| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601 |
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
- #include "clip.h"
- #include "clip-impl.h"
- #include "ggml.h"
- #include "ggml-cpp.h"
- #include "ggml-cpu.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "gguf.h"
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <unordered_set>
- #include <vector>
- #include <sstream>
- #include <cinttypes>
- #include <limits>
- #include <array>
- #include <numeric>
- struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
- //#define CLIP_DEBUG_FUNCTIONS
- #ifdef CLIP_DEBUG_FUNCTIONS
- static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- // PPM header: P6 format, width, height, and max color value
- file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
- // Write pixel data
- for (size_t i = 0; i < img.buf.size(); i += 3) {
- // PPM expects binary data in RGB format, which matches our image buffer
- file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
- }
- file.close();
- }
- static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
- int bytesPerPixel = 3;
- int widthInBytes = img.nx * bytesPerPixel;
- int paddingAmount = (4 - (widthInBytes % 4)) % 4;
- int stride = widthInBytes + paddingAmount;
- // Bitmap file header
- unsigned char fileHeader[14] = {
- 'B','M', // Signature
- 0,0,0,0, // Image file size in bytes
- 0,0,0,0, // Reserved
- 54,0,0,0 // Start of pixel array
- };
- // Total file size
- fileSize = 54 + (stride * img.ny);
- fileHeader[2] = (unsigned char)(fileSize);
- fileHeader[3] = (unsigned char)(fileSize >> 8);
- fileHeader[4] = (unsigned char)(fileSize >> 16);
- fileHeader[5] = (unsigned char)(fileSize >> 24);
- // Bitmap information header (BITMAPINFOHEADER)
- unsigned char infoHeader[40] = {
- 40,0,0,0, // Size of this header (40 bytes)
- 0,0,0,0, // Image width
- 0,0,0,0, // Image height
- 1,0, // Number of color planes
- 24,0, // Bits per pixel
- 0,0,0,0, // No compression
- 0,0,0,0, // Image size (can be 0 for no compression)
- 0,0,0,0, // X pixels per meter (not specified)
- 0,0,0,0, // Y pixels per meter (not specified)
- 0,0,0,0, // Total colors (color table not used)
- 0,0,0,0 // Important colors (all are important)
- };
- // Width and height in the information header
- infoHeader[4] = (unsigned char)(img.nx);
- infoHeader[5] = (unsigned char)(img.nx >> 8);
- infoHeader[6] = (unsigned char)(img.nx >> 16);
- infoHeader[7] = (unsigned char)(img.nx >> 24);
- infoHeader[8] = (unsigned char)(img.ny);
- infoHeader[9] = (unsigned char)(img.ny >> 8);
- infoHeader[10] = (unsigned char)(img.ny >> 16);
- infoHeader[11] = (unsigned char)(img.ny >> 24);
- // Write file headers
- file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
- file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
- // Pixel data
- std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
- for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
- for (int x = 0; x < img.nx; ++x) {
- // Each pixel
- size_t pixelIndex = (y * img.nx + x) * 3;
- unsigned char pixel[3] = {
- img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
- img.buf[pixelIndex + 1],
- img.buf[pixelIndex]
- };
- file.write(reinterpret_cast<char*>(pixel), 3);
- }
- // Write padding for the row
- file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
- }
- file.close();
- }
- // debug function to convert f32 to u8
- static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(3 * src.nx * src.ny);
- for (size_t i = 0; i < src.buf.size(); ++i) {
- dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
- }
- }
- #endif
- //
- // clip layers
- //
- enum patch_merge_type {
- PATCH_MERGE_FLAT,
- PATCH_MERGE_SPATIAL_UNPAD,
- };
- struct clip_hparams {
- int32_t image_size;
- int32_t patch_size;
- int32_t hidden_size;
- int32_t n_intermediate;
- int32_t projection_dim;
- int32_t n_head;
- int32_t n_layer;
- int32_t proj_scale_factor = 0; // idefics3
- patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
- float eps = 1e-6;
- float rope_theta = 0.0;
- std::vector<int32_t> image_grid_pinpoints;
- int32_t image_crop_resolution;
- std::unordered_set<int32_t> vision_feature_layer;
- int32_t attn_window_size = 0;
- int32_t n_wa_pattern = 0;
- int32_t spatial_merge_size = 0;
- };
- struct clip_layer {
- // attention
- struct ggml_tensor * k_w = nullptr;
- struct ggml_tensor * k_b = nullptr;
- struct ggml_tensor * q_w = nullptr;
- struct ggml_tensor * q_b = nullptr;
- struct ggml_tensor * v_w = nullptr;
- struct ggml_tensor * v_b = nullptr;
- struct ggml_tensor * o_w = nullptr;
- struct ggml_tensor * o_b = nullptr;
- // layernorm 1
- struct ggml_tensor * ln_1_w = nullptr;
- struct ggml_tensor * ln_1_b = nullptr;
- // ff
- struct ggml_tensor * ff_i_w = nullptr; // legacy naming
- struct ggml_tensor * ff_i_b = nullptr; // legacy naming
- struct ggml_tensor * ff_o_w = nullptr; // legacy naming
- struct ggml_tensor * ff_o_b = nullptr; // legacy naming
- struct ggml_tensor * ff_up_w = nullptr;
- struct ggml_tensor * ff_up_b = nullptr;
- struct ggml_tensor * ff_gate_w = nullptr;
- struct ggml_tensor * ff_gate_b = nullptr;
- struct ggml_tensor * ff_down_w = nullptr;
- struct ggml_tensor * ff_down_b = nullptr;
- struct ggml_tensor * ff_g_w = NULL;
- struct ggml_tensor * ff_g_b = NULL;
- // layernorm 2
- struct ggml_tensor * ln_2_w = nullptr;
- struct ggml_tensor * ln_2_b = nullptr;
- };
- struct clip_vision_model {
- struct clip_hparams hparams;
- // embeddings
- struct ggml_tensor * class_embedding = nullptr;
- struct ggml_tensor * patch_embeddings_0 = nullptr;
- struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
- struct ggml_tensor * patch_bias = nullptr;
- struct ggml_tensor * position_embeddings = nullptr;
- struct ggml_tensor * pre_ln_w = nullptr;
- struct ggml_tensor * pre_ln_b = nullptr;
- std::vector<clip_layer> layers;
- struct ggml_tensor * post_ln_w;
- struct ggml_tensor * post_ln_b;
- struct ggml_tensor * projection;
- // LLaVA projection
- struct ggml_tensor * mm_input_norm_w = nullptr;
- struct ggml_tensor * mm_0_w = nullptr;
- struct ggml_tensor * mm_0_b = nullptr;
- struct ggml_tensor * mm_2_w = nullptr;
- struct ggml_tensor * mm_2_b = nullptr;
- struct ggml_tensor * image_newline = nullptr;
- // Yi type models with mlp+normalization projection
- struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
- struct ggml_tensor * mm_1_b = nullptr;
- struct ggml_tensor * mm_3_w = nullptr;
- struct ggml_tensor * mm_3_b = nullptr;
- struct ggml_tensor * mm_4_w = nullptr;
- struct ggml_tensor * mm_4_b = nullptr;
- //GLMV-Edge projection
- struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
- struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
- // MobileVLM projection
- struct ggml_tensor * mm_model_mlp_1_w = nullptr;
- struct ggml_tensor * mm_model_mlp_1_b = nullptr;
- struct ggml_tensor * mm_model_mlp_3_w = nullptr;
- struct ggml_tensor * mm_model_mlp_3_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
- // MobileVLM_V2 projection
- struct ggml_tensor * mm_model_mlp_0_w = nullptr;
- struct ggml_tensor * mm_model_mlp_0_b = nullptr;
- struct ggml_tensor * mm_model_mlp_2_w = nullptr;
- struct ggml_tensor * mm_model_mlp_2_b = nullptr;
- struct ggml_tensor * mm_model_peg_0_w = nullptr;
- struct ggml_tensor * mm_model_peg_0_b = nullptr;
- // MINICPMV projection
- struct ggml_tensor * mm_model_pos_embed_k = nullptr;
- struct ggml_tensor * mm_model_query = nullptr;
- struct ggml_tensor * mm_model_proj = nullptr;
- struct ggml_tensor * mm_model_kv_proj = nullptr;
- struct ggml_tensor * mm_model_attn_q_w = nullptr;
- struct ggml_tensor * mm_model_attn_q_b = nullptr;
- struct ggml_tensor * mm_model_attn_k_w = nullptr;
- struct ggml_tensor * mm_model_attn_k_b = nullptr;
- struct ggml_tensor * mm_model_attn_v_w = nullptr;
- struct ggml_tensor * mm_model_attn_v_b = nullptr;
- struct ggml_tensor * mm_model_attn_o_w = nullptr;
- struct ggml_tensor * mm_model_attn_o_b = nullptr;
- struct ggml_tensor * mm_model_ln_q_w = nullptr;
- struct ggml_tensor * mm_model_ln_q_b = nullptr;
- struct ggml_tensor * mm_model_ln_kv_w = nullptr;
- struct ggml_tensor * mm_model_ln_kv_b = nullptr;
- struct ggml_tensor * mm_model_ln_post_w = nullptr;
- struct ggml_tensor * mm_model_ln_post_b = nullptr;
- // gemma3
- struct ggml_tensor * mm_input_proj_w = nullptr;
- struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
- // pixtral
- struct ggml_tensor * token_embd_img_break = nullptr;
- struct ggml_tensor * mm_patch_merger_w = nullptr;
- };
- struct clip_ctx {
- bool has_llava_projector = false;
- int minicpmv_version = 0;
- struct clip_vision_model vision_model;
- projector_type proj_type = PROJECTOR_TYPE_MLP;
- int32_t max_feature_layer; // unused in newer models like gemma3
- float image_mean[3];
- float image_std[3];
- bool use_gelu = false;
- bool use_silu = false;
- gguf_context_ptr ctx_gguf;
- ggml_context_ptr ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- std::vector<ggml_backend_t> backend_ptrs;
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- ggml_backend_t backend;
- ggml_backend_t backend_cpu;
- ggml_backend_buffer_ptr buf;
- int max_nodes = 8192;
- ggml_backend_sched_ptr sched;
- clip_image_size load_image_size;
- clip_ctx(clip_context_params & ctx_params) {
- backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
- backend = ctx_params.use_gpu
- ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
- : nullptr;
- if (backend) {
- LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
- backend_ptrs.push_back(backend);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- } else {
- backend = backend_cpu;
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
- }
- backend_ptrs.push_back(backend_cpu);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
- sched.reset(
- ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
- );
- }
- ~clip_ctx() {
- ggml_backend_free(backend);
- if (backend != backend_cpu) {
- ggml_backend_free(backend_cpu);
- }
- }
- };
- static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- int image_size_width = img.nx;
- int image_size_height = img.ny;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- // input raw
- struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- // position embeddings
- struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- // siglip uses gelu
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- const int batch_size = 1;
