ggml.c 714 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "ggml-aarch64.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_OPENMP
  29. #include <omp.h>
  30. #endif
  31. #ifdef GGML_USE_METAL
  32. #include <unistd.h>
  33. #endif
  34. #if defined(__ARM_FEATURE_SVE)
  35. int ggml_sve_cnt_b = 0;
  36. #endif
  37. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  38. #undef GGML_USE_LLAMAFILE
  39. #endif
  40. #ifdef GGML_USE_LLAMAFILE
  41. #include <llamafile/sgemm.h>
  42. #endif
  43. #if defined(_MSC_VER)
  44. // disable "possible loss of data" to avoid hundreds of casts
  45. // we should just be careful :)
  46. #pragma warning(disable: 4244 4267)
  47. // disable POSIX deprecation warnings
  48. // these functions are never going away, anyway
  49. #pragma warning(disable: 4996)
  50. // unreachable code because of multiple instances of code after GGML_ABORT
  51. #pragma warning(disable: 4702)
  52. #endif
  53. #if defined(_WIN32)
  54. #define WIN32_LEAN_AND_MEAN
  55. #ifndef NOMINMAX
  56. #define NOMINMAX
  57. #endif
  58. #include <windows.h>
  59. typedef volatile LONG atomic_int;
  60. typedef atomic_int atomic_bool;
  61. typedef atomic_int atomic_flag;
  62. #define ATOMIC_FLAG_INIT 0
  63. static void atomic_store(atomic_int * ptr, LONG val) {
  64. InterlockedExchange(ptr, val);
  65. }
  66. static LONG atomic_load(atomic_int * ptr) {
  67. return InterlockedCompareExchange(ptr, 0, 0);
  68. }
  69. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  70. return InterlockedExchangeAdd(ptr, inc);
  71. }
  72. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  73. return atomic_fetch_add(ptr, -(dec));
  74. }
  75. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  76. return InterlockedExchange(ptr, 1);
  77. }
  78. static void atomic_flag_clear(atomic_flag * ptr) {
  79. InterlockedExchange(ptr, 0);
  80. }
  81. typedef HANDLE pthread_t;
  82. typedef DWORD thread_ret_t;
  83. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  84. (void) unused;
  85. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  86. if (handle == NULL)
  87. {
  88. return EAGAIN;
  89. }
  90. *out = handle;
  91. return 0;
  92. }
  93. static int pthread_join(pthread_t thread, void * unused) {
  94. (void) unused;
  95. int ret = (int) WaitForSingleObject(thread, INFINITE);
  96. CloseHandle(thread);
  97. return ret;
  98. }
  99. static int sched_yield (void) {
  100. Sleep (0);
  101. return 0;
  102. }
  103. #else
  104. #include <pthread.h>
  105. #include <stdatomic.h>
  106. typedef void * thread_ret_t;
  107. #include <sys/types.h>
  108. #include <sys/stat.h>
  109. #include <unistd.h>
  110. #endif
  111. typedef pthread_t ggml_thread_t;
  112. #ifdef GGML_USE_CPU_HBM
  113. #include <hbwmalloc.h>
  114. #endif
  115. #if defined(__APPLE__)
  116. #include <TargetConditionals.h>
  117. #endif
  118. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  119. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  120. #include <sys/wait.h>
  121. #if defined(__ANDROID__)
  122. #include <unwind.h>
  123. #include <dlfcn.h>
  124. #include <stdio.h>
  125. struct backtrace_state {
  126. void ** current;
  127. void ** end;
  128. };
  129. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  130. struct backtrace_state * state = (struct backtrace_state *)arg;
  131. uintptr_t pc = _Unwind_GetIP(context);
  132. if (pc) {
  133. if (state->current == state->end) {
  134. return _URC_END_OF_STACK;
  135. } else {
  136. *state->current++ = (void*)pc;
  137. }
  138. }
  139. return _URC_NO_REASON;
  140. }
  141. static void ggml_print_backtrace_symbols(void) {
  142. const int max = 100;
  143. void* buffer[max];
  144. struct backtrace_state state = {buffer, buffer + max};
  145. _Unwind_Backtrace(unwind_callback, &state);
  146. int count = state.current - buffer;
  147. for (int idx = 0; idx < count; ++idx) {
  148. const void * addr = buffer[idx];
  149. const char * symbol = "";
  150. Dl_info info;
  151. if (dladdr(addr, &info) && info.dli_sname) {
  152. symbol = info.dli_sname;
  153. }
  154. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  155. }
  156. }
  157. #elif defined(__linux__) && defined(__GLIBC__)
  158. #include <execinfo.h>
  159. static void ggml_print_backtrace_symbols(void) {
  160. void * trace[100];
  161. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  162. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  163. }
  164. #else
  165. static void ggml_print_backtrace_symbols(void) {
  166. // platform not supported
  167. }
  168. #endif
  169. static void ggml_print_backtrace(void) {
  170. char attach[32];
  171. snprintf(attach, sizeof(attach), "attach %d", getpid());
  172. int pid = fork();
  173. if (pid == 0) {
  174. // try gdb
  175. execlp("gdb", "gdb", "--batch",
  176. "-ex", "set style enabled on",
  177. "-ex", attach,
  178. "-ex", "bt -frame-info source-and-location",
  179. "-ex", "detach",
  180. "-ex", "quit",
  181. (char *) NULL);
  182. // try lldb
  183. execlp("lldb", "lldb", "--batch",
  184. "-o", "bt",
  185. "-o", "quit",
  186. "-p", attach,
  187. (char *) NULL);
  188. exit(EXIT_FAILURE);
  189. } else {
  190. int wstatus;
  191. waitpid(pid, &wstatus, 0);
  192. if (WIFEXITED(wstatus)) {
  193. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  194. // gdb failed, fallback to backtrace_symbols
  195. ggml_print_backtrace_symbols();
  196. }
  197. }
  198. }
  199. }
  200. #else
  201. static void ggml_print_backtrace(void) {
  202. // platform not supported
  203. }
  204. #endif
  205. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  206. fflush(stdout);
  207. fprintf(stderr, "%s:%d: ", file, line);
  208. va_list args;
  209. va_start(args, fmt);
  210. vfprintf(stderr, fmt, args);
  211. va_end(args);
  212. fprintf(stderr, "\n");
  213. ggml_print_backtrace();
  214. abort();
  215. }
  216. #define GGML_DEBUG 0
  217. #define GGML_GELU_FP16
  218. #define GGML_GELU_QUICK_FP16
  219. #define GGML_SOFT_MAX_UNROLL 4
  220. #define GGML_VEC_DOT_UNROLL 2
  221. #define GGML_VEC_MAD_UNROLL 32
  222. //
  223. // logging
  224. //
  225. #if (GGML_DEBUG >= 1)
  226. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  227. #else
  228. #define GGML_PRINT_DEBUG(...)
  229. #endif
  230. #if (GGML_DEBUG >= 5)
  231. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  232. #else
  233. #define GGML_PRINT_DEBUG_5(...)
  234. #endif
  235. #if (GGML_DEBUG >= 10)
  236. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  237. #else
  238. #define GGML_PRINT_DEBUG_10(...)
  239. #endif
  240. #define GGML_PRINT(...) printf(__VA_ARGS__)
  241. //
  242. // end of logging block
  243. //
  244. #ifdef GGML_USE_ACCELERATE
  245. // uncomment to use vDSP for soft max computation
  246. // note: not sure if it is actually faster
  247. //#define GGML_SOFT_MAX_ACCELERATE
  248. #endif
  249. #if defined(_MSC_VER) || defined(__MINGW32__)
  250. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  251. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  252. #else
  253. inline static void * ggml_aligned_malloc(size_t size) {
  254. if (size == 0) {
  255. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  256. return NULL;
  257. }
  258. void * aligned_memory = NULL;
  259. #ifdef GGML_USE_CPU_HBM
  260. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  261. #elif GGML_USE_METAL
  262. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  263. #else
  264. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  265. #endif
  266. if (result != 0) {
  267. // Handle allocation failure
  268. const char *error_desc = "unknown allocation error";
  269. switch (result) {
  270. case EINVAL:
  271. error_desc = "invalid alignment value";
  272. break;
  273. case ENOMEM:
  274. error_desc = "insufficient memory";
  275. break;
  276. }
  277. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  278. GGML_ABORT("fatal error");
  279. return NULL;
  280. }
  281. return aligned_memory;
  282. }
  283. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  284. #ifdef GGML_USE_CPU_HBM
  285. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  286. #else
  287. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  288. #endif
  289. #endif
  290. inline static void * ggml_malloc(size_t size) {
  291. if (size == 0) {
  292. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  293. return NULL;
  294. }
  295. void * result = malloc(size);
  296. if (result == NULL) {
  297. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  298. GGML_ABORT("fatal error");
  299. }
  300. return result;
  301. }
  302. // calloc
  303. inline static void * ggml_calloc(size_t num, size_t size) {
  304. if (num == 0 || size == 0) {
  305. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  306. return NULL;
  307. }
  308. void * result = calloc(num, size);
  309. if (result == NULL) {
  310. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  311. GGML_ABORT("fatal error");
  312. }
  313. return result;
  314. }
  315. #define GGML_MALLOC(size) ggml_malloc(size)
  316. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  317. #define GGML_FREE(ptr) free(ptr)
  318. #define UNUSED GGML_UNUSED
  319. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  320. #if defined(GGML_USE_ACCELERATE)
  321. #include <Accelerate/Accelerate.h>
  322. #endif
  323. // floating point type used to accumulate sums
  324. typedef double ggml_float;
  325. #undef MIN
  326. #undef MAX
  327. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  328. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  329. //
  330. // global data
  331. //
  332. // precomputed gelu table for f16 (128 KB)
  333. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  334. // precomputed quick gelu table for f16 (128 KB)
  335. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  336. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  337. float ggml_table_f32_f16[1 << 16];
  338. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  339. switch (status) {
  340. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  341. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  342. case GGML_STATUS_SUCCESS: return "GGML status: success";
  343. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  344. }
  345. return "GGML status: unknown";
  346. }
  347. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  348. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  349. return GGML_FP16_TO_FP32(x);
  350. }
  351. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  352. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  353. return GGML_FP32_TO_FP16(x);
  354. }
  355. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  356. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  357. return GGML_BF16_TO_FP32(x); // it just left shifts
  358. }
  359. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  360. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  361. return GGML_FP32_TO_BF16(x);
  362. }
  363. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  364. for (int64_t i = 0; i < n; i++) {
  365. y[i] = GGML_FP16_TO_FP32(x[i]);
  366. }
  367. }
  368. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  369. int64_t i = 0;
  370. #if defined(__F16C__)
  371. for (; i + 7 < n; i += 8) {
  372. __m256 x_vec = _mm256_loadu_ps(x + i);
  373. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  374. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  375. }
  376. for(; i + 3 < n; i += 4) {
  377. __m128 x_vec = _mm_loadu_ps(x + i);
  378. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  379. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  380. }
  381. #endif
  382. for (; i < n; i++) {
  383. y[i] = GGML_FP32_TO_FP16(x[i]);
  384. }
  385. }
  386. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  387. int64_t i = 0;
  388. #if defined(__AVX512F__)
  389. for (; i + 16 <= n; i += 16) {
  390. _mm512_storeu_ps(y + i,
  391. _mm512_castsi512_ps(
  392. _mm512_slli_epi32(
  393. _mm512_cvtepu16_epi32(
  394. _mm256_loadu_si256(
  395. (const __m256i *)(x + i))),
  396. 16)));
  397. }
  398. #elif defined(__AVX2__)
  399. for (; i + 8 <= n; i += 8) {
  400. _mm256_storeu_ps(y + i,
  401. _mm256_castsi256_ps(
  402. _mm256_slli_epi32(
  403. _mm256_cvtepu16_epi32(
  404. _mm_loadu_si128(
  405. (const __m128i *)(x + i))),
  406. 16)));
  407. }
  408. #endif
  409. for (; i < n; i++) {
  410. y[i] = GGML_BF16_TO_FP32(x[i]);
  411. }
  412. }
  413. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  414. for (int i = 0; i < n; i++) {
  415. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  416. }
  417. }
  418. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  419. int i = 0;
  420. #if defined(__AVX512BF16__)
  421. // subnormals are flushed to zero on this platform
  422. for (; i + 32 <= n; i += 32) {
  423. _mm512_storeu_si512(
  424. (__m512i *)(y + i),
  425. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  426. _mm512_loadu_ps(x + i))));
  427. }
  428. #endif
  429. for (; i < n; i++) {
  430. y[i] = GGML_FP32_TO_BF16(x[i]);
  431. }
  432. }
  433. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  434. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  435. }
  436. //
  437. // timing
  438. //
  439. #if defined(_MSC_VER) || defined(__MINGW32__)
  440. static int64_t timer_freq, timer_start;
  441. void ggml_time_init(void) {
  442. LARGE_INTEGER t;
  443. QueryPerformanceFrequency(&t);
  444. timer_freq = t.QuadPart;
  445. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  446. // and the uptime is high enough.
  447. // We subtract the program start time to reduce the likelihood of that happening.
  448. QueryPerformanceCounter(&t);
  449. timer_start = t.QuadPart;
  450. }
  451. int64_t ggml_time_ms(void) {
  452. LARGE_INTEGER t;
  453. QueryPerformanceCounter(&t);
  454. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  455. }
  456. int64_t ggml_time_us(void) {
  457. LARGE_INTEGER t;
  458. QueryPerformanceCounter(&t);
  459. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  460. }
  461. #else
  462. void ggml_time_init(void) {}
  463. int64_t ggml_time_ms(void) {
  464. struct timespec ts;
  465. clock_gettime(CLOCK_MONOTONIC, &ts);
  466. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  467. }
  468. int64_t ggml_time_us(void) {
  469. struct timespec ts;
  470. clock_gettime(CLOCK_MONOTONIC, &ts);
  471. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  472. }
  473. #endif
  474. int64_t ggml_cycles(void) {
  475. return clock();
  476. }
  477. int64_t ggml_cycles_per_ms(void) {
  478. return CLOCKS_PER_SEC/1000;
  479. }
  480. //
  481. // cross-platform UTF-8 file paths
  482. //
  483. #ifdef _WIN32
  484. static wchar_t * ggml_mbstowcs(const char * mbs) {
  485. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  486. if (!wlen) {
  487. errno = EINVAL;
  488. return NULL;
  489. }
  490. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  491. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  492. if (!wlen) {
  493. GGML_FREE(wbuf);
  494. errno = EINVAL;
  495. return NULL;
  496. }
  497. return wbuf;
  498. }
  499. #endif
  500. FILE * ggml_fopen(const char * fname, const char * mode) {
  501. #ifdef _WIN32
  502. FILE * file = NULL;
  503. // convert fname (UTF-8)
  504. wchar_t * wfname = ggml_mbstowcs(fname);
  505. if (wfname) {
  506. // convert mode (ANSI)
  507. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  508. wchar_t * wmode_p = wmode;
  509. do {
  510. *wmode_p++ = (wchar_t)*mode;
  511. } while (*mode++);
  512. // open file
  513. file = _wfopen(wfname, wmode);
  514. GGML_FREE(wfname);
  515. GGML_FREE(wmode);
  516. }
  517. return file;
  518. #else
  519. return fopen(fname, mode);
  520. #endif
  521. }
  522. //
  523. // cache line
  524. //
  525. #if defined(__cpp_lib_hardware_interference_size)
  526. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  527. #else
  528. #if defined(__POWER9_VECTOR__)
  529. #define CACHE_LINE_SIZE 128
  530. #else
  531. #define CACHE_LINE_SIZE 64
  532. #endif
  533. #endif
  534. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  535. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  536. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  537. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  538. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  539. [GGML_TYPE_I8] = {
  540. .type_name = "i8",
  541. .blck_size = 1,
  542. .type_size = sizeof(int8_t),
  543. .is_quantized = false,
  544. },
  545. [GGML_TYPE_I16] = {
  546. .type_name = "i16",
  547. .blck_size = 1,
  548. .type_size = sizeof(int16_t),
  549. .is_quantized = false,
  550. },
  551. [GGML_TYPE_I32] = {
  552. .type_name = "i32",
  553. .blck_size = 1,
  554. .type_size = sizeof(int32_t),
  555. .is_quantized = false,
  556. },
  557. [GGML_TYPE_I64] = {
  558. .type_name = "i64",
  559. .blck_size = 1,
  560. .type_size = sizeof(int64_t),
  561. .is_quantized = false,
  562. },
  563. [GGML_TYPE_F64] = {
  564. .type_name = "f64",
  565. .blck_size = 1,
  566. .type_size = sizeof(double),
  567. .is_quantized = false,
  568. .nrows = 1,
  569. },
  570. [GGML_TYPE_F32] = {
  571. .type_name = "f32",
  572. .blck_size = 1,
  573. .type_size = sizeof(float),
  574. .is_quantized = false,
  575. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  576. .vec_dot_type = GGML_TYPE_F32,
  577. .nrows = 1,
  578. },
  579. [GGML_TYPE_F16] = {
  580. .type_name = "f16",
  581. .blck_size = 1,
  582. .type_size = sizeof(ggml_fp16_t),
  583. .is_quantized = false,
  584. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  585. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  586. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  587. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  588. .vec_dot_type = GGML_TYPE_F16,
  589. .nrows = 1,
  590. },
  591. [GGML_TYPE_Q4_0] = {
  592. .type_name = "q4_0",
  593. .blck_size = QK4_0,
  594. .type_size = sizeof(block_q4_0),
  595. .is_quantized = true,
  596. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  597. .from_float = quantize_row_q4_0,
  598. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  599. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  600. .vec_dot_type = GGML_TYPE_Q8_0,
  601. #if defined (__ARM_FEATURE_MATMUL_INT8)
  602. .nrows = 2,
  603. #else
  604. .nrows = 1,
  605. #endif
  606. },
  607. [GGML_TYPE_Q4_1] = {
  608. .type_name = "q4_1",
  609. .blck_size = QK4_1,
  610. .type_size = sizeof(block_q4_1),
  611. .is_quantized = true,
  612. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  613. .from_float = quantize_row_q4_1,
  614. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  615. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  616. .vec_dot_type = GGML_TYPE_Q8_1,
  617. #if defined (__ARM_FEATURE_MATMUL_INT8)
  618. .nrows = 2,
  619. #else
  620. .nrows = 1,
  621. #endif
  622. },
  623. [4] = { // GGML_TYPE_Q4_2
  624. .type_name = "DEPRECATED",
  625. .blck_size = 0,
  626. .type_size = 0,
  627. .is_quantized = false,
  628. .to_float = NULL,
  629. .from_float = NULL,
  630. .from_float_ref = NULL,
  631. .vec_dot = NULL,
  632. .vec_dot_type = GGML_TYPE_COUNT,
  633. .nrows = 1,
  634. },
  635. [5] = { // GGML_TYPE_Q4_3
  636. .type_name = "DEPRECATED",
  637. .blck_size = 0,
  638. .type_size = 0,
  639. .is_quantized = false,
  640. .to_float = NULL,
  641. .from_float = NULL,
  642. .from_float_ref = NULL,
  643. .vec_dot = NULL,
  644. .vec_dot_type = GGML_TYPE_COUNT,
  645. .nrows = 1,
  646. },
  647. [GGML_TYPE_Q5_0] = {
  648. .type_name = "q5_0",
  649. .blck_size = QK5_0,
  650. .type_size = sizeof(block_q5_0),
  651. .is_quantized = true,
  652. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  653. .from_float = quantize_row_q5_0,
  654. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  655. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  656. .vec_dot_type = GGML_TYPE_Q8_0,
  657. .nrows = 1,
  658. },
  659. [GGML_TYPE_Q5_1] = {
  660. .type_name = "q5_1",
  661. .blck_size = QK5_1,
  662. .type_size = sizeof(block_q5_1),
  663. .is_quantized = true,
  664. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  665. .from_float = quantize_row_q5_1,
  666. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  667. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  668. .vec_dot_type = GGML_TYPE_Q8_1,
  669. .nrows = 1,
  670. },
  671. [GGML_TYPE_Q8_0] = {
  672. .type_name = "q8_0",
  673. .blck_size = QK8_0,
  674. .type_size = sizeof(block_q8_0),
  675. .is_quantized = true,
  676. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  677. .from_float = quantize_row_q8_0,
  678. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  679. .from_float_to_mat = quantize_mat_q8_0,
  680. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  681. .vec_dot_type = GGML_TYPE_Q8_0,
  682. #if defined (__ARM_FEATURE_MATMUL_INT8)
  683. .nrows = 2,
  684. #else
  685. .nrows = 1,
  686. #endif
  687. },
  688. [GGML_TYPE_Q8_1] = {
  689. .type_name = "q8_1",
  690. .blck_size = QK8_1,
  691. .type_size = sizeof(block_q8_1),
  692. .is_quantized = true,
  693. .from_float = quantize_row_q8_1,
  694. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  695. .vec_dot_type = GGML_TYPE_Q8_1,
  696. .nrows = 1,
  697. },
  698. [GGML_TYPE_Q2_K] = {
  699. .type_name = "q2_K",
  700. .blck_size = QK_K,
  701. .type_size = sizeof(block_q2_K),
  702. .is_quantized = true,
  703. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  704. .from_float = quantize_row_q2_K,
  705. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  706. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  707. .vec_dot_type = GGML_TYPE_Q8_K,
  708. .nrows = 1,
  709. },
  710. [GGML_TYPE_Q3_K] = {
  711. .type_name = "q3_K",
  712. .blck_size = QK_K,
  713. .type_size = sizeof(block_q3_K),
  714. .is_quantized = true,
  715. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  716. .from_float = quantize_row_q3_K,
  717. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  718. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  719. .vec_dot_type = GGML_TYPE_Q8_K,
  720. .nrows = 1,
  721. },
  722. [GGML_TYPE_Q4_K] = {
  723. .type_name = "q4_K",
  724. .blck_size = QK_K,
  725. .type_size = sizeof(block_q4_K),
  726. .is_quantized = true,
  727. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  728. .from_float = quantize_row_q4_K,
  729. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  730. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  731. .vec_dot_type = GGML_TYPE_Q8_K,
  732. .nrows = 1,
  733. },
  734. [GGML_TYPE_Q5_K] = {
  735. .type_name = "q5_K",
  736. .blck_size = QK_K,
  737. .type_size = sizeof(block_q5_K),
  738. .is_quantized = true,
  739. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  740. .from_float = quantize_row_q5_K,
  741. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  742. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  743. .vec_dot_type = GGML_TYPE_Q8_K,
  744. .nrows = 1,
  745. },
  746. [GGML_TYPE_Q6_K] = {
  747. .type_name = "q6_K",
  748. .blck_size = QK_K,
  749. .type_size = sizeof(block_q6_K),
  750. .is_quantized = true,
  751. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  752. .from_float = quantize_row_q6_K,
  753. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  754. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  755. .vec_dot_type = GGML_TYPE_Q8_K,
  756. .nrows = 1,
  757. },
  758. [GGML_TYPE_IQ2_XXS] = {
  759. .type_name = "iq2_xxs",
  760. .blck_size = QK_K,
  761. .type_size = sizeof(block_iq2_xxs),
  762. .is_quantized = true,
  763. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  764. .from_float = NULL,
  765. .from_float_ref = NULL,
  766. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  767. .vec_dot_type = GGML_TYPE_Q8_K,
  768. .nrows = 1,
  769. },
  770. [GGML_TYPE_IQ2_XS] = {
  771. .type_name = "iq2_xs",
  772. .blck_size = QK_K,
  773. .type_size = sizeof(block_iq2_xs),
  774. .is_quantized = true,
  775. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  776. .from_float = NULL,
  777. .from_float_ref = NULL,
  778. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  779. .vec_dot_type = GGML_TYPE_Q8_K,
  780. .nrows = 1,
  781. },
  782. [GGML_TYPE_IQ3_XXS] = {
  783. .type_name = "iq3_xxs",
  784. .blck_size = QK_K,
  785. .type_size = sizeof(block_iq3_xxs),
  786. .is_quantized = true,
  787. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  788. .from_float = quantize_row_iq3_xxs,
  789. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  790. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  791. .vec_dot_type = GGML_TYPE_Q8_K,
  792. .nrows = 1,
  793. },
  794. [GGML_TYPE_IQ3_S] = {
  795. .type_name = "iq3_s",
  796. .blck_size = QK_K,
  797. .type_size = sizeof(block_iq3_s),
  798. .is_quantized = true,
  799. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  800. .from_float = quantize_row_iq3_s,
  801. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  802. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  803. .vec_dot_type = GGML_TYPE_Q8_K,
  804. .nrows = 1,
  805. },
  806. [GGML_TYPE_IQ2_S] = {
  807. .type_name = "iq2_s",
  808. .blck_size = QK_K,
  809. .type_size = sizeof(block_iq2_s),
  810. .is_quantized = true,
  811. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  812. .from_float = quantize_row_iq2_s,
  813. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  814. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  815. .vec_dot_type = GGML_TYPE_Q8_K,
  816. .nrows = 1,
  817. },
  818. [GGML_TYPE_IQ1_S] = {
  819. .type_name = "iq1_s",
  820. .blck_size = QK_K,
  821. .type_size = sizeof(block_iq1_s),
  822. .is_quantized = true,
  823. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  824. .from_float = NULL,
  825. .from_float_ref = NULL,
  826. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  827. .vec_dot_type = GGML_TYPE_Q8_K,
  828. .nrows = 1,
  829. },
  830. [GGML_TYPE_IQ1_M] = {
  831. .type_name = "iq1_m",
  832. .blck_size = QK_K,
  833. .type_size = sizeof(block_iq1_m),
  834. .is_quantized = true,
  835. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  836. .from_float = NULL,
  837. .from_float_ref = NULL,
  838. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  839. .vec_dot_type = GGML_TYPE_Q8_K,
  840. .nrows = 1,
  841. },
  842. [GGML_TYPE_IQ4_NL] = {
  843. .type_name = "iq4_nl",
  844. .blck_size = QK4_NL,
  845. .type_size = sizeof(block_iq4_nl),
  846. .is_quantized = true,
  847. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  848. .from_float = quantize_row_iq4_nl,
  849. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  850. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  851. .vec_dot_type = GGML_TYPE_Q8_0,
  852. .nrows = 1,
  853. },
  854. [GGML_TYPE_IQ4_XS] = {
  855. .type_name = "iq4_xs",
  856. .blck_size = QK_K,
  857. .type_size = sizeof(block_iq4_xs),
  858. .is_quantized = true,
  859. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  860. .from_float = quantize_row_iq4_xs,
  861. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  862. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  863. .vec_dot_type = GGML_TYPE_Q8_K,
  864. .nrows = 1,
  865. },
  866. [GGML_TYPE_Q8_K] = {
  867. .type_name = "q8_K",
  868. .blck_size = QK_K,
  869. .type_size = sizeof(block_q8_K),
  870. .is_quantized = true,
  871. .from_float = quantize_row_q8_K,
  872. },
  873. [GGML_TYPE_BF16] = {
  874. .type_name = "bf16",
  875. .blck_size = 1,
  876. .type_size = sizeof(ggml_bf16_t),
  877. .is_quantized = false,
  878. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  879. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  880. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  881. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  882. .vec_dot_type = GGML_TYPE_BF16,
  883. .nrows = 1,
  884. },
  885. [GGML_TYPE_Q4_0_4_4] = {
  886. .type_name = "q4_0_4x4",
  887. .blck_size = QK4_0,
  888. .blck_size_interleave = 4,
  889. .type_size = sizeof(block_q4_0),
  890. .is_quantized = true,
  891. .to_float = NULL,
  892. .from_float = NULL,
  893. .from_float_ref = NULL,
  894. .vec_dot = NULL,
  895. .vec_dot_type = GGML_TYPE_Q8_0,
  896. .nrows = 1,
  897. .ncols = 4,
  898. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  899. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  900. },
  901. [GGML_TYPE_Q4_0_4_8] = {
  902. .type_name = "q4_0_4x8",
  903. .blck_size = QK4_0,
  904. .blck_size_interleave = 8,
  905. .type_size = sizeof(block_q4_0),
  906. .is_quantized = true,
  907. .to_float = NULL,
  908. .from_float = NULL,
  909. .from_float_ref = NULL,
  910. .vec_dot = NULL,
  911. .vec_dot_type = GGML_TYPE_Q8_0,
  912. .nrows = 1,
  913. .ncols = 4,
  914. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  915. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  916. },
  917. [GGML_TYPE_Q4_0_8_8] = {
  918. .type_name = "q4_0_8x8",
  919. .blck_size = QK4_0,
  920. .blck_size_interleave = 8,
  921. .type_size = sizeof(block_q4_0),
  922. .is_quantized = true,
  923. .to_float = NULL,
  924. .from_float = NULL,
  925. .from_float_ref = NULL,
  926. .vec_dot = NULL,
  927. .vec_dot_type = GGML_TYPE_Q8_0,
  928. .nrows = 1,
  929. .ncols = 8,
  930. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  931. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  932. }
  933. };
  934. // For internal test use
  935. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  936. GGML_ASSERT(type < GGML_TYPE_COUNT);
  937. return type_traits[type];
  938. }
  939. //
  940. // simd mappings
  941. //
  942. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  943. // we then implement the fundamental computation operations below using only these macros
  944. // adding support for new architectures requires to define the corresponding SIMD macros
  945. //
  946. // GGML_F32_STEP / GGML_F16_STEP
  947. // number of elements to process in a single step
  948. //
  949. // GGML_F32_EPR / GGML_F16_EPR
  950. // number of elements to fit in a single register
  951. //
  952. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  953. #define GGML_SIMD
  954. // F32 NEON
  955. #define GGML_F32_STEP 16
  956. #define GGML_F32_EPR 4
  957. #define GGML_F32x4 float32x4_t
  958. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  959. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  960. #define GGML_F32x4_LOAD vld1q_f32
  961. #define GGML_F32x4_STORE vst1q_f32
  962. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  963. #define GGML_F32x4_ADD vaddq_f32
  964. #define GGML_F32x4_MUL vmulq_f32
  965. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  966. #define GGML_F32x4_REDUCE(res, x) \
  967. { \
  968. int offset = GGML_F32_ARR >> 1; \
  969. for (int i = 0; i < offset; ++i) { \
  970. x[i] = vaddq_f32(x[i], x[offset+i]); \
  971. } \
  972. offset >>= 1; \
  973. for (int i = 0; i < offset; ++i) { \
  974. x[i] = vaddq_f32(x[i], x[offset+i]); \
  975. } \
  976. offset >>= 1; \
  977. for (int i = 0; i < offset; ++i) { \
  978. x[i] = vaddq_f32(x[i], x[offset+i]); \
  979. } \
  980. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  981. }
  982. #define GGML_F32_VEC GGML_F32x4
  983. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  984. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  985. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  986. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  987. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  988. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  989. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  990. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  991. // F16 NEON
  992. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  993. #define GGML_F16_STEP 32
  994. #define GGML_F16_EPR 8
  995. #define GGML_F16x8 float16x8_t
  996. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  997. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  998. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  999. #define GGML_F16x8_STORE vst1q_f16
  1000. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1001. #define GGML_F16x8_ADD vaddq_f16
  1002. #define GGML_F16x8_MUL vmulq_f16
  1003. #define GGML_F16x8_REDUCE(res, x) \
  1004. do { \
  1005. int offset = GGML_F16_ARR >> 1; \
  1006. for (int i = 0; i < offset; ++i) { \
  1007. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1008. } \
  1009. offset >>= 1; \
  1010. for (int i = 0; i < offset; ++i) { \
  1011. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1012. } \
  1013. offset >>= 1; \
  1014. for (int i = 0; i < offset; ++i) { \
  1015. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1016. } \
  1017. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1018. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1019. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1020. } while (0)
  1021. #define GGML_F16_VEC GGML_F16x8
  1022. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1023. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1024. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1025. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  1026. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1027. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1028. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1029. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1030. #else
  1031. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1032. // and take advantage of the vcvt_ functions to convert to/from FP16
  1033. #define GGML_F16_STEP 16
  1034. #define GGML_F16_EPR 4
  1035. #define GGML_F32Cx4 float32x4_t
  1036. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1037. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1038. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1039. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1040. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1041. #define GGML_F32Cx4_ADD vaddq_f32
  1042. #define GGML_F32Cx4_MUL vmulq_f32
  1043. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1044. #define GGML_F16_VEC GGML_F32Cx4
  1045. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1046. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1047. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1048. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1049. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1050. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1051. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1052. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1053. #endif
  1054. #elif defined(__AVX512F__)
  1055. #define GGML_SIMD
  1056. // F32 AVX512
  1057. #define GGML_F32_STEP 64
  1058. #define GGML_F32_EPR 16
  1059. #define GGML_F32x16 __m512
  1060. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1061. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1062. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1063. #define GGML_F32x16_STORE _mm512_storeu_ps
  1064. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1065. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1066. #define GGML_F32x16_ADD _mm512_add_ps
  1067. #define GGML_F32x16_MUL _mm512_mul_ps
  1068. #define GGML_F32x16_REDUCE(res, x) \
  1069. do { \
  1070. int offset = GGML_F32_ARR >> 1; \
  1071. for (int i = 0; i < offset; ++i) { \
  1072. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1073. } \
  1074. offset >>= 1; \
  1075. for (int i = 0; i < offset; ++i) { \
  1076. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1077. } \
  1078. offset >>= 1; \
  1079. for (int i = 0; i < offset; ++i) { \
  1080. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1081. } \
  1082. res = _mm512_reduce_add_ps(x[0]); \
  1083. } while (0)
  1084. // TODO: is this optimal ?
  1085. #define GGML_F32_VEC GGML_F32x16
  1086. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1087. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1088. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1089. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1090. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1091. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1092. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1093. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1094. // F16 AVX512
  1095. // F16 AVX
  1096. #define GGML_F16_STEP 64
  1097. #define GGML_F16_EPR 16
  1098. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1099. #define GGML_F32Cx16 __m512
  1100. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1101. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1102. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1103. // so F16C guard isn't required
  1104. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1105. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1106. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1107. #define GGML_F32Cx16_ADD _mm512_add_ps
  1108. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1109. #define GGML_F32Cx16_REDUCE(res, x) \
  1110. do { \
  1111. int offset = GGML_F32_ARR >> 1; \
  1112. for (int i = 0; i < offset; ++i) { \
  1113. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1114. } \
  1115. offset >>= 1; \
  1116. for (int i = 0; i < offset; ++i) { \
  1117. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1118. } \
  1119. offset >>= 1; \
  1120. for (int i = 0; i < offset; ++i) { \
  1121. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1122. } \
  1123. res = _mm512_reduce_add_ps(x[0]); \
  1124. } while (0)
  1125. #define GGML_F16_VEC GGML_F32Cx16
  1126. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1127. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1128. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1129. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1130. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1131. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1132. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1133. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1134. #elif defined(__AVX__)
  1135. #define GGML_SIMD
  1136. // F32 AVX
  1137. #define GGML_F32_STEP 32
  1138. #define GGML_F32_EPR 8
  1139. #define GGML_F32x8 __m256
  1140. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1141. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1142. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1143. #define GGML_F32x8_STORE _mm256_storeu_ps
  1144. #if defined(__FMA__)
  1145. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1146. #else
  1147. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1148. #endif
  1149. #define GGML_F32x8_ADD _mm256_add_ps
  1150. #define GGML_F32x8_MUL _mm256_mul_ps
  1151. #define GGML_F32x8_REDUCE(res, x) \
  1152. do { \
  1153. int offset = GGML_F32_ARR >> 1; \
  1154. for (int i = 0; i < offset; ++i) { \
  1155. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1156. } \
  1157. offset >>= 1; \
  1158. for (int i = 0; i < offset; ++i) { \
  1159. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1160. } \
  1161. offset >>= 1; \
  1162. for (int i = 0; i < offset; ++i) { \
  1163. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1164. } \
  1165. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1166. _mm256_extractf128_ps(x[0], 1)); \
  1167. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1168. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1169. } while (0)
  1170. // TODO: is this optimal ?
  1171. #define GGML_F32_VEC GGML_F32x8
  1172. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1173. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1174. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1175. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1176. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1177. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1178. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1179. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1180. // F16 AVX
  1181. #define GGML_F16_STEP 32
  1182. #define GGML_F16_EPR 8
  1183. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1184. #define GGML_F32Cx8 __m256
  1185. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1186. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1187. #if defined(__F16C__)
  1188. // the _mm256_cvt intrinsics require F16C
  1189. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1190. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1191. #else
  1192. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1193. float tmp[8];
  1194. for (int i = 0; i < 8; i++) {
  1195. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1196. }
  1197. return _mm256_loadu_ps(tmp);
  1198. }
  1199. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1200. float arr[8];
  1201. _mm256_storeu_ps(arr, y);
  1202. for (int i = 0; i < 8; i++)
  1203. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1204. }
  1205. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1206. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1207. #endif
  1208. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1209. #define GGML_F32Cx8_ADD _mm256_add_ps
  1210. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1211. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1212. #define GGML_F16_VEC GGML_F32Cx8
  1213. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1214. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1215. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1216. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1217. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1218. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1219. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1220. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1221. #elif defined(__POWER9_VECTOR__)
  1222. #define GGML_SIMD
  1223. // F32 POWER9
  1224. #define GGML_F32_STEP 32
  1225. #define GGML_F32_EPR 4
  1226. #define GGML_F32x4 vector float
  1227. #define GGML_F32x4_ZERO 0.0f
  1228. #define GGML_F32x4_SET1 vec_splats
  1229. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1230. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1231. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1232. #define GGML_F32x4_ADD vec_add
  1233. #define GGML_F32x4_MUL vec_mul
  1234. #define GGML_F32x4_REDUCE(res, x) \
  1235. { \
  1236. int offset = GGML_F32_ARR >> 1; \
  1237. for (int i = 0; i < offset; ++i) { \
  1238. x[i] = vec_add(x[i], x[offset+i]); \
  1239. } \
  1240. offset >>= 1; \
  1241. for (int i = 0; i < offset; ++i) { \
  1242. x[i] = vec_add(x[i], x[offset+i]); \
  1243. } \
  1244. offset >>= 1; \
  1245. for (int i = 0; i < offset; ++i) { \
  1246. x[i] = vec_add(x[i], x[offset+i]); \
  1247. } \
  1248. res = vec_extract(x[0], 0) + \
  1249. vec_extract(x[0], 1) + \
  1250. vec_extract(x[0], 2) + \
  1251. vec_extract(x[0], 3); \
  1252. }
  1253. #define GGML_F32_VEC GGML_F32x4
  1254. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1255. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1256. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1257. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1258. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1259. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1260. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1261. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1262. // F16 POWER9
  1263. #define GGML_F16_STEP GGML_F32_STEP
  1264. #define GGML_F16_EPR GGML_F32_EPR
  1265. #define GGML_F16_VEC GGML_F32x4
  1266. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1267. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1268. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1269. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1270. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1271. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1272. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1273. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1274. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1275. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1276. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1277. #define GGML_F16_VEC_STORE(p, r, i) \
  1278. if (i & 0x1) \
  1279. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1280. r[i - GGML_ENDIAN_BYTE(0)]), \
  1281. 0, p - GGML_F16_EPR)
  1282. #elif defined(__wasm_simd128__)
  1283. #define GGML_SIMD
  1284. // F32 WASM
  1285. #define GGML_F32_STEP 16
  1286. #define GGML_F32_EPR 4
  1287. #define GGML_F32x4 v128_t
  1288. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1289. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1290. #define GGML_F32x4_LOAD wasm_v128_load
  1291. #define GGML_F32x4_STORE wasm_v128_store
  1292. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1293. #define GGML_F32x4_ADD wasm_f32x4_add
  1294. #define GGML_F32x4_MUL wasm_f32x4_mul
  1295. #define GGML_F32x4_REDUCE(res, x) \
  1296. { \
  1297. int offset = GGML_F32_ARR >> 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1304. } \
  1305. offset >>= 1; \
  1306. for (int i = 0; i < offset; ++i) { \
  1307. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1308. } \
  1309. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1310. wasm_f32x4_extract_lane(x[0], 1) + \
  1311. wasm_f32x4_extract_lane(x[0], 2) + \
  1312. wasm_f32x4_extract_lane(x[0], 3); \
  1313. }
  1314. #define GGML_F32_VEC GGML_F32x4
  1315. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1316. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1317. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1318. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1319. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1320. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1321. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1322. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1323. // F16 WASM
  1324. #define GGML_F16_STEP 16
  1325. #define GGML_F16_EPR 4
  1326. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1327. float tmp[4];
  1328. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1329. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1330. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1331. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1332. return wasm_v128_load(tmp);
  1333. }
  1334. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1335. float tmp[4];
  1336. wasm_v128_store(tmp, x);
  1337. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1338. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1339. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1340. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1341. }
  1342. #define GGML_F16x4 v128_t
  1343. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1344. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1345. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1346. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1347. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1348. #define GGML_F16x4_ADD wasm_f32x4_add
  1349. #define GGML_F16x4_MUL wasm_f32x4_mul
  1350. #define GGML_F16x4_REDUCE(res, x) \
  1351. { \
  1352. int offset = GGML_F16_ARR >> 1; \
  1353. for (int i = 0; i < offset; ++i) { \
  1354. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1355. } \
  1356. offset >>= 1; \
  1357. for (int i = 0; i < offset; ++i) { \
  1358. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1359. } \
  1360. offset >>= 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1363. } \
  1364. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1365. wasm_f32x4_extract_lane(x[0], 1) + \
  1366. wasm_f32x4_extract_lane(x[0], 2) + \
  1367. wasm_f32x4_extract_lane(x[0], 3); \
  1368. }
  1369. #define GGML_F16_VEC GGML_F16x4
  1370. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1371. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1372. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1373. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1374. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1375. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1376. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1377. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1378. #elif defined(__SSE3__)
  1379. #define GGML_SIMD
  1380. // F32 SSE
  1381. #define GGML_F32_STEP 32
  1382. #define GGML_F32_EPR 4
  1383. #define GGML_F32x4 __m128
  1384. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1385. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1386. #define GGML_F32x4_LOAD _mm_loadu_ps
  1387. #define GGML_F32x4_STORE _mm_storeu_ps
  1388. #if defined(__FMA__)
  1389. // TODO: Does this work?
  1390. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1391. #else
  1392. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1393. #endif
  1394. #define GGML_F32x4_ADD _mm_add_ps
  1395. #define GGML_F32x4_MUL _mm_mul_ps
  1396. #define GGML_F32x4_REDUCE(res, x) \
  1397. { \
  1398. int offset = GGML_F32_ARR >> 1; \
  1399. for (int i = 0; i < offset; ++i) { \
  1400. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1401. } \
  1402. offset >>= 1; \
  1403. for (int i = 0; i < offset; ++i) { \
  1404. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1405. } \
  1406. offset >>= 1; \
  1407. for (int i = 0; i < offset; ++i) { \
  1408. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1409. } \
  1410. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1411. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1412. }
  1413. // TODO: is this optimal ?
  1414. #define GGML_F32_VEC GGML_F32x4
  1415. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1416. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1417. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1418. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1419. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1420. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1421. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1422. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1423. // F16 SSE
  1424. #define GGML_F16_STEP 32
  1425. #define GGML_F16_EPR 4
  1426. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1427. float tmp[4];
  1428. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1429. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1430. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1431. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1432. return _mm_loadu_ps(tmp);
  1433. }
  1434. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1435. float arr[4];
  1436. _mm_storeu_ps(arr, y);
  1437. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1438. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1439. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1440. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1441. }
  1442. #define GGML_F32Cx4 __m128
  1443. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1444. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1445. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1446. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1447. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1448. #define GGML_F32Cx4_ADD _mm_add_ps
  1449. #define GGML_F32Cx4_MUL _mm_mul_ps
  1450. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1451. #define GGML_F16_VEC GGML_F32Cx4
  1452. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1453. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1454. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1455. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1456. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1457. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1458. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1459. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1460. #elif defined(__loongarch_asx)
  1461. #define GGML_SIMD
  1462. // F32 LASX
  1463. #define GGML_F32_STEP 32
  1464. #define GGML_F32_EPR 8
  1465. #define GGML_F32x8 __m256
  1466. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1467. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1468. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1469. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1470. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1471. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1472. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1473. #define GGML_F32x8_REDUCE(res, x) \
  1474. do { \
  1475. int offset = GGML_F32_ARR >> 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1478. } \
  1479. offset >>= 1; \
  1480. for (int i = 0; i < offset; ++i) { \
  1481. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1482. } \
  1483. offset >>= 1; \
  1484. for (int i = 0; i < offset; ++i) { \
  1485. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1486. } \
  1487. float *tmp_p = (float *)&x[0]; \
  1488. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1489. } while (0)
  1490. // TODO: is this optimal ?
  1491. #define GGML_F32_VEC GGML_F32x8
  1492. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1493. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1494. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1495. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1496. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1497. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1498. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1499. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1500. // F16 LASX
  1501. #define GGML_F16_STEP 32
  1502. #define GGML_F16_EPR 8
  1503. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1504. #define GGML_F32Cx8 __m256
  1505. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1506. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1507. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1508. float tmp[8];
  1509. for (int i = 0; i < 8; i++) {
  1510. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1511. }
  1512. return (__m256)__lasx_xvld(tmp, 0);
  1513. }
  1514. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1515. float arr[8];
  1516. __lasx_xvst(y, arr, 0);
  1517. for (int i = 0; i < 8; i++) {
  1518. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1519. }
  1520. }
  1521. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1522. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1523. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1524. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1525. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1526. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1527. #define GGML_F16_VEC GGML_F32Cx8
  1528. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1529. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1530. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1531. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1532. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1533. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1534. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1535. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1536. #elif defined(__loongarch_sx)
  1537. #define GGML_SIMD
  1538. // F32 LSX
  1539. #define GGML_F32_STEP 32
  1540. #define GGML_F32_EPR 4
  1541. #define GGML_F32x4 __m128
  1542. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1543. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1544. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1545. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1546. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1547. #define GGML_F32x4_ADD __lsx_vfadd_s
  1548. #define GGML_F32x4_MUL __lsx_vfmul_s
  1549. #define GGML_F32x4_REDUCE(res, x) \
  1550. { \
  1551. int offset = GGML_F32_ARR >> 1; \
  1552. for (int i = 0; i < offset; ++i) { \
  1553. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1554. } \
  1555. offset >>= 1; \
  1556. for (int i = 0; i < offset; ++i) { \
  1557. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1558. } \
  1559. offset >>= 1; \
  1560. for (int i = 0; i < offset; ++i) { \
  1561. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1562. } \
  1563. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1564. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1565. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1566. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1567. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1568. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1569. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1570. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1571. }
  1572. #define GGML_F32_VEC GGML_F32x4
  1573. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1574. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1575. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1576. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1577. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1578. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1579. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1580. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1581. // F16 LSX
  1582. #define GGML_F16_STEP 32
  1583. #define GGML_F16_EPR 4
  1584. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1585. float tmp[4];
  1586. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1587. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1588. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1589. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1590. return __lsx_vld(tmp, 0);
  1591. }
  1592. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1593. float arr[4];
  1594. __lsx_vst(y, arr, 0);
  1595. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1596. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1597. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1598. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1599. }
  1600. #define GGML_F32Cx4 __m128
  1601. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1602. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1603. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1604. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1605. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1606. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1607. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1608. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1609. #define GGML_F16_VEC GGML_F32Cx4
  1610. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1611. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1612. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1613. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1614. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1615. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1616. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1617. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1618. #endif
  1619. // GGML_F32_ARR / GGML_F16_ARR
  1620. // number of registers to use per step
  1621. #ifdef GGML_SIMD
  1622. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1623. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1624. #endif
  1625. //
  1626. // ggml context
  1627. //
  1628. struct ggml_context {
  1629. size_t mem_size;
  1630. void* mem_buffer;
  1631. bool mem_buffer_owned;
  1632. bool no_alloc;
  1633. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1634. int n_objects;
  1635. struct ggml_object * objects_begin;
  1636. struct ggml_object * objects_end;
  1637. struct ggml_scratch scratch;
  1638. struct ggml_scratch scratch_save;
  1639. };
  1640. struct ggml_context_container {
  1641. bool used;
  1642. struct ggml_context context;
  1643. };
  1644. struct ggml_compute_state_shared {
  1645. const struct ggml_cgraph * cgraph;
  1646. const struct ggml_cplan * cplan;
  1647. int n_threads;
  1648. // synchronization primitives
  1649. atomic_int n_barrier;
  1650. atomic_int n_barrier_passed;
  1651. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1652. void * abort_callback_data;
  1653. atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads
  1654. enum ggml_status ec;
  1655. };
  1656. struct ggml_compute_state {
  1657. ggml_thread_t thrd;
  1658. int ith;
  1659. struct ggml_compute_state_shared * shared;
  1660. };
  1661. struct ggml_compute_params {
  1662. // ith = thread index, nth = number of threads
  1663. int ith, nth;
  1664. // work buffer for all threads
  1665. size_t wsize;
  1666. void * wdata;
  1667. struct ggml_compute_state_shared * shared;
  1668. };
  1669. //
  1670. // fundamental operations
  1671. //
  1672. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1673. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1674. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1675. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1676. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1677. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1678. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1679. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1680. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1681. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1682. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1683. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1684. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1685. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1686. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1687. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1688. assert(nrc == 1);
  1689. UNUSED(nrc);
  1690. UNUSED(bx);
  1691. UNUSED(by);
  1692. UNUSED(bs);
  1693. #if defined(GGML_SIMD)
  1694. float sumf = 0.0f;
  1695. const int np = (n & ~(GGML_F32_STEP - 1));
  1696. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1697. GGML_F32_VEC ax[GGML_F32_ARR];
  1698. GGML_F32_VEC ay[GGML_F32_ARR];
  1699. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1700. for (int j = 0; j < GGML_F32_ARR; j++) {
  1701. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1702. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1703. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1704. }
  1705. }
  1706. // reduce sum0..sum3 to sum0
  1707. GGML_F32_VEC_REDUCE(sumf, sum);
  1708. // leftovers
  1709. for (int i = np; i < n; ++i) {
  1710. sumf += x[i]*y[i];
  1711. }
  1712. #else
  1713. // scalar
  1714. ggml_float sumf = 0.0;
  1715. for (int i = 0; i < n; ++i) {
  1716. sumf += (ggml_float)(x[i]*y[i]);
  1717. }
  1718. #endif
  1719. *s = sumf;
  1720. }
  1721. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1722. assert(nrc == 1);
  1723. UNUSED(nrc);
  1724. UNUSED(bx);
  1725. UNUSED(by);
  1726. UNUSED(bs);
  1727. int i = 0;
  1728. ggml_float sumf = 0;
  1729. #if defined(__AVX512BF16__)
  1730. __m512 c1 = _mm512_setzero_ps();
  1731. __m512 c2 = _mm512_setzero_ps();
  1732. for (; i + 64 <= n; i += 64) {
  1733. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1734. m512bh(_mm512_loadu_si512((y + i))));
  1735. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1736. m512bh(_mm512_loadu_si512((y + i + 32))));
  1737. }
  1738. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1739. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1740. #elif defined(__AVX512F__)
  1741. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1742. __m512 c1 = _mm512_setzero_ps();
  1743. __m512 c2 = _mm512_setzero_ps();
  1744. for (; i + 32 <= n; i += 32) {
  1745. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1746. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1747. }
  1748. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1749. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1750. #undef LOAD
  1751. #elif defined(__AVX2__)
  1752. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1753. __m256 c1 = _mm256_setzero_ps();
  1754. __m256 c2 = _mm256_setzero_ps();
  1755. __m256 c3 = _mm256_setzero_ps();
  1756. __m256 c4 = _mm256_setzero_ps();
  1757. for (; i + 32 <= n; i += 32) {
  1758. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1759. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1760. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1761. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1762. }
  1763. __m128 g;
  1764. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1765. _mm256_add_ps(c2, c4));
  1766. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1767. _mm256_castps256_ps128(c1));
  1768. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1769. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1770. sumf += (ggml_float)_mm_cvtss_f32(g);
  1771. #undef LOAD
  1772. #endif
  1773. for (; i < n; ++i) {
  1774. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1775. GGML_BF16_TO_FP32(y[i]));
  1776. }
  1777. *s = sumf;
  1778. }
  1779. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1780. assert(nrc == 1);
  1781. UNUSED(nrc);
  1782. UNUSED(bx);
  1783. UNUSED(by);
  1784. UNUSED(bs);
  1785. ggml_float sumf = 0.0;
  1786. #if defined(GGML_SIMD)
  1787. const int np = (n & ~(GGML_F16_STEP - 1));
  1788. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1789. GGML_F16_VEC ax[GGML_F16_ARR];
  1790. GGML_F16_VEC ay[GGML_F16_ARR];
  1791. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1792. for (int j = 0; j < GGML_F16_ARR; j++) {
  1793. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1794. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1795. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1796. }
  1797. }
  1798. // reduce sum0..sum3 to sum0
  1799. GGML_F16_VEC_REDUCE(sumf, sum);
  1800. // leftovers
  1801. for (int i = np; i < n; ++i) {
  1802. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1803. }
  1804. #else
  1805. for (int i = 0; i < n; ++i) {
  1806. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1807. }
  1808. #endif
  1809. *s = sumf;
  1810. }
  1811. // compute GGML_VEC_DOT_UNROLL dot products at once
  1812. // xs - x row stride in bytes
  1813. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1814. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1815. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1816. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1817. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1818. }
  1819. #if defined(GGML_SIMD)
  1820. const int np = (n & ~(GGML_F16_STEP - 1));
  1821. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1822. GGML_F16_VEC ax[GGML_F16_ARR];
  1823. GGML_F16_VEC ay[GGML_F16_ARR];
  1824. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1825. for (int j = 0; j < GGML_F16_ARR; j++) {
  1826. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1827. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1829. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1830. }
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1835. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1836. }
  1837. // leftovers
  1838. for (int i = np; i < n; ++i) {
  1839. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1840. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1841. }
  1842. }
  1843. #else
  1844. for (int i = 0; i < n; ++i) {
  1845. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1846. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1847. }
  1848. }
  1849. #endif
  1850. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1851. s[i] = sumf[i];
  1852. }
  1853. }
  1854. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1855. #if defined(GGML_SIMD)
  1856. const int np = (n & ~(GGML_F32_STEP - 1));
  1857. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1858. GGML_F32_VEC ax[GGML_F32_ARR];
  1859. GGML_F32_VEC ay[GGML_F32_ARR];
  1860. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1861. for (int j = 0; j < GGML_F32_ARR; j++) {
  1862. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1863. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1864. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1865. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1866. }
  1867. }
  1868. // leftovers
  1869. for (int i = np; i < n; ++i) {
  1870. y[i] += x[i]*v;
  1871. }
  1872. #else
  1873. // scalar
  1874. for (int i = 0; i < n; ++i) {
  1875. y[i] += x[i]*v;
  1876. }
  1877. #endif
  1878. }
  1879. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1880. #if defined(GGML_SIMD)
  1881. const int np = (n & ~(GGML_F16_STEP - 1));
  1882. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1883. GGML_F16_VEC ax[GGML_F16_ARR];
  1884. GGML_F16_VEC ay[GGML_F16_ARR];
  1885. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1886. for (int j = 0; j < GGML_F16_ARR; j++) {
  1887. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1888. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1889. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1890. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1891. }
  1892. }
  1893. // leftovers
  1894. for (int i = np; i < n; ++i) {
  1895. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1896. }
  1897. #else
  1898. // scalar
  1899. for (int i = 0; i < n; ++i) {
  1900. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1901. }
  1902. #endif
  1903. }
  1904. // xs and vs are byte strides of x and v
  1905. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1906. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1907. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1908. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1909. x[i] = (const float *) ((const char *) xv + i*xs);
  1910. v[i] = (const float *) ((const char *) vv + i*vs);
  1911. }
  1912. #if defined(GGML_SIMD)
  1913. const int np = (n & ~(GGML_F32_STEP - 1));
  1914. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1915. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1916. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1917. }
  1918. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1919. GGML_F32_VEC ay[GGML_F32_ARR];
  1920. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1921. for (int j = 0; j < GGML_F32_ARR; j++) {
  1922. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1923. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1924. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1925. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1926. }
  1927. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1928. }
  1929. }
  1930. // leftovers
  1931. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1932. for (int i = np; i < n; ++i) {
  1933. y[i] += x[k][i]*v[k][0];
  1934. }
  1935. }
  1936. #else
  1937. // scalar
  1938. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1939. for (int i = 0; i < n; ++i) {
  1940. y[i] += x[k][i]*v[k][0];
  1941. }
  1942. }
  1943. #endif
  1944. }
  1945. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1946. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1947. #if defined(GGML_USE_ACCELERATE)
  1948. vDSP_vsmul(y, 1, &v, y, 1, n);
  1949. #elif defined(GGML_SIMD)
  1950. const int np = (n & ~(GGML_F32_STEP - 1));
  1951. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1952. GGML_F32_VEC ay[GGML_F32_ARR];
  1953. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1954. for (int j = 0; j < GGML_F32_ARR; j++) {
  1955. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1956. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1957. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1958. }
  1959. }
  1960. // leftovers
  1961. for (int i = np; i < n; ++i) {
  1962. y[i] *= v;
  1963. }
  1964. #else
  1965. // scalar
  1966. for (int i = 0; i < n; ++i) {
  1967. y[i] *= v;
  1968. }
  1969. #endif
  1970. }
  1971. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1972. #if defined(GGML_SIMD)
  1973. const int np = (n & ~(GGML_F16_STEP - 1));
  1974. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1975. GGML_F16_VEC ay[GGML_F16_ARR];
  1976. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1977. for (int j = 0; j < GGML_F16_ARR; j++) {
  1978. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1979. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1980. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1981. }
  1982. }
  1983. // leftovers
  1984. for (int i = np; i < n; ++i) {
  1985. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1986. }
  1987. #else
  1988. // scalar
  1989. for (int i = 0; i < n; ++i) {
  1990. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1991. }
  1992. #endif
  1993. }
  1994. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1995. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1996. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1997. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1998. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1999. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2000. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2001. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2002. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2003. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2004. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2005. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2006. // TODO: optimize performance
  2007. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2008. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2009. static const float GELU_COEF_A = 0.044715f;
  2010. static const float GELU_QUICK_COEF = -1.702f;
  2011. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2012. inline static float ggml_gelu_f32(float x) {
  2013. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2014. }
  2015. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2016. const uint16_t * i16 = (const uint16_t *) x;
  2017. for (int i = 0; i < n; ++i) {
  2018. y[i] = ggml_table_gelu_f16[i16[i]];
  2019. }
  2020. }
  2021. #ifdef GGML_GELU_FP16
  2022. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2023. uint16_t t;
  2024. for (int i = 0; i < n; ++i) {
  2025. if (x[i] <= -10.0f) {
  2026. y[i] = 0.0f;
  2027. } else if (x[i] >= 10.0f) {
  2028. y[i] = x[i];
  2029. } else {
  2030. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2031. memcpy(&t, &fp16, sizeof(uint16_t));
  2032. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2033. }
  2034. }
  2035. }
  2036. #else
  2037. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2038. for (int i = 0; i < n; ++i) {
  2039. y[i] = ggml_gelu_f32(x[i]);
  2040. }
  2041. }
  2042. #endif
  2043. inline static float ggml_gelu_quick_f32(float x) {
  2044. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2045. }
  2046. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2047. // const uint16_t * i16 = (const uint16_t *) x;
  2048. // for (int i = 0; i < n; ++i) {
  2049. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2050. // }
  2051. //}
  2052. #ifdef GGML_GELU_QUICK_FP16
  2053. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2054. uint16_t t;
  2055. for (int i = 0; i < n; ++i) {
  2056. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2057. memcpy(&t, &fp16, sizeof(uint16_t));
  2058. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2059. }
  2060. }
  2061. #else
  2062. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2063. for (int i = 0; i < n; ++i) {
  2064. y[i] = ggml_gelu_quick_f32(x[i]);
  2065. }
  2066. }
  2067. #endif
  2068. // Sigmoid Linear Unit (SiLU) function
  2069. inline static float ggml_silu_f32(float x) {
  2070. return x/(1.0f + expf(-x));
  2071. }
  2072. #if __FINITE_MATH_ONLY__
  2073. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2074. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2075. #endif
  2076. #if defined(__ARM_NEON) && defined(__aarch64__)
  2077. // adapted from arm limited optimized routine
  2078. // the maximum error is 1.45358 plus 0.5 ulps
  2079. // numbers above 88.38 will flush to infinity
  2080. // numbers beneath -103.97 will flush to zero
  2081. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2082. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2083. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2084. const float32x4_t n = vsubq_f32(z, r);
  2085. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2086. vdupq_n_f32(0x1.7f7d1cp-20f));
  2087. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2088. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2089. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2090. const float32x4_t u = vmulq_f32(b, b);
