim"])
  2165. self.gguf_writer.add_file_type(self.ftype)
  2166. self.gguf_writer.add_attn_logit_softcapping(
  2167. self.hparams["attn_logit_softcapping"]
  2168. )
  2169. self.gguf_writer.add_final_logit_softcapping(
  2170. self.hparams["final_logit_softcapping"]
  2171. )
  2172. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2174. del bid # unused
  2175. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2176. # To prevent errors, skip loading lm_head.weight.
  2177. if name == "lm_head.weight":
  2178. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2179. return []
  2180. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2181. if name.endswith("norm.weight"):
  2182. data_torch = data_torch + 1
  2183. return [(self.map_tensor_name(name), data_torch)]
  2184. @Model.register("Starcoder2ForCausalLM")
  2185. class StarCoder2Model(Model):
  2186. model_arch = gguf.MODEL_ARCH.STARCODER2
  2187. @Model.register("Rwkv6ForCausalLM")
  2188. class Rwkv6Model(Model):
  2189. model_arch = gguf.MODEL_ARCH.RWKV6
  2190. def set_vocab(self):
  2191. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2192. vocab_size = self.hparams.get("vocab_size", 65536)
  2193. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2194. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2195. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2196. lines = f.readlines()
  2197. for line in lines:
  2198. parts = line.split(' ')
  2199. assert len(parts) >= 3
  2200. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2201. token = token.encode("utf-8") if isinstance(token, str) else token
  2202. assert isinstance(token, bytes)
  2203. assert len(token) == token_len
  2204. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2205. tokens.append(token_text.encode("utf-8"))
  2206. toktypes.append(gguf.TokenType.NORMAL)
  2207. remainder = vocab_size - len(tokens)
  2208. assert remainder >= 0
  2209. for i in range(len(tokens), vocab_size):
  2210. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2211. toktypes.append(gguf.TokenType.UNUSED)
  2212. self.gguf_writer.add_tokenizer_model("rwkv")
  2213. self.gguf_writer.add_token_list(tokens)
  2214. self.gguf_writer.add_token_types(toktypes)
  2215. def set_gguf_parameters(self):
  2216. block_count = self.hparams["num_hidden_layers"]
  2217. head_size = self.hparams["head_size"]
  2218. hidden_size = self.hparams["hidden_size"]
  2219. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2220. rescale_every_n_layers = self.hparams["rescale_every"]
  2221. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2222. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2223. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2224. # RWKV isn't context limited
  2225. self.gguf_writer.add_context_length(1048576)
  2226. self.gguf_writer.add_embedding_length(hidden_size)
  2227. self.gguf_writer.add_block_count(block_count)
  2228. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2229. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2230. self.gguf_writer.add_wkv_head_size(head_size)
  2231. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2232. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2233. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2234. self.gguf_writer.add_file_type(self.ftype)
  2235. # required by llama.cpp, unused
  2236. self.gguf_writer.add_head_count(0)
  2237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2238. new_name = self.map_tensor_name(name)
  2239. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2240. new_name += ".weight"
  2241. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2242. data_torch = data_torch.transpose(0, 1)
  2243. if new_name.endswith("time_mix_w2.weight"):
  2244. data_torch = data_torch.permute(0, 2, 1)
  2245. rescale_every_n_layers = self.hparams["rescale_every"]
  2246. if rescale_every_n_layers > 0:
  2247. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2248. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2249. yield (new_name, data_torch)
  2250. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2251. class MambaModel(Model):
  2252. model_arch = gguf.MODEL_ARCH.MAMBA
  2253. def set_vocab(self):
  2254. vocab_size = self.hparams["vocab_size"]
  2255. # Round vocab size to next multiple of 8
  2256. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2257. # pad using ceiling division
  2258. # ref: https://stackoverflow.com/a/17511341/22827863
  2259. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2260. self.hparams["vocab_size"] = vocab_size
  2261. if (self.dir_model / "tokenizer.json").is_file():
  2262. self._set_vocab_gpt2()
  2263. elif (self.dir_model / "tokenizer.model").is_file():
  2264. self._set_vocab_sentencepiece()
  2265. else:
  2266. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2267. self._set_vocab_builtin("gpt-neox", vocab_size)
  2268. def set_gguf_parameters(self):
  2269. d_model = self.find_hparam(["hidden_size", "d_model"])
  2270. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2271. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2272. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2273. # ceiling division
  2274. # ref: https://stackoverflow.com/a/17511341/22827863
  2275. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2276. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2277. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2278. use_dt_b_c_norm = False
  2279. # For falconmamba we do apply RMS norm on B / DT and C layers
  2280. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2281. use_dt_b_c_norm = True
  2282. # Fail early for models which don't have a block expansion factor of 2
  2283. assert d_inner == 2 * d_model
  2284. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2285. self.gguf_writer.add_embedding_length(d_model)
  2286. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2287. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2288. self.gguf_writer.add_block_count(self.block_count)
  2289. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2290. self.gguf_writer.add_ssm_inner_size(d_inner)
  2291. self.gguf_writer.add_ssm_state_size(d_state)
  2292. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2293. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2294. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2295. self.gguf_writer.add_file_type(self.ftype)
  2296. _tok_embd = None
  2297. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2298. del bid # unused
  2299. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2300. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2301. new_name = self.map_tensor_name(name)
  2302. if name.endswith(".A_log"):
  2303. logger.debug("A_log --> A ==> " + new_name)
  2304. data_torch = -torch.exp(data_torch)
  2305. # assuming token_embd.weight is seen before output.weight
  2306. if self._tok_embd is not None and new_name == output_name:
  2307. if torch.equal(self._tok_embd, data_torch):
  2308. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2309. return []
  2310. elif new_name == tok_embd_name:
  2311. self._tok_embd = data_torch
  2312. return [(new_name, data_torch)]
  2313. @Model.register("CohereForCausalLM")
  2314. class CommandR2Model(Model):
  2315. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2316. def __init__(self, *args, **kwargs):
  2317. super().__init__(*args, **kwargs)
  2318. # max_position_embeddings = 8192 in config.json but model was actually