- const int mm_tokens_per_image = 256; // default value for gemma3
- const int tokens_per_side = sqrt(mm_tokens_per_image);
- const int patches_per_image = sqrt(num_patches);
- const int kernel_size = patches_per_image / tokens_per_side;
- embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
- embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
- // doing a pool2d to reduce the number of output tokens to 256
- embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
- embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
- embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
- // apply norm before projection
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
- // apply projection
- embeddings = ggml_mul_mat(ctx0,
- ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
- embeddings);
- } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
- // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
- ggml_tensor * cur = embeddings;
- const int scale_factor = model.hparams.proj_scale_factor;
- const int n_embd = cur->ne[0];
- const int seq = cur->ne[1];
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- const int height = std::sqrt(seq);
- const int width = std::sqrt(seq);
- GGML_ASSERT(scale_factor != 0);
- cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- height / scale_factor,
- width / scale_factor,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- seq / (scale_factor * scale_factor),
- bsz);
- cur = ggml_mul_mat(ctx0, model.projection, cur);
- embeddings = cur;
- } else {
- GGML_ABORT("SigLIP: Unsupported projector type");
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- // implementation of the 2D RoPE without adding a new op in ggml
- // this is not efficient (use double the memory), but works on all backends
- // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
- static ggml_tensor * build_rope_2d(
- ggml_context * ctx0,
- ggml_tensor * cur,
- ggml_tensor * pos_h,
- ggml_tensor * pos_w,
- const float freq_base
- ) {
- const int64_t n_dim = cur->ne[0];
- const int64_t n_head = cur->ne[1];
- const int64_t n_pos = cur->ne[2];
- // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
- // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
- // first half of cur will use 1e-0, 1e-2 (even)
- // second half of cur will use 1e-1, 1e-3 (odd)
- // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
- // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
- // then for the second half, we use freq_scale to shift the inv_freq
- // ^ why? replace (2i) with (2i+1) in the above equation
- const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
- // first half
- ggml_tensor * first;
- {
- first = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- 0);
- first = ggml_rope_ext(
- ctx0,
- first,
- pos_h, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
- // second half
- ggml_tensor * second;
- {
- second = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- n_dim/2 * ggml_element_size(cur));
- second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
- second = ggml_rope_ext(
- ctx0,
- second,
- pos_w, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- freq_scale_odd,
- 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
- cur = ggml_concat(ctx0, first, second, 0);
- return cur;
- }
- static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- GGML_ASSERT(ctx->proj_type == PROJECTOR_TYPE_PIXTRAL);
- int image_size_width = img.nx;
- int image_size_height = img.ny;
- const int patch_size = hparams.patch_size;
- const int n_patches_x = image_size_width / patch_size;
- const int n_patches_y = image_size_height / patch_size;
- const int num_patches = n_patches_x * n_patches_y;
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
- const int n_merge = hparams.spatial_merge_size;
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- // input raw
- struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- // 2D input positions
- struct ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- struct ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- struct ggml_tensor * embeddings = inp;
- // pre-layer norm
- embeddings = ggml_mul(ctx0, ggml_rms_norm(ctx0, embeddings, eps), model.pre_ln_w);
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings;
- // pre-attention norm
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_1_w);
- // self-attention
- {
- struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur);
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
- Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
- K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
- cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // pre-ffn norm
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_2_w);
- // feed-forward
- {
- ggml_tensor * gate_proj = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
- ggml_tensor * up_proj = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
- if (ctx->use_silu) {
- gate_proj = ggml_silu(ctx0, gate_proj);
- } else if (ctx->use_gelu) {
- gate_proj = ggml_gelu(ctx0, gate_proj);
- } else {
- GGML_ABORT("Pixtral: Unsupported activation");
- }
- cur = ggml_mul(ctx0, up_proj, gate_proj);
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
- }
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // mistral small 3.1 patch merger
- // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
- if (model.mm_patch_merger_w) {
- GGML_ASSERT(hparams.spatial_merge_size > 0);
- ggml_tensor * cur = embeddings;
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
- // reshape image tokens to 2D grid
- cur = ggml_reshape_3d(ctx0, cur, hidden_size, n_patches_x, n_patches_y);
- cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, hidden_size]
- cur = ggml_cont(ctx0, cur);
- // torch.nn.functional.unfold is just an im2col under the hood
- // we just need a dummy kernel to make it work
- ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
- cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
- // project to hidden_size
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
- cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
- embeddings = cur;
- }
- // LlavaMultiModalProjector (always using GELU activation)
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- if (model.mm_1_b) {
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- }
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- if (model.mm_2_b) {
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- }
- // arrangement of the [IMG_BREAK] token
- {
- // not efficient, but works
- // the trick is to view the embeddings as a 3D tensor with shape [hidden_size, n_patches_per_row, n_rows]
- // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
- // after the concatenation, we have a tensor with shape [hidden_size, n_patches_per_row + 1, n_rows]
- const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
- const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
- const int p_total = p_x * p_y;
- const int n_embd_text = embeddings->ne[0];
- const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
- ggml_tensor * cur = ggml_reshape_3d(ctx0, embeddings, n_embd_text, p_x, p_y);
- ggml_tensor * tok = ggml_new_tensor_3d(ctx0, embeddings->type, n_embd_text, 1, p_y);
- tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
- tok = ggml_add(ctx0, tok, model.token_embd_img_break);
- cur = ggml_concat(ctx0, cur, tok, 1);
- embeddings = ggml_view_2d(ctx0, cur,
- n_embd_text, n_tokens_output,
- ggml_row_size(cur->type, n_embd_text), 0);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size_width = imgs.entries[0]->nx;
- const int image_size_height = imgs.entries[0]->ny;
- const bool use_window_attn = hparams.n_wa_pattern > 0;
- const int n_wa_pattern = hparams.n_wa_pattern;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int patches_w = image_size_width / patch_size;
- const int patches_h = image_size_height / patch_size;
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int num_position_ids = num_positions * 4; // m-rope requires 4 dim per position
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- const int batch_size = imgs.entries.size();
- GGML_ASSERT(batch_size == 1);
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
- GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_reshape_4d(
- ctx0, inp,
- hidden_size * 2, patches_w / 2, patches_h, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
- inp = ggml_reshape_3d(
- ctx0, inp,
- hidden_size, patches_w * patches_h, batch_size);
- if (model.patch_bias) {
- // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- struct ggml_tensor * embeddings = inp;
- struct ggml_tensor * window_mask = nullptr;
- struct ggml_tensor * window_idx = nullptr;
- struct ggml_tensor * inv_window_idx = nullptr;
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- // pre-layernorm
- if (model.pre_ln_w) {
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "pre_ln");
- embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w);
- }
- if (use_window_attn) {
- // handle window attention inputs
- inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
- ggml_set_name(inv_window_idx, "inv_window_idx");
- ggml_set_input(inv_window_idx);
- // mask for window attention
- window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions);
- ggml_set_name(window_mask, "window_mask");
- ggml_set_input(window_mask);
- // embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4);
- embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size);
- }
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- // rmsnorm1
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w);
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- Q = ggml_rope_multi(
- ctx0, Q, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_rope_multi(
- ctx0, K, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
- if (full_attn) {
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- } else {
- KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f);
- }
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // rms norm2
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w);
- // mlp
- // ffn_up
- auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b);
- auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur);
- cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b);
- // TODO : only 2 of these 3 are actually used, should we remove one of them?