  2091. const float32x4_t j = vfmaq_f32(
  2092. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2093. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2094. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2095. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2096. return vfmaq_f32(k, j, k);
  2097. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2098. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2099. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2100. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2101. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2102. }
  2103. // computes silu x/(1+exp(-x)) in single precision vector
  2104. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2105. const float32x4_t one = vdupq_n_f32(1.0f);
  2106. const float32x4_t zero = vdupq_n_f32(0.0f);
  2107. const float32x4_t neg_x = vsubq_f32(zero, x);
  2108. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2109. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2110. return vdivq_f32(x, one_plus_exp_neg_x);
  2111. }
  2112. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2113. // adapted from arm limited optimized routine
  2114. // the maximum error is 1.45358 plus 0.5 ulps
  2115. // numbers above 88.38 will flush to infinity
  2116. // numbers beneath -103.97 will flush to zero
  2117. inline static __m512 ggml_v_expf(__m512 x) {
  2118. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2119. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2120. const __m512 n = _mm512_sub_ps(z, r);
  2121. const __m512 b =
  2122. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2123. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2124. const __mmask16 d =
  2125. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2126. const __m512 u = _mm512_mul_ps(b, b);
  2127. const __m512 j = _mm512_fmadd_ps(
  2128. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2129. _mm512_set1_ps(0x1.573e2ep-5f)),
  2130. u,
  2131. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2132. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2133. u,
  2134. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2135. const __m512 res = _mm512_scalef_ps(j, n);
  2136. if (_mm512_kortestz(d, d))
  2137. return res;
  2138. const __m512 zero = _mm512_setzero_ps();
  2139. const __m512 alt = _mm512_mask_blend_ps(
  2140. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2141. return _mm512_mask_blend_ps(d, res, alt);
  2142. }
  2143. // computes silu x/(1+exp(-x)) in single precision vector
  2144. inline static __m512 ggml_v_silu(__m512 x) {
  2145. const __m512 one = _mm512_set1_ps(1);
  2146. const __m512 zero = _mm512_setzero_ps();
  2147. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2148. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2149. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2150. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2151. }
  2152. #elif defined(__AVX2__) && defined(__FMA__)
  2153. // adapted from arm limited optimized routine
  2154. // the maximum error is 1.45358 plus 0.5 ulps
  2155. // numbers above 88.38 will flush to infinity
  2156. // numbers beneath -103.97 will flush to zero
  2157. inline static __m256 ggml_v_expf(__m256 x) {
  2158. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2159. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2160. const __m256 n = _mm256_sub_ps(z, r);
  2161. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2162. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2163. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2164. const __m256 k = _mm256_castsi256_ps(
  2165. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2166. const __m256i c = _mm256_castps_si256(
  2167. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2168. _mm256_set1_ps(126), _CMP_GT_OQ));
  2169. const __m256 u = _mm256_mul_ps(b, b);
  2170. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2171. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2172. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2173. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2174. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2175. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2176. return _mm256_fmadd_ps(j, k, k);
  2177. const __m256i g = _mm256_and_si256(
  2178. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2179. _mm256_set1_epi32(0x82000000u));
  2180. const __m256 s1 =
  2181. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2182. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2183. const __m256i d = _mm256_castps_si256(
  2184. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2185. _mm256_set1_ps(192), _CMP_GT_OQ));
  2186. return _mm256_or_ps(
  2187. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2188. _mm256_andnot_ps(
  2189. _mm256_castsi256_ps(d),
  2190. _mm256_or_ps(
  2191. _mm256_and_ps(_mm256_castsi256_ps(c),
  2192. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2193. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2194. }
  2195. // computes silu x/(1+exp(-x)) in single precision vector
  2196. inline static __m256 ggml_v_silu(__m256 x) {
  2197. const __m256 one = _mm256_set1_ps(1);
  2198. const __m256 zero = _mm256_setzero_ps();
  2199. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2200. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2201. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2202. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2203. }
  2204. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2205. #if defined(__FMA__)
  2206. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2207. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2208. #else
  2209. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2210. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2211. #endif
  2212. // adapted from arm limited optimized routine
  2213. // the maximum error is 1.45358 plus 0.5 ulps
  2214. // numbers above 88.38 will flush to infinity
  2215. // numbers beneath -103.97 will flush to zero
  2216. inline static __m128 ggml_v_expf(__m128 x) {
  2217. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2218. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2219. const __m128 n = _mm_sub_ps(z, r);
  2220. const __m128 b =
  2221. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2222. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2223. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2224. const __m128i c =
  2225. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2226. const __m128 u = _mm_mul_ps(b, b);
  2227. const __m128 j =
  2228. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2229. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2230. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2231. if (!_mm_movemask_epi8(c))
  2232. return MADD128(j, k, k);
  2233. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2234. _mm_set1_epi32(0x82000000u));
  2235. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2236. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2237. const __m128i d =
  2238. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2239. return _mm_or_ps(
  2240. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2241. _mm_andnot_ps(_mm_castsi128_ps(d),
  2242. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2243. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2244. }
  2245. // computes silu x/(1+exp(-x)) in single precision vector
  2246. inline static __m128 ggml_v_silu(__m128 x) {
  2247. const __m128 one = _mm_set1_ps(1);
  2248. const __m128 zero = _mm_setzero_ps();
  2249. const __m128 neg_x = _mm_sub_ps(zero, x);
  2250. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2251. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2252. return _mm_div_ps(x, one_plus_exp_neg_x);
  2253. }
  2254. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2255. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2256. int i = 0;
  2257. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2258. for (; i + 15 < n; i += 16) {
  2259. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2260. }
  2261. #elif defined(__AVX2__) && defined(__FMA__)
  2262. for (; i + 7 < n; i += 8) {
  2263. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2264. }
  2265. #elif defined(__SSE2__)
  2266. for (; i + 3 < n; i += 4) {
  2267. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2268. }
  2269. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2270. for (; i + 3 < n; i += 4) {
  2271. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2272. }
  2273. #endif
  2274. for (; i < n; ++i) {
  2275. y[i] = ggml_silu_f32(x[i]);
  2276. }
  2277. }
  2278. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2279. int i = 0;
  2280. ggml_float sum = 0;
  2281. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2282. for (; i + 15 < n; i += 16) {
  2283. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2284. _mm512_set1_ps(max)));
  2285. _mm512_storeu_ps(y + i, val);
  2286. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2287. }
  2288. #elif defined(__AVX2__) && defined(__FMA__)
  2289. for (; i + 7 < n; i += 8) {
  2290. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2291. _mm256_set1_ps(max)));
  2292. _mm256_storeu_ps(y + i, val);
  2293. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2294. _mm256_castps256_ps128(val));
  2295. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2296. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2297. sum += (ggml_float)_mm_cvtss_f32(val2);
  2298. }
  2299. #elif defined(__SSE2__)
  2300. for (; i + 3 < n; i += 4) {
  2301. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2302. _mm_set1_ps(max)));
  2303. _mm_storeu_ps(y + i, val);
  2304. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2305. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2306. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2307. #else
  2308. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2309. val = _mm_add_ps(val, tmp);
  2310. tmp = _mm_movehl_ps(tmp, val);
  2311. val = _mm_add_ss(val, tmp);
  2312. #endif
  2313. sum += (ggml_float)_mm_cvtss_f32(val);
  2314. }
  2315. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2316. for (; i + 3 < n; i += 4) {
  2317. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2318. vdupq_n_f32(max)));
  2319. vst1q_f32(y + i, val);
  2320. sum += (ggml_float)vaddvq_f32(val);
  2321. }
  2322. #endif
  2323. for (; i < n; ++i) {
  2324. float val = expf(x[i] - max);
  2325. sum += (ggml_float)val;
  2326. y[i] = val;
  2327. }
  2328. return sum;
  2329. }
  2330. inline static float ggml_silu_backward_f32(float x, float dy) {
  2331. const float s = 1.0f/(1.0f + expf(-x));
  2332. return dy*s*(1.0f + x*(1.0f - s));
  2333. }
  2334. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2335. for (int i = 0; i < n; ++i) {
  2336. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2337. }
  2338. }
  2339. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2340. #ifndef GGML_USE_ACCELERATE
  2341. ggml_float sum = 0.0;
  2342. for (int i = 0; i < n; ++i) {
  2343. sum += (ggml_float)x[i];
  2344. }
  2345. *s = sum;
  2346. #else
  2347. vDSP_sve(x, 1, s, n);
  2348. #endif
  2349. }
  2350. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2351. ggml_float sum = 0.0;
  2352. for (int i = 0; i < n; ++i) {
  2353. sum += (ggml_float)x[i];
  2354. }
  2355. *s = sum;
  2356. }
  2357. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2358. float sum = 0.0f;
  2359. for (int i = 0; i < n; ++i) {
  2360. sum += GGML_FP16_TO_FP32(x[i]);
  2361. }
  2362. *s = sum;
  2363. }
  2364. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2365. float sum = 0.0f;
  2366. for (int i = 0; i < n; ++i) {
  2367. sum += GGML_BF16_TO_FP32(x[i]);
  2368. }
  2369. *s = sum;
  2370. }
  2371. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2372. #ifndef GGML_USE_ACCELERATE
  2373. float max = -INFINITY;
  2374. for (int i = 0; i < n; ++i) {
  2375. max = MAX(max, x[i]);
  2376. }
  2377. *s = max;
  2378. #else
  2379. vDSP_maxv(x, 1, s, n);
  2380. #endif
  2381. }
  2382. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2383. ggml_vec_norm_f32(n, s, x);
  2384. *s = 1.f/(*s);
  2385. }
  2386. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2387. float max = -INFINITY;
  2388. int idx = 0;
  2389. for (int i = 0; i < n; ++i) {
  2390. max = MAX(max, x[i]);
  2391. if (max == x[i]) { idx = i; }
  2392. }
  2393. *s = idx;
  2394. }
  2395. //
  2396. // data types
  2397. //
  2398. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2399. "NONE",
  2400. "DUP",
  2401. "ADD",
  2402. "ADD1",
  2403. "ACC",
  2404. "SUB",
  2405. "MUL",
  2406. "DIV",
  2407. "SQR",
  2408. "SQRT",
  2409. "LOG",
  2410. "SUM",
  2411. "SUM_ROWS",
  2412. "MEAN",
  2413. "ARGMAX",
  2414. "REPEAT",
  2415. "REPEAT_BACK",
  2416. "CONCAT",
  2417. "SILU_BACK",
  2418. "NORM",
  2419. "RMS_NORM",
  2420. "RMS_NORM_BACK",
  2421. "GROUP_NORM",
  2422. "MUL_MAT",
  2423. "MUL_MAT_ID",
  2424. "OUT_PROD",
  2425. "SCALE",
  2426. "SET",
  2427. "CPY",
  2428. "CONT",
  2429. "RESHAPE",
  2430. "VIEW",
  2431. "PERMUTE",
  2432. "TRANSPOSE",
  2433. "GET_ROWS",
  2434. "GET_ROWS_BACK",
  2435. "DIAG",
  2436. "DIAG_MASK_INF",
  2437. "DIAG_MASK_ZERO",
  2438. "SOFT_MAX",
  2439. "SOFT_MAX_BACK",
  2440. "ROPE",
  2441. "ROPE_BACK",
  2442. "CLAMP",
  2443. "CONV_TRANSPOSE_1D",
  2444. "IM2COL",
  2445. "CONV_TRANSPOSE_2D",
  2446. "POOL_1D",
  2447. "POOL_2D",
  2448. "UPSCALE",
  2449. "PAD",
  2450. "ARANGE",
  2451. "TIMESTEP_EMBEDDING",
  2452. "ARGSORT",
  2453. "LEAKY_RELU",
  2454. "FLASH_ATTN_EXT",
  2455. "FLASH_ATTN_BACK",
  2456. "SSM_CONV",
  2457. "SSM_SCAN",
  2458. "WIN_PART",
  2459. "WIN_UNPART",
  2460. "GET_REL_POS",
  2461. "ADD_REL_POS",
  2462. "UNARY",
  2463. "MAP_UNARY",
  2464. "MAP_BINARY",
  2465. "MAP_CUSTOM1_F32",
  2466. "MAP_CUSTOM2_F32",
  2467. "MAP_CUSTOM3_F32",
  2468. "MAP_CUSTOM1",
  2469. "MAP_CUSTOM2",
  2470. "MAP_CUSTOM3",
  2471. "CROSS_ENTROPY_LOSS",
  2472. "CROSS_ENTROPY_LOSS_BACK",
  2473. };
  2474. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2475. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2476. "none",
  2477. "x",
  2478. "x+y",
  2479. "x+y",
  2480. "view(x,nb,offset)+=y->x",
  2481. "x-y",
  2482. "x*y",
  2483. "x/y",
  2484. "x^2",
  2485. "√x",
  2486. "log(x)",
  2487. "Σx",
  2488. "Σx_k",
  2489. "Σx/n",
  2490. "argmax(x)",
  2491. "repeat(x)",
  2492. "repeat_back(x)",
  2493. "concat(x, y)",
  2494. "silu_back(x)",
  2495. "norm(x)",
  2496. "rms_norm(x)",
  2497. "rms_norm_back(x)",
  2498. "group_norm(x)",
  2499. "X*Y",
  2500. "X[i]*Y",
  2501. "X*Y",
  2502. "x*v",
  2503. "y-\\>view(x)",
  2504. "x-\\>y",
  2505. "cont(x)",
  2506. "reshape(x)",
  2507. "view(x)",
  2508. "permute(x)",
  2509. "transpose(x)",
  2510. "get_rows(x)",
  2511. "get_rows_back(x)",
  2512. "diag(x)",
  2513. "diag_mask_inf(x)",
  2514. "diag_mask_zero(x)",
  2515. "soft_max(x)",
  2516. "soft_max_back(x)",
  2517. "rope(x)",
  2518. "rope_back(x)",
  2519. "clamp(x)",
  2520. "conv_transpose_1d(x)",
  2521. "im2col(x)",
  2522. "conv_transpose_2d(x)",
  2523. "pool_1d(x)",
  2524. "pool_2d(x)",
  2525. "upscale(x)",
  2526. "pad(x)",
  2527. "arange(start, stop, step)",
  2528. "timestep_embedding(timesteps, dim, max_period)",
  2529. "argsort(x)",
  2530. "leaky_relu(x)",
  2531. "flash_attn_ext(x)",
  2532. "flash_attn_back(x)",
  2533. "ssm_conv(x)",
  2534. "ssm_scan(x)",
  2535. "win_part(x)",
  2536. "win_unpart(x)",
  2537. "get_rel_pos(x)",
  2538. "add_rel_pos(x)",
  2539. "unary(x)",
  2540. "f(x)",
  2541. "f(x,y)",
  2542. "custom_f32(x)",
  2543. "custom_f32(x,y)",
  2544. "custom_f32(x,y,z)",
  2545. "custom(x)",
  2546. "custom(x,y)",
  2547. "custom(x,y,z)",
  2548. "cross_entropy_loss(x,y)",
  2549. "cross_entropy_loss_back(x,y)",
  2550. };
  2551. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2552. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2553. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2554. "ABS",
  2555. "SGN",
  2556. "NEG",
  2557. "STEP",
  2558. "TANH",
  2559. "ELU",
  2560. "RELU",
  2561. "SIGMOID",
  2562. "GELU",
  2563. "GELU_QUICK",
  2564. "SILU",
  2565. "HARDSWISH",
  2566. "HARDSIGMOID",
  2567. };
  2568. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2569. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2570. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2571. //
  2572. // NUMA support
  2573. //
  2574. #define GGML_NUMA_MAX_NODES 8
  2575. #define GGML_NUMA_MAX_CPUS 512
  2576. struct ggml_numa_node {
  2577. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2578. uint32_t n_cpus;
  2579. };
  2580. struct ggml_numa_nodes {
  2581. enum ggml_numa_strategy numa_strategy;
  2582. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2583. uint32_t n_nodes;
  2584. uint32_t total_cpus; // hardware threads on system
  2585. uint32_t current_node; // node on which main process is execting
  2586. #if defined(__gnu_linux__)
  2587. cpu_set_t cpuset; // cpuset from numactl
  2588. #else
  2589. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2590. #endif
  2591. };
  2592. //
  2593. // ggml state
  2594. //
  2595. struct ggml_state {
  2596. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2597. struct ggml_numa_nodes numa;
  2598. };
  2599. // global state
  2600. static struct ggml_state g_state;
  2601. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2602. // critical section via spin lock
  2603. inline static void ggml_critical_section_start(void) {
  2604. while (atomic_flag_test_and_set(&g_state_critical)) {
  2605. // spin
  2606. sched_yield();
  2607. }
  2608. }
  2609. #ifdef GGML_USE_OPENMP
  2610. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2611. if (shared->n_threads == 1) {
  2612. return;
  2613. }
  2614. #pragma omp barrier
  2615. }
  2616. #else
  2617. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2618. if (shared->n_threads == 1) {
  2619. return;
  2620. }
  2621. atomic_int * n_barrier = &shared->n_barrier;
  2622. atomic_int * n_barrier_passed = &shared->n_barrier_passed;
  2623. int n_threads = shared->n_threads;
  2624. int passed_old = atomic_load(n_barrier_passed);
  2625. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  2626. // last thread
  2627. atomic_store(n_barrier, 0);
  2628. atomic_fetch_add(n_barrier_passed, 1);
  2629. } else {
  2630. // wait for other threads
  2631. const int n_spin_before_sleep = 100000;
  2632. while (true) {
  2633. for (int i = 0; i < n_spin_before_sleep; i++) {
  2634. if (atomic_load(n_barrier_passed) != passed_old) {
  2635. return;
  2636. }
  2637. #if defined(__SSE3__)
  2638. _mm_pause();
  2639. #endif
  2640. }
  2641. sched_yield();
  2642. }
  2643. }
  2644. }
  2645. #endif
  2646. // TODO: make this somehow automatically executed
  2647. // some sort of "sentry" mechanism
  2648. inline static void ggml_critical_section_end(void) {
  2649. atomic_flag_clear(&g_state_critical);
  2650. }
  2651. #if defined(__gnu_linux__)
  2652. static cpu_set_t ggml_get_numa_affinity(void) {
  2653. cpu_set_t cpuset;
  2654. pthread_t thread;
  2655. thread = pthread_self();
  2656. CPU_ZERO(&cpuset);
  2657. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2658. return cpuset;
  2659. }
  2660. #else
  2661. static uint32_t ggml_get_numa_affinity(void) {
  2662. return 0; // no NUMA support
  2663. }
  2664. #endif
  2665. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2666. if (g_state.numa.n_nodes > 0) {
  2667. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2668. return;
  2669. }
  2670. #if defined(__gnu_linux__)
  2671. struct stat st;
  2672. char path[256];
  2673. int rv;
  2674. // set numa scheme
  2675. g_state.numa.numa_strategy = numa_flag;
  2676. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2677. g_state.numa.cpuset = ggml_get_numa_affinity();
  2678. // enumerate nodes
  2679. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2680. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2681. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2682. if (stat(path, &st) != 0) { break; }
  2683. ++g_state.numa.n_nodes;
  2684. }
  2685. // enumerate CPUs
  2686. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2687. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2688. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2689. if (stat(path, &st) != 0) { break; }
  2690. ++g_state.numa.total_cpus;
  2691. }
  2692. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2693. // figure out which node we're on
  2694. uint current_cpu;
  2695. int getcpu_ret = 0;
  2696. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2697. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2698. #else
  2699. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2700. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2701. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2702. # endif
  2703. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2704. #endif
  2705. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2706. g_state.numa.n_nodes = 0;
  2707. return;
  2708. }
  2709. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2710. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2711. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2712. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2713. node->n_cpus = 0;
  2714. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2715. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2716. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2717. if (stat(path, &st) == 0) {
  2718. node->cpus[node->n_cpus++] = c;
  2719. GGML_PRINT_DEBUG(" %u", c);
  2720. }
  2721. }
  2722. GGML_PRINT_DEBUG("\n");
  2723. }
  2724. if (ggml_is_numa()) {
  2725. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2726. if (fptr != NULL) {
  2727. char buf[42];
  2728. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2729. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2730. }
  2731. fclose(fptr);
  2732. }
  2733. }
  2734. #else
  2735. UNUSED(numa_flag);
  2736. // TODO
  2737. #endif
  2738. }
  2739. bool ggml_is_numa(void) {
  2740. return g_state.numa.n_nodes > 1;
  2741. }
  2742. ////////////////////////////////////////////////////////////////////////////////
  2743. void ggml_print_object(const struct ggml_object * obj) {
  2744. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2745. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2746. }
  2747. void ggml_print_objects(const struct ggml_context * ctx) {
  2748. struct ggml_object * obj = ctx->objects_begin;
  2749. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2750. while (obj != NULL) {
  2751. ggml_print_object(obj);
  2752. obj = obj->next;
  2753. }
  2754. GGML_PRINT("%s: --- end ---\n", __func__);
  2755. }
  2756. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2757. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2758. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2759. }
  2760. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2761. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2762. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2763. }
  2764. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2765. size_t nbytes;
  2766. size_t blck_size = ggml_blck_size(tensor->type);
  2767. if (blck_size == 1) {
  2768. nbytes = ggml_type_size(tensor->type);
  2769. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2770. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2771. }
  2772. }
  2773. else {
  2774. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2775. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2776. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2777. }
  2778. }
  2779. return nbytes;
  2780. }
  2781. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2782. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2783. }
  2784. GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
  2785. return type_traits[type].blck_size;
  2786. }
  2787. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2788. return type_traits[type].type_size;
  2789. }
  2790. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2791. assert(ne % ggml_blck_size(type) == 0);
  2792. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2793. }
  2794. double ggml_type_sizef(enum ggml_type type) {
  2795. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2796. }
  2797. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2798. return type_traits[type].type_name;
  2799. }
  2800. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2801. return type_traits[type].is_quantized;
  2802. }
  2803. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2804. return GGML_OP_NAME[op];
  2805. }
  2806. const char * ggml_op_symbol(enum ggml_op op) {
  2807. return GGML_OP_SYMBOL[op];
  2808. }
  2809. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2810. return GGML_UNARY_OP_NAME[op];
  2811. }
  2812. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2813. if (t->op == GGML_OP_UNARY) {
  2814. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2815. return ggml_unary_op_name(uop);
  2816. }
  2817. return ggml_op_name(t->op);
  2818. }
  2819. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2820. return ggml_type_size(tensor->type);
  2821. }
  2822. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2823. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2824. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2825. }
  2826. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2827. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2828. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2829. }
  2830. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2831. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2832. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2833. }
  2834. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2835. return tensor->ne[3] == 1;
  2836. }
  2837. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2838. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2839. if (tensor->ne[i] > 1) {
  2840. return i + 1;
  2841. }
  2842. }
  2843. return 1;
  2844. }
  2845. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) &&
  2848. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2849. (t1->ne[3]%t0->ne[3] == 0);
  2850. }
  2851. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2853. return (t0->ne[1] == t1->ne[1]) &&
  2854. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2855. (t1->ne[3]%t0->ne[3] == 0);
  2856. }
  2857. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2858. enum ggml_type wtype = GGML_TYPE_COUNT;
  2859. switch (ftype) {
  2860. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2861. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2862. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2863. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2864. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2865. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2866. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2867. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2868. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2869. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2870. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2871. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2872. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2873. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2874. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2875. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2876. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2877. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2878. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2879. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2880. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2881. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2882. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  2883. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  2884. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  2885. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2886. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2887. }
  2888. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2889. return wtype;
  2890. }
  2891. size_t ggml_tensor_overhead(void) {
  2892. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2893. }
  2894. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2895. return tensor->nb[0] > tensor->nb[1];
  2896. }
  2897. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2898. size_t next_nb = ggml_type_size(tensor->type);
  2899. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2900. return false;
  2901. }
  2902. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2903. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2904. if (tensor->ne[i] != 1) {
  2905. if (i > n) {
  2906. if (tensor->nb[i] != next_nb) {
  2907. return false;
  2908. }
  2909. next_nb *= tensor->ne[i];
  2910. } else {
  2911. // this dimension does not need to be contiguous
  2912. next_nb = tensor->ne[i]*tensor->nb[i];
  2913. }
  2914. }
  2915. }
  2916. return true;
  2917. }
  2918. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2919. return ggml_is_contiguous_0(tensor);
  2920. }
  2921. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2922. return ggml_is_contiguous_n(tensor, 0);
  2923. }
  2924. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2925. return ggml_is_contiguous_n(tensor, 1);
  2926. }
  2927. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2928. return ggml_is_contiguous_n(tensor, 2);
  2929. }
  2930. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2931. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2932. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2933. }
  2934. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2935. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2936. return
  2937. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2938. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2939. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2940. }
  2941. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2942. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2943. if (tensor->ne[i] == 0) {
  2944. // empty if any dimension has no elements
  2945. return true;
  2946. }
  2947. }
  2948. return false;
  2949. }
  2950. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2951. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2952. return
  2953. (t0->ne[0] == t1->ne[0]) &&
  2954. (t0->ne[1] == t1->ne[1]) &&
  2955. (t0->ne[2] == t1->ne[2]) &&
  2956. (t0->ne[3] == t1->ne[3]);
  2957. }
  2958. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2959. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2960. return
  2961. (t0->nb[0] == t1->nb[0]) &&
  2962. (t0->nb[1] == t1->nb[1]) &&
  2963. (t0->nb[2] == t1->nb[2]) &&
  2964. (t0->nb[3] == t1->nb[3]);
  2965. }
  2966. // check if t1 can be represented as a repeatition of t0
  2967. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2969. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2970. (t1->ne[0]%t0->ne[0] == 0) &&
  2971. (t1->ne[1]%t0->ne[1] == 0) &&
  2972. (t1->ne[2]%t0->ne[2] == 0) &&
  2973. (t1->ne[3]%t0->ne[3] == 0);
  2974. }
  2975. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2977. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2978. }
  2979. static inline int ggml_up32(int n) {
  2980. return (n + 31) & ~31;
  2981. }
  2982. //static inline int ggml_up64(int n) {
  2983. // return (n + 63) & ~63;
  2984. //}
  2985. static inline int ggml_up(int n, int m) {
  2986. // assert m is a power of 2
  2987. GGML_ASSERT((m & (m - 1)) == 0);
  2988. return (n + m - 1) & ~(m - 1);
  2989. }
  2990. // assert that pointer is aligned to GGML_MEM_ALIGN
  2991. #define GGML_ASSERT_ALIGNED(ptr) \
  2992. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2993. ////////////////////////////////////////////////////////////////////////////////
  2994. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2995. // make this function thread safe
  2996. ggml_critical_section_start();
  2997. static bool is_first_call = true;
  2998. if (is_first_call) {
  2999. // initialize time system (required on Windows)
  3000. ggml_time_init();
  3001. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3002. {
  3003. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3004. for (int i = 0; i < (1 << 16); ++i) {
  3005. union {
  3006. uint16_t u16;
  3007. ggml_fp16_t fp16;
  3008. } u = {i};
  3009. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3010. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3011. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3012. }
  3013. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3014. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3015. }
  3016. // initialize g_state
  3017. {
  3018. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3019. g_state = (struct ggml_state) {
  3020. /*.contexts =*/ { { 0 } },
  3021. /*.numa =*/ {
  3022. .n_nodes = 0,
  3023. .total_cpus = 0,
  3024. },
  3025. };
  3026. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3027. g_state.contexts[i].used = false;
  3028. }
  3029. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3030. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3031. }
  3032. is_first_call = false;
  3033. }
  3034. // find non-used context in g_state
  3035. struct ggml_context * ctx = NULL;
  3036. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3037. if (!g_state.contexts[i].used) {
  3038. g_state.contexts[i].used = true;
  3039. ctx = &g_state.contexts[i].context;
  3040. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3041. break;
  3042. }
  3043. }
  3044. if (ctx == NULL) {
  3045. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3046. ggml_critical_section_end();
  3047. return NULL;
  3048. }
  3049. // allow to call ggml_init with 0 size
  3050. if (params.mem_size == 0) {
  3051. params.mem_size = GGML_MEM_ALIGN;
  3052. }
  3053. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3054. *ctx = (struct ggml_context) {
  3055. /*.mem_size =*/ mem_size,
  3056. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3057. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3058. /*.no_alloc =*/ params.no_alloc,
  3059. /*.no_alloc_save =*/ params.no_alloc,
  3060. /*.n_objects =*/ 0,
  3061. /*.objects_begin =*/ NULL,
  3062. /*.objects_end =*/ NULL,
  3063. /*.scratch =*/ { 0, 0, NULL, },
  3064. /*.scratch_save =*/ { 0, 0, NULL, },
  3065. };
  3066. GGML_ASSERT(ctx->mem_buffer != NULL);
  3067. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3068. #if defined(__ARM_FEATURE_SVE)
  3069. if (!ggml_sve_cnt_b) {
  3070. ggml_sve_cnt_b = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3071. }
  3072. #endif
  3073. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3074. ggml_critical_section_end();
  3075. return ctx;
  3076. }
  3077. void ggml_free(struct ggml_context * ctx) {
  3078. if (ctx == NULL) {
  3079. return;
  3080. }
  3081. // make this function thread safe
  3082. ggml_critical_section_start();
  3083. bool found = false;
  3084. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3085. if (&g_state.contexts[i].context == ctx) {
  3086. g_state.contexts[i].used = false;
  3087. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3088. __func__, i, ggml_used_mem(ctx));
  3089. if (ctx->mem_buffer_owned) {
  3090. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3091. }
  3092. found = true;
  3093. break;
  3094. }
  3095. }
  3096. if (!found) {
  3097. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3098. }
  3099. ggml_critical_section_end();
  3100. }
  3101. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3102. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3103. }
  3104. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3105. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3106. ctx->scratch = scratch;
  3107. return result;
  3108. }
  3109. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3110. return ctx->no_alloc;
  3111. }
  3112. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3113. ctx->no_alloc = no_alloc;
  3114. }
  3115. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3116. return ctx->mem_buffer;
  3117. }
  3118. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3119. return ctx->mem_size;
  3120. }
  3121. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3122. size_t max_size = 0;
  3123. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3124. size_t bytes = ggml_nbytes(tensor);
  3125. max_size = MAX(max_size, bytes);
  3126. }
  3127. return max_size;
  3128. }
  3129. // IMPORTANT:
  3130. // when creating "opt" tensors, always save and load the scratch buffer
  3131. // this is an error prone process, but it is necessary to support inplace
  3132. // operators when using scratch buffers
  3133. // TODO: implement a better way
  3134. static void ggml_scratch_save(struct ggml_context * ctx) {
  3135. // this is needed to allow opt tensors to store their data
  3136. // TODO: again, need to find a better way
  3137. ctx->no_alloc_save = ctx->no_alloc;
  3138. ctx->no_alloc = false;
  3139. ctx->scratch_save = ctx->scratch;
  3140. ctx->scratch.data = NULL;
  3141. }
  3142. static void ggml_scratch_load(struct ggml_context * ctx) {
  3143. ctx->no_alloc = ctx->no_alloc_save;
  3144. ctx->scratch = ctx->scratch_save;
  3145. }
  3146. ////////////////////////////////////////////////////////////////////////////////
  3147. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3148. // always insert objects at the end of the context's memory pool
  3149. struct ggml_object * obj_cur = ctx->objects_end;
  3150. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3151. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3152. const size_t cur_end = cur_offs + cur_size;
  3153. // align to GGML_MEM_ALIGN
  3154. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3155. char * const mem_buffer = ctx->mem_buffer;
  3156. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3157. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3158. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3159. __func__, cur_end + size_needed, ctx->mem_size);
  3160. assert(false);
  3161. return NULL;
  3162. }
  3163. *obj_new = (struct ggml_object) {
  3164. .offs = cur_end + GGML_OBJECT_SIZE,
  3165. .size = size_needed,
  3166. .next = NULL,
  3167. .type = type,
  3168. };
  3169. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3170. if (obj_cur != NULL) {
  3171. obj_cur->next = obj_new;
  3172. } else {
  3173. // this is the first object in this context
  3174. ctx->objects_begin = obj_new;
  3175. }
  3176. ctx->objects_end = obj_new;
  3177. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3178. return obj_new;
  3179. }
  3180. static struct ggml_tensor * ggml_new_tensor_impl(
  3181. struct ggml_context * ctx,
  3182. enum ggml_type type,
  3183. int n_dims,
  3184. const int64_t * ne,
  3185. struct ggml_tensor * view_src,
  3186. size_t view_offs) {
  3187. GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
  3188. GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3189. // find the base tensor and absolute offset
  3190. if (view_src != NULL && view_src->view_src != NULL) {
  3191. view_offs += view_src->view_offs;
  3192. view_src = view_src->view_src;
  3193. }
  3194. size_t data_size = ggml_row_size(type, ne[0]);
  3195. for (int i = 1; i < n_dims; i++) {
  3196. data_size *= ne[i];
  3197. }
  3198. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3199. void * data = view_src != NULL ? view_src->data : NULL;
  3200. if (data != NULL) {
  3201. data = (char *) data + view_offs;
  3202. }
  3203. size_t obj_alloc_size = 0;
  3204. if (view_src == NULL && !ctx->no_alloc) {
  3205. if (ctx->scratch.data != NULL) {
  3206. // allocate tensor data in the scratch buffer
  3207. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3208. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3209. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3210. assert(false);
  3211. return NULL;
  3212. }
  3213. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3214. ctx->scratch.offs += data_size;
  3215. } else {
  3216. // allocate tensor data in the context's memory pool
  3217. obj_alloc_size = data_size;
  3218. }
  3219. }
  3220. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3221. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3222. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3223. #ifdef __clang__
  3224. // temporary until ggml_tensor::backend is removed
  3225. #pragma clang diagnostic push
  3226. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3227. #endif
  3228. *result = (struct ggml_tensor) {
  3229. /*.type =*/ type,
  3230. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3231. /*.buffer =*/ NULL,
  3232. /*.ne =*/ { 1, 1, 1, 1 },
  3233. /*.nb =*/ { 0, 0, 0, 0 },
  3234. /*.op =*/ GGML_OP_NONE,
  3235. /*.op_params =*/ { 0 },
  3236. /*.flags =*/ 0,
  3237. /*.grad =*/ NULL,
  3238. /*.src =*/ { NULL },
  3239. /*.view_src =*/ view_src,
  3240. /*.view_offs =*/ view_offs,
  3241. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3242. /*.name =*/ { 0 },
  3243. /*.extra =*/ NULL,
  3244. ///*.padding =*/ { 0 },
  3245. };
  3246. #ifdef __clang__
  3247. #pragma clang diagnostic pop
  3248. #endif
  3249. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3250. //GGML_ASSERT_ALIGNED(result->data);
  3251. for (int i = 0; i < n_dims; i++) {
  3252. result->ne[i] = ne[i];
  3253. }
  3254. result->nb[0] = ggml_type_size(type);
  3255. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3256. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3257. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3258. }
  3259. ctx->n_objects++;
  3260. return result;
  3261. }
  3262. struct ggml_tensor * ggml_new_tensor(
  3263. struct ggml_context * ctx,
  3264. enum ggml_type type,
  3265. int n_dims,
  3266. const int64_t * ne) {
  3267. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3268. }
  3269. struct ggml_tensor * ggml_new_tensor_1d(
  3270. struct ggml_context * ctx,
  3271. enum ggml_type type,
  3272. int64_t ne0) {
  3273. return ggml_new_tensor(ctx, type, 1, &ne0);
  3274. }
  3275. struct ggml_tensor * ggml_new_tensor_2d(
  3276. struct ggml_context * ctx,
  3277. enum ggml_type type,
  3278. int64_t ne0,
  3279. int64_t ne1) {
  3280. const int64_t ne[2] = { ne0, ne1 };
  3281. return ggml_new_tensor(ctx, type, 2, ne);
  3282. }
  3283. struct ggml_tensor * ggml_new_tensor_3d(
  3284. struct ggml_context * ctx,
  3285. enum ggml_type type,
  3286. int64_t ne0,
  3287. int64_t ne1,
  3288. int64_t ne2) {
  3289. const int64_t ne[3] = { ne0, ne1, ne2 };
  3290. return ggml_new_tensor(ctx, type, 3, ne);
  3291. }
  3292. struct ggml_tensor * ggml_new_tensor_4d(
  3293. struct ggml_context * ctx,
  3294. enum ggml_type type,
  3295. int64_t ne0,
  3296. int64_t ne1,
  3297. int64_t ne2,
  3298. int64_t ne3) {
  3299. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3300. return ggml_new_tensor(ctx, type, 4, ne);
  3301. }
  3302. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3303. ggml_scratch_save(ctx);
  3304. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3305. ggml_scratch_load(ctx);
  3306. ggml_set_i32(result, value);
  3307. return result;
  3308. }
  3309. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3310. ggml_scratch_save(ctx);
  3311. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3312. ggml_scratch_load(ctx);
  3313. ggml_set_f32(result, value);
  3314. return result;
  3315. }
  3316. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3317. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3318. }
  3319. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3320. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3321. assert(params_size <= GGML_MAX_OP_PARAMS);
  3322. memcpy(tensor->op_params, params, params_size);
  3323. }
  3324. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3325. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3326. return ((const int32_t *)(tensor->op_params))[i];
  3327. }
  3328. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3329. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3330. return ((const float *)(tensor->op_params))[i];
  3331. }
  3332. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3333. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3334. ((int32_t *)(tensor->op_params))[i] = value;
  3335. }
  3336. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3337. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3338. ((float *)(tensor->op_params))[i] = value;
  3339. }
  3340. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3341. memset(tensor->data, 0, ggml_nbytes(tensor));
  3342. return tensor;
  3343. }
  3344. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3345. const int n = ggml_nrows(tensor);
  3346. const int nc = tensor->ne[0];
  3347. const size_t n1 = tensor->nb[1];
  3348. char * const data = tensor->data;
  3349. switch (tensor->type) {
  3350. case GGML_TYPE_I8:
  3351. {
  3352. assert(tensor->nb[0] == sizeof(int8_t));
  3353. for (int i = 0; i < n; i++) {
  3354. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3355. }
  3356. } break;
  3357. case GGML_TYPE_I16:
  3358. {
  3359. assert(tensor->nb[0] == sizeof(int16_t));
  3360. for (int i = 0; i < n; i++) {
  3361. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3362. }
  3363. } break;
  3364. case GGML_TYPE_I32:
  3365. {
  3366. assert(tensor->nb[0] == sizeof(int32_t));
  3367. for (int i = 0; i < n; i++) {
  3368. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3369. }
  3370. } break;
  3371. case GGML_TYPE_F16:
  3372. {
  3373. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3374. for (int i = 0; i < n; i++) {
  3375. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3376. }
  3377. } break;
  3378. case GGML_TYPE_BF16:
  3379. {
  3380. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3381. for (int i = 0; i < n; i++) {
  3382. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3383. }
  3384. } break;
  3385. case GGML_TYPE_F32:
  3386. {
  3387. assert(tensor->nb[0] == sizeof(float));
  3388. for (int i = 0; i < n; i++) {
  3389. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3390. }
  3391. } break;
  3392. default:
  3393. {
  3394. GGML_ABORT("fatal error");
  3395. }
  3396. }
  3397. return tensor;
  3398. }
  3399. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3400. const int n = ggml_nrows(tensor);
  3401. const int nc = tensor->ne[0];
  3402. const size_t n1 = tensor->nb[1];
  3403. char * const data = tensor->data;
  3404. switch (tensor->type) {
  3405. case GGML_TYPE_I8:
  3406. {
  3407. assert(tensor->nb[0] == sizeof(int8_t));
  3408. for (int i = 0; i < n; i++) {
  3409. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3410. }
  3411. } break;
  3412. case GGML_TYPE_I16:
  3413. {
  3414. assert(tensor->nb[0] == sizeof(int16_t));
  3415. for (int i = 0; i < n; i++) {
  3416. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3417. }
  3418. } break;
  3419. case GGML_TYPE_I32:
  3420. {
  3421. assert(tensor->nb[0] == sizeof(int32_t));
  3422. for (int i = 0; i < n; i++) {
  3423. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3424. }
  3425. } break;
  3426. case GGML_TYPE_F16:
  3427. {
  3428. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3429. for (int i = 0; i < n; i++) {
  3430. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3431. }
  3432. } break;
  3433. case GGML_TYPE_BF16:
  3434. {
  3435. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3436. for (int i = 0; i < n; i++) {
  3437. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3438. }
  3439. } break;
  3440. case GGML_TYPE_F32:
  3441. {
  3442. assert(tensor->nb[0] == sizeof(float));
  3443. for (int i = 0; i < n; i++) {
  3444. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3445. }
  3446. } break;
  3447. default:
  3448. {
  3449. GGML_ABORT("fatal error");
  3450. }
  3451. }
  3452. return tensor;
  3453. }
  3454. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3455. const int64_t ne2 = tensor->ne[2];
  3456. const int64_t ne1 = tensor->ne[1];
  3457. const int64_t ne0 = tensor->ne[0];
  3458. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3459. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3460. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3461. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3462. if (i0) {
  3463. * i0 = i0_;
  3464. }
  3465. if (i1) {
  3466. * i1 = i1_;
  3467. }
  3468. if (i2) {
  3469. * i2 = i2_;
  3470. }
  3471. if (i3) {
  3472. * i3 = i3_;
  3473. }
  3474. }
  3475. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3476. if (!ggml_is_contiguous(tensor)) {
  3477. int64_t id[4] = { 0, 0, 0, 0 };
  3478. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3479. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3480. }
  3481. switch (tensor->type) {
  3482. case GGML_TYPE_I8:
  3483. {
  3484. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3485. return ((int8_t *)(tensor->data))[i];
  3486. }
  3487. case GGML_TYPE_I16:
  3488. {
  3489. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3490. return ((int16_t *)(tensor->data))[i];
  3491. }
  3492. case GGML_TYPE_I32:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3495. return ((int32_t *)(tensor->data))[i];
  3496. }
  3497. case GGML_TYPE_F16:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3500. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3501. }
  3502. case GGML_TYPE_BF16:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3505. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3506. }
  3507. case GGML_TYPE_F32:
  3508. {
  3509. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3510. return ((float *)(tensor->data))[i];
  3511. }
  3512. default:
  3513. {
  3514. GGML_ABORT("fatal error");
  3515. }
  3516. }
  3517. }
  3518. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3519. if (!ggml_is_contiguous(tensor)) {
  3520. int64_t id[4] = { 0, 0, 0, 0 };
  3521. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3522. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3523. return;
  3524. }
  3525. switch (tensor->type) {
  3526. case GGML_TYPE_I8:
  3527. {
  3528. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3529. ((int8_t *)(tensor->data))[i] = value;
  3530. } break;
  3531. case GGML_TYPE_I16:
  3532. {
  3533. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3534. ((int16_t *)(tensor->data))[i] = value;
  3535. } break;
  3536. case GGML_TYPE_I32:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3539. ((int32_t *)(tensor->data))[i] = value;
  3540. } break;
  3541. case GGML_TYPE_F16:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3544. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3545. } break;
  3546. case GGML_TYPE_BF16:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3549. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3550. } break;
  3551. case GGML_TYPE_F32:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3554. ((float *)(tensor->data))[i] = value;
  3555. } break;
  3556. default:
  3557. {
  3558. GGML_ABORT("fatal error");
  3559. }
  3560. }
  3561. }
  3562. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3563. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3564. switch (tensor->type) {
  3565. case GGML_TYPE_I8:
  3566. return ((int8_t *) data)[0];
  3567. case GGML_TYPE_I16:
  3568. return ((int16_t *) data)[0];
  3569. case GGML_TYPE_I32:
  3570. return ((int32_t *) data)[0];
  3571. case GGML_TYPE_F16:
  3572. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3573. case GGML_TYPE_BF16:
  3574. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3575. case GGML_TYPE_F32:
  3576. return ((float *) data)[0];
  3577. default:
  3578. GGML_ABORT("fatal error");
  3579. }
  3580. }
  3581. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3582. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3583. switch (tensor->type) {
  3584. case GGML_TYPE_I8:
  3585. {
  3586. ((int8_t *)(data))[0] = value;
  3587. } break;
  3588. case GGML_TYPE_I16:
  3589. {
  3590. ((int16_t *)(data))[0] = value;
  3591. } break;
  3592. case GGML_TYPE_I32:
  3593. {
  3594. ((int32_t *)(data))[0] = value;
  3595. } break;
  3596. case GGML_TYPE_F16:
  3597. {
  3598. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3599. } break;
  3600. case GGML_TYPE_BF16:
  3601. {
  3602. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3603. } break;
  3604. case GGML_TYPE_F32:
  3605. {
  3606. ((float *)(data))[0] = value;
  3607. } break;
  3608. default:
  3609. {
  3610. GGML_ABORT("fatal error");
  3611. }
  3612. }
  3613. }
  3614. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3615. if (!ggml_is_contiguous(tensor)) {
  3616. int64_t id[4] = { 0, 0, 0, 0 };
  3617. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3618. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3619. }
  3620. switch (tensor->type) {
  3621. case GGML_TYPE_I8:
  3622. {
  3623. return ((int8_t *)(tensor->data))[i];
  3624. }
  3625. case GGML_TYPE_I16:
  3626. {
  3627. return ((int16_t *)(tensor->data))[i];
  3628. }
  3629. case GGML_TYPE_I32:
  3630. {
  3631. return ((int32_t *)(tensor->data))[i];
  3632. }
  3633. case GGML_TYPE_F16:
  3634. {
  3635. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3636. }
  3637. case GGML_TYPE_BF16:
  3638. {
  3639. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3640. }
  3641. case GGML_TYPE_F32:
  3642. {
  3643. return ((float *)(tensor->data))[i];
  3644. }
  3645. default:
  3646. {
  3647. GGML_ABORT("fatal error");
  3648. }
  3649. }
  3650. }
  3651. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3652. if (!ggml_is_contiguous(tensor)) {
  3653. int64_t id[4] = { 0, 0, 0, 0 };
  3654. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3655. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3656. return;
  3657. }
  3658. switch (tensor->type) {
  3659. case GGML_TYPE_I8:
  3660. {
  3661. ((int8_t *)(tensor->data))[i] = value;
  3662. } break;
  3663. case GGML_TYPE_I16:
  3664. {
  3665. ((int16_t *)(tensor->data))[i] = value;
  3666. } break;
  3667. case GGML_TYPE_I32:
  3668. {
  3669. ((int32_t *)(tensor->data))[i] = value;
  3670. } break;
  3671. case GGML_TYPE_F16:
  3672. {
  3673. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3674. } break;
  3675. case GGML_TYPE_BF16:
  3676. {
  3677. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3678. } break;
  3679. case GGML_TYPE_F32:
  3680. {
  3681. ((float *)(tensor->data))[i] = value;
  3682. } break;
  3683. default:
  3684. {
  3685. GGML_ABORT("fatal error");
  3686. }
  3687. }
  3688. }
  3689. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3690. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3691. switch (tensor->type) {
  3692. case GGML_TYPE_I8:
  3693. return ((int8_t *) data)[0];
  3694. case GGML_TYPE_I16:
  3695. return ((int16_t *) data)[0];
  3696. case GGML_TYPE_I32:
  3697. return ((int32_t *) data)[0];
  3698. case GGML_TYPE_F16:
  3699. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3700. case GGML_TYPE_BF16:
  3701. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3702. case GGML_TYPE_F32:
  3703. return ((float *) data)[0];
  3704. default:
  3705. GGML_ABORT("fatal error");
  3706. }
  3707. }
  3708. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3709. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3710. switch (tensor->type) {
  3711. case GGML_TYPE_I8:
  3712. {
  3713. ((int8_t *)(data))[0] = value;
  3714. } break;
  3715. case GGML_TYPE_I16:
  3716. {
  3717. ((int16_t *)(data))[0] = value;
  3718. } break;
  3719. case GGML_TYPE_I32:
  3720. {
  3721. ((int32_t *)(data))[0] = value;
  3722. } break;
  3723. case GGML_TYPE_F16:
  3724. {
  3725. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3726. } break;
  3727. case GGML_TYPE_BF16:
  3728. {
  3729. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3730. } break;
  3731. case GGML_TYPE_F32:
  3732. {
  3733. ((float *)(data))[0] = value;
  3734. } break;
  3735. default:
  3736. {
  3737. GGML_ABORT("fatal error");
  3738. }
  3739. }
  3740. }
  3741. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3742. return tensor->data;
  3743. }
  3744. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3745. assert(tensor->type == GGML_TYPE_F32);
  3746. return (float *)(tensor->data);
  3747. }
  3748. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3749. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3750. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3751. }
  3752. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3753. return tensor->name;
  3754. }
  3755. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3756. size_t i;
  3757. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  3758. tensor->name[i] = name[i];
  3759. }
  3760. tensor->name[i] = '\0';
  3761. return tensor;
  3762. }
  3763. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3764. va_list args;
  3765. va_start(args, fmt);
  3766. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3767. va_end(args);
  3768. return tensor;
  3769. }
  3770. struct ggml_tensor * ggml_view_tensor(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * src) {
  3773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3774. ggml_format_name(result, "%s (view)", src->name);
  3775. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3776. result->nb[i] = src->nb[i];
  3777. }
  3778. return result;
  3779. }
  3780. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3781. struct ggml_object * obj = ctx->objects_begin;
  3782. char * const mem_buffer = ctx->mem_buffer;
  3783. while (obj != NULL) {
  3784. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3785. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3786. }
  3787. obj = obj->next;
  3788. }
  3789. return NULL;
  3790. }
  3791. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3792. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3793. obj = obj->next;
  3794. char * const mem_buffer = ctx->mem_buffer;
  3795. while (obj != NULL) {
  3796. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3797. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3798. }
  3799. obj = obj->next;
  3800. }
  3801. return NULL;
  3802. }
  3803. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3804. struct ggml_object * obj = ctx->objects_begin;
  3805. char * const mem_buffer = ctx->mem_buffer;
  3806. while (obj != NULL) {
  3807. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3808. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3809. if (strcmp(cur->name, name) == 0) {
  3810. return cur;
  3811. }
  3812. }
  3813. obj = obj->next;
  3814. }
  3815. return NULL;
  3816. }
  3817. ////////////////////////////////////////////////////////////////////////////////
  3818. // ggml_dup
  3819. static struct ggml_tensor * ggml_dup_impl(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. bool inplace) {
  3823. bool is_node = false;
  3824. if (!inplace && (a->grad)) {
  3825. is_node = true;
  3826. }
  3827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3828. result->op = GGML_OP_DUP;
  3829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3830. result->src[0] = a;
  3831. return result;
  3832. }
  3833. struct ggml_tensor * ggml_dup(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a) {
  3836. return ggml_dup_impl(ctx, a, false);
  3837. }
  3838. struct ggml_tensor * ggml_dup_inplace(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a) {
  3841. return ggml_dup_impl(ctx, a, true);
  3842. }
  3843. // ggml_add
  3844. static struct ggml_tensor * ggml_add_impl(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a,
  3847. struct ggml_tensor * b,
  3848. bool inplace) {
  3849. GGML_ASSERT(ggml_can_repeat(b, a));
  3850. bool is_node = false;
  3851. if (!inplace && (a->grad || b->grad)) {
  3852. // TODO: support backward pass for broadcasting
  3853. GGML_ASSERT(ggml_are_same_shape(a, b));
  3854. is_node = true;
  3855. }
  3856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3857. result->op = GGML_OP_ADD;
  3858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3859. result->src[0] = a;
  3860. result->src[1] = b;
  3861. return result;
  3862. }
  3863. struct ggml_tensor * ggml_add(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. struct ggml_tensor * b) {
  3867. return ggml_add_impl(ctx, a, b, false);
  3868. }
  3869. struct ggml_tensor * ggml_add_inplace(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b) {
  3873. return ggml_add_impl(ctx, a, b, true);
  3874. }
  3875. // ggml_add_cast
  3876. static struct ggml_tensor * ggml_add_cast_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b,
  3880. enum ggml_type type) {
  3881. // TODO: support less-strict constraint
  3882. // GGML_ASSERT(ggml_can_repeat(b, a));
  3883. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3884. // currently only supported for quantized input and f16
  3885. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3886. a->type == GGML_TYPE_F16 ||
  3887. a->type == GGML_TYPE_BF16);
  3888. bool is_node = false;
  3889. if (a->grad || b->grad) {
  3890. // TODO: support backward pass for broadcasting
  3891. GGML_ASSERT(ggml_are_same_shape(a, b));
  3892. is_node = true;
  3893. }
  3894. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3895. result->op = GGML_OP_ADD;
  3896. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3897. result->src[0] = a;
  3898. result->src[1] = b;
  3899. return result;
  3900. }
  3901. struct ggml_tensor * ggml_add_cast(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. struct ggml_tensor * b,
  3905. enum ggml_type type) {
  3906. return ggml_add_cast_impl(ctx, a, b, type);
  3907. }
  3908. // ggml_add1
  3909. static struct ggml_tensor * ggml_add1_impl(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. struct ggml_tensor * b,
  3913. bool inplace) {
  3914. GGML_ASSERT(ggml_is_scalar(b));
  3915. GGML_ASSERT(ggml_is_padded_1d(a));
  3916. bool is_node = false;
  3917. if (a->grad || b->grad) {
  3918. is_node = true;
  3919. }
  3920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3921. result->op = GGML_OP_ADD1;
  3922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3923. result->src[0] = a;
  3924. result->src[1] = b;
  3925. return result;
  3926. }
  3927. struct ggml_tensor * ggml_add1(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. struct ggml_tensor * b) {
  3931. return ggml_add1_impl(ctx, a, b, false);
  3932. }
  3933. struct ggml_tensor * ggml_add1_inplace(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. struct ggml_tensor * b) {
  3937. return ggml_add1_impl(ctx, a, b, true);
  3938. }
  3939. // ggml_acc
  3940. static struct ggml_tensor * ggml_acc_impl(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * a,
  3943. struct ggml_tensor * b,
  3944. size_t nb1,
  3945. size_t nb2,
  3946. size_t nb3,
  3947. size_t offset,
  3948. bool inplace) {
  3949. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3950. GGML_ASSERT(ggml_is_contiguous(a));
  3951. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3952. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3953. bool is_node = false;
  3954. if (!inplace && (a->grad || b->grad)) {
  3955. is_node = true;
  3956. }
  3957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3958. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3959. ggml_set_op_params(result, params, sizeof(params));
  3960. result->op = GGML_OP_ACC;
  3961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3962. result->src[0] = a;
  3963. result->src[1] = b;
  3964. return result;
  3965. }
  3966. struct ggml_tensor * ggml_acc(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. struct ggml_tensor * b,
  3970. size_t nb1,
  3971. size_t nb2,
  3972. size_t nb3,
  3973. size_t offset) {
  3974. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3975. }
  3976. struct ggml_tensor * ggml_acc_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. struct ggml_tensor * b,
  3980. size_t nb1,
  3981. size_t nb2,
  3982. size_t nb3,
  3983. size_t offset) {
  3984. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3985. }
  3986. // ggml_sub
  3987. static struct ggml_tensor * ggml_sub_impl(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. struct ggml_tensor * b,
  3991. bool inplace) {
  3992. GGML_ASSERT(ggml_are_same_shape(a, b));
  3993. bool is_node = false;
  3994. if (!inplace && (a->grad || b->grad)) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. result->op = GGML_OP_SUB;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src[0] = a;
  4001. result->src[1] = b;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_sub(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. struct ggml_tensor * b) {
  4008. return ggml_sub_impl(ctx, a, b, false);
  4009. }
  4010. struct ggml_tensor * ggml_sub_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. return ggml_sub_impl(ctx, a, b, true);
  4015. }
  4016. // ggml_mul
  4017. static struct ggml_tensor * ggml_mul_impl(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. struct ggml_tensor * b,
  4021. bool inplace) {
  4022. GGML_ASSERT(ggml_can_repeat(b, a));
  4023. bool is_node = false;
  4024. if (!inplace && (a->grad || b->grad)) {
  4025. // TODO: support backward pass for broadcasting
  4026. GGML_ASSERT(ggml_are_same_shape(a, b));
  4027. is_node = true;
  4028. }
  4029. if (inplace) {
  4030. GGML_ASSERT(!is_node);
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. result->op = GGML_OP_MUL;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src[0] = a;
  4036. result->src[1] = b;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_mul(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. return ggml_mul_impl(ctx, a, b, false);
  4044. }
  4045. struct ggml_tensor * ggml_mul_inplace(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. struct ggml_tensor * b) {
  4049. return ggml_mul_impl(ctx, a, b, true);
  4050. }
  4051. // ggml_div
  4052. static struct ggml_tensor * ggml_div_impl(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a,
  4055. struct ggml_tensor * b,
  4056. bool inplace) {
  4057. GGML_ASSERT(ggml_can_repeat(b, a));
  4058. bool is_node = false;
  4059. if (!inplace && (a->grad || b->grad)) {
  4060. is_node = true;
  4061. }
  4062. if (inplace) {
  4063. GGML_ASSERT(!is_node);
  4064. }
  4065. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4066. result->op = GGML_OP_DIV;
  4067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4068. result->src[0] = a;
  4069. result->src[1] = b;
  4070. return result;
  4071. }
  4072. struct ggml_tensor * ggml_div(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a,
  4075. struct ggml_tensor * b) {
  4076. return ggml_div_impl(ctx, a, b, false);
  4077. }
  4078. struct ggml_tensor * ggml_div_inplace(
  4079. struct ggml_context * ctx,
  4080. struct ggml_tensor * a,
  4081. struct ggml_tensor * b) {
  4082. return ggml_div_impl(ctx, a, b, true);
  4083. }
  4084. // ggml_sqr
  4085. static struct ggml_tensor * ggml_sqr_impl(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. bool inplace) {
  4089. bool is_node = false;
  4090. if (!inplace && (a->grad)) {
  4091. is_node = true;
  4092. }
  4093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4094. result->op = GGML_OP_SQR;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src[0] = a;
  4097. return result;
  4098. }
  4099. struct ggml_tensor * ggml_sqr(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_sqr_impl(ctx, a, false);
  4103. }
  4104. struct ggml_tensor * ggml_sqr_inplace(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a) {
  4107. return ggml_sqr_impl(ctx, a, true);
  4108. }
  4109. // ggml_sqrt
  4110. static struct ggml_tensor * ggml_sqrt_impl(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. bool inplace) {
  4114. bool is_node = false;
  4115. if (!inplace && (a->grad)) {
  4116. is_node = true;
  4117. }
  4118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4119. result->op = GGML_OP_SQRT;
  4120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4121. result->src[0] = a;
  4122. return result;
  4123. }
  4124. struct ggml_tensor * ggml_sqrt(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a) {
  4127. return ggml_sqrt_impl(ctx, a, false);
  4128. }
  4129. struct ggml_tensor * ggml_sqrt_inplace(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a) {
  4132. return ggml_sqrt_impl(ctx, a, true);
  4133. }
  4134. // ggml_log
  4135. static struct ggml_tensor * ggml_log_impl(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. bool inplace) {
  4139. bool is_node = false;
  4140. if (!inplace && (a->grad)) {
  4141. is_node = true;
  4142. }
  4143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4144. result->op = GGML_OP_LOG;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src[0] = a;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_log(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. return ggml_log_impl(ctx, a, false);
  4153. }
  4154. struct ggml_tensor * ggml_log_inplace(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a) {
  4157. return ggml_log_impl(ctx, a, true);
  4158. }
  4159. // ggml_sum
  4160. struct ggml_tensor * ggml_sum(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4168. result->op = GGML_OP_SUM;
  4169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4170. result->src[0] = a;
  4171. return result;
  4172. }
  4173. // ggml_sum_rows
  4174. struct ggml_tensor * ggml_sum_rows(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. bool is_node = false;
  4178. if (a->grad) {
  4179. is_node = true;
  4180. }
  4181. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4182. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4183. ne[i] = a->ne[i];
  4184. }
  4185. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4186. result->op = GGML_OP_SUM_ROWS;
  4187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4188. result->src[0] = a;
  4189. return result;
  4190. }
  4191. // ggml_mean
  4192. struct ggml_tensor * ggml_mean(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. bool is_node = false;
  4196. if (a->grad) {
  4197. GGML_ABORT("fatal error"); // TODO: implement
  4198. is_node = true;
  4199. }
  4200. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4201. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4202. result->op = GGML_OP_MEAN;
  4203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4204. result->src[0] = a;
  4205. return result;
  4206. }
  4207. // ggml_argmax
  4208. struct ggml_tensor * ggml_argmax(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a) {
  4211. GGML_ASSERT(ggml_is_matrix(a));
  4212. bool is_node = false;
  4213. if (a->grad) {
  4214. GGML_ABORT("fatal error");
  4215. is_node = true;
  4216. }
  4217. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4218. result->op = GGML_OP_ARGMAX;
  4219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4220. result->src[0] = a;
  4221. return result;
  4222. }
  4223. // ggml_repeat
  4224. struct ggml_tensor * ggml_repeat(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. struct ggml_tensor * b) {
  4228. GGML_ASSERT(ggml_can_repeat(a, b));
  4229. bool is_node = false;
  4230. if (a->grad) {
  4231. is_node = true;
  4232. }
  4233. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4234. result->op = GGML_OP_REPEAT;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. return result;
  4238. }
  4239. // ggml_repeat_back
  4240. struct ggml_tensor * ggml_repeat_back(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b) {
  4244. GGML_ASSERT(ggml_can_repeat(b, a));
  4245. bool is_node = false;
  4246. if (a->grad) {
  4247. is_node = true;
  4248. }
  4249. if (ggml_are_same_shape(a, b) && !is_node) {
  4250. return a;
  4251. }
  4252. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4253. result->op = GGML_OP_REPEAT_BACK;
  4254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4255. result->src[0] = a;
  4256. return result;
  4257. }
  4258. // ggml_concat
  4259. struct ggml_tensor * ggml_concat(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b,
  4263. int dim) {
  4264. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4265. int64_t ne[GGML_MAX_DIMS];
  4266. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4267. if (d == dim) {
  4268. ne[d] = a->ne[d] + b->ne[d];
  4269. continue;
  4270. }
  4271. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4272. ne[d] = a->ne[d];
  4273. }
  4274. bool is_node = false;
  4275. if (a->grad || b->grad) {
  4276. is_node = true;
  4277. }
  4278. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4279. ggml_set_op_params_i32(result, 0, dim);
  4280. result->op = GGML_OP_CONCAT;
  4281. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4282. result->src[0] = a;
  4283. result->src[1] = b;
  4284. return result;
  4285. }
  4286. // ggml_abs
  4287. struct ggml_tensor * ggml_abs(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a) {
  4290. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4291. }
  4292. struct ggml_tensor * ggml_abs_inplace(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a) {
  4295. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4296. }
  4297. // ggml_sgn
  4298. struct ggml_tensor * ggml_sgn(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4302. }
  4303. struct ggml_tensor * ggml_sgn_inplace(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a) {
  4306. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4307. }
  4308. // ggml_neg
  4309. struct ggml_tensor * ggml_neg(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a) {
  4312. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4313. }
  4314. struct ggml_tensor * ggml_neg_inplace(
  4315. struct ggml_context * ctx,
  4316. struct ggml_tensor * a) {
  4317. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4318. }
  4319. // ggml_step
  4320. struct ggml_tensor * ggml_step(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a) {
  4323. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4324. }
  4325. struct ggml_tensor * ggml_step_inplace(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a) {
  4328. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4329. }
  4330. // ggml_tanh
  4331. struct ggml_tensor * ggml_tanh(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a) {
  4334. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4335. }
  4336. struct ggml_tensor * ggml_tanh_inplace(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a) {
  4339. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4340. }
  4341. // ggml_elu
  4342. struct ggml_tensor * ggml_elu(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a) {
  4345. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4346. }
  4347. struct ggml_tensor * ggml_elu_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a) {
  4350. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4351. }
  4352. // ggml_relu
  4353. struct ggml_tensor * ggml_relu(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a) {
  4356. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4357. }
  4358. struct ggml_tensor * ggml_relu_inplace(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a) {
  4361. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4362. }
  4363. // ggml_leaky_relu
  4364. struct ggml_tensor * ggml_leaky_relu(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4367. bool is_node = false;
  4368. if (!inplace && (a->grad)) {
  4369. is_node = true;
  4370. }
  4371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4372. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4373. result->op = GGML_OP_LEAKY_RELU;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src[0] = a;
  4376. return result;
  4377. }
  4378. // ggml_sigmoid
  4379. struct ggml_tensor * ggml_sigmoid(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a) {
  4382. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4383. }
  4384. struct ggml_tensor * ggml_sigmoid_inplace(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a) {
  4387. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4388. }