  2319. # trained on 128k context length
  2320. # aya-23 models don't have model_max_length specified
  2321. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2322. def set_gguf_parameters(self):
  2323. super().set_gguf_parameters()
  2324. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2325. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2326. @Model.register("OlmoForCausalLM")
  2327. @Model.register("OLMoForCausalLM")
  2328. class OlmoModel(Model):
  2329. model_arch = gguf.MODEL_ARCH.OLMO
  2330. def set_gguf_parameters(self):
  2331. super().set_gguf_parameters()
  2332. self.gguf_writer.add_layer_norm_eps(1e-5)
  2333. clip_qkv = self.hparams.get("clip_qkv")
  2334. if clip_qkv is not None:
  2335. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2336. # Same as super class, but permuting q_proj, k_proj
  2337. # Copied from: LlamaModel
  2338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2339. del bid # unused
  2340. n_head = self.hparams["num_attention_heads"]
  2341. n_kv_head = self.hparams.get("num_key_value_heads")
  2342. if name.endswith("q_proj.weight"):
  2343. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2344. if name.endswith("k_proj.weight"):
  2345. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2346. return [(self.map_tensor_name(name), data_torch)]
  2347. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2348. class JinaBertV2Model(BertModel):
  2349. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2350. def __init__(self, *args, **kwargs):
  2351. super().__init__(*args, **kwargs)
  2352. self.intermediate_size = self.hparams["intermediate_size"]
  2353. def get_tensors(self):
  2354. for name, data in super().get_tensors():
  2355. if 'gated_layer' in name:
  2356. d1 = data[:self.intermediate_size, :]
  2357. name1 = name.replace('gated_layers', 'gated_layers_w')
  2358. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2359. d2 = data[self.intermediate_size:, :]
  2360. name2 = name.replace('gated_layers', 'gated_layers_v')
  2361. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2362. yield name1, d1
  2363. yield name2, d2
  2364. continue
  2365. yield name, data
  2366. def set_vocab(self):
  2367. tokenizer_class = 'BertTokenizer'
  2368. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2369. tokenizer_class = json.load(f)['tokenizer_class']
  2370. if tokenizer_class == 'BertTokenizer':
  2371. super().set_vocab()
  2372. elif tokenizer_class == 'RobertaTokenizer':
  2373. self._set_vocab_gpt2()
  2374. self.gguf_writer.add_token_type_count(2)
  2375. else:
  2376. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2377. self.gguf_writer.add_add_bos_token(True)
  2378. self.gguf_writer.add_add_eos_token(True)
  2379. @Model.register("OpenELMForCausalLM")
  2380. class OpenELMModel(Model):
  2381. model_arch = gguf.MODEL_ARCH.OPENELM
  2382. @staticmethod
  2383. def _make_divisible(v: float | int, divisor: int) -> int:
  2384. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2385. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2386. # Make sure that round down does not go down by more than 10%.
  2387. if new_v < 0.9 * v:
  2388. new_v += divisor
  2389. return new_v
  2390. def __init__(self, *args, **kwargs):
  2391. super().__init__(*args, **kwargs)
  2392. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2393. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2394. self._n_embd: int = self.hparams["model_dim"]
  2395. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2396. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2397. self._ffn_dims: list[int] = [
  2398. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2399. for multiplier in ffn_multipliers
  2400. ]
  2401. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2402. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2403. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2404. def set_vocab(self):
  2405. try:
  2406. self._set_vocab_sentencepiece()
  2407. except FileNotFoundError:
  2408. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2409. def set_gguf_parameters(self):
  2410. n_embd = self._n_embd
  2411. head_dim = self.hparams["head_dim"]
  2412. rot_pct = 1.0
  2413. assert self.block_count == len(self._num_kv_heads)
  2414. assert self.block_count == len(self._num_query_heads)
  2415. assert self.block_count == len(self._ffn_dims)
  2416. self.gguf_writer.add_block_count(self.block_count)
  2417. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2418. self.gguf_writer.add_embedding_length(n_embd)
  2419. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2420. self.gguf_writer.add_head_count(self._num_query_heads)
  2421. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2422. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2423. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2424. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2425. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2426. self.gguf_writer.add_key_length(head_dim)
  2427. self.gguf_writer.add_value_length(head_dim)
  2428. self.gguf_writer.add_file_type(self.ftype)
  2429. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2430. if "n_layers" in keys:
  2431. return self.hparams["num_transformer_layers"]
  2432. return super().find_hparam(keys, optional)
  2433. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2434. # split ff
  2435. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2436. ff_dim = self._ffn_dims[bid]
  2437. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2438. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2439. return
  2440. yield (self.map_tensor_name(name), data_torch)
  2441. @Model.register("ArcticForCausalLM")
  2442. class ArcticModel(Model):
  2443. model_arch = gguf.MODEL_ARCH.ARCTIC
  2444. def set_vocab(self):
  2445. # The reason for using a custom implementation here is that the
  2446. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2447. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2448. from sentencepiece import SentencePieceProcessor
  2449. tokenizer_path = self.dir_model / 'tokenizer.model'
  2450. if not tokenizer_path.is_file():
  2451. logger.error(f'Error: Missing {tokenizer_path}')
  2452. sys.exit(1)
  2453. # Read the whole vocabulary from the tokenizer.model file
  2454. tokenizer = SentencePieceProcessor()
  2455. tokenizer.LoadFromFile(str(tokenizer_path))
  2456. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2457. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2458. scores: list[float] = [-10000.0] * vocab_size
  2459. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2460. for token_id in range(tokenizer.vocab_size()):
  2461. piece = tokenizer.IdToPiece(token_id)
  2462. text = piece.encode("utf-8")
  2463. score = tokenizer.GetScore(token_id)
  2464. toktype = SentencePieceTokenTypes.NORMAL
  2465. if tokenizer.IsUnknown(token_id):
  2466. toktype = SentencePieceTokenTypes.UNKNOWN
  2467. elif tokenizer.IsControl(token_id):
  2468. toktype = SentencePieceTokenTypes.CONTROL
  2469. elif tokenizer.IsUnused(token_id):
  2470. toktype = SentencePieceTokenTypes.UNUSED
  2471. elif tokenizer.IsByte(token_id):
  2472. toktype = SentencePieceTokenTypes.BYTE
  2473. tokens[token_id] = text
  2474. scores[token_id] = score
  2475. toktypes[token_id] = toktype
  2476. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2477. # of information about added/redefined tokens and modify them accordingly.