- if (ctx->use_gelu) {
- cur_gate = ggml_gelu_inplace(ctx0, cur_gate);
- } else if (ctx->use_silu) {
- cur_gate = ggml_silu_inplace(ctx0, cur_gate);
- } else {
- cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate);
- }
- cur = ggml_mul(ctx0, cur_gate, cur_up);
- // ffn_down
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
- embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
- }
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- if (use_window_attn) {
- window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
- ggml_set_name(window_idx, "window_idx");
- ggml_set_input(window_idx);
- // embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
- embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
- image_size_width = load_image_size.width;
- image_size_height = load_image_size.height;
- if (is_inf) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- // use the image's native resolution when image is avaible
- if (is_inf) {
- // if (imgs->data->nx && imgs->data->ny) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- }
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int patches_w = image_size_width / patch_size;
- const int patches_h = image_size_height / patch_size;
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int num_position_ids = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions;
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const float eps = hparams.eps;
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- const int batch_size = imgs.entries.size();
- if (ctx->has_llava_projector
- || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
- || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- GGML_ASSERT(batch_size == 1);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
- GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_reshape_4d(
- ctx0, inp,
- hidden_size * 2, patches_w / 2, patches_h, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
- inp = ggml_reshape_3d(
- ctx0, inp,
- hidden_size, patches_w * patches_h, batch_size);
- }
- else {
- inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- }
- if (model.patch_bias) {
- // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- struct ggml_tensor * embeddings = inp;
- struct ggml_tensor * pos_embed = nullptr;
- // concat class_embeddings and patch_embeddings
- if (model.class_embedding) {
- embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- }
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- if (ctx->proj_type != PROJECTOR_TYPE_QWEN2VL) { // qwen2vl does NOT use learned position embeddings
- embeddings =
- ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- int pos_w = image_size_width/patch_size;
- int pos_h = image_size_height/patch_size;
- int n_output_dim = clip_n_mmproj_embd(ctx);
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, pos_w * pos_h, 1);
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
- }
- // pre-layernorm
- if (model.pre_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "pre_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
- }
- std::vector<struct ggml_tensor *> embedding_stack;
- const auto & vision_feature_layer = hparams.vision_feature_layer;
- // loop over layers
- for (int il = 0; il < ctx->max_feature_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- // If this is an embedding feature layer, save the output.
- // NOTE: 0 index here refers to the input to the encoder.
- if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
- embedding_stack.push_back(embeddings);
- }
- //const size_t nb_q_w = model.layers[il].q_w->nb[0];
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
- model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- Q = ggml_rope_multi(
- ctx0, Q, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- }
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- K = ggml_rope_multi(
- ctx0, K, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- }
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- if (ctx->use_gelu) {
- cur = ggml_gelu_inplace(ctx0, cur);
- } else if (ctx->use_silu) {
- cur = ggml_silu_inplace(ctx0, cur);
- } else {
- cur = ggml_gelu_quick_inplace(ctx0, cur);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
- // final layer is a vision feature layer
- if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
- embedding_stack.push_back(embeddings);
- }
- // If feature layers are explicitly set, stack them (if we have multiple)
- if (!embedding_stack.empty()) {
- embeddings = embedding_stack[0];
- for (size_t i = 1; i < embedding_stack.size(); i++) {
- embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
- }
- }
- // llava projector
- if (ctx->has_llava_projector) {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(patches, "patches");
- ggml_set_input(patches);
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // print_tensor_info(embeddings, "embeddings");
- // llava projector
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- if (model.mm_2_w) {
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
- // First LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
- model.mm_1_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
- // Second LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
- model.mm_4_b);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
- // block 1
- struct ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
- mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
- {
- int n_patch = 24;
- struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
- mlp_0 = ggml_gelu(ctx0, mlp_0);
- struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
- mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
- // mlp_2 ne = [2048, 576, 1, 1]
- // // AVG Pool Layer 2*2, strides = 2
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
- // mlp_2 ne = [576, 2048, 1, 1]
- mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
- // mlp_2 ne [24, 24, 2048, 1]
- mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
- // weight ne = [3, 3, 2048, 1]
- struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
- peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, mlp_2);
- peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
- embeddings = peg_0;
- }
- else {
- GGML_ABORT("fatal error");
- }
- }
- // minicpmv projector
- else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- struct ggml_tensor * q = model.mm_model_query;
- { // layernorm
- q = ggml_norm(ctx0, q, eps);
- q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- }
- struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- { // layernorm
- v = ggml_norm(ctx0, v, eps);
- v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
- }
- struct ggml_tensor * k;
- { // position
- // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
- k = ggml_add(ctx0, v, pos_embed);
- }
- { // attention
- int hidden_size = clip_n_mmproj_embd(ctx);
- const int d_head = 128;
- int n_head = hidden_size/d_head;
- int num_query = 96;
- if (ctx->minicpmv_version == 2) {
- num_query = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- num_query = 64;
- }
- else if (ctx->minicpmv_version == 4) {
- num_query = 64;
- }
- struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
- struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
- struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
- // permute
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
- embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
- }
- { // layernorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
- }
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- }
- // glm projector
- else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
- embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
- embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
- embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
- embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
- // GLU
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- embeddings = ggml_gelu_inplace(ctx0, embeddings);
- struct ggml_tensor * x = embeddings;
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
- x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
- embeddings = ggml_silu_inplace(ctx0, embeddings);
- embeddings = ggml_mul(ctx0, embeddings,x);
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
- }
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
- ggml_cgraph * res;
- switch (ctx->proj_type) {
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- {
- GGML_ASSERT(imgs.entries.size() == 1);
- res = clip_image_build_graph_siglip(ctx, *imgs.entries[0]);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- GGML_ASSERT(imgs.entries.size() == 1);
- res = clip_image_build_graph_pixtral(ctx, *imgs.entries[0]);
- } break;
- case PROJECTOR_TYPE_QWEN25VL:
- {
- res = clip_image_build_graph_qwen25vl(ctx, imgs);
- } break;
- default:
- {
- // TODO: we should have one build_* function per model
- res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
- } break;
- }
- return res;
- }
- struct clip_model_loader {
- ggml_context_ptr ctx_meta;
- gguf_context_ptr ctx_gguf;
- clip_ctx & ctx_clip;
- std::string fname;
- size_t model_size = 0; // in bytes
- // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
- clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
- struct ggml_context * meta = nullptr;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
- if (!ctx_gguf.get()) {
- throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- ctx_meta.reset(meta);
- const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
- // print gguf info
- {
- std::string name;
- get_string(KEY_NAME, name, false);
- std::string description;
- get_string(KEY_DESCRIPTION, description, false);
- LOG_INF("%s: model name: %s\n", __func__, name.c_str());
- LOG_INF("%s: description: %s\n", __func__, description.c_str());
- LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
- LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
- LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
- LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
- LOG_INF("\n");
- }
- // tensors
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
- enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
- struct ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- model_size += tensor_size;
- LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
- __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
- }
- }
- }
- void load_hparams() {
- auto & hparams = ctx_clip.vision_model.hparams;