  4389. // ggml_gelu
  4390. struct ggml_tensor * ggml_gelu(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a) {
  4393. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4394. }
  4395. struct ggml_tensor * ggml_gelu_inplace(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a) {
  4398. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4399. }
  4400. // ggml_gelu_quick
  4401. struct ggml_tensor * ggml_gelu_quick(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4405. }
  4406. struct ggml_tensor * ggml_gelu_quick_inplace(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a) {
  4409. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4410. }
  4411. // ggml_silu
  4412. struct ggml_tensor * ggml_silu(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a) {
  4415. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4416. }
  4417. struct ggml_tensor * ggml_silu_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4421. }
  4422. // ggml_silu_back
  4423. struct ggml_tensor * ggml_silu_back(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b) {
  4427. bool is_node = false;
  4428. if (a->grad || b->grad) {
  4429. // TODO: implement backward
  4430. is_node = true;
  4431. }
  4432. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4433. result->op = GGML_OP_SILU_BACK;
  4434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4435. result->src[0] = a;
  4436. result->src[1] = b;
  4437. return result;
  4438. }
  4439. // ggml hardswish
  4440. struct ggml_tensor * ggml_hardswish(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a) {
  4443. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4444. }
  4445. // ggml hardsigmoid
  4446. struct ggml_tensor * ggml_hardsigmoid(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a) {
  4449. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4450. }
  4451. // ggml_norm
  4452. static struct ggml_tensor * ggml_norm_impl(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. float eps,
  4456. bool inplace) {
  4457. bool is_node = false;
  4458. if (!inplace && (a->grad)) {
  4459. GGML_ABORT("fatal error"); // TODO: implement backward
  4460. is_node = true;
  4461. }
  4462. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4463. ggml_set_op_params(result, &eps, sizeof(eps));
  4464. result->op = GGML_OP_NORM;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src[0] = a;
  4467. return result;
  4468. }
  4469. struct ggml_tensor * ggml_norm(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. float eps) {
  4473. return ggml_norm_impl(ctx, a, eps, false);
  4474. }
  4475. struct ggml_tensor * ggml_norm_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. float eps) {
  4479. return ggml_norm_impl(ctx, a, eps, true);
  4480. }
  4481. // ggml_rms_norm
  4482. static struct ggml_tensor * ggml_rms_norm_impl(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. float eps,
  4486. bool inplace) {
  4487. bool is_node = false;
  4488. if (!inplace && (a->grad)) {
  4489. is_node = true;
  4490. }
  4491. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4492. ggml_set_op_params(result, &eps, sizeof(eps));
  4493. result->op = GGML_OP_RMS_NORM;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. return result;
  4497. }
  4498. struct ggml_tensor * ggml_rms_norm(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. float eps) {
  4502. return ggml_rms_norm_impl(ctx, a, eps, false);
  4503. }
  4504. struct ggml_tensor * ggml_rms_norm_inplace(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. float eps) {
  4508. return ggml_rms_norm_impl(ctx, a, eps, true);
  4509. }
  4510. // ggml_rms_norm_back
  4511. struct ggml_tensor * ggml_rms_norm_back(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b,
  4515. float eps) {
  4516. bool is_node = false;
  4517. if (a->grad) {
  4518. // TODO: implement backward
  4519. is_node = true;
  4520. }
  4521. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4522. ggml_set_op_params(result, &eps, sizeof(eps));
  4523. result->op = GGML_OP_RMS_NORM_BACK;
  4524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4525. result->src[0] = a;
  4526. result->src[1] = b;
  4527. return result;
  4528. }
  4529. // ggml_group_norm
  4530. static struct ggml_tensor * ggml_group_norm_impl(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. int n_groups,
  4534. float eps,
  4535. bool inplace) {
  4536. bool is_node = false;
  4537. if (!inplace && (a->grad)) {
  4538. GGML_ABORT("fatal error"); // TODO: implement backward
  4539. is_node = true;
  4540. }
  4541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4542. ggml_set_op_params_i32(result, 0, n_groups);
  4543. ggml_set_op_params_f32(result, 1, eps);
  4544. result->op = GGML_OP_GROUP_NORM;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src[0] = a;
  4547. return result;
  4548. }
  4549. struct ggml_tensor * ggml_group_norm(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. int n_groups,
  4553. float eps) {
  4554. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4555. }
  4556. struct ggml_tensor * ggml_group_norm_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. int n_groups,
  4560. float eps) {
  4561. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4562. }
  4563. // ggml_mul_mat
  4564. struct ggml_tensor * ggml_mul_mat(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. struct ggml_tensor * b) {
  4568. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4569. GGML_ASSERT(!ggml_is_transposed(a));
  4570. bool is_node = false;
  4571. if (a->grad || b->grad) {
  4572. is_node = true;
  4573. }
  4574. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4575. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4576. result->op = GGML_OP_MUL_MAT;
  4577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4578. result->src[0] = a;
  4579. result->src[1] = b;
  4580. return result;
  4581. }
  4582. void ggml_mul_mat_set_prec(
  4583. struct ggml_tensor * a,
  4584. enum ggml_prec prec) {
  4585. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4586. const int32_t prec_i32 = (int32_t) prec;
  4587. ggml_set_op_params_i32(a, 0, prec_i32);
  4588. }
  4589. // ggml_mul_mat_id
  4590. /*
  4591. c = ggml_mul_mat_id(ctx, as, b, ids);
  4592. as -> [cols, rows, n_expert]
  4593. ids -> [n_experts_used, n_tokens] (i32)
  4594. b -> [cols, n_expert_used, n_tokens]
  4595. c -> [rows, n_expert_used, n_tokens]
  4596. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4597. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4598. */
  4599. struct ggml_tensor * ggml_mul_mat_id(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * as,
  4602. struct ggml_tensor * b,
  4603. struct ggml_tensor * ids) {
  4604. GGML_ASSERT(!ggml_is_transposed(as));
  4605. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4606. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4607. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4608. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4609. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4610. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4611. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4612. bool is_node = false;
  4613. if (as->grad || b->grad) {
  4614. is_node = true;
  4615. }
  4616. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4617. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4618. result->op = GGML_OP_MUL_MAT_ID;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = as;
  4621. result->src[1] = b;
  4622. result->src[2] = ids;
  4623. return result;
  4624. }
  4625. // ggml_out_prod
  4626. struct ggml_tensor * ggml_out_prod(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. struct ggml_tensor * b) {
  4630. GGML_ASSERT(ggml_can_out_prod(a, b));
  4631. GGML_ASSERT(!ggml_is_transposed(a));
  4632. bool is_node = false;
  4633. if (a->grad || b->grad) {
  4634. is_node = true;
  4635. }
  4636. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4637. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4638. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4639. result->op = GGML_OP_OUT_PROD;
  4640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4641. result->src[0] = a;
  4642. result->src[1] = b;
  4643. return result;
  4644. }
  4645. // ggml_scale
  4646. static struct ggml_tensor * ggml_scale_impl(
  4647. struct ggml_context * ctx,
  4648. struct ggml_tensor * a,
  4649. float s,
  4650. bool inplace) {
  4651. GGML_ASSERT(ggml_is_padded_1d(a));
  4652. bool is_node = false;
  4653. if (a->grad) {
  4654. is_node = true;
  4655. }
  4656. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4657. ggml_set_op_params(result, &s, sizeof(s));
  4658. result->op = GGML_OP_SCALE;
  4659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4660. result->src[0] = a;
  4661. return result;
  4662. }
  4663. struct ggml_tensor * ggml_scale(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. float s) {
  4667. return ggml_scale_impl(ctx, a, s, false);
  4668. }
  4669. struct ggml_tensor * ggml_scale_inplace(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. float s) {
  4673. return ggml_scale_impl(ctx, a, s, true);
  4674. }
  4675. // ggml_set
  4676. static struct ggml_tensor * ggml_set_impl(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. struct ggml_tensor * b,
  4680. size_t nb1,
  4681. size_t nb2,
  4682. size_t nb3,
  4683. size_t offset,
  4684. bool inplace) {
  4685. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4686. bool is_node = false;
  4687. if (a->grad || b->grad) {
  4688. is_node = true;
  4689. }
  4690. // make a view of the destination
  4691. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4692. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4693. ggml_set_op_params(result, params, sizeof(params));
  4694. result->op = GGML_OP_SET;
  4695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4696. result->src[0] = a;
  4697. result->src[1] = b;
  4698. return result;
  4699. }
  4700. struct ggml_tensor * ggml_set(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. struct ggml_tensor * b,
  4704. size_t nb1,
  4705. size_t nb2,
  4706. size_t nb3,
  4707. size_t offset) {
  4708. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4709. }
  4710. struct ggml_tensor * ggml_set_inplace(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a,
  4713. struct ggml_tensor * b,
  4714. size_t nb1,
  4715. size_t nb2,
  4716. size_t nb3,
  4717. size_t offset) {
  4718. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4719. }
  4720. struct ggml_tensor * ggml_set_1d(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b,
  4724. size_t offset) {
  4725. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4726. }
  4727. struct ggml_tensor * ggml_set_1d_inplace(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. struct ggml_tensor * b,
  4731. size_t offset) {
  4732. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4733. }
  4734. struct ggml_tensor * ggml_set_2d(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b,
  4738. size_t nb1,
  4739. size_t offset) {
  4740. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4741. }
  4742. struct ggml_tensor * ggml_set_2d_inplace(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. struct ggml_tensor * b,
  4746. size_t nb1,
  4747. size_t offset) {
  4748. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4749. }
  4750. // ggml_cpy
  4751. static struct ggml_tensor * ggml_cpy_impl(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b) {
  4755. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4756. bool is_node = false;
  4757. if (a->grad || b->grad) {
  4758. // inplace is false and either one have a grad
  4759. is_node = true;
  4760. }
  4761. // make a view of the destination
  4762. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4763. if (strlen(b->name) > 0) {
  4764. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4765. } else {
  4766. ggml_format_name(result, "%s (copy)", a->name);
  4767. }
  4768. result->op = GGML_OP_CPY;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src[0] = a;
  4771. result->src[1] = b;
  4772. return result;
  4773. }
  4774. struct ggml_tensor * ggml_cpy(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. struct ggml_tensor * b) {
  4778. return ggml_cpy_impl(ctx, a, b);
  4779. }
  4780. struct ggml_tensor * ggml_cast(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. enum ggml_type type) {
  4784. bool is_node = false;
  4785. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4786. ggml_format_name(result, "%s (copy)", a->name);
  4787. result->op = GGML_OP_CPY;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. result->src[1] = result;
  4791. return result;
  4792. }
  4793. // ggml_cont
  4794. static struct ggml_tensor * ggml_cont_impl(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a) {
  4797. bool is_node = false;
  4798. if (a->grad) {
  4799. is_node = true;
  4800. }
  4801. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4802. ggml_format_name(result, "%s (cont)", a->name);
  4803. result->op = GGML_OP_CONT;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. return result;
  4807. }
  4808. struct ggml_tensor * ggml_cont(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a) {
  4811. return ggml_cont_impl(ctx, a);
  4812. }
  4813. // make contiguous, with new shape
  4814. GGML_API struct ggml_tensor * ggml_cont_1d(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. int64_t ne0) {
  4818. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4819. }
  4820. GGML_API struct ggml_tensor * ggml_cont_2d(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. int64_t ne0,
  4824. int64_t ne1) {
  4825. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4826. }
  4827. GGML_API struct ggml_tensor * ggml_cont_3d(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a,
  4830. int64_t ne0,
  4831. int64_t ne1,
  4832. int64_t ne2) {
  4833. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4834. }
  4835. struct ggml_tensor * ggml_cont_4d(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. int64_t ne0,
  4839. int64_t ne1,
  4840. int64_t ne2,
  4841. int64_t ne3) {
  4842. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4843. bool is_node = false;
  4844. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4845. ggml_format_name(result, "%s (cont)", a->name);
  4846. result->op = GGML_OP_CONT;
  4847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4848. result->src[0] = a;
  4849. return result;
  4850. }
  4851. // ggml_reshape
  4852. struct ggml_tensor * ggml_reshape(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * b) {
  4856. GGML_ASSERT(ggml_is_contiguous(a));
  4857. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4858. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4859. bool is_node = false;
  4860. if (a->grad) {
  4861. is_node = true;
  4862. }
  4863. if (b->grad) {
  4864. // gradient propagation is not supported
  4865. //GGML_ABORT("fatal error");
  4866. }
  4867. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4868. ggml_format_name(result, "%s (reshaped)", a->name);
  4869. result->op = GGML_OP_RESHAPE;
  4870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4871. result->src[0] = a;
  4872. return result;
  4873. }
  4874. struct ggml_tensor * ggml_reshape_1d(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. int64_t ne0) {
  4878. GGML_ASSERT(ggml_is_contiguous(a));
  4879. GGML_ASSERT(ggml_nelements(a) == ne0);
  4880. bool is_node = false;
  4881. if (a->grad) {
  4882. is_node = true;
  4883. }
  4884. const int64_t ne[1] = { ne0 };
  4885. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4886. ggml_format_name(result, "%s (reshaped)", a->name);
  4887. result->op = GGML_OP_RESHAPE;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. return result;
  4891. }
  4892. struct ggml_tensor * ggml_reshape_2d(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. int64_t ne0,
  4896. int64_t ne1) {
  4897. GGML_ASSERT(ggml_is_contiguous(a));
  4898. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4899. bool is_node = false;
  4900. if (a->grad) {
  4901. is_node = true;
  4902. }
  4903. const int64_t ne[2] = { ne0, ne1 };
  4904. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4905. ggml_format_name(result, "%s (reshaped)", a->name);
  4906. result->op = GGML_OP_RESHAPE;
  4907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4908. result->src[0] = a;
  4909. return result;
  4910. }
  4911. struct ggml_tensor * ggml_reshape_3d(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. int64_t ne0,
  4915. int64_t ne1,
  4916. int64_t ne2) {
  4917. GGML_ASSERT(ggml_is_contiguous(a));
  4918. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4919. bool is_node = false;
  4920. if (a->grad) {
  4921. is_node = true;
  4922. }
  4923. const int64_t ne[3] = { ne0, ne1, ne2 };
  4924. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4925. ggml_format_name(result, "%s (reshaped)", a->name);
  4926. result->op = GGML_OP_RESHAPE;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. return result;
  4930. }
  4931. struct ggml_tensor * ggml_reshape_4d(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. int64_t ne0,
  4935. int64_t ne1,
  4936. int64_t ne2,
  4937. int64_t ne3) {
  4938. GGML_ASSERT(ggml_is_contiguous(a));
  4939. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4940. bool is_node = false;
  4941. if (a->grad) {
  4942. is_node = true;
  4943. }
  4944. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4945. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4946. ggml_format_name(result, "%s (reshaped)", a->name);
  4947. result->op = GGML_OP_RESHAPE;
  4948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4949. result->src[0] = a;
  4950. return result;
  4951. }
  4952. static struct ggml_tensor * ggml_view_impl(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. int n_dims,
  4956. const int64_t * ne,
  4957. size_t offset) {
  4958. bool is_node = false;
  4959. if (a->grad) {
  4960. is_node = true;
  4961. }
  4962. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4963. ggml_format_name(result, "%s (view)", a->name);
  4964. ggml_set_op_params(result, &offset, sizeof(offset));
  4965. result->op = GGML_OP_VIEW;
  4966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4967. result->src[0] = a;
  4968. return result;
  4969. }
  4970. // ggml_view_1d
  4971. struct ggml_tensor * ggml_view_1d(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. int64_t ne0,
  4975. size_t offset) {
  4976. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4977. return result;
  4978. }
  4979. // ggml_view_2d
  4980. struct ggml_tensor * ggml_view_2d(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a,
  4983. int64_t ne0,
  4984. int64_t ne1,
  4985. size_t nb1,
  4986. size_t offset) {
  4987. const int64_t ne[2] = { ne0, ne1 };
  4988. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4989. result->nb[1] = nb1;
  4990. result->nb[2] = result->nb[1]*ne1;
  4991. result->nb[3] = result->nb[2];
  4992. return result;
  4993. }
  4994. // ggml_view_3d
  4995. struct ggml_tensor * ggml_view_3d(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. int64_t ne0,
  4999. int64_t ne1,
  5000. int64_t ne2,
  5001. size_t nb1,
  5002. size_t nb2,
  5003. size_t offset) {
  5004. const int64_t ne[3] = { ne0, ne1, ne2 };
  5005. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5006. result->nb[1] = nb1;
  5007. result->nb[2] = nb2;
  5008. result->nb[3] = result->nb[2]*ne2;
  5009. return result;
  5010. }
  5011. // ggml_view_4d
  5012. struct ggml_tensor * ggml_view_4d(
  5013. struct ggml_context * ctx,
  5014. struct ggml_tensor * a,
  5015. int64_t ne0,
  5016. int64_t ne1,
  5017. int64_t ne2,
  5018. int64_t ne3,
  5019. size_t nb1,
  5020. size_t nb2,
  5021. size_t nb3,
  5022. size_t offset) {
  5023. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5024. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5025. result->nb[1] = nb1;
  5026. result->nb[2] = nb2;
  5027. result->nb[3] = nb3;
  5028. return result;
  5029. }
  5030. // ggml_permute
  5031. struct ggml_tensor * ggml_permute(
  5032. struct ggml_context * ctx,
  5033. struct ggml_tensor * a,
  5034. int axis0,
  5035. int axis1,
  5036. int axis2,
  5037. int axis3) {
  5038. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5039. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5040. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5041. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5042. GGML_ASSERT(axis0 != axis1);
  5043. GGML_ASSERT(axis0 != axis2);
  5044. GGML_ASSERT(axis0 != axis3);
  5045. GGML_ASSERT(axis1 != axis2);
  5046. GGML_ASSERT(axis1 != axis3);
  5047. GGML_ASSERT(axis2 != axis3);
  5048. bool is_node = false;
  5049. if (a->grad) {
  5050. is_node = true;
  5051. }
  5052. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5053. ggml_format_name(result, "%s (permuted)", a->name);
  5054. int ne[GGML_MAX_DIMS];
  5055. int nb[GGML_MAX_DIMS];
  5056. ne[axis0] = a->ne[0];
  5057. ne[axis1] = a->ne[1];
  5058. ne[axis2] = a->ne[2];
  5059. ne[axis3] = a->ne[3];
  5060. nb[axis0] = a->nb[0];
  5061. nb[axis1] = a->nb[1];
  5062. nb[axis2] = a->nb[2];
  5063. nb[axis3] = a->nb[3];
  5064. result->ne[0] = ne[0];
  5065. result->ne[1] = ne[1];
  5066. result->ne[2] = ne[2];
  5067. result->ne[3] = ne[3];
  5068. result->nb[0] = nb[0];
  5069. result->nb[1] = nb[1];
  5070. result->nb[2] = nb[2];
  5071. result->nb[3] = nb[3];
  5072. result->op = GGML_OP_PERMUTE;
  5073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5074. result->src[0] = a;
  5075. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5076. ggml_set_op_params(result, params, sizeof(params));
  5077. return result;
  5078. }
  5079. // ggml_transpose
  5080. struct ggml_tensor * ggml_transpose(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a) {
  5083. bool is_node = false;
  5084. if (a->grad) {
  5085. is_node = true;
  5086. }
  5087. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5088. ggml_format_name(result, "%s (transposed)", a->name);
  5089. result->ne[0] = a->ne[1];
  5090. result->ne[1] = a->ne[0];
  5091. result->nb[0] = a->nb[1];
  5092. result->nb[1] = a->nb[0];
  5093. result->op = GGML_OP_TRANSPOSE;
  5094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5095. result->src[0] = a;
  5096. return result;
  5097. }
  5098. // ggml_get_rows
  5099. struct ggml_tensor * ggml_get_rows(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. struct ggml_tensor * b) {
  5103. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5104. GGML_ASSERT(b->ne[3] == 1);
  5105. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5106. bool is_node = false;
  5107. if (a->grad || b->grad) {
  5108. is_node = true;
  5109. }
  5110. // TODO: implement non F32 return
  5111. enum ggml_type type = GGML_TYPE_F32;
  5112. if (a->type == GGML_TYPE_I32) {
  5113. type = a->type;
  5114. }
  5115. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5116. result->op = GGML_OP_GET_ROWS;
  5117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5118. result->src[0] = a;
  5119. result->src[1] = b;
  5120. return result;
  5121. }
  5122. // ggml_get_rows_back
  5123. struct ggml_tensor * ggml_get_rows_back(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. struct ggml_tensor * b,
  5127. struct ggml_tensor * c) {
  5128. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5129. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5130. bool is_node = false;
  5131. if (a->grad || b->grad) {
  5132. is_node = true;
  5133. }
  5134. // TODO: implement non F32 return
  5135. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5136. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5137. result->op = GGML_OP_GET_ROWS_BACK;
  5138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5139. result->src[0] = a;
  5140. result->src[1] = b;
  5141. return result;
  5142. }
  5143. // ggml_diag
  5144. struct ggml_tensor * ggml_diag(
  5145. struct ggml_context * ctx,
  5146. struct ggml_tensor * a) {
  5147. GGML_ASSERT(a->ne[1] == 1);
  5148. bool is_node = false;
  5149. if (a->grad) {
  5150. is_node = true;
  5151. }
  5152. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5153. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5154. result->op = GGML_OP_DIAG;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src[0] = a;
  5157. return result;
  5158. }
  5159. // ggml_diag_mask_inf
  5160. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. int n_past,
  5164. bool inplace) {
  5165. bool is_node = false;
  5166. if (a->grad) {
  5167. is_node = true;
  5168. }
  5169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5170. int32_t params[] = { n_past };
  5171. ggml_set_op_params(result, params, sizeof(params));
  5172. result->op = GGML_OP_DIAG_MASK_INF;
  5173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5174. result->src[0] = a;
  5175. return result;
  5176. }
  5177. struct ggml_tensor * ggml_diag_mask_inf(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. int n_past) {
  5181. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5182. }
  5183. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. int n_past) {
  5187. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5188. }
  5189. // ggml_diag_mask_zero
  5190. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5191. struct ggml_context * ctx,
  5192. struct ggml_tensor * a,
  5193. int n_past,
  5194. bool inplace) {
  5195. bool is_node = false;
  5196. if (a->grad) {
  5197. is_node = true;
  5198. }
  5199. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5200. int32_t params[] = { n_past };
  5201. ggml_set_op_params(result, params, sizeof(params));
  5202. result->op = GGML_OP_DIAG_MASK_ZERO;
  5203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5204. result->src[0] = a;
  5205. return result;
  5206. }
  5207. struct ggml_tensor * ggml_diag_mask_zero(
  5208. struct ggml_context * ctx,
  5209. struct ggml_tensor * a,
  5210. int n_past) {
  5211. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5212. }
  5213. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * a,
  5216. int n_past) {
  5217. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5218. }
  5219. // ggml_soft_max
  5220. static struct ggml_tensor * ggml_soft_max_impl(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. struct ggml_tensor * mask,
  5224. float scale,
  5225. float max_bias,
  5226. bool inplace) {
  5227. GGML_ASSERT(ggml_is_contiguous(a));
  5228. if (mask) {
  5229. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5230. GGML_ASSERT(ggml_is_contiguous(mask));
  5231. GGML_ASSERT(ggml_is_matrix(mask));
  5232. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5233. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5234. }
  5235. if (max_bias > 0.0f) {
  5236. GGML_ASSERT(mask);
  5237. }
  5238. bool is_node = false;
  5239. if (a->grad) {
  5240. is_node = true;
  5241. }
  5242. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5243. float params[] = { scale, max_bias };
  5244. ggml_set_op_params(result, params, sizeof(params));
  5245. result->op = GGML_OP_SOFT_MAX;
  5246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5247. result->src[0] = a;
  5248. result->src[1] = mask;
  5249. return result;
  5250. }
  5251. struct ggml_tensor * ggml_soft_max(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a) {
  5254. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5255. }
  5256. struct ggml_tensor * ggml_soft_max_inplace(
  5257. struct ggml_context * ctx,
  5258. struct ggml_tensor * a) {
  5259. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5260. }
  5261. struct ggml_tensor * ggml_soft_max_ext(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. struct ggml_tensor * mask,
  5265. float scale,
  5266. float max_bias) {
  5267. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5268. }
  5269. // ggml_soft_max_back
  5270. static struct ggml_tensor * ggml_soft_max_back_impl(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. struct ggml_tensor * b,
  5274. bool inplace) {
  5275. bool is_node = false;
  5276. if (a->grad || b->grad) {
  5277. is_node = true; // TODO : implement backward pass
  5278. }
  5279. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5280. result->op = GGML_OP_SOFT_MAX_BACK;
  5281. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5282. result->src[0] = a;
  5283. result->src[1] = b;
  5284. return result;
  5285. }
  5286. struct ggml_tensor * ggml_soft_max_back(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * a,
  5289. struct ggml_tensor * b) {
  5290. return ggml_soft_max_back_impl(ctx, a, b, false);
  5291. }
  5292. struct ggml_tensor * ggml_soft_max_back_inplace(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. struct ggml_tensor * b) {
  5296. return ggml_soft_max_back_impl(ctx, a, b, true);
  5297. }
  5298. // ggml_rope
  5299. static struct ggml_tensor * ggml_rope_impl(
  5300. struct ggml_context * ctx,
  5301. struct ggml_tensor * a,
  5302. struct ggml_tensor * b,
  5303. struct ggml_tensor * c,
  5304. int n_dims,
  5305. int mode,
  5306. int n_ctx_orig,
  5307. float freq_base,
  5308. float freq_scale,
  5309. float ext_factor,
  5310. float attn_factor,
  5311. float beta_fast,
  5312. float beta_slow,
  5313. bool inplace) {
  5314. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5315. GGML_ASSERT(ggml_is_vector(b));
  5316. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5317. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5318. if (c) {
  5319. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5320. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5321. }
  5322. bool is_node = false;
  5323. if (a->grad) {
  5324. is_node = true;
  5325. }
  5326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5327. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5328. memcpy(params + 5, &freq_base, sizeof(float));
  5329. memcpy(params + 6, &freq_scale, sizeof(float));
  5330. memcpy(params + 7, &ext_factor, sizeof(float));
  5331. memcpy(params + 8, &attn_factor, sizeof(float));
  5332. memcpy(params + 9, &beta_fast, sizeof(float));
  5333. memcpy(params + 10, &beta_slow, sizeof(float));
  5334. ggml_set_op_params(result, params, sizeof(params));
  5335. result->op = GGML_OP_ROPE;
  5336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5337. result->src[0] = a;
  5338. result->src[1] = b;
  5339. result->src[2] = c;
  5340. return result;
  5341. }
  5342. struct ggml_tensor * ggml_rope(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. struct ggml_tensor * b,
  5346. int n_dims,
  5347. int mode) {
  5348. return ggml_rope_impl(
  5349. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5350. );
  5351. }
  5352. struct ggml_tensor * ggml_rope_inplace(
  5353. struct ggml_context * ctx,
  5354. struct ggml_tensor * a,
  5355. struct ggml_tensor * b,
  5356. int n_dims,
  5357. int mode) {
  5358. return ggml_rope_impl(
  5359. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5360. );
  5361. }
  5362. struct ggml_tensor * ggml_rope_ext(
  5363. struct ggml_context * ctx,
  5364. struct ggml_tensor * a,
  5365. struct ggml_tensor * b,
  5366. struct ggml_tensor * c,
  5367. int n_dims,
  5368. int mode,
  5369. int n_ctx_orig,
  5370. float freq_base,
  5371. float freq_scale,
  5372. float ext_factor,
  5373. float attn_factor,
  5374. float beta_fast,
  5375. float beta_slow) {
  5376. return ggml_rope_impl(
  5377. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5378. ext_factor, attn_factor, beta_fast, beta_slow, false
  5379. );
  5380. }
  5381. struct ggml_tensor * ggml_rope_ext_inplace(
  5382. struct ggml_context * ctx,
  5383. struct ggml_tensor * a,
  5384. struct ggml_tensor * b,
  5385. struct ggml_tensor * c,
  5386. int n_dims,
  5387. int mode,
  5388. int n_ctx_orig,
  5389. float freq_base,
  5390. float freq_scale,
  5391. float ext_factor,
  5392. float attn_factor,
  5393. float beta_fast,
  5394. float beta_slow) {
  5395. return ggml_rope_impl(
  5396. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5397. ext_factor, attn_factor, beta_fast, beta_slow, true
  5398. );
  5399. }
  5400. struct ggml_tensor * ggml_rope_custom(
  5401. struct ggml_context * ctx,
  5402. struct ggml_tensor * a,
  5403. struct ggml_tensor * b,
  5404. int n_dims,
  5405. int mode,
  5406. int n_ctx_orig,
  5407. float freq_base,
  5408. float freq_scale,
  5409. float ext_factor,
  5410. float attn_factor,
  5411. float beta_fast,
  5412. float beta_slow) {
  5413. return ggml_rope_impl(
  5414. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5415. ext_factor, attn_factor, beta_fast, beta_slow, false
  5416. );
  5417. }
  5418. struct ggml_tensor * ggml_rope_custom_inplace(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a,
  5421. struct ggml_tensor * b,
  5422. int n_dims,
  5423. int mode,
  5424. int n_ctx_orig,
  5425. float freq_base,
  5426. float freq_scale,
  5427. float ext_factor,
  5428. float attn_factor,
  5429. float beta_fast,
  5430. float beta_slow) {
  5431. return ggml_rope_impl(
  5432. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5433. ext_factor, attn_factor, beta_fast, beta_slow, true
  5434. );
  5435. }
  5436. // ggml_rope_back
  5437. struct ggml_tensor * ggml_rope_back(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. struct ggml_tensor * b,
  5441. struct ggml_tensor * c,
  5442. int n_dims,
  5443. int mode,
  5444. int n_ctx_orig,
  5445. float freq_base,
  5446. float freq_scale,
  5447. float ext_factor,
  5448. float attn_factor,
  5449. float beta_fast,
  5450. float beta_slow) {
  5451. GGML_ASSERT(ggml_is_vector(b));
  5452. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5453. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5454. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5455. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5456. bool is_node = false;
  5457. if (a->grad) {
  5458. is_node = false; // TODO: implement backward
  5459. }
  5460. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5461. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5462. memcpy(params + 5, &freq_base, sizeof(float));
  5463. memcpy(params + 6, &freq_scale, sizeof(float));
  5464. memcpy(params + 7, &ext_factor, sizeof(float));
  5465. memcpy(params + 8, &attn_factor, sizeof(float));
  5466. memcpy(params + 9, &beta_fast, sizeof(float));
  5467. memcpy(params + 10, &beta_slow, sizeof(float));
  5468. ggml_set_op_params(result, params, sizeof(params));
  5469. result->op = GGML_OP_ROPE_BACK;
  5470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5471. result->src[0] = a;
  5472. result->src[1] = b;
  5473. return result;
  5474. }
  5475. // ggml_clamp
  5476. struct ggml_tensor * ggml_clamp(
  5477. struct ggml_context * ctx,
  5478. struct ggml_tensor * a,
  5479. float min,
  5480. float max) {
  5481. bool is_node = false;
  5482. if (a->grad) {
  5483. GGML_ABORT("fatal error"); // TODO: implement backward
  5484. is_node = true;
  5485. }
  5486. // TODO: when implement backward, fix this:
  5487. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5488. float params[] = { min, max };
  5489. ggml_set_op_params(result, params, sizeof(params));
  5490. result->op = GGML_OP_CLAMP;
  5491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5492. result->src[0] = a;
  5493. return result;
  5494. }
  5495. // ggml_conv_1d
  5496. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5497. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5498. }
  5499. GGML_API struct ggml_tensor * ggml_conv_1d(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. struct ggml_tensor * b,
  5503. int s0,
  5504. int p0,
  5505. int d0) {
  5506. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5507. struct ggml_tensor * result =
  5508. ggml_mul_mat(ctx,
  5509. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5510. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5511. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5512. return result;
  5513. }
  5514. // ggml_conv_1d_ph
  5515. struct ggml_tensor* ggml_conv_1d_ph(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a,
  5518. struct ggml_tensor * b,
  5519. int s,
  5520. int d) {
  5521. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5522. }
  5523. // ggml_conv_transpose_1d
  5524. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5525. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5526. }
  5527. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. struct ggml_tensor * b,
  5531. int s0,
  5532. int p0,
  5533. int d0) {
  5534. GGML_ASSERT(ggml_is_matrix(b));
  5535. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5536. GGML_ASSERT(a->ne[3] == 1);
  5537. GGML_ASSERT(p0 == 0);
  5538. GGML_ASSERT(d0 == 1);
  5539. bool is_node = false;
  5540. if (a->grad || b->grad) {
  5541. GGML_ABORT("fatal error"); // TODO: implement backward
  5542. is_node = true;
  5543. }
  5544. const int64_t ne[4] = {
  5545. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5546. a->ne[1], b->ne[2], 1,
  5547. };
  5548. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5549. int32_t params[] = { s0, p0, d0 };
  5550. ggml_set_op_params(result, params, sizeof(params));
  5551. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5553. result->src[0] = a;
  5554. result->src[1] = b;
  5555. return result;
  5556. }
  5557. // ggml_conv_depthwise
  5558. struct ggml_tensor * ggml_conv_depthwise_2d(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. struct ggml_tensor * b,
  5562. int s0,
  5563. int s1,
  5564. int p0,
  5565. int p1,
  5566. int d0,
  5567. int d1) {
  5568. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5569. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5570. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5571. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5572. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5573. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5574. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5575. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5576. return result;
  5577. }
  5578. // ggml_conv_2d
  5579. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5580. // a: [OC,IC, KH, KW]
  5581. // b: [N, IC, IH, IW]
  5582. // result: [N, OH, OW, IC*KH*KW]
  5583. struct ggml_tensor * ggml_im2col(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. struct ggml_tensor * b,
  5587. int s0,
  5588. int s1,
  5589. int p0,
  5590. int p1,
  5591. int d0,
  5592. int d1,
  5593. bool is_2D,
  5594. enum ggml_type dst_type) {
  5595. if(is_2D) {
  5596. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5597. } else {
  5598. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5599. }
  5600. bool is_node = false;
  5601. if (a->grad || b->grad) {
  5602. GGML_ABORT("fatal error"); // TODO: implement backward
  5603. is_node = true;
  5604. }
  5605. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5606. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5607. const int64_t ne[4] = {
  5608. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5609. OW,
  5610. is_2D ? OH : b->ne[2],
  5611. is_2D ? b->ne[3] : 1,
  5612. };
  5613. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5614. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5615. ggml_set_op_params(result, params, sizeof(params));
  5616. result->op = GGML_OP_IM2COL;
  5617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5618. result->src[0] = a;
  5619. result->src[1] = b;
  5620. return result;
  5621. }
  5622. // a: [OC,IC, KH, KW]
  5623. // b: [N, IC, IH, IW]
  5624. // result: [N, OC, OH, OW]
  5625. struct ggml_tensor * ggml_conv_2d(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * a,
  5628. struct ggml_tensor * b,
  5629. int s0,
  5630. int s1,
  5631. int p0,
  5632. int p1,
  5633. int d0,
  5634. int d1) {
  5635. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5636. struct ggml_tensor * result =
  5637. ggml_mul_mat(ctx,
  5638. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5639. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5640. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5641. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5642. return result;
  5643. }
  5644. // ggml_conv_2d_sk_p0
  5645. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5646. struct ggml_context * ctx,
  5647. struct ggml_tensor * a,
  5648. struct ggml_tensor * b) {
  5649. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5650. }
  5651. // ggml_conv_2d_s1_ph
  5652. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5653. struct ggml_context * ctx,
  5654. struct ggml_tensor * a,
  5655. struct ggml_tensor * b) {
  5656. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5657. }
  5658. // ggml_conv_transpose_2d_p0
  5659. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5660. return (ins - 1) * s - 2 * p + ks;
  5661. }
  5662. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5663. struct ggml_context * ctx,
  5664. struct ggml_tensor * a,
  5665. struct ggml_tensor * b,
  5666. int stride) {
  5667. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5668. bool is_node = false;
  5669. if (a->grad || b->grad) {
  5670. GGML_ABORT("fatal error"); // TODO: implement backward
  5671. is_node = true;
  5672. }
  5673. const int64_t ne[4] = {
  5674. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5675. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5676. a->ne[2], b->ne[3],
  5677. };
  5678. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5679. ggml_set_op_params_i32(result, 0, stride);
  5680. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5682. result->src[0] = a;
  5683. result->src[1] = b;
  5684. return result;
  5685. }
  5686. // ggml_pool_*
  5687. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5688. return (ins + 2 * p - ks) / s + 1;
  5689. }
  5690. // ggml_pool_1d
  5691. struct ggml_tensor * ggml_pool_1d(
  5692. struct ggml_context * ctx,
  5693. struct ggml_tensor * a,
  5694. enum ggml_op_pool op,
  5695. int k0,
  5696. int s0,
  5697. int p0) {
  5698. bool is_node = false;
  5699. if (a->grad) {
  5700. GGML_ABORT("fatal error"); // TODO: implement backward
  5701. is_node = true;
  5702. }
  5703. const int64_t ne[4] = {
  5704. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5705. a->ne[1],
  5706. a->ne[2],
  5707. a->ne[3],
  5708. };
  5709. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5710. int32_t params[] = { op, k0, s0, p0 };
  5711. ggml_set_op_params(result, params, sizeof(params));
  5712. result->op = GGML_OP_POOL_1D;
  5713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5714. result->src[0] = a;
  5715. return result;
  5716. }
  5717. // ggml_pool_2d
  5718. struct ggml_tensor * ggml_pool_2d(
  5719. struct ggml_context * ctx,
  5720. struct ggml_tensor * a,
  5721. enum ggml_op_pool op,
  5722. int k0,
  5723. int k1,
  5724. int s0,
  5725. int s1,
  5726. float p0,
  5727. float p1) {
  5728. bool is_node = false;
  5729. if (a->grad) {
  5730. GGML_ABORT("fatal error"); // TODO: implement backward
  5731. is_node = true;
  5732. }
  5733. struct ggml_tensor * result;
  5734. const int64_t ne[3] = {
  5735. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5736. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5737. a->ne[2],
  5738. };
  5739. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5740. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5741. ggml_set_op_params(result, params, sizeof(params));
  5742. result->op = GGML_OP_POOL_2D;
  5743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5744. result->src[0] = a;
  5745. return result;
  5746. }
  5747. // ggml_upscale
  5748. static struct ggml_tensor * ggml_upscale_impl(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. int ne0,
  5752. int ne1,
  5753. int ne2,
  5754. int ne3) {
  5755. bool is_node = false;
  5756. if (a->grad) {
  5757. GGML_ABORT("fatal error"); // TODO: implement backward
  5758. is_node = true;
  5759. }
  5760. GGML_ASSERT(a->ne[0] <= ne0);
  5761. GGML_ASSERT(a->ne[1] <= ne1);
  5762. GGML_ASSERT(a->ne[2] <= ne2);
  5763. GGML_ASSERT(a->ne[3] <= ne3);
  5764. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5765. ne0,
  5766. ne1,
  5767. ne2,
  5768. ne3
  5769. );
  5770. result->op = GGML_OP_UPSCALE;
  5771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5772. result->src[0] = a;
  5773. return result;
  5774. }
  5775. struct ggml_tensor * ggml_upscale(
  5776. struct ggml_context * ctx,
  5777. struct ggml_tensor * a,
  5778. int scale_factor) {
  5779. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5780. }
  5781. struct ggml_tensor * ggml_upscale_ext(
  5782. struct ggml_context * ctx,
  5783. struct ggml_tensor * a,
  5784. int ne0,
  5785. int ne1,
  5786. int ne2,
  5787. int ne3) {
  5788. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5789. }
  5790. // ggml_pad
  5791. struct ggml_tensor * ggml_pad(
  5792. struct ggml_context * ctx,
  5793. struct ggml_tensor * a,
  5794. int p0, int p1, int p2, int p3) {
  5795. bool is_node = false;
  5796. if (a->grad) {
  5797. GGML_ABORT("fatal error"); // TODO: implement backward
  5798. is_node = true;
  5799. }
  5800. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5801. a->ne[0] + p0,
  5802. a->ne[1] + p1,
  5803. a->ne[2] + p2,
  5804. a->ne[3] + p3);
  5805. result->op = GGML_OP_PAD;
  5806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5807. result->src[0] = a;
  5808. return result;
  5809. }
  5810. // ggml_arange
  5811. struct ggml_tensor * ggml_arange(
  5812. struct ggml_context * ctx,
  5813. float start,
  5814. float stop,
  5815. float step) {
  5816. GGML_ASSERT(stop > start);
  5817. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5818. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5819. result->op = GGML_OP_ARANGE;
  5820. ggml_set_op_params_f32(result, 0, start);
  5821. ggml_set_op_params_f32(result, 1, stop);
  5822. ggml_set_op_params_f32(result, 2, step);
  5823. return result;
  5824. }
  5825. // ggml_timestep_embedding
  5826. struct ggml_tensor * ggml_timestep_embedding(
  5827. struct ggml_context * ctx,
  5828. struct ggml_tensor * timesteps,
  5829. int dim,
  5830. int max_period) {
  5831. bool is_node = false;
  5832. if (timesteps->grad) {
  5833. GGML_ABORT("fatal error"); // TODO: implement backward
  5834. is_node = true;
  5835. }
  5836. int actual_dim = dim;
  5837. if (dim % 2 != 0) {
  5838. actual_dim = dim + 1;
  5839. }
  5840. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5841. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5842. ggml_set_op_params_i32(result, 0, dim);
  5843. ggml_set_op_params_i32(result, 1, max_period);
  5844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5845. result->src[0] = timesteps;
  5846. return result;
  5847. }
  5848. // ggml_argsort
  5849. struct ggml_tensor * ggml_argsort(
  5850. struct ggml_context * ctx,
  5851. struct ggml_tensor * a,
  5852. enum ggml_sort_order order) {
  5853. bool is_node = false;
  5854. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5855. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5856. result->op = GGML_OP_ARGSORT;
  5857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5858. result->src[0] = a;
  5859. return result;
  5860. }
  5861. // ggml_top_k
  5862. struct ggml_tensor * ggml_top_k(
  5863. struct ggml_context * ctx,
  5864. struct ggml_tensor * a,
  5865. int k) {
  5866. GGML_ASSERT(a->ne[0] >= k);
  5867. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5868. result = ggml_view_4d(ctx, result,
  5869. k, result->ne[1], result->ne[2], result->ne[3],
  5870. result->nb[1], result->nb[2], result->nb[3],
  5871. 0);
  5872. return result;
  5873. }
  5874. // ggml_flash_attn_ext
  5875. struct ggml_tensor * ggml_flash_attn_ext(
  5876. struct ggml_context * ctx,
  5877. struct ggml_tensor * q,
  5878. struct ggml_tensor * k,
  5879. struct ggml_tensor * v,
  5880. struct ggml_tensor * mask,
  5881. float scale,
  5882. float max_bias) {
  5883. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5884. // TODO: check if vT can be multiplied by (k*qT)
  5885. if (mask) {
  5886. GGML_ASSERT(ggml_is_contiguous(mask));
  5887. GGML_ASSERT(mask->ne[2] == 1);
  5888. GGML_ASSERT(mask->ne[3] == 1);
  5889. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5890. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5891. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5892. }
  5893. if (max_bias > 0.0f) {
  5894. GGML_ASSERT(mask);
  5895. }
  5896. bool is_node = false;
  5897. if (q->grad || k->grad || v->grad) {
  5898. is_node = true;
  5899. }
  5900. // permute(0, 2, 1, 3)
  5901. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5902. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5903. float params[] = { scale, max_bias };
  5904. ggml_set_op_params(result, params, sizeof(params));
  5905. result->op = GGML_OP_FLASH_ATTN_EXT;
  5906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5907. result->src[0] = q;
  5908. result->src[1] = k;
  5909. result->src[2] = v;
  5910. result->src[3] = mask;
  5911. return result;
  5912. }
  5913. void ggml_flash_attn_ext_set_prec(
  5914. struct ggml_tensor * a,
  5915. enum ggml_prec prec) {
  5916. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5917. const int32_t prec_i32 = (int32_t) prec;
  5918. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5919. }
  5920. // ggml_flash_attn_back
  5921. struct ggml_tensor * ggml_flash_attn_back(
  5922. struct ggml_context * ctx,
  5923. struct ggml_tensor * q,
  5924. struct ggml_tensor * k,
  5925. struct ggml_tensor * v,
  5926. struct ggml_tensor * d,
  5927. bool masked) {
  5928. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  5929. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5930. // TODO: check if vT can be multiplied by (k*qT)
  5931. // d shape [D,N,ne2,ne3]
  5932. // q shape [D,N,ne2,ne3]
  5933. // k shape [D,M,kvne2,ne3]
  5934. // v shape [M,D,kvne2,ne3]
  5935. const int64_t D = q->ne[0];
  5936. const int64_t N = q->ne[1];
  5937. const int64_t M = k->ne[1];
  5938. const int64_t ne2 = q->ne[2];
  5939. const int64_t ne3 = q->ne[3];
  5940. const int64_t kvne2 = k->ne[2];
  5941. GGML_ASSERT(k->ne[0] == D);
  5942. GGML_ASSERT(v->ne[0] == M);
  5943. GGML_ASSERT(v->ne[1] == D);
  5944. GGML_ASSERT(d->ne[0] == D);
  5945. GGML_ASSERT(d->ne[1] == N);
  5946. GGML_ASSERT(k->ne[2] == kvne2);
  5947. GGML_ASSERT(k->ne[3] == ne3);
  5948. GGML_ASSERT(v->ne[2] == kvne2);
  5949. GGML_ASSERT(v->ne[3] == ne3);
  5950. GGML_ASSERT(d->ne[2] == ne2);
  5951. GGML_ASSERT(d->ne[3] == ne3);
  5952. GGML_ASSERT(ne2 % kvne2 == 0);
  5953. bool is_node = false;
  5954. if (q->grad || k->grad || v->grad) {
  5955. // when using this operation (in backwards pass) these grads are set.
  5956. // we don't want to create (big) grad of our result, so is_node is false.
  5957. is_node = false;
  5958. }
  5959. // store gradients of q, k and v as continuous tensors concatenated in result.
  5960. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5961. const int64_t elem_q = ggml_nelements(q);
  5962. const int64_t elem_k = ggml_nelements(k);
  5963. const int64_t elem_v = ggml_nelements(v);
  5964. enum ggml_type result_type = GGML_TYPE_F32;
  5965. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5966. const size_t tsize = ggml_type_size(result_type);
  5967. const size_t offs_q = 0;
  5968. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5969. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5970. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5971. const size_t nelements = (end + tsize - 1)/tsize;
  5972. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5973. int32_t masked_i = masked ? 1 : 0;
  5974. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5975. result->op = GGML_OP_FLASH_ATTN_BACK;
  5976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5977. result->src[0] = q;
  5978. result->src[1] = k;
  5979. result->src[2] = v;
  5980. result->src[3] = d;
  5981. return result;
  5982. }
  5983. // ggml_ssm_conv
  5984. struct ggml_tensor * ggml_ssm_conv(
  5985. struct ggml_context * ctx,
  5986. struct ggml_tensor * s,
  5987. struct ggml_tensor * x,
  5988. struct ggml_tensor * c,
  5989. struct ggml_tensor * sq) {
  5990. GGML_ASSERT(ggml_is_3d(s));
  5991. GGML_ASSERT(ggml_is_matrix(x));
  5992. GGML_ASSERT(ggml_is_matrix(c));
  5993. GGML_ASSERT(ggml_is_matrix(sq));
  5994. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5995. const int64_t d_conv = c->ne[0];
  5996. const int64_t d_inner = c->ne[1];
  5997. const int64_t n_tokens = x->ne[1];
  5998. const int64_t n_kv = s->ne[2];
  5999. GGML_ASSERT( s->ne[0] == d_conv - 1);
  6000. GGML_ASSERT( s->ne[1] == d_inner);
  6001. GGML_ASSERT( x->ne[0] == d_inner);
  6002. GGML_ASSERT(sq->ne[0] == n_kv);
  6003. GGML_ASSERT(sq->ne[1] == n_tokens);
  6004. bool is_node = false;
  6005. if (s->grad || x->grad || c->grad || sq->grad) {
  6006. GGML_ABORT("fatal error"); // TODO: implement
  6007. is_node = true;
  6008. }
  6009. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  6010. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  6011. result->op = GGML_OP_SSM_CONV;
  6012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6013. result->src[0] = s;
  6014. result->src[1] = x;
  6015. result->src[2] = c;
  6016. result->src[3] = sq;
  6017. return result;
  6018. }
  6019. // ggml_ssm_scan
  6020. struct ggml_tensor * ggml_ssm_scan(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * s,
  6023. struct ggml_tensor * x,
  6024. struct ggml_tensor * dt,
  6025. struct ggml_tensor * A,
  6026. struct ggml_tensor * B,
  6027. struct ggml_tensor * C,
  6028. struct ggml_tensor * sq) {
  6029. GGML_ASSERT(ggml_is_contiguous(s));
  6030. GGML_ASSERT(ggml_is_contiguous(x));
  6031. GGML_ASSERT(ggml_is_contiguous(dt));
  6032. GGML_ASSERT(ggml_is_contiguous(A));
  6033. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  6034. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6035. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6036. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6037. {
  6038. const int64_t d_state = s->ne[0];
  6039. const int64_t d_inner = s->ne[1];
  6040. const int64_t n_tokens = x->ne[1];
  6041. GGML_ASSERT(x->ne[0] == d_inner);
  6042. GGML_ASSERT(A->ne[0] == d_state);
  6043. GGML_ASSERT(A->ne[1] == d_inner);
  6044. GGML_ASSERT(B->ne[0] == d_state);
  6045. GGML_ASSERT(B->ne[1] == n_tokens);
  6046. GGML_ASSERT(C->ne[0] == d_state);
  6047. GGML_ASSERT(C->ne[1] == n_tokens);
  6048. }
  6049. bool is_node = false;
  6050. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  6051. GGML_ABORT("fatal error"); // TODO: implement
  6052. is_node = true;
  6053. }
  6054. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  6055. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6056. result->op = GGML_OP_SSM_SCAN;
  6057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6058. result->src[0] = s;
  6059. result->src[1] = x;
  6060. result->src[2] = dt;
  6061. result->src[3] = A;
  6062. result->src[4] = B;
  6063. result->src[5] = C;
  6064. result->src[6] = sq;
  6065. return result;
  6066. }
  6067. // ggml_win_part
  6068. struct ggml_tensor * ggml_win_part(
  6069. struct ggml_context * ctx,
  6070. struct ggml_tensor * a,
  6071. int w) {
  6072. GGML_ASSERT(a->ne[3] == 1);
  6073. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6074. bool is_node = false;
  6075. if (a->grad) {
  6076. GGML_ABORT("fatal error"); // TODO: implement backward
  6077. is_node = true;
  6078. }
  6079. // padding
  6080. const int px = (w - a->ne[1]%w)%w;
  6081. const int py = (w - a->ne[2]%w)%w;
  6082. const int npx = (px + a->ne[1])/w;
  6083. const int npy = (py + a->ne[2])/w;
  6084. const int np = npx*npy;
  6085. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6086. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6087. int32_t params[] = { npx, npy, w };
  6088. ggml_set_op_params(result, params, sizeof(params));
  6089. result->op = GGML_OP_WIN_PART;
  6090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6091. result->src[0] = a;
  6092. return result;
  6093. }
  6094. // ggml_win_unpart
  6095. struct ggml_tensor * ggml_win_unpart(
  6096. struct ggml_context * ctx,
  6097. struct ggml_tensor * a,
  6098. int w0,
  6099. int h0,
  6100. int w) {
  6101. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6102. bool is_node = false;
  6103. if (a->grad) {
  6104. GGML_ABORT("fatal error"); // TODO: implement backward
  6105. is_node = true;
  6106. }
  6107. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6108. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6109. int32_t params[] = { w };
  6110. ggml_set_op_params(result, params, sizeof(params));
  6111. result->op = GGML_OP_WIN_UNPART;
  6112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6113. result->src[0] = a;
  6114. return result;
  6115. }
  6116. // ggml_get_rel_pos
  6117. struct ggml_tensor * ggml_get_rel_pos(
  6118. struct ggml_context * ctx,
  6119. struct ggml_tensor * a,
  6120. int qh,
  6121. int kh) {
  6122. GGML_ASSERT(qh == kh);
  6123. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6124. bool is_node = false;
  6125. if (a->grad) {
  6126. GGML_ABORT("fatal error"); // TODO: implement backward
  6127. is_node = true;
  6128. }
  6129. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6130. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6131. result->op = GGML_OP_GET_REL_POS;
  6132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6133. result->src[0] = a;
  6134. return result;
  6135. }
  6136. // ggml_add_rel_pos
  6137. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. struct ggml_tensor * pw,
  6141. struct ggml_tensor * ph,
  6142. bool inplace) {
  6143. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6144. GGML_ASSERT(ggml_is_contiguous(a));
  6145. GGML_ASSERT(ggml_is_contiguous(pw));
  6146. GGML_ASSERT(ggml_is_contiguous(ph));
  6147. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6148. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6149. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6150. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6151. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6152. bool is_node = false;
  6153. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6154. is_node = true;
  6155. }
  6156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6157. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6158. result->op = GGML_OP_ADD_REL_POS;
  6159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6160. result->src[0] = a;
  6161. result->src[1] = pw;
  6162. result->src[2] = ph;
  6163. return result;
  6164. }
  6165. struct ggml_tensor * ggml_add_rel_pos(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. struct ggml_tensor * pw,
  6169. struct ggml_tensor * ph) {
  6170. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6171. }
  6172. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6173. struct ggml_context * ctx,
  6174. struct ggml_tensor * a,
  6175. struct ggml_tensor * pw,
  6176. struct ggml_tensor * ph) {
  6177. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6178. }
  6179. // ggml_unary
  6180. static struct ggml_tensor * ggml_unary_impl(
  6181. struct ggml_context * ctx,
  6182. struct ggml_tensor * a,
  6183. enum ggml_unary_op op,
  6184. bool inplace) {
  6185. GGML_ASSERT(ggml_is_contiguous_1(a));
  6186. bool is_node = false;
  6187. if (!inplace && (a->grad)) {
  6188. is_node = true;
  6189. }
  6190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6191. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6192. result->op = GGML_OP_UNARY;
  6193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6194. result->src[0] = a;
  6195. return result;
  6196. }
  6197. struct ggml_tensor * ggml_unary(
  6198. struct ggml_context * ctx,
  6199. struct ggml_tensor * a,
  6200. enum ggml_unary_op op) {
  6201. return ggml_unary_impl(ctx, a, op, false);
  6202. }
  6203. struct ggml_tensor * ggml_unary_inplace(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. enum ggml_unary_op op) {
  6207. return ggml_unary_impl(ctx, a, op, true);
  6208. }
  6209. // ggml_map_unary
  6210. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6211. struct ggml_context * ctx,
  6212. struct ggml_tensor * a,
  6213. const ggml_unary_op_f32_t fun,
  6214. bool inplace) {
  6215. bool is_node = false;
  6216. if (!inplace && a->grad) {
  6217. is_node = true;
  6218. }
  6219. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6220. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6221. result->op = GGML_OP_MAP_UNARY;
  6222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6223. result->src[0] = a;
  6224. return result;
  6225. }
  6226. struct ggml_tensor * ggml_map_unary_f32(
  6227. struct ggml_context * ctx,
  6228. struct ggml_tensor * a,
  6229. const ggml_unary_op_f32_t fun) {
  6230. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6231. }
  6232. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6233. struct ggml_context * ctx,
  6234. struct ggml_tensor * a,
  6235. const ggml_unary_op_f32_t fun) {
  6236. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6237. }
  6238. // ggml_map_binary
  6239. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6240. struct ggml_context * ctx,
  6241. struct ggml_tensor * a,
  6242. struct ggml_tensor * b,
  6243. const ggml_binary_op_f32_t fun,
  6244. bool inplace) {
  6245. GGML_ASSERT(ggml_are_same_shape(a, b));
  6246. bool is_node = false;
  6247. if (!inplace && (a->grad || b->grad)) {
  6248. is_node = true;
  6249. }
  6250. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6251. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6252. result->op = GGML_OP_MAP_BINARY;
  6253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6254. result->src[0] = a;
  6255. result->src[1] = b;
  6256. return result;
  6257. }
  6258. struct ggml_tensor * ggml_map_binary_f32(
  6259. struct ggml_context * ctx,
  6260. struct ggml_tensor * a,
  6261. struct ggml_tensor * b,
  6262. const ggml_binary_op_f32_t fun) {
  6263. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6264. }
  6265. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6266. struct ggml_context * ctx,
  6267. struct ggml_tensor * a,
  6268. struct ggml_tensor * b,
  6269. const ggml_binary_op_f32_t fun) {
  6270. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6271. }
  6272. // ggml_map_custom1_f32
  6273. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6274. struct ggml_context * ctx,
  6275. struct ggml_tensor * a,
  6276. const ggml_custom1_op_f32_t fun,
  6277. bool inplace) {
  6278. bool is_node = false;
  6279. if (!inplace && a->grad) {
  6280. is_node = true;
  6281. }
  6282. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6283. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6284. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6286. result->src[0] = a;
  6287. return result;
  6288. }
  6289. struct ggml_tensor * ggml_map_custom1_f32(
  6290. struct ggml_context * ctx,
  6291. struct ggml_tensor * a,
  6292. const ggml_custom1_op_f32_t fun) {
  6293. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6294. }
  6295. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6296. struct ggml_context * ctx,
  6297. struct ggml_tensor * a,
  6298. const ggml_custom1_op_f32_t fun) {
  6299. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6300. }
  6301. // ggml_map_custom2_f32
  6302. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6303. struct ggml_context * ctx,
  6304. struct ggml_tensor * a,
  6305. struct ggml_tensor * b,
  6306. const ggml_custom2_op_f32_t fun,
  6307. bool inplace) {
  6308. bool is_node = false;
  6309. if (!inplace && (a->grad || b->grad)) {
  6310. is_node = true;
  6311. }
  6312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6313. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6314. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6316. result->src[0] = a;
  6317. result->src[1] = b;
  6318. return result;
  6319. }
  6320. struct ggml_tensor * ggml_map_custom2_f32(
  6321. struct ggml_context * ctx,
  6322. struct ggml_tensor * a,
  6323. struct ggml_tensor * b,
  6324. const ggml_custom2_op_f32_t fun) {
  6325. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6326. }
  6327. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6328. struct ggml_context * ctx,
  6329. struct ggml_tensor * a,
  6330. struct ggml_tensor * b,
  6331. const ggml_custom2_op_f32_t fun) {
  6332. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6333. }
  6334. // ggml_map_custom3_f32
  6335. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6336. struct ggml_context * ctx,
  6337. struct ggml_tensor * a,
  6338. struct ggml_tensor * b,
  6339. struct ggml_tensor * c,
  6340. const ggml_custom3_op_f32_t fun,
  6341. bool inplace) {
  6342. bool is_node = false;
  6343. if (!inplace && (a->grad || b->grad || c->grad)) {
  6344. is_node = true;
  6345. }
  6346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6347. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6348. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6350. result->src[0] = a;
  6351. result->src[1] = b;
  6352. result->src[2] = c;
  6353. return result;
  6354. }
  6355. struct ggml_tensor * ggml_map_custom3_f32(
  6356. struct ggml_context * ctx,
  6357. struct ggml_tensor * a,
  6358. struct ggml_tensor * b,
  6359. struct ggml_tensor * c,
  6360. const ggml_custom3_op_f32_t fun) {
  6361. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6362. }
  6363. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6364. struct ggml_context * ctx,
  6365. struct ggml_tensor * a,
  6366. struct ggml_tensor * b,
  6367. struct ggml_tensor * c,
  6368. const ggml_custom3_op_f32_t fun) {
  6369. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6370. }
  6371. // ggml_map_custom1
  6372. struct ggml_map_custom1_op_params {
  6373. ggml_custom1_op_t fun;
  6374. int n_tasks;
  6375. void * userdata;
  6376. };
  6377. static struct ggml_tensor * ggml_map_custom1_impl(
  6378. struct ggml_context * ctx,
  6379. struct ggml_tensor * a,
  6380. const ggml_custom1_op_t fun,
  6381. int n_tasks,
  6382. void * userdata,
  6383. bool inplace) {
  6384. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6385. bool is_node = false;
  6386. if (!inplace && a->grad) {
  6387. is_node = true;
  6388. }
  6389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6390. struct ggml_map_custom1_op_params params = {
  6391. /*.fun =*/ fun,
  6392. /*.n_tasks =*/ n_tasks,
  6393. /*.userdata =*/ userdata
  6394. };
  6395. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6396. result->op = GGML_OP_MAP_CUSTOM1;
  6397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6398. result->src[0] = a;
  6399. return result;
  6400. }
  6401. struct ggml_tensor * ggml_map_custom1(
  6402. struct ggml_context * ctx,
  6403. struct ggml_tensor * a,
  6404. const ggml_custom1_op_t fun,
  6405. int n_tasks,
  6406. void * userdata) {
  6407. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6408. }
  6409. struct ggml_tensor * ggml_map_custom1_inplace(
  6410. struct ggml_context * ctx,
  6411. struct ggml_tensor * a,
  6412. const ggml_custom1_op_t fun,
  6413. int n_tasks,
  6414. void * userdata) {
  6415. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6416. }
  6417. // ggml_map_custom2
  6418. struct ggml_map_custom2_op_params {
  6419. ggml_custom2_op_t fun;
  6420. int n_tasks;
  6421. void * userdata;
  6422. };
  6423. static struct ggml_tensor * ggml_map_custom2_impl(
  6424. struct ggml_context * ctx,
  6425. struct ggml_tensor * a,
  6426. struct ggml_tensor * b,
  6427. const ggml_custom2_op_t fun,
  6428. int n_tasks,
  6429. void * userdata,
  6430. bool inplace) {
  6431. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6432. bool is_node = false;
  6433. if (!inplace && (a->grad || b->grad)) {
  6434. is_node = true;
  6435. }
  6436. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6437. struct ggml_map_custom2_op_params params = {
  6438. /*.fun =*/ fun,
  6439. /*.n_tasks =*/ n_tasks,
  6440. /*.userdata =*/ userdata
  6441. };
  6442. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6443. result->op = GGML_OP_MAP_CUSTOM2;
  6444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6445. result->src[0] = a;
  6446. result->src[1] = b;
  6447. return result;
  6448. }
  6449. struct ggml_tensor * ggml_map_custom2(
  6450. struct ggml_context * ctx,
  6451. struct ggml_tensor * a,
  6452. struct ggml_tensor * b,
  6453. const ggml_custom2_op_t fun,
  6454. int n_tasks,
  6455. void * userdata) {
  6456. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6457. }
  6458. struct ggml_tensor * ggml_map_custom2_inplace(
  6459. struct ggml_context * ctx,
  6460. struct ggml_tensor * a,
  6461. struct ggml_tensor * b,
  6462. const ggml_custom2_op_t fun,
  6463. int n_tasks,
  6464. void * userdata) {
  6465. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6466. }
  6467. // ggml_map_custom3
  6468. struct ggml_map_custom3_op_params {
  6469. ggml_custom3_op_t fun;
  6470. int n_tasks;
  6471. void * userdata;
  6472. };
  6473. static struct ggml_tensor * ggml_map_custom3_impl(
  6474. struct ggml_context * ctx,
  6475. struct ggml_tensor * a,
  6476. struct ggml_tensor * b,
  6477. struct ggml_tensor * c,
  6478. const ggml_custom3_op_t fun,
  6479. int n_tasks,
  6480. void * userdata,
  6481. bool inplace) {
  6482. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6483. bool is_node = false;
  6484. if (!inplace && (a->grad || b->grad || c->grad)) {
  6485. is_node = true;
  6486. }
  6487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6488. struct ggml_map_custom3_op_params params = {
  6489. /*.fun =*/ fun,
  6490. /*.n_tasks =*/ n_tasks,
  6491. /*.userdata =*/ userdata
  6492. };
  6493. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6494. result->op = GGML_OP_MAP_CUSTOM3;
  6495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6496. result->src[0] = a;
  6497. result->src[1] = b;
  6498. result->src[2] = c;
  6499. return result;
  6500. }
  6501. struct ggml_tensor * ggml_map_custom3(
  6502. struct ggml_context * ctx,
  6503. struct ggml_tensor * a,
  6504. struct ggml_tensor * b,
  6505. struct ggml_tensor * c,
  6506. const ggml_custom3_op_t fun,
  6507. int n_tasks,
  6508. void * userdata) {
  6509. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6510. }
  6511. struct ggml_tensor * ggml_map_custom3_inplace(
  6512. struct ggml_context * ctx,
  6513. struct ggml_tensor * a,
  6514. struct ggml_tensor * b,
  6515. struct ggml_tensor * c,
  6516. const ggml_custom3_op_t fun,
  6517. int n_tasks,
  6518. void * userdata) {
  6519. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6520. }
  6521. // ggml_cross_entropy_loss
  6522. struct ggml_tensor * ggml_cross_entropy_loss(
  6523. struct ggml_context * ctx,
  6524. struct ggml_tensor * a,
  6525. struct ggml_tensor * b) {
  6526. GGML_ASSERT(ggml_are_same_shape(a, b));
  6527. bool is_node = false;
  6528. if (a->grad || b->grad) {
  6529. is_node = true;
  6530. }
  6531. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6532. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6534. result->src[0] = a;
  6535. result->src[1] = b;
  6536. return result;
  6537. }
  6538. // ggml_cross_entropy_loss_back
  6539. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6540. struct ggml_context * ctx,
  6541. struct ggml_tensor * a,
  6542. struct ggml_tensor * b,
  6543. struct ggml_tensor * c) {
  6544. GGML_ASSERT(ggml_are_same_shape(a, b));
  6545. GGML_ASSERT(ggml_is_scalar(c));
  6546. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6547. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6548. result->grad = NULL;
  6549. result->src[0] = a;
  6550. result->src[1] = b;
  6551. result->src[2] = c;
  6552. return result;
  6553. }
  6554. ////////////////////////////////////////////////////////////////////////////////
  6555. void ggml_set_param(
  6556. struct ggml_context * ctx,
  6557. struct ggml_tensor * tensor) {
  6558. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6559. GGML_ASSERT(tensor->grad == NULL);
  6560. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6561. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6562. }
  6563. // ggml_compute_forward_dup
  6564. static void ggml_compute_forward_dup_same_cont(
  6565. const struct ggml_compute_params * params,
  6566. struct ggml_tensor * dst) {
  6567. const struct ggml_tensor * src0 = dst->src[0];
  6568. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6569. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6570. GGML_ASSERT(src0->type == dst->type);
  6571. const size_t nb00 = src0->nb[0];
  6572. const size_t nb0 = dst->nb[0];
  6573. const int ith = params->ith; // thread index
  6574. const int nth = params->nth; // number of threads
  6575. // parallelize by elements
  6576. const int ne = ggml_nelements(dst);
  6577. const int dr = (ne + nth - 1) / nth;
  6578. const int ie0 = dr * ith;
  6579. const int ie1 = MIN(ie0 + dr, ne);
  6580. if (ie0 < ie1) {
  6581. memcpy(
  6582. ((char *) dst->data + ie0*nb0),
  6583. ((char *) src0->data + ie0*nb00),
  6584. (ie1 - ie0) * ggml_type_size(src0->type));
  6585. }
  6586. }
  6587. static void ggml_compute_forward_dup_f16(
  6588. const struct ggml_compute_params * params,
  6589. struct ggml_tensor * dst) {
  6590. const struct ggml_tensor * src0 = dst->src[0];
  6591. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6592. GGML_TENSOR_UNARY_OP_LOCALS
  6593. const int ith = params->ith; // thread index
  6594. const int nth = params->nth; // number of threads
  6595. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6596. ggml_compute_forward_dup_same_cont(params, dst);
  6597. return;
  6598. }
  6599. // parallelize by rows
  6600. const int nr = ne01;
  6601. // number of rows per thread
  6602. const int dr = (nr + nth - 1) / nth;
  6603. // row range for this thread
  6604. const int ir0 = dr * ith;
  6605. const int ir1 = MIN(ir0 + dr, nr);
  6606. if (src0->type == dst->type &&
  6607. ne00 == ne0 &&
  6608. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6609. // copy by rows
  6610. const size_t rs = ne00*nb00;
  6611. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6612. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6613. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6614. memcpy(
  6615. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6616. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6617. rs);
  6618. }
  6619. }
  6620. }
  6621. return;
  6622. }
  6623. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6624. if (ggml_is_contiguous(dst)) {
  6625. if (nb00 == sizeof(ggml_fp16_t)) {
  6626. if (dst->type == GGML_TYPE_F16) {
  6627. size_t id = 0;
  6628. const size_t rs = ne00 * nb00;
  6629. char * dst_ptr = (char *) dst->data;
  6630. for (int i03 = 0; i03 < ne03; i03++) {
  6631. for (int i02 = 0; i02 < ne02; i02++) {
  6632. id += rs * ir0;
  6633. for (int i01 = ir0; i01 < ir1; i01++) {
  6634. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6635. memcpy(dst_ptr + id, src0_ptr, rs);
  6636. id += rs;
  6637. }
  6638. id += rs * (ne01 - ir1);
  6639. }
  6640. }
  6641. } else if (dst->type == GGML_TYPE_F32) {
  6642. size_t id = 0;
  6643. float * dst_ptr = (float *) dst->data;
  6644. for (int i03 = 0; i03 < ne03; i03++) {
  6645. for (int i02 = 0; i02 < ne02; i02++) {
  6646. id += ne00 * ir0;
  6647. for (int i01 = ir0; i01 < ir1; i01++) {
  6648. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6649. for (int i00 = 0; i00 < ne00; i00++) {
  6650. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6651. id++;
  6652. }
  6653. }
  6654. id += ne00 * (ne01 - ir1);
  6655. }
  6656. }
  6657. } else if (type_traits[dst->type].from_float) {
  6658. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6659. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6660. size_t id = 0;
  6661. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6662. char * dst_ptr = (char *) dst->data;
  6663. for (int i03 = 0; i03 < ne03; i03++) {
  6664. for (int i02 = 0; i02 < ne02; i02++) {
  6665. id += rs * ir0;
  6666. for (int i01 = ir0; i01 < ir1; i01++) {
  6667. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6668. for (int i00 = 0; i00 < ne00; i00++) {