  2478. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2479. if tokenizer_config_file.is_file():
  2480. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2481. tokenizer_config_json = json.load(f)
  2482. if "added_tokens_decoder" in tokenizer_config_json:
  2483. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2484. for token_id, token_json in added_tokens_decoder.items():
  2485. token_id = int(token_id)
  2486. if token_id >= vocab_size:
  2487. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2488. continue
  2489. token_content = token_json["content"]
  2490. token_type = SentencePieceTokenTypes.USER_DEFINED
  2491. token_score = -10000.0
  2492. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2493. # Set the score to 0.0 as in the original tokenizer.model
  2494. if ("special" in token_json) and token_json["special"]:
  2495. if token_content == tokenizer_config_json["unk_token"]:
  2496. token_type = SentencePieceTokenTypes.UNKNOWN
  2497. else:
  2498. token_type = SentencePieceTokenTypes.CONTROL
  2499. token_score = 0.0
  2500. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2501. tokens[token_id] = token_content.encode("utf-8")
  2502. toktypes[token_id] = token_type
  2503. scores[token_id] = token_score
  2504. self.gguf_writer.add_tokenizer_model("llama")
  2505. self.gguf_writer.add_tokenizer_pre("default")
  2506. self.gguf_writer.add_token_list(tokens)
  2507. self.gguf_writer.add_token_scores(scores)
  2508. self.gguf_writer.add_token_types(toktypes)
  2509. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2510. special_vocab.add_to_gguf(self.gguf_writer)
  2511. def set_gguf_parameters(self):
  2512. super().set_gguf_parameters()
  2513. hparams = self.hparams
  2514. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2515. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2516. _experts: list[dict[str, Tensor]] | None = None
  2517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2518. n_head = self.hparams["num_attention_heads"]
  2519. n_kv_head = self.hparams.get("num_key_value_heads")
  2520. if name.endswith("q_proj.weight"):
  2521. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2522. if name.endswith("k_proj.weight"):
  2523. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2524. # process the experts separately
  2525. if name.find("block_sparse_moe.experts") != -1:
  2526. n_experts = self.hparams["num_local_experts"]
  2527. assert bid is not None
  2528. if self._experts is None:
  2529. self._experts = [{} for _ in range(self.block_count)]
  2530. self._experts[bid][name] = data_torch
  2531. if len(self._experts[bid]) >= n_experts * 3:
  2532. tensors: list[tuple[str, Tensor]] = []
  2533. # merge the experts into a single 3d tensor
  2534. for wid in ["w1", "w2", "w3"]:
  2535. datas: list[Tensor] = []
  2536. for xid in range(n_experts):
  2537. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2538. datas.append(self._experts[bid][ename])
  2539. del self._experts[bid][ename]
  2540. data_torch = torch.stack(datas, dim=0)
  2541. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2542. new_name = self.map_tensor_name(merged_name)
  2543. tensors.append((new_name, data_torch))
  2544. return tensors
  2545. else:
  2546. return []
  2547. return [(self.map_tensor_name(name), data_torch)]
  2548. def prepare_tensors(self):
  2549. super().prepare_tensors()
  2550. if self._experts is not None:
  2551. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2552. experts = [k for d in self._experts for k in d.keys()]
  2553. if len(experts) > 0:
  2554. raise ValueError(f"Unprocessed experts: {experts}")
  2555. @Model.register("DeepseekV2ForCausalLM")
  2556. class DeepseekV2Model(Model):
  2557. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2558. def set_vocab(self):
  2559. self._set_vocab_gpt2()
  2560. def set_gguf_parameters(self):
  2561. super().set_gguf_parameters()
  2562. hparams = self.hparams
  2563. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2564. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2565. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2566. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2567. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2568. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2569. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2570. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2571. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2572. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2573. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2574. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2575. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2576. if self.hparams["rope_scaling"].get("type") == "yarn":
  2577. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2578. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2579. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2580. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2581. _experts: list[dict[str, Tensor]] | None = None
  2582. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2583. # process the experts separately
  2584. if name.find("mlp.experts") != -1:
  2585. n_experts = self.hparams["n_routed_experts"]
  2586. assert bid is not None
  2587. if self._experts is None:
  2588. self._experts = [{} for _ in range(self.block_count)]
  2589. self._experts[bid][name] = data_torch
  2590. if len(self._experts[bid]) >= n_experts * 3:
  2591. tensors: list[tuple[str, Tensor]] = []
  2592. # merge the experts into a single 3d tensor
  2593. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2594. datas: list[Tensor] = []
  2595. for xid in range(n_experts):
  2596. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2597. datas.append(self._experts[bid][ename])
  2598. del self._experts[bid][ename]
  2599. data_torch = torch.stack(datas, dim=0)
  2600. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2601. new_name = self.map_tensor_name(merged_name)