- // projector type
- std::string proj_type;
- {
- get_string(KEY_PROJ_TYPE, proj_type, false);
- if (!proj_type.empty()) {
- ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
- }
- if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
- throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
- }
- }
- // other hparams
- {
- get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
- get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
- get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
- get_u32(KEY_N_EMBD, hparams.hidden_size);
- get_u32(KEY_N_HEAD, hparams.n_head);
- get_u32(KEY_N_FF, hparams.n_intermediate);
- get_u32(KEY_N_BLOCK, hparams.n_layer);
- get_u32(KEY_PROJ_DIM, hparams.projection_dim);
- get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
- get_u32(KEY_IMAGE_SIZE, hparams.image_size);
- get_u32(KEY_PATCH_SIZE, hparams.patch_size);
- get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
- get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
- ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
- || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
- || ctx_clip.proj_type == PROJECTOR_TYPE_LDP
- || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
- {
- std::string mm_patch_merge_type;
- get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
- if (mm_patch_merge_type == "spatial_unpad") {
- hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
- }
- }
- {
- int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
- int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
- GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
- GGML_ASSERT(idx_std >= 0 && "image_std not found");
- const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
- const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
- for (int i = 0; i < 3; ++i) {
- ctx_clip.image_mean[i] = mean_data[i];
- ctx_clip.image_std[i] = std_data[i];
- }
- }
- // Load the vision feature layer indices if they are explicitly provided;
- // if multiple vision feature layers are present, the values will be concatenated
- // to form the final visual features.
- // NOTE: gguf conversions should standardize the values of the vision feature layer to
- // be non-negative, since we use -1 to mark values as unset here.
- std::vector<int> vision_feature_layer;
- get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
- // convert std::vector to std::unordered_set
- for (auto & layer : vision_feature_layer) {
- hparams.vision_feature_layer.insert(layer);
- }
- // Calculate the deepest feature layer based on hparams and projector type
- // NOTE: This is only used by build_graph_legacy()
- {
- // Get the index of the second to last layer; this is the default for models that have a llava projector
- int n_layer = hparams.n_layer - 1;
- int deepest_feature_layer = -1;
- if (ctx_clip.proj_type == PROJECTOR_TYPE_MINICPMV
- || ctx_clip.proj_type == PROJECTOR_TYPE_GLM_EDGE
- || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN2VL
- || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN25VL) {
- n_layer += 1;
- }
- // If we set explicit vision feature layers, only go up to the deepest one
- // NOTE: only used by granite-vision models for now
- for (const auto & feature_layer : hparams.vision_feature_layer) {
- if (feature_layer > deepest_feature_layer) {
- deepest_feature_layer = feature_layer;
- }
- }
- ctx_clip.max_feature_layer = deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
- }
- // model-specific params
- switch (ctx_clip.proj_type) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- if (ctx_clip.minicpmv_version == 0) {
- ctx_clip.minicpmv_version = 2; // default to 2 if not set
- }
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- {
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- hparams.rope_theta = 10000.0f;
- get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
- } break;
- case PROJECTOR_TYPE_QWEN25VL:
- {
- get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
- } break;
- default:
- break;
- }
- LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
- LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector);
- LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
- LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
- LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
- LOG_INF("%s: use_silu: %d\n", __func__, ctx_clip.use_silu);
- LOG_INF("%s: use_gelu: %d\n", __func__, ctx_clip.use_gelu);
- LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
- LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
- }
- }
- void load_tensors() {
- std::map<std::string, size_t> tensor_offset;
- std::vector<ggml_tensor *> tensors_to_load;
- // get offsets
- for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
- }
- // create data context
- struct ggml_init_params params = {
- /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_clip.ctx_data.reset(ggml_init(params));
- if (!ctx_clip.ctx_data) {
- throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
- }
- // helper function
- auto get_tensor = [&](const std::string & name, bool required = true) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
- if (!cur && required) {
- throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- if (cur) {
- tensors_to_load.push_back(cur);
- // add tensors to context
- struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
- ggml_set_name(data_tensor, cur->name);
- cur = data_tensor;
- }
- return cur;
- };
- auto & vision_model = ctx_clip.vision_model;
- vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
- vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
- vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false);
- vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
- vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false);
- vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
- vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
- vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
- vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
- // layers
- vision_model.layers.resize(vision_model.hparams.n_layer);
- for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
- auto & layer = vision_model.layers[il];
- layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
- layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
- layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
- layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
- layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
- layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
- layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
- layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
- layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
- layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
- layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
- layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
- // new naming
- layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
- layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
- layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
- layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"), false);
- layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
- layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
- // legacy naming (the in and out is reversed! don't ask me why)
- layer.ff_i_w = layer.ff_down_w;
- layer.ff_o_w = layer.ff_up_w;
- layer.ff_g_w = layer.ff_gate_w;
- layer.ff_i_b = layer.ff_down_b;
- layer.ff_o_b = layer.ff_up_b;
- layer.ff_g_b = layer.ff_gate_b;
- }
- switch (ctx_clip.proj_type) {
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- {
- // LLaVA projection
- vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
- vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
- // Yi-type llava
- vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
- vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- // missing in Yi-type llava
- vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
- vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // Yi-type llava
- vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
- vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
- vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
- vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
- if (vision_model.mm_3_w) {
- // TODO: this is a hack to support Yi-type llava
- ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
- }
- vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
- } break;
- case PROJECTOR_TYPE_LDP:
- {
- // MobileVLM projection
- vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
- vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
- vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
- vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
- vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
- vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
- vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
- vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
- vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
- vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
- vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
- vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
- vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
- vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
- vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
- vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
- vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
- vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
- vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
- vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
- vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
- vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
- vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
- } break;
- case PROJECTOR_TYPE_LDPV2:
- {
- // MobilVLM_V2 projection
- vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
- vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
- vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
- vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
- vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
- vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
- vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
- vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
- vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
- vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
- vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
- vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
- vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
- vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
- vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
- vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
- vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
- vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
- vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
- vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
- vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
- vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
- vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
- vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
- vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
- vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
- vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
- vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
- vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
- vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
- vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- {
- vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
- vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
- vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
- vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- {
- vision_model.projection = get_tensor(TN_MM_PROJECTOR);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
- vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // [IMG_BREAK] token embedding
- vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
- // for mistral small 3.1
- vision_model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
- vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
- } break;
- default:
- GGML_ASSERT(false && "unknown projector type");
- }
- // load data
- {
- std::vector<uint8_t> read_buf;
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
- }
- // alloc memory and offload data
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
- ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
- ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- for (auto & t : tensors_to_load) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
- const size_t offset = tensor_offset[t->name];
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
- }
- size_t num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buft_is_host(buft)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- fin.close();
- LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
- }
- }
- void alloc_compute_meta() {
- ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
- // create a fake batch
- clip_image_f32_batch batch;
- clip_image_f32_ptr img(clip_image_f32_init());
- clip_image_size image_size;
- image_size.width = ctx_clip.vision_model.hparams.image_size;
- image_size.height = ctx_clip.vision_model.hparams.image_size;
- img->nx = image_size.width;
- img->ny = image_size.height;
- img->buf.resize(image_size.width * image_size.height * 3);
- batch.entries.push_back(std::move(img));
- ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
- ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
- for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
- ggml_backend_t backend = ctx_clip.backend_ptrs[i];
- ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
- size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
- if (size > 1) {
- LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buft_name(buft),
- size / 1024.0 / 1024.0);
- }
- }
- }
- void get_bool(const std::string & key, bool & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_bool(ctx_gguf.get(), i);
- }
- void get_i32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_i32(ctx_gguf.get(), i);
- }
- void get_u32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_u32(ctx_gguf.get(), i);
- }
- void get_f32(const std::string & key, float & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_f32(ctx_gguf.get(), i);
- }
- void get_string(const std::string & key, std::string & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
- }
- void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- int n = gguf_get_arr_n(ctx_gguf.get(), i);
- output.resize(n);
- const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
- for (int i = 0; i < n; ++i) {
- output[i] = values[i];
- }
- }
- };
- // read and create ggml_context containing the tensors and their data
- struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
- return clip_init(fname, clip_context_params{
- /* use_gpu */ true,
- /* verbosity */ static_cast<ggml_log_level>(verbosity),
- });
- }
- struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
- g_logger_state.verbosity_thold = ctx_params.verbosity;
- clip_ctx * ctx_clip = new clip_ctx(ctx_params);
- try {
- clip_model_loader loader(fname, *ctx_clip);
- loader.load_hparams();
- loader.load_tensors();
- loader.alloc_compute_meta();
- } catch (const std::exception & e) {
- LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
- delete ctx_clip;
- return nullptr;
- }
- return ctx_clip;
- }
- void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
- ctx_clip->load_image_size = *load_image_size; // copy
- }
- struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
- return &ctx_clip->load_image_size;
- }
- struct clip_image_size * clip_image_size_init() {
- struct clip_image_size * load_image_size = new struct clip_image_size();
- load_image_size->width = 448;
- load_image_size->height = 448;
- return load_image_size;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- struct clip_image_f32_batch * clip_image_f32_batch_init() {
- return new clip_image_f32_batch();
- }
- unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
- if (nx) *nx = img->nx;
- if (ny) *ny = img->ny;
- return img->buf.data();
- }
- void clip_image_size_free(struct clip_image_size * load_image_size) {
- if (load_image_size == nullptr) {
- return;
- }
- delete load_image_size;
- }
- void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
- void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
- void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
- size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
- return batch->entries.size();
- }
- size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->nx;
- }
- size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->ny;
- }
- clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return nullptr;
- }
- return batch->entries[idx].get();
- }
- void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), rgb_pixels, img->buf.size());
- }
- bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
- if (!data) {
- LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
- return false;
- }
- clip_build_img_from_pixels(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
- if (!data) {
- LOG_ERR("%s: failed to decode image bytes\n", __func__);
- return false;
- }
- clip_build_img_from_pixels(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
- static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(src.buf.size());
- // TODO @ngxson : seems like this could be done more efficiently on cgraph
- for (size_t i = 0; i < src.buf.size(); ++i) {
- int c = i % 3; // rgb
- dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
- }
- }
- // set of tools to manupulate images
- // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
- struct image_manipulation {
- // Bilinear resize function
- static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float x_ratio = static_cast<float>(src.nx - 1) / target_width;
- float y_ratio = static_cast<float>(src.ny - 1) / target_height;
- for (int y = 0; y < target_height; y++) {
- for (int x = 0; x < target_width; x++) {
- float px = x_ratio * x;
- float py = y_ratio * y;
- int x_floor = static_cast<int>(px);
- int y_floor = static_cast<int>(py);
- float x_lerp = px - x_floor;
- float y_lerp = py - y_floor;
- for (int c = 0; c < 3; c++) {
- float top = lerp(
- static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- float bottom = lerp(
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
- }
- }
- }
- }
- // Bicubic resize function
- // part of image will be cropped if the aspect ratio is different
- static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
- const int nx = img.nx;
- const int ny = img.ny;
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float Cc;
- float C[5];
- float d0, d2, d3, a0, a1, a2, a3;
- int i, j, k, jj;
- int x, y;
- float dx, dy;
- float tx, ty;
- tx = (float)nx / (float)target_width;
- ty = (float)ny / (float)target_height;
- // Bicubic interpolation; adapted from ViT.cpp, inspired from :
- // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
- // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
- for (i = 0; i < target_height; i++) {
- for (j = 0; j < target_width; j++) {
- x = (int)(tx * j);
- y = (int)(ty * i);
- dx = tx * j - x;
- dy = ty * i - y;
- for (k = 0; k < 3; k++) {
- for (jj = 0; jj <= 3; jj++) {
- d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
- d0 = C[0] - C[1];
- d2 = C[2] - C[1];
- d3 = C[3] - C[1];
- a0 = C[1];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
- const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
- dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
- }
- }
- }
- }
- return true;
- }
- // llava-1.6 type of resize_and_pad
- // if the ratio is not 1:1, padding with pad_color will be applied
- // pad_color is single channel, default is 0 (black)
- static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
- int target_width = target_resolution.width;
- int target_height = target_resolution.height;
- float scale_w = static_cast<float>(target_width) / image.nx;
- float scale_h = static_cast<float>(target_height) / image.ny;
- int new_width, new_height;
- if (scale_w < scale_h) {
- new_width = target_width;
- new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
- } else {
- new_height = target_height;
- new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
- }
- clip_image_u8 resized_image;
- bicubic_resize(image, resized_image, new_width, new_height);
- clip_image_u8 padded_image;
- padded_image.nx = target_width;
- padded_image.ny = target_height;
- padded_image.buf.resize(3 * target_width * target_height);
- // Fill the padded image with the fill color
- for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
- padded_image.buf[i] = pad_color[0];
- padded_image.buf[i + 1] = pad_color[1];