  6669. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6670. }
  6671. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6672. id += rs;
  6673. }
  6674. id += rs * (ne01 - ir1);
  6675. }
  6676. }
  6677. } else {
  6678. GGML_ABORT("fatal error"); // TODO: implement
  6679. }
  6680. } else {
  6681. //printf("%s: this is not optimal - fix me\n", __func__);
  6682. if (dst->type == GGML_TYPE_F32) {
  6683. size_t id = 0;
  6684. float * dst_ptr = (float *) dst->data;
  6685. for (int i03 = 0; i03 < ne03; i03++) {
  6686. for (int i02 = 0; i02 < ne02; i02++) {
  6687. id += ne00 * ir0;
  6688. for (int i01 = ir0; i01 < ir1; i01++) {
  6689. for (int i00 = 0; i00 < ne00; i00++) {
  6690. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6691. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6692. id++;
  6693. }
  6694. }
  6695. id += ne00 * (ne01 - ir1);
  6696. }
  6697. }
  6698. } else if (dst->type == GGML_TYPE_F16) {
  6699. size_t id = 0;
  6700. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6701. for (int i03 = 0; i03 < ne03; i03++) {
  6702. for (int i02 = 0; i02 < ne02; i02++) {
  6703. id += ne00 * ir0;
  6704. for (int i01 = ir0; i01 < ir1; i01++) {
  6705. for (int i00 = 0; i00 < ne00; i00++) {
  6706. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6707. dst_ptr[id] = *src0_ptr;
  6708. id++;
  6709. }
  6710. }
  6711. id += ne00 * (ne01 - ir1);
  6712. }
  6713. }
  6714. } else {
  6715. GGML_ABORT("fatal error"); // TODO: implement
  6716. }
  6717. }
  6718. return;
  6719. }
  6720. // dst counters
  6721. int64_t i10 = 0;
  6722. int64_t i11 = 0;
  6723. int64_t i12 = 0;
  6724. int64_t i13 = 0;
  6725. if (dst->type == GGML_TYPE_F16) {
  6726. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6727. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6728. i10 += ne00 * ir0;
  6729. while (i10 >= ne0) {
  6730. i10 -= ne0;
  6731. if (++i11 == ne1) {
  6732. i11 = 0;
  6733. if (++i12 == ne2) {
  6734. i12 = 0;
  6735. if (++i13 == ne3) {
  6736. i13 = 0;
  6737. }
  6738. }
  6739. }
  6740. }
  6741. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6742. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6743. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6744. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6745. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6746. if (++i10 == ne00) {
  6747. i10 = 0;
  6748. if (++i11 == ne01) {
  6749. i11 = 0;
  6750. if (++i12 == ne02) {
  6751. i12 = 0;
  6752. if (++i13 == ne03) {
  6753. i13 = 0;
  6754. }
  6755. }
  6756. }
  6757. }
  6758. }
  6759. }
  6760. i10 += ne00 * (ne01 - ir1);
  6761. while (i10 >= ne0) {
  6762. i10 -= ne0;
  6763. if (++i11 == ne1) {
  6764. i11 = 0;
  6765. if (++i12 == ne2) {
  6766. i12 = 0;
  6767. if (++i13 == ne3) {
  6768. i13 = 0;
  6769. }
  6770. }
  6771. }
  6772. }
  6773. }
  6774. }
  6775. } else if (dst->type == GGML_TYPE_F32) {
  6776. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6778. i10 += ne00 * ir0;
  6779. while (i10 >= ne0) {
  6780. i10 -= ne0;
  6781. if (++i11 == ne1) {
  6782. i11 = 0;
  6783. if (++i12 == ne2) {
  6784. i12 = 0;
  6785. if (++i13 == ne3) {
  6786. i13 = 0;
  6787. }
  6788. }
  6789. }
  6790. }
  6791. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6792. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6793. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6794. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6795. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6796. if (++i10 == ne0) {
  6797. i10 = 0;
  6798. if (++i11 == ne1) {
  6799. i11 = 0;
  6800. if (++i12 == ne2) {
  6801. i12 = 0;
  6802. if (++i13 == ne3) {
  6803. i13 = 0;
  6804. }
  6805. }
  6806. }
  6807. }
  6808. }
  6809. }
  6810. i10 += ne00 * (ne01 - ir1);
  6811. while (i10 >= ne0) {
  6812. i10 -= ne0;
  6813. if (++i11 == ne1) {
  6814. i11 = 0;
  6815. if (++i12 == ne2) {
  6816. i12 = 0;
  6817. if (++i13 == ne3) {
  6818. i13 = 0;
  6819. }
  6820. }
  6821. }
  6822. }
  6823. }
  6824. }
  6825. } else {
  6826. GGML_ABORT("fatal error"); // TODO: implement
  6827. }
  6828. }
  6829. static void ggml_compute_forward_dup_bf16(
  6830. const struct ggml_compute_params * params,
  6831. struct ggml_tensor * dst) {
  6832. const struct ggml_tensor * src0 = dst->src[0];
  6833. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6834. GGML_TENSOR_UNARY_OP_LOCALS
  6835. const int ith = params->ith; // thread index
  6836. const int nth = params->nth; // number of threads
  6837. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6838. ggml_compute_forward_dup_same_cont(params, dst);
  6839. return;
  6840. }
  6841. // parallelize by rows
  6842. const int nr = ne01;
  6843. // number of rows per thread
  6844. const int dr = (nr + nth - 1) / nth;
  6845. // row range for this thread
  6846. const int ir0 = dr * ith;
  6847. const int ir1 = MIN(ir0 + dr, nr);
  6848. if (src0->type == dst->type &&
  6849. ne00 == ne0 &&
  6850. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6851. // copy by rows
  6852. const size_t rs = ne00*nb00;
  6853. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6854. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6855. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6856. memcpy(
  6857. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6858. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6859. rs);
  6860. }
  6861. }
  6862. }
  6863. return;
  6864. }
  6865. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6866. if (ggml_is_contiguous(dst)) {
  6867. if (nb00 == sizeof(ggml_bf16_t)) {
  6868. if (dst->type == GGML_TYPE_BF16) {
  6869. size_t id = 0;
  6870. const size_t rs = ne00 * nb00;
  6871. char * dst_ptr = (char *) dst->data;
  6872. for (int i03 = 0; i03 < ne03; i03++) {
  6873. for (int i02 = 0; i02 < ne02; i02++) {
  6874. id += rs * ir0;
  6875. for (int i01 = ir0; i01 < ir1; i01++) {
  6876. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6877. memcpy(dst_ptr + id, src0_ptr, rs);
  6878. id += rs;
  6879. }
  6880. id += rs * (ne01 - ir1);
  6881. }
  6882. }
  6883. } else if (dst->type == GGML_TYPE_F16) {
  6884. size_t id = 0;
  6885. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6886. for (int i03 = 0; i03 < ne03; i03++) {
  6887. for (int i02 = 0; i02 < ne02; i02++) {
  6888. id += ne00 * ir0;
  6889. for (int i01 = ir0; i01 < ir1; i01++) {
  6890. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6891. for (int i00 = 0; i00 < ne00; i00++) {
  6892. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6893. id++;
  6894. }
  6895. }
  6896. id += ne00 * (ne01 - ir1);
  6897. }
  6898. }
  6899. } else if (dst->type == GGML_TYPE_F32) {
  6900. size_t id = 0;
  6901. float * dst_ptr = (float *) dst->data;
  6902. for (int i03 = 0; i03 < ne03; i03++) {
  6903. for (int i02 = 0; i02 < ne02; i02++) {
  6904. id += ne00 * ir0;
  6905. for (int i01 = ir0; i01 < ir1; i01++) {
  6906. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6907. for (int i00 = 0; i00 < ne00; i00++) {
  6908. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6909. id++;
  6910. }
  6911. }
  6912. id += ne00 * (ne01 - ir1);
  6913. }
  6914. }
  6915. } else if (type_traits[dst->type].from_float) {
  6916. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6917. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6918. size_t id = 0;
  6919. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6920. char * dst_ptr = (char *) dst->data;
  6921. for (int i03 = 0; i03 < ne03; i03++) {
  6922. for (int i02 = 0; i02 < ne02; i02++) {
  6923. id += rs * ir0;
  6924. for (int i01 = ir0; i01 < ir1; i01++) {
  6925. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6926. for (int i00 = 0; i00 < ne00; i00++) {
  6927. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6928. }
  6929. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6930. id += rs;
  6931. }
  6932. id += rs * (ne01 - ir1);
  6933. }
  6934. }
  6935. } else {
  6936. GGML_ABORT("fatal error"); // TODO: implement
  6937. }
  6938. } else {
  6939. //printf("%s: this is not optimal - fix me\n", __func__);
  6940. if (dst->type == GGML_TYPE_F32) {
  6941. size_t id = 0;
  6942. float * dst_ptr = (float *) dst->data;
  6943. for (int i03 = 0; i03 < ne03; i03++) {
  6944. for (int i02 = 0; i02 < ne02; i02++) {
  6945. id += ne00 * ir0;
  6946. for (int i01 = ir0; i01 < ir1; i01++) {
  6947. for (int i00 = 0; i00 < ne00; i00++) {
  6948. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6949. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6950. id++;
  6951. }
  6952. }
  6953. id += ne00 * (ne01 - ir1);
  6954. }
  6955. }
  6956. } else if (dst->type == GGML_TYPE_BF16) {
  6957. size_t id = 0;
  6958. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6959. for (int i03 = 0; i03 < ne03; i03++) {
  6960. for (int i02 = 0; i02 < ne02; i02++) {
  6961. id += ne00 * ir0;
  6962. for (int i01 = ir0; i01 < ir1; i01++) {
  6963. for (int i00 = 0; i00 < ne00; i00++) {
  6964. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6965. dst_ptr[id] = *src0_ptr;
  6966. id++;
  6967. }
  6968. }
  6969. id += ne00 * (ne01 - ir1);
  6970. }
  6971. }
  6972. } else if (dst->type == GGML_TYPE_F16) {
  6973. size_t id = 0;
  6974. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6975. for (int i03 = 0; i03 < ne03; i03++) {
  6976. for (int i02 = 0; i02 < ne02; i02++) {
  6977. id += ne00 * ir0;
  6978. for (int i01 = ir0; i01 < ir1; i01++) {
  6979. for (int i00 = 0; i00 < ne00; i00++) {
  6980. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6981. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6982. id++;
  6983. }
  6984. }
  6985. id += ne00 * (ne01 - ir1);
  6986. }
  6987. }
  6988. } else {
  6989. GGML_ABORT("fatal error"); // TODO: implement
  6990. }
  6991. }
  6992. return;
  6993. }
  6994. // dst counters
  6995. int64_t i10 = 0;
  6996. int64_t i11 = 0;
  6997. int64_t i12 = 0;
  6998. int64_t i13 = 0;
  6999. if (dst->type == GGML_TYPE_BF16) {
  7000. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7001. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7002. i10 += ne00 * ir0;
  7003. while (i10 >= ne0) {
  7004. i10 -= ne0;
  7005. if (++i11 == ne1) {
  7006. i11 = 0;
  7007. if (++i12 == ne2) {
  7008. i12 = 0;
  7009. if (++i13 == ne3) {
  7010. i13 = 0;
  7011. }
  7012. }
  7013. }
  7014. }
  7015. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7017. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7018. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7019. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7020. if (++i10 == ne00) {
  7021. i10 = 0;
  7022. if (++i11 == ne01) {
  7023. i11 = 0;
  7024. if (++i12 == ne02) {
  7025. i12 = 0;
  7026. if (++i13 == ne03) {
  7027. i13 = 0;
  7028. }
  7029. }
  7030. }
  7031. }
  7032. }
  7033. }
  7034. i10 += ne00 * (ne01 - ir1);
  7035. while (i10 >= ne0) {
  7036. i10 -= ne0;
  7037. if (++i11 == ne1) {
  7038. i11 = 0;
  7039. if (++i12 == ne2) {
  7040. i12 = 0;
  7041. if (++i13 == ne3) {
  7042. i13 = 0;
  7043. }
  7044. }
  7045. }
  7046. }
  7047. }
  7048. }
  7049. } else if (dst->type == GGML_TYPE_F16) {
  7050. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7051. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7052. i10 += ne00 * ir0;
  7053. while (i10 >= ne0) {
  7054. i10 -= ne0;
  7055. if (++i11 == ne1) {
  7056. i11 = 0;
  7057. if (++i12 == ne2) {
  7058. i12 = 0;
  7059. if (++i13 == ne3) {
  7060. i13 = 0;
  7061. }
  7062. }
  7063. }
  7064. }
  7065. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7066. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7067. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7068. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7069. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7070. if (++i10 == ne0) {
  7071. i10 = 0;
  7072. if (++i11 == ne1) {
  7073. i11 = 0;
  7074. if (++i12 == ne2) {
  7075. i12 = 0;
  7076. if (++i13 == ne3) {
  7077. i13 = 0;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. }
  7084. i10 += ne00 * (ne01 - ir1);
  7085. while (i10 >= ne0) {
  7086. i10 -= ne0;
  7087. if (++i11 == ne1) {
  7088. i11 = 0;
  7089. if (++i12 == ne2) {
  7090. i12 = 0;
  7091. if (++i13 == ne3) {
  7092. i13 = 0;
  7093. }
  7094. }
  7095. }
  7096. }
  7097. }
  7098. }
  7099. } else if (dst->type == GGML_TYPE_F32) {
  7100. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7101. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7102. i10 += ne00 * ir0;
  7103. while (i10 >= ne0) {
  7104. i10 -= ne0;
  7105. if (++i11 == ne1) {
  7106. i11 = 0;
  7107. if (++i12 == ne2) {
  7108. i12 = 0;
  7109. if (++i13 == ne3) {
  7110. i13 = 0;
  7111. }
  7112. }
  7113. }
  7114. }
  7115. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7116. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7117. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7118. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7119. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7120. if (++i10 == ne0) {
  7121. i10 = 0;
  7122. if (++i11 == ne1) {
  7123. i11 = 0;
  7124. if (++i12 == ne2) {
  7125. i12 = 0;
  7126. if (++i13 == ne3) {
  7127. i13 = 0;
  7128. }
  7129. }
  7130. }
  7131. }
  7132. }
  7133. }
  7134. i10 += ne00 * (ne01 - ir1);
  7135. while (i10 >= ne0) {
  7136. i10 -= ne0;
  7137. if (++i11 == ne1) {
  7138. i11 = 0;
  7139. if (++i12 == ne2) {
  7140. i12 = 0;
  7141. if (++i13 == ne3) {
  7142. i13 = 0;
  7143. }
  7144. }
  7145. }
  7146. }
  7147. }
  7148. }
  7149. } else {
  7150. GGML_ABORT("fatal error"); // TODO: implement
  7151. }
  7152. }
  7153. static void ggml_compute_forward_dup_f32(
  7154. const struct ggml_compute_params * params,
  7155. struct ggml_tensor * dst) {
  7156. const struct ggml_tensor * src0 = dst->src[0];
  7157. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7158. GGML_TENSOR_UNARY_OP_LOCALS
  7159. const int ith = params->ith; // thread index
  7160. const int nth = params->nth; // number of threads
  7161. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7162. ggml_compute_forward_dup_same_cont(params, dst);
  7163. return;
  7164. }
  7165. // parallelize by rows
  7166. const int nr = ne01;
  7167. // number of rows per thread
  7168. const int dr = (nr + nth - 1) / nth;
  7169. // row range for this thread
  7170. const int ir0 = dr * ith;
  7171. const int ir1 = MIN(ir0 + dr, nr);
  7172. if (src0->type == dst->type &&
  7173. ne00 == ne0 &&
  7174. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7175. // copy by rows
  7176. const size_t rs = ne00*nb00;
  7177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7179. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7180. memcpy(
  7181. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7182. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7183. rs);
  7184. }
  7185. }
  7186. }
  7187. return;
  7188. }
  7189. if (ggml_is_contiguous(dst)) {
  7190. // TODO: simplify
  7191. if (nb00 == sizeof(float)) {
  7192. if (dst->type == GGML_TYPE_F32) {
  7193. size_t id = 0;
  7194. const size_t rs = ne00 * nb00;
  7195. char * dst_ptr = (char *) dst->data;
  7196. for (int i03 = 0; i03 < ne03; i03++) {
  7197. for (int i02 = 0; i02 < ne02; i02++) {
  7198. id += rs * ir0;
  7199. for (int i01 = ir0; i01 < ir1; i01++) {
  7200. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7201. memcpy(dst_ptr + id, src0_ptr, rs);
  7202. id += rs;
  7203. }
  7204. id += rs * (ne01 - ir1);
  7205. }
  7206. }
  7207. } else if (type_traits[dst->type].from_float) {
  7208. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7209. size_t id = 0;
  7210. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7211. char * dst_ptr = (char *) dst->data;
  7212. for (int i03 = 0; i03 < ne03; i03++) {
  7213. for (int i02 = 0; i02 < ne02; i02++) {
  7214. id += rs * ir0;
  7215. for (int i01 = ir0; i01 < ir1; i01++) {
  7216. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7217. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7218. id += rs;
  7219. }
  7220. id += rs * (ne01 - ir1);
  7221. }
  7222. }
  7223. } else {
  7224. GGML_ABORT("fatal error"); // TODO: implement
  7225. }
  7226. } else {
  7227. //printf("%s: this is not optimal - fix me\n", __func__);
  7228. if (dst->type == GGML_TYPE_F32) {
  7229. size_t id = 0;
  7230. float * dst_ptr = (float *) dst->data;
  7231. for (int i03 = 0; i03 < ne03; i03++) {
  7232. for (int i02 = 0; i02 < ne02; i02++) {
  7233. id += ne00 * ir0;
  7234. for (int i01 = ir0; i01 < ir1; i01++) {
  7235. for (int i00 = 0; i00 < ne00; i00++) {
  7236. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7237. dst_ptr[id] = *src0_ptr;
  7238. id++;
  7239. }
  7240. }
  7241. id += ne00 * (ne01 - ir1);
  7242. }
  7243. }
  7244. } else if (dst->type == GGML_TYPE_F16) {
  7245. size_t id = 0;
  7246. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7247. for (int i03 = 0; i03 < ne03; i03++) {
  7248. for (int i02 = 0; i02 < ne02; i02++) {
  7249. id += ne00 * ir0;
  7250. for (int i01 = ir0; i01 < ir1; i01++) {
  7251. for (int i00 = 0; i00 < ne00; i00++) {
  7252. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7253. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7254. id++;
  7255. }
  7256. }
  7257. id += ne00 * (ne01 - ir1);
  7258. }
  7259. }
  7260. } else if (dst->type == GGML_TYPE_BF16) {
  7261. size_t id = 0;
  7262. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7263. for (int i03 = 0; i03 < ne03; i03++) {
  7264. for (int i02 = 0; i02 < ne02; i02++) {
  7265. id += ne00 * ir0;
  7266. for (int i01 = ir0; i01 < ir1; i01++) {
  7267. for (int i00 = 0; i00 < ne00; i00++) {
  7268. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7269. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7270. id++;
  7271. }
  7272. }
  7273. id += ne00 * (ne01 - ir1);
  7274. }
  7275. }
  7276. } else {
  7277. GGML_ABORT("fatal error"); // TODO: implement
  7278. }
  7279. }
  7280. return;
  7281. }
  7282. // dst counters
  7283. int64_t i10 = 0;
  7284. int64_t i11 = 0;
  7285. int64_t i12 = 0;
  7286. int64_t i13 = 0;
  7287. if (dst->type == GGML_TYPE_F32) {
  7288. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7289. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7290. i10 += ne00 * ir0;
  7291. while (i10 >= ne0) {
  7292. i10 -= ne0;
  7293. if (++i11 == ne1) {
  7294. i11 = 0;
  7295. if (++i12 == ne2) {
  7296. i12 = 0;
  7297. if (++i13 == ne3) {
  7298. i13 = 0;
  7299. }
  7300. }
  7301. }
  7302. }
  7303. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7304. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7305. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7306. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7307. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7308. if (++i10 == ne0) {
  7309. i10 = 0;
  7310. if (++i11 == ne1) {
  7311. i11 = 0;
  7312. if (++i12 == ne2) {
  7313. i12 = 0;
  7314. if (++i13 == ne3) {
  7315. i13 = 0;
  7316. }
  7317. }
  7318. }
  7319. }
  7320. }
  7321. }
  7322. i10 += ne00 * (ne01 - ir1);
  7323. while (i10 >= ne0) {
  7324. i10 -= ne0;
  7325. if (++i11 == ne1) {
  7326. i11 = 0;
  7327. if (++i12 == ne2) {
  7328. i12 = 0;
  7329. if (++i13 == ne3) {
  7330. i13 = 0;
  7331. }
  7332. }
  7333. }
  7334. }
  7335. }
  7336. }
  7337. } else if (dst->type == GGML_TYPE_F16) {
  7338. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7339. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7340. i10 += ne00 * ir0;
  7341. while (i10 >= ne0) {
  7342. i10 -= ne0;
  7343. if (++i11 == ne1) {
  7344. i11 = 0;
  7345. if (++i12 == ne2) {
  7346. i12 = 0;
  7347. if (++i13 == ne3) {
  7348. i13 = 0;
  7349. }
  7350. }
  7351. }
  7352. }
  7353. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7354. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7355. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7356. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7357. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7358. if (++i10 == ne0) {
  7359. i10 = 0;
  7360. if (++i11 == ne1) {
  7361. i11 = 0;
  7362. if (++i12 == ne2) {
  7363. i12 = 0;
  7364. if (++i13 == ne3) {
  7365. i13 = 0;
  7366. }
  7367. }
  7368. }
  7369. }
  7370. }
  7371. }
  7372. i10 += ne00 * (ne01 - ir1);
  7373. while (i10 >= ne0) {
  7374. i10 -= ne0;
  7375. if (++i11 == ne1) {
  7376. i11 = 0;
  7377. if (++i12 == ne2) {
  7378. i12 = 0;
  7379. if (++i13 == ne3) {
  7380. i13 = 0;
  7381. }
  7382. }
  7383. }
  7384. }
  7385. }
  7386. }
  7387. } else if (dst->type == GGML_TYPE_BF16) {
  7388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7390. i10 += ne00 * ir0;
  7391. while (i10 >= ne0) {
  7392. i10 -= ne0;
  7393. if (++i11 == ne1) {
  7394. i11 = 0;
  7395. if (++i12 == ne2) {
  7396. i12 = 0;
  7397. if (++i13 == ne3) {
  7398. i13 = 0;
  7399. }
  7400. }
  7401. }
  7402. }
  7403. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7404. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7405. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7406. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7407. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7408. if (++i10 == ne0) {
  7409. i10 = 0;
  7410. if (++i11 == ne1) {
  7411. i11 = 0;
  7412. if (++i12 == ne2) {
  7413. i12 = 0;
  7414. if (++i13 == ne3) {
  7415. i13 = 0;
  7416. }
  7417. }
  7418. }
  7419. }
  7420. }
  7421. }
  7422. i10 += ne00 * (ne01 - ir1);
  7423. while (i10 >= ne0) {
  7424. i10 -= ne0;
  7425. if (++i11 == ne1) {
  7426. i11 = 0;
  7427. if (++i12 == ne2) {
  7428. i12 = 0;
  7429. if (++i13 == ne3) {
  7430. i13 = 0;
  7431. }
  7432. }
  7433. }
  7434. }
  7435. }
  7436. }
  7437. } else {
  7438. GGML_ABORT("fatal error"); // TODO: implement
  7439. }
  7440. }
  7441. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7442. static void ggml_compute_forward_dup_bytes(
  7443. const struct ggml_compute_params * params,
  7444. struct ggml_tensor * dst) {
  7445. const struct ggml_tensor * src0 = dst->src[0];
  7446. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7447. GGML_ASSERT(src0->type == dst->type);
  7448. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7449. ggml_compute_forward_dup_same_cont(params, dst);
  7450. return;
  7451. }
  7452. GGML_TENSOR_UNARY_OP_LOCALS;
  7453. const size_t type_size = ggml_type_size(src0->type);
  7454. const int ith = params->ith; // thread index
  7455. const int nth = params->nth; // number of threads
  7456. // parallelize by rows
  7457. const int nr = ne01;
  7458. // number of rows per thread
  7459. const int dr = (nr + nth - 1) / nth;
  7460. // row range for this thread
  7461. const int ir0 = dr * ith;
  7462. const int ir1 = MIN(ir0 + dr, nr);
  7463. if (src0->type == dst->type &&
  7464. ne00 == ne0 &&
  7465. nb00 == type_size && nb0 == type_size) {
  7466. // copy by rows
  7467. const size_t rs = ne00 * type_size;
  7468. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7469. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7470. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7471. memcpy(
  7472. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7473. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7474. rs);
  7475. }
  7476. }
  7477. }
  7478. return;
  7479. }
  7480. if (ggml_is_contiguous(dst)) {
  7481. size_t id = 0;
  7482. char * dst_ptr = (char *) dst->data;
  7483. const size_t rs = ne00 * type_size;
  7484. if (nb00 == type_size) {
  7485. // src0 is contigous on first dimension, copy by rows
  7486. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7487. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7488. id += rs * ir0;
  7489. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7490. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7491. memcpy(dst_ptr + id, src0_ptr, rs);
  7492. id += rs;
  7493. }
  7494. id += rs * (ne01 - ir1);
  7495. }
  7496. }
  7497. } else {
  7498. //printf("%s: this is not optimal - fix me\n", __func__);
  7499. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7500. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7501. id += rs * ir0;
  7502. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7503. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7504. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7505. memcpy(dst_ptr + id, src0_ptr, type_size);
  7506. id += type_size;
  7507. }
  7508. }
  7509. id += rs * (ne01 - ir1);
  7510. }
  7511. }
  7512. }
  7513. return;
  7514. }
  7515. // dst counters
  7516. int64_t i10 = 0;
  7517. int64_t i11 = 0;
  7518. int64_t i12 = 0;
  7519. int64_t i13 = 0;
  7520. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7521. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7522. i10 += ne00 * ir0;
  7523. while (i10 >= ne0) {
  7524. i10 -= ne0;
  7525. if (++i11 == ne1) {
  7526. i11 = 0;
  7527. if (++i12 == ne2) {
  7528. i12 = 0;
  7529. if (++i13 == ne3) {
  7530. i13 = 0;
  7531. }
  7532. }
  7533. }
  7534. }
  7535. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7536. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7537. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7538. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7539. memcpy(dst_ptr, src0_ptr, type_size);
  7540. if (++i10 == ne0) {
  7541. i10 = 0;
  7542. if (++i11 == ne1) {
  7543. i11 = 0;
  7544. if (++i12 == ne2) {
  7545. i12 = 0;
  7546. if (++i13 == ne3) {
  7547. i13 = 0;
  7548. }
  7549. }
  7550. }
  7551. }
  7552. }
  7553. }
  7554. i10 += ne00 * (ne01 - ir1);
  7555. while (i10 >= ne0) {
  7556. i10 -= ne0;
  7557. if (++i11 == ne1) {
  7558. i11 = 0;
  7559. if (++i12 == ne2) {
  7560. i12 = 0;
  7561. if (++i13 == ne3) {
  7562. i13 = 0;
  7563. }
  7564. }
  7565. }
  7566. }
  7567. }
  7568. }
  7569. }
  7570. static void ggml_compute_forward_dup(
  7571. const struct ggml_compute_params * params,
  7572. struct ggml_tensor * dst) {
  7573. const struct ggml_tensor * src0 = dst->src[0];
  7574. if (src0->type == dst->type) {
  7575. ggml_compute_forward_dup_bytes(params, dst);
  7576. return;
  7577. }
  7578. switch (src0->type) {
  7579. case GGML_TYPE_F16:
  7580. {
  7581. ggml_compute_forward_dup_f16(params, dst);
  7582. } break;
  7583. case GGML_TYPE_BF16:
  7584. {
  7585. ggml_compute_forward_dup_bf16(params, dst);
  7586. } break;
  7587. case GGML_TYPE_F32:
  7588. {
  7589. ggml_compute_forward_dup_f32(params, dst);
  7590. } break;
  7591. default:
  7592. {
  7593. GGML_ABORT("fatal error");
  7594. }
  7595. }
  7596. }
  7597. // ggml_compute_forward_add
  7598. static void ggml_compute_forward_add_f32(
  7599. const struct ggml_compute_params * params,
  7600. struct ggml_tensor * dst) {
  7601. const struct ggml_tensor * src0 = dst->src[0];
  7602. const struct ggml_tensor * src1 = dst->src[1];
  7603. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7604. const int ith = params->ith;
  7605. const int nth = params->nth;
  7606. const int nr = ggml_nrows(src0);
  7607. GGML_TENSOR_BINARY_OP_LOCALS
  7608. GGML_ASSERT( nb0 == sizeof(float));
  7609. GGML_ASSERT(nb00 == sizeof(float));
  7610. // rows per thread
  7611. const int dr = (nr + nth - 1)/nth;
  7612. // row range for this thread
  7613. const int ir0 = dr*ith;
  7614. const int ir1 = MIN(ir0 + dr, nr);
  7615. if (nb10 == sizeof(float)) {
  7616. for (int ir = ir0; ir < ir1; ++ir) {
  7617. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7618. const int64_t i03 = ir/(ne02*ne01);
  7619. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7620. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7621. const int64_t i13 = i03 % ne13;
  7622. const int64_t i12 = i02 % ne12;
  7623. const int64_t i11 = i01 % ne11;
  7624. const int64_t nr0 = ne00 / ne10;
  7625. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7626. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7627. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7628. for (int64_t r = 0; r < nr0; ++r) {
  7629. #ifdef GGML_USE_ACCELERATE
  7630. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7631. #else
  7632. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7633. #endif
  7634. }
  7635. }
  7636. } else {
  7637. // src1 is not contiguous
  7638. for (int ir = ir0; ir < ir1; ++ir) {
  7639. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7640. const int64_t i03 = ir/(ne02*ne01);
  7641. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7642. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7643. const int64_t i13 = i03 % ne13;
  7644. const int64_t i12 = i02 % ne12;
  7645. const int64_t i11 = i01 % ne11;
  7646. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7647. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7648. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7649. const int64_t i10 = i0 % ne10;
  7650. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7651. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7652. }
  7653. }
  7654. }
  7655. }
  7656. static void ggml_compute_forward_add_f16_f32(
  7657. const struct ggml_compute_params * params,
  7658. struct ggml_tensor * dst) {
  7659. const struct ggml_tensor * src0 = dst->src[0];
  7660. const struct ggml_tensor * src1 = dst->src[1];
  7661. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7662. const int ith = params->ith;
  7663. const int nth = params->nth;
  7664. const int nr = ggml_nrows(src0);
  7665. GGML_TENSOR_BINARY_OP_LOCALS
  7666. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7667. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7668. if (dst->type == GGML_TYPE_F32) {
  7669. GGML_ASSERT( nb0 == sizeof(float));
  7670. }
  7671. else {
  7672. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7673. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7674. }
  7675. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7676. // rows per thread
  7677. const int dr = (nr + nth - 1)/nth;
  7678. // row range for this thread
  7679. const int ir0 = dr*ith;
  7680. const int ir1 = MIN(ir0 + dr, nr);
  7681. if (nb10 == sizeof(float)) {
  7682. if (dst->type == GGML_TYPE_F16) {
  7683. for (int ir = ir0; ir < ir1; ++ir) {
  7684. // src0, src1 and dst are same shape => same indices
  7685. const int i3 = ir/(ne2*ne1);
  7686. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7687. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7688. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7689. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7690. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7691. for (int i = 0; i < ne0; i++) {
  7692. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7693. }
  7694. }
  7695. } else {
  7696. for (int ir = ir0; ir < ir1; ++ir) {
  7697. // src0, src1 and dst are same shape => same indices
  7698. const int i3 = ir/(ne2*ne1);
  7699. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7700. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7701. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7702. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7703. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7704. for (int i = 0; i < ne0; i++) {
  7705. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7706. }
  7707. }
  7708. }
  7709. }
  7710. else {
  7711. // src1 is not contiguous
  7712. GGML_ABORT("fatal error");
  7713. }
  7714. }
  7715. static void ggml_compute_forward_add_bf16_f32(
  7716. const struct ggml_compute_params * params,
  7717. struct ggml_tensor * dst) {
  7718. const struct ggml_tensor * src0 = dst->src[0];
  7719. const struct ggml_tensor * src1 = dst->src[1];
  7720. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7721. const int ith = params->ith;
  7722. const int nth = params->nth;
  7723. const int nr = ggml_nrows(src0);
  7724. GGML_TENSOR_BINARY_OP_LOCALS
  7725. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7726. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7727. if (dst->type == GGML_TYPE_F32) {
  7728. GGML_ASSERT( nb0 == sizeof(float));
  7729. }
  7730. else {
  7731. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7732. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7733. }
  7734. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7735. // rows per thread
  7736. const int dr = (nr + nth - 1)/nth;
  7737. // row range for this thread
  7738. const int ir0 = dr*ith;
  7739. const int ir1 = MIN(ir0 + dr, nr);
  7740. if (nb10 == sizeof(float)) {
  7741. if (dst->type == GGML_TYPE_BF16) {
  7742. for (int ir = ir0; ir < ir1; ++ir) {
  7743. // src0, src1 and dst are same shape => same indices
  7744. const int i3 = ir/(ne2*ne1);
  7745. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7746. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7747. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7748. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7749. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7750. for (int i = 0; i < ne0; i++) {
  7751. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7752. }
  7753. }
  7754. } else {
  7755. for (int ir = ir0; ir < ir1; ++ir) {
  7756. // src0, src1 and dst are same shape => same indices
  7757. const int i3 = ir/(ne2*ne1);
  7758. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7759. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7760. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7761. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7762. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7763. for (int i = 0; i < ne0; i++) {
  7764. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7765. }
  7766. }
  7767. }
  7768. }
  7769. else {
  7770. // src1 is not contiguous
  7771. GGML_ABORT("fatal error");
  7772. }
  7773. }
  7774. static void ggml_compute_forward_add_f16_f16(
  7775. const struct ggml_compute_params * params,
  7776. struct ggml_tensor * dst) {
  7777. const struct ggml_tensor * src0 = dst->src[0];
  7778. const struct ggml_tensor * src1 = dst->src[1];
  7779. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7780. const int ith = params->ith;
  7781. const int nth = params->nth;
  7782. const int nr = ggml_nrows(src0);
  7783. GGML_TENSOR_BINARY_OP_LOCALS
  7784. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7785. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7786. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7787. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7788. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7789. // rows per thread
  7790. const int dr = (nr + nth - 1)/nth;
  7791. // row range for this thread
  7792. const int ir0 = dr*ith;
  7793. const int ir1 = MIN(ir0 + dr, nr);
  7794. if (nb10 == sizeof(ggml_fp16_t)) {
  7795. for (int ir = ir0; ir < ir1; ++ir) {
  7796. // src0, src1 and dst are same shape => same indices
  7797. const int i3 = ir/(ne2*ne1);
  7798. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7799. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7800. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7801. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7802. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7803. for (int i = 0; i < ne0; i++) {
  7804. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7805. }
  7806. }
  7807. }
  7808. else {
  7809. // src1 is not contiguous
  7810. GGML_ABORT("fatal error");
  7811. }
  7812. }
  7813. static void ggml_compute_forward_add_bf16_bf16(
  7814. const struct ggml_compute_params * params,
  7815. struct ggml_tensor * dst) {
  7816. const struct ggml_tensor * src0 = dst->src[0];
  7817. const struct ggml_tensor * src1 = dst->src[1];
  7818. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7819. const int ith = params->ith;
  7820. const int nth = params->nth;
  7821. const int nr = ggml_nrows(src0);
  7822. GGML_TENSOR_BINARY_OP_LOCALS
  7823. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7824. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7825. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7826. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7827. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7828. // rows per thread
  7829. const int dr = (nr + nth - 1)/nth;
  7830. // row range for this thread
  7831. const int ir0 = dr*ith;
  7832. const int ir1 = MIN(ir0 + dr, nr);
  7833. if (nb10 == sizeof(ggml_bf16_t)) {
  7834. for (int ir = ir0; ir < ir1; ++ir) {
  7835. // src0, src1 and dst are same shape => same indices
  7836. const int i3 = ir/(ne2*ne1);
  7837. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7838. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7839. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7840. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7841. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7842. for (int i = 0; i < ne0; i++) {
  7843. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7844. }
  7845. }
  7846. }
  7847. else {
  7848. // src1 is not contiguous
  7849. GGML_ABORT("fatal error");
  7850. }
  7851. }
  7852. static void ggml_compute_forward_add_q_f32(
  7853. const struct ggml_compute_params * params,
  7854. struct ggml_tensor * dst) {
  7855. const struct ggml_tensor * src0 = dst->src[0];
  7856. const struct ggml_tensor * src1 = dst->src[1];
  7857. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7858. const int nr = ggml_nrows(src0);
  7859. GGML_TENSOR_BINARY_OP_LOCALS
  7860. const int ith = params->ith;
  7861. const int nth = params->nth;
  7862. const enum ggml_type type = src0->type;
  7863. const enum ggml_type dtype = dst->type;
  7864. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7865. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7866. // we don't support permuted src0 or src1
  7867. GGML_ASSERT(nb00 == ggml_type_size(type));
  7868. GGML_ASSERT(nb10 == sizeof(float));
  7869. // dst cannot be transposed or permuted
  7870. GGML_ASSERT(nb0 <= nb1);
  7871. GGML_ASSERT(nb1 <= nb2);
  7872. GGML_ASSERT(nb2 <= nb3);
  7873. GGML_ASSERT(ggml_is_quantized(src0->type));
  7874. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7875. // rows per thread
  7876. const int dr = (nr + nth - 1)/nth;
  7877. // row range for this thread
  7878. const int ir0 = dr*ith;
  7879. const int ir1 = MIN(ir0 + dr, nr);
  7880. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7881. for (int ir = ir0; ir < ir1; ++ir) {
  7882. // src0 indices
  7883. const int i03 = ir/(ne02*ne01);
  7884. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7885. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7886. // src1 and dst are same shape as src0 => same indices
  7887. const int i13 = i03;
  7888. const int i12 = i02;
  7889. const int i11 = i01;
  7890. const int i3 = i03;
  7891. const int i2 = i02;
  7892. const int i1 = i01;
  7893. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7894. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7895. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7896. assert(ne00 % 32 == 0);
  7897. // unquantize row from src0 to temp buffer
  7898. dequantize_row_q(src0_row, wdata, ne00);
  7899. // add src1
  7900. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7901. // quantize row to dst
  7902. if (quantize_row_q != NULL) {
  7903. quantize_row_q(wdata, dst_row, ne00);
  7904. } else {
  7905. memcpy(dst_row, wdata, ne0*nb0);
  7906. }
  7907. }
  7908. }
  7909. static void ggml_compute_forward_add(
  7910. const struct ggml_compute_params * params,
  7911. struct ggml_tensor * dst) {
  7912. const struct ggml_tensor * src0 = dst->src[0];
  7913. const struct ggml_tensor * src1 = dst->src[1];
  7914. switch (src0->type) {
  7915. case GGML_TYPE_F32:
  7916. {
  7917. if (src1->type == GGML_TYPE_F32) {
  7918. ggml_compute_forward_add_f32(params, dst);
  7919. }
  7920. else {
  7921. GGML_ABORT("fatal error");
  7922. }
  7923. } break;
  7924. case GGML_TYPE_F16:
  7925. {
  7926. if (src1->type == GGML_TYPE_F16) {
  7927. ggml_compute_forward_add_f16_f16(params, dst);
  7928. }
  7929. else if (src1->type == GGML_TYPE_F32) {
  7930. ggml_compute_forward_add_f16_f32(params, dst);
  7931. }
  7932. else {
  7933. GGML_ABORT("fatal error");
  7934. }
  7935. } break;
  7936. case GGML_TYPE_BF16:
  7937. {
  7938. if (src1->type == GGML_TYPE_BF16) {
  7939. ggml_compute_forward_add_bf16_bf16(params, dst);
  7940. }
  7941. else if (src1->type == GGML_TYPE_F32) {
  7942. ggml_compute_forward_add_bf16_f32(params, dst);
  7943. }
  7944. else {
  7945. GGML_ABORT("fatal error");
  7946. }
  7947. } break;
  7948. case GGML_TYPE_Q4_0:
  7949. case GGML_TYPE_Q4_1:
  7950. case GGML_TYPE_Q5_0:
  7951. case GGML_TYPE_Q5_1:
  7952. case GGML_TYPE_Q8_0:
  7953. case GGML_TYPE_Q2_K:
  7954. case GGML_TYPE_Q3_K:
  7955. case GGML_TYPE_Q4_K:
  7956. case GGML_TYPE_Q5_K:
  7957. case GGML_TYPE_Q6_K:
  7958. case GGML_TYPE_IQ2_XXS:
  7959. case GGML_TYPE_IQ2_XS:
  7960. case GGML_TYPE_IQ3_XXS:
  7961. case GGML_TYPE_IQ1_S:
  7962. case GGML_TYPE_IQ1_M:
  7963. case GGML_TYPE_IQ4_NL:
  7964. case GGML_TYPE_IQ4_XS:
  7965. case GGML_TYPE_IQ3_S:
  7966. case GGML_TYPE_IQ2_S:
  7967. case GGML_TYPE_Q4_0_4_4:
  7968. case GGML_TYPE_Q4_0_4_8:
  7969. case GGML_TYPE_Q4_0_8_8:
  7970. {
  7971. ggml_compute_forward_add_q_f32(params, dst);
  7972. } break;
  7973. default:
  7974. {
  7975. GGML_ABORT("fatal error");
  7976. }
  7977. }
  7978. }
  7979. // ggml_compute_forward_add1
  7980. static void ggml_compute_forward_add1_f32(
  7981. const struct ggml_compute_params * params,
  7982. struct ggml_tensor * dst) {
  7983. const struct ggml_tensor * src0 = dst->src[0];
  7984. const struct ggml_tensor * src1 = dst->src[1];
  7985. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7986. GGML_ASSERT(ggml_is_scalar(src1));
  7987. const int ith = params->ith;
  7988. const int nth = params->nth;
  7989. const int nr = ggml_nrows(src0);
  7990. GGML_TENSOR_UNARY_OP_LOCALS
  7991. GGML_ASSERT( nb0 == sizeof(float));
  7992. GGML_ASSERT(nb00 == sizeof(float));
  7993. // rows per thread
  7994. const int dr = (nr + nth - 1)/nth;
  7995. // row range for this thread
  7996. const int ir0 = dr*ith;
  7997. const int ir1 = MIN(ir0 + dr, nr);
  7998. for (int ir = ir0; ir < ir1; ++ir) {
  7999. // src0 and dst are same shape => same indices
  8000. const int i3 = ir/(ne2*ne1);
  8001. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8002. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8003. #ifdef GGML_USE_ACCELERATE
  8004. UNUSED(ggml_vec_add1_f32);
  8005. vDSP_vadd(
  8006. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8007. (float *) ((char *) src1->data), 0,
  8008. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8009. ne0);
  8010. #else
  8011. ggml_vec_add1_f32(ne0,
  8012. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8013. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8014. *(float *) src1->data);
  8015. #endif
  8016. }
  8017. }
  8018. static void ggml_compute_forward_add1_f16_f32(
  8019. const struct ggml_compute_params * params,
  8020. struct ggml_tensor * dst) {
  8021. const struct ggml_tensor * src0 = dst->src[0];
  8022. const struct ggml_tensor * src1 = dst->src[1];
  8023. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8024. GGML_ASSERT(ggml_is_scalar(src1));
  8025. // scalar to add
  8026. const float v = *(float *) src1->data;
  8027. const int ith = params->ith;
  8028. const int nth = params->nth;
  8029. const int nr = ggml_nrows(src0);
  8030. GGML_TENSOR_UNARY_OP_LOCALS
  8031. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8032. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8033. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8034. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8035. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8036. // rows per thread
  8037. const int dr = (nr + nth - 1)/nth;
  8038. // row range for this thread
  8039. const int ir0 = dr*ith;
  8040. const int ir1 = MIN(ir0 + dr, nr);
  8041. for (int ir = ir0; ir < ir1; ++ir) {
  8042. // src0 and dst are same shape => same indices
  8043. const int i3 = ir/(ne2*ne1);
  8044. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8045. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8046. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8047. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8048. for (int i = 0; i < ne0; i++) {
  8049. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8050. }
  8051. }
  8052. }
  8053. static void ggml_compute_forward_add1_f16_f16(
  8054. const struct ggml_compute_params * params,
  8055. struct ggml_tensor * dst) {
  8056. const struct ggml_tensor * src0 = dst->src[0];
  8057. const struct ggml_tensor * src1 = dst->src[1];
  8058. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8059. GGML_ASSERT(ggml_is_scalar(src1));
  8060. // scalar to add
  8061. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8062. const int ith = params->ith;
  8063. const int nth = params->nth;
  8064. const int nr = ggml_nrows(src0);
  8065. GGML_TENSOR_UNARY_OP_LOCALS
  8066. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8067. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8068. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8069. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8070. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8071. // rows per thread
  8072. const int dr = (nr + nth - 1)/nth;
  8073. // row range for this thread
  8074. const int ir0 = dr*ith;
  8075. const int ir1 = MIN(ir0 + dr, nr);
  8076. for (int ir = ir0; ir < ir1; ++ir) {
  8077. // src0 and dst are same shape => same indices
  8078. const int i3 = ir/(ne2*ne1);
  8079. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8080. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8081. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8082. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8083. for (int i = 0; i < ne0; i++) {
  8084. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8085. }
  8086. }
  8087. }
  8088. static void ggml_compute_forward_add1_q_f32(
  8089. const struct ggml_compute_params * params,
  8090. struct ggml_tensor * dst) {
  8091. const struct ggml_tensor * src0 = dst->src[0];
  8092. const struct ggml_tensor * src1 = dst->src[1];
  8093. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8094. GGML_ASSERT(ggml_is_scalar(src1));
  8095. // scalar to add
  8096. const float v = *(float *) src1->data;
  8097. const int ith = params->ith;
  8098. const int nth = params->nth;
  8099. const int nr = ggml_nrows(src0);
  8100. GGML_TENSOR_UNARY_OP_LOCALS
  8101. const enum ggml_type type = src0->type;
  8102. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8103. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8104. // we don't support permuted src0
  8105. GGML_ASSERT(nb00 == ggml_type_size(type));
  8106. // dst cannot be transposed or permuted
  8107. GGML_ASSERT(nb0 <= nb1);
  8108. GGML_ASSERT(nb1 <= nb2);
  8109. GGML_ASSERT(nb2 <= nb3);
  8110. GGML_ASSERT(ggml_is_quantized(src0->type));
  8111. GGML_ASSERT(dst->type == src0->type);
  8112. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8113. // rows per thread
  8114. const int dr = (nr + nth - 1)/nth;
  8115. // row range for this thread
  8116. const int ir0 = dr*ith;
  8117. const int ir1 = MIN(ir0 + dr, nr);
  8118. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8119. for (int ir = ir0; ir < ir1; ++ir) {
  8120. // src0 and dst are same shape => same indices
  8121. const int i3 = ir/(ne2*ne1);
  8122. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8123. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8124. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8125. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8126. assert(ne0 % 32 == 0);
  8127. // unquantize row from src0 to temp buffer
  8128. dequantize_row_q(src0_row, wdata, ne0);
  8129. // add src1
  8130. ggml_vec_acc1_f32(ne0, wdata, v);
  8131. // quantize row to dst
  8132. quantize_row_q(wdata, dst_row, ne0);
  8133. }
  8134. }
  8135. static void ggml_compute_forward_add1_bf16_f32(
  8136. const struct ggml_compute_params * params,
  8137. struct ggml_tensor * dst) {
  8138. const struct ggml_tensor * src0 = dst->src[0];
  8139. const struct ggml_tensor * src1 = dst->src[1];
  8140. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8141. GGML_ASSERT(ggml_is_scalar(src1));
  8142. // scalar to add
  8143. const float v = *(float *) src1->data;
  8144. const int ith = params->ith;
  8145. const int nth = params->nth;
  8146. const int nr = ggml_nrows(src0);
  8147. GGML_TENSOR_UNARY_OP_LOCALS
  8148. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8149. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8150. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8151. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8152. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8153. // rows per thread
  8154. const int dr = (nr + nth - 1)/nth;
  8155. // row range for this thread
  8156. const int ir0 = dr*ith;
  8157. const int ir1 = MIN(ir0 + dr, nr);
  8158. for (int ir = ir0; ir < ir1; ++ir) {
  8159. // src0 and dst are same shape => same indices
  8160. const int i3 = ir/(ne2*ne1);
  8161. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8162. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8163. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8164. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8165. for (int i = 0; i < ne0; i++) {
  8166. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8167. }
  8168. }
  8169. }
  8170. static void ggml_compute_forward_add1_bf16_bf16(
  8171. const struct ggml_compute_params * params,
  8172. struct ggml_tensor * dst) {
  8173. const struct ggml_tensor * src0 = dst->src[0];
  8174. const struct ggml_tensor * src1 = dst->src[1];
  8175. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8176. GGML_ASSERT(ggml_is_scalar(src1));
  8177. // scalar to add
  8178. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8179. const int ith = params->ith;
  8180. const int nth = params->nth;
  8181. const int nr = ggml_nrows(src0);
  8182. GGML_TENSOR_UNARY_OP_LOCALS
  8183. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8184. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8185. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8186. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8187. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8188. // rows per thread
  8189. const int dr = (nr + nth - 1)/nth;
  8190. // row range for this thread
  8191. const int ir0 = dr*ith;
  8192. const int ir1 = MIN(ir0 + dr, nr);
  8193. for (int ir = ir0; ir < ir1; ++ir) {
  8194. // src0 and dst are same shape => same indices
  8195. const int i3 = ir/(ne2*ne1);
  8196. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8197. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8198. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8199. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8200. for (int i = 0; i < ne0; i++) {
  8201. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8202. }
  8203. }
  8204. }
  8205. static void ggml_compute_forward_add1(
  8206. const struct ggml_compute_params * params,
  8207. struct ggml_tensor * dst) {
  8208. const struct ggml_tensor * src0 = dst->src[0];
  8209. const struct ggml_tensor * src1 = dst->src[1];
  8210. switch (src0->type) {
  8211. case GGML_TYPE_F32:
  8212. {
  8213. ggml_compute_forward_add1_f32(params, dst);
  8214. } break;
  8215. case GGML_TYPE_F16:
  8216. {
  8217. if (src1->type == GGML_TYPE_F16) {
  8218. ggml_compute_forward_add1_f16_f16(params, dst);
  8219. }
  8220. else if (src1->type == GGML_TYPE_F32) {
  8221. ggml_compute_forward_add1_f16_f32(params, dst);
  8222. }
  8223. else {
  8224. GGML_ABORT("fatal error");
  8225. }
  8226. } break;
  8227. case GGML_TYPE_BF16:
  8228. {
  8229. if (src1->type == GGML_TYPE_BF16) {
  8230. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8231. }
  8232. else if (src1->type == GGML_TYPE_F32) {
  8233. ggml_compute_forward_add1_bf16_f32(params, dst);
  8234. }
  8235. else {
  8236. GGML_ABORT("fatal error");
  8237. }
  8238. } break;
  8239. case GGML_TYPE_Q4_0:
  8240. case GGML_TYPE_Q4_1:
  8241. case GGML_TYPE_Q5_0:
  8242. case GGML_TYPE_Q5_1:
  8243. case GGML_TYPE_Q8_0:
  8244. case GGML_TYPE_Q8_1:
  8245. case GGML_TYPE_Q2_K:
  8246. case GGML_TYPE_Q3_K:
  8247. case GGML_TYPE_Q4_K:
  8248. case GGML_TYPE_Q5_K:
  8249. case GGML_TYPE_Q6_K:
  8250. case GGML_TYPE_IQ2_XXS:
  8251. case GGML_TYPE_IQ2_XS:
  8252. case GGML_TYPE_IQ3_XXS:
  8253. case GGML_TYPE_IQ1_S:
  8254. case GGML_TYPE_IQ1_M:
  8255. case GGML_TYPE_IQ4_NL:
  8256. case GGML_TYPE_IQ4_XS:
  8257. case GGML_TYPE_IQ3_S:
  8258. case GGML_TYPE_IQ2_S:
  8259. case GGML_TYPE_Q4_0_4_4:
  8260. case GGML_TYPE_Q4_0_4_8:
  8261. case GGML_TYPE_Q4_0_8_8:
  8262. {
  8263. ggml_compute_forward_add1_q_f32(params, dst);
  8264. } break;
  8265. default:
  8266. {
  8267. GGML_ABORT("fatal error");
  8268. }
  8269. }
  8270. }
  8271. // ggml_compute_forward_acc
  8272. static void ggml_compute_forward_acc_f32(
  8273. const struct ggml_compute_params * params,
  8274. struct ggml_tensor * dst) {
  8275. const struct ggml_tensor * src0 = dst->src[0];
  8276. const struct ggml_tensor * src1 = dst->src[1];
  8277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8278. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8279. // view src0 and dst with these strides and data offset inbytes during acc
  8280. // nb0 is implicitly element_size because src0 and dst are contiguous
  8281. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8282. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8283. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8284. size_t offset = ((int32_t *) dst->op_params)[3];
  8285. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8286. if (!inplace) {
  8287. if (params->ith == 0) {
  8288. // memcpy needs to be synchronized across threads to avoid race conditions.
  8289. // => do it in INIT phase
  8290. memcpy(
  8291. ((char *) dst->data),
  8292. ((char *) src0->data),
  8293. ggml_nbytes(dst));
  8294. }
  8295. ggml_barrier(params->shared);
  8296. }
  8297. const int ith = params->ith;
  8298. const int nth = params->nth;
  8299. const int nr = ggml_nrows(src1);
  8300. const int nc = src1->ne[0];
  8301. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8302. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8303. // src0 and dst as viewed during acc
  8304. const size_t nb0 = ggml_element_size(src0);
  8305. const size_t nb00 = nb0;
  8306. const size_t nb01 = nb1;
  8307. const size_t nb02 = nb2;
  8308. const size_t nb03 = nb3;
  8309. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8310. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8311. GGML_ASSERT(nb10 == sizeof(float));
  8312. // rows per thread
  8313. const int dr = (nr + nth - 1)/nth;
  8314. // row range for this thread
  8315. const int ir0 = dr*ith;
  8316. const int ir1 = MIN(ir0 + dr, nr);
  8317. for (int ir = ir0; ir < ir1; ++ir) {
  8318. // src0 and dst are viewed with shape of src1 and offset
  8319. // => same indices
  8320. const int i3 = ir/(ne12*ne11);
  8321. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8322. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8323. #ifdef GGML_USE_ACCELERATE
  8324. vDSP_vadd(
  8325. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8326. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8327. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8328. #else
  8329. ggml_vec_add_f32(nc,
  8330. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8331. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8332. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8333. #endif
  8334. }
  8335. }
  8336. static void ggml_compute_forward_acc(
  8337. const struct ggml_compute_params * params,
  8338. struct ggml_tensor * dst) {
  8339. const struct ggml_tensor * src0 = dst->src[0];
  8340. switch (src0->type) {
  8341. case GGML_TYPE_F32:
  8342. {
  8343. ggml_compute_forward_acc_f32(params, dst);
  8344. } break;
  8345. case GGML_TYPE_F16:
  8346. case GGML_TYPE_BF16:
  8347. case GGML_TYPE_Q4_0:
  8348. case GGML_TYPE_Q4_1:
  8349. case GGML_TYPE_Q5_0:
  8350. case GGML_TYPE_Q5_1:
  8351. case GGML_TYPE_Q8_0:
  8352. case GGML_TYPE_Q8_1:
  8353. case GGML_TYPE_Q2_K:
  8354. case GGML_TYPE_Q3_K:
  8355. case GGML_TYPE_Q4_K:
  8356. case GGML_TYPE_Q5_K:
  8357. case GGML_TYPE_Q6_K:
  8358. case GGML_TYPE_IQ2_XXS:
  8359. case GGML_TYPE_IQ2_XS:
  8360. case GGML_TYPE_IQ3_XXS:
  8361. case GGML_TYPE_IQ1_S:
  8362. case GGML_TYPE_IQ1_M:
  8363. case GGML_TYPE_IQ4_NL:
  8364. case GGML_TYPE_IQ4_XS:
  8365. case GGML_TYPE_IQ3_S:
  8366. case GGML_TYPE_IQ2_S:
  8367. case GGML_TYPE_Q4_0_4_4:
  8368. case GGML_TYPE_Q4_0_4_8:
  8369. case GGML_TYPE_Q4_0_8_8:
  8370. default:
  8371. {
  8372. GGML_ABORT("fatal error");
  8373. }
  8374. }
  8375. }
  8376. // ggml_compute_forward_sub
  8377. static void ggml_compute_forward_sub_f32(
  8378. const struct ggml_compute_params * params,
  8379. struct ggml_tensor * dst) {
  8380. const struct ggml_tensor * src0 = dst->src[0];
  8381. const struct ggml_tensor * src1 = dst->src[1];
  8382. if (params->ith != 0) {
  8383. return;
  8384. }
  8385. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8386. const int nr = ggml_nrows(src0);
  8387. GGML_TENSOR_BINARY_OP_LOCALS
  8388. GGML_ASSERT( nb0 == sizeof(float));
  8389. GGML_ASSERT(nb00 == sizeof(float));
  8390. if (nb10 == sizeof(float)) {
  8391. for (int ir = 0; ir < nr; ++ir) {
  8392. // src0, src1 and dst are same shape => same indices
  8393. const int i3 = ir/(ne2*ne1);
  8394. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8395. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8396. #ifdef GGML_USE_ACCELERATE
  8397. vDSP_vsub(
  8398. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8399. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8400. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8401. ne0);
  8402. #else
  8403. ggml_vec_sub_f32(ne0,
  8404. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8405. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8406. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8407. #endif
  8408. // }
  8409. // }
  8410. }
  8411. } else {
  8412. // src1 is not contiguous
  8413. for (int ir = 0; ir < nr; ++ir) {
  8414. // src0, src1 and dst are same shape => same indices
  8415. const int i3 = ir/(ne2*ne1);
  8416. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8417. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8418. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8419. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8420. for (int i0 = 0; i0 < ne0; i0++) {
  8421. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8422. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8423. }
  8424. }
  8425. }
  8426. }
  8427. static void ggml_compute_forward_sub(
  8428. const struct ggml_compute_params * params,
  8429. struct ggml_tensor * dst) {
  8430. const struct ggml_tensor * src0 = dst->src[0];
  8431. switch (src0->type) {
  8432. case GGML_TYPE_F32:
  8433. {
  8434. ggml_compute_forward_sub_f32(params, dst);
  8435. } break;
  8436. default:
  8437. {
  8438. GGML_ABORT("fatal error");
  8439. }
  8440. }
  8441. }
  8442. // ggml_compute_forward_mul
  8443. static void ggml_compute_forward_mul_f32(
  8444. const struct ggml_compute_params * params,
  8445. struct ggml_tensor * dst) {
  8446. const struct ggml_tensor * src0 = dst->src[0];
  8447. const struct ggml_tensor * src1 = dst->src[1];
  8448. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8449. const int ith = params->ith;
  8450. const int nth = params->nth;
  8451. const int64_t nr = ggml_nrows(src0);
  8452. GGML_TENSOR_BINARY_OP_LOCALS
  8453. GGML_ASSERT( nb0 == sizeof(float));
  8454. GGML_ASSERT(nb00 == sizeof(float));
  8455. if (nb10 == sizeof(float)) {
  8456. for (int64_t ir = ith; ir < nr; ir += nth) {
  8457. // src0 and dst are same shape => same indices
  8458. const int64_t i03 = ir/(ne02*ne01);
  8459. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8460. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8461. const int64_t i13 = i03 % ne13;
  8462. const int64_t i12 = i02 % ne12;
  8463. const int64_t i11 = i01 % ne11;
  8464. const int64_t nr0 = ne00 / ne10;
  8465. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8466. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8467. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8468. for (int64_t r = 0 ; r < nr0; ++r) {
  8469. #ifdef GGML_USE_ACCELERATE
  8470. UNUSED(ggml_vec_mul_f32);
  8471. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8472. #else
  8473. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8474. #endif
  8475. }
  8476. }
  8477. } else {
  8478. // src1 is not contiguous
  8479. for (int64_t ir = ith; ir < nr; ir += nth) {
  8480. // src0 and dst are same shape => same indices
  8481. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8482. const int64_t i03 = ir/(ne02*ne01);
  8483. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8484. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8485. const int64_t i13 = i03 % ne13;
  8486. const int64_t i12 = i02 % ne12;
  8487. const int64_t i11 = i01 % ne11;
  8488. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8489. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8490. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8491. const int64_t i10 = i0 % ne10;
  8492. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8493. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8494. }
  8495. }
  8496. }
  8497. }
  8498. static void ggml_compute_forward_mul(
  8499. const struct ggml_compute_params * params,
  8500. struct ggml_tensor * dst) {
  8501. const struct ggml_tensor * src0 = dst->src[0];
  8502. const struct ggml_tensor * src1 = dst->src[1];
  8503. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8504. switch (src0->type) {
  8505. case GGML_TYPE_F32:
  8506. {
  8507. ggml_compute_forward_mul_f32(params, dst);
  8508. } break;
  8509. default:
  8510. {
  8511. GGML_ABORT("fatal error");
  8512. }
  8513. }
  8514. }
  8515. // ggml_compute_forward_div
  8516. static void ggml_compute_forward_div_f32(
  8517. const struct ggml_compute_params * params,
  8518. struct ggml_tensor * dst) {
  8519. const struct ggml_tensor * src0 = dst->src[0];
  8520. const struct ggml_tensor * src1 = dst->src[1];
  8521. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8522. const int ith = params->ith;
  8523. const int nth = params->nth;
  8524. const int64_t nr = ggml_nrows(src0);
  8525. GGML_TENSOR_BINARY_OP_LOCALS
  8526. GGML_ASSERT( nb0 == sizeof(float));
  8527. GGML_ASSERT(nb00 == sizeof(float));
  8528. if (nb10 == sizeof(float)) {
  8529. for (int64_t ir = ith; ir < nr; ir += nth) {
  8530. // src0 and dst are same shape => same indices
  8531. const int64_t i03 = ir/(ne02*ne01);
  8532. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8533. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8534. const int64_t i13 = i03 % ne13;
  8535. const int64_t i12 = i02 % ne12;
  8536. const int64_t i11 = i01 % ne11;
  8537. const int64_t nr0 = ne00 / ne10;
  8538. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8539. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8540. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8541. for (int64_t r = 0; r < nr0; ++r) {
  8542. #ifdef GGML_USE_ACCELERATE
  8543. UNUSED(ggml_vec_div_f32);
  8544. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8545. #else
  8546. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8547. #endif
  8548. }
  8549. }
  8550. } else {
  8551. // src1 is not contiguous
  8552. for (int64_t ir = ith; ir < nr; ir += nth) {
  8553. // src0 and dst are same shape => same indices
  8554. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8555. const int64_t i03 = ir/(ne02*ne01);
  8556. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8557. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8558. const int64_t i13 = i03 % ne13;
  8559. const int64_t i12 = i02 % ne12;
  8560. const int64_t i11 = i01 % ne11;
  8561. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8562. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8563. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8564. const int64_t i10 = i0 % ne10;
  8565. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8566. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8567. }
  8568. }
  8569. }
  8570. }
  8571. static void ggml_compute_forward_div(
  8572. const struct ggml_compute_params * params,
  8573. struct ggml_tensor * dst) {
  8574. const struct ggml_tensor * src0 = dst->src[0];
  8575. switch (src0->type) {
  8576. case GGML_TYPE_F32:
  8577. {
  8578. ggml_compute_forward_div_f32(params, dst);
  8579. } break;
  8580. default:
  8581. {
  8582. GGML_ABORT("fatal error");
  8583. }
  8584. }
  8585. }
  8586. // ggml_compute_forward_sqr
  8587. static void ggml_compute_forward_sqr_f32(
  8588. const struct ggml_compute_params * params,
  8589. struct ggml_tensor * dst) {
  8590. const struct ggml_tensor * src0 = dst->src[0];
  8591. if (params->ith != 0) {
  8592. return;
  8593. }
  8594. assert(ggml_are_same_shape(src0, dst));
  8595. const int n = ggml_nrows(src0);
  8596. const int nc = src0->ne[0];
  8597. assert( dst->nb[0] == sizeof(float));
  8598. assert(src0->nb[0] == sizeof(float));
  8599. for (int i = 0; i < n; i++) {
  8600. ggml_vec_sqr_f32(nc,
  8601. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8602. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8603. }
  8604. }
  8605. static void ggml_compute_forward_sqr(
  8606. const struct ggml_compute_params * params,
  8607. struct ggml_tensor * dst) {
  8608. const struct ggml_tensor * src0 = dst->src[0];
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_sqr_f32(params, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ABORT("fatal error");
  8617. }
  8618. }
  8619. }
  8620. // ggml_compute_forward_sqrt
  8621. static void ggml_compute_forward_sqrt_f32(
  8622. const struct ggml_compute_params * params,
  8623. struct ggml_tensor * dst) {
  8624. const struct ggml_tensor * src0 = dst->src[0];
  8625. if (params->ith != 0) {
  8626. return;
  8627. }
  8628. assert(ggml_are_same_shape(src0, dst));
  8629. const int n = ggml_nrows(src0);
  8630. const int nc = src0->ne[0];
  8631. assert( dst->nb[0] == sizeof(float));
  8632. assert(src0->nb[0] == sizeof(float));
  8633. for (int i = 0; i < n; i++) {
  8634. ggml_vec_sqrt_f32(nc,
  8635. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8636. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8637. }
  8638. }
  8639. static void ggml_compute_forward_sqrt(
  8640. const struct ggml_compute_params * params,
  8641. struct ggml_tensor * dst) {
  8642. const struct ggml_tensor * src0 = dst->src[0];
  8643. switch (src0->type) {
  8644. case GGML_TYPE_F32:
  8645. {
  8646. ggml_compute_forward_sqrt_f32(params, dst);
  8647. } break;
  8648. default:
  8649. {
  8650. GGML_ABORT("fatal error");
  8651. }
  8652. }
  8653. }
  8654. // ggml_compute_forward_log
  8655. static void ggml_compute_forward_log_f32(
  8656. const struct ggml_compute_params * params,
  8657. struct ggml_tensor * dst) {
  8658. const struct ggml_tensor * src0 = dst->src[0];
  8659. if (params->ith != 0) {
  8660. return;
  8661. }
  8662. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8663. const int n = ggml_nrows(src0);
  8664. const int nc = src0->ne[0];
  8665. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8666. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8667. for (int i = 0; i < n; i++) {
  8668. ggml_vec_log_f32(nc,
  8669. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8670. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8671. }
  8672. }
  8673. static void ggml_compute_forward_log(
  8674. const struct ggml_compute_params * params,
  8675. struct ggml_tensor * dst) {
  8676. const struct ggml_tensor * src0 = dst->src[0];
  8677. switch (src0->type) {
  8678. case GGML_TYPE_F32:
  8679. {
  8680. ggml_compute_forward_log_f32(params, dst);
  8681. } break;
  8682. default:
  8683. {
  8684. GGML_ABORT("fatal error");
  8685. }
  8686. }
  8687. }
  8688. // ggml_compute_forward_sum
  8689. static void ggml_compute_forward_sum_f32(
  8690. const struct ggml_compute_params * params,
  8691. struct ggml_tensor * dst) {
  8692. const struct ggml_tensor * src0 = dst->src[0];
  8693. if (params->ith != 0) {
  8694. return;
  8695. }
  8696. assert(ggml_is_scalar(dst));
  8697. assert(ggml_is_scalar(dst));
  8698. assert(src0->nb[0] == sizeof(float));
  8699. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8700. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8701. ggml_float sum = 0;
  8702. ggml_float row_sum = 0;
  8703. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8704. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8705. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8706. ggml_vec_sum_f32_ggf(ne00,
  8707. &row_sum,
  8708. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8709. sum += row_sum;
  8710. }
  8711. }
  8712. }
  8713. ((float *) dst->data)[0] = sum;
  8714. }
  8715. static void ggml_compute_forward_sum_f16(
  8716. const struct ggml_compute_params * params,
  8717. struct ggml_tensor * dst) {
  8718. const struct ggml_tensor * src0 = dst->src[0];
  8719. if (params->ith != 0) {
  8720. return;
  8721. }
  8722. assert(ggml_is_scalar(dst));
  8723. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8724. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8725. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8726. float sum = 0;
  8727. float row_sum = 0;
  8728. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8729. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8730. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8731. ggml_vec_sum_f16_ggf(ne00,
  8732. &row_sum,
  8733. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8734. sum += row_sum;
  8735. }
  8736. }
  8737. }
  8738. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8739. }
  8740. static void ggml_compute_forward_sum_bf16(
  8741. const struct ggml_compute_params * params,
  8742. struct ggml_tensor * dst) {
  8743. const struct ggml_tensor * src0 = dst->src[0];
  8744. if (params->ith != 0) {
  8745. return;
  8746. }
  8747. assert(ggml_is_scalar(dst));
  8748. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8749. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8750. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8751. float sum = 0;
  8752. float row_sum = 0;
  8753. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8754. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8755. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8756. ggml_vec_sum_bf16_ggf(ne00,
  8757. &row_sum,
  8758. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8759. sum += row_sum;
  8760. }
  8761. }
  8762. }
  8763. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8764. }
  8765. static void ggml_compute_forward_sum(
  8766. const struct ggml_compute_params * params,
  8767. struct ggml_tensor * dst) {
  8768. const struct ggml_tensor * src0 = dst->src[0];
  8769. switch (src0->type) {
  8770. case GGML_TYPE_F32:
  8771. {
  8772. ggml_compute_forward_sum_f32(params, dst);
  8773. } break;
  8774. case GGML_TYPE_F16:
  8775. {
  8776. ggml_compute_forward_sum_f16(params, dst);
  8777. } break;
  8778. case GGML_TYPE_BF16:
  8779. {
  8780. ggml_compute_forward_sum_bf16(params, dst);
  8781. } break;
  8782. default:
  8783. {
  8784. GGML_ABORT("fatal error");
  8785. }
  8786. }
  8787. }
  8788. // ggml_compute_forward_sum_rows
  8789. static void ggml_compute_forward_sum_rows_f32(
  8790. const struct ggml_compute_params * params,
  8791. struct ggml_tensor * dst) {
  8792. const struct ggml_tensor * src0 = dst->src[0];
  8793. if (params->ith != 0) {
  8794. return;
  8795. }
  8796. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8797. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8798. GGML_TENSOR_UNARY_OP_LOCALS
  8799. GGML_ASSERT(ne0 == 1);
  8800. GGML_ASSERT(ne1 == ne01);
  8801. GGML_ASSERT(ne2 == ne02);
  8802. GGML_ASSERT(ne3 == ne03);
  8803. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8804. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8805. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8806. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8807. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8808. float row_sum = 0;
  8809. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8810. dst_row[0] = row_sum;
  8811. }
  8812. }
  8813. }
  8814. }
  8815. static void ggml_compute_forward_sum_rows(
  8816. const struct ggml_compute_params * params,
  8817. struct ggml_tensor * dst) {
  8818. const struct ggml_tensor * src0 = dst->src[0];
  8819. switch (src0->type) {
  8820. case GGML_TYPE_F32:
  8821. {
  8822. ggml_compute_forward_sum_rows_f32(params, dst);
  8823. } break;
  8824. default:
  8825. {
  8826. GGML_ABORT("fatal error");
  8827. }
  8828. }
  8829. }
  8830. // ggml_compute_forward_mean
  8831. static void ggml_compute_forward_mean_f32(
  8832. const struct ggml_compute_params * params,
  8833. struct ggml_tensor * dst) {
  8834. const struct ggml_tensor * src0 = dst->src[0];
  8835. if (params->ith != 0) {
  8836. return;
  8837. }
  8838. assert(src0->nb[0] == sizeof(float));
  8839. GGML_TENSOR_UNARY_OP_LOCALS
  8840. assert(ne0 == 1);
  8841. assert(ne1 == ne01);
  8842. assert(ne2 == ne02);
  8843. assert(ne3 == ne03);
  8844. UNUSED(ne0);
  8845. UNUSED(ne1);
  8846. UNUSED(ne2);
  8847. UNUSED(ne3);
  8848. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8850. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8851. ggml_vec_sum_f32(ne00,
  8852. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8853. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8854. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8855. }
  8856. }
  8857. }
  8858. }
  8859. static void ggml_compute_forward_mean(
  8860. const struct ggml_compute_params * params,
  8861. struct ggml_tensor * dst) {
  8862. const struct ggml_tensor * src0 = dst->src[0];
  8863. switch (src0->type) {
  8864. case GGML_TYPE_F32:
  8865. {
  8866. ggml_compute_forward_mean_f32(params, dst);
  8867. } break;
  8868. default:
  8869. {
  8870. GGML_ABORT("fatal error");
  8871. }
  8872. }
  8873. }
  8874. // ggml_compute_forward_argmax
  8875. static void ggml_compute_forward_argmax_f32(
  8876. const struct ggml_compute_params * params,
  8877. struct ggml_tensor * dst) {
  8878. const struct ggml_tensor * src0 = dst->src[0];
  8879. if (params->ith != 0) {
  8880. return;
  8881. }
  8882. assert(src0->nb[0] == sizeof(float));
  8883. assert(dst->nb[0] == sizeof(float));
  8884. const int64_t ne00 = src0->ne[0];
  8885. const int64_t ne01 = src0->ne[1];
  8886. const size_t nb01 = src0->nb[1];
  8887. const size_t nb0 = dst->nb[0];
  8888. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8889. float * src = (float *) ((char *) src0->data + i1*nb01);
  8890. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8891. int v = 0;
  8892. ggml_vec_argmax_f32(ne00, &v, src);
  8893. dst_[0] = v;
  8894. }
  8895. }
  8896. static void ggml_compute_forward_argmax(
  8897. const struct ggml_compute_params * params,
  8898. struct ggml_tensor * dst) {
  8899. const struct ggml_tensor * src0 = dst->src[0];
  8900. switch (src0->type) {
  8901. case GGML_TYPE_F32:
  8902. {
  8903. ggml_compute_forward_argmax_f32(params, dst);
  8904. } break;
  8905. default:
  8906. {
  8907. GGML_ABORT("fatal error");
  8908. }
  8909. }
  8910. }
  8911. // ggml_compute_forward_repeat
  8912. static void ggml_compute_forward_repeat_f32(
  8913. const struct ggml_compute_params * params,
  8914. struct ggml_tensor * dst) {
  8915. const struct ggml_tensor * src0 = dst->src[0];
  8916. if (params->ith != 0) {
  8917. return;
  8918. }
  8919. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8920. GGML_TENSOR_UNARY_OP_LOCALS
  8921. // guaranteed to be an integer due to the check in ggml_can_repeat
  8922. const int nr0 = (int)(ne0/ne00);
  8923. const int nr1 = (int)(ne1/ne01);
  8924. const int nr2 = (int)(ne2/ne02);
  8925. const int nr3 = (int)(ne3/ne03);
  8926. // TODO: support for transposed / permuted tensors
  8927. GGML_ASSERT(nb0 == sizeof(float));
  8928. GGML_ASSERT(nb00 == sizeof(float));
  8929. // TODO: maybe this is not optimal?