  2602. tensors.append((new_name, data_torch))
  2603. return tensors
  2604. else:
  2605. return []
  2606. return [(self.map_tensor_name(name), data_torch)]
  2607. def prepare_tensors(self):
  2608. super().prepare_tensors()
  2609. if self._experts is not None:
  2610. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2611. experts = [k for d in self._experts for k in d.keys()]
  2612. if len(experts) > 0:
  2613. raise ValueError(f"Unprocessed experts: {experts}")
  2614. @Model.register("T5WithLMHeadModel")
  2615. @Model.register("T5ForConditionalGeneration")
  2616. @Model.register("MT5ForConditionalGeneration")
  2617. @Model.register("UMT5ForConditionalGeneration")
  2618. class T5Model(Model):
  2619. model_arch = gguf.MODEL_ARCH.T5
  2620. def __init__(self, *args, **kwargs):
  2621. super().__init__(*args, **kwargs)
  2622. self.shared_token_embeddings_found = False
  2623. def set_vocab(self):
  2624. # to avoid TypeError: Descriptors cannot be created directly
  2625. # exception when importing sentencepiece_model_pb2
  2626. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2627. from sentencepiece import SentencePieceProcessor
  2628. from sentencepiece import sentencepiece_model_pb2 as model
  2629. tokenizer_path = self.dir_model / 'tokenizer.model'
  2630. # many older models use spiece.model tokenizer model filename
  2631. if not tokenizer_path.is_file():
  2632. tokenizer_path = self.dir_model / 'spiece.model'
  2633. if not tokenizer_path.is_file():
  2634. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2635. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2636. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2637. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2638. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2639. # assure the tokenizer model file name is correct
  2640. assert tokenizer_path.name == 'tokenizer.model'
  2641. return self._set_vocab_sentencepiece()
  2642. else:
  2643. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2644. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2645. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2646. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2647. tokenizer = SentencePieceProcessor()
  2648. tokenizer.LoadFromFile(str(tokenizer_path))
  2649. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2650. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2651. scores: list[float] = [-10000.0] * vocab_size
  2652. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2653. for token_id in range(tokenizer.vocab_size()):
  2654. piece = tokenizer.IdToPiece(token_id)
  2655. text = piece.encode("utf-8")
  2656. score = tokenizer.GetScore(token_id)
  2657. toktype = SentencePieceTokenTypes.NORMAL
  2658. if tokenizer.IsUnknown(token_id):
  2659. toktype = SentencePieceTokenTypes.UNKNOWN
  2660. elif tokenizer.IsControl(token_id):
  2661. toktype = SentencePieceTokenTypes.CONTROL
  2662. elif tokenizer.IsUnused(token_id):
  2663. toktype = SentencePieceTokenTypes.UNUSED
  2664. elif tokenizer.IsByte(token_id):
  2665. toktype = SentencePieceTokenTypes.BYTE
  2666. tokens[token_id] = text
  2667. scores[token_id] = score
  2668. toktypes[token_id] = toktype
  2669. added_tokens_file = self.dir_model / 'added_tokens.json'
  2670. if added_tokens_file.is_file():
  2671. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2672. added_tokens_json = json.load(f)
  2673. for key in added_tokens_json:
  2674. token_id = added_tokens_json[key]
  2675. if token_id >= vocab_size:
  2676. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2677. continue
  2678. tokens[token_id] = key.encode("utf-8")
  2679. scores[token_id] = -1000.0
  2680. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2681. if vocab_size > len(tokens):
  2682. pad_count = vocab_size - len(tokens)
  2683. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2684. for i in range(1, pad_count + 1):
  2685. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2686. scores.append(-1000.0)
  2687. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2688. self.gguf_writer.add_tokenizer_model("t5")
  2689. self.gguf_writer.add_tokenizer_pre("default")
  2690. self.gguf_writer.add_token_list(tokens)
  2691. self.gguf_writer.add_token_scores(scores)
  2692. self.gguf_writer.add_token_types(toktypes)
  2693. self.gguf_writer.add_add_space_prefix(add_prefix)
  2694. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2695. if precompiled_charsmap:
  2696. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2697. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2698. special_vocab.add_to_gguf(self.gguf_writer)
  2699. self.gguf_writer.add_add_bos_token(False)
  2700. self.gguf_writer.add_add_eos_token(True)
  2701. def set_gguf_parameters(self):
  2702. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2703. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2704. n_ctx = 512
  2705. self.gguf_writer.add_context_length(n_ctx)
  2706. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2707. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2708. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2709. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2710. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2711. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2712. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2713. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2714. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2715. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2716. self.gguf_writer.add_file_type(self.ftype)
  2717. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2718. del bid # unused
  2719. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2720. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2721. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2722. # and decoder and ignore the remaining ones.