- padded_image.buf[i + 2] = pad_color[2];
- }
- // Calculate padding offsets
- int pad_x = (target_width - new_width) / 2;
- int pad_y = (target_height - new_height) / 2;
- // Copy the resized image into the center of the padded buffer
- for (int y = 0; y < new_height; ++y) {
- for (int x = 0; x < new_width; ++x) {
- for (int c = 0; c < 3; ++c) {
- padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
- }
- }
- }
- dst = std::move(padded_image);
- }
- static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
- dst.nx = w;
- dst.ny = h;
- dst.buf.resize(3 * w * h);
- for (int i = 0; i < h; ++i) {
- for (int j = 0; j < w; ++j) {
- int src_idx = 3 * ((y + i)*image.nx + (x + j));
- int dst_idx = 3 * (i*w + j);
- dst.buf[dst_idx] = image.buf[src_idx];
- dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
- dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
- }
- }
- }
- // calculate the size of the **resized** image, while preserving the aspect ratio
- // the calculated size will be aligned to the nearest multiple of align_size
- // if H or W size is larger than max_dimension, it will be resized to max_dimension
- static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
- if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
- return {0, 0};
- }
- float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
- static_cast<float>(max_dimension) / inp_size.height));
- float target_width_f = static_cast<float>(inp_size.width) * scale;
- float target_height_f = static_cast<float>(inp_size.height) * scale;
- int aligned_width = GGML_PAD((int)target_width_f, align_size);
- int aligned_height = GGML_PAD((int)target_height_f, align_size);
- return {aligned_width, aligned_height};
- }
- private:
- static inline int clip(int x, int lower, int upper) {
- return std::max(lower, std::min(x, upper));
- }
- // Linear interpolation between two points
- static inline float lerp(float s, float e, float t) {
- return s + (e - s) * t;
- }
- };
- /**
- * implementation of LLaVA-UHD:
- * - https://arxiv.org/pdf/2403.11703
- * - https://github.com/thunlp/LLaVA-UHD
- * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
- *
- * overview:
- * - an image always have a single overview (downscaled image)
- * - an image can have 0 or multiple slices, depending on the image size
- * - each slice can then be considered as a separate image
- *
- * for example:
- *
- * [overview] --> [slice 1] --> [slice 2]
- * | |
- * +--> [slice 3] --> [slice 4]
- */
- struct llava_uhd {
- struct slice_coordinates {
- int x;
- int y;
- clip_image_size size;
- };
- struct slice_instructions {
- clip_image_size overview_size; // size of downscaled image
- clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
- clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
- std::vector<slice_coordinates> slices;
- bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
- };
- static int get_max_slices(struct clip_ctx * ctx) {
- if (clip_is_minicpmv(ctx)) {
- return 9;
- }
- return 0;
- }
- static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
- slice_instructions res;
- const int patch_size = clip_get_patch_size(ctx);
- const int slice_size = clip_get_image_size(ctx);
- const int max_slice_nums = get_max_slices(ctx);
- const int original_width = original_size.width;
- const int original_height = original_size.height;
- const float log_ratio = log((float)original_width / original_height);
- const float ratio = (float)original_width * original_height / (slice_size * slice_size);
- const int multiple = fmin(ceil(ratio), max_slice_nums);
- const bool has_slices = (multiple > 1);
- const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
- if (has_pinpoints) {
- // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
- auto refine_size = llava_uhd::select_best_resolution(
- ctx->vision_model.hparams.image_grid_pinpoints,
- original_size);
- res.overview_size = clip_image_size{slice_size, slice_size};
- res.refined_size = refine_size;
- res.grid_size = clip_image_size{0, 0};
- res.padding_refined = true;
- for (int y = 0; y < refine_size.height; y += slice_size) {
- for (int x = 0; x < refine_size.width; x += slice_size) {
- slice_coordinates slice;
- slice.x = x;
- slice.y = y;
- slice.size.width = std::min(slice_size, refine_size.width - x);
- slice.size.height = std::min(slice_size, refine_size.height - y);
- res.slices.push_back(slice);
- if (x == 0) {
- res.grid_size.width++;
- }
- }
- res.grid_size.height++;
- }
- return res;
- }
- // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
- auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
- res.overview_size = best_size;
- if (!has_slices) {
- // skip slicing logic
- res.refined_size = clip_image_size{0, 0};
- res.grid_size = clip_image_size{0, 0};
- } else {
- auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
- auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
- res.grid_size = best_grid;
- res.refined_size = refine_size;
- int width = refine_size.width;
- int height = refine_size.height;
- int grid_x = int(width / best_grid.width);
- int grid_y = int(height / best_grid.height);
- for (int patches_y = 0, ic = 0;
- patches_y < refine_size.height && ic < best_grid.height;
- patches_y += grid_y, ic += 1) {
- for (int patches_x = 0, jc = 0;
- patches_x < refine_size.width && jc < best_grid.width;
- patches_x += grid_x, jc += 1) {
- slice_coordinates slice;
- slice.x = patches_x;
- slice.y = patches_y;
- slice.size.width = grid_x;
- slice.size.height = grid_y;
- res.slices.push_back(slice);
- // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
- }
- }
- }
- return res;
- }
- static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
- std::vector<clip_image_u8_ptr> output;
- // resize to overview size
- clip_image_u8_ptr resized_img(clip_image_u8_init());
- image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
- output.push_back(std::move(resized_img));
- if (inst.slices.empty()) {
- // no slices, just return the resized image
- return output;
- }
- // resize to refined size
- clip_image_u8_ptr refined_img(clip_image_u8_init());
- if (inst.padding_refined) {
- image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
- } else {
- image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
- }
- // create slices
- for (const auto & slice : inst.slices) {
- int x = slice.x;
- int y = slice.y;
- int w = slice.size.width;
- int h = slice.size.height;
- clip_image_u8_ptr img_slice(clip_image_u8_init());
- image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
- output.push_back(std::move(img_slice));
- }
- return output;
- }
- private:
- static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
- float r = static_cast<float>(width) / height;
- height = static_cast<int>(scale_resolution / std::sqrt(r));
- width = static_cast<int>(height * r);
- }
- clip_image_size res;
- res.width = ensure_divide(width, patch_size);
- res.height = ensure_divide(height, patch_size);
- return res;
- }
- /**
- * Selects the best resolution from a list of possible resolutions based on the original size.
- *
- * @param original_size The original size of the image
- * @param possible_resolutions A list of possible resolutions
- * @return The best fit resolution
- */
- static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
- int original_width = original_size.width;
- int original_height = original_size.height;
- clip_image_size best_fit;
- int max_effective_resolution = 0;
- int min_wasted_resolution = std::numeric_limits<int>::max();
- for (const auto & resolution : possible_resolutions) {
- int width = resolution.width;
- int height = resolution.height;
- float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
- int downscaled_width = static_cast<int>(original_width * scale);
- int downscaled_height = static_cast<int>(original_height * scale);
- int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
- int wasted_resolution = (width * height) - effective_resolution;
- // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
- if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
- max_effective_resolution = effective_resolution;
- min_wasted_resolution = wasted_resolution;
- best_fit = resolution;
- }
- }
- return best_fit;
- }
- // used by llava 1.6 with custom list of pinpoints
- static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
- std::vector<clip_image_size> possible_resolutions;
- for (size_t i = 0; i < pinpoints.size(); i += 2) {
- possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
- }
- return select_best_resolution(original_size, possible_resolutions);
- }
- static int ensure_divide(int length, int patch_size) {
- return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
- }
- static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- int grid_x = grid.width;
- int grid_y = grid.height;
- int refine_width = ensure_divide(width, grid_x);
- int refine_height = ensure_divide(height, grid_y);
- clip_image_size grid_size;
- grid_size.width = refine_width / grid_x;
- grid_size.height = refine_height / grid_y;
- auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
- int best_grid_width = best_grid_size.width;
- int best_grid_height = best_grid_size.height;
- clip_image_size refine_size;
- refine_size.width = best_grid_width * grid_x;
- refine_size.height = best_grid_height * grid_y;
- return refine_size;
- }
- static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
- std::vector<int> candidate_split_grids_nums;
- for (int i : {multiple - 1, multiple, multiple + 1}) {
- if (i == 1 || i > max_slice_nums) {
- continue;
- }
- candidate_split_grids_nums.push_back(i);
- }
- std::vector<clip_image_size> candidate_grids;
- for (int split_grids_nums : candidate_split_grids_nums) {
- int m = 1;
- while (m <= split_grids_nums) {
- if (split_grids_nums % m == 0) {
- candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
- }
- ++m;
- }
- }
- clip_image_size best_grid{1, 1};
- float min_error = std::numeric_limits<float>::infinity();
- for (const auto& grid : candidate_grids) {
- float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
- if (error < min_error) {
- best_grid = grid;
- min_error = error;
- }
- }
- return best_grid;
- }
- };
- // TODO @ngxson : decprecate the load_image_size singleton pattern
- int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
- const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
- return inst.grid_size.width;
- }
- // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
- // res_imgs memory is being allocated here, previous allocations will be freed if found