  8930. for (int i3 = 0; i3 < nr3; i3++) {
  8931. for (int k3 = 0; k3 < ne03; k3++) {
  8932. for (int i2 = 0; i2 < nr2; i2++) {
  8933. for (int k2 = 0; k2 < ne02; k2++) {
  8934. for (int i1 = 0; i1 < nr1; i1++) {
  8935. for (int k1 = 0; k1 < ne01; k1++) {
  8936. for (int i0 = 0; i0 < nr0; i0++) {
  8937. ggml_vec_cpy_f32(ne00,
  8938. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8939. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8940. }
  8941. }
  8942. }
  8943. }
  8944. }
  8945. }
  8946. }
  8947. }
  8948. static void ggml_compute_forward_repeat_f16(
  8949. const struct ggml_compute_params * params,
  8950. struct ggml_tensor * dst) {
  8951. const struct ggml_tensor * src0 = dst->src[0];
  8952. if (params->ith != 0) {
  8953. return;
  8954. }
  8955. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8956. GGML_TENSOR_UNARY_OP_LOCALS
  8957. // guaranteed to be an integer due to the check in ggml_can_repeat
  8958. const int nr0 = (int)(ne0/ne00);
  8959. const int nr1 = (int)(ne1/ne01);
  8960. const int nr2 = (int)(ne2/ne02);
  8961. const int nr3 = (int)(ne3/ne03);
  8962. // TODO: support for transposed / permuted tensors
  8963. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8964. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8965. // TODO: maybe this is not optimal?
  8966. for (int i3 = 0; i3 < nr3; i3++) {
  8967. for (int k3 = 0; k3 < ne03; k3++) {
  8968. for (int i2 = 0; i2 < nr2; i2++) {
  8969. for (int k2 = 0; k2 < ne02; k2++) {
  8970. for (int i1 = 0; i1 < nr1; i1++) {
  8971. for (int k1 = 0; k1 < ne01; k1++) {
  8972. for (int i0 = 0; i0 < nr0; i0++) {
  8973. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8974. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8975. // ggml_vec_cpy_f16(ne00, y, x)
  8976. for (int i = 0; i < ne00; ++i) {
  8977. y[i] = x[i];
  8978. }
  8979. }
  8980. }
  8981. }
  8982. }
  8983. }
  8984. }
  8985. }
  8986. }
  8987. static void ggml_compute_forward_repeat(
  8988. const struct ggml_compute_params * params,
  8989. struct ggml_tensor * dst) {
  8990. const struct ggml_tensor * src0 = dst->src[0];
  8991. switch (src0->type) {
  8992. case GGML_TYPE_F16:
  8993. case GGML_TYPE_BF16:
  8994. case GGML_TYPE_I16:
  8995. {
  8996. ggml_compute_forward_repeat_f16(params, dst);
  8997. } break;
  8998. case GGML_TYPE_F32:
  8999. case GGML_TYPE_I32:
  9000. {
  9001. ggml_compute_forward_repeat_f32(params, dst);
  9002. } break;
  9003. default:
  9004. {
  9005. GGML_ABORT("fatal error");
  9006. }
  9007. }
  9008. }
  9009. // ggml_compute_forward_repeat_back
  9010. static void ggml_compute_forward_repeat_back_f32(
  9011. const struct ggml_compute_params * params,
  9012. struct ggml_tensor * dst) {
  9013. const struct ggml_tensor * src0 = dst->src[0];
  9014. if (params->ith != 0) {
  9015. return;
  9016. }
  9017. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9018. GGML_TENSOR_UNARY_OP_LOCALS
  9019. // guaranteed to be an integer due to the check in ggml_can_repeat
  9020. const int nr0 = (int)(ne00/ne0);
  9021. const int nr1 = (int)(ne01/ne1);
  9022. const int nr2 = (int)(ne02/ne2);
  9023. const int nr3 = (int)(ne03/ne3);
  9024. // TODO: support for transposed / permuted tensors
  9025. GGML_ASSERT(nb0 == sizeof(float));
  9026. GGML_ASSERT(nb00 == sizeof(float));
  9027. if (ggml_is_contiguous(dst)) {
  9028. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9029. } else {
  9030. for (int k3 = 0; k3 < ne3; k3++) {
  9031. for (int k2 = 0; k2 < ne2; k2++) {
  9032. for (int k1 = 0; k1 < ne1; k1++) {
  9033. ggml_vec_set_f32(ne0,
  9034. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9035. 0);
  9036. }
  9037. }
  9038. }
  9039. }
  9040. // TODO: maybe this is not optimal?
  9041. for (int i3 = 0; i3 < nr3; i3++) {
  9042. for (int k3 = 0; k3 < ne3; k3++) {
  9043. for (int i2 = 0; i2 < nr2; i2++) {
  9044. for (int k2 = 0; k2 < ne2; k2++) {
  9045. for (int i1 = 0; i1 < nr1; i1++) {
  9046. for (int k1 = 0; k1 < ne1; k1++) {
  9047. for (int i0 = 0; i0 < nr0; i0++) {
  9048. ggml_vec_acc_f32(ne0,
  9049. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9050. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9051. }
  9052. }
  9053. }
  9054. }
  9055. }
  9056. }
  9057. }
  9058. }
  9059. static void ggml_compute_forward_repeat_back(
  9060. const struct ggml_compute_params * params,
  9061. struct ggml_tensor * dst) {
  9062. const struct ggml_tensor * src0 = dst->src[0];
  9063. switch (src0->type) {
  9064. case GGML_TYPE_F32:
  9065. {
  9066. ggml_compute_forward_repeat_back_f32(params, dst);
  9067. } break;
  9068. default:
  9069. {
  9070. GGML_ABORT("fatal error");
  9071. }
  9072. }
  9073. }
  9074. // ggml_compute_forward_concat
  9075. static void ggml_compute_forward_concat_f32(
  9076. const struct ggml_compute_params * params,
  9077. struct ggml_tensor * dst) {
  9078. const struct ggml_tensor * src0 = dst->src[0];
  9079. const struct ggml_tensor * src1 = dst->src[1];
  9080. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9081. const int ith = params->ith;
  9082. const int nth = params->nth;
  9083. GGML_TENSOR_BINARY_OP_LOCALS
  9084. // TODO: support for transposed / permuted tensors
  9085. GGML_ASSERT(nb0 == sizeof(float));
  9086. GGML_ASSERT(nb00 == sizeof(float));
  9087. GGML_ASSERT(nb10 == sizeof(float));
  9088. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9089. GGML_ASSERT(dim >= 0 && dim < 4);
  9090. int64_t o[4] = {0, 0, 0, 0};
  9091. o[dim] = src0->ne[dim];
  9092. const float * x;
  9093. // TODO: smarter multi-theading
  9094. for (int i3 = 0; i3 < ne3; i3++) {
  9095. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9096. for (int i1 = 0; i1 < ne1; i1++) {
  9097. for (int i0 = 0; i0 < ne0; i0++) {
  9098. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9099. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9100. } else {
  9101. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9102. }
  9103. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9104. *y = *x;
  9105. }
  9106. }
  9107. }
  9108. }
  9109. }
  9110. static void ggml_compute_forward_concat(
  9111. const struct ggml_compute_params * params,
  9112. struct ggml_tensor * dst) {
  9113. const struct ggml_tensor * src0 = dst->src[0];
  9114. switch (src0->type) {
  9115. case GGML_TYPE_F32:
  9116. case GGML_TYPE_I32:
  9117. {
  9118. ggml_compute_forward_concat_f32(params, dst);
  9119. } break;
  9120. default:
  9121. {
  9122. GGML_ABORT("fatal error");
  9123. }
  9124. }
  9125. }
  9126. // ggml_compute_forward_abs
  9127. static void ggml_compute_forward_abs_f32(
  9128. const struct ggml_compute_params * params,
  9129. struct ggml_tensor * dst) {
  9130. const struct ggml_tensor * src0 = dst->src[0];
  9131. if (params->ith != 0) {
  9132. return;
  9133. }
  9134. assert(ggml_is_contiguous_1(src0));
  9135. assert(ggml_is_contiguous_1(dst));
  9136. assert(ggml_are_same_shape(src0, dst));
  9137. const int n = ggml_nrows(src0);
  9138. const int nc = src0->ne[0];
  9139. for (int i = 0; i < n; i++) {
  9140. ggml_vec_abs_f32(nc,
  9141. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9142. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9143. }
  9144. }
  9145. static void ggml_compute_forward_abs(
  9146. const struct ggml_compute_params * params,
  9147. struct ggml_tensor * dst) {
  9148. const struct ggml_tensor * src0 = dst->src[0];
  9149. switch (src0->type) {
  9150. case GGML_TYPE_F32:
  9151. {
  9152. ggml_compute_forward_abs_f32(params, dst);
  9153. } break;
  9154. default:
  9155. {
  9156. GGML_ABORT("fatal error");
  9157. }
  9158. }
  9159. }
  9160. // ggml_compute_forward_sgn
  9161. static void ggml_compute_forward_sgn_f32(
  9162. const struct ggml_compute_params * params,
  9163. struct ggml_tensor * dst) {
  9164. const struct ggml_tensor * src0 = dst->src[0];
  9165. if (params->ith != 0) {
  9166. return;
  9167. }
  9168. assert(ggml_is_contiguous_1(src0));
  9169. assert(ggml_is_contiguous_1(dst));
  9170. assert(ggml_are_same_shape(src0, dst));
  9171. const int n = ggml_nrows(src0);
  9172. const int nc = src0->ne[0];
  9173. for (int i = 0; i < n; i++) {
  9174. ggml_vec_sgn_f32(nc,
  9175. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9176. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9177. }
  9178. }
  9179. static void ggml_compute_forward_sgn(
  9180. const struct ggml_compute_params * params,
  9181. struct ggml_tensor * dst) {
  9182. const struct ggml_tensor * src0 = dst->src[0];
  9183. switch (src0->type) {
  9184. case GGML_TYPE_F32:
  9185. {
  9186. ggml_compute_forward_sgn_f32(params, dst);
  9187. } break;
  9188. default:
  9189. {
  9190. GGML_ABORT("fatal error");
  9191. }
  9192. }
  9193. }
  9194. // ggml_compute_forward_neg
  9195. static void ggml_compute_forward_neg_f32(
  9196. const struct ggml_compute_params * params,
  9197. struct ggml_tensor * dst) {
  9198. const struct ggml_tensor * src0 = dst->src[0];
  9199. if (params->ith != 0) {
  9200. return;
  9201. }
  9202. assert(ggml_is_contiguous_1(src0));
  9203. assert(ggml_is_contiguous_1(dst));
  9204. assert(ggml_are_same_shape(src0, dst));
  9205. const int n = ggml_nrows(src0);
  9206. const int nc = src0->ne[0];
  9207. for (int i = 0; i < n; i++) {
  9208. ggml_vec_neg_f32(nc,
  9209. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9210. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9211. }
  9212. }
  9213. static void ggml_compute_forward_neg(
  9214. const struct ggml_compute_params * params,
  9215. struct ggml_tensor * dst) {
  9216. const struct ggml_tensor * src0 = dst->src[0];
  9217. switch (src0->type) {
  9218. case GGML_TYPE_F32:
  9219. {
  9220. ggml_compute_forward_neg_f32(params, dst);
  9221. } break;
  9222. default:
  9223. {
  9224. GGML_ABORT("fatal error");
  9225. }
  9226. }
  9227. }
  9228. // ggml_compute_forward_step
  9229. static void ggml_compute_forward_step_f32(
  9230. const struct ggml_compute_params * params,
  9231. struct ggml_tensor * dst) {
  9232. const struct ggml_tensor * src0 = dst->src[0];
  9233. if (params->ith != 0) {
  9234. return;
  9235. }
  9236. assert(ggml_is_contiguous_1(src0));
  9237. assert(ggml_is_contiguous_1(dst));
  9238. assert(ggml_are_same_shape(src0, dst));
  9239. const int n = ggml_nrows(src0);
  9240. const int nc = src0->ne[0];
  9241. for (int i = 0; i < n; i++) {
  9242. ggml_vec_step_f32(nc,
  9243. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9244. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9245. }
  9246. }
  9247. static void ggml_compute_forward_step(
  9248. const struct ggml_compute_params * params,
  9249. struct ggml_tensor * dst) {
  9250. const struct ggml_tensor * src0 = dst->src[0];
  9251. switch (src0->type) {
  9252. case GGML_TYPE_F32:
  9253. {
  9254. ggml_compute_forward_step_f32(params, dst);
  9255. } break;
  9256. default:
  9257. {
  9258. GGML_ABORT("fatal error");
  9259. }
  9260. }
  9261. }
  9262. // ggml_compute_forward_tanh
  9263. static void ggml_compute_forward_tanh_f32(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. if (params->ith != 0) {
  9268. return;
  9269. }
  9270. assert(ggml_is_contiguous_1(src0));
  9271. assert(ggml_is_contiguous_1(dst));
  9272. assert(ggml_are_same_shape(src0, dst));
  9273. const int n = ggml_nrows(src0);
  9274. const int nc = src0->ne[0];
  9275. for (int i = 0; i < n; i++) {
  9276. ggml_vec_tanh_f32(nc,
  9277. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9278. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9279. }
  9280. }
  9281. static void ggml_compute_forward_tanh(
  9282. const struct ggml_compute_params * params,
  9283. struct ggml_tensor * dst) {
  9284. const struct ggml_tensor * src0 = dst->src[0];
  9285. switch (src0->type) {
  9286. case GGML_TYPE_F32:
  9287. {
  9288. ggml_compute_forward_tanh_f32(params, dst);
  9289. } break;
  9290. default:
  9291. {
  9292. GGML_ABORT("fatal error");
  9293. }
  9294. }
  9295. }
  9296. // ggml_compute_forward_elu
  9297. static void ggml_compute_forward_elu_f32(
  9298. const struct ggml_compute_params * params,
  9299. struct ggml_tensor * dst) {
  9300. const struct ggml_tensor * src0 = dst->src[0];
  9301. if (params->ith != 0) {
  9302. return;
  9303. }
  9304. assert(ggml_is_contiguous_1(src0));
  9305. assert(ggml_is_contiguous_1(dst));
  9306. assert(ggml_are_same_shape(src0, dst));
  9307. const int n = ggml_nrows(src0);
  9308. const int nc = src0->ne[0];
  9309. for (int i = 0; i < n; i++) {
  9310. ggml_vec_elu_f32(nc,
  9311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9313. }
  9314. }
  9315. static void ggml_compute_forward_elu(
  9316. const struct ggml_compute_params * params,
  9317. struct ggml_tensor * dst) {
  9318. const struct ggml_tensor * src0 = dst->src[0];
  9319. switch (src0->type) {
  9320. case GGML_TYPE_F32:
  9321. {
  9322. ggml_compute_forward_elu_f32(params, dst);
  9323. } break;
  9324. default:
  9325. {
  9326. GGML_ABORT("fatal error");
  9327. }
  9328. }
  9329. }
  9330. // ggml_compute_forward_relu
  9331. static void ggml_compute_forward_relu_f32(
  9332. const struct ggml_compute_params * params,
  9333. struct ggml_tensor * dst) {
  9334. const struct ggml_tensor * src0 = dst->src[0];
  9335. if (params->ith != 0) {
  9336. return;
  9337. }
  9338. assert(ggml_is_contiguous_1(src0));
  9339. assert(ggml_is_contiguous_1(dst));
  9340. assert(ggml_are_same_shape(src0, dst));
  9341. const int n = ggml_nrows(src0);
  9342. const int nc = src0->ne[0];
  9343. for (int i = 0; i < n; i++) {
  9344. ggml_vec_relu_f32(nc,
  9345. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9346. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9347. }
  9348. }
  9349. static void ggml_compute_forward_relu(
  9350. const struct ggml_compute_params * params,
  9351. struct ggml_tensor * dst) {
  9352. const struct ggml_tensor * src0 = dst->src[0];
  9353. switch (src0->type) {
  9354. case GGML_TYPE_F32:
  9355. {
  9356. ggml_compute_forward_relu_f32(params, dst);
  9357. } break;
  9358. default:
  9359. {
  9360. GGML_ABORT("fatal error");
  9361. }
  9362. }
  9363. }
  9364. // ggml_compute_forward_sigmoid
  9365. static void ggml_compute_forward_sigmoid_f32(
  9366. const struct ggml_compute_params * params,
  9367. struct ggml_tensor * dst) {
  9368. const struct ggml_tensor * src0 = dst->src[0];
  9369. if (params->ith != 0) {
  9370. return;
  9371. }
  9372. assert(ggml_is_contiguous_1(src0));
  9373. assert(ggml_is_contiguous_1(dst));
  9374. assert(ggml_are_same_shape(src0, dst));
  9375. const int n = ggml_nrows(src0);
  9376. const int nc = src0->ne[0];
  9377. for (int i = 0; i < n; i++) {
  9378. ggml_vec_sigmoid_f32(nc,
  9379. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9380. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9381. }
  9382. }
  9383. static void ggml_compute_forward_sigmoid(
  9384. const struct ggml_compute_params * params,
  9385. struct ggml_tensor * dst) {
  9386. const struct ggml_tensor * src0 = dst->src[0];
  9387. switch (src0->type) {
  9388. case GGML_TYPE_F32:
  9389. {
  9390. ggml_compute_forward_sigmoid_f32(params, dst);
  9391. } break;
  9392. default:
  9393. {
  9394. GGML_ABORT("fatal error");
  9395. }
  9396. }
  9397. }
  9398. // ggml_compute_forward_gelu
  9399. static void ggml_compute_forward_gelu_f32(
  9400. const struct ggml_compute_params * params,
  9401. struct ggml_tensor * dst) {
  9402. const struct ggml_tensor * src0 = dst->src[0];
  9403. assert(ggml_is_contiguous_1(src0));
  9404. assert(ggml_is_contiguous_1(dst));
  9405. assert(ggml_are_same_shape(src0, dst));
  9406. const int ith = params->ith;
  9407. const int nth = params->nth;
  9408. const int nc = src0->ne[0];
  9409. const int nr = ggml_nrows(src0);
  9410. // rows per thread
  9411. const int dr = (nr + nth - 1)/nth;
  9412. // row range for this thread
  9413. const int ir0 = dr*ith;
  9414. const int ir1 = MIN(ir0 + dr, nr);
  9415. for (int i1 = ir0; i1 < ir1; i1++) {
  9416. ggml_vec_gelu_f32(nc,
  9417. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9418. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9419. #ifndef NDEBUG
  9420. for (int k = 0; k < nc; k++) {
  9421. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9422. UNUSED(x);
  9423. assert(!isnan(x));
  9424. assert(!isinf(x));
  9425. }
  9426. #endif
  9427. }
  9428. }
  9429. static void ggml_compute_forward_gelu(
  9430. const struct ggml_compute_params * params,
  9431. struct ggml_tensor * dst) {
  9432. const struct ggml_tensor * src0 = dst->src[0];
  9433. switch (src0->type) {
  9434. case GGML_TYPE_F32:
  9435. {
  9436. ggml_compute_forward_gelu_f32(params, dst);
  9437. } break;
  9438. default:
  9439. {
  9440. GGML_ABORT("fatal error");
  9441. }
  9442. }
  9443. }
  9444. // ggml_compute_forward_gelu_quick
  9445. static void ggml_compute_forward_gelu_quick_f32(
  9446. const struct ggml_compute_params * params,
  9447. struct ggml_tensor * dst) {
  9448. const struct ggml_tensor * src0 = dst->src[0];
  9449. assert(ggml_is_contiguous_1(src0));
  9450. assert(ggml_is_contiguous_1(dst));
  9451. assert(ggml_are_same_shape(src0, dst));
  9452. const int ith = params->ith;
  9453. const int nth = params->nth;
  9454. const int nc = src0->ne[0];
  9455. const int nr = ggml_nrows(src0);
  9456. // rows per thread
  9457. const int dr = (nr + nth - 1)/nth;
  9458. // row range for this thread
  9459. const int ir0 = dr*ith;
  9460. const int ir1 = MIN(ir0 + dr, nr);
  9461. for (int i1 = ir0; i1 < ir1; i1++) {
  9462. ggml_vec_gelu_quick_f32(nc,
  9463. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9464. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9465. #ifndef NDEBUG
  9466. for (int k = 0; k < nc; k++) {
  9467. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9468. UNUSED(x);
  9469. assert(!isnan(x));
  9470. assert(!isinf(x));
  9471. }
  9472. #endif
  9473. }
  9474. }
  9475. static void ggml_compute_forward_gelu_quick(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. switch (src0->type) {
  9480. case GGML_TYPE_F32:
  9481. {
  9482. ggml_compute_forward_gelu_quick_f32(params, dst);
  9483. } break;
  9484. default:
  9485. {
  9486. GGML_ABORT("fatal error");
  9487. }
  9488. }
  9489. }
  9490. // ggml_compute_forward_silu
  9491. static void ggml_compute_forward_silu_f32(
  9492. const struct ggml_compute_params * params,
  9493. struct ggml_tensor * dst) {
  9494. const struct ggml_tensor * src0 = dst->src[0];
  9495. assert(ggml_is_contiguous_1(src0));
  9496. assert(ggml_is_contiguous_1(dst));
  9497. assert(ggml_are_same_shape(src0, dst));
  9498. const int ith = params->ith;
  9499. const int nth = params->nth;
  9500. const int nc = src0->ne[0];
  9501. const int nr = ggml_nrows(src0);
  9502. // rows per thread
  9503. const int dr = (nr + nth - 1)/nth;
  9504. // row range for this thread
  9505. const int ir0 = dr*ith;
  9506. const int ir1 = MIN(ir0 + dr, nr);
  9507. for (int i1 = ir0; i1 < ir1; i1++) {
  9508. ggml_vec_silu_f32(nc,
  9509. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9510. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9511. #ifndef NDEBUG
  9512. for (int k = 0; k < nc; k++) {
  9513. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9514. UNUSED(x);
  9515. assert(!isnan(x));
  9516. assert(!isinf(x));
  9517. }
  9518. #endif
  9519. }
  9520. }
  9521. static void ggml_compute_forward_silu(
  9522. const struct ggml_compute_params * params,
  9523. struct ggml_tensor * dst) {
  9524. const struct ggml_tensor * src0 = dst->src[0];
  9525. switch (src0->type) {
  9526. case GGML_TYPE_F32:
  9527. {
  9528. ggml_compute_forward_silu_f32(params, dst);
  9529. } break;
  9530. default:
  9531. {
  9532. GGML_ABORT("fatal error");
  9533. }
  9534. }
  9535. }
  9536. // ggml_compute_forward_leaky_relu
  9537. static void ggml_compute_forward_leaky_relu_f32(
  9538. const struct ggml_compute_params * params,
  9539. struct ggml_tensor * dst) {
  9540. const struct ggml_tensor * src0 = dst->src[0];
  9541. if (params->ith != 0) {
  9542. return;
  9543. }
  9544. assert(ggml_is_contiguous_1(src0));
  9545. assert(ggml_is_contiguous_1(dst));
  9546. assert(ggml_are_same_shape(src0, dst));
  9547. const int n = ggml_nrows(src0);
  9548. const int nc = src0->ne[0];
  9549. float negative_slope;
  9550. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9551. assert(dst->nb[0] == sizeof(float));
  9552. assert(src0->nb[0] == sizeof(float));
  9553. for (int i = 0; i < n; i++) {
  9554. ggml_vec_leaky_relu_f32(nc,
  9555. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9556. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9557. }
  9558. }
  9559. static void ggml_compute_forward_leaky_relu(
  9560. const struct ggml_compute_params * params,
  9561. struct ggml_tensor * dst) {
  9562. const struct ggml_tensor * src0 = dst->src[0];
  9563. switch (src0->type) {
  9564. case GGML_TYPE_F32:
  9565. {
  9566. ggml_compute_forward_leaky_relu_f32(params, dst);
  9567. } break;
  9568. default:
  9569. {
  9570. GGML_ABORT("fatal error");
  9571. }
  9572. }
  9573. }
  9574. // ggml_compute_forward_silu_back
  9575. static void ggml_compute_forward_silu_back_f32(
  9576. const struct ggml_compute_params * params,
  9577. struct ggml_tensor * dst) {
  9578. const struct ggml_tensor * src0 = dst->src[0];
  9579. const struct ggml_tensor * grad = dst->src[1];
  9580. assert(ggml_is_contiguous_1(grad));
  9581. assert(ggml_is_contiguous_1(src0));
  9582. assert(ggml_is_contiguous_1(dst));
  9583. assert(ggml_are_same_shape(src0, dst));
  9584. assert(ggml_are_same_shape(src0, grad));
  9585. const int ith = params->ith;
  9586. const int nth = params->nth;
  9587. const int nc = src0->ne[0];
  9588. const int nr = ggml_nrows(src0);
  9589. // rows per thread
  9590. const int dr = (nr + nth - 1)/nth;
  9591. // row range for this thread
  9592. const int ir0 = dr*ith;
  9593. const int ir1 = MIN(ir0 + dr, nr);
  9594. for (int i1 = ir0; i1 < ir1; i1++) {
  9595. ggml_vec_silu_backward_f32(nc,
  9596. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9597. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9598. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9599. #ifndef NDEBUG
  9600. for (int k = 0; k < nc; k++) {
  9601. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9602. UNUSED(x);
  9603. assert(!isnan(x));
  9604. assert(!isinf(x));
  9605. }
  9606. #endif
  9607. }
  9608. }
  9609. static void ggml_compute_forward_silu_back(
  9610. const struct ggml_compute_params * params,
  9611. struct ggml_tensor * dst) {
  9612. const struct ggml_tensor * src0 = dst->src[0];
  9613. switch (src0->type) {
  9614. case GGML_TYPE_F32:
  9615. {
  9616. ggml_compute_forward_silu_back_f32(params, dst);
  9617. } break;
  9618. default:
  9619. {
  9620. GGML_ABORT("fatal error");
  9621. }
  9622. }
  9623. }
  9624. static void ggml_compute_forward_hardswish_f32(
  9625. const struct ggml_compute_params * params,
  9626. struct ggml_tensor * dst) {
  9627. const struct ggml_tensor * src0 = dst->src[0];
  9628. if (params->ith != 0) {
  9629. return;
  9630. }
  9631. assert(ggml_is_contiguous_1(src0));
  9632. assert(ggml_is_contiguous_1(dst));
  9633. assert(ggml_are_same_shape(src0, dst));
  9634. const int n = ggml_nrows(src0);
  9635. const int nc = src0->ne[0];
  9636. for (int i = 0; i < n; i++) {
  9637. ggml_vec_hardswish_f32(nc,
  9638. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9639. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9640. }
  9641. }
  9642. static void ggml_compute_forward_hardswish(
  9643. const struct ggml_compute_params * params,
  9644. struct ggml_tensor * dst) {
  9645. const struct ggml_tensor * src0 = dst->src[0];
  9646. switch (src0->type) {
  9647. case GGML_TYPE_F32:
  9648. {
  9649. ggml_compute_forward_hardswish_f32(params, dst);
  9650. } break;
  9651. default:
  9652. {
  9653. GGML_ABORT("fatal error");
  9654. }
  9655. }
  9656. }
  9657. static void ggml_compute_forward_hardsigmoid_f32(
  9658. const struct ggml_compute_params * params,
  9659. struct ggml_tensor * dst) {
  9660. const struct ggml_tensor * src0 = dst->src[0];
  9661. if (params->ith != 0) {
  9662. return;
  9663. }
  9664. assert(ggml_is_contiguous_1(src0));
  9665. assert(ggml_is_contiguous_1(dst));
  9666. assert(ggml_are_same_shape(src0, dst));
  9667. const int n = ggml_nrows(src0);
  9668. const int nc = src0->ne[0];
  9669. for (int i = 0; i < n; i++) {
  9670. ggml_vec_hardsigmoid_f32(nc,
  9671. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9672. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9673. }
  9674. }
  9675. static void ggml_compute_forward_hardsigmoid(
  9676. const struct ggml_compute_params * params,
  9677. struct ggml_tensor * dst) {
  9678. const struct ggml_tensor * src0 = dst->src[0];
  9679. switch (src0->type) {
  9680. case GGML_TYPE_F32:
  9681. {
  9682. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9683. } break;
  9684. default:
  9685. {
  9686. GGML_ABORT("fatal error");
  9687. }
  9688. }
  9689. }
  9690. // ggml_compute_forward_norm
  9691. static void ggml_compute_forward_norm_f32(
  9692. const struct ggml_compute_params * params,
  9693. struct ggml_tensor * dst) {
  9694. const struct ggml_tensor * src0 = dst->src[0];
  9695. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9697. const int ith = params->ith;
  9698. const int nth = params->nth;
  9699. GGML_TENSOR_UNARY_OP_LOCALS
  9700. float eps;
  9701. memcpy(&eps, dst->op_params, sizeof(float));
  9702. GGML_ASSERT(eps > 0.0f);
  9703. // TODO: optimize
  9704. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9705. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9706. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9707. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9708. ggml_float sum = 0.0;
  9709. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9710. sum += (ggml_float)x[i00];
  9711. }
  9712. float mean = sum/ne00;
  9713. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9714. ggml_float sum2 = 0.0;
  9715. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9716. float v = x[i00] - mean;
  9717. y[i00] = v;
  9718. sum2 += (ggml_float)(v*v);
  9719. }
  9720. float variance = sum2/ne00;
  9721. const float scale = 1.0f/sqrtf(variance + eps);
  9722. ggml_vec_scale_f32(ne00, y, scale);
  9723. }
  9724. }
  9725. }
  9726. }
  9727. static void ggml_compute_forward_norm(
  9728. const struct ggml_compute_params * params,
  9729. struct ggml_tensor * dst) {
  9730. const struct ggml_tensor * src0 = dst->src[0];
  9731. switch (src0->type) {
  9732. case GGML_TYPE_F32:
  9733. {
  9734. ggml_compute_forward_norm_f32(params, dst);
  9735. } break;
  9736. default:
  9737. {
  9738. GGML_ABORT("fatal error");
  9739. }
  9740. }
  9741. }
  9742. // ggml_compute_forward_group_rms_norm
  9743. static void ggml_compute_forward_rms_norm_f32(
  9744. const struct ggml_compute_params * params,
  9745. struct ggml_tensor * dst) {
  9746. const struct ggml_tensor * src0 = dst->src[0];
  9747. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9748. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9749. const int ith = params->ith;
  9750. const int nth = params->nth;
  9751. GGML_TENSOR_UNARY_OP_LOCALS
  9752. float eps;
  9753. memcpy(&eps, dst->op_params, sizeof(float));
  9754. GGML_ASSERT(eps > 0.0f);
  9755. // TODO: optimize
  9756. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9757. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9758. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9759. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9760. ggml_float sum = 0.0;
  9761. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9762. sum += (ggml_float)(x[i00] * x[i00]);
  9763. }
  9764. const float mean = sum/ne00;
  9765. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9766. memcpy(y, x, ne00 * sizeof(float));
  9767. // for (int i00 = 0; i00 < ne00; i00++) {
  9768. // y[i00] = x[i00];
  9769. // }
  9770. const float scale = 1.0f/sqrtf(mean + eps);
  9771. ggml_vec_scale_f32(ne00, y, scale);
  9772. }
  9773. }
  9774. }
  9775. }
  9776. static void ggml_compute_forward_rms_norm(
  9777. const struct ggml_compute_params * params,
  9778. struct ggml_tensor * dst) {
  9779. const struct ggml_tensor * src0 = dst->src[0];
  9780. switch (src0->type) {
  9781. case GGML_TYPE_F32:
  9782. {
  9783. ggml_compute_forward_rms_norm_f32(params, dst);
  9784. } break;
  9785. default:
  9786. {
  9787. GGML_ABORT("fatal error");
  9788. }
  9789. }
  9790. }
  9791. static void ggml_compute_forward_rms_norm_back_f32(
  9792. const struct ggml_compute_params * params,
  9793. struct ggml_tensor * dst) {
  9794. const struct ggml_tensor * src0 = dst->src[0];
  9795. const struct ggml_tensor * src1 = dst->src[1];
  9796. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9797. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9798. const int ith = params->ith;
  9799. const int nth = params->nth;
  9800. GGML_TENSOR_BINARY_OP_LOCALS
  9801. float eps;
  9802. memcpy(&eps, dst->op_params, sizeof(float));
  9803. // TODO: optimize
  9804. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9805. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9806. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9807. // src1 is same shape as src0 => same indices
  9808. const int64_t i11 = i01;
  9809. const int64_t i12 = i02;
  9810. const int64_t i13 = i03;
  9811. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9812. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9813. ggml_float sum_xx = 0.0;
  9814. ggml_float sum_xdz = 0.0;
  9815. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9816. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9817. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9818. }
  9819. //const float mean = (float)(sum_xx)/ne00;
  9820. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9821. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9822. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9823. // we could cache rms from forward pass to improve performance.
  9824. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9825. //const float rms = sqrtf(mean_eps);
  9826. const float rrms = 1.0f / sqrtf(mean_eps);
  9827. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9828. {
  9829. // z = rms_norm(x)
  9830. //
  9831. // rms_norm(src0) =
  9832. // scale(
  9833. // src0,
  9834. // div(
  9835. // 1,
  9836. // sqrt(
  9837. // add(
  9838. // scale(
  9839. // sum(
  9840. // sqr(
  9841. // src0)),
  9842. // (1.0/N)),
  9843. // eps))));
  9844. // postorder:
  9845. // ## op args grad
  9846. // 00 param src0 grad[#00]
  9847. // 01 const 1
  9848. // 02 sqr (#00) grad[#02]
  9849. // 03 sum (#02) grad[#03]
  9850. // 04 const 1/N
  9851. // 05 scale (#03, #04) grad[#05]
  9852. // 06 const eps
  9853. // 07 add (#05, #06) grad[#07]
  9854. // 08 sqrt (#07) grad[#08]
  9855. // 09 div (#01,#08) grad[#09]
  9856. // 10 scale (#00,#09) grad[#10]
  9857. //
  9858. // backward pass, given grad[#10]
  9859. // #10: scale
  9860. // grad[#00] += scale(grad[#10],#09)
  9861. // grad[#09] += sum(mul(grad[#10],#00))
  9862. // #09: div
  9863. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9864. // #08: sqrt
  9865. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9866. // #07: add
  9867. // grad[#05] += grad[#07]
  9868. // #05: scale
  9869. // grad[#03] += scale(grad[#05],#04)
  9870. // #03: sum
  9871. // grad[#02] += repeat(grad[#03], #02)
  9872. // #02:
  9873. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9874. //
  9875. // substitute and simplify:
  9876. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9877. // grad[#02] = repeat(grad[#03], #02)
  9878. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9879. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9880. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9881. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9882. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9883. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9884. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9885. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9886. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9887. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9888. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9889. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9890. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9891. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9892. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9893. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9894. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9895. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9896. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9897. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9898. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9899. // a = b*c + d*e
  9900. // a = b*c*f/f + d*e*f/f
  9901. // a = (b*c*f + d*e*f)*(1/f)
  9902. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9903. // a = (b + d*e/c)*c
  9904. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9905. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9906. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9907. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9908. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9909. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9910. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9911. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9912. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9913. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9914. }
  9915. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9916. // post-order:
  9917. // dx := x
  9918. // dx := scale(dx,-mean_xdz/mean_eps)
  9919. // dx := add(dx, dz)
  9920. // dx := scale(dx, rrms)
  9921. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9922. ggml_vec_cpy_f32 (ne00, dx, x);
  9923. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9924. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9925. ggml_vec_acc_f32 (ne00, dx, dz);
  9926. ggml_vec_scale_f32(ne00, dx, rrms);
  9927. }
  9928. }
  9929. }
  9930. }
  9931. static void ggml_compute_forward_rms_norm_back(
  9932. const struct ggml_compute_params * params,
  9933. struct ggml_tensor * dst) {
  9934. const struct ggml_tensor * src0 = dst->src[0];
  9935. switch (src0->type) {
  9936. case GGML_TYPE_F32:
  9937. {
  9938. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9939. } break;
  9940. default:
  9941. {
  9942. GGML_ABORT("fatal error");
  9943. }
  9944. }
  9945. }
  9946. // ggml_compute_forward_group_norm
  9947. static void ggml_compute_forward_group_norm_f32(
  9948. const struct ggml_compute_params * params,
  9949. struct ggml_tensor * dst) {
  9950. const struct ggml_tensor * src0 = dst->src[0];
  9951. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9952. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9953. const int ith = params->ith;
  9954. const int nth = params->nth;
  9955. GGML_TENSOR_UNARY_OP_LOCALS
  9956. // TODO: optimize
  9957. float eps;
  9958. memcpy(&eps, dst->op_params + 1, sizeof(float));
  9959. int n_channels = src0->ne[2];
  9960. int n_groups = dst->op_params[0];
  9961. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9962. for (int i = ith; i < n_groups; i += nth) {
  9963. int start = i * n_channels_per_group;
  9964. int end = start + n_channels_per_group;
  9965. if (end > n_channels) {
  9966. end = n_channels;
  9967. }
  9968. int step = end - start;
  9969. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9970. ggml_float sum = 0.0;
  9971. for (int64_t i02 = start; i02 < end; i02++) {
  9972. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9973. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9974. ggml_float sumr = 0.0;
  9975. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9976. sumr += (ggml_float)x[i00];
  9977. }
  9978. sum += sumr;
  9979. }
  9980. }
  9981. const float mean = sum / (ne00 * ne01 * step);
  9982. ggml_float sum2 = 0.0;
  9983. for (int64_t i02 = start; i02 < end; i02++) {
  9984. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9985. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9986. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9987. ggml_float sumr = 0.0;
  9988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9989. float v = x[i00] - mean;
  9990. y[i00] = v;
  9991. sumr += (ggml_float)(v * v);
  9992. }
  9993. sum2 += sumr;
  9994. }
  9995. }
  9996. const float variance = sum2 / (ne00 * ne01 * step);
  9997. const float scale = 1.0f / sqrtf(variance + eps);
  9998. for (int64_t i02 = start; i02 < end; i02++) {
  9999. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10000. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10001. ggml_vec_scale_f32(ne00, y, scale);
  10002. }
  10003. }
  10004. }
  10005. }
  10006. }
  10007. static void ggml_compute_forward_group_norm(
  10008. const struct ggml_compute_params * params,
  10009. struct ggml_tensor * dst) {
  10010. const struct ggml_tensor * src0 = dst->src[0];
  10011. switch (src0->type) {
  10012. case GGML_TYPE_F32:
  10013. {
  10014. ggml_compute_forward_group_norm_f32(params, dst);
  10015. } break;
  10016. default:
  10017. {
  10018. GGML_ABORT("fatal error");
  10019. }
  10020. }
  10021. }
  10022. // ggml_compute_forward_mul_mat
  10023. static void ggml_compute_forward_mul_mat_one_chunk(
  10024. const struct ggml_compute_params * params,
  10025. struct ggml_tensor * dst,
  10026. const int64_t num_rows_per_vec_dot,
  10027. const int64_t ir0_start,
  10028. const int64_t ir0_end,
  10029. const int64_t ir1_start,
  10030. const int64_t ir1_end) {
  10031. const struct ggml_tensor * src0 = dst->src[0];
  10032. const struct ggml_tensor * src1 = dst->src[1];
  10033. GGML_TENSOR_BINARY_OP_LOCALS
  10034. const enum ggml_type type = src0->type;
  10035. const bool src1_cont = ggml_is_contiguous(src1);
  10036. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10037. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10038. // broadcast factors
  10039. const int64_t r2 = ne12 / ne02;
  10040. const int64_t r3 = ne13 / ne03;
  10041. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10042. // threads with no work simply yield (not sure if it helps)
  10043. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10044. return;
  10045. }
  10046. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10047. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10048. assert(ne12 % ne02 == 0);
  10049. assert(ne13 % ne03 == 0);
  10050. // block-tiling attempt
  10051. const int64_t blck_0 = 16;
  10052. const int64_t blck_1 = 16;
  10053. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10054. // attempt to reduce false-sharing (does not seem to make a difference)
  10055. // 16 * 2, accounting for mmla kernels
  10056. float tmp[32];
  10057. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10058. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10059. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10060. const int64_t i13 = (ir1 / (ne12 * ne1));
  10061. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10062. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10063. // broadcast src0 into src1
  10064. const int64_t i03 = i13 / r3;
  10065. const int64_t i02 = i12 / r2;
  10066. const int64_t i1 = i11;
  10067. const int64_t i2 = i12;
  10068. const int64_t i3 = i13;
  10069. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10070. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10071. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10072. // the original src1 data pointer, so we should index using the indices directly
  10073. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10074. const char * src1_col = (const char*)wdata +
  10075. (src1_cont || src1->type != vec_dot_type
  10076. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10077. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10078. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10079. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10080. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10081. //}
  10082. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10083. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10084. }
  10085. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10086. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10087. }
  10088. }
  10089. }
  10090. }
  10091. }
  10092. static void ggml_compute_forward_mul_mat(
  10093. const struct ggml_compute_params * params,
  10094. struct ggml_tensor * dst) {
  10095. const struct ggml_tensor * src0 = dst->src[0];
  10096. const struct ggml_tensor * src1 = dst->src[1];
  10097. GGML_TENSOR_BINARY_OP_LOCALS
  10098. const int ith = params->ith;
  10099. const int nth = params->nth;
  10100. const enum ggml_type type = src0->type;
  10101. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10102. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10103. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10104. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10105. int64_t const matmul_num_cols = type_traits[type].ncols;
  10106. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10107. ggml_gemv_t const gemv = type_traits[type].gemv;
  10108. ggml_gemm_t const gemm = type_traits[type].gemm;
  10109. GGML_ASSERT(ne0 == ne01);
  10110. GGML_ASSERT(ne1 == ne11);
  10111. GGML_ASSERT(ne2 == ne12);
  10112. GGML_ASSERT(ne3 == ne13);
  10113. // we don't support permuted src0 or src1
  10114. GGML_ASSERT(nb00 == ggml_type_size(type));
  10115. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10116. // dst cannot be transposed or permuted
  10117. GGML_ASSERT(nb0 == sizeof(float));
  10118. GGML_ASSERT(nb0 <= nb1);
  10119. GGML_ASSERT(nb1 <= nb2);
  10120. GGML_ASSERT(nb2 <= nb3);
  10121. // nb01 >= nb00 - src0 is not transposed
  10122. // compute by src0 rows
  10123. #if GGML_USE_LLAMAFILE
  10124. // broadcast factors
  10125. const int64_t r2 = ne12 / ne02;
  10126. const int64_t r3 = ne13 / ne03;
  10127. const bool src1_cont = ggml_is_contiguous(src1);
  10128. if (src1_cont) {
  10129. for (int64_t i13 = 0; i13 < ne13; i13++)
  10130. for (int64_t i12 = 0; i12 < ne12; i12++)
  10131. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10132. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10133. nb01/ggml_type_size(src0->type),
  10134. (const char *)src1->data + i12*nb12 + i13*nb13,
  10135. nb11/ggml_type_size(src1->type),
  10136. (char *)dst->data + i12*nb2 + i13*nb3,
  10137. nb1/ggml_type_size(dst->type),
  10138. ith, nth,
  10139. src0->type,
  10140. src1->type,
  10141. dst->type))
  10142. goto UseGgmlGemm1;
  10143. return;
  10144. }
  10145. UseGgmlGemm1:;
  10146. #endif
  10147. if (src1->type != vec_dot_type) {
  10148. char * wdata = params->wdata;
  10149. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10150. const size_t nbw2 = nbw1*ne11;
  10151. const size_t nbw3 = nbw2*ne12;
  10152. assert(params->wsize >= ne13*nbw3);
  10153. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10154. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10155. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10156. int64_t i11_processed = 0;
  10157. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10158. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10159. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10160. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10161. 4, ne10, blck_size_interleave);
  10162. }
  10163. i11_processed = ne11 - ne11 % 4;
  10164. }
  10165. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10166. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10167. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10168. ne10);
  10169. }
  10170. }
  10171. }
  10172. }
  10173. if (ith == 0) {
  10174. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10175. atomic_store(&params->shared->current_chunk, nth);
  10176. }
  10177. ggml_barrier(params->shared);
  10178. #if GGML_USE_LLAMAFILE
  10179. if (src1->type != vec_dot_type) {
  10180. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10181. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10182. for (int64_t i13 = 0; i13 < ne13; i13++)
  10183. for (int64_t i12 = 0; i12 < ne12; i12++)
  10184. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10185. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10186. nb01/ggml_type_size(src0->type),
  10187. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10188. row_size/ggml_type_size(vec_dot_type),
  10189. (char *)dst->data + i12*nb2 + i13*nb3,
  10190. nb1/ggml_type_size(dst->type),
  10191. ith, nth,
  10192. src0->type,
  10193. vec_dot_type,
  10194. dst->type))
  10195. goto UseGgmlGemm2;
  10196. return;
  10197. }
  10198. UseGgmlGemm2:;
  10199. #endif
  10200. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10201. const int64_t nr0 = ne0;
  10202. // This is the size of the rest of the dimensions of the result
  10203. const int64_t nr1 = ne1 * ne2 * ne3;
  10204. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10205. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10206. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10207. // this check can be removed once they are extended to support odd numbered rows/cols too
  10208. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10209. num_rows_per_vec_dot = 1;
  10210. }
  10211. // Now select a reasonable chunk size.
  10212. int chunk_size = 16;
  10213. // We need to step up the size if it's small
  10214. if (nr0 == 1 || nr1 == 1) {
  10215. chunk_size = 64;
  10216. }
  10217. // distribute the work across the inner or outer loop based on which one is larger
  10218. // The number of chunks in the 0/1 dim.
  10219. // CEIL(nr0/chunk_size)
  10220. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10221. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10222. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10223. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10224. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10225. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10226. // distribute the thread work across the inner or outer loop based on which one is larger
  10227. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10228. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10229. }
  10230. // The number of elements in each chunk
  10231. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10232. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10233. if ((ggml_n_dims(src0) == 2) && gemv) {
  10234. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10235. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10236. int64_t src0_start = (ith * ne01) / nth;
  10237. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10238. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10239. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10240. if (src0_start >= src0_end) return;
  10241. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10242. if (gemm && (ne11 > 3)) {
  10243. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10244. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10245. }
  10246. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10247. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10248. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10249. src0_end - src0_start);
  10250. }
  10251. return;
  10252. }
  10253. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10254. int current_chunk = ith;
  10255. while (current_chunk < nchunk0 * nchunk1) {
  10256. const int64_t ith0 = current_chunk % nchunk0;
  10257. const int64_t ith1 = current_chunk / nchunk0;
  10258. const int64_t ir0_start = dr0 * ith0;
  10259. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10260. const int64_t ir1_start = dr1 * ith1;
  10261. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10262. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10263. if (nth >= nchunk0 * nchunk1) {
  10264. break;
  10265. }
  10266. current_chunk = atomic_fetch_add(&params->shared->current_chunk, 1);
  10267. }
  10268. }
  10269. // ggml_compute_forward_mul_mat_id
  10270. static void ggml_compute_forward_mul_mat_id(
  10271. const struct ggml_compute_params * params,
  10272. struct ggml_tensor * dst) {
  10273. const struct ggml_tensor * src0 = dst->src[0];
  10274. const struct ggml_tensor * src1 = dst->src[1];
  10275. const struct ggml_tensor * ids = dst->src[2];
  10276. GGML_TENSOR_BINARY_OP_LOCALS
  10277. const int ith = params->ith;
  10278. const int nth = params->nth;
  10279. const enum ggml_type type = src0->type;
  10280. const bool src1_cont = ggml_is_contiguous(src1);
  10281. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10282. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10283. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10284. int64_t const matmul_num_cols = type_traits[type].ncols;
  10285. ggml_gemv_t const gemv = type_traits[type].gemv;
  10286. // we don't support permuted src0 or src1
  10287. GGML_ASSERT(nb00 == ggml_type_size(type));
  10288. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10289. // dst cannot be transposed or permuted
  10290. GGML_ASSERT(nb0 == sizeof(float));
  10291. GGML_ASSERT(nb0 <= nb1);
  10292. GGML_ASSERT(nb1 <= nb2);
  10293. GGML_ASSERT(nb2 <= nb3);
  10294. // row groups
  10295. const int n_ids = ids->ne[0]; // n_expert_used
  10296. const int n_as = ne02; // n_expert
  10297. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10298. (char *) params->wdata :
  10299. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10300. struct mmid_row_mapping {
  10301. int32_t i1;
  10302. int32_t i2;
  10303. };
  10304. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10305. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10306. if (src1->type != vec_dot_type) {
  10307. char * wdata = params->wdata;
  10308. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10309. const size_t nbw2 = nbw1*ne11;
  10310. const size_t nbw3 = nbw2*ne12;
  10311. assert(params->wsize >= ne13*nbw3);
  10312. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10313. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10314. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10315. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10316. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10317. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10318. ne10);
  10319. }
  10320. }
  10321. }
  10322. }
  10323. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10324. if (ith == 0) {
  10325. // initialize matrix_row_counts
  10326. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10327. // group rows by src0 matrix
  10328. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10329. for (int id = 0; id < n_ids; ++id) {
  10330. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10331. assert(i02 >= 0 && i02 < n_as);
  10332. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10333. matrix_row_counts[i02] += 1;
  10334. }
  10335. }
  10336. }
  10337. ggml_barrier(params->shared);
  10338. // compute each matrix multiplication in sequence
  10339. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10340. const int64_t cne1 = matrix_row_counts[cur_a];
  10341. if (cne1 == 0) {
  10342. continue;
  10343. }
  10344. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10345. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10346. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10347. const int64_t nr0 = ne01; // src0 rows
  10348. const int64_t nr1 = cne1; // src1 rows
  10349. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10350. int64_t src0_cur_start = (ith * ne01) / nth;
  10351. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10352. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10353. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10354. if (src0_cur_start >= src0_cur_end) return;
  10355. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10356. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10357. const int id = row_mapping.i1; // selected expert index
  10358. const int64_t i11 = id % ne11;
  10359. const int64_t i12 = row_mapping.i2; // row index in src1
  10360. const int64_t i1 = id; // selected expert index
  10361. const int64_t i2 = i12; // row
  10362. const char * src1_col = (const char *) wdata +
  10363. (src1_cont || src1->type != vec_dot_type
  10364. ? (i11 + i12 * ne11) * row_size
  10365. : (i11 * nb11 + i12 * nb12));
  10366. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10367. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10368. }
  10369. continue;
  10370. }
  10371. // distribute the thread work across the inner or outer loop based on which one is larger
  10372. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10373. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10374. const int64_t ith0 = ith % nth0;
  10375. const int64_t ith1 = ith / nth0;
  10376. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10377. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10378. const int64_t ir010 = dr0*ith0;
  10379. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10380. const int64_t ir110 = dr1*ith1;
  10381. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10382. // threads with no work simply yield (not sure if it helps)
  10383. //if (ir010 >= ir011 || ir110 >= ir111) {
  10384. // sched_yield();
  10385. // continue;
  10386. //}
  10387. // block-tiling attempt
  10388. const int64_t blck_0 = 16;
  10389. const int64_t blck_1 = 16;
  10390. // attempt to reduce false-sharing (does not seem to make a difference)
  10391. float tmp[16];
  10392. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10393. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10394. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10395. const int64_t _i12 = ir1; // logical row index for this expert
  10396. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10397. const int id = row_mapping.i1; // selected expert index
  10398. const int64_t i11 = id % ne11;
  10399. const int64_t i12 = row_mapping.i2; // row index in src1
  10400. const int64_t i1 = id; // selected expert index
  10401. const int64_t i2 = i12; // row
  10402. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10403. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10404. // the original src1 data pointer, so we should index using the indices directly
  10405. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10406. const char * src1_col = (const char *) wdata +
  10407. (src1_cont || src1->type != vec_dot_type
  10408. ? (i11 + i12*ne11)*row_size
  10409. : (i11*nb11 + i12*nb12));
  10410. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10411. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10412. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10413. //}
  10414. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10415. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10416. }
  10417. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10418. }
  10419. }
  10420. }
  10421. }
  10422. #undef MMID_MATRIX_ROW
  10423. }
  10424. // ggml_compute_forward_out_prod
  10425. static void ggml_compute_forward_out_prod_f32(
  10426. const struct ggml_compute_params * params,
  10427. struct ggml_tensor * dst) {
  10428. const struct ggml_tensor * src0 = dst->src[0];
  10429. const struct ggml_tensor * src1 = dst->src[1];
  10430. GGML_TENSOR_BINARY_OP_LOCALS
  10431. const int ith = params->ith;
  10432. const int nth = params->nth;
  10433. GGML_ASSERT(ne0 == ne00);
  10434. GGML_ASSERT(ne1 == ne10);
  10435. GGML_ASSERT(ne2 == ne02);
  10436. GGML_ASSERT(ne02 == ne12);
  10437. GGML_ASSERT(ne3 == ne13);
  10438. GGML_ASSERT(ne03 == ne13);
  10439. // we don't support permuted src0 or src1
  10440. GGML_ASSERT(nb00 == sizeof(float));
  10441. // dst cannot be transposed or permuted
  10442. GGML_ASSERT(nb0 == sizeof(float));
  10443. // GGML_ASSERT(nb0 <= nb1);
  10444. // GGML_ASSERT(nb1 <= nb2);
  10445. // GGML_ASSERT(nb2 <= nb3);
  10446. // nb01 >= nb00 - src0 is not transposed
  10447. // compute by src0 rows
  10448. if (ith == 0) {
  10449. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10450. }
  10451. ggml_barrier(params->shared);
  10452. // dst[:,:,:,:] = 0
  10453. // for i2,i3:
  10454. // for i1:
  10455. // for i01:
  10456. // for i0:
  10457. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10458. // parallelize by last three dimensions
  10459. // total rows in dst
  10460. const int64_t nr = ne1*ne2*ne3;
  10461. // rows per thread
  10462. const int64_t dr = (nr + nth - 1)/nth;
  10463. // row range for this thread
  10464. const int64_t ir0 = dr*ith;
  10465. const int64_t ir1 = MIN(ir0 + dr, nr);
  10466. // block-tiling attempt
  10467. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10468. const int64_t blck_1 = 16;
  10469. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10470. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10471. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10472. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10473. for (int64_t ir = bir; ir < bir1; ++ir) {
  10474. // dst indices
  10475. const int64_t i3 = ir/(ne2*ne1);
  10476. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10477. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10478. const int64_t i02 = i2;
  10479. const int64_t i03 = i3;
  10480. //const int64_t i10 = i1;
  10481. const int64_t i12 = i2;
  10482. const int64_t i13 = i3;
  10483. #if GGML_VEC_MAD_UNROLL > 2
  10484. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10485. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10486. const int64_t i11 = i01;
  10487. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10488. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10489. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10490. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10491. }
  10492. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10493. const int64_t i11 = i01;
  10494. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10495. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10496. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10497. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10498. }
  10499. #else
  10500. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10501. const int64_t i11 = i01;
  10502. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10503. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10504. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10505. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10506. }
  10507. #endif
  10508. }
  10509. }
  10510. }
  10511. }
  10512. static void ggml_compute_forward_out_prod_q_f32(
  10513. const struct ggml_compute_params * params,
  10514. struct ggml_tensor * dst) {
  10515. const struct ggml_tensor * src0 = dst->src[0];
  10516. const struct ggml_tensor * src1 = dst->src[1];
  10517. GGML_TENSOR_BINARY_OP_LOCALS;
  10518. const int ith = params->ith;
  10519. const int nth = params->nth;
  10520. const enum ggml_type type = src0->type;
  10521. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10522. GGML_ASSERT(ne02 == ne12);
  10523. GGML_ASSERT(ne03 == ne13);
  10524. GGML_ASSERT(ne2 == ne12);
  10525. GGML_ASSERT(ne3 == ne13);
  10526. // we don't support permuted src0 dim0
  10527. GGML_ASSERT(nb00 == ggml_type_size(type));
  10528. // dst dim0 cannot be transposed or permuted
  10529. GGML_ASSERT(nb0 == sizeof(float));
  10530. // GGML_ASSERT(nb0 <= nb1);
  10531. // GGML_ASSERT(nb1 <= nb2);
  10532. // GGML_ASSERT(nb2 <= nb3);
  10533. GGML_ASSERT(ne0 == ne00);
  10534. GGML_ASSERT(ne1 == ne10);
  10535. GGML_ASSERT(ne2 == ne02);
  10536. GGML_ASSERT(ne3 == ne03);
  10537. // nb01 >= nb00 - src0 is not transposed
  10538. // compute by src0 rows
  10539. if (ith == 0) {
  10540. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10541. }
  10542. ggml_barrier(params->shared);
  10543. // parallelize by last three dimensions
  10544. // total rows in dst
  10545. const int64_t nr = ne1*ne2*ne3;
  10546. // rows per thread
  10547. const int64_t dr = (nr + nth - 1)/nth;
  10548. // row range for this thread
  10549. const int64_t ir0 = dr*ith;
  10550. const int64_t ir1 = MIN(ir0 + dr, nr);
  10551. // dst[:,:,:,:] = 0
  10552. // for i2,i3:
  10553. // for i1:
  10554. // for i01:
  10555. // for i0:
  10556. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10557. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10558. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10559. // dst indices
  10560. const int64_t i3 = ir/(ne2*ne1);
  10561. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10562. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10563. const int64_t i02 = i2;
  10564. const int64_t i03 = i3;
  10565. //const int64_t i10 = i1;
  10566. const int64_t i12 = i2;
  10567. const int64_t i13 = i3;
  10568. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10569. const int64_t i11 = i01;
  10570. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10571. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10572. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10573. dequantize_row_q(s0, wdata, ne0);
  10574. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10575. }
  10576. }
  10577. }
  10578. static void ggml_compute_forward_out_prod(
  10579. const struct ggml_compute_params * params,
  10580. struct ggml_tensor * dst) {
  10581. const struct ggml_tensor * src0 = dst->src[0];
  10582. switch (src0->type) {
  10583. case GGML_TYPE_Q4_0:
  10584. case GGML_TYPE_Q4_1:
  10585. case GGML_TYPE_Q5_0:
  10586. case GGML_TYPE_Q5_1:
  10587. case GGML_TYPE_Q8_0:
  10588. case GGML_TYPE_Q2_K:
  10589. case GGML_TYPE_Q3_K:
  10590. case GGML_TYPE_Q4_K:
  10591. case GGML_TYPE_Q5_K:
  10592. case GGML_TYPE_Q6_K:
  10593. case GGML_TYPE_IQ2_XXS:
  10594. case GGML_TYPE_IQ2_XS:
  10595. case GGML_TYPE_IQ3_XXS:
  10596. case GGML_TYPE_IQ1_S:
  10597. case GGML_TYPE_IQ1_M:
  10598. case GGML_TYPE_IQ4_NL:
  10599. case GGML_TYPE_IQ4_XS:
  10600. case GGML_TYPE_IQ3_S:
  10601. case GGML_TYPE_IQ2_S:
  10602. case GGML_TYPE_Q4_0_4_4:
  10603. case GGML_TYPE_Q4_0_4_8:
  10604. case GGML_TYPE_Q4_0_8_8:
  10605. {
  10606. ggml_compute_forward_out_prod_q_f32(params, dst);
  10607. } break;
  10608. case GGML_TYPE_F16:
  10609. {
  10610. GGML_ABORT("fatal error"); // todo
  10611. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10612. }
  10613. case GGML_TYPE_F32:
  10614. {
  10615. ggml_compute_forward_out_prod_f32(params, dst);
  10616. } break;
  10617. default:
  10618. {
  10619. GGML_ABORT("fatal error");
  10620. }
  10621. }
  10622. }
  10623. // ggml_compute_forward_scale
  10624. static void ggml_compute_forward_scale_f32(
  10625. const struct ggml_compute_params * params,
  10626. struct ggml_tensor * dst) {
  10627. const struct ggml_tensor * src0 = dst->src[0];
  10628. GGML_ASSERT(ggml_is_contiguous(src0));
  10629. GGML_ASSERT(ggml_is_contiguous(dst));
  10630. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10631. // scale factor
  10632. float v;
  10633. memcpy(&v, dst->op_params, sizeof(float));
  10634. const int ith = params->ith;
  10635. const int nth = params->nth;
  10636. const int nc = src0->ne[0];
  10637. const int nr = ggml_nrows(src0);
  10638. // rows per thread
  10639. const int dr = (nr + nth - 1)/nth;
  10640. // row range for this thread
  10641. const int ir0 = dr*ith;
  10642. const int ir1 = MIN(ir0 + dr, nr);
  10643. const size_t nb01 = src0->nb[1];
  10644. const size_t nb1 = dst->nb[1];
  10645. for (int i1 = ir0; i1 < ir1; i1++) {
  10646. if (dst->data != src0->data) {
  10647. // src0 is same shape as dst => same indices
  10648. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10649. }
  10650. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10651. }
  10652. }
  10653. static void ggml_compute_forward_scale(
  10654. const struct ggml_compute_params * params,
  10655. struct ggml_tensor * dst) {
  10656. const struct ggml_tensor * src0 = dst->src[0];
  10657. switch (src0->type) {
  10658. case GGML_TYPE_F32:
  10659. {
  10660. ggml_compute_forward_scale_f32(params, dst);
  10661. } break;
  10662. default:
  10663. {
  10664. GGML_ABORT("fatal error");
  10665. }
  10666. }
  10667. }
  10668. // ggml_compute_forward_set
  10669. static void ggml_compute_forward_set_f32(
  10670. const struct ggml_compute_params * params,
  10671. struct ggml_tensor * dst) {
  10672. const struct ggml_tensor * src0 = dst->src[0];
  10673. const struct ggml_tensor * src1 = dst->src[1];
  10674. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10675. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10676. // view src0 and dst with these strides and data offset inbytes during set
  10677. // nb0 is implicitly element_size because src0 and dst are contiguous
  10678. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10679. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10680. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10681. size_t offset = ((int32_t *) dst->op_params)[3];
  10682. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10683. if (!inplace) {
  10684. if (params->ith == 0) {
  10685. // memcpy needs to be synchronized across threads to avoid race conditions.