  2723. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2724. if not self.shared_token_embeddings_found:
  2725. name = "shared.weight"
  2726. self.shared_token_embeddings_found = True
  2727. else:
  2728. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2729. return []
  2730. return [(self.map_tensor_name(name), data_torch)]
  2731. @Model.register("T5EncoderModel")
  2732. class T5EncoderModel(Model):
  2733. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2734. def __init__(self, *args, **kwargs):
  2735. super().__init__(*args, **kwargs)
  2736. self.shared_token_embeddings_found = False
  2737. def set_vocab(self):
  2738. # to avoid TypeError: Descriptors cannot be created directly
  2739. # exception when importing sentencepiece_model_pb2
  2740. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2741. from sentencepiece import SentencePieceProcessor
  2742. from sentencepiece import sentencepiece_model_pb2 as model
  2743. tokenizer_path = self.dir_model / 'tokenizer.model'
  2744. # many older models use spiece.model tokenizer model filename
  2745. if not tokenizer_path.is_file():
  2746. tokenizer_path = self.dir_model / 'spiece.model'
  2747. if not tokenizer_path.is_file():
  2748. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2749. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2750. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2751. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2752. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2753. # assure the tokenizer model file name is correct
  2754. assert tokenizer_path.name == 'tokenizer.model'
  2755. return self._set_vocab_sentencepiece()
  2756. else:
  2757. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2758. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2759. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2760. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2761. tokenizer = SentencePieceProcessor()
  2762. tokenizer.LoadFromFile(str(tokenizer_path))
  2763. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2764. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2765. scores: list[float] = [-10000.0] * vocab_size
  2766. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2767. for token_id in range(tokenizer.vocab_size()):
  2768. piece = tokenizer.IdToPiece(token_id)
  2769. text = piece.encode("utf-8")
  2770. score = tokenizer.GetScore(token_id)
  2771. toktype = SentencePieceTokenTypes.NORMAL
  2772. if tokenizer.IsUnknown(token_id):
  2773. toktype = SentencePieceTokenTypes.UNKNOWN
  2774. elif tokenizer.IsControl(token_id):
  2775. toktype = SentencePieceTokenTypes.CONTROL
  2776. elif tokenizer.IsUnused(token_id):
  2777. toktype = SentencePieceTokenTypes.UNUSED
  2778. elif tokenizer.IsByte(token_id):
  2779. toktype = SentencePieceTokenTypes.BYTE
  2780. tokens[token_id] = text
  2781. scores[token_id] = score
  2782. toktypes[token_id] = toktype
  2783. added_tokens_file = self.dir_model / 'added_tokens.json'
  2784. if added_tokens_file.is_file():
  2785. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2786. added_tokens_json = json.load(f)
  2787. for key in added_tokens_json:
  2788. token_id = added_tokens_json[key]
  2789. if token_id >= vocab_size:
  2790. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2791. continue
  2792. tokens[token_id] = key.encode("utf-8")
  2793. scores[token_id] = -1000.0
  2794. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2795. if vocab_size > len(tokens):
  2796. pad_count = vocab_size - len(tokens)
  2797. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2798. for i in range(1, pad_count + 1):
  2799. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2800. scores.append(-1000.0)
  2801. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2802. self.gguf_writer.add_tokenizer_model("t5")
  2803. self.gguf_writer.add_tokenizer_pre("default")
  2804. self.gguf_writer.add_token_list(tokens)
  2805. self.gguf_writer.add_token_scores(scores)
  2806. self.gguf_writer.add_token_types(toktypes)
  2807. self.gguf_writer.add_add_space_prefix(add_prefix)
  2808. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2809. if precompiled_charsmap:
  2810. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2811. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2812. special_vocab.add_to_gguf(self.gguf_writer)
  2813. self.gguf_writer.add_add_bos_token(False)
  2814. self.gguf_writer.add_add_eos_token(True)
  2815. def set_gguf_parameters(self):
  2816. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2817. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2818. n_ctx = 512
  2819. self.gguf_writer.add_context_length(n_ctx)
  2820. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2821. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2822. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2823. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2824. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2825. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2826. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2827. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2828. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2829. self.gguf_writer.add_file_type(self.ftype)
  2830. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2831. del bid # unused
  2832. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2833. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2834. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2835. # and decoder and ignore the remaining ones.
  2836. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2837. if not self.shared_token_embeddings_found:
  2838. name = "shared.weight"
  2839. self.shared_token_embeddings_found = True
  2840. else:
  2841. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2842. return []
  2843. return [(self.map_tensor_name(name), data_torch)]
  2844. @Model.register("JAISLMHeadModel")
  2845. class JaisModel(Model):
  2846. model_arch = gguf.MODEL_ARCH.JAIS
  2847. def __init__(self, *args, **kwargs):
  2848. super().__init__(*args, **kwargs)
  2849. # SwigLU activation
  2850. assert self.hparams["activation_function"] == "swiglu"
  2851. # ALiBi position embedding
  2852. assert self.hparams["position_embedding_type"] == "alibi"
  2853. # Embeddings scale
  2854. self.embeddings_scale = 1.0
  2855. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2856. self.output_is_wte = False
  2857. if 'mup_embeddings_scale' in self.hparams:
  2858. self.output_is_wte = True # Hack (?)