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
- clip_image_size original_size{img->nx, img->ny};
- bool pad_to_square = true;
- auto & params = ctx->vision_model.hparams;
- // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
- if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
- pad_to_square = false;
- }
- if (clip_is_minicpmv(ctx)) {
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- return true;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
- clip_image_u8 resized;
- auto patch_size = clip_get_patch_size(ctx) * 2;
- int nx = ceil((float)img->nx / patch_size) * patch_size;
- int ny = ceil((float)img->ny / patch_size) * patch_size;
- image_manipulation::bicubic_resize(*img, resized, nx, ny);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- // clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
- // res_imgs->data[0] = *res;
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
- || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
- || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
- clip_image_u8 resized_image;
- int sz = params.image_size;
- image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- //clip_image_save_to_bmp(resized_image, "resized.bmp");
- normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
- clip_image_u8 resized_image;
- auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
- image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- }
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
- if (pad_to_square) {
- // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- const int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- // background color in RGB from LLaVA (this is the mean rgb color * 255)
- const std::array<uint8_t, 3> pad_color = {122, 116, 104};
- // resize the image to the target_size
- image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(res));
- return true;
- } else if (!params.image_grid_pinpoints.empty()) {
- // "spatial_unpad" with "anyres" processing for llava-1.6
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- return true;
- }
- GGML_ASSERT(false && "Unknown image preprocessing type");
- }
- ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
- return ctx->vision_model.image_newline;
- }
- void clip_free(clip_ctx * ctx) {
- if (ctx == nullptr) {
- return;
- }
- delete ctx;
- }
- // deprecated
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- const int32_t nx = ctx->vision_model.hparams.image_size;
- const int32_t ny = ctx->vision_model.hparams.image_size;
- return clip_embd_nbytes_by_img(ctx, nx, ny);
- }
- size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
- clip_image_f32 img;
- img.nx = img_w;
- img.ny = img_h;
- return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
- int32_t clip_get_image_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.image_size;
- }
- int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.patch_size;
- }
- int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.hidden_size;
- }
- const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
- }
- const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
- if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
- return &ctx->vision_model.hparams.image_grid_pinpoints.front();
- }
- return nullptr;
- }
- size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.image_grid_pinpoints.size();
- }
- // deprecated
- int clip_n_patches(const struct clip_ctx * ctx) {
- clip_image_f32 img;
- img.nx = ctx->vision_model.hparams.image_size;
- img.ny = ctx->vision_model.hparams.image_size;
- return clip_n_output_tokens(ctx, &img);
- }
- // deprecated
- int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- return clip_n_output_tokens(ctx, img);
- }
- int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->vision_model.hparams;
- const int n_total = clip_n_output_tokens(ctx, img);
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
- return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
- }
- return n_total;
- }
- int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->vision_model.hparams;
- if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
- return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
- }
- return 1;
- }
- int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->vision_model.hparams;
- int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- n_patches /= 4;
- } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- if (ctx->minicpmv_version == 2) {
- n_patches = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- n_patches = 64;
- }
- else if (ctx->minicpmv_version == 4) {
- n_patches = 64;
- }
- else {
- GGML_ABORT("Unknown minicpmv version");
- }
- } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
- int patch_size = params.patch_size * 2;
- int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
- int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
- n_patches = x_patch * y_patch;
- } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- n_patches = 256;
- } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
- n_patches /= ctx->vision_model.hparams.proj_scale_factor;
- } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
- int n_merge = ctx->vision_model.hparams.spatial_merge_size;
- int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
- int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
- n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
- }
- return n_patches;
- }
- static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
- assert(embed_dim % 2 == 0);
- int H = pos.size();
- int W = pos[0].size();
- std::vector<float> omega(embed_dim / 2);
- for (int i = 0; i < embed_dim / 2; ++i) {
- omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
- }
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- float out_value = pos[h][w] * omega[d];
- emb[h][w][d] = sin(out_value);
- emb[h][w][d + embed_dim / 2] = cos(out_value);
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
- assert(embed_dim % 2 == 0);
- std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
- std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
- int H = emb_h.size();
- int W = emb_h[0].size();
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- emb[h][w][d] = emb_h[h][w][d];
- emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
- int grid_h_size = image_size.first;
- int grid_w_size = image_size.second;
- std::vector<float> grid_h(grid_h_size);
- std::vector<float> grid_w(grid_w_size);
- for (int i = 0; i < grid_h_size; ++i) {
- grid_h[i] = static_cast<float>(i);
- }
- for (int i = 0; i < grid_w_size; ++i) {
- grid_w[i] = static_cast<float>(i);
- }
- std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid[h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid_2d[0][h][w] = grid_h[h];
- grid_2d[1][h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
- int H = image_size.first;
- int W = image_size.second;
- std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
- }
- }
- return pos_embed_2d;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- clip_image_f32_batch imgs;
- clip_image_f32_ptr img_copy(clip_image_f32_init());
- *img_copy = *img;
- imgs.entries.push_back(std::move(img_copy));
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
- const clip_image_f32_batch & imgs = *imgs_c_ptr;
- int batch_size = imgs.entries.size();
- if (ctx->has_llava_projector
- || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
- || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- GGML_ASSERT(batch_size == 1);
- }
- // build the inference graph
- ggml_backend_sched_reset(ctx->sched.get());
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
- ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
- // set inputs
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size_width = imgs.entries[0]->nx;
- const int image_size_height = imgs.entries[0]->ny;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int pos_w = ctx->load_image_size.width / patch_size;
- const int pos_h = ctx->load_image_size.height / patch_size;
- const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
- auto get_inp_tensor = [&gf](const char * name) {
- struct ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
- if (inp == nullptr) {
- GGML_ABORT("Failed to get tensor %s", name);
- }
- if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
- GGML_ABORT("Tensor %s is not an input tensor", name);
- }
- return inp;
- };
- auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
- ggml_tensor * cur = get_inp_tensor(name);
- GGML_ASSERT(cur->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
- ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
- };
- auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
- ggml_tensor * cur = get_inp_tensor(name);
- GGML_ASSERT(cur->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
- ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
- };
- // set input pixel values
- {
- size_t nelem = 0;
- for (const auto & img : imgs.entries) {
- nelem += img->nx * img->ny * 3;
- }
- std::vector<float> inp_raw(nelem);
- // layout of data (note: the channel dim is unrolled to better visualize the layout):
- //
- // ┌──W──┐
- // │ H │ channel = R
- // ├─────┤ │
- // │ H │ channel = G
- // ├─────┤ │
- // │ H │ channel = B
- // └─────┘ │
- // ──────┘ x B
- for (size_t i = 0; i < imgs.entries.size(); i++) {
- const int nx = imgs.entries[i]->nx;
- const int ny = imgs.entries[i]->ny;
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- float * batch_entry = inp_raw.data() + b * (3*n);
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- size_t base_src = 3*(y * nx + x); // idx of the first channel
- size_t base_dst = y * nx + x; // idx of the first channel
- batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
- batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
- batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
- }
- }
- }
- }
- set_input_f32("inp_raw", inp_raw);
- }
- // set input per projector
- switch (ctx->proj_type) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- // inspired from siglip:
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
- std::vector<int32_t> positions(pos_h * pos_w);
- int bucket_coords_h[1024];
- int bucket_coords_w[1024];
- for (int i = 0; i < pos_h; i++){
- bucket_coords_h[i] = std::floor(70.0*i/pos_h);
- }
- for (int i = 0; i < pos_w; i++){
- bucket_coords_w[i] = std::floor(70.0*i/pos_w);
- }
- for (int i = 0, id = 0; i < pos_h; i++){
- for (int j = 0; j < pos_w; j++){
- positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
- }
- }
- set_input_i32("positions", positions);
- // inspired from resampler of Qwen-VL:
- // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
- // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
- int embed_dim = clip_n_mmproj_embd(ctx);
- // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
- auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
- std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
- for(int i = 0; i < pos_w * pos_h; ++i){
- for(int j = 0; j < embed_dim; ++j){
- pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
- }
- }
- set_input_f32("pos_embed", pos_embed);
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- {
- const int merge_ratio = 2;
- const int pw = image_size_width / patch_size;
- const int ph = image_size_height / patch_size;
- std::vector<int> positions(num_positions * 4);
- int ptr = 0;
- for (int y = 0; y < ph; y += merge_ratio) {
- for (int x = 0; x < pw; x += merge_ratio) {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- positions[ ptr] = y + dy;
- positions[ num_patches + ptr] = x + dx;
- positions[2 * num_patches + ptr] = y + dy;
- positions[3 * num_patches + ptr] = x + dx;
- ptr++;
- }
- }
- }
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_QWEN25VL:
- {
- // pw * ph = number of tokens output by ViT after apply patch merger
- // ipw * ipw = number of vision token been processed inside ViT
- const int merge_ratio = 2;
- const int pw = image_size_width / patch_size / merge_ratio;
- const int ph = image_size_height / patch_size / merge_ratio;
- const int ipw = image_size_width / patch_size;
- const int iph = image_size_height / patch_size;
- std::vector<int> idx (ph * pw);
- std::vector<int> inv_idx(ph * pw);
- if (use_window_attn) {
- const int attn_window_size = 112;
- const int grid_window = attn_window_size / patch_size / merge_ratio;
- int dst = 0;
- // [num_vision_tokens, num_vision_tokens] attention mask tensor
- std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
- int mask_row = 0;
- for (int y = 0; y < ph; y += grid_window) {
- for (int x = 0; x < pw; x += grid_window) {
- const int win_h = std::min(grid_window, ph - y);
- const int win_w = std::min(grid_window, pw - x);
- const int dst_0 = dst;
- // group all tokens belong to the same window togather (to a continue range)
- for (int dy = 0; dy < win_h; dy++) {
- for (int dx = 0; dx < win_w; dx++) {
- const int src = (y + dy) * pw + (x + dx);
- GGML_ASSERT(src < (int)idx.size());
- GGML_ASSERT(dst < (int)inv_idx.size());
- idx [src] = dst;
- inv_idx[dst] = src;
- dst++;
- }
- }
- for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
- int row_offset = mask_row * (ipw * iph);
- std::fill(
- mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
- mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
- 0.0);
- mask_row++;
- }
- }
- }
- set_input_i32("window_idx", idx);
- set_input_i32("inv_window_idx", inv_idx);
- set_input_f32("window_mask", mask);
- } else {
- for (int i = 0; i < ph * pw; i++) {
- idx[i] = i;
- }
- }
- const int mpow = merge_ratio * merge_ratio;
- std::vector<int> positions(num_positions * 4);
- int ptr = 0;
- for (int y = 0; y < iph; y += merge_ratio) {
- for (int x = 0; x < ipw; x += merge_ratio) {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- auto remap = idx[ptr / mpow];
- remap = (remap * mpow) + (ptr % mpow);
- positions[ remap] = y + dy;
- positions[ num_patches + remap] = x + dx;
- positions[2 * num_patches + remap] = y + dy;
- positions[3 * num_patches + remap] = x + dx;
- ptr++;
- }
- }
- }
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- // set the 2D positions
- int n_patches_per_col = image_size_width / patch_size;
- std::vector<int> pos_data(num_positions);
- // dimension H
- for (int i = 0; i < num_positions; i++) {
- pos_data[i] = i / n_patches_per_col;
- }
- set_input_i32("pos_h", pos_data);
- // dimension W
- for (int i = 0; i < num_positions; i++) {
- pos_data[i] = i % n_patches_per_col;
- }
- set_input_i32("pos_w", pos_data);
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- // llava and other models
- std::vector<int32_t> positions(num_positions);
- for (int i = 0; i < num_positions; i++) {
- positions[i] = i;
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- case PROJECTOR_TYPE_LDP:
- case PROJECTOR_TYPE_LDPV2:
- {
- // llava and other models
- std::vector<int32_t> positions(num_positions);
- for (int i = 0; i < num_positions; i++) {
- positions[i] = i;
- }
- set_input_i32("positions", positions);
- // The patches vector is used to get rows to index into the embeds with;
- // we should skip dim 0 only if we have CLS to avoid going out of bounds
- // when retrieving the rows.
- int patch_offset = model.class_embedding ? 1 : 0;
- std::vector<int32_t> patches(num_patches);
- for (int i = 0; i < num_patches; i++) {
- patches[i] = i + patch_offset;
- }
- set_input_i32("patches", patches);
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- {
- // do nothing
- } break;
- default:
- GGML_ABORT("Unknown projector type");
- }
- ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
- auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
- if (status != GGML_STATUS_SUCCESS) {
- LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
- return false;
- }
- // the last node is the embedding tensor
- struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
- assert(itype < GGML_TYPE_COUNT);
- ggml_type type = static_cast<ggml_type>(itype);
- auto * ctx_clip = clip_init(fname_inp, clip_context_params{
- /* use_gpu */ false,
- /* verbosity */ GGML_LOG_LEVEL_ERROR,
- });
- const auto & ctx_src = ctx_clip->ctx_gguf.get();
- const auto & ctx_data = ctx_clip->ctx_data.get();
- auto * ctx_out = gguf_init_empty();
- gguf_set_kv(ctx_out, ctx_src);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", itype);
- auto fout = std::ofstream(fname_out, std::ios::binary);
- const int n_tensors = gguf_get_n_tensors(ctx_src);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
- gguf_add_tensor(ctx_out, cur);
- }
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- for (size_t i = 0; i < meta_size; ++i) {
- fout.put(0);
- }
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
- std::vector<uint8_t> work(512);
- std::vector<float> conv_buf(512);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- for (int i = 0; i < n_tensors; ++i) {
- const std::string name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
- // quantize only 2D tensors and bigger than block size
- quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
- if (quantize) {
- new_type = type;
- if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
- new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
- // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
- }
- const size_t n_elms = ggml_nelements(cur);
- float * f32_data;
- switch (cur->type) {
- case GGML_TYPE_F32:
- f32_data = (float *)cur->data;
- break;
- case GGML_TYPE_F16:
- if (conv_buf.size() < n_elms) {
- conv_buf.resize(n_elms);
- }
- for (size_t j = 0; j < n_elms; ++j) {
- conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
- }
- f32_data = (float *)conv_buf.data();
- break;
- default:
- LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
- gguf_free(ctx_out);
- return false;
- }
- if (work.size() < n_elms * 4) {
- work.resize(n_elms * 4);
- }
- new_data = work.data();
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
- } else {
- new_type = cur->type;
- new_data = cur->data;
- new_size = ggml_nbytes(cur);
- }
- const size_t orig_size = ggml_nbytes(cur);
- total_size_org += orig_size;
- total_size_new += new_size;
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
- fout.write((const char *)new_data, new_size);
- size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
- for (size_t j = 0; j < pad; ++j) {
- fout.put(0);
- }
- LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
- orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
- }
- // go back to beginning of file and write the updated metadata
- fout.seekp(0, std::ios::beg);
- std::vector<uint8_t> meta(meta_size);
- gguf_get_meta_data(ctx_out, meta.data());
- fout.write((const char *)meta.data(), meta_size);
- fout.close();
- clip_free(ctx_clip);
- gguf_free(ctx_out);
- {
- LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
- LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
- }
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- switch (ctx->proj_type) {
- case PROJECTOR_TYPE_LDP:
- return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
- case PROJECTOR_TYPE_LDPV2:
- return ctx->vision_model.mm_model_peg_0_b->ne[0];
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_PIXTRAL:
- return ctx->vision_model.mm_2_w->ne[1];
- case PROJECTOR_TYPE_MLP_NORM:
- return ctx->vision_model.mm_3_b->ne[0];
- case PROJECTOR_TYPE_MINICPMV:
- if (ctx->minicpmv_version == 2) {
- return 4096;
- } else if (ctx->minicpmv_version == 3) {
- return 3584;
- } else if (ctx->minicpmv_version == 4) {
- return 3584;
- }
- GGML_ABORT("Unknown minicpmv version");
- case PROJECTOR_TYPE_GLM_EDGE:
- return ctx->vision_model.mm_model_mlp_3_w->ne[1];
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- return ctx->vision_model.mm_1_b->ne[0];
- case PROJECTOR_TYPE_GEMMA3:
- return ctx->vision_model.mm_input_proj_w->ne[0];
- case PROJECTOR_TYPE_IDEFICS3:
- return ctx->vision_model.projection->ne[1];
- default:
- GGML_ABORT("Unknown projector type");
- }
- }
- int clip_is_minicpmv(const struct clip_ctx * ctx) {
- if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
- return ctx->minicpmv_version;
- }
- return 0;
- }
- bool clip_is_glm(const struct clip_ctx * ctx) {
- return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
- }
- bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
- return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
- }
- bool clip_is_llava(const struct clip_ctx * ctx) {
- return ctx->has_llava_projector;
- }
- bool clip_is_gemma3(const struct clip_ctx * ctx) {
- return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
- }
- bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
- clip_image_f32 clip_img;
- clip_img.buf.resize(h * w * 3);
- for (int i = 0; i < h*w*3; i++)
- {
- clip_img.buf[i] = img[i];
- }
- clip_img.nx = w;
- clip_img.ny = h;
- clip_image_encode(ctx, n_threads, &clip_img, vec);
- return true;
- }
- //
- // API used internally with mtmd
- //
- projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
- return ctx->proj_type;
- }
|