  10686. // => do it in INIT phase
  10687. memcpy(
  10688. ((char *) dst->data),
  10689. ((char *) src0->data),
  10690. ggml_nbytes(dst));
  10691. }
  10692. ggml_barrier(params->shared);
  10693. }
  10694. const int ith = params->ith;
  10695. const int nth = params->nth;
  10696. const int nr = ggml_nrows(src1);
  10697. const int nc = src1->ne[0];
  10698. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10699. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10700. // src0 and dst as viewed during set
  10701. const size_t nb0 = ggml_element_size(src0);
  10702. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10703. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10704. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10705. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10706. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10707. GGML_ASSERT(nb10 == sizeof(float));
  10708. // rows per thread
  10709. const int dr = (nr + nth - 1)/nth;
  10710. // row range for this thread
  10711. const int ir0 = dr*ith;
  10712. const int ir1 = MIN(ir0 + dr, nr);
  10713. for (int ir = ir0; ir < ir1; ++ir) {
  10714. // src0 and dst are viewed with shape of src1 and offset
  10715. // => same indices
  10716. const int i3 = ir/(ne12*ne11);
  10717. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10718. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10719. ggml_vec_cpy_f32(nc,
  10720. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10721. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10722. }
  10723. }
  10724. static void ggml_compute_forward_set(
  10725. const struct ggml_compute_params * params,
  10726. struct ggml_tensor * dst) {
  10727. const struct ggml_tensor * src0 = dst->src[0];
  10728. switch (src0->type) {
  10729. case GGML_TYPE_F32:
  10730. {
  10731. ggml_compute_forward_set_f32(params, dst);
  10732. } break;
  10733. case GGML_TYPE_F16:
  10734. case GGML_TYPE_BF16:
  10735. case GGML_TYPE_Q4_0:
  10736. case GGML_TYPE_Q4_1:
  10737. case GGML_TYPE_Q5_0:
  10738. case GGML_TYPE_Q5_1:
  10739. case GGML_TYPE_Q8_0:
  10740. case GGML_TYPE_Q8_1:
  10741. case GGML_TYPE_Q2_K:
  10742. case GGML_TYPE_Q3_K:
  10743. case GGML_TYPE_Q4_K:
  10744. case GGML_TYPE_Q5_K:
  10745. case GGML_TYPE_Q6_K:
  10746. case GGML_TYPE_IQ2_XXS:
  10747. case GGML_TYPE_IQ2_XS:
  10748. case GGML_TYPE_IQ3_XXS:
  10749. case GGML_TYPE_IQ1_S:
  10750. case GGML_TYPE_IQ1_M:
  10751. case GGML_TYPE_IQ4_NL:
  10752. case GGML_TYPE_IQ4_XS:
  10753. case GGML_TYPE_IQ3_S:
  10754. case GGML_TYPE_IQ2_S:
  10755. case GGML_TYPE_Q4_0_4_4:
  10756. case GGML_TYPE_Q4_0_4_8:
  10757. case GGML_TYPE_Q4_0_8_8:
  10758. default:
  10759. {
  10760. GGML_ABORT("fatal error");
  10761. }
  10762. }
  10763. }
  10764. // ggml_compute_forward_cpy
  10765. static void ggml_compute_forward_cpy(
  10766. const struct ggml_compute_params * params,
  10767. struct ggml_tensor * dst) {
  10768. ggml_compute_forward_dup(params, dst);
  10769. }
  10770. // ggml_compute_forward_cont
  10771. static void ggml_compute_forward_cont(
  10772. const struct ggml_compute_params * params,
  10773. struct ggml_tensor * dst) {
  10774. ggml_compute_forward_dup(params, dst);
  10775. }
  10776. // ggml_compute_forward_reshape
  10777. static void ggml_compute_forward_reshape(
  10778. const struct ggml_compute_params * params,
  10779. struct ggml_tensor * dst) {
  10780. // NOP
  10781. UNUSED(params);
  10782. UNUSED(dst);
  10783. }
  10784. // ggml_compute_forward_view
  10785. static void ggml_compute_forward_view(
  10786. const struct ggml_compute_params * params,
  10787. const struct ggml_tensor * dst) {
  10788. // NOP
  10789. UNUSED(params);
  10790. UNUSED(dst);
  10791. }
  10792. // ggml_compute_forward_permute
  10793. static void ggml_compute_forward_permute(
  10794. const struct ggml_compute_params * params,
  10795. const struct ggml_tensor * dst) {
  10796. // NOP
  10797. UNUSED(params);
  10798. UNUSED(dst);
  10799. }
  10800. // ggml_compute_forward_transpose
  10801. static void ggml_compute_forward_transpose(
  10802. const struct ggml_compute_params * params,
  10803. const struct ggml_tensor * dst) {
  10804. // NOP
  10805. UNUSED(params);
  10806. UNUSED(dst);
  10807. }
  10808. // ggml_compute_forward_get_rows
  10809. static void ggml_compute_forward_get_rows_q(
  10810. const struct ggml_compute_params * params,
  10811. struct ggml_tensor * dst) {
  10812. const struct ggml_tensor * src0 = dst->src[0];
  10813. const struct ggml_tensor * src1 = dst->src[1];
  10814. GGML_TENSOR_BINARY_OP_LOCALS
  10815. const int64_t nc = ne00;
  10816. const int64_t nr = ggml_nelements(src1);
  10817. const enum ggml_type type = src0->type;
  10818. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10819. assert(ne0 == nc);
  10820. assert(ne02 == ne11);
  10821. assert(nb00 == ggml_type_size(type));
  10822. assert(ggml_nrows(dst) == nr);
  10823. const int ith = params->ith;
  10824. const int nth = params->nth;
  10825. // rows per thread
  10826. const int dr = (nr + nth - 1)/nth;
  10827. // row range for this thread
  10828. const int ir0 = dr*ith;
  10829. const int ir1 = MIN(ir0 + dr, nr);
  10830. for (int64_t i = ir0; i < ir1; ++i) {
  10831. const int64_t i12 = i/(ne11*ne10);
  10832. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10833. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10834. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10835. assert(i01 >= 0 && i01 < ne01);
  10836. dequantize_row_q(
  10837. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10838. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10839. }
  10840. }
  10841. static void ggml_compute_forward_get_rows_f16(
  10842. const struct ggml_compute_params * params,
  10843. struct ggml_tensor * dst) {
  10844. const struct ggml_tensor * src0 = dst->src[0];
  10845. const struct ggml_tensor * src1 = dst->src[1];
  10846. GGML_TENSOR_BINARY_OP_LOCALS
  10847. const int64_t nc = ne00;
  10848. const int64_t nr = ggml_nelements(src1);
  10849. assert(ne0 == nc);
  10850. assert(ne02 == ne11);
  10851. assert(nb00 == sizeof(ggml_fp16_t));
  10852. assert(ggml_nrows(dst) == nr);
  10853. const int ith = params->ith;
  10854. const int nth = params->nth;
  10855. // rows per thread
  10856. const int dr = (nr + nth - 1)/nth;
  10857. // row range for this thread
  10858. const int ir0 = dr*ith;
  10859. const int ir1 = MIN(ir0 + dr, nr);
  10860. for (int64_t i = ir0; i < ir1; ++i) {
  10861. const int64_t i12 = i/(ne11*ne10);
  10862. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10863. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10864. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10865. assert(i01 >= 0 && i01 < ne01);
  10866. ggml_fp16_to_fp32_row(
  10867. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10868. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10869. }
  10870. }
  10871. static void ggml_compute_forward_get_rows_bf16(
  10872. const struct ggml_compute_params * params,
  10873. struct ggml_tensor * dst) {
  10874. const struct ggml_tensor * src0 = dst->src[0];
  10875. const struct ggml_tensor * src1 = dst->src[1];
  10876. GGML_TENSOR_BINARY_OP_LOCALS
  10877. const int64_t nc = ne00;
  10878. const int64_t nr = ggml_nelements(src1);
  10879. assert(ne0 == nc);
  10880. assert(ne02 == ne11);
  10881. assert(nb00 == sizeof(ggml_bf16_t));
  10882. assert(ggml_nrows(dst) == nr);
  10883. const int ith = params->ith;
  10884. const int nth = params->nth;
  10885. // rows per thread
  10886. const int dr = (nr + nth - 1)/nth;
  10887. // row range for this thread
  10888. const int ir0 = dr*ith;
  10889. const int ir1 = MIN(ir0 + dr, nr);
  10890. for (int64_t i = ir0; i < ir1; ++i) {
  10891. const int64_t i12 = i/(ne11*ne10);
  10892. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10893. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10894. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10895. assert(i01 >= 0 && i01 < ne01);
  10896. ggml_bf16_to_fp32_row(
  10897. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10898. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10899. }
  10900. }
  10901. static void ggml_compute_forward_get_rows_f32(
  10902. const struct ggml_compute_params * params,
  10903. struct ggml_tensor * dst) {
  10904. const struct ggml_tensor * src0 = dst->src[0];
  10905. const struct ggml_tensor * src1 = dst->src[1];
  10906. GGML_TENSOR_BINARY_OP_LOCALS
  10907. const int64_t nc = ne00;
  10908. const int64_t nr = ggml_nelements(src1);
  10909. assert(ne0 == nc);
  10910. assert(ne02 == ne11);
  10911. assert(nb00 == sizeof(float));
  10912. assert(ggml_nrows(dst) == nr);
  10913. const int ith = params->ith;
  10914. const int nth = params->nth;
  10915. // rows per thread
  10916. const int dr = (nr + nth - 1)/nth;
  10917. // row range for this thread
  10918. const int ir0 = dr*ith;
  10919. const int ir1 = MIN(ir0 + dr, nr);
  10920. for (int64_t i = ir0; i < ir1; ++i) {
  10921. const int64_t i12 = i/(ne11*ne10);
  10922. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10923. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10924. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10925. assert(i01 >= 0 && i01 < ne01);
  10926. ggml_vec_cpy_f32(nc,
  10927. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10928. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10929. }
  10930. }
  10931. static void ggml_compute_forward_get_rows(
  10932. const struct ggml_compute_params * params,
  10933. struct ggml_tensor * dst) {
  10934. const struct ggml_tensor * src0 = dst->src[0];
  10935. switch (src0->type) {
  10936. case GGML_TYPE_Q4_0:
  10937. case GGML_TYPE_Q4_1:
  10938. case GGML_TYPE_Q5_0:
  10939. case GGML_TYPE_Q5_1:
  10940. case GGML_TYPE_Q8_0:
  10941. case GGML_TYPE_Q8_1:
  10942. case GGML_TYPE_Q2_K:
  10943. case GGML_TYPE_Q3_K:
  10944. case GGML_TYPE_Q4_K:
  10945. case GGML_TYPE_Q5_K:
  10946. case GGML_TYPE_Q6_K:
  10947. case GGML_TYPE_IQ2_XXS:
  10948. case GGML_TYPE_IQ2_XS:
  10949. case GGML_TYPE_IQ3_XXS:
  10950. case GGML_TYPE_IQ1_S:
  10951. case GGML_TYPE_IQ1_M:
  10952. case GGML_TYPE_IQ4_NL:
  10953. case GGML_TYPE_IQ4_XS:
  10954. case GGML_TYPE_IQ3_S:
  10955. case GGML_TYPE_IQ2_S:
  10956. case GGML_TYPE_Q4_0_4_4:
  10957. case GGML_TYPE_Q4_0_4_8:
  10958. case GGML_TYPE_Q4_0_8_8:
  10959. {
  10960. ggml_compute_forward_get_rows_q(params, dst);
  10961. } break;
  10962. case GGML_TYPE_F16:
  10963. {
  10964. ggml_compute_forward_get_rows_f16(params, dst);
  10965. } break;
  10966. case GGML_TYPE_BF16:
  10967. {
  10968. ggml_compute_forward_get_rows_bf16(params, dst);
  10969. } break;
  10970. case GGML_TYPE_F32:
  10971. case GGML_TYPE_I32:
  10972. {
  10973. ggml_compute_forward_get_rows_f32(params, dst);
  10974. } break;
  10975. default:
  10976. {
  10977. GGML_ABORT("fatal error");
  10978. }
  10979. }
  10980. //static bool first = true;
  10981. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10982. //if (first) {
  10983. // first = false;
  10984. //} else {
  10985. // for (int k = 0; k < dst->ne[1]; ++k) {
  10986. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10987. // for (int i = 0; i < 16; ++i) {
  10988. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10989. // }
  10990. // printf("\n");
  10991. // }
  10992. // printf("\n");
  10993. // }
  10994. // printf("\n");
  10995. // exit(0);
  10996. //}
  10997. }
  10998. // ggml_compute_forward_get_rows_back
  10999. static void ggml_compute_forward_get_rows_back_f32_f16(
  11000. const struct ggml_compute_params * params,
  11001. struct ggml_tensor * dst) {
  11002. const struct ggml_tensor * src0 = dst->src[0];
  11003. const struct ggml_tensor * src1 = dst->src[1];
  11004. if (params->ith != 0) {
  11005. return;
  11006. }
  11007. GGML_ASSERT(ggml_is_contiguous(dst));
  11008. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11009. memset(dst->data, 0, ggml_nbytes(dst));
  11010. const int nc = src0->ne[0];
  11011. const int nr = ggml_nelements(src1);
  11012. GGML_ASSERT( dst->ne[0] == nc);
  11013. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11014. for (int i = 0; i < nr; ++i) {
  11015. const int r = ((int32_t *) src1->data)[i];
  11016. for (int j = 0; j < nc; ++j) {
  11017. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11018. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11019. }
  11020. }
  11021. }
  11022. static void ggml_compute_forward_get_rows_back_f32(
  11023. const struct ggml_compute_params * params,
  11024. struct ggml_tensor * dst) {
  11025. const struct ggml_tensor * src0 = dst->src[0];
  11026. const struct ggml_tensor * src1 = dst->src[1];
  11027. if (params->ith != 0) {
  11028. return;
  11029. }
  11030. GGML_ASSERT(ggml_is_contiguous(dst));
  11031. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11032. memset(dst->data, 0, ggml_nbytes(dst));
  11033. const int nc = src0->ne[0];
  11034. const int nr = ggml_nelements(src1);
  11035. GGML_ASSERT( dst->ne[0] == nc);
  11036. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11037. for (int i = 0; i < nr; ++i) {
  11038. const int r = ((int32_t *) src1->data)[i];
  11039. ggml_vec_add_f32(nc,
  11040. (float *) ((char *) dst->data + r*dst->nb[1]),
  11041. (float *) ((char *) dst->data + r*dst->nb[1]),
  11042. (float *) ((char *) src0->data + i*src0->nb[1]));
  11043. }
  11044. }
  11045. static void ggml_compute_forward_get_rows_back(
  11046. const struct ggml_compute_params * params,
  11047. struct ggml_tensor * dst) {
  11048. const struct ggml_tensor * src0 = dst->src[0];
  11049. switch (src0->type) {
  11050. case GGML_TYPE_F16:
  11051. {
  11052. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11053. } break;
  11054. case GGML_TYPE_F32:
  11055. {
  11056. ggml_compute_forward_get_rows_back_f32(params, dst);
  11057. } break;
  11058. default:
  11059. {
  11060. GGML_ABORT("fatal error");
  11061. }
  11062. }
  11063. //static bool first = true;
  11064. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11065. //if (first) {
  11066. // first = false;
  11067. //} else {
  11068. // for (int k = 0; k < dst->ne[1]; ++k) {
  11069. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11070. // for (int i = 0; i < 16; ++i) {
  11071. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11072. // }
  11073. // printf("\n");
  11074. // }
  11075. // printf("\n");
  11076. // }
  11077. // printf("\n");
  11078. // exit(0);
  11079. //}
  11080. }
  11081. // ggml_compute_forward_diag
  11082. static void ggml_compute_forward_diag_f32(
  11083. const struct ggml_compute_params * params,
  11084. struct ggml_tensor * dst) {
  11085. const struct ggml_tensor * src0 = dst->src[0];
  11086. if (params->ith != 0) {
  11087. return;
  11088. }
  11089. // TODO: handle transposed/permuted matrices
  11090. GGML_TENSOR_UNARY_OP_LOCALS
  11091. GGML_ASSERT(ne00 == ne0);
  11092. GGML_ASSERT(ne00 == ne1);
  11093. GGML_ASSERT(ne01 == 1);
  11094. GGML_ASSERT(ne02 == ne2);
  11095. GGML_ASSERT(ne03 == ne3);
  11096. GGML_ASSERT(nb00 == sizeof(float));
  11097. GGML_ASSERT(nb0 == sizeof(float));
  11098. for (int i3 = 0; i3 < ne3; i3++) {
  11099. for (int i2 = 0; i2 < ne2; i2++) {
  11100. for (int i1 = 0; i1 < ne1; i1++) {
  11101. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11102. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11103. for (int i0 = 0; i0 < i1; i0++) {
  11104. d[i0] = 0;
  11105. }
  11106. d[i1] = s[i1];
  11107. for (int i0 = i1+1; i0 < ne0; i0++) {
  11108. d[i0] = 0;
  11109. }
  11110. }
  11111. }
  11112. }
  11113. }
  11114. static void ggml_compute_forward_diag(
  11115. const struct ggml_compute_params * params,
  11116. struct ggml_tensor * dst) {
  11117. const struct ggml_tensor * src0 = dst->src[0];
  11118. switch (src0->type) {
  11119. case GGML_TYPE_F32:
  11120. {
  11121. ggml_compute_forward_diag_f32(params, dst);
  11122. } break;
  11123. default:
  11124. {
  11125. GGML_ABORT("fatal error");
  11126. }
  11127. }
  11128. }
  11129. // ggml_compute_forward_diag_mask_inf
  11130. static void ggml_compute_forward_diag_mask_f32(
  11131. const struct ggml_compute_params * params,
  11132. struct ggml_tensor * dst,
  11133. const float value) {
  11134. const struct ggml_tensor * src0 = dst->src[0];
  11135. const int ith = params->ith;
  11136. const int nth = params->nth;
  11137. const int n_past = ((int32_t *) dst->op_params)[0];
  11138. const bool inplace = src0->data == dst->data;
  11139. GGML_ASSERT(n_past >= 0);
  11140. if (!inplace) {
  11141. if (ith == 0) {
  11142. // memcpy needs to be synchronized across threads to avoid race conditions.
  11143. // => do it in INIT phase
  11144. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11145. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11146. memcpy(
  11147. ((char *) dst->data),
  11148. ((char *) src0->data),
  11149. ggml_nbytes(dst));
  11150. }
  11151. ggml_barrier(params->shared);
  11152. }
  11153. // TODO: handle transposed/permuted matrices
  11154. const int n = ggml_nrows(src0);
  11155. const int nc = src0->ne[0];
  11156. const int nr = src0->ne[1];
  11157. const int nz = n/nr;
  11158. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11159. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11160. for (int k = 0; k < nz; k++) {
  11161. for (int j = ith; j < nr; j += nth) {
  11162. for (int i = n_past; i < nc; i++) {
  11163. if (i > n_past + j) {
  11164. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11165. }
  11166. }
  11167. }
  11168. }
  11169. }
  11170. static void ggml_compute_forward_diag_mask_inf(
  11171. const struct ggml_compute_params * params,
  11172. struct ggml_tensor * dst) {
  11173. const struct ggml_tensor * src0 = dst->src[0];
  11174. switch (src0->type) {
  11175. case GGML_TYPE_F32:
  11176. {
  11177. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11178. } break;
  11179. default:
  11180. {
  11181. GGML_ABORT("fatal error");
  11182. }
  11183. }
  11184. }
  11185. static void ggml_compute_forward_diag_mask_zero(
  11186. const struct ggml_compute_params * params,
  11187. struct ggml_tensor * dst) {
  11188. const struct ggml_tensor * src0 = dst->src[0];
  11189. switch (src0->type) {
  11190. case GGML_TYPE_F32:
  11191. {
  11192. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11193. } break;
  11194. default:
  11195. {
  11196. GGML_ABORT("fatal error");
  11197. }
  11198. }
  11199. }
  11200. // ggml_compute_forward_soft_max
  11201. static void ggml_compute_forward_soft_max_f32(
  11202. const struct ggml_compute_params * params,
  11203. struct ggml_tensor * dst) {
  11204. const struct ggml_tensor * src0 = dst->src[0];
  11205. const struct ggml_tensor * src1 = dst->src[1];
  11206. assert(ggml_is_contiguous(dst));
  11207. assert(ggml_are_same_shape(src0, dst));
  11208. float scale = 1.0f;
  11209. float max_bias = 0.0f;
  11210. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11211. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11212. // TODO: handle transposed/permuted matrices
  11213. const int ith = params->ith;
  11214. const int nth = params->nth;
  11215. GGML_TENSOR_UNARY_OP_LOCALS
  11216. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11217. // TODO: is this supposed to be ceil instead of floor?
  11218. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11219. const uint32_t n_head = ne02;
  11220. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11221. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11222. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11223. const int nc = src0->ne[0];
  11224. const int nr = ggml_nrows(src0);
  11225. // rows per thread
  11226. const int dr = (nr + nth - 1)/nth;
  11227. // row range for this thread
  11228. const int ir0 = dr*ith;
  11229. const int ir1 = MIN(ir0 + dr, nr);
  11230. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11231. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11232. for (int i1 = ir0; i1 < ir1; i1++) {
  11233. // ALiBi
  11234. const uint32_t h = (i1/ne01)%ne02; // head
  11235. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11236. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11237. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11238. // broadcast the mask across rows
  11239. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11240. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11241. ggml_vec_cpy_f32 (nc, wp, sp);
  11242. ggml_vec_scale_f32(nc, wp, scale);
  11243. if (mp_f32) {
  11244. if (use_f16) {
  11245. for (int i = 0; i < nc; ++i) {
  11246. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11247. }
  11248. } else {
  11249. for (int i = 0; i < nc; ++i) {
  11250. wp[i] += slope*mp_f32[i];
  11251. }
  11252. }
  11253. }
  11254. #ifndef NDEBUG
  11255. for (int i = 0; i < nc; ++i) {
  11256. //printf("p[%d] = %f\n", i, p[i]);
  11257. assert(!isnan(wp[i]));
  11258. }
  11259. #endif
  11260. float max = -INFINITY;
  11261. ggml_vec_max_f32(nc, &max, wp);
  11262. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11263. assert(sum > 0.0);
  11264. sum = 1.0/sum;
  11265. ggml_vec_scale_f32(nc, dp, sum);
  11266. #ifndef NDEBUG
  11267. for (int i = 0; i < nc; ++i) {
  11268. assert(!isnan(dp[i]));
  11269. assert(!isinf(dp[i]));
  11270. }
  11271. #endif
  11272. }
  11273. }
  11274. static void ggml_compute_forward_soft_max(
  11275. const struct ggml_compute_params * params,
  11276. struct ggml_tensor * dst) {
  11277. const struct ggml_tensor * src0 = dst->src[0];
  11278. switch (src0->type) {
  11279. case GGML_TYPE_F32:
  11280. {
  11281. ggml_compute_forward_soft_max_f32(params, dst);
  11282. } break;
  11283. default:
  11284. {
  11285. GGML_ABORT("fatal error");
  11286. }
  11287. }
  11288. }
  11289. // ggml_compute_forward_soft_max_back
  11290. static void ggml_compute_forward_soft_max_back_f32(
  11291. const struct ggml_compute_params * params,
  11292. struct ggml_tensor * dst) {
  11293. const struct ggml_tensor * src0 = dst->src[0];
  11294. const struct ggml_tensor * src1 = dst->src[1];
  11295. GGML_ASSERT(ggml_is_contiguous(src0));
  11296. GGML_ASSERT(ggml_is_contiguous(src1));
  11297. GGML_ASSERT(ggml_is_contiguous(dst));
  11298. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11299. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11300. // TODO: handle transposed/permuted matrices
  11301. const int ith = params->ith;
  11302. const int nth = params->nth;
  11303. const int nc = src0->ne[0];
  11304. const int nr = ggml_nrows(src0);
  11305. // rows per thread
  11306. const int dr = (nr + nth - 1)/nth;
  11307. // row range for this thread
  11308. const int ir0 = dr*ith;
  11309. const int ir1 = MIN(ir0 + dr, nr);
  11310. for (int i1 = ir0; i1 < ir1; i1++) {
  11311. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11312. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11313. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11314. #ifndef NDEBUG
  11315. for (int i = 0; i < nc; ++i) {
  11316. //printf("p[%d] = %f\n", i, p[i]);
  11317. assert(!isnan(dy[i]));
  11318. assert(!isnan(y[i]));
  11319. }
  11320. #endif
  11321. // Jii = yi - yi*yi
  11322. // Jij = -yi*yj
  11323. // J = diag(y)-y.T*y
  11324. // dx = J * dy
  11325. // dxk = sum_i(Jki * dyi)
  11326. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11327. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11328. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11329. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11330. // dxk = -yk * dot(y, dy) + yk*dyk
  11331. // dxk = yk * (- dot(y, dy) + dyk)
  11332. // dxk = yk * (dyk - dot(y, dy))
  11333. //
  11334. // post-order:
  11335. // dot_y_dy := dot(y, dy)
  11336. // dx := dy
  11337. // dx := dx - dot_y_dy
  11338. // dx := dx * y
  11339. // linear runtime, no additional memory
  11340. float dot_y_dy = 0;
  11341. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11342. ggml_vec_cpy_f32 (nc, dx, dy);
  11343. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11344. ggml_vec_mul_f32 (nc, dx, dx, y);
  11345. #ifndef NDEBUG
  11346. for (int i = 0; i < nc; ++i) {
  11347. assert(!isnan(dx[i]));
  11348. assert(!isinf(dx[i]));
  11349. }
  11350. #endif
  11351. }
  11352. }
  11353. static void ggml_compute_forward_soft_max_back(
  11354. const struct ggml_compute_params * params,
  11355. struct ggml_tensor * dst) {
  11356. const struct ggml_tensor * src0 = dst->src[0];
  11357. switch (src0->type) {
  11358. case GGML_TYPE_F32:
  11359. {
  11360. ggml_compute_forward_soft_max_back_f32(params, dst);
  11361. } break;
  11362. default:
  11363. {
  11364. GGML_ABORT("fatal error");
  11365. }
  11366. }
  11367. }
  11368. // ggml_compute_forward_clamp
  11369. static void ggml_compute_forward_clamp_f32(
  11370. const struct ggml_compute_params * params,
  11371. struct ggml_tensor * dst) {
  11372. const struct ggml_tensor * src0 = dst->src[0];
  11373. if (params->ith != 0) {
  11374. return;
  11375. }
  11376. float min;
  11377. float max;
  11378. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11379. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11380. const int ith = params->ith;
  11381. const int nth = params->nth;
  11382. const int n = ggml_nrows(src0);
  11383. const int nc = src0->ne[0];
  11384. const size_t nb00 = src0->nb[0];
  11385. const size_t nb01 = src0->nb[1];
  11386. const size_t nb0 = dst->nb[0];
  11387. const size_t nb1 = dst->nb[1];
  11388. GGML_ASSERT( nb0 == sizeof(float));
  11389. GGML_ASSERT(nb00 == sizeof(float));
  11390. for (int j = ith; j < n; j += nth) {
  11391. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11392. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11393. for (int i = 0; i < nc; i++) {
  11394. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11395. }
  11396. }
  11397. }
  11398. static void ggml_compute_forward_clamp(
  11399. const struct ggml_compute_params * params,
  11400. struct ggml_tensor * dst) {
  11401. const struct ggml_tensor * src0 = dst->src[0];
  11402. switch (src0->type) {
  11403. case GGML_TYPE_F32:
  11404. {
  11405. ggml_compute_forward_clamp_f32(params, dst);
  11406. } break;
  11407. case GGML_TYPE_F16:
  11408. case GGML_TYPE_BF16:
  11409. case GGML_TYPE_Q4_0:
  11410. case GGML_TYPE_Q4_1:
  11411. case GGML_TYPE_Q5_0:
  11412. case GGML_TYPE_Q5_1:
  11413. case GGML_TYPE_Q8_0:
  11414. case GGML_TYPE_Q8_1:
  11415. case GGML_TYPE_Q2_K:
  11416. case GGML_TYPE_Q3_K:
  11417. case GGML_TYPE_Q4_K:
  11418. case GGML_TYPE_Q5_K:
  11419. case GGML_TYPE_Q6_K:
  11420. case GGML_TYPE_IQ2_XXS:
  11421. case GGML_TYPE_IQ2_XS:
  11422. case GGML_TYPE_IQ3_XXS:
  11423. case GGML_TYPE_IQ1_S:
  11424. case GGML_TYPE_IQ1_M:
  11425. case GGML_TYPE_IQ4_NL:
  11426. case GGML_TYPE_IQ4_XS:
  11427. case GGML_TYPE_IQ3_S:
  11428. case GGML_TYPE_IQ2_S:
  11429. case GGML_TYPE_Q8_K:
  11430. case GGML_TYPE_Q4_0_4_4:
  11431. case GGML_TYPE_Q4_0_4_8:
  11432. case GGML_TYPE_Q4_0_8_8:
  11433. case GGML_TYPE_I8:
  11434. case GGML_TYPE_I16:
  11435. case GGML_TYPE_I32:
  11436. case GGML_TYPE_I64:
  11437. case GGML_TYPE_F64:
  11438. case GGML_TYPE_COUNT:
  11439. {
  11440. GGML_ABORT("fatal error");
  11441. }
  11442. }
  11443. }
  11444. // ggml_compute_forward_rope
  11445. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11446. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11447. return 1 - MIN(1, MAX(0, y));
  11448. }
  11449. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11450. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11451. static void rope_yarn(
  11452. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11453. float * cos_theta, float * sin_theta) {
  11454. // Get n-d rotational scaling corrected for extrapolation
  11455. float theta_interp = freq_scale * theta_extrap;
  11456. float theta = theta_interp;
  11457. if (ext_factor != 0.0f) {
  11458. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11459. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11460. // Get n-d magnitude scaling corrected for interpolation
  11461. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11462. }
  11463. *cos_theta = cosf(theta) * mscale;
  11464. *sin_theta = sinf(theta) * mscale;
  11465. }
  11466. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11467. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11468. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11469. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11470. }
  11471. static void ggml_rope_cache_init(
  11472. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11473. float * cache, float sin_sign, float theta_scale) {
  11474. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11475. float theta = theta_base;
  11476. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11477. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11478. rope_yarn(
  11479. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11480. );
  11481. cache[i0 + 1] *= sin_sign;
  11482. theta *= theta_scale;
  11483. }
  11484. }
  11485. GGML_CALL void ggml_rope_yarn_corr_dims(
  11486. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11487. ) {
  11488. // start and end correction dims
  11489. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11490. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11491. dims[0] = MAX(0, start);
  11492. dims[1] = MIN(n_dims - 1, end);
  11493. }
  11494. static void ggml_compute_forward_rope_f32(
  11495. const struct ggml_compute_params * params,
  11496. struct ggml_tensor * dst,
  11497. const bool forward) {
  11498. const struct ggml_tensor * src0 = dst->src[0];
  11499. const struct ggml_tensor * src1 = dst->src[1];
  11500. const struct ggml_tensor * src2 = dst->src[2];
  11501. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11502. //const int n_past = ((int32_t *) dst->op_params)[0];
  11503. const int n_dims = ((int32_t *) dst->op_params)[1];
  11504. const int mode = ((int32_t *) dst->op_params)[2];
  11505. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11506. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11507. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11508. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11509. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11510. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11511. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11512. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11513. GGML_TENSOR_UNARY_OP_LOCALS
  11514. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11515. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11516. GGML_ASSERT(nb00 == sizeof(float));
  11517. const int ith = params->ith;
  11518. const int nth = params->nth;
  11519. const int nr = ggml_nrows(dst);
  11520. GGML_ASSERT(n_dims <= ne0);
  11521. GGML_ASSERT(n_dims % 2 == 0);
  11522. // rows per thread
  11523. const int dr = (nr + nth - 1)/nth;
  11524. // row range for this thread
  11525. const int ir0 = dr*ith;
  11526. const int ir1 = MIN(ir0 + dr, nr);
  11527. // row index used to determine which thread to use
  11528. int ir = 0;
  11529. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11530. float corr_dims[2];
  11531. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11532. const bool is_neox = mode & 2;
  11533. const float * freq_factors = NULL;
  11534. if (src2 != NULL) {
  11535. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11536. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11537. freq_factors = (const float *) src2->data;
  11538. }
  11539. // backward process uses inverse rotation by cos and sin.
  11540. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11541. // this essentially just switches the sign of sin.
  11542. const float sin_sign = forward ? 1.0f : -1.0f;
  11543. const int32_t * pos = (const int32_t *) src1->data;
  11544. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11545. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11546. const int64_t p = pos[i2];
  11547. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11548. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11549. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11550. if (ir++ < ir0) continue;
  11551. if (ir > ir1) break;
  11552. if (!is_neox) {
  11553. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11554. const float cos_theta = cache[i0 + 0];
  11555. const float sin_theta = cache[i0 + 1];
  11556. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11557. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11558. const float x0 = src[0];
  11559. const float x1 = src[1];
  11560. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11561. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11562. }
  11563. } else {
  11564. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11565. const int64_t ic = i0/2;
  11566. const float cos_theta = cache[i0 + 0];
  11567. const float sin_theta = cache[i0 + 1];
  11568. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11569. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11570. const float x0 = src[0];
  11571. const float x1 = src[n_dims/2];
  11572. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11573. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11574. }
  11575. }
  11576. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11577. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11578. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11579. dst_data[0] = src[0];
  11580. dst_data[1] = src[1];
  11581. }
  11582. }
  11583. }
  11584. }
  11585. }
  11586. // TODO: deduplicate f16/f32 code
  11587. static void ggml_compute_forward_rope_f16(
  11588. const struct ggml_compute_params * params,
  11589. struct ggml_tensor * dst,
  11590. const bool forward) {
  11591. const struct ggml_tensor * src0 = dst->src[0];
  11592. const struct ggml_tensor * src1 = dst->src[1];
  11593. const struct ggml_tensor * src2 = dst->src[2];
  11594. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11595. //const int n_past = ((int32_t *) dst->op_params)[0];
  11596. const int n_dims = ((int32_t *) dst->op_params)[1];
  11597. const int mode = ((int32_t *) dst->op_params)[2];
  11598. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11599. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11600. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11601. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11602. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11603. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11604. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11605. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11606. GGML_TENSOR_UNARY_OP_LOCALS
  11607. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11608. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11609. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11610. const int ith = params->ith;
  11611. const int nth = params->nth;
  11612. const int nr = ggml_nrows(dst);
  11613. GGML_ASSERT(n_dims <= ne0);
  11614. GGML_ASSERT(n_dims % 2 == 0);
  11615. // rows per thread
  11616. const int dr = (nr + nth - 1)/nth;
  11617. // row range for this thread
  11618. const int ir0 = dr*ith;
  11619. const int ir1 = MIN(ir0 + dr, nr);
  11620. // row index used to determine which thread to use
  11621. int ir = 0;
  11622. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11623. float corr_dims[2];
  11624. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11625. const bool is_neox = mode & 2;
  11626. const float * freq_factors = NULL;
  11627. if (src2 != NULL) {
  11628. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11629. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11630. freq_factors = (const float *) src2->data;
  11631. }
  11632. // backward process uses inverse rotation by cos and sin.
  11633. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11634. // this essentially just switches the sign of sin.
  11635. const float sin_sign = forward ? 1.0f : -1.0f;
  11636. const int32_t * pos = (const int32_t *) src1->data;
  11637. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11638. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11639. const int64_t p = pos[i2];
  11640. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11641. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11642. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11643. if (ir++ < ir0) continue;
  11644. if (ir > ir1) break;
  11645. if (!is_neox) {
  11646. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11647. const float cos_theta = cache[i0 + 0];
  11648. const float sin_theta = cache[i0 + 1];
  11649. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11650. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11651. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11652. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11653. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11654. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11655. }
  11656. } else {
  11657. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11658. const int64_t ic = i0/2;
  11659. const float cos_theta = cache[i0 + 0];
  11660. const float sin_theta = cache[i0 + 1];
  11661. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11662. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11663. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11664. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11665. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11666. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11667. }
  11668. }
  11669. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11670. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11671. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11672. dst_data[0] = src[0];
  11673. dst_data[1] = src[1];
  11674. }
  11675. }
  11676. }
  11677. }
  11678. }
  11679. static void ggml_compute_forward_rope(
  11680. const struct ggml_compute_params * params,
  11681. struct ggml_tensor * dst) {
  11682. const struct ggml_tensor * src0 = dst->src[0];
  11683. switch (src0->type) {
  11684. case GGML_TYPE_F16:
  11685. {
  11686. ggml_compute_forward_rope_f16(params, dst, true);
  11687. } break;
  11688. case GGML_TYPE_F32:
  11689. {
  11690. ggml_compute_forward_rope_f32(params, dst, true);
  11691. } break;
  11692. default:
  11693. {
  11694. GGML_ABORT("fatal error");
  11695. }
  11696. }
  11697. }
  11698. // ggml_compute_forward_rope_back
  11699. static void ggml_compute_forward_rope_back(
  11700. const struct ggml_compute_params * params,
  11701. struct ggml_tensor * dst) {
  11702. const struct ggml_tensor * src0 = dst->src[0];
  11703. switch (src0->type) {
  11704. case GGML_TYPE_F16:
  11705. {
  11706. ggml_compute_forward_rope_f16(params, dst, false);
  11707. } break;
  11708. case GGML_TYPE_F32:
  11709. {
  11710. ggml_compute_forward_rope_f32(params, dst, false);
  11711. } break;
  11712. default:
  11713. {
  11714. GGML_ABORT("fatal error");
  11715. }
  11716. }
  11717. }
  11718. // ggml_compute_forward_conv_transpose_1d
  11719. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11720. const struct ggml_compute_params * params,
  11721. struct ggml_tensor * dst) {
  11722. const struct ggml_tensor * src0 = dst->src[0];
  11723. const struct ggml_tensor * src1 = dst->src[1];
  11724. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11725. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11726. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11727. GGML_TENSOR_BINARY_OP_LOCALS
  11728. const int ith = params->ith;
  11729. const int nth = params->nth;
  11730. const int nk = ne00*ne01*ne02;
  11731. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11732. GGML_ASSERT(nb10 == sizeof(float));
  11733. if (ith == 0) {
  11734. memset(params->wdata, 0, params->wsize);
  11735. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11736. {
  11737. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11738. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11739. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11740. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11741. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11742. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11743. dst_data[i00*ne02 + i02] = src[i00];
  11744. }
  11745. }
  11746. }
  11747. }
  11748. // permute source data (src1) from (L x Cin) to (Cin x L)
  11749. {
  11750. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11751. ggml_fp16_t * dst_data = wdata;
  11752. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11753. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11754. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11755. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11756. }
  11757. }
  11758. }
  11759. // need to zero dst since we are accumulating into it
  11760. memset(dst->data, 0, ggml_nbytes(dst));
  11761. }
  11762. ggml_barrier(params->shared);
  11763. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11764. // total rows in dst
  11765. const int nr = ne1;
  11766. // rows per thread
  11767. const int dr = (nr + nth - 1)/nth;
  11768. // row range for this thread
  11769. const int ir0 = dr*ith;
  11770. const int ir1 = MIN(ir0 + dr, nr);
  11771. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11772. ggml_fp16_t * const wdata_src = wdata + nk;
  11773. for (int i1 = ir0; i1 < ir1; i1++) {
  11774. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11775. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11776. for (int i10 = 0; i10 < ne10; i10++) {
  11777. const int i1n = i10*ne11;
  11778. for (int i00 = 0; i00 < ne00; i00++) {
  11779. float v = 0;
  11780. ggml_vec_dot_f16(ne02, &v, 0,
  11781. (ggml_fp16_t *) wdata_src + i1n, 0,
  11782. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11783. dst_data[i10*s0 + i00] += v;
  11784. }
  11785. }
  11786. }
  11787. }
  11788. static void ggml_compute_forward_conv_transpose_1d_f32(
  11789. const struct ggml_compute_params * params,
  11790. struct ggml_tensor * dst) {
  11791. const struct ggml_tensor * src0 = dst->src[0];
  11792. const struct ggml_tensor * src1 = dst->src[1];
  11793. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11794. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11795. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11796. GGML_TENSOR_BINARY_OP_LOCALS
  11797. const int ith = params->ith;
  11798. const int nth = params->nth;
  11799. const int nk = ne00*ne01*ne02;
  11800. GGML_ASSERT(nb00 == sizeof(float));
  11801. GGML_ASSERT(nb10 == sizeof(float));
  11802. if (ith == 0) {
  11803. memset(params->wdata, 0, params->wsize);
  11804. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11805. {
  11806. float * const wdata = (float *) params->wdata + 0;
  11807. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11808. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11809. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11810. float * dst_data = wdata + i01*ne00*ne02;
  11811. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11812. dst_data[i00*ne02 + i02] = src[i00];
  11813. }
  11814. }
  11815. }
  11816. }
  11817. // prepare source data (src1)
  11818. {
  11819. float * const wdata = (float *) params->wdata + nk;
  11820. float * dst_data = wdata;
  11821. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11822. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11823. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11824. dst_data[i10*ne11 + i11] = src[i10];
  11825. }
  11826. }
  11827. }
  11828. // need to zero dst since we are accumulating into it
  11829. memset(dst->data, 0, ggml_nbytes(dst));
  11830. }
  11831. ggml_barrier(params->shared);
  11832. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11833. // total rows in dst
  11834. const int nr = ne1;
  11835. // rows per thread
  11836. const int dr = (nr + nth - 1)/nth;
  11837. // row range for this thread
  11838. const int ir0 = dr*ith;
  11839. const int ir1 = MIN(ir0 + dr, nr);
  11840. float * const wdata = (float *) params->wdata + 0;
  11841. float * const wdata_src = wdata + nk;
  11842. for (int i1 = ir0; i1 < ir1; i1++) {
  11843. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11844. float * wdata_kernel = wdata + i1*ne02*ne00;
  11845. for (int i10 = 0; i10 < ne10; i10++) {
  11846. const int i1n = i10*ne11;
  11847. for (int i00 = 0; i00 < ne00; i00++) {
  11848. float v = 0;
  11849. ggml_vec_dot_f32(ne02, &v, 0,
  11850. wdata_src + i1n, 0,
  11851. wdata_kernel + i00*ne02, 0, 1);
  11852. dst_data[i10*s0 + i00] += v;
  11853. }
  11854. }
  11855. }
  11856. }
  11857. static void ggml_compute_forward_conv_transpose_1d(
  11858. const struct ggml_compute_params * params,
  11859. struct ggml_tensor * dst) {
  11860. const struct ggml_tensor * src0 = dst->src[0];
  11861. switch (src0->type) {
  11862. case GGML_TYPE_F16:
  11863. {
  11864. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11865. } break;
  11866. case GGML_TYPE_F32:
  11867. {
  11868. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11869. } break;
  11870. default:
  11871. {
  11872. GGML_ABORT("fatal error");
  11873. }
  11874. }
  11875. }
  11876. // src0: kernel [OC, IC, KH, KW]
  11877. // src1: image [N, IC, IH, IW]
  11878. // dst: result [N, OH, OW, IC*KH*KW]
  11879. static void ggml_compute_forward_im2col_f32(
  11880. const struct ggml_compute_params * params,
  11881. struct ggml_tensor * dst) {
  11882. const struct ggml_tensor * src0 = dst->src[0];
  11883. const struct ggml_tensor * src1 = dst->src[1];
  11884. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11885. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11886. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11887. GGML_TENSOR_BINARY_OP_LOCALS;
  11888. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11889. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11890. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11891. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11892. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11893. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11894. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11895. const int ith = params->ith;
  11896. const int nth = params->nth;
  11897. const int64_t N = is_2D ? ne13 : ne12;
  11898. const int64_t IC = is_2D ? ne12 : ne11;
  11899. const int64_t IH = is_2D ? ne11 : 1;
  11900. const int64_t IW = ne10;
  11901. const int64_t KH = is_2D ? ne01 : 1;
  11902. const int64_t KW = ne00;
  11903. const int64_t OH = is_2D ? ne2 : 1;
  11904. const int64_t OW = ne1;
  11905. int ofs0 = is_2D ? nb13 : nb12;
  11906. int ofs1 = is_2D ? nb12 : nb11;
  11907. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11908. GGML_ASSERT(nb10 == sizeof(float));
  11909. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11910. {
  11911. float * const wdata = (float *) dst->data;
  11912. for (int64_t in = 0; in < N; in++) {
  11913. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11914. for (int64_t iow = 0; iow < OW; iow++) {
  11915. for (int64_t iic = ith; iic < IC; iic += nth) {
  11916. // micro kernel
  11917. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11918. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11919. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11920. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11921. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11922. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11923. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11924. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11925. } else {
  11926. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11927. }
  11928. }
  11929. }
  11930. }
  11931. }
  11932. }
  11933. }
  11934. }
  11935. }
  11936. // src0: kernel [OC, IC, KH, KW]
  11937. // src1: image [N, IC, IH, IW]
  11938. // dst: result [N, OH, OW, IC*KH*KW]
  11939. static void ggml_compute_forward_im2col_f16(
  11940. const struct ggml_compute_params * params,
  11941. struct ggml_tensor * dst) {
  11942. const struct ggml_tensor * src0 = dst->src[0];
  11943. const struct ggml_tensor * src1 = dst->src[1];
  11944. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11945. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11946. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11947. GGML_TENSOR_BINARY_OP_LOCALS;
  11948. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11949. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11950. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11951. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11952. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11953. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11954. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11955. const int ith = params->ith;
  11956. const int nth = params->nth;
  11957. const int64_t N = is_2D ? ne13 : ne12;
  11958. const int64_t IC = is_2D ? ne12 : ne11;
  11959. const int64_t IH = is_2D ? ne11 : 1;
  11960. const int64_t IW = ne10;
  11961. const int64_t KH = is_2D ? ne01 : 1;
  11962. const int64_t KW = ne00;
  11963. const int64_t OH = is_2D ? ne2 : 1;
  11964. const int64_t OW = ne1;
  11965. int ofs0 = is_2D ? nb13 : nb12;
  11966. int ofs1 = is_2D ? nb12 : nb11;
  11967. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11968. GGML_ASSERT(nb10 == sizeof(float));
  11969. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11970. {
  11971. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11972. for (int64_t in = 0; in < N; in++) {
  11973. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11974. for (int64_t iow = 0; iow < OW; iow++) {
  11975. for (int64_t iic = ith; iic < IC; iic += nth) {
  11976. // micro kernel
  11977. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11978. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11979. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11980. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11981. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11982. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11983. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11984. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11985. } else {
  11986. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11987. }
  11988. }
  11989. }
  11990. }
  11991. }
  11992. }
  11993. }
  11994. }
  11995. }
  11996. static void ggml_compute_forward_im2col(
  11997. const struct ggml_compute_params * params,
  11998. struct ggml_tensor * dst) {
  11999. switch (dst->type) {
  12000. case GGML_TYPE_F16:
  12001. {
  12002. ggml_compute_forward_im2col_f16(params, dst);
  12003. } break;
  12004. case GGML_TYPE_F32:
  12005. {
  12006. ggml_compute_forward_im2col_f32(params, dst);
  12007. } break;
  12008. default:
  12009. {
  12010. GGML_ABORT("fatal error");
  12011. }
  12012. }
  12013. }
  12014. // ggml_compute_forward_conv_transpose_2d
  12015. static void ggml_compute_forward_conv_transpose_2d(
  12016. const struct ggml_compute_params * params,
  12017. struct ggml_tensor * dst) {
  12018. const struct ggml_tensor * src0 = dst->src[0];
  12019. const struct ggml_tensor * src1 = dst->src[1];
  12020. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12021. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12022. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12023. GGML_TENSOR_BINARY_OP_LOCALS
  12024. const int ith = params->ith;
  12025. const int nth = params->nth;
  12026. const int nk = ne00*ne01*ne02*ne03;
  12027. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12028. GGML_ASSERT(nb10 == sizeof(float));
  12029. if (ith == 0) {
  12030. memset(params->wdata, 0, params->wsize);
  12031. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12032. {
  12033. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12034. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12035. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12036. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12037. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12038. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12039. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12040. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12041. }
  12042. }
  12043. }
  12044. }
  12045. }
  12046. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12047. {
  12048. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12049. for (int i12 = 0; i12 < ne12; i12++) {
  12050. for (int i11 = 0; i11 < ne11; i11++) {
  12051. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12052. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12053. for (int i10 = 0; i10 < ne10; i10++) {
  12054. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12055. }
  12056. }
  12057. }
  12058. }
  12059. memset(dst->data, 0, ggml_nbytes(dst));
  12060. }
  12061. ggml_barrier(params->shared);
  12062. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12063. // total patches in dst
  12064. const int np = ne2;
  12065. // patches per thread
  12066. const int dp = (np + nth - 1)/nth;
  12067. // patch range for this thread
  12068. const int ip0 = dp*ith;
  12069. const int ip1 = MIN(ip0 + dp, np);
  12070. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12071. ggml_fp16_t * const wdata_src = wdata + nk;
  12072. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12073. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12074. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12075. for (int i11 = 0; i11 < ne11; i11++) {
  12076. for (int i10 = 0; i10 < ne10; i10++) {
  12077. const int i1n = i11*ne10*ne12 + i10*ne12;
  12078. for (int i01 = 0; i01 < ne01; i01++) {
  12079. for (int i00 = 0; i00 < ne00; i00++) {
  12080. float v = 0;
  12081. ggml_vec_dot_f16(ne03, &v, 0,
  12082. wdata_src + i1n, 0,
  12083. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12084. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12085. }
  12086. }
  12087. }
  12088. }
  12089. }
  12090. }
  12091. // ggml_compute_forward_pool_1d_sk_p0
  12092. static void ggml_compute_forward_pool_1d_sk_p0(
  12093. const struct ggml_compute_params * params,
  12094. const enum ggml_op_pool op,
  12095. const int k,
  12096. struct ggml_tensor * dst) {
  12097. const struct ggml_tensor * src = dst->src[0];
  12098. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12099. if (params->ith != 0) {
  12100. return;
  12101. }
  12102. const char * cdata = (const char *)src->data;
  12103. const char * const data_end = cdata + ggml_nbytes(src);
  12104. float * drow = (float *)dst->data;
  12105. const int64_t rs = dst->ne[0];
  12106. while (cdata < data_end) {
  12107. const void * srow = (const void *)cdata;
  12108. int j = 0;
  12109. for (int64_t i = 0; i < rs; ++i) {
  12110. switch (op) {
  12111. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12112. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12113. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12114. }
  12115. for (int ki = 0; ki < k; ++ki) {
  12116. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12117. switch (op) {
  12118. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12119. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12120. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12121. }
  12122. ++j;
  12123. }
  12124. switch (op) {
  12125. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12126. case GGML_OP_POOL_MAX: break;
  12127. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12128. }
  12129. }
  12130. cdata += src->nb[1];
  12131. drow += rs;
  12132. }
  12133. }
  12134. // ggml_compute_forward_pool_1d
  12135. static void ggml_compute_forward_pool_1d(
  12136. const struct ggml_compute_params * params,
  12137. struct ggml_tensor * dst) {
  12138. const int32_t * opts = (const int32_t *)dst->op_params;
  12139. enum ggml_op_pool op = opts[0];
  12140. const int k0 = opts[1];
  12141. const int s0 = opts[2];
  12142. const int p0 = opts[3];
  12143. GGML_ASSERT(p0 == 0); // padding not supported
  12144. GGML_ASSERT(k0 == s0); // only s = k supported
  12145. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12146. }
  12147. // ggml_compute_forward_pool_2d
  12148. static void ggml_compute_forward_pool_2d(
  12149. const struct ggml_compute_params * params,
  12150. struct ggml_tensor * dst) {
  12151. const struct ggml_tensor * src = dst->src[0];
  12152. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12153. if (params->ith != 0) {
  12154. return;
  12155. }
  12156. const int32_t * opts = (const int32_t *)dst->op_params;
  12157. enum ggml_op_pool op = opts[0];
  12158. const int k0 = opts[1];
  12159. const int k1 = opts[2];
  12160. const int s0 = opts[3];
  12161. const int s1 = opts[4];
  12162. const int p0 = opts[5];
  12163. const int p1 = opts[6];
  12164. const char * cdata = (const char*)src->data;
  12165. const char * const data_end = cdata + ggml_nbytes(src);
  12166. const int64_t px = dst->ne[0];
  12167. const int64_t py = dst->ne[1];
  12168. const int64_t pa = px * py;
  12169. float * dplane = (float *)dst->data;
  12170. const int ka = k0 * k1;
  12171. const int offset0 = -p0;
  12172. const int offset1 = -p1;
  12173. while (cdata < data_end) {
  12174. for (int oy = 0; oy < py; ++oy) {
  12175. float * const drow = dplane + oy * px;
  12176. for (int ox = 0; ox < px; ++ox) {
  12177. float * const out = drow + ox;
  12178. switch (op) {
  12179. case GGML_OP_POOL_AVG: *out = 0; break;
  12180. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12181. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12182. }
  12183. const int ix = offset0 + ox * s0;
  12184. const int iy = offset1 + oy * s1;
  12185. for (int ky = 0; ky < k1; ++ky) {
  12186. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12187. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12188. for (int kx = 0; kx < k0; ++kx) {
  12189. int j = ix + kx;
  12190. if (j < 0 || j >= src->ne[0]) continue;
  12191. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12192. switch (op) {
  12193. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12194. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12195. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12196. }
  12197. }
  12198. }
  12199. switch (op) {
  12200. case GGML_OP_POOL_AVG: *out /= ka; break;
  12201. case GGML_OP_POOL_MAX: break;
  12202. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12203. }
  12204. }
  12205. }
  12206. cdata += src->nb[2];
  12207. dplane += pa;
  12208. }
  12209. }
  12210. // ggml_compute_forward_upscale
  12211. static void ggml_compute_forward_upscale_f32(
  12212. const struct ggml_compute_params * params,
  12213. struct ggml_tensor * dst) {
  12214. const struct ggml_tensor * src0 = dst->src[0];
  12215. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12216. const int ith = params->ith;
  12217. const int nth = params->nth;
  12218. GGML_TENSOR_UNARY_OP_LOCALS
  12219. const float sf0 = (float)ne0/src0->ne[0];
  12220. const float sf1 = (float)ne1/src0->ne[1];
  12221. const float sf2 = (float)ne2/src0->ne[2];
  12222. const float sf3 = (float)ne3/src0->ne[3];
  12223. // TODO: optimize
  12224. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12225. const int64_t i03 = i3 / sf3;
  12226. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12227. const int64_t i02 = i2 / sf2;
  12228. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12229. const int64_t i01 = i1 / sf1;
  12230. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12231. const int64_t i00 = i0 / sf0;
  12232. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12233. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12234. *y = *x;
  12235. }
  12236. }
  12237. }
  12238. }
  12239. }
  12240. static void ggml_compute_forward_upscale(
  12241. const struct ggml_compute_params * params,
  12242. struct ggml_tensor * dst) {
  12243. const struct ggml_tensor * src0 = dst->src[0];
  12244. switch (src0->type) {
  12245. case GGML_TYPE_F32:
  12246. {
  12247. ggml_compute_forward_upscale_f32(params, dst);
  12248. } break;
  12249. default:
  12250. {
  12251. GGML_ABORT("fatal error");
  12252. }
  12253. }
  12254. }
  12255. // ggml_compute_forward_pad
  12256. static void ggml_compute_forward_pad_f32(
  12257. const struct ggml_compute_params * params,
  12258. struct ggml_tensor * dst) {
  12259. const struct ggml_tensor * src0 = dst->src[0];
  12260. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12261. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12262. const int ith = params->ith;
  12263. const int nth = params->nth;
  12264. GGML_TENSOR_UNARY_OP_LOCALS
  12265. float * dst_ptr = (float *) dst->data;
  12266. // TODO: optimize
  12267. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12268. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12269. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12270. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12271. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12272. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12273. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12274. dst_ptr[dst_idx] = *src_ptr;
  12275. } else {
  12276. dst_ptr[dst_idx] = 0;
  12277. }
  12278. }
  12279. }
  12280. }
  12281. }
  12282. }
  12283. static void ggml_compute_forward_pad(
  12284. const struct ggml_compute_params * params,
  12285. struct ggml_tensor * dst) {
  12286. const struct ggml_tensor * src0 = dst->src[0];
  12287. switch (src0->type) {
  12288. case GGML_TYPE_F32:
  12289. {
  12290. ggml_compute_forward_pad_f32(params, dst);
  12291. } break;
  12292. default:
  12293. {
  12294. GGML_ABORT("fatal error");
  12295. }
  12296. }
  12297. }
  12298. // ggml_compute_forward_arange
  12299. static void ggml_compute_forward_arange_f32(
  12300. const struct ggml_compute_params * params,
  12301. struct ggml_tensor * dst) {
  12302. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12303. const int ith = params->ith;
  12304. const int nth = params->nth;
  12305. const float start = ggml_get_op_params_f32(dst, 0);
  12306. const float stop = ggml_get_op_params_f32(dst, 1);
  12307. const float step = ggml_get_op_params_f32(dst, 2);
  12308. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12309. GGML_ASSERT(ggml_nelements(dst) == steps);
  12310. for (int64_t i = ith; i < steps; i+= nth) {
  12311. float value = start + step * i;
  12312. ((float *)dst->data)[i] = value;
  12313. }
  12314. }
  12315. static void ggml_compute_forward_arange(
  12316. const struct ggml_compute_params * params,
  12317. struct ggml_tensor * dst) {
  12318. switch (dst->type) {
  12319. case GGML_TYPE_F32:
  12320. {
  12321. ggml_compute_forward_arange_f32(params, dst);
  12322. } break;
  12323. default:
  12324. {
  12325. GGML_ABORT("fatal error");
  12326. }
  12327. }
  12328. }
  12329. static void ggml_compute_forward_timestep_embedding_f32(
  12330. const struct ggml_compute_params * params,
  12331. struct ggml_tensor * dst) {
  12332. const struct ggml_tensor * src0 = dst->src[0];
  12333. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12334. const int ith = params->ith;
  12335. const int nth = params->nth;
  12336. GGML_TENSOR_UNARY_OP_LOCALS
  12337. const int dim = ggml_get_op_params_i32(dst, 0);
  12338. const int max_period = ggml_get_op_params_i32(dst, 1);
  12339. int half = dim / 2;
  12340. for (int64_t i = 0; i < ne00; i++) {
  12341. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12342. for (int64_t j = ith; j < half; j += nth) {
  12343. float timestep = ((float *)src0->data)[i];
  12344. float freq = (float)expf(-logf(max_period) * j / half);
  12345. float arg = timestep * freq;
  12346. embed_data[j] = cosf(arg);
  12347. embed_data[j + half] = sinf(arg);
  12348. }
  12349. if (dim % 2 != 0 && ith == 0) {
  12350. embed_data[dim] = 0.f;
  12351. }
  12352. }
  12353. }
  12354. static void ggml_compute_forward_timestep_embedding(
  12355. const struct ggml_compute_params * params,
  12356. struct ggml_tensor * dst) {
  12357. const struct ggml_tensor * src0 = dst->src[0];
  12358. switch (src0->type) {
  12359. case GGML_TYPE_F32:
  12360. {
  12361. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12362. } break;
  12363. default:
  12364. {
  12365. GGML_ABORT("fatal error");
  12366. }
  12367. }
  12368. }
  12369. // ggml_compute_forward_argsort
  12370. static void ggml_compute_forward_argsort_f32(
  12371. const struct ggml_compute_params * params,
  12372. struct ggml_tensor * dst) {
  12373. const struct ggml_tensor * src0 = dst->src[0];
  12374. GGML_TENSOR_UNARY_OP_LOCALS
  12375. GGML_ASSERT(nb0 == sizeof(float));
  12376. const int ith = params->ith;
  12377. const int nth = params->nth;
  12378. const int64_t nr = ggml_nrows(src0);
  12379. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12380. for (int64_t i = ith; i < nr; i += nth) {
  12381. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12382. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12383. for (int64_t j = 0; j < ne0; j++) {
  12384. dst_data[j] = j;
  12385. }
  12386. // C doesn't have a functional sort, so we do a bubble sort instead
  12387. for (int64_t j = 0; j < ne0; j++) {
  12388. for (int64_t k = j + 1; k < ne0; k++) {
  12389. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12390. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12391. int32_t tmp = dst_data[j];
  12392. dst_data[j] = dst_data[k];
  12393. dst_data[k] = tmp;
  12394. }
  12395. }
  12396. }
  12397. }
  12398. }
  12399. static void ggml_compute_forward_argsort(
  12400. const struct ggml_compute_params * params,
  12401. struct ggml_tensor * dst) {
  12402. const struct ggml_tensor * src0 = dst->src[0];
  12403. switch (src0->type) {
  12404. case GGML_TYPE_F32:
  12405. {
  12406. ggml_compute_forward_argsort_f32(params, dst);
  12407. } break;
  12408. default:
  12409. {
  12410. GGML_ABORT("fatal error");
  12411. }
  12412. }
  12413. }
  12414. // ggml_compute_forward_flash_attn_ext
  12415. static void ggml_compute_forward_flash_attn_ext_f16(
  12416. const struct ggml_compute_params * params,
  12417. const struct ggml_tensor * q,
  12418. const struct ggml_tensor * k,
  12419. const struct ggml_tensor * v,
  12420. const struct ggml_tensor * mask,
  12421. struct ggml_tensor * dst) {
  12422. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12423. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12424. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12425. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12426. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12427. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12428. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12429. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12430. const int ith = params->ith;
  12431. const int nth = params->nth;
  12432. const int64_t D = neq0;
  12433. const int64_t N = neq1;
  12434. GGML_ASSERT(ne0 == D);
  12435. GGML_ASSERT(ne2 == N);
  12436. // input tensor rows must be contiguous
  12437. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12438. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12439. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12440. GGML_ASSERT(neq0 == D);
  12441. GGML_ASSERT(nek0 == D);
  12442. GGML_ASSERT(nev0 == D);
  12443. GGML_ASSERT(neq1 == N);
  12444. GGML_ASSERT(nev0 == D);
  12445. // dst cannot be transposed or permuted
  12446. GGML_ASSERT(nb0 == sizeof(float));
  12447. GGML_ASSERT(nb0 <= nb1);
  12448. GGML_ASSERT(nb1 <= nb2);
  12449. GGML_ASSERT(nb2 <= nb3);
  12450. // broadcast factors
  12451. const int64_t rk2 = neq2/nek2;
  12452. const int64_t rk3 = neq3/nek3;
  12453. const int64_t rv2 = neq2/nev2;
  12454. const int64_t rv3 = neq3/nev3;
  12455. // parallelize by q rows using ggml_vec_dot_f32
  12456. // total rows in q
  12457. const int nr = neq1*neq2*neq3;
  12458. // rows per thread
  12459. const int dr = (nr + nth - 1)/nth;
  12460. // row range for this thread
  12461. const int ir0 = dr*ith;
  12462. const int ir1 = MIN(ir0 + dr, nr);
  12463. float scale = 1.0f;
  12464. float max_bias = 0.0f;
  12465. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12466. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12467. const uint32_t n_head = neq2;
  12468. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12469. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12470. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12471. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12472. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12473. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12474. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12475. // loop over n_batch and n_head
  12476. for (int ir = ir0; ir < ir1; ++ir) {
  12477. // q indices
  12478. const int iq3 = ir/(neq2*neq1);
  12479. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12480. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12481. const uint32_t h = iq2; // head index
  12482. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12483. float S = 0.0f; // sum
  12484. float M = -INFINITY; // maximum KQ value
  12485. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12486. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12487. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12488. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12489. if (v->type == GGML_TYPE_F16) {
  12490. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12491. } else {
  12492. memset(VKQ32, 0, D*sizeof(float));
  12493. }
  12494. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12495. // k indices
  12496. const int ik3 = iq3 / rk3;
  12497. const int ik2 = iq2 / rk2;
  12498. // v indices
  12499. const int iv3 = iq3 / rv3;
  12500. const int iv2 = iq2 / rv2;
  12501. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12502. q_to_vec_dot(pq, Q_q, D);
  12503. // online softmax / attention
  12504. // loop over n_kv and n_head_kv
  12505. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12506. for (int64_t ic = 0; ic < nek1; ++ic) {
  12507. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12508. if (mv == -INFINITY) {
  12509. continue;
  12510. }
  12511. float s; // KQ value
  12512. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12513. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12514. s = s*scale + mv; // scale KQ value and apply mask
  12515. const float Mold = M;
  12516. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12517. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12518. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12519. if (v->type== GGML_TYPE_F16) {
  12520. if (s > M) {
  12521. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12522. M = s;
  12523. ms = expf(Mold - M);
  12524. // V = V*expf(Mold - M)
  12525. ggml_vec_scale_f16(D, VKQ16, ms);
  12526. } else {
  12527. // no new maximum, ms == 1.0f, vs != 1.0f
  12528. vs = expf(s - M);
  12529. }
  12530. // V += v*expf(s - M)
  12531. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12532. } else {
  12533. if (s > M) {
  12534. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12535. M = s;
  12536. ms = expf(Mold - M);
  12537. // V = V*expf(Mold - M)
  12538. ggml_vec_scale_f32(D, VKQ32, ms);
  12539. } else {
  12540. // no new maximum, ms == 1.0f, vs != 1.0f
  12541. vs = expf(s - M);
  12542. }
  12543. v_to_float(v_data, V32, D);
  12544. // V += v*expf(s - M)
  12545. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12546. }
  12547. S = S*ms + vs; // scale and increment sum with partial sum
  12548. }
  12549. if (v->type == GGML_TYPE_F16) {
  12550. for (int64_t d = 0; d < D; ++d) {
  12551. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12552. }
  12553. }
  12554. // V /= S
  12555. const float S_inv = 1.0f/S;
  12556. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12557. // dst indices
  12558. const int i1 = iq1;
  12559. const int i2 = iq2;
  12560. const int i3 = iq3;
  12561. // original
  12562. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12563. // permute(0, 2, 1, 3)
  12564. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12565. }
  12566. }
  12567. static void ggml_compute_forward_flash_attn_ext(
  12568. const struct ggml_compute_params * params,
  12569. const struct ggml_tensor * q,
  12570. const struct ggml_tensor * k,
  12571. const struct ggml_tensor * v,
  12572. const struct ggml_tensor * mask,
  12573. struct ggml_tensor * dst) {
  12574. switch (dst->op_params[2]) {
  12575. case GGML_PREC_DEFAULT:
  12576. case GGML_PREC_F32:
  12577. {
  12578. // uses F32 accumulators
  12579. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12580. } break;
  12581. default:
  12582. {
  12583. GGML_ABORT("fatal error");
  12584. }
  12585. }
  12586. }
  12587. // ggml_compute_forward_flash_attn_back
  12588. static void ggml_compute_forward_flash_attn_back_f32(
  12589. const struct ggml_compute_params * params,
  12590. const bool masked,
  12591. struct ggml_tensor * dst) {
  12592. const struct ggml_tensor * q = dst->src[0];
  12593. const struct ggml_tensor * k = dst->src[1];
  12594. const struct ggml_tensor * v = dst->src[2];
  12595. const struct ggml_tensor * d = dst->src[3];
  12596. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12597. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12598. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12599. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12600. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12601. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12602. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12603. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12604. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12605. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12606. const int ith = params->ith;
  12607. const int nth = params->nth;
  12608. const int64_t D = neq0;
  12609. const int64_t N = neq1;
  12610. const int64_t P = nek1 - N;
  12611. const int64_t M = P + N;
  12612. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12613. const int mxDM = MAX(D, Mup);
  12614. // GGML_ASSERT(ne0 == D);
  12615. // GGML_ASSERT(ne1 == N);
  12616. GGML_ASSERT(P >= 0);
  12617. GGML_ASSERT(nbq0 == sizeof(float));
  12618. GGML_ASSERT(nbk0 == sizeof(float));
  12619. GGML_ASSERT(nbv0 == sizeof(float));
  12620. GGML_ASSERT(neq0 == D);
  12621. GGML_ASSERT(nek0 == D);
  12622. GGML_ASSERT(nev1 == D);
  12623. GGML_ASSERT(ned0 == D);
  12624. GGML_ASSERT(neq1 == N);
  12625. GGML_ASSERT(nek1 == N + P);
  12626. GGML_ASSERT(nev1 == D);
  12627. GGML_ASSERT(ned1 == N);
  12628. // dst cannot be transposed or permuted
  12629. GGML_ASSERT(nb0 == sizeof(float));
  12630. GGML_ASSERT(nb0 <= nb1);
  12631. GGML_ASSERT(nb1 <= nb2);
  12632. GGML_ASSERT(nb2 <= nb3);
  12633. if (ith == 0) {
  12634. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12635. }
  12636. ggml_barrier(params->shared);
  12637. const int64_t elem_q = ggml_nelements(q);
  12638. const int64_t elem_k = ggml_nelements(k);
  12639. enum ggml_type result_type = dst->type;
  12640. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12641. const size_t tsize = ggml_type_size(result_type);
  12642. const size_t offs_q = 0;
  12643. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12644. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12645. void * grad_q = (char *) dst->data;
  12646. void * grad_k = (char *) dst->data + offs_k;
  12647. void * grad_v = (char *) dst->data + offs_v;
  12648. const size_t nbgq1 = nb0*neq0;
  12649. const size_t nbgq2 = nb0*neq0*neq1;
  12650. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12651. const size_t nbgk1 = nb0*nek0;
  12652. const size_t nbgk2 = nb0*nek0*nek1;
  12653. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12654. const size_t nbgv1 = nb0*nev0;
  12655. const size_t nbgv2 = nb0*nev0*nev1;
  12656. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12657. // parallelize by k rows using ggml_vec_dot_f32
  12658. // total rows in k
  12659. const int nr = nek2*nek3;
  12660. // rows per thread
  12661. const int dr = (nr + nth - 1)/nth;
  12662. // row range for this thread
  12663. const int ir0 = dr*ith;
  12664. const int ir1 = MIN(ir0 + dr, nr);
  12665. const float scale = 1.0f/sqrtf(D);
  12666. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12667. // how often k2 (and v2) is repeated in q2
  12668. int nrep = neq2/nek2;
  12669. for (int ir = ir0; ir < ir1; ++ir) {
  12670. // q indices
  12671. const int ik3 = ir/(nek2);
  12672. const int ik2 = ir - ik3*nek2;
  12673. const int iq3 = ik3;
  12674. const int id3 = ik3;
  12675. const int iv3 = ik3;
  12676. const int iv2 = ik2;
  12677. for (int irep = 0; irep < nrep; ++irep) {
  12678. const int iq2 = ik2 + irep*nek2;
  12679. const int id2 = iq2;
  12680. // (ik2 + irep*nek2) % nek2 == ik2
  12681. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12682. const int id1 = iq1;
  12683. // not sure about CACHE_LINE_SIZE_F32..