  2859. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2860. elif 'embeddings_scale' in self.hparams:
  2861. self.embeddings_scale = self.hparams['embeddings_scale']
  2862. else:
  2863. assert False
  2864. self.width_scale = 1.0
  2865. if 'mup_output_alpha' in self.hparams:
  2866. assert 'mup_width_scale' in self.hparams
  2867. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2868. elif 'width_scale' in self.hparams:
  2869. self.width_scale = self.hparams['width_scale']
  2870. else:
  2871. assert False
  2872. self.max_alibi_bias = 8.0
  2873. def set_vocab(self):
  2874. self._set_vocab_gpt2()
  2875. def set_gguf_parameters(self):
  2876. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2877. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2878. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2879. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2880. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2881. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2882. self.gguf_writer.add_file_type(self.ftype)
  2883. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2884. del bid # unused
  2885. tensors: list[tuple[str, Tensor]] = []
  2886. # we don't need these
  2887. if name.endswith((".attn.bias")):
  2888. return tensors
  2889. if name.endswith(("relative_pe.slopes")):
  2890. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2891. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2892. # but Jais's PyTorch model simply precalculates the slope values and places them
  2893. # in relative_pes.slopes
  2894. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2895. first_val = float(data_torch[0].item())
  2896. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2897. return tensors
  2898. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2899. data_torch = data_torch.transpose(1, 0)
  2900. new_name = self.map_tensor_name(name)
  2901. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2902. tensors.append((new_name, data_torch * self.embeddings_scale))
  2903. if self.output_is_wte:
  2904. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2905. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2906. assert not self.output_is_wte
  2907. tensors.append((new_name, data_torch * self.width_scale))
  2908. else:
  2909. tensors.append((new_name, data_torch))
  2910. return tensors
  2911. def prepare_tensors(self):
  2912. super().prepare_tensors()
  2913. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2914. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2915. class ChatGLMModel(Model):
  2916. model_arch = gguf.MODEL_ARCH.CHATGLM
  2917. def set_vocab_chatglm3(self):
  2918. dir_model = self.dir_model
  2919. hparams = self.hparams
  2920. tokens: list[bytes] = []
  2921. toktypes: list[int] = []
  2922. scores: list[float] = []
  2923. from transformers import AutoTokenizer
  2924. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2925. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2926. assert max(tokenizer.get_vocab().values()) < vocab_size
  2927. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2928. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2929. for token_id in range(vocab_size):
  2930. piece = tokenizer._convert_id_to_token(token_id)
  2931. if token_id == 0:
  2932. piece = "<unk>"
  2933. elif token_id == 1:
  2934. piece = "<bos>"
  2935. elif token_id == 2:
  2936. piece = "<eos>"
  2937. text = piece.encode("utf-8")
  2938. score = 0.0
  2939. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2940. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2941. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2942. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2943. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2944. if piece in special_tokens:
  2945. toktype = SentencePieceTokenTypes.CONTROL
  2946. elif len(piece) == 0:
  2947. text = f"[PAD{token_id}]".encode("utf-8")
  2948. toktype = SentencePieceTokenTypes.UNUSED
  2949. else:
  2950. toktype = SentencePieceTokenTypes.USER_DEFINED
  2951. tokens.append(text)
  2952. scores.append(score)
  2953. toktypes.append(toktype)
  2954. continue
  2955. toktype = SentencePieceTokenTypes.NORMAL
  2956. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2957. toktype = SentencePieceTokenTypes.UNKNOWN
  2958. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2959. toktype = SentencePieceTokenTypes.CONTROL
  2960. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2961. toktype = SentencePieceTokenTypes.UNUSED
  2962. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2963. toktype = SentencePieceTokenTypes.BYTE
  2964. tokens.append(text)
  2965. scores.append(score)
  2966. toktypes.append(toktype)
  2967. self.gguf_writer.add_tokenizer_model("llama")
  2968. # glm3 needs prefix and suffix formatted as:
  2969. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2970. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2971. self.gguf_writer.add_token_list(tokens)
  2972. self.gguf_writer.add_token_scores(scores)
  2973. self.gguf_writer.add_token_types(toktypes)
  2974. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2975. special_vocab.add_to_gguf(self.gguf_writer)
  2976. @staticmethod
  2977. def token_bytes_to_string(b):
  2978. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2979. byte_encoder = bytes_to_unicode()
  2980. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2981. @staticmethod
  2982. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2983. parts = [bytes([b]) for b in token]
  2984. while True:
  2985. min_idx = None
  2986. min_rank = None
  2987. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2988. rank = mergeable_ranks.get(pair[0] + pair[1])
  2989. if rank is not None and (min_rank is None or rank < min_rank):
  2990. min_idx = i
  2991. min_rank = rank
  2992. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2993. break
  2994. assert min_idx is not None
  2995. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2996. return parts
  2997. def set_vocab(self):
  2998. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2999. self.set_vocab_chatglm3()
  3000. return
  3001. dir_model = self.dir_model
  3002. hparams = self.hparams
  3003. tokens: list[str] = []
  3004. toktypes: list[int] = []
  3005. from transformers import AutoTokenizer
  3006. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3007. vocab_size = hparams["padded_vocab_size"]
  3008. assert max(tokenizer.get_vocab().values()) < vocab_size
  3009. tokpre = self.get_vocab_base_pre(tokenizer)
  3010. merges = []
  3011. vocab = {}
  3012. mergeable_ranks = tokenizer.mergeable_ranks
  3013. for token, rank in mergeable_ranks.items():
  3014. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3015. if len(token) == 1:
  3016. continue
  3017. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3018. assert len(merged) >= 2 and len(merged) <= 7
  3019. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3020. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3021. added_vocab = tokenizer.get_added_vocab()
  3022. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3023. for i in range(vocab_size):
  3024. if i not in reverse_vocab:
  3025. tokens.append(f"[PAD{i}]")
  3026. toktypes.append(gguf.TokenType.UNUSED)
  3027. elif reverse_vocab[i] in added_vocab:
  3028. tokens.append(reverse_vocab[i])
  3029. if tokenizer.added_tokens_decoder[i].special:
  3030. toktypes.append(gguf.TokenType.CONTROL)
  3031. else:
  3032. toktypes.append(gguf.TokenType.USER_DEFINED)
  3033. else:
  3034. tokens.append(reverse_vocab[i])
  3035. toktypes.append(gguf.TokenType.NORMAL)
  3036. self.gguf_writer.add_tokenizer_model("gpt2")
  3037. self.gguf_writer.add_tokenizer_pre(tokpre)
  3038. self.gguf_writer.add_token_list(tokens)
  3039. self.gguf_writer.add_token_types(toktypes)
  3040. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3041. special_vocab.merges = merges
  3042. # only add special tokens when they were not already loaded from config.json
  3043. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3044. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3045. # this one is usually not in config.json anyway
  3046. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3047. special_vocab.add_to_gguf(self.gguf_writer)
  3048. def set_gguf_parameters(self):
  3049. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3050. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3051. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3052. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3053. self.gguf_writer.add_embedding_length(n_embed)
  3054. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3055. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3056. self.gguf_writer.add_head_count(n_head)
  3057. self.gguf_writer.add_head_count_kv(n_head_kv)
  3058. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3059. self.gguf_writer.add_file_type(self.ftype)
  3060. self.gguf_writer.add_rope_dimension_count(64)
  3061. self.gguf_writer.add_add_bos_token(False)
  3062. rope_freq = 10000
  3063. if "rope_ratio" in self.hparams:
  3064. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3065. self.gguf_writer.add_rope_freq_base(rope_freq)
  3066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3067. del bid # unused
  3068. if name.endswith(".rotary_pos_emb.inv_freq"):
  3069. return []
  3070. name = name.removeprefix("transformer.")
  3071. return [(self.map_tensor_name(name), data_torch)]
  3072. @Model.register("NemotronForCausalLM")
  3073. class NemotronModel(Model):
  3074. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3075. def set_vocab(self):
  3076. self._set_vocab_sentencepiece()
  3077. self.gguf_writer.add_pad_token_id(0)
  3078. self.gguf_writer.add_unk_token_id(1)
  3079. def set_gguf_parameters(self):
  3080. super().set_gguf_parameters()
  3081. hparams = self.hparams
  3082. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3083. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3084. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3085. # * Partial RoPE
  3086. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3087. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3088. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3089. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3090. # * RopeScaling for Nemotron
  3091. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3092. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3093. else:
  3094. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3095. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3097. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3098. # model.layers.{l}.input_layernorm.weight
  3099. # model.layers.{l}.post_attention_layernorm.weight
  3100. # model.norm.weight
  3101. if name.endswith("norm.weight"):
  3102. data_torch = data_torch + 1
  3103. return [(self.map_tensor_name(name), data_torch)]
  3104. @Model.register("ExaoneForCausalLM")
  3105. class ExaoneModel(Model):
  3106. model_arch = gguf.MODEL_ARCH.EXAONE
  3107. def set_gguf_parameters(self):
  3108. hparams = self.hparams
  3109. assert (hparams["activation_function"] == "silu")
  3110. max_position_embeddings = hparams["max_position_embeddings"]
  3111. embed_dim = hparams["hidden_size"]
  3112. num_heads = hparams["num_attention_heads"]
  3113. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3114. layer_norm_eps = hparams["layer_norm_epsilon"]
  3115. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3116. num_layers = hparams["num_layers"]
  3117. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3118. # attention_dropout_rate = hparams["attention_dropout"]
  3119. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3120. # embed_dropout_rate = hparams["embed_dropout"]
  3121. self.gguf_writer.add_embedding_length(embed_dim)
  3122. self.gguf_writer.add_head_count(num_heads)
  3123. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3124. self.gguf_writer.add_context_length(max_position_embeddings)
  3125. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3126. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3127. self.gguf_writer.add_block_count(num_layers)
  3128. self.gguf_writer.add_file_type(self.ftype)
  3129. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3130. self.gguf_writer.add_rope_freq_base(rope_theta)
  3131. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3132. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3133. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3134. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3135. if hparams["rope_scaling"].get("type") == "linear":
  3136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3137. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3138. def prepare_tensors(self):
  3139. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3140. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3141. base = self.hparams.get("rope_theta", 10000.0)
  3142. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3143. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3144. factor = rope_scaling.get("factor", 8.0)
  3145. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3146. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3147. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3148. low_freq_wavelen = old_context_len / low_freq_factor
  3149. high_freq_wavelen = old_context_len / high_freq_factor
  3150. assert low_freq_wavelen != high_freq_wavelen
  3151. rope_factors = []
  3152. for freq in freqs:
  3153. wavelen = 2 * math.pi / freq
  3154. if wavelen < high_freq_wavelen:
  3155. rope_factors.append(1)
  3156. elif wavelen > low_freq_wavelen:
  3157. rope_factors.append(factor)
  3158. else:
  3159. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3160. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3161. if not self.is_lora:
  3162. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3163. super().prepare_tensors()
  3164. ###### CONVERSION LOGIC ######
  3165. # tree of lazy tensors
  3166. class LazyTorchTensor(gguf.LazyBase):
  3167. _tensor_type = torch.Tensor
  3168. # to keep the type-checker happy
  3169. dtype: torch.dtype
  3170. shape: torch.Size
  3171. # only used when converting a torch.Tensor to a np.ndarray
  3172. _dtype_map: dict[torch.dtype, type] = {
  3173. torch.float16: np.float16,
  3174. torch.float32: np.float32,
  3175. }
  3176. # used for safetensors slices
  3177. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3178. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3179. _dtype_str_map: dict[str, torch.dtype] = {
  3180. "F64": torch.float64,
  3181. "F32": torch.float32,
  3182. "BF16": torch.bfloat16,
  3183. "F16": torch.float16,
  3184. # "U64": torch.uint64,
  3185. "I64": torch.int64,
  3186. # "U32": torch.uint32,
  3187. "I32": torch.int32,
  3188. # "U16": torch.uint16,
  3189. "I16": torch.int16,
  3190. "U8": torch.uint8,
  3191. "I8": torch.int8,
  3192. "BOOL": torch.bool,
  3193. "F8_E4M3": torch.float8_e4m3fn,
  3194. "F8_E5M2": torch.float8_e5m2,
  3195. }
  3196. def numpy(self) -> gguf.LazyNumpyTensor:
  3197. dtype = self._dtype_map[self.dtype]