  12684. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12685. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12686. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12687. for (int i = M; i < Mup; ++i) {
  12688. S[i] = -INFINITY;
  12689. }
  12690. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12691. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12692. // k indices
  12693. const int ik1 = ic;
  12694. // S indices
  12695. const int i1 = ik1;
  12696. ggml_vec_dot_f32(neq0,
  12697. S + i1, 0,
  12698. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12699. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12700. }
  12701. // scale
  12702. ggml_vec_scale_f32(masked_begin, S, scale);
  12703. for (int64_t i = masked_begin; i < M; i++) {
  12704. S[i] = -INFINITY;
  12705. }
  12706. // softmax
  12707. // exclude known -INF S[..] values from max and loop
  12708. // dont forget to set their SM values to zero
  12709. {
  12710. float max = -INFINITY;
  12711. ggml_vec_max_f32(masked_begin, &max, S);
  12712. ggml_float sum = 0.0;
  12713. {
  12714. #ifdef GGML_SOFT_MAX_ACCELERATE
  12715. max = -max;
  12716. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12717. vvexpf(SM, SM, &Mup);
  12718. ggml_vec_sum_f32(Mup, &sum, SM);
  12719. #else
  12720. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12721. #endif
  12722. }
  12723. assert(sum > 0.0);
  12724. sum = 1.0/sum;
  12725. ggml_vec_scale_f32(masked_begin, SM, sum);
  12726. }
  12727. // step-by-step explanation
  12728. {
  12729. // forward-process shape grads from backward process
  12730. // parallel_for ik2,ik3:
  12731. // for irep:
  12732. // iq2 = ik2 + irep*nek2
  12733. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12734. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12735. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12736. // for iq1:
  12737. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12738. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12739. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12740. // S0 = -Inf [D,1,1,1]
  12741. // ~S1[i] = dot(kcur[:D,i], qcur)
  12742. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12743. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12744. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12745. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12746. // ~S5[i] = dot(vcur[:,i], S4)
  12747. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12748. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12749. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12750. // dst backward-/ grad[dst] = d
  12751. //
  12752. // output gradients with their dependencies:
  12753. //
  12754. // grad[kcur] = grad[S1].T @ qcur
  12755. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12756. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12757. // grad[S4] = grad[S5] @ vcur
  12758. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12759. // grad[qcur] = grad[S1] @ kcur
  12760. // grad[vcur] = grad[S5].T @ S4
  12761. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12762. //
  12763. // in post-order:
  12764. //
  12765. // S1 = qcur @ kcur.T
  12766. // S2 = S1 * scale
  12767. // S3 = diag_mask_inf(S2, P)
  12768. // S4 = softmax(S3)
  12769. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12770. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12771. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12772. // grad[qcur] = grad[S1] @ kcur
  12773. // grad[kcur] = grad[S1].T @ qcur
  12774. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12775. //
  12776. // using less variables (SM=S4):
  12777. //
  12778. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12779. // SM = softmax(S)
  12780. // S = d[:D,iq1,iq2,iq3] @ vcur
  12781. // dot_SM_gradSM = dot(SM, S)
  12782. // S = SM * (S - dot(SM, S))
  12783. // S = diag_mask_zero(S, P) * scale
  12784. //
  12785. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12786. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12787. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12788. }
  12789. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12790. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12791. // for ic:
  12792. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12793. // exclude known future zero S[..] values from operation
  12794. ggml_vec_set_f32(masked_begin, S, 0);
  12795. for (int64_t ic = 0; ic < D; ++ic) {
  12796. ggml_vec_mad_f32(masked_begin,
  12797. S,
  12798. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12799. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12800. }
  12801. // S = SM * (S - dot(SM, S))
  12802. float dot_SM_gradSM = 0;
  12803. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12804. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12805. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12806. // S = diag_mask_zero(S, P) * scale
  12807. // already done by above ggml_vec_set_f32
  12808. // exclude known zero S[..] values from operation
  12809. ggml_vec_scale_f32(masked_begin, S, scale);
  12810. // S shape [M,1]
  12811. // SM shape [M,1]
  12812. // kcur shape [D,M]
  12813. // qcur shape [D,1]
  12814. // vcur shape [M,D]
  12815. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12816. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12817. // for ic:
  12818. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12819. // exclude known zero S[..] values from loop
  12820. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12821. ggml_vec_mad_f32(D,
  12822. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12823. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12824. S[ic]);
  12825. }
  12826. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12827. // for ic:
  12828. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12829. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12830. // exclude known zero S[..] values from loop
  12831. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12832. ggml_vec_mad_f32(D,
  12833. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12834. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12835. S[ic]);
  12836. }
  12837. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12838. // for ic:
  12839. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12840. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12841. // exclude known zero SM[..] values from mad
  12842. for (int64_t ic = 0; ic < D; ++ic) {
  12843. ggml_vec_mad_f32(masked_begin,
  12844. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12845. SM,
  12846. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12847. }
  12848. }
  12849. }
  12850. }
  12851. }
  12852. static void ggml_compute_forward_flash_attn_back(
  12853. const struct ggml_compute_params * params,
  12854. const bool masked,
  12855. struct ggml_tensor * dst) {
  12856. const struct ggml_tensor * q = dst->src[0];
  12857. switch (q->type) {
  12858. case GGML_TYPE_F32:
  12859. {
  12860. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12861. } break;
  12862. default:
  12863. {
  12864. GGML_ABORT("fatal error");
  12865. }
  12866. }
  12867. }
  12868. // ggml_compute_forward_ssm_conv
  12869. static void ggml_compute_forward_ssm_conv_f32(
  12870. const struct ggml_compute_params * params,
  12871. struct ggml_tensor * dst) {
  12872. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12873. const struct ggml_tensor * src1 = dst->src[1]; // x
  12874. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12875. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12876. const int ith = params->ith;
  12877. const int nth = params->nth;
  12878. const int nc = src2->ne[0]; // d_conv
  12879. const int nr = src0->ne[1]; // d_inner
  12880. const int n_t = src1->ne[1]; // n_tokens
  12881. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12882. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12883. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12884. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12885. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12886. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12887. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12888. // for use with the destination state offset between sequences
  12889. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12890. // rows per thread
  12891. const int dr = (nr + nth - 1)/nth;
  12892. // row range for this thread
  12893. const int ir0 = dr*ith;
  12894. const int ir1 = MIN(ir0 + dr, nr);
  12895. const int ir = ir1 - ir0;
  12896. if (n_kv > 1) {
  12897. // multiple sequences means it's hard to know when it's the first time a state is read,
  12898. // so copy them all over to the destination, just to be sure.
  12899. for (int i3 = 0; i3 < n_kv; ++i3) {
  12900. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12901. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12902. // can't use memcpy because of d_conv vs d_conv - 1
  12903. for (int i1 = 0; i1 < ir; ++i1) {
  12904. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12905. // copy s0 to last (d_conv - 1) columns of s
  12906. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12907. }
  12908. }
  12909. }
  12910. }
  12911. for (int i2 = 0; i2 < n_t; ++i2) {
  12912. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12913. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12914. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12915. float * s0; // {d_conv - 1, d_inner, n_kv}
  12916. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12917. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12918. int ne0s0;
  12919. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12920. // avoid needing to copy the state for the first token
  12921. if (i2 == 0) {
  12922. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12923. ne0s0 = src0->ne[0];
  12924. } else {
  12925. // the source is the last (d_conv - 1) columns of the destination
  12926. s0 = s + 1;
  12927. ne0s0 = nc;
  12928. }
  12929. // d_inner
  12930. for (int i1 = 0; i1 < ir; ++i1) {
  12931. // shift state left
  12932. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12933. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12934. }
  12935. // insert x on the last column
  12936. s[(nc - 1) + i1*nc] = x0[i1];
  12937. }
  12938. // handle copies when there are multiple output states
  12939. for (int i3 = 1; i3 < n_kv; ++i3) {
  12940. int32_t seq = sq[i3];
  12941. if (0 <= seq && seq < n_kv) {
  12942. float * s1 = s + (seq - sq[0])*nc*nr;
  12943. memcpy(s1, s, nc*ir*sizeof(float));
  12944. } else {
  12945. // stop at negative or too big seq_ids
  12946. break;
  12947. }
  12948. }
  12949. // it seems a little faster when this is separate from the state shift
  12950. for (int i1 = 0; i1 < ir; ++i1) {
  12951. // rowwise dot product
  12952. float sumf = 0.0f;
  12953. for (int i0 = 0; i0 < nc; ++i0) {
  12954. int i = i0 + i1*nc;
  12955. sumf += s[i] * c[i];
  12956. }
  12957. x[i1] = sumf;
  12958. }
  12959. }
  12960. }
  12961. static void ggml_compute_forward_ssm_conv(
  12962. const struct ggml_compute_params * params,
  12963. struct ggml_tensor * dst) {
  12964. switch (dst->src[0]->type) {
  12965. case GGML_TYPE_F32:
  12966. {
  12967. ggml_compute_forward_ssm_conv_f32(params, dst);
  12968. } break;
  12969. default:
  12970. {
  12971. GGML_ABORT("fatal error");
  12972. }
  12973. }
  12974. }
  12975. // ggml_compute_forward_ssm_scan
  12976. static void ggml_compute_forward_ssm_scan_f32(
  12977. const struct ggml_compute_params * params,
  12978. struct ggml_tensor * dst) {
  12979. const struct ggml_tensor * src0 = dst->src[0]; // s
  12980. const struct ggml_tensor * src1 = dst->src[1]; // x
  12981. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12982. const struct ggml_tensor * src3 = dst->src[3]; // A
  12983. const struct ggml_tensor * src4 = dst->src[4]; // B
  12984. const struct ggml_tensor * src5 = dst->src[5]; // C
  12985. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12986. const int ith = params->ith;
  12987. const int nth = params->nth;
  12988. const int64_t nc = src0->ne[0]; // d_state
  12989. const int64_t nr = src0->ne[1]; // d_inner
  12990. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12991. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12992. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12993. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12994. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12995. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12996. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12997. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12998. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12999. // required for the dot product between s and C, and when copying the states
  13000. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13001. // required for per-sequence offsets for states
  13002. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13003. // required to get correct offset for state destination (i.e. src1->nb[2])
  13004. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13005. // rows per thread
  13006. const int dr = (nr + nth - 1)/nth;
  13007. // row range for this thread
  13008. const int ir0 = dr*ith;
  13009. const int ir1 = MIN(ir0 + dr, nr);
  13010. const int ir = ir1 - ir0;
  13011. if (n_kv > 1) {
  13012. // it's hard to know if the source states have already been copied
  13013. // when there are multiple, so copy them already.
  13014. for (int i3 = 0; i3 < n_kv; ++i3) {
  13015. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13016. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13017. memcpy(s, s0, nc*ir*sizeof(float));
  13018. }
  13019. }
  13020. for (int i2 = 0; i2 < n_t; ++i2) {
  13021. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13022. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13023. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13024. float * s0;
  13025. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13026. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13027. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13028. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13029. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13030. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13031. // avoid needing to copy the state for the first token
  13032. if (i2 == 0) {
  13033. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13034. } else {
  13035. // otherwise the source is the same as the destination
  13036. s0 = s;
  13037. }
  13038. // d_inner
  13039. for (int i1 = 0; i1 < ir; ++i1) {
  13040. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13041. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13042. float x_dt = x[i1] * dt_soft_plus;
  13043. float sumf = 0.0f;
  13044. // d_state
  13045. for (int i0 = 0; i0 < nc; ++i0) {
  13046. int i = i0 + i1*nc;
  13047. // state = prev_state * dA + dB * x
  13048. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13049. // y = rowwise_dotprod(state, C)
  13050. sumf += state * C[i0];
  13051. s[i] = state;
  13052. }
  13053. y[i1] = sumf;
  13054. }
  13055. // handle copies when there are multiple output states
  13056. for (int i3 = 1; i3 < n_kv; ++i3) {
  13057. int32_t seq = sq[i3];
  13058. if (0 <= seq && seq < n_kv) {
  13059. float * s1 = s + (seq - sq[0])*nc*nr;
  13060. memcpy(s1, s, nc*ir*sizeof(float));
  13061. } else {
  13062. // stop at negative or too big seq_ids
  13063. break;
  13064. }
  13065. }
  13066. }
  13067. }
  13068. static void ggml_compute_forward_ssm_scan(
  13069. const struct ggml_compute_params * params,
  13070. struct ggml_tensor * dst) {
  13071. switch (dst->src[0]->type) {
  13072. case GGML_TYPE_F32:
  13073. {
  13074. ggml_compute_forward_ssm_scan_f32(params, dst);
  13075. } break;
  13076. default:
  13077. {
  13078. GGML_ABORT("fatal error");
  13079. }
  13080. }
  13081. }
  13082. // ggml_compute_forward_win_part
  13083. static void ggml_compute_forward_win_part_f32(
  13084. const struct ggml_compute_params * params,
  13085. struct ggml_tensor * dst) {
  13086. UNUSED(params);
  13087. const struct ggml_tensor * src0 = dst->src[0];
  13088. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13089. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13090. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13091. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13092. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13093. assert(ne00 == ne0);
  13094. assert(ne3 == nep0*nep1);
  13095. // TODO: optimize / multi-thread
  13096. for (int py = 0; py < nep1; ++py) {
  13097. for (int px = 0; px < nep0; ++px) {
  13098. const int64_t i3 = py*nep0 + px;
  13099. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13100. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13101. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13102. const int64_t i02 = py*w + i2;
  13103. const int64_t i01 = px*w + i1;
  13104. const int64_t i00 = i0;
  13105. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13106. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13107. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13108. ((float *) dst->data)[i] = 0.0f;
  13109. } else {
  13110. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13111. }
  13112. }
  13113. }
  13114. }
  13115. }
  13116. }
  13117. }
  13118. static void ggml_compute_forward_win_part(
  13119. const struct ggml_compute_params * params,
  13120. struct ggml_tensor * dst) {
  13121. const struct ggml_tensor * src0 = dst->src[0];
  13122. switch (src0->type) {
  13123. case GGML_TYPE_F32:
  13124. {
  13125. ggml_compute_forward_win_part_f32(params, dst);
  13126. } break;
  13127. default:
  13128. {
  13129. GGML_ABORT("fatal error");
  13130. }
  13131. }
  13132. }
  13133. // ggml_compute_forward_win_unpart
  13134. static void ggml_compute_forward_win_unpart_f32(
  13135. const struct ggml_compute_params * params,
  13136. struct ggml_tensor * dst) {
  13137. UNUSED(params);
  13138. const struct ggml_tensor * src0 = dst->src[0];
  13139. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13140. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13141. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13142. // padding
  13143. const int px = (w - ne1%w)%w;
  13144. //const int py = (w - ne2%w)%w;
  13145. const int npx = (px + ne1)/w;
  13146. //const int npy = (py + ne2)/w;
  13147. assert(ne0 == ne00);
  13148. // TODO: optimize / multi-thread
  13149. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13150. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13151. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13152. const int ip2 = i2/w;
  13153. const int ip1 = i1/w;
  13154. const int64_t i02 = i2%w;
  13155. const int64_t i01 = i1%w;
  13156. const int64_t i00 = i0;
  13157. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13158. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13159. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13160. }
  13161. }
  13162. }
  13163. }
  13164. static void ggml_compute_forward_win_unpart(
  13165. const struct ggml_compute_params * params,
  13166. struct ggml_tensor * dst) {
  13167. const struct ggml_tensor * src0 = dst->src[0];
  13168. switch (src0->type) {
  13169. case GGML_TYPE_F32:
  13170. {
  13171. ggml_compute_forward_win_unpart_f32(params, dst);
  13172. } break;
  13173. default:
  13174. {
  13175. GGML_ABORT("fatal error");
  13176. }
  13177. }
  13178. }
  13179. //gmml_compute_forward_unary
  13180. static void ggml_compute_forward_unary(
  13181. const struct ggml_compute_params * params,
  13182. struct ggml_tensor * dst) {
  13183. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13184. switch (op) {
  13185. case GGML_UNARY_OP_ABS:
  13186. {
  13187. ggml_compute_forward_abs(params, dst);
  13188. } break;
  13189. case GGML_UNARY_OP_SGN:
  13190. {
  13191. ggml_compute_forward_sgn(params, dst);
  13192. } break;
  13193. case GGML_UNARY_OP_NEG:
  13194. {
  13195. ggml_compute_forward_neg(params, dst);
  13196. } break;
  13197. case GGML_UNARY_OP_STEP:
  13198. {
  13199. ggml_compute_forward_step(params, dst);
  13200. } break;
  13201. case GGML_UNARY_OP_TANH:
  13202. {
  13203. ggml_compute_forward_tanh(params, dst);
  13204. } break;
  13205. case GGML_UNARY_OP_ELU:
  13206. {
  13207. ggml_compute_forward_elu(params, dst);
  13208. } break;
  13209. case GGML_UNARY_OP_RELU:
  13210. {
  13211. ggml_compute_forward_relu(params, dst);
  13212. } break;
  13213. case GGML_UNARY_OP_SIGMOID:
  13214. {
  13215. ggml_compute_forward_sigmoid(params, dst);
  13216. } break;
  13217. case GGML_UNARY_OP_GELU:
  13218. {
  13219. ggml_compute_forward_gelu(params, dst);
  13220. } break;
  13221. case GGML_UNARY_OP_GELU_QUICK:
  13222. {
  13223. ggml_compute_forward_gelu_quick(params, dst);
  13224. } break;
  13225. case GGML_UNARY_OP_SILU:
  13226. {
  13227. ggml_compute_forward_silu(params, dst);
  13228. } break;
  13229. case GGML_UNARY_OP_HARDSWISH:
  13230. {
  13231. ggml_compute_forward_hardswish(params, dst);
  13232. } break;
  13233. case GGML_UNARY_OP_HARDSIGMOID:
  13234. {
  13235. ggml_compute_forward_hardsigmoid(params, dst);
  13236. } break;
  13237. default:
  13238. {
  13239. GGML_ABORT("fatal error");
  13240. }
  13241. }
  13242. }
  13243. // ggml_compute_forward_get_rel_pos
  13244. static void ggml_compute_forward_get_rel_pos_f16(
  13245. const struct ggml_compute_params * params,
  13246. struct ggml_tensor * dst) {
  13247. UNUSED(params);
  13248. const struct ggml_tensor * src0 = dst->src[0];
  13249. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13250. GGML_TENSOR_UNARY_OP_LOCALS
  13251. const int64_t w = ne1;
  13252. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13253. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13254. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13255. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13256. const int64_t pos = (w - i1 - 1) + i2;
  13257. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13258. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13259. }
  13260. }
  13261. }
  13262. }
  13263. static void ggml_compute_forward_get_rel_pos(
  13264. const struct ggml_compute_params * params,
  13265. struct ggml_tensor * dst) {
  13266. const struct ggml_tensor * src0 = dst->src[0];
  13267. switch (src0->type) {
  13268. case GGML_TYPE_F16:
  13269. case GGML_TYPE_BF16:
  13270. {
  13271. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13272. } break;
  13273. default:
  13274. {
  13275. GGML_ABORT("fatal error");
  13276. }
  13277. }
  13278. }
  13279. // ggml_compute_forward_add_rel_pos
  13280. static void ggml_compute_forward_add_rel_pos_f32(
  13281. const struct ggml_compute_params * params,
  13282. struct ggml_tensor * dst) {
  13283. const struct ggml_tensor * src0 = dst->src[0];
  13284. const struct ggml_tensor * src1 = dst->src[1];
  13285. const struct ggml_tensor * src2 = dst->src[2];
  13286. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13287. if (!inplace) {
  13288. if (params->ith == 0) {
  13289. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13290. }
  13291. ggml_barrier(params->shared);
  13292. }
  13293. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13294. float * src1_data = (float *) src1->data;
  13295. float * src2_data = (float *) src2->data;
  13296. float * dst_data = (float *) dst->data;
  13297. const int64_t ne10 = src1->ne[0];
  13298. const int64_t ne11 = src1->ne[1];
  13299. const int64_t ne12 = src1->ne[2];
  13300. const int64_t ne13 = src1->ne[3];
  13301. const int ith = params->ith;
  13302. const int nth = params->nth;
  13303. // total patches in dst
  13304. const int np = ne13;
  13305. // patches per thread
  13306. const int dp = (np + nth - 1)/nth;
  13307. // patch range for this thread
  13308. const int ip0 = dp*ith;
  13309. const int ip1 = MIN(ip0 + dp, np);
  13310. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13311. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13312. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13313. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13314. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13315. const int64_t jp0 = jp1 + i10;
  13316. const float src1_e = src1_data[jp0];
  13317. const float src2_e = src2_data[jp0];
  13318. const int64_t jdh = jp0 * ne10;
  13319. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13320. for (int64_t j = 0; j < ne10; ++j) {
  13321. dst_data[jdh + j ] += src2_e;
  13322. dst_data[jdw + j*ne10] += src1_e;
  13323. }
  13324. }
  13325. }
  13326. }
  13327. }
  13328. }
  13329. static void ggml_compute_forward_add_rel_pos(
  13330. const struct ggml_compute_params * params,
  13331. struct ggml_tensor * dst) {
  13332. const struct ggml_tensor * src0 = dst->src[0];
  13333. switch (src0->type) {
  13334. case GGML_TYPE_F32:
  13335. {
  13336. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13337. } break;
  13338. default:
  13339. {
  13340. GGML_ABORT("fatal error");
  13341. }
  13342. }
  13343. }
  13344. // ggml_compute_forward_map_unary
  13345. static void ggml_compute_forward_map_unary_f32(
  13346. const struct ggml_compute_params * params,
  13347. struct ggml_tensor * dst,
  13348. const ggml_unary_op_f32_t fun) {
  13349. const struct ggml_tensor * src0 = dst->src[0];
  13350. if (params->ith != 0) {
  13351. return;
  13352. }
  13353. assert(ggml_is_contiguous_1(src0));
  13354. assert(ggml_is_contiguous_1(dst));
  13355. assert(ggml_are_same_shape(src0, dst));
  13356. const int n = ggml_nrows(src0);
  13357. const int nc = src0->ne[0];
  13358. for (int i = 0; i < n; i++) {
  13359. fun(nc,
  13360. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13361. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13362. }
  13363. }
  13364. static void ggml_compute_forward_map_unary(
  13365. const struct ggml_compute_params * params,
  13366. struct ggml_tensor * dst,
  13367. const ggml_unary_op_f32_t fun) {
  13368. const struct ggml_tensor * src0 = dst->src[0];
  13369. switch (src0->type) {
  13370. case GGML_TYPE_F32:
  13371. {
  13372. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13373. } break;
  13374. default:
  13375. {
  13376. GGML_ABORT("fatal error");
  13377. }
  13378. }
  13379. }
  13380. // ggml_compute_forward_map_binary
  13381. static void ggml_compute_forward_map_binary_f32(
  13382. const struct ggml_compute_params * params,
  13383. struct ggml_tensor * dst,
  13384. const ggml_binary_op_f32_t fun) {
  13385. const struct ggml_tensor * src0 = dst->src[0];
  13386. const struct ggml_tensor * src1 = dst->src[1];
  13387. if (params->ith != 0) {
  13388. return;
  13389. }
  13390. assert(ggml_is_contiguous_1(src0));
  13391. assert(ggml_is_contiguous_1(src1));
  13392. assert(ggml_is_contiguous_1(dst));
  13393. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13394. const int n = ggml_nrows(src0);
  13395. const int nc = src0->ne[0];
  13396. for (int i = 0; i < n; i++) {
  13397. fun(nc,
  13398. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13399. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13400. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13401. }
  13402. }
  13403. static void ggml_compute_forward_map_binary(
  13404. const struct ggml_compute_params * params,
  13405. struct ggml_tensor * dst,
  13406. const ggml_binary_op_f32_t fun) {
  13407. const struct ggml_tensor * src0 = dst->src[0];
  13408. switch (src0->type) {
  13409. case GGML_TYPE_F32:
  13410. {
  13411. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13412. } break;
  13413. default:
  13414. {
  13415. GGML_ABORT("fatal error");
  13416. }
  13417. }
  13418. }
  13419. // ggml_compute_forward_map_custom1
  13420. static void ggml_compute_forward_map_custom1_f32(
  13421. const struct ggml_compute_params * params,
  13422. struct ggml_tensor * dst,
  13423. const ggml_custom1_op_f32_t fun) {
  13424. const struct ggml_tensor * a = dst->src[0];
  13425. if (params->ith != 0) {
  13426. return;
  13427. }
  13428. fun(dst, a);
  13429. }
  13430. // ggml_compute_forward_map_custom2
  13431. static void ggml_compute_forward_map_custom2_f32(
  13432. const struct ggml_compute_params * params,
  13433. struct ggml_tensor * dst,
  13434. const ggml_custom2_op_f32_t fun) {
  13435. const struct ggml_tensor * a = dst->src[0];
  13436. const struct ggml_tensor * b = dst->src[1];
  13437. if (params->ith != 0) {
  13438. return;
  13439. }
  13440. fun(dst, a, b);
  13441. }
  13442. // ggml_compute_forward_map_custom3
  13443. static void ggml_compute_forward_map_custom3_f32(
  13444. const struct ggml_compute_params * params,
  13445. struct ggml_tensor * dst,
  13446. const ggml_custom3_op_f32_t fun) {
  13447. const struct ggml_tensor * a = dst->src[0];
  13448. const struct ggml_tensor * b = dst->src[1];
  13449. const struct ggml_tensor * c = dst->src[1];
  13450. if (params->ith != 0) {
  13451. return;
  13452. }
  13453. fun(dst, a, b, c);
  13454. }
  13455. // ggml_compute_forward_map_custom1
  13456. static void ggml_compute_forward_map_custom1(
  13457. const struct ggml_compute_params * params,
  13458. struct ggml_tensor * dst) {
  13459. const struct ggml_tensor * a = dst->src[0];
  13460. struct ggml_map_custom1_op_params p;
  13461. memcpy(&p, dst->op_params, sizeof(p));
  13462. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13463. }
  13464. // ggml_compute_forward_map_custom2
  13465. static void ggml_compute_forward_map_custom2(
  13466. const struct ggml_compute_params * params,
  13467. struct ggml_tensor * dst) {
  13468. const struct ggml_tensor * a = dst->src[0];
  13469. const struct ggml_tensor * b = dst->src[1];
  13470. struct ggml_map_custom2_op_params p;
  13471. memcpy(&p, dst->op_params, sizeof(p));
  13472. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13473. }
  13474. // ggml_compute_forward_map_custom3
  13475. static void ggml_compute_forward_map_custom3(
  13476. const struct ggml_compute_params * params,
  13477. struct ggml_tensor * dst) {
  13478. const struct ggml_tensor * a = dst->src[0];
  13479. const struct ggml_tensor * b = dst->src[1];
  13480. const struct ggml_tensor * c = dst->src[2];
  13481. struct ggml_map_custom3_op_params p;
  13482. memcpy(&p, dst->op_params, sizeof(p));
  13483. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13484. }
  13485. // ggml_compute_forward_cross_entropy_loss
  13486. static void ggml_compute_forward_cross_entropy_loss_f32(
  13487. const struct ggml_compute_params * params,
  13488. struct ggml_tensor * dst) {
  13489. const struct ggml_tensor * src0 = dst->src[0];
  13490. const struct ggml_tensor * src1 = dst->src[1];
  13491. GGML_ASSERT(ggml_is_contiguous(src0));
  13492. GGML_ASSERT(ggml_is_contiguous(src1));
  13493. GGML_ASSERT(ggml_is_scalar(dst));
  13494. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13495. const int ith = params->ith;
  13496. const int nth = params->nth;
  13497. float * sums = (float *) params->wdata;
  13498. // TODO: handle transposed/permuted matrices
  13499. const int nc = src0->ne[0];
  13500. const int nr = ggml_nrows(src0);
  13501. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13502. if (ith == 0) {
  13503. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13504. }
  13505. ggml_barrier(params->shared);
  13506. const double eps = 1e-9;
  13507. // rows per thread
  13508. const int dr = (nr + nth - 1)/nth;
  13509. // row range for this thread
  13510. const int ir0 = dr*ith;
  13511. const int ir1 = MIN(ir0 + dr, nr);
  13512. for (int i1 = ir0; i1 < ir1; i1++) {
  13513. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13514. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13515. float * st = ((float *) params->wdata) + nth + ith*nc;
  13516. #ifndef NDEBUG
  13517. for (int i = 0; i < nc; ++i) {
  13518. //printf("p[%d] = %f\n", i, p[i]);
  13519. assert(!isnan(s0[i]));
  13520. assert(!isnan(s1[i]));
  13521. }
  13522. #endif
  13523. // soft_max
  13524. float max = -INFINITY;
  13525. ggml_vec_max_f32(nc, &max, s0);
  13526. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13527. assert(sum > 0.0);
  13528. sum = (1.0 - eps) / sum;
  13529. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13530. ggml_vec_scale_f32(nc, st, sum);
  13531. ggml_vec_add1_f32(nc, st, st, eps);
  13532. ggml_vec_log_f32(nc, st, st);
  13533. ggml_vec_mul_f32(nc, st, st, s1);
  13534. float st_sum = 0;
  13535. ggml_vec_sum_f32(nc, &st_sum, st);
  13536. sums[ith] += st_sum;
  13537. #ifndef NDEBUG
  13538. for (int i = 0; i < nc; ++i) {
  13539. assert(!isnan(st[i]));
  13540. assert(!isinf(st[i]));
  13541. }
  13542. #endif
  13543. }
  13544. ggml_barrier(params->shared);
  13545. if (ith == 0) {
  13546. float * dp = (float *) dst->data;
  13547. ggml_vec_sum_f32(nth, dp, sums);
  13548. dp[0] *= -1.0f / (float) nr;
  13549. }
  13550. }
  13551. static void ggml_compute_forward_cross_entropy_loss(
  13552. const struct ggml_compute_params * params,
  13553. struct ggml_tensor * dst) {
  13554. const struct ggml_tensor * src0 = dst->src[0];
  13555. switch (src0->type) {
  13556. case GGML_TYPE_F32:
  13557. {
  13558. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13559. } break;
  13560. default:
  13561. {
  13562. GGML_ABORT("fatal error");
  13563. }
  13564. }
  13565. }
  13566. // ggml_compute_forward_cross_entropy_loss_back
  13567. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13568. const struct ggml_compute_params * params,
  13569. struct ggml_tensor * dst) {
  13570. const struct ggml_tensor * src0 = dst->src[0];
  13571. const struct ggml_tensor * src1 = dst->src[1];
  13572. const struct ggml_tensor * opt0 = dst->src[2];
  13573. GGML_ASSERT(ggml_is_contiguous(dst));
  13574. GGML_ASSERT(ggml_is_contiguous(src0));
  13575. GGML_ASSERT(ggml_is_contiguous(src1));
  13576. GGML_ASSERT(ggml_is_contiguous(opt0));
  13577. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13578. const int64_t ith = params->ith;
  13579. const int64_t nth = params->nth;
  13580. const double eps = 1e-9;
  13581. // TODO: handle transposed/permuted matrices
  13582. const int64_t nc = src0->ne[0];
  13583. const int64_t nr = ggml_nrows(src0);
  13584. // rows per thread
  13585. const int64_t dr = (nr + nth - 1)/nth;
  13586. // row range for this thread
  13587. const int64_t ir0 = dr*ith;
  13588. const int64_t ir1 = MIN(ir0 + dr, nr);
  13589. float * d = (float *) opt0->data;
  13590. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13591. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13592. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13593. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13594. #ifndef NDEBUG
  13595. for (int i = 0; i < nc; ++i) {
  13596. //printf("p[%d] = %f\n", i, p[i]);
  13597. assert(!isnan(s0[i]));
  13598. assert(!isnan(s1[i]));
  13599. }
  13600. #endif
  13601. // soft_max
  13602. float max = -INFINITY;
  13603. ggml_vec_max_f32(nc, &max, s0);
  13604. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13605. assert(sum > 0.0);
  13606. sum = (1.0 - eps) / sum;
  13607. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13608. ggml_vec_scale_f32(nc, ds0, sum);
  13609. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13610. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13611. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13612. #ifndef NDEBUG
  13613. for (int i = 0; i < nc; ++i) {
  13614. assert(!isnan(ds0[i]));
  13615. assert(!isinf(ds0[i]));
  13616. }
  13617. #endif
  13618. }
  13619. }
  13620. static void ggml_compute_forward_cross_entropy_loss_back(
  13621. const struct ggml_compute_params * params,
  13622. struct ggml_tensor * dst) {
  13623. const struct ggml_tensor * src0 = dst->src[0];
  13624. switch (src0->type) {
  13625. case GGML_TYPE_F32:
  13626. {
  13627. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13628. } break;
  13629. default:
  13630. {
  13631. GGML_ABORT("fatal error");
  13632. }
  13633. }
  13634. }
  13635. /////////////////////////////////
  13636. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13637. GGML_ASSERT(params);
  13638. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13639. return;
  13640. }
  13641. switch (tensor->op) {
  13642. case GGML_OP_DUP:
  13643. {
  13644. ggml_compute_forward_dup(params, tensor);
  13645. } break;
  13646. case GGML_OP_ADD:
  13647. {
  13648. ggml_compute_forward_add(params, tensor);
  13649. } break;
  13650. case GGML_OP_ADD1:
  13651. {
  13652. ggml_compute_forward_add1(params, tensor);
  13653. } break;
  13654. case GGML_OP_ACC:
  13655. {
  13656. ggml_compute_forward_acc(params, tensor);
  13657. } break;
  13658. case GGML_OP_SUB:
  13659. {
  13660. ggml_compute_forward_sub(params, tensor);
  13661. } break;
  13662. case GGML_OP_MUL:
  13663. {
  13664. ggml_compute_forward_mul(params, tensor);
  13665. } break;
  13666. case GGML_OP_DIV:
  13667. {
  13668. ggml_compute_forward_div(params, tensor);
  13669. } break;
  13670. case GGML_OP_SQR:
  13671. {
  13672. ggml_compute_forward_sqr(params, tensor);
  13673. } break;
  13674. case GGML_OP_SQRT:
  13675. {
  13676. ggml_compute_forward_sqrt(params, tensor);
  13677. } break;
  13678. case GGML_OP_LOG:
  13679. {
  13680. ggml_compute_forward_log(params, tensor);
  13681. } break;
  13682. case GGML_OP_SUM:
  13683. {
  13684. ggml_compute_forward_sum(params, tensor);
  13685. } break;
  13686. case GGML_OP_SUM_ROWS:
  13687. {
  13688. ggml_compute_forward_sum_rows(params, tensor);
  13689. } break;
  13690. case GGML_OP_MEAN:
  13691. {
  13692. ggml_compute_forward_mean(params, tensor);
  13693. } break;
  13694. case GGML_OP_ARGMAX:
  13695. {
  13696. ggml_compute_forward_argmax(params, tensor);
  13697. } break;
  13698. case GGML_OP_REPEAT:
  13699. {
  13700. ggml_compute_forward_repeat(params, tensor);
  13701. } break;
  13702. case GGML_OP_REPEAT_BACK:
  13703. {
  13704. ggml_compute_forward_repeat_back(params, tensor);
  13705. } break;
  13706. case GGML_OP_CONCAT:
  13707. {
  13708. ggml_compute_forward_concat(params, tensor);
  13709. } break;
  13710. case GGML_OP_SILU_BACK:
  13711. {
  13712. ggml_compute_forward_silu_back(params, tensor);
  13713. } break;
  13714. case GGML_OP_NORM:
  13715. {
  13716. ggml_compute_forward_norm(params, tensor);
  13717. } break;
  13718. case GGML_OP_RMS_NORM:
  13719. {
  13720. ggml_compute_forward_rms_norm(params, tensor);
  13721. } break;
  13722. case GGML_OP_RMS_NORM_BACK:
  13723. {
  13724. ggml_compute_forward_rms_norm_back(params, tensor);
  13725. } break;
  13726. case GGML_OP_GROUP_NORM:
  13727. {
  13728. ggml_compute_forward_group_norm(params, tensor);
  13729. } break;
  13730. case GGML_OP_MUL_MAT:
  13731. {
  13732. ggml_compute_forward_mul_mat(params, tensor);
  13733. } break;
  13734. case GGML_OP_MUL_MAT_ID:
  13735. {
  13736. ggml_compute_forward_mul_mat_id(params, tensor);
  13737. } break;
  13738. case GGML_OP_OUT_PROD:
  13739. {
  13740. ggml_compute_forward_out_prod(params, tensor);
  13741. } break;
  13742. case GGML_OP_SCALE:
  13743. {
  13744. ggml_compute_forward_scale(params, tensor);
  13745. } break;
  13746. case GGML_OP_SET:
  13747. {
  13748. ggml_compute_forward_set(params, tensor);
  13749. } break;
  13750. case GGML_OP_CPY:
  13751. {
  13752. ggml_compute_forward_cpy(params, tensor);
  13753. } break;
  13754. case GGML_OP_CONT:
  13755. {
  13756. ggml_compute_forward_cont(params, tensor);
  13757. } break;
  13758. case GGML_OP_RESHAPE:
  13759. {
  13760. ggml_compute_forward_reshape(params, tensor);
  13761. } break;
  13762. case GGML_OP_VIEW:
  13763. {
  13764. ggml_compute_forward_view(params, tensor);
  13765. } break;
  13766. case GGML_OP_PERMUTE:
  13767. {
  13768. ggml_compute_forward_permute(params, tensor);
  13769. } break;
  13770. case GGML_OP_TRANSPOSE:
  13771. {
  13772. ggml_compute_forward_transpose(params, tensor);
  13773. } break;
  13774. case GGML_OP_GET_ROWS:
  13775. {
  13776. ggml_compute_forward_get_rows(params, tensor);
  13777. } break;
  13778. case GGML_OP_GET_ROWS_BACK:
  13779. {
  13780. ggml_compute_forward_get_rows_back(params, tensor);
  13781. } break;
  13782. case GGML_OP_DIAG:
  13783. {
  13784. ggml_compute_forward_diag(params, tensor);
  13785. } break;
  13786. case GGML_OP_DIAG_MASK_INF:
  13787. {
  13788. ggml_compute_forward_diag_mask_inf(params, tensor);
  13789. } break;
  13790. case GGML_OP_DIAG_MASK_ZERO:
  13791. {
  13792. ggml_compute_forward_diag_mask_zero(params, tensor);
  13793. } break;
  13794. case GGML_OP_SOFT_MAX:
  13795. {
  13796. ggml_compute_forward_soft_max(params, tensor);
  13797. } break;
  13798. case GGML_OP_SOFT_MAX_BACK:
  13799. {
  13800. ggml_compute_forward_soft_max_back(params, tensor);
  13801. } break;
  13802. case GGML_OP_ROPE:
  13803. {
  13804. ggml_compute_forward_rope(params, tensor);
  13805. } break;
  13806. case GGML_OP_ROPE_BACK:
  13807. {
  13808. ggml_compute_forward_rope_back(params, tensor);
  13809. } break;
  13810. case GGML_OP_CLAMP:
  13811. {
  13812. ggml_compute_forward_clamp(params, tensor);
  13813. } break;
  13814. case GGML_OP_CONV_TRANSPOSE_1D:
  13815. {
  13816. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13817. } break;
  13818. case GGML_OP_IM2COL:
  13819. {
  13820. ggml_compute_forward_im2col(params, tensor);
  13821. } break;
  13822. case GGML_OP_CONV_TRANSPOSE_2D:
  13823. {
  13824. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13825. } break;
  13826. case GGML_OP_POOL_1D:
  13827. {
  13828. ggml_compute_forward_pool_1d(params, tensor);
  13829. } break;
  13830. case GGML_OP_POOL_2D:
  13831. {
  13832. ggml_compute_forward_pool_2d(params, tensor);
  13833. } break;
  13834. case GGML_OP_UPSCALE:
  13835. {
  13836. ggml_compute_forward_upscale(params, tensor);
  13837. } break;
  13838. case GGML_OP_PAD:
  13839. {
  13840. ggml_compute_forward_pad(params, tensor);
  13841. } break;
  13842. case GGML_OP_ARANGE:
  13843. {
  13844. ggml_compute_forward_arange(params, tensor);
  13845. } break;
  13846. case GGML_OP_TIMESTEP_EMBEDDING:
  13847. {
  13848. ggml_compute_forward_timestep_embedding(params, tensor);
  13849. } break;
  13850. case GGML_OP_ARGSORT:
  13851. {
  13852. ggml_compute_forward_argsort(params, tensor);
  13853. } break;
  13854. case GGML_OP_LEAKY_RELU:
  13855. {
  13856. ggml_compute_forward_leaky_relu(params, tensor);
  13857. } break;
  13858. case GGML_OP_FLASH_ATTN_EXT:
  13859. {
  13860. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13861. } break;
  13862. case GGML_OP_FLASH_ATTN_BACK:
  13863. {
  13864. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13865. GGML_ASSERT(t == 0 || t == 1);
  13866. bool masked = t != 0;
  13867. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13868. } break;
  13869. case GGML_OP_SSM_CONV:
  13870. {
  13871. ggml_compute_forward_ssm_conv(params, tensor);
  13872. } break;
  13873. case GGML_OP_SSM_SCAN:
  13874. {
  13875. ggml_compute_forward_ssm_scan(params, tensor);
  13876. } break;
  13877. case GGML_OP_WIN_PART:
  13878. {
  13879. ggml_compute_forward_win_part(params, tensor);
  13880. } break;
  13881. case GGML_OP_WIN_UNPART:
  13882. {
  13883. ggml_compute_forward_win_unpart(params, tensor);
  13884. } break;
  13885. case GGML_OP_UNARY:
  13886. {
  13887. ggml_compute_forward_unary(params, tensor);
  13888. } break;
  13889. case GGML_OP_GET_REL_POS:
  13890. {
  13891. ggml_compute_forward_get_rel_pos(params, tensor);
  13892. } break;
  13893. case GGML_OP_ADD_REL_POS:
  13894. {
  13895. ggml_compute_forward_add_rel_pos(params, tensor);
  13896. } break;
  13897. case GGML_OP_MAP_UNARY:
  13898. {
  13899. ggml_unary_op_f32_t fun;
  13900. memcpy(&fun, tensor->op_params, sizeof(fun));
  13901. ggml_compute_forward_map_unary(params, tensor, fun);
  13902. }
  13903. break;
  13904. case GGML_OP_MAP_BINARY:
  13905. {
  13906. ggml_binary_op_f32_t fun;
  13907. memcpy(&fun, tensor->op_params, sizeof(fun));
  13908. ggml_compute_forward_map_binary(params, tensor, fun);
  13909. }
  13910. break;
  13911. case GGML_OP_MAP_CUSTOM1_F32:
  13912. {
  13913. ggml_custom1_op_f32_t fun;
  13914. memcpy(&fun, tensor->op_params, sizeof(fun));
  13915. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13916. }
  13917. break;
  13918. case GGML_OP_MAP_CUSTOM2_F32:
  13919. {
  13920. ggml_custom2_op_f32_t fun;
  13921. memcpy(&fun, tensor->op_params, sizeof(fun));
  13922. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13923. }
  13924. break;
  13925. case GGML_OP_MAP_CUSTOM3_F32:
  13926. {
  13927. ggml_custom3_op_f32_t fun;
  13928. memcpy(&fun, tensor->op_params, sizeof(fun));
  13929. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13930. }
  13931. break;
  13932. case GGML_OP_MAP_CUSTOM1:
  13933. {
  13934. ggml_compute_forward_map_custom1(params, tensor);
  13935. }
  13936. break;
  13937. case GGML_OP_MAP_CUSTOM2:
  13938. {
  13939. ggml_compute_forward_map_custom2(params, tensor);
  13940. }
  13941. break;
  13942. case GGML_OP_MAP_CUSTOM3:
  13943. {
  13944. ggml_compute_forward_map_custom3(params, tensor);
  13945. }
  13946. break;
  13947. case GGML_OP_CROSS_ENTROPY_LOSS:
  13948. {
  13949. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13950. }
  13951. break;
  13952. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13953. {
  13954. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13955. }
  13956. break;
  13957. case GGML_OP_NONE:
  13958. {
  13959. // nop
  13960. } break;
  13961. case GGML_OP_COUNT:
  13962. {
  13963. GGML_ABORT("fatal error");
  13964. }
  13965. }
  13966. }
  13967. ////////////////////////////////////////////////////////////////////////////////
  13968. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13969. size = ggml_hash_size(size);
  13970. struct ggml_hash_set result;
  13971. result.size = size;
  13972. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13973. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  13974. return result;
  13975. }
  13976. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  13977. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  13978. }
  13979. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  13980. GGML_FREE(hash_set->used);
  13981. GGML_FREE(hash_set->keys);
  13982. }
  13983. size_t ggml_hash_size(size_t min_sz) {
  13984. // next primes after powers of two
  13985. static const size_t primes[] = {
  13986. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13987. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13988. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13989. 16777259, 33554467, 67108879, 134217757, 268435459,
  13990. 536870923, 1073741827, 2147483659
  13991. };
  13992. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13993. // find the smallest prime that is larger or equal than min_sz
  13994. size_t l = 0;
  13995. size_t r = n_primes;
  13996. while (l < r) {
  13997. size_t m = (l + r)/2;
  13998. if (primes[m] < min_sz) {
  13999. l = m + 1;
  14000. } else {
  14001. r = m;
  14002. }
  14003. }
  14004. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14005. return sz;
  14006. }
  14007. struct hash_map {
  14008. struct ggml_hash_set set;
  14009. struct ggml_tensor ** vals;
  14010. };
  14011. static struct hash_map * ggml_new_hash_map(size_t size) {
  14012. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14013. result->set = ggml_hash_set_new(size);
  14014. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14015. return result;
  14016. }
  14017. static void ggml_hash_map_free(struct hash_map * map) {
  14018. ggml_hash_set_free(&map->set);
  14019. GGML_FREE(map->vals);
  14020. GGML_FREE(map);
  14021. }
  14022. // gradient checkpointing
  14023. static struct ggml_tensor * ggml_recompute_graph_node(
  14024. struct ggml_context * ctx,
  14025. struct ggml_cgraph * graph,
  14026. struct hash_map * replacements,
  14027. struct ggml_tensor * node) {
  14028. if (node == NULL) {
  14029. return NULL;
  14030. }
  14031. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14032. return node;
  14033. }
  14034. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14035. return node;
  14036. }
  14037. int count_children = 0;
  14038. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14039. if (node->src[k]) {
  14040. ++count_children;
  14041. }
  14042. }
  14043. if (count_children == 0) {
  14044. return node;
  14045. }
  14046. size_t i = ggml_hash_find(&replacements->set, node);
  14047. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14048. if (replacements->set.keys[i] == node) {
  14049. return replacements->vals[i];
  14050. }
  14051. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14052. // insert clone into replacements
  14053. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14054. replacements->set.keys[i] = node;
  14055. replacements->vals[i] = clone;
  14056. clone->op = node->op;
  14057. clone->grad = node->grad;
  14058. clone->flags = node->flags;
  14059. clone->extra = node->extra;
  14060. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14061. clone->nb[k] = node->nb[k];
  14062. }
  14063. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14064. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14065. }
  14066. if (node->view_src != NULL) {
  14067. clone->data = (node->view_src->data == NULL)
  14068. ? NULL // view_src not yet allocated
  14069. : (char *) node->view_src->data // view_src already allocated
  14070. + node->view_offs;
  14071. clone->view_src = node->view_src;
  14072. clone->view_offs = node->view_offs;
  14073. }
  14074. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14075. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14076. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14077. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14078. return clone;
  14079. }
  14080. void ggml_build_backward_gradient_checkpointing(
  14081. struct ggml_context * ctx,
  14082. struct ggml_cgraph * gf,
  14083. struct ggml_cgraph * gb,
  14084. struct ggml_cgraph * gb_tmp,
  14085. struct ggml_tensor * * checkpoints,
  14086. int n_checkpoints) {
  14087. ggml_graph_cpy(gf, gb_tmp);
  14088. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14089. if (n_checkpoints <= 0) {
  14090. ggml_graph_cpy(gb_tmp, gb);
  14091. return;
  14092. }
  14093. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14094. // insert checkpoints in replacements
  14095. for (int i = 0; i < n_checkpoints; ++i) {
  14096. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14097. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14098. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14099. replacements->set.keys[k] = checkpoints[i];
  14100. replacements->vals[k] = checkpoints[i];
  14101. }
  14102. ggml_graph_cpy(gf, gb);
  14103. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14104. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14105. // by recomputing them from checkpoints
  14106. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14107. struct ggml_tensor * node = gb_tmp->nodes[i];
  14108. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14109. // insert new tensors recomputing src, reusing already made replacements,
  14110. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14111. // recurse for input tensors,
  14112. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14113. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14114. }
  14115. // insert rewritten backward node with replacements made into resulting backward graph gb
  14116. ggml_build_forward_expand(gb, node);
  14117. }
  14118. ggml_hash_map_free(replacements);
  14119. }
  14120. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14121. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14122. if (ggml_hash_contains(zero_table, a)) {
  14123. return b;
  14124. } else {
  14125. return ggml_add_impl(ctx, a, b, false);
  14126. }
  14127. }
  14128. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set * zero_table) {
  14129. if (ggml_hash_contains(zero_table, a)) {
  14130. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14131. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14132. } else {
  14133. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14134. }
  14135. }
  14136. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14137. if (ggml_hash_contains(zero_table, a)) {
  14138. return ggml_repeat(ctx, b, a);
  14139. } else {
  14140. return ggml_add1_impl(ctx, a, b, false);
  14141. }
  14142. }
  14143. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14144. if (ggml_hash_contains(zero_table, a)) {
  14145. return ggml_neg(ctx, b);
  14146. } else {
  14147. return ggml_sub_impl(ctx, a, b, false);
  14148. }
  14149. }
  14150. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table) {
  14151. struct ggml_tensor * src0 = tensor->src[0];
  14152. struct ggml_tensor * src1 = tensor->src[1];
  14153. struct ggml_tensor * src2 = tensor->src[2];
  14154. switch (tensor->op) {
  14155. case GGML_OP_DUP:
  14156. {
  14157. if (src0->grad) {
  14158. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14159. }
  14160. } break;
  14161. case GGML_OP_ADD:
  14162. {
  14163. if (src0->grad) {
  14164. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14165. }
  14166. if (src1->grad) {
  14167. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14168. }
  14169. } break;
  14170. case GGML_OP_ADD1:
  14171. {
  14172. if (src0->grad) {
  14173. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14174. }
  14175. if (src1->grad) {
  14176. src1->grad = ggml_add_or_set(ctx,
  14177. src1->grad,
  14178. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14179. zero_table);
  14180. }
  14181. } break;
  14182. case GGML_OP_ACC:
  14183. {
  14184. if (src0->grad) {
  14185. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14186. }
  14187. if (src1->grad) {
  14188. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14189. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14190. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14191. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14192. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14193. tensor->grad,
  14194. src1->grad->ne[0],
  14195. src1->grad->ne[1],
  14196. src1->grad->ne[2],
  14197. src1->grad->ne[3],
  14198. nb1, nb2, nb3, offset);
  14199. src1->grad =
  14200. ggml_add_or_set(ctx,
  14201. src1->grad,
  14202. ggml_reshape(ctx,
  14203. ggml_cont(ctx, tensor_grad_view),
  14204. src1->grad),
  14205. zero_table);
  14206. }
  14207. } break;
  14208. case GGML_OP_SUB:
  14209. {
  14210. if (src0->grad) {
  14211. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14212. }
  14213. if (src1->grad) {
  14214. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14215. }
  14216. } break;
  14217. case GGML_OP_MUL:
  14218. {
  14219. if (src0->grad) {
  14220. src0->grad =
  14221. ggml_add_or_set(ctx,
  14222. src0->grad,
  14223. ggml_mul(ctx, src1, tensor->grad),
  14224. zero_table);
  14225. }
  14226. if (src1->grad) {
  14227. src1->grad =
  14228. ggml_add_or_set(ctx,
  14229. src1->grad,
  14230. ggml_mul(ctx, src0, tensor->grad),
  14231. zero_table);
  14232. }
  14233. } break;
  14234. case GGML_OP_DIV:
  14235. {
  14236. if (src0->grad) {
  14237. src0->grad =
  14238. ggml_add_or_set(ctx,
  14239. src0->grad,
  14240. ggml_div(ctx, tensor->grad, src1),
  14241. zero_table);
  14242. }
  14243. if (src1->grad) {
  14244. src1->grad =
  14245. ggml_sub_or_set(ctx,
  14246. src1->grad,
  14247. ggml_mul(ctx,
  14248. tensor->grad,
  14249. ggml_div(ctx, tensor, src1)),
  14250. zero_table);
  14251. }
  14252. } break;
  14253. case GGML_OP_SQR:
  14254. {
  14255. if (src0->grad) {
  14256. src0->grad =
  14257. ggml_add_or_set(ctx,
  14258. src0->grad,
  14259. ggml_scale(ctx,
  14260. ggml_mul(ctx, src0, tensor->grad),
  14261. 2.0f),
  14262. zero_table);
  14263. }
  14264. } break;
  14265. case GGML_OP_SQRT:
  14266. {
  14267. if (src0->grad) {
  14268. src0->grad =
  14269. ggml_add_or_set(ctx,
  14270. src0->grad,
  14271. ggml_scale(ctx,
  14272. ggml_div(ctx,
  14273. tensor->grad,
  14274. tensor),
  14275. 0.5f),
  14276. zero_table);
  14277. }
  14278. } break;
  14279. case GGML_OP_LOG:
  14280. {
  14281. if (src0->grad) {
  14282. src0->grad =
  14283. ggml_add_or_set(ctx,
  14284. src0->grad,
  14285. ggml_div(ctx,
  14286. tensor->grad,
  14287. src0),
  14288. zero_table);
  14289. }
  14290. } break;
  14291. case GGML_OP_SUM:
  14292. {
  14293. if (src0->grad) {
  14294. src0->grad =
  14295. ggml_add1_or_set(ctx,
  14296. src0->grad,
  14297. tensor->grad,
  14298. zero_table);
  14299. }
  14300. } break;
  14301. case GGML_OP_SUM_ROWS:
  14302. {
  14303. if (src0->grad) {
  14304. src0->grad =
  14305. ggml_add_or_set(ctx,
  14306. src0->grad,
  14307. ggml_repeat(ctx,
  14308. tensor->grad,
  14309. src0->grad),
  14310. zero_table);
  14311. }
  14312. } break;
  14313. case GGML_OP_MEAN:
  14314. case GGML_OP_ARGMAX:
  14315. {
  14316. GGML_ABORT("fatal error"); // TODO: implement
  14317. }
  14318. case GGML_OP_REPEAT:
  14319. {
  14320. // necessary for llama
  14321. if (src0->grad) {
  14322. src0->grad = ggml_add_or_set(ctx,
  14323. src0->grad,
  14324. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14325. zero_table);
  14326. }
  14327. } break;
  14328. case GGML_OP_REPEAT_BACK:
  14329. {
  14330. if (src0->grad) {
  14331. // TODO: test this
  14332. src0->grad = ggml_add_or_set(ctx,
  14333. src0->grad,
  14334. ggml_repeat(ctx, tensor->grad, src0->grad),
  14335. zero_table);
  14336. }
  14337. } break;
  14338. case GGML_OP_CONCAT:
  14339. {
  14340. GGML_ABORT("fatal error"); // TODO: implement
  14341. }
  14342. case GGML_OP_SILU_BACK:
  14343. {
  14344. GGML_ABORT("fatal error"); // TODO: not implemented
  14345. }
  14346. case GGML_OP_NORM:
  14347. {
  14348. GGML_ABORT("fatal error"); // TODO: not implemented
  14349. }
  14350. case GGML_OP_RMS_NORM:
  14351. {
  14352. // necessary for llama
  14353. if (src0->grad) {
  14354. float eps;
  14355. memcpy(&eps, tensor->op_params, sizeof(float));
  14356. src0->grad = ggml_add_or_set(ctx,
  14357. src0->grad,
  14358. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14359. zero_table);
  14360. }
  14361. } break;
  14362. case GGML_OP_RMS_NORM_BACK:
  14363. {
  14364. GGML_ABORT("fatal error"); // TODO: not implemented
  14365. }
  14366. case GGML_OP_GROUP_NORM:
  14367. {
  14368. GGML_ABORT("fatal error"); // TODO: not implemented
  14369. }
  14370. case GGML_OP_MUL_MAT:
  14371. {
  14372. // https://cs231n.github.io/optimization-2/#staged
  14373. // # forward pass
  14374. // s0 = np.random.randn(5, 10)
  14375. // s1 = np.random.randn(10, 3)
  14376. // t = s0.dot(s1)
  14377. // # now suppose we had the gradient on t from above in the circuit
  14378. // dt = np.random.randn(*t.shape) # same shape as t
  14379. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14380. // ds1 = t.T.dot(dt)
  14381. // tensor.shape [m,p,qq,rr]
  14382. // src0.shape [n,m,q1,r1]
  14383. // src1.shape [n,p,qq,rr]
  14384. // necessary for llama
  14385. if (src0->grad) {
  14386. struct ggml_tensor * s1_tg =
  14387. ggml_out_prod(ctx, // [n,m,qq,rr]
  14388. src1, // [n,p,qq,rr]
  14389. tensor->grad); // [m,p,qq,rr]
  14390. const int64_t qq = s1_tg->ne[2];
  14391. const int64_t rr = s1_tg->ne[3];
  14392. const int64_t q1 = src0->ne[2];
  14393. const int64_t r1 = src0->ne[3];
  14394. const bool ne2_broadcasted = qq > q1;
  14395. const bool ne3_broadcasted = rr > r1;
  14396. if (ne2_broadcasted || ne3_broadcasted) {
  14397. // sum broadcast repetitions of s1_tg into shape of src0
  14398. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14399. }
  14400. src0->grad =
  14401. ggml_add_or_set(ctx,
  14402. src0->grad, // [n,m,q1,r1]
  14403. s1_tg, // [n,m,q1,r1]
  14404. zero_table);
  14405. }
  14406. if (src1->grad) {
  14407. src1->grad =
  14408. ggml_add_or_set(ctx,
  14409. src1->grad, // [n,p,qq,rr]
  14410. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14411. // ggml_cont(ctx, // [m,n,q1,r1]
  14412. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14413. // tensor->grad), // [m,p,qq,rr]
  14414. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14415. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14416. // // and then use ggml_out_prod
  14417. ggml_out_prod(ctx, // [n,p,qq,rr]
  14418. src0, // [n,m,q1,r1]
  14419. ggml_transpose(ctx, // [p,m,qq,rr]
  14420. tensor->grad)), // [m,p,qq,rr]
  14421. zero_table);
  14422. }
  14423. } break;
  14424. case GGML_OP_MUL_MAT_ID:
  14425. {
  14426. GGML_ABORT("fatal error"); // TODO: not implemented
  14427. }
  14428. case GGML_OP_OUT_PROD:
  14429. {
  14430. GGML_ABORT("fatal error"); // TODO: not implemented
  14431. }
  14432. case GGML_OP_SCALE:
  14433. {
  14434. // necessary for llama
  14435. if (src0->grad) {
  14436. float s;
  14437. memcpy(&s, tensor->op_params, sizeof(float));
  14438. src0->grad =
  14439. ggml_add_or_set(ctx,
  14440. src0->grad,
  14441. ggml_scale_impl(ctx, tensor->grad, s, false),
  14442. zero_table);
  14443. }
  14444. } break;
  14445. case GGML_OP_SET:
  14446. {
  14447. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14448. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14449. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14450. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14451. struct ggml_tensor * tensor_grad_view = NULL;
  14452. if (src0->grad || src1->grad) {
  14453. GGML_ASSERT(src0->type == tensor->type);
  14454. GGML_ASSERT(tensor->grad->type == tensor->type);
  14455. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14456. tensor_grad_view = ggml_view_4d(ctx,
  14457. tensor->grad,
  14458. src1->grad->ne[0],
  14459. src1->grad->ne[1],
  14460. src1->grad->ne[2],
  14461. src1->grad->ne[3],
  14462. nb1, nb2, nb3, offset);
  14463. }
  14464. if (src0->grad) {
  14465. src0->grad = ggml_add_or_set(ctx,
  14466. src0->grad,
  14467. ggml_acc_impl(ctx,
  14468. tensor->grad,
  14469. ggml_neg(ctx, tensor_grad_view),
  14470. nb1, nb2, nb3, offset, false),
  14471. zero_table);
  14472. }
  14473. if (src1->grad) {
  14474. src1->grad =
  14475. ggml_add_or_set(ctx,
  14476. src1->grad,
  14477. ggml_reshape(ctx,
  14478. ggml_cont(ctx, tensor_grad_view),
  14479. src1->grad),
  14480. zero_table);
  14481. }
  14482. } break;
  14483. case GGML_OP_CPY:
  14484. {
  14485. // necessary for llama
  14486. // cpy overwrites value of src1 by src0 and returns view(src1)
  14487. // the overwriting is mathematically equivalent to:
  14488. // tensor = src0 * 1 + src1 * 0
  14489. if (src0->grad) {
  14490. // dsrc0 = dtensor * 1
  14491. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14492. }
  14493. if (src1->grad) {
  14494. // dsrc1 = dtensor * 0 -> noop
  14495. }
  14496. } break;
  14497. case GGML_OP_CONT:
  14498. {
  14499. // same as cpy
  14500. if (src0->grad) {
  14501. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14502. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14503. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14504. }
  14505. } break;
  14506. case GGML_OP_RESHAPE:
  14507. {
  14508. // necessary for llama
  14509. if (src0->grad) {
  14510. src0->grad =
  14511. ggml_add_or_set(ctx, src0->grad,
  14512. ggml_reshape(ctx,
  14513. ggml_is_contiguous(tensor->grad)
  14514. ? tensor->grad
  14515. : ggml_cont(ctx, tensor->grad),
  14516. src0->grad),
  14517. zero_table);
  14518. }
  14519. } break;
  14520. case GGML_OP_VIEW:
  14521. {
  14522. // necessary for llama
  14523. if (src0->grad) {
  14524. size_t offset;
  14525. memcpy(&offset, tensor->op_params, sizeof(offset));
  14526. size_t nb1 = tensor->nb[1];
  14527. size_t nb2 = tensor->nb[2];
  14528. size_t nb3 = tensor->nb[3];
  14529. if (src0->type != src0->grad->type) {