  3198. return gguf.LazyNumpyTensor(
  3199. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3200. args=(self,),
  3201. func=(lambda s: s.numpy())
  3202. )
  3203. @classmethod
  3204. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3205. return torch.empty(size=shape, dtype=dtype, device="meta")
  3206. @classmethod
  3207. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3208. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3209. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3210. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3211. return cast(torch.Tensor, lazy)
  3212. @classmethod
  3213. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3214. del types # unused
  3215. if kwargs is None:
  3216. kwargs = {}
  3217. if func is torch.Tensor.numpy:
  3218. return args[0].numpy()
  3219. return cls._wrap_fn(func)(*args, **kwargs)
  3220. def parse_args() -> argparse.Namespace:
  3221. parser = argparse.ArgumentParser(
  3222. description="Convert a huggingface model to a GGML compatible file")
  3223. parser.add_argument(
  3224. "--vocab-only", action="store_true",
  3225. help="extract only the vocab",
  3226. )
  3227. parser.add_argument(
  3228. "--outfile", type=Path,
  3229. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3230. )
  3231. parser.add_argument(
  3232. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  3233. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3234. )
  3235. parser.add_argument(
  3236. "--bigendian", action="store_true",
  3237. help="model is executed on big endian machine",
  3238. )
  3239. parser.add_argument(
  3240. "model", type=Path,
  3241. help="directory containing model file",
  3242. )
  3243. parser.add_argument(
  3244. "--use-temp-file", action="store_true",
  3245. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3246. )
  3247. parser.add_argument(
  3248. "--no-lazy", action="store_true",
  3249. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3250. )
  3251. parser.add_argument(
  3252. "--model-name", type=str, default=None,
  3253. help="name of the model",
  3254. )
  3255. parser.add_argument(
  3256. "--verbose", action="store_true",
  3257. help="increase output verbosity",
  3258. )
  3259. parser.add_argument(
  3260. "--split-max-tensors", type=int, default=0,
  3261. help="max tensors in each split",
  3262. )
  3263. parser.add_argument(
  3264. "--split-max-size", type=str, default="0",
  3265. help="max size per split N(M|G)",
  3266. )
  3267. parser.add_argument(
  3268. "--dry-run", action="store_true",
  3269. help="only print out a split plan and exit, without writing any new files",
  3270. )
  3271. parser.add_argument(
  3272. "--no-tensor-first-split", action="store_true",
  3273. help="do not add tensors to the first split (disabled by default)"
  3274. )
  3275. parser.add_argument(
  3276. "--metadata", type=Path,
  3277. help="Specify the path for an authorship metadata override file"
  3278. )
  3279. return parser.parse_args()
  3280. def split_str_to_n_bytes(split_str: str) -> int:
  3281. if split_str.endswith("K"):
  3282. n = int(split_str[:-1]) * 1000
  3283. elif split_str.endswith("M"):
  3284. n = int(split_str[:-1]) * 1000 * 1000
  3285. elif split_str.endswith("G"):
  3286. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3287. elif split_str.isnumeric():
  3288. n = int(split_str)
  3289. else:
  3290. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3291. if n < 0:
  3292. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3293. return n
  3294. def main() -> None:
  3295. args = parse_args()
  3296. if args.verbose:
  3297. logging.basicConfig(level=logging.DEBUG)
  3298. else:
  3299. logging.basicConfig(level=logging.INFO)
  3300. dir_model = args.model
  3301. if not dir_model.is_dir():
  3302. logger.error(f'Error: {args.model} is not a directory')
  3303. sys.exit(1)
  3304. ftype_map: dict[str, gguf.LlamaFileType] = {
  3305. "f32": gguf.LlamaFileType.ALL_F32,
  3306. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3307. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3308. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3309. "auto": gguf.LlamaFileType.GUESSED,
  3310. }
  3311. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3312. if args.use_temp_file and is_split:
  3313. logger.error("Error: Cannot use temp file when splitting")
  3314. sys.exit(1)
  3315. if args.outfile is not None:
  3316. fname_out = args.outfile
  3317. else:
  3318. fname_out = dir_model
  3319. logger.info(f"Loading model: {dir_model.name}")
  3320. hparams = Model.load_hparams(dir_model)
  3321. with torch.inference_mode():
  3322. output_type = ftype_map[args.outtype]
  3323. model_architecture = hparams["architectures"][0]
  3324. try:
  3325. model_class = Model.from_model_architecture(model_architecture)
  3326. except NotImplementedError:
  3327. logger.error(f"Model {model_architecture} is not supported")
  3328. sys.exit(1)
  3329. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3330. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3331. eager=args.no_lazy,
  3332. metadata_override=args.metadata, model_name=args.model_name,
  3333. split_max_tensors=args.split_max_tensors,
  3334. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3335. small_first_shard=args.no_tensor_first_split)
  3336. if args.vocab_only:
  3337. logger.info("Exporting model vocab...")
  3338. model_instance.write_vocab()
  3339. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3340. else:
  3341. logger.info("Exporting model...")
  3342. model_instance.write()
  3343. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3344. logger.info(f"Model successfully exported to {out_path}")
  3345. if __name__ == '__main__':
  3346. main()