  14530. // gradient is typically F32, but src0 could be other type
  14531. size_t ng = ggml_element_size(src0->grad);
  14532. size_t n0 = ggml_element_size(src0);
  14533. GGML_ASSERT(offset % n0 == 0);
  14534. GGML_ASSERT(nb1 % n0 == 0);
  14535. GGML_ASSERT(nb2 % n0 == 0);
  14536. GGML_ASSERT(nb3 % n0 == 0);
  14537. offset = (offset / n0) * ng;
  14538. nb1 = (nb1 / n0) * ng;
  14539. nb2 = (nb2 / n0) * ng;
  14540. nb3 = (nb3 / n0) * ng;
  14541. }
  14542. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14543. }
  14544. } break;
  14545. case GGML_OP_PERMUTE:
  14546. {
  14547. // necessary for llama
  14548. if (src0->grad) {
  14549. int32_t * axes = (int32_t *) tensor->op_params;
  14550. int axis0 = axes[0] & 0x3;
  14551. int axis1 = axes[1] & 0x3;
  14552. int axis2 = axes[2] & 0x3;
  14553. int axis3 = axes[3] & 0x3;
  14554. int axes_backward[4] = {0,0,0,0};
  14555. axes_backward[axis0] = 0;
  14556. axes_backward[axis1] = 1;
  14557. axes_backward[axis2] = 2;
  14558. axes_backward[axis3] = 3;
  14559. src0->grad =
  14560. ggml_add_or_set(ctx, src0->grad,
  14561. ggml_permute(ctx,
  14562. tensor->grad,
  14563. axes_backward[0],
  14564. axes_backward[1],
  14565. axes_backward[2],
  14566. axes_backward[3]),
  14567. zero_table);
  14568. }
  14569. } break;
  14570. case GGML_OP_TRANSPOSE:
  14571. {
  14572. // necessary for llama
  14573. if (src0->grad) {
  14574. src0->grad =
  14575. ggml_add_or_set(ctx, src0->grad,
  14576. ggml_transpose(ctx, tensor->grad),
  14577. zero_table);
  14578. }
  14579. } break;
  14580. case GGML_OP_GET_ROWS:
  14581. {
  14582. // necessary for llama (only for tokenizer)
  14583. if (src0->grad) {
  14584. src0->grad =
  14585. ggml_add_or_set(ctx, src0->grad,
  14586. // last ggml_get_rows_back argument src0->grad is only
  14587. // necessary to setup correct output shape
  14588. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14589. zero_table);
  14590. }
  14591. if (src1->grad) {
  14592. // noop
  14593. }
  14594. } break;
  14595. case GGML_OP_GET_ROWS_BACK:
  14596. {
  14597. GGML_ABORT("fatal error"); // TODO: not implemented
  14598. }
  14599. case GGML_OP_DIAG:
  14600. {
  14601. GGML_ABORT("fatal error"); // TODO: not implemented
  14602. }
  14603. case GGML_OP_DIAG_MASK_INF:
  14604. {
  14605. // necessary for llama
  14606. if (src0->grad) {
  14607. const int n_past = ((int32_t *) tensor->op_params)[0];
  14608. src0->grad =
  14609. ggml_add_or_set(ctx, src0->grad,
  14610. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14611. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14612. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14613. zero_table);
  14614. }
  14615. } break;
  14616. case GGML_OP_DIAG_MASK_ZERO:
  14617. {
  14618. // necessary for llama
  14619. if (src0->grad) {
  14620. const int n_past = ((int32_t *) tensor->op_params)[0];
  14621. src0->grad =
  14622. ggml_add_or_set(ctx, src0->grad,
  14623. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14624. zero_table);
  14625. }
  14626. } break;
  14627. case GGML_OP_SOFT_MAX:
  14628. {
  14629. // necessary for llama
  14630. if (src0->grad) {
  14631. src0->grad =
  14632. ggml_add_or_set(ctx, src0->grad,
  14633. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14634. zero_table);
  14635. }
  14636. } break;
  14637. case GGML_OP_SOFT_MAX_BACK:
  14638. {
  14639. GGML_ABORT("fatal error"); // TODO: not implemented
  14640. }
  14641. case GGML_OP_ROPE:
  14642. {
  14643. // necessary for llama
  14644. if (src0->grad) {
  14645. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14646. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14647. const int mode = ((int32_t *) tensor->op_params)[2];
  14648. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14649. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14650. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14651. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14652. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14653. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14654. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14655. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14656. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14657. src0->grad = ggml_add_or_set(ctx,
  14658. src0->grad,
  14659. ggml_rope_back(ctx,
  14660. tensor->grad,
  14661. src1,
  14662. src2,
  14663. n_dims,
  14664. mode,
  14665. n_ctx_orig,
  14666. freq_base,
  14667. freq_scale,
  14668. ext_factor,
  14669. attn_factor,
  14670. beta_fast,
  14671. beta_slow),
  14672. zero_table);
  14673. }
  14674. } break;
  14675. case GGML_OP_ROPE_BACK:
  14676. {
  14677. if (src0->grad) {
  14678. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14679. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14680. const int mode = ((int32_t *) tensor->op_params)[2];
  14681. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14682. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14683. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14684. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14685. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14686. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14687. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14688. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14689. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14690. src0->grad = ggml_add_or_set(ctx,
  14691. src0->grad,
  14692. ggml_rope_impl(ctx,
  14693. tensor->grad,
  14694. src1,
  14695. src2,
  14696. n_dims,
  14697. mode,
  14698. n_ctx_orig,
  14699. freq_base,
  14700. freq_scale,
  14701. ext_factor,
  14702. attn_factor,
  14703. beta_fast,
  14704. beta_slow,
  14705. false),
  14706. zero_table);
  14707. }
  14708. } break;
  14709. case GGML_OP_CLAMP:
  14710. {
  14711. GGML_ABORT("fatal error"); // TODO: not implemented
  14712. }
  14713. case GGML_OP_CONV_TRANSPOSE_1D:
  14714. {
  14715. GGML_ABORT("fatal error"); // TODO: not implemented
  14716. }
  14717. case GGML_OP_IM2COL:
  14718. {
  14719. GGML_ABORT("fatal error"); // TODO: not implemented
  14720. }
  14721. case GGML_OP_CONV_TRANSPOSE_2D:
  14722. {
  14723. GGML_ABORT("fatal error"); // TODO: not implemented
  14724. }
  14725. case GGML_OP_POOL_1D:
  14726. {
  14727. GGML_ABORT("fatal error"); // TODO: not implemented
  14728. }
  14729. case GGML_OP_POOL_2D:
  14730. {
  14731. GGML_ABORT("fatal error"); // TODO: not implemented
  14732. }
  14733. case GGML_OP_UPSCALE:
  14734. {
  14735. GGML_ABORT("fatal error"); // TODO: not implemented
  14736. }
  14737. case GGML_OP_PAD:
  14738. {
  14739. GGML_ABORT("fatal error"); // TODO: not implemented
  14740. }
  14741. case GGML_OP_ARANGE:
  14742. {
  14743. GGML_ABORT("fatal error"); // TODO: not implemented
  14744. }
  14745. case GGML_OP_TIMESTEP_EMBEDDING:
  14746. {
  14747. GGML_ABORT("fatal error"); // TODO: not implemented
  14748. }
  14749. case GGML_OP_ARGSORT:
  14750. {
  14751. GGML_ABORT("fatal error"); // TODO: not implemented
  14752. }
  14753. case GGML_OP_LEAKY_RELU:
  14754. {
  14755. GGML_ABORT("fatal error"); // TODO: not implemented
  14756. }
  14757. case GGML_OP_FLASH_ATTN_EXT:
  14758. {
  14759. struct ggml_tensor * flash_grad = NULL;
  14760. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14761. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14762. GGML_ASSERT(t == 0 || t == 1);
  14763. bool masked = t != 0;
  14764. flash_grad =
  14765. ggml_flash_attn_back(ctx,
  14766. src0,
  14767. src1,
  14768. tensor->src[2],
  14769. tensor->grad,
  14770. masked);
  14771. }
  14772. const int64_t elem_q = ggml_nelements(src0);
  14773. const int64_t elem_k = ggml_nelements(src1);
  14774. const int64_t elem_v = ggml_nelements(src2);
  14775. enum ggml_type result_type = flash_grad->type;
  14776. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14777. const size_t tsize = ggml_type_size(result_type);
  14778. const size_t offs_q = 0;
  14779. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14780. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14781. if (src0->grad) {
  14782. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14783. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14784. src0->grad = ggml_add_or_set(ctx,
  14785. src0->grad,
  14786. grad_q,
  14787. zero_table);
  14788. }
  14789. if (src1->grad) {
  14790. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14791. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14792. src1->grad = ggml_add_or_set(ctx,
  14793. src1->grad,
  14794. grad_k,
  14795. zero_table);
  14796. }
  14797. if (src2->grad) {
  14798. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14799. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14800. src2->grad = ggml_add_or_set(ctx,
  14801. src2->grad,
  14802. grad_v,
  14803. zero_table);
  14804. }
  14805. } break;
  14806. case GGML_OP_FLASH_ATTN_BACK:
  14807. {
  14808. GGML_ABORT("fatal error"); // not supported
  14809. }
  14810. case GGML_OP_SSM_CONV:
  14811. case GGML_OP_SSM_SCAN:
  14812. {
  14813. GGML_ABORT("fatal error"); // TODO: not implemented
  14814. }
  14815. case GGML_OP_WIN_PART:
  14816. case GGML_OP_WIN_UNPART:
  14817. case GGML_OP_UNARY:
  14818. {
  14819. switch (ggml_get_unary_op(tensor)) {
  14820. case GGML_UNARY_OP_ABS:
  14821. {
  14822. if (src0->grad) {
  14823. src0->grad =
  14824. ggml_add_or_set(ctx,
  14825. src0->grad,
  14826. ggml_mul(ctx,
  14827. ggml_sgn(ctx, src0),
  14828. tensor->grad),
  14829. zero_table);
  14830. }
  14831. } break;
  14832. case GGML_UNARY_OP_SGN:
  14833. {
  14834. if (src0->grad) {
  14835. // noop
  14836. }
  14837. } break;
  14838. case GGML_UNARY_OP_NEG:
  14839. {
  14840. if (src0->grad) {
  14841. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14842. }
  14843. } break;
  14844. case GGML_UNARY_OP_STEP:
  14845. {
  14846. if (src0->grad) {
  14847. // noop
  14848. }
  14849. } break;
  14850. case GGML_UNARY_OP_TANH:
  14851. {
  14852. GGML_ABORT("fatal error"); // TODO: not implemented
  14853. }
  14854. case GGML_UNARY_OP_ELU:
  14855. {
  14856. GGML_ABORT("fatal error"); // TODO: not implemented
  14857. }
  14858. case GGML_UNARY_OP_RELU:
  14859. {
  14860. if (src0->grad) {
  14861. src0->grad = ggml_add_or_set(ctx,
  14862. src0->grad,
  14863. ggml_mul(ctx,
  14864. ggml_step(ctx, src0),
  14865. tensor->grad),
  14866. zero_table);
  14867. }
  14868. } break;
  14869. case GGML_UNARY_OP_SIGMOID:
  14870. {
  14871. GGML_ABORT("fatal error"); // TODO: not implemented
  14872. }
  14873. case GGML_UNARY_OP_GELU:
  14874. {
  14875. GGML_ABORT("fatal error"); // TODO: not implemented
  14876. }
  14877. case GGML_UNARY_OP_GELU_QUICK:
  14878. {
  14879. GGML_ABORT("fatal error"); // TODO: not implemented
  14880. }
  14881. case GGML_UNARY_OP_SILU:
  14882. {
  14883. // necessary for llama
  14884. if (src0->grad) {
  14885. src0->grad = ggml_add_or_set(ctx,
  14886. src0->grad,
  14887. ggml_silu_back(ctx, src0, tensor->grad),
  14888. zero_table);
  14889. }
  14890. } break;
  14891. default:
  14892. GGML_ABORT("fatal error");
  14893. }
  14894. } break;
  14895. case GGML_OP_GET_REL_POS:
  14896. case GGML_OP_ADD_REL_POS:
  14897. case GGML_OP_MAP_UNARY:
  14898. case GGML_OP_MAP_BINARY:
  14899. case GGML_OP_MAP_CUSTOM1_F32:
  14900. case GGML_OP_MAP_CUSTOM2_F32:
  14901. case GGML_OP_MAP_CUSTOM3_F32:
  14902. case GGML_OP_MAP_CUSTOM1:
  14903. case GGML_OP_MAP_CUSTOM2:
  14904. case GGML_OP_MAP_CUSTOM3:
  14905. {
  14906. GGML_ABORT("fatal error"); // not supported
  14907. }
  14908. case GGML_OP_CROSS_ENTROPY_LOSS:
  14909. {
  14910. if (src0->grad) {
  14911. src0->grad = ggml_add_or_set(ctx,
  14912. src0->grad,
  14913. ggml_cross_entropy_loss_back(ctx,
  14914. src0,
  14915. src1,
  14916. tensor->grad),
  14917. zero_table);
  14918. }
  14919. } break;
  14920. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14921. {
  14922. GGML_ABORT("fatal error"); // not supported
  14923. }
  14924. case GGML_OP_NONE:
  14925. {
  14926. // nop
  14927. } break;
  14928. case GGML_OP_COUNT:
  14929. {
  14930. GGML_ABORT("fatal error");
  14931. }
  14932. }
  14933. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14934. if (tensor->src[i] && tensor->src[i]->grad) {
  14935. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14936. }
  14937. }
  14938. }
  14939. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14940. if (node->grad == NULL) {
  14941. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14942. // it can also happen during forward pass, if the user performs computations with constants
  14943. if (node->op != GGML_OP_NONE) {
  14944. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14945. }
  14946. }
  14947. // check if already visited
  14948. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  14949. return;
  14950. }
  14951. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14952. const int k =
  14953. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14954. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14955. /* unknown order, just fall back to using i*/ i;
  14956. if (node->src[k]) {
  14957. ggml_visit_parents(cgraph, node->src[k]);
  14958. }
  14959. }
  14960. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14961. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14962. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14963. if (strlen(node->name) == 0) {
  14964. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14965. }
  14966. cgraph->leafs[cgraph->n_leafs] = node;
  14967. cgraph->n_leafs++;
  14968. } else {
  14969. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14970. if (strlen(node->name) == 0) {
  14971. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14972. }
  14973. cgraph->nodes[cgraph->n_nodes] = node;
  14974. if (cgraph->grads) {
  14975. cgraph->grads[cgraph->n_nodes] = node->grad;
  14976. }
  14977. cgraph->n_nodes++;
  14978. }
  14979. }
  14980. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14981. if (!expand) {
  14982. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14983. ggml_graph_clear(cgraph);
  14984. }
  14985. const int n0 = cgraph->n_nodes;
  14986. ggml_visit_parents(cgraph, tensor);
  14987. const int n_new = cgraph->n_nodes - n0;
  14988. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14989. if (n_new > 0) {
  14990. // the last added node should always be starting point
  14991. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14992. }
  14993. }
  14994. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14995. ggml_build_forward_impl(cgraph, tensor, true);
  14996. }
  14997. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14998. GGML_ASSERT(gf->n_nodes > 0);
  14999. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15000. if (keep) {
  15001. for (int i = 0; i < gf->n_nodes; i++) {
  15002. struct ggml_tensor * node = gf->nodes[i];
  15003. if (node->grad) {
  15004. node->grad = ggml_dup_tensor(ctx, node);
  15005. gf->grads[i] = node->grad;
  15006. }
  15007. }
  15008. }
  15009. // remember original gradients which start with zero values
  15010. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15011. for (int i = 0; i < gf->n_nodes; i++) {
  15012. if (gf->grads[i]) {
  15013. ggml_hash_insert(&zero_table, gf->grads[i]);
  15014. }
  15015. }
  15016. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15017. struct ggml_tensor * node = gf->nodes[i];
  15018. // inplace operations to add gradients are not created by ggml_compute_backward
  15019. // use allocator to automatically make inplace operations
  15020. if (node->grad) {
  15021. ggml_compute_backward(ctx, node, &zero_table);
  15022. }
  15023. }
  15024. for (int i = 0; i < gf->n_nodes; i++) {
  15025. struct ggml_tensor * node = gf->nodes[i];
  15026. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15027. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15028. ggml_build_forward_expand(gb, node->grad);
  15029. }
  15030. }
  15031. ggml_hash_set_free(&zero_table);
  15032. }
  15033. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15034. void * ptr = *p;
  15035. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15036. *p = (void *) ((char *) ptr + size);
  15037. return ptr;
  15038. }
  15039. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15040. size_t hash_size = ggml_hash_size(size * 2);
  15041. void * p = 0;
  15042. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15043. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15044. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15045. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15046. if (grads) {
  15047. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15048. }
  15049. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15050. size_t nbytes = (size_t) p;
  15051. return nbytes;
  15052. }
  15053. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15054. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15055. }
  15056. size_t ggml_graph_overhead(void) {
  15057. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15058. }
  15059. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15060. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15061. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15062. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15063. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15064. size_t hash_size = ggml_hash_size(size * 2);
  15065. void * p = cgraph + 1;
  15066. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15067. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15068. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15069. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15070. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15071. // check that we allocated the correct amount of memory
  15072. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15073. *cgraph = (struct ggml_cgraph) {
  15074. /*.size =*/ size,
  15075. /*.n_nodes =*/ 0,
  15076. /*.n_leafs =*/ 0,
  15077. /*.nodes =*/ nodes_ptr,
  15078. /*.grads =*/ grads_ptr,
  15079. /*.leafs =*/ leafs_ptr,
  15080. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15081. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15082. };
  15083. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15084. return cgraph;
  15085. }
  15086. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15087. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15088. }
  15089. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15090. struct ggml_cgraph cgraph = {
  15091. /*.size =*/ 0,
  15092. /*.n_nodes =*/ i1 - i0,
  15093. /*.n_leafs =*/ 0,
  15094. /*.nodes =*/ cgraph0->nodes + i0,
  15095. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15096. /*.leafs =*/ NULL,
  15097. /*.hash_table =*/ { 0, NULL, NULL },
  15098. /*.order =*/ cgraph0->order,
  15099. };
  15100. return cgraph;
  15101. }
  15102. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15103. GGML_ASSERT(dst->size >= src->n_leafs);
  15104. GGML_ASSERT(dst->size >= src->n_nodes);
  15105. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15106. dst->n_leafs = src->n_leafs;
  15107. dst->n_nodes = src->n_nodes;
  15108. dst->order = src->order;
  15109. for (int i = 0; i < src->n_leafs; ++i) {
  15110. dst->leafs[i] = src->leafs[i];
  15111. }
  15112. for (int i = 0; i < src->n_nodes; ++i) {
  15113. dst->nodes[i] = src->nodes[i];
  15114. }
  15115. if (src->grads) {
  15116. GGML_ASSERT(dst->grads != NULL);
  15117. for (int i = 0; i < src->n_nodes; ++i) {
  15118. dst->grads[i] = src->grads[i];
  15119. }
  15120. }
  15121. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15122. if (src->visited_hash_set.keys[i]) {
  15123. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15124. }
  15125. }
  15126. }
  15127. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15128. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15129. ggml_graph_cpy(cgraph, result);
  15130. return result;
  15131. }
  15132. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15133. GGML_ASSERT(cgraph->grads != NULL);
  15134. for (int i = 0; i < cgraph->n_nodes; i++) {
  15135. struct ggml_tensor * grad = cgraph->grads[i];
  15136. if (grad) {
  15137. ggml_set_zero(grad);
  15138. }
  15139. }
  15140. }
  15141. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15142. cgraph->n_leafs = 0;
  15143. cgraph->n_nodes = 0;
  15144. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15145. }
  15146. //
  15147. // thread data
  15148. //
  15149. // synchronization is done via busy loops
  15150. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15151. //
  15152. #ifdef __APPLE__
  15153. //#include <os/lock.h>
  15154. //
  15155. //typedef os_unfair_lock ggml_lock_t;
  15156. //
  15157. //#define ggml_lock_init(x) UNUSED(x)
  15158. //#define ggml_lock_destroy(x) UNUSED(x)
  15159. //#define ggml_lock_lock os_unfair_lock_lock
  15160. //#define ggml_lock_unlock os_unfair_lock_unlock
  15161. //
  15162. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15163. typedef int ggml_lock_t;
  15164. #define ggml_lock_init(x) UNUSED(x)
  15165. #define ggml_lock_destroy(x) UNUSED(x)
  15166. #define ggml_lock_lock(x) UNUSED(x)
  15167. #define ggml_lock_unlock(x) UNUSED(x)
  15168. #define GGML_LOCK_INITIALIZER 0
  15169. #define ggml_thread_create pthread_create
  15170. #define ggml_thread_join pthread_join
  15171. #else
  15172. //typedef pthread_spinlock_t ggml_lock_t;
  15173. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15174. //#define ggml_lock_destroy pthread_spin_destroy
  15175. //#define ggml_lock_lock pthread_spin_lock
  15176. //#define ggml_lock_unlock pthread_spin_unlock
  15177. typedef int ggml_lock_t;
  15178. #define ggml_lock_init(x) UNUSED(x)
  15179. #define ggml_lock_destroy(x) UNUSED(x)
  15180. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15181. #define ggml_lock_lock(x) _mm_pause()
  15182. #else
  15183. #define ggml_lock_lock(x) UNUSED(x)
  15184. #endif
  15185. #define ggml_lock_unlock(x) UNUSED(x)
  15186. #define GGML_LOCK_INITIALIZER 0
  15187. #define ggml_thread_create pthread_create
  15188. #define ggml_thread_join pthread_join
  15189. #endif
  15190. // Android's libc implementation "bionic" does not support setting affinity
  15191. #if defined(__gnu_linux__)
  15192. static void set_numa_thread_affinity(int thread_n) {
  15193. if (!ggml_is_numa()) {
  15194. return;
  15195. }
  15196. int node_num;
  15197. int rv;
  15198. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15199. switch(g_state.numa.numa_strategy) {
  15200. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15201. // run thread on node_num thread_n / (threads per node)
  15202. node_num = thread_n % g_state.numa.n_nodes;
  15203. break;
  15204. case GGML_NUMA_STRATEGY_ISOLATE:
  15205. // run thread on current_node
  15206. node_num = g_state.numa.current_node;
  15207. break;
  15208. case GGML_NUMA_STRATEGY_NUMACTL:
  15209. // use the cpuset that numactl gave us
  15210. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15211. if (rv) {
  15212. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15213. }
  15214. return;
  15215. default:
  15216. return;
  15217. }
  15218. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15219. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15220. CPU_ZERO_S(setsize, cpus);
  15221. for (size_t i = 0; i < node->n_cpus; ++i) {
  15222. CPU_SET_S(node->cpus[i], setsize, cpus);
  15223. }
  15224. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15225. if (rv) {
  15226. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15227. }
  15228. CPU_FREE(cpus);
  15229. }
  15230. static void clear_numa_thread_affinity(void) {
  15231. if (!ggml_is_numa()) {
  15232. return;
  15233. }
  15234. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15235. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15236. CPU_ZERO_S(setsize, cpus);
  15237. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15238. CPU_SET_S(i, setsize, cpus);
  15239. }
  15240. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15241. if (rv) {
  15242. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15243. }
  15244. CPU_FREE(cpus);
  15245. }
  15246. #else
  15247. // TODO: Windows etc.
  15248. // (the linux implementation may also work on BSD, someone should test)
  15249. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15250. static void clear_numa_thread_affinity(void) {}
  15251. #endif
  15252. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15253. int n_tasks = 0;
  15254. if (ggml_is_empty(node)) {
  15255. // no need to multi-thread a no-op
  15256. n_tasks = 1;
  15257. return n_tasks;
  15258. }
  15259. switch (node->op) {
  15260. case GGML_OP_CPY:
  15261. case GGML_OP_DUP:
  15262. case GGML_OP_CONT:
  15263. case GGML_OP_ADD:
  15264. case GGML_OP_ADD1:
  15265. case GGML_OP_ACC:
  15266. {
  15267. n_tasks = n_threads;
  15268. } break;
  15269. case GGML_OP_SUB:
  15270. case GGML_OP_SQR:
  15271. case GGML_OP_SQRT:
  15272. case GGML_OP_LOG:
  15273. case GGML_OP_SUM:
  15274. case GGML_OP_SUM_ROWS:
  15275. case GGML_OP_MEAN:
  15276. case GGML_OP_ARGMAX:
  15277. case GGML_OP_REPEAT:
  15278. case GGML_OP_REPEAT_BACK:
  15279. case GGML_OP_LEAKY_RELU:
  15280. {
  15281. n_tasks = 1;
  15282. } break;
  15283. case GGML_OP_UNARY:
  15284. switch (ggml_get_unary_op(node)) {
  15285. case GGML_UNARY_OP_ABS:
  15286. case GGML_UNARY_OP_SGN:
  15287. case GGML_UNARY_OP_NEG:
  15288. case GGML_UNARY_OP_STEP:
  15289. case GGML_UNARY_OP_TANH:
  15290. case GGML_UNARY_OP_ELU:
  15291. case GGML_UNARY_OP_RELU:
  15292. case GGML_UNARY_OP_SIGMOID:
  15293. case GGML_UNARY_OP_HARDSWISH:
  15294. case GGML_UNARY_OP_HARDSIGMOID:
  15295. {
  15296. n_tasks = 1;
  15297. } break;
  15298. case GGML_UNARY_OP_GELU:
  15299. case GGML_UNARY_OP_GELU_QUICK:
  15300. case GGML_UNARY_OP_SILU:
  15301. {
  15302. n_tasks = n_threads;
  15303. } break;
  15304. default:
  15305. GGML_ABORT("fatal error");
  15306. }
  15307. break;
  15308. case GGML_OP_SILU_BACK:
  15309. case GGML_OP_MUL:
  15310. case GGML_OP_DIV:
  15311. case GGML_OP_NORM:
  15312. case GGML_OP_RMS_NORM:
  15313. case GGML_OP_RMS_NORM_BACK:
  15314. case GGML_OP_GROUP_NORM:
  15315. case GGML_OP_CONCAT:
  15316. case GGML_OP_MUL_MAT:
  15317. case GGML_OP_MUL_MAT_ID:
  15318. case GGML_OP_OUT_PROD:
  15319. {
  15320. n_tasks = n_threads;
  15321. } break;
  15322. case GGML_OP_GET_ROWS:
  15323. {
  15324. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15325. // decreases performance with GPU offloading
  15326. //n_tasks = n_threads;
  15327. n_tasks = 1;
  15328. } break;
  15329. case GGML_OP_SCALE:
  15330. case GGML_OP_SET:
  15331. case GGML_OP_RESHAPE:
  15332. case GGML_OP_VIEW:
  15333. case GGML_OP_PERMUTE:
  15334. case GGML_OP_TRANSPOSE:
  15335. case GGML_OP_GET_ROWS_BACK:
  15336. case GGML_OP_DIAG:
  15337. {
  15338. n_tasks = 1;
  15339. } break;
  15340. case GGML_OP_DIAG_MASK_ZERO:
  15341. case GGML_OP_DIAG_MASK_INF:
  15342. case GGML_OP_SOFT_MAX_BACK:
  15343. case GGML_OP_ROPE:
  15344. case GGML_OP_ROPE_BACK:
  15345. case GGML_OP_ADD_REL_POS:
  15346. {
  15347. n_tasks = n_threads;
  15348. } break;
  15349. case GGML_OP_CLAMP:
  15350. {
  15351. n_tasks = 1; //TODO
  15352. } break;
  15353. case GGML_OP_SOFT_MAX:
  15354. {
  15355. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15356. } break;
  15357. case GGML_OP_IM2COL:
  15358. case GGML_OP_CONV_TRANSPOSE_1D:
  15359. case GGML_OP_CONV_TRANSPOSE_2D:
  15360. {
  15361. n_tasks = n_threads;
  15362. } break;
  15363. case GGML_OP_POOL_1D:
  15364. case GGML_OP_POOL_2D:
  15365. {
  15366. n_tasks = 1;
  15367. } break;
  15368. case GGML_OP_UPSCALE:
  15369. case GGML_OP_PAD:
  15370. case GGML_OP_ARANGE:
  15371. case GGML_OP_TIMESTEP_EMBEDDING:
  15372. case GGML_OP_ARGSORT:
  15373. case GGML_OP_FLASH_ATTN_EXT:
  15374. case GGML_OP_FLASH_ATTN_BACK:
  15375. case GGML_OP_SSM_CONV:
  15376. case GGML_OP_SSM_SCAN:
  15377. {
  15378. n_tasks = n_threads;
  15379. } break;
  15380. case GGML_OP_WIN_PART:
  15381. case GGML_OP_WIN_UNPART:
  15382. case GGML_OP_GET_REL_POS:
  15383. case GGML_OP_MAP_UNARY:
  15384. case GGML_OP_MAP_BINARY:
  15385. case GGML_OP_MAP_CUSTOM1_F32:
  15386. case GGML_OP_MAP_CUSTOM2_F32:
  15387. case GGML_OP_MAP_CUSTOM3_F32:
  15388. {
  15389. n_tasks = 1;
  15390. } break;
  15391. case GGML_OP_MAP_CUSTOM1:
  15392. {
  15393. struct ggml_map_custom1_op_params p;
  15394. memcpy(&p, node->op_params, sizeof(p));
  15395. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15396. n_tasks = n_threads;
  15397. } else {
  15398. n_tasks = MIN(p.n_tasks, n_threads);
  15399. }
  15400. } break;
  15401. case GGML_OP_MAP_CUSTOM2:
  15402. {
  15403. struct ggml_map_custom2_op_params p;
  15404. memcpy(&p, node->op_params, sizeof(p));
  15405. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15406. n_tasks = n_threads;
  15407. } else {
  15408. n_tasks = MIN(p.n_tasks, n_threads);
  15409. }
  15410. } break;
  15411. case GGML_OP_MAP_CUSTOM3:
  15412. {
  15413. struct ggml_map_custom3_op_params p;
  15414. memcpy(&p, node->op_params, sizeof(p));
  15415. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15416. n_tasks = n_threads;
  15417. } else {
  15418. n_tasks = MIN(p.n_tasks, n_threads);
  15419. }
  15420. } break;
  15421. case GGML_OP_CROSS_ENTROPY_LOSS:
  15422. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15423. {
  15424. n_tasks = n_threads;
  15425. } break;
  15426. case GGML_OP_NONE:
  15427. {
  15428. n_tasks = 1;
  15429. } break;
  15430. case GGML_OP_COUNT:
  15431. {
  15432. GGML_ABORT("fatal error");
  15433. }
  15434. default:
  15435. {
  15436. fprintf(stderr, "%s: op not implemented: ", __func__);
  15437. if (node->op < GGML_OP_COUNT) {
  15438. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15439. } else {
  15440. fprintf(stderr, "%d\n", node->op);
  15441. }
  15442. GGML_ABORT("fatal error");
  15443. }
  15444. }
  15445. assert(n_tasks > 0);
  15446. return n_tasks;
  15447. }
  15448. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15449. if (n_threads <= 0) {
  15450. n_threads = GGML_DEFAULT_N_THREADS;
  15451. }
  15452. size_t work_size = 0;
  15453. struct ggml_cplan cplan;
  15454. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15455. int max_tasks = 1;
  15456. // thread scheduling for the different operations + work buffer size estimation
  15457. for (int i = 0; i < cgraph->n_nodes; i++) {
  15458. struct ggml_tensor * node = cgraph->nodes[i];
  15459. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  15460. max_tasks = MAX(max_tasks, n_tasks);
  15461. size_t cur = 0;
  15462. switch (node->op) {
  15463. case GGML_OP_CPY:
  15464. case GGML_OP_DUP:
  15465. {
  15466. if (ggml_is_quantized(node->type) ||
  15467. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15468. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15469. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15470. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15471. }
  15472. } break;
  15473. case GGML_OP_ADD:
  15474. case GGML_OP_ADD1:
  15475. {
  15476. if (ggml_is_quantized(node->src[0]->type)) {
  15477. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15478. }
  15479. } break;
  15480. case GGML_OP_ACC:
  15481. {
  15482. if (ggml_is_quantized(node->src[0]->type)) {
  15483. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15484. }
  15485. } break;
  15486. case GGML_OP_MUL_MAT:
  15487. {
  15488. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15489. if (node->src[1]->type != vec_dot_type) {
  15490. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15491. }
  15492. } break;
  15493. case GGML_OP_MUL_MAT_ID:
  15494. {
  15495. cur = 0;
  15496. const struct ggml_tensor * src0 = node->src[0];
  15497. const struct ggml_tensor * src1 = node->src[1];
  15498. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15499. if (src1->type != vec_dot_type) {
  15500. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15501. }
  15502. const int n_as = src0->ne[2];
  15503. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15504. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15505. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15506. } break;
  15507. case GGML_OP_OUT_PROD:
  15508. {
  15509. if (ggml_is_quantized(node->src[0]->type)) {
  15510. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15511. }
  15512. } break;
  15513. case GGML_OP_SOFT_MAX:
  15514. case GGML_OP_ROPE:
  15515. {
  15516. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15517. } break;
  15518. case GGML_OP_CONV_TRANSPOSE_1D:
  15519. {
  15520. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15521. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15522. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15523. const int64_t ne00 = node->src[0]->ne[0]; // K
  15524. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15525. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15526. const int64_t ne10 = node->src[1]->ne[0]; // L
  15527. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15528. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15529. node->src[0]->type == GGML_TYPE_BF16) &&
  15530. node->src[1]->type == GGML_TYPE_F32) {
  15531. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15532. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15533. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15534. node->src[1]->type == GGML_TYPE_F32) {
  15535. cur += sizeof(float)*ne00*ne01*ne02;
  15536. cur += sizeof(float)*ne10*ne11;
  15537. } else {
  15538. GGML_ABORT("fatal error");
  15539. }
  15540. } break;
  15541. case GGML_OP_CONV_TRANSPOSE_2D:
  15542. {
  15543. const int64_t ne00 = node->src[0]->ne[0]; // W
  15544. const int64_t ne01 = node->src[0]->ne[1]; // H
  15545. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15546. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15547. const int64_t ne10 = node->src[1]->ne[0]; // W
  15548. const int64_t ne11 = node->src[1]->ne[1]; // H
  15549. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15550. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15551. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15552. } break;
  15553. case GGML_OP_FLASH_ATTN_EXT:
  15554. {
  15555. const int64_t ne00 = node->src[0]->ne[0]; // D
  15556. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15557. } break;
  15558. case GGML_OP_FLASH_ATTN_BACK:
  15559. {
  15560. const int64_t D = node->src[0]->ne[0];
  15561. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15562. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15563. if (node->src[1]->type == GGML_TYPE_F32) {
  15564. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15565. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15566. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15567. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15568. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15569. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15570. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15571. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15572. }
  15573. } break;
  15574. case GGML_OP_CROSS_ENTROPY_LOSS:
  15575. {
  15576. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15577. } break;
  15578. case GGML_OP_COUNT:
  15579. {
  15580. GGML_ABORT("fatal error");
  15581. }
  15582. default:
  15583. break;
  15584. }
  15585. work_size = MAX(work_size, cur);
  15586. }
  15587. if (work_size > 0) {
  15588. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15589. }
  15590. cplan.n_threads = MIN(max_tasks, n_threads);
  15591. cplan.work_size = work_size;
  15592. cplan.work_data = NULL;
  15593. return cplan;
  15594. }
  15595. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15596. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15597. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15598. const struct ggml_cplan * cplan = state->shared->cplan;
  15599. set_numa_thread_affinity(state->ith);
  15600. struct ggml_compute_params params = {
  15601. /*.ith =*/ state->ith,
  15602. /*.nth =*/ state->shared->n_threads,
  15603. /*.wsize =*/ cplan->work_size,
  15604. /*.wdata =*/ cplan->work_data,
  15605. /*.shared=*/ state->shared,
  15606. };
  15607. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  15608. struct ggml_tensor * node = cgraph->nodes[node_n];
  15609. ggml_compute_forward(&params, node);
  15610. if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15611. state->shared->ec = GGML_STATUS_ABORTED;
  15612. }
  15613. ggml_barrier(state->shared);
  15614. if (state->shared->ec != GGML_STATUS_SUCCESS) {
  15615. break;
  15616. }
  15617. }
  15618. return 0;
  15619. }
  15620. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15621. GGML_ASSERT(cplan);
  15622. GGML_ASSERT(cplan->n_threads > 0);
  15623. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  15624. int n_threads = cplan->n_threads;
  15625. struct ggml_compute_state_shared state_shared = {
  15626. /*.cgraph =*/ cgraph,
  15627. /*.cgraph_plan =*/ cplan,
  15628. /*.n_threads =*/ n_threads,
  15629. /*.n_barrier =*/ 0,
  15630. /*.n_barrier_passed =*/ 0,
  15631. /*.abort_callback =*/ NULL,
  15632. /*.abort_callback_data =*/ NULL,
  15633. /*.current_chunk =*/ 0,
  15634. /*.ec =*/ GGML_STATUS_SUCCESS,
  15635. };
  15636. #ifdef GGML_USE_OPENMP
  15637. if (n_threads > 1) {
  15638. #pragma omp parallel num_threads(n_threads)
  15639. {
  15640. #pragma omp single
  15641. {
  15642. // update the number of threads from the actual number of threads that we got from OpenMP
  15643. n_threads = omp_get_num_threads();
  15644. state_shared.n_threads = n_threads;
  15645. }
  15646. struct ggml_compute_state worker = {
  15647. .thrd = 0,
  15648. .ith = omp_get_thread_num(),
  15649. .shared = &state_shared,
  15650. };
  15651. ggml_graph_compute_thread(&worker);
  15652. }
  15653. } else {
  15654. struct ggml_compute_state worker = {
  15655. .thrd = 0,
  15656. .ith = 0,
  15657. .shared = &state_shared,
  15658. };
  15659. ggml_graph_compute_thread(&worker);
  15660. }
  15661. #else
  15662. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15663. for (int j = 0; j < n_threads; ++j) {
  15664. workers[j] = (struct ggml_compute_state) {
  15665. .thrd = 0,
  15666. .ith = j,
  15667. .shared = &state_shared,
  15668. };
  15669. }
  15670. // create thread pool
  15671. for (int j = 1; j < n_threads; ++j) {
  15672. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15673. GGML_ASSERT(rc == 0);
  15674. UNUSED(rc);
  15675. }
  15676. // this is a work thread too
  15677. ggml_graph_compute_thread(&workers[0]);
  15678. // join or kill thread pool
  15679. if (n_threads > 1) {
  15680. for (int j = 1; j < n_threads; j++) {
  15681. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15682. GGML_ASSERT(rc == 0);
  15683. UNUSED(rc);
  15684. }
  15685. }
  15686. #endif
  15687. // don't leave affinity set on the main thread
  15688. clear_numa_thread_affinity();
  15689. return state_shared.ec;
  15690. }
  15691. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15692. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15693. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15694. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15695. return ggml_graph_compute(cgraph, &cplan);
  15696. }
  15697. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15698. for (int i = 0; i < cgraph->n_leafs; i++) {
  15699. struct ggml_tensor * leaf = cgraph->leafs[i];
  15700. if (strcmp(leaf->name, name) == 0) {
  15701. return leaf;
  15702. }
  15703. }
  15704. for (int i = 0; i < cgraph->n_nodes; i++) {
  15705. struct ggml_tensor * node = cgraph->nodes[i];
  15706. if (strcmp(node->name, name) == 0) {
  15707. return node;
  15708. }
  15709. }
  15710. return NULL;
  15711. }
  15712. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15713. const int64_t * ne = tensor->ne;
  15714. const size_t * nb = tensor->nb;
  15715. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15716. ggml_type_name(tensor->type),
  15717. ggml_op_name (tensor->op),
  15718. ggml_n_dims(tensor),
  15719. ne[0], ne[1], ne[2], ne[3],
  15720. nb[0], nb[1], nb[2], nb[3],
  15721. tensor->data,
  15722. tensor->name);
  15723. }
  15724. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15725. const int64_t * ne = tensor->ne;
  15726. const size_t * nb = tensor->nb;
  15727. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15728. arg,
  15729. ggml_type_name(tensor->type),
  15730. ggml_op_name (tensor->op),
  15731. ggml_n_dims(tensor),
  15732. ne[0], ne[1], ne[2], ne[3],
  15733. nb[0], nb[1], nb[2], nb[3],
  15734. tensor->data,
  15735. tensor->name);
  15736. }
  15737. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15738. uint64_t size_eval = 0;
  15739. // compute size of intermediate results
  15740. // TODO: does not take into account scratch buffers !!!!
  15741. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15742. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15743. }
  15744. // print
  15745. {
  15746. FILE * fout = stdout;
  15747. fprintf(fout, "\n");
  15748. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15749. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15750. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15751. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15752. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15753. // header
  15754. fprintf(fout, "\n");
  15755. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15756. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15757. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15758. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15759. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15760. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15761. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15762. }
  15763. // header
  15764. fprintf(fout, "\n");
  15765. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15766. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15767. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15768. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15769. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15770. if (cgraph->nodes[i]->src[j]) {
  15771. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15772. }
  15773. }
  15774. fprintf(fout, "\n");
  15775. }
  15776. fprintf(fout, "\n");
  15777. }
  15778. // write binary data
  15779. {
  15780. FILE * fout = ggml_fopen(fname, "wb");
  15781. if (!fout) {
  15782. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  15783. return;
  15784. }
  15785. // header
  15786. {
  15787. const uint32_t magic = GGML_FILE_MAGIC;
  15788. const uint32_t version = GGML_FILE_VERSION;
  15789. const uint32_t n_leafs = cgraph->n_leafs;
  15790. const uint32_t n_nodes = cgraph->n_nodes;
  15791. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15792. fwrite(&version, sizeof(uint32_t), 1, fout);
  15793. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15794. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15795. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15796. }
  15797. // leafs
  15798. {
  15799. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15800. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15801. const uint32_t type = tensor->type;
  15802. const uint32_t op = tensor->op;
  15803. fwrite(&type, sizeof(uint32_t), 1, fout);
  15804. fwrite(&op, sizeof(uint32_t), 1, fout);
  15805. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15806. const uint64_t ne = tensor->ne[j];
  15807. const uint64_t nb = tensor->nb[j];
  15808. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15809. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15810. }
  15811. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15812. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15813. // dump the data
  15814. // TODO: pad this to 32 byte boundary
  15815. {
  15816. const size_t size = ggml_nbytes(tensor);
  15817. fwrite(tensor->data, sizeof(char), size, fout);
  15818. }
  15819. }
  15820. }
  15821. // nodes
  15822. {
  15823. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15824. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15825. const uint32_t type = tensor->type;
  15826. const uint32_t op = tensor->op;
  15827. fwrite(&type, sizeof(uint32_t), 1, fout);
  15828. fwrite(&op, sizeof(uint32_t), 1, fout);
  15829. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15830. const uint64_t ne = tensor->ne[j];
  15831. const uint64_t nb = tensor->nb[j];
  15832. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15833. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15834. }
  15835. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15836. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15837. // output the op arguments
  15838. {
  15839. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15840. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15841. args[j] = tensor->src[j];
  15842. }
  15843. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15844. if (args[j]) {
  15845. int32_t idx = -1;
  15846. // check if leaf
  15847. {
  15848. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15849. if (args[j] == cgraph->leafs[k]) {
  15850. idx = k;
  15851. break;
  15852. }
  15853. }
  15854. }
  15855. // check if node
  15856. if (idx == -1) {
  15857. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15858. if (args[j] == cgraph->nodes[k]) {
  15859. idx = cgraph->n_leafs + k;
  15860. break;
  15861. }
  15862. }
  15863. }
  15864. if (idx == -1) {
  15865. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15866. fclose(fout);
  15867. return;
  15868. }
  15869. fwrite(&idx, sizeof(int32_t), 1, fout);
  15870. } else {
  15871. const int32_t nul = -1;
  15872. fwrite(&nul, sizeof(int32_t), 1, fout);
  15873. }
  15874. }
  15875. }
  15876. }
  15877. }
  15878. fclose(fout);
  15879. }
  15880. }
  15881. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15882. assert(*ctx_data == NULL);
  15883. assert(*ctx_eval == NULL);
  15884. struct ggml_cgraph * result = NULL;
  15885. struct ggml_tensor * data = NULL;
  15886. // read file into data
  15887. {
  15888. FILE * fin = ggml_fopen(fname, "rb");
  15889. if (!fin) {
  15890. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  15891. return result;
  15892. }
  15893. size_t fsize = 0;
  15894. fseek(fin, 0, SEEK_END);
  15895. fsize = ftell(fin);
  15896. fseek(fin, 0, SEEK_SET);
  15897. // create the data context
  15898. {
  15899. const size_t overhead = 1*ggml_tensor_overhead();
  15900. struct ggml_init_params params = {
  15901. .mem_size = fsize + overhead,
  15902. .mem_buffer = NULL,
  15903. .no_alloc = false,
  15904. };
  15905. *ctx_data = ggml_init(params);
  15906. if (!*ctx_data) {
  15907. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15908. fclose(fin);
  15909. return result;
  15910. }
  15911. }
  15912. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15913. {
  15914. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15915. if (ret != fsize) {
  15916. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15917. fclose(fin);
  15918. return result;
  15919. }
  15920. }
  15921. fclose(fin);
  15922. }
  15923. // populate result
  15924. {
  15925. char * ptr = (char *) data->data;
  15926. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15927. if (magic != GGML_FILE_MAGIC) {
  15928. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15929. return result;
  15930. }
  15931. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15932. if (version != GGML_FILE_VERSION) {
  15933. fprintf(stderr, "%s: invalid version number\n", __func__);
  15934. return result;
  15935. }
  15936. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15937. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15938. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15939. const int graph_size = MAX(n_leafs, n_nodes);
  15940. // create the data context
  15941. {
  15942. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15943. struct ggml_init_params params = {
  15944. .mem_size = size_eval + overhead,
  15945. .mem_buffer = NULL,
  15946. .no_alloc = true,
  15947. };
  15948. *ctx_eval = ggml_init(params);
  15949. if (!*ctx_eval) {
  15950. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15951. return result;
  15952. }
  15953. }
  15954. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15955. result->n_leafs = n_leafs;
  15956. result->n_nodes = n_nodes;
  15957. // leafs
  15958. {
  15959. uint32_t type;
  15960. uint32_t op;
  15961. for (uint32_t i = 0; i < n_leafs; ++i) {
  15962. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15963. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15964. int64_t ne[GGML_MAX_DIMS];
  15965. size_t nb[GGML_MAX_DIMS];
  15966. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15967. uint64_t ne_cur;
  15968. uint64_t nb_cur;
  15969. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15970. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15971. ne[j] = ne_cur;
  15972. nb[j] = nb_cur;
  15973. }
  15974. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15975. tensor->op = (enum ggml_op) op;
  15976. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15977. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15978. tensor->data = (void *) ptr;
  15979. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15980. tensor->nb[j] = nb[j];
  15981. }
  15982. result->leafs[i] = tensor;
  15983. ptr += ggml_nbytes(tensor);
  15984. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15985. }
  15986. }
  15987. ggml_set_no_alloc(*ctx_eval, false);
  15988. // nodes
  15989. {
  15990. uint32_t type;
  15991. uint32_t op;
  15992. for (uint32_t i = 0; i < n_nodes; ++i) {
  15993. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15994. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15995. enum ggml_op eop = (enum ggml_op) op;
  15996. int64_t ne[GGML_MAX_DIMS];
  15997. size_t nb[GGML_MAX_DIMS];
  15998. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15999. uint64_t ne_cur;
  16000. uint64_t nb_cur;
  16001. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16002. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16003. ne[j] = ne_cur;
  16004. nb[j] = nb_cur;
  16005. }
  16006. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16007. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16008. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16009. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16010. // parse args
  16011. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16012. const int32_t arg_idx = ptr_arg_idx[j];
  16013. if (arg_idx == -1) {
  16014. continue;
  16015. }
  16016. if (arg_idx < result->n_leafs) {
  16017. args[j] = result->leafs[arg_idx];
  16018. } else {
  16019. args[j] = result->nodes[arg_idx - result->n_leafs];
  16020. }
  16021. }
  16022. // create the tensor
  16023. // "view" operations are handled differently
  16024. // TODO: handle inplace ops - currently a copy is always made
  16025. struct ggml_tensor * tensor = NULL;
  16026. switch (eop) {
  16027. // TODO: implement other view ops
  16028. case GGML_OP_RESHAPE:
  16029. {
  16030. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16031. } break;
  16032. case GGML_OP_VIEW:
  16033. {
  16034. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16035. size_t offs;
  16036. memcpy(&offs, ptr_op_params, sizeof(offs));
  16037. tensor->data = ((char *) tensor->data) + offs;
  16038. } break;
  16039. case GGML_OP_TRANSPOSE:
  16040. {
  16041. tensor = ggml_transpose(*ctx_eval, args[0]);
  16042. } break;
  16043. case GGML_OP_PERMUTE:
  16044. {
  16045. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16046. } break;
  16047. default:
  16048. {
  16049. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16050. tensor->op = eop;
  16051. } break;
  16052. }
  16053. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16054. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16055. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16056. tensor->nb[j] = nb[j];
  16057. }
  16058. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16059. tensor->src[j] = args[j];
  16060. }
  16061. result->nodes[i] = tensor;
  16062. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16063. }
  16064. }
  16065. }
  16066. return result;
  16067. }
  16068. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16069. GGML_PRINT("=== GRAPH ===\n");
  16070. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16071. for (int i = 0; i < cgraph->n_nodes; i++) {
  16072. struct ggml_tensor * node = cgraph->nodes[i];
  16073. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  16074. i,
  16075. node->ne[0], node->ne[1], node->ne[2],
  16076. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  16077. }
  16078. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16079. for (int i = 0; i < cgraph->n_leafs; i++) {
  16080. struct ggml_tensor * node = cgraph->leafs[i];
  16081. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16082. i,
  16083. node->ne[0], node->ne[1],
  16084. ggml_op_name(node->op),
  16085. ggml_get_name(node));
  16086. }
  16087. GGML_PRINT("========================================\n");
  16088. }
  16089. // check if node is part of the graph
  16090. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16091. if (cgraph == NULL) {
  16092. return true;
  16093. }
  16094. for (int i = 0; i < cgraph->n_nodes; i++) {
  16095. if (cgraph->nodes[i] == node) {
  16096. return true;
  16097. }
  16098. }
  16099. return false;
  16100. }
  16101. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16102. for (int i = 0; i < cgraph->n_nodes; i++) {
  16103. struct ggml_tensor * parent = cgraph->nodes[i];
  16104. if (parent->grad == node) {
  16105. return parent;
  16106. }
  16107. }
  16108. return NULL;
  16109. }
  16110. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16111. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16112. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16113. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16114. gparent0 ? (void *) gparent0 : (void *) parent,
  16115. gparent0 ? "g" : "x",
  16116. gparent ? (void *) gparent : (void *) node,
  16117. gparent ? "g" : "x",
  16118. gparent ? "empty" : "vee",
  16119. gparent ? "dashed" : "solid",
  16120. label);
  16121. }
  16122. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16123. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16124. (void *) parent, "x",
  16125. (void *) node, "x",
  16126. label);
  16127. }
  16128. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16129. char color[16];
  16130. FILE * fp = ggml_fopen(filename, "w");
  16131. GGML_ASSERT(fp);
  16132. fprintf(fp, "digraph G {\n");
  16133. fprintf(fp, " newrank = true;\n");
  16134. fprintf(fp, " rankdir = TB;\n");
  16135. for (int i = 0; i < gb->n_nodes; i++) {
  16136. struct ggml_tensor * node = gb->nodes[i];
  16137. if (ggml_graph_get_parent(gb, node) != NULL) {
  16138. continue;
  16139. }
  16140. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16141. snprintf(color, sizeof(color), "yellow");
  16142. } else if (node->grad) {
  16143. if (ggml_graph_find(gf, node)) {
  16144. snprintf(color, sizeof(color), "green");
  16145. } else {
  16146. snprintf(color, sizeof(color), "lightblue");
  16147. }
  16148. } else {
  16149. snprintf(color, sizeof(color), "white");
  16150. }
  16151. fprintf(fp, " \"%p\" [ "
  16152. "style = filled; fillcolor = %s; shape = record; "
  16153. "label=\"",
  16154. (void *) node, color);
  16155. if (strlen(node->name) > 0) {
  16156. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16157. } else {
  16158. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16159. }
  16160. if (ggml_is_matrix(node)) {
  16161. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16162. } else {
  16163. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16164. }
  16165. if (node->grad) {
  16166. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16167. } else {
  16168. fprintf(fp, "\"; ]\n");
  16169. }
  16170. }
  16171. for (int i = 0; i < gb->n_leafs; i++) {
  16172. struct ggml_tensor * node = gb->leafs[i];
  16173. snprintf(color, sizeof(color), "pink");
  16174. fprintf(fp, " \"%p\" [ "
  16175. "style = filled; fillcolor = %s; shape = record; "
  16176. "label=\"<x>",
  16177. (void *) node, color);
  16178. if (strlen(node->name) > 0) {
  16179. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16180. } else {
  16181. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16182. }
  16183. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16184. if (ggml_nelements(node) < 5 && node->data != NULL) {
  16185. fprintf(fp, " | (");
  16186. for (int j = 0; j < ggml_nelements(node); j++) {
  16187. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16188. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16189. }
  16190. else if (node->type == GGML_TYPE_F32 ||
  16191. node->type == GGML_TYPE_F16 ||
  16192. node->type == GGML_TYPE_BF16) {
  16193. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16194. }
  16195. else {
  16196. fprintf(fp, "#");
  16197. }
  16198. if (j < ggml_nelements(node) - 1) {
  16199. fprintf(fp, ", ");
  16200. }
  16201. }
  16202. fprintf(fp, ")");
  16203. }
  16204. fprintf(fp, "\"; ]\n");
  16205. }
  16206. for (int i = 0; i < gb->n_nodes; i++) {
  16207. struct ggml_tensor * node = gb->nodes[i];
  16208. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16209. if (node->src[j]) {
  16210. char label[16];
  16211. snprintf(label, sizeof(label), "src %d", j);
  16212. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16213. }
  16214. }
  16215. }
  16216. for (int i = 0; i < gb->n_leafs; i++) {
  16217. struct ggml_tensor * node = gb->leafs[i];
  16218. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16219. if (node->src[j]) {
  16220. char label[16];
  16221. snprintf(label, sizeof(label), "src %d", j);
  16222. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16223. }
  16224. }
  16225. }
  16226. fprintf(fp, "}\n");
  16227. fclose(fp);
  16228. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16229. }
  16230. ////////////////////////////////////////////////////////////////////////////////
  16231. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16232. int i = 0;
  16233. for (int p = 0; p < np; ++p) {
  16234. const int64_t ne = ggml_nelements(ps[p]) ;
  16235. // TODO: add function to set tensor from array
  16236. for (int64_t j = 0; j < ne; ++j) {
  16237. ggml_set_f32_1d(ps[p], j, x[i++]);
  16238. }
  16239. }
  16240. }
  16241. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16242. int i = 0;
  16243. for (int p = 0; p < np; ++p) {
  16244. const int64_t ne = ggml_nelements(ps[p]) ;
  16245. // TODO: add function to get all elements at once
  16246. for (int64_t j = 0; j < ne; ++j) {
  16247. x[i++] = ggml_get_f32_1d(ps[p], j);
  16248. }
  16249. }
  16250. }
  16251. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16252. int64_t i = 0;
  16253. for (int p = 0; p < np; ++p) {
  16254. const int64_t ne = ggml_nelements(ps[p]) ;
  16255. // TODO: add function to get all elements at once
  16256. for (int64_t j = 0; j < ne; ++j) {
  16257. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16258. }
  16259. }
  16260. }
  16261. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16262. int64_t i = 0;
  16263. for (int p = 0; p < np; ++p) {
  16264. const int64_t ne = ggml_nelements(ps[p]) ;
  16265. // TODO: add function to get all elements at once
  16266. for (int64_t j = 0; j < ne; ++j) {
  16267. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16268. }
  16269. }
  16270. }
  16271. //
  16272. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16273. //
  16274. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16275. //
  16276. static enum ggml_opt_result ggml_opt_adam(
  16277. struct ggml_context * ctx,
  16278. struct ggml_opt_context * opt,
  16279. struct ggml_opt_params params,
  16280. struct ggml_tensor * f,
  16281. struct ggml_cgraph * gf,
  16282. struct ggml_cgraph * gb,
  16283. ggml_opt_callback callback,
  16284. void * callback_data) {
  16285. GGML_ASSERT(ggml_is_scalar(f));
  16286. // these will store the parameters we want to optimize
  16287. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16288. int np = 0;
  16289. int64_t nx = 0;
  16290. for (int i = 0; i < gf->n_nodes; ++i) {
  16291. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16292. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16293. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16294. ps[np++] = gf->nodes[i];
  16295. nx += ggml_nelements(gf->nodes[i]);
  16296. }
  16297. }
  16298. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16299. int iter = opt->iter;
  16300. ggml_opt_init(opt->ctx, opt, params, nx);
  16301. opt->iter = iter;
  16302. }
  16303. // constants
  16304. float sched = params.adam.sched;
  16305. const float alpha = params.adam.alpha;
  16306. const float decay = params.adam.decay * alpha;
  16307. const float beta1 = params.adam.beta1;
  16308. const float beta2 = params.adam.beta2;
  16309. const float eps = params.adam.eps;
  16310. const float gclip = params.adam.gclip;
  16311. const int decay_min_ndim = params.adam.decay_min_ndim;
  16312. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16313. const float accum_norm = 1.0f / (float) n_accum;
  16314. float * g = opt->adam.g->data; // gradients
  16315. float * m = opt->adam.m->data; // first moment
  16316. float * v = opt->adam.v->data; // second moment
  16317. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16318. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16319. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16320. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16321. bool cancel = false;
  16322. // compute the function value
  16323. float fx = 0;
  16324. ggml_set_zero(opt->adam.g);
  16325. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16326. if (callback) {
  16327. callback(callback_data, accum_step, &sched, &cancel);
  16328. if (cancel) {
  16329. return GGML_OPT_RESULT_CANCEL;
  16330. }
  16331. }
  16332. // ggml_graph_reset (gf);
  16333. ggml_set_f32 (f->grad, 1.0f);
  16334. ggml_graph_compute(gb, &cplan);
  16335. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16336. fx += ggml_get_f32_1d(f, 0);
  16337. }
  16338. fx *= accum_norm;
  16339. opt->adam.fx_prev = fx;
  16340. opt->adam.fx_best = opt->adam.fx_prev;
  16341. if (pf) {
  16342. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16343. }
  16344. opt->loss_before = opt->adam.fx_prev;
  16345. opt->loss_after = opt->adam.fx_prev;
  16346. // initialize
  16347. if (opt->just_initialized) {
  16348. opt->adam.n_no_improvement = 0;
  16349. opt->just_initialized = false;
  16350. }
  16351. float * fx_best = &opt->adam.fx_best;
  16352. float * fx_prev = &opt->adam.fx_prev;
  16353. int * n_no_improvement = &opt->adam.n_no_improvement;
  16354. int iter0 = opt->iter;
  16355. // run the optimizer
  16356. for (int t = 0; t < params.adam.n_iter; ++t) {
  16357. opt->iter = iter0 + t + 1;
  16358. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16359. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16360. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16361. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16362. for (int i = 0; i < np; ++i) {
  16363. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16364. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16365. }
  16366. const int64_t t_start_wall = ggml_time_us();
  16367. const int64_t t_start_cpu = ggml_cycles();
  16368. UNUSED(t_start_wall);
  16369. UNUSED(t_start_cpu);
  16370. {
  16371. float gnorm = 1.0f;
  16372. if (gclip > 0.0f) {
  16373. // gradient clipping
  16374. ggml_float sum = 0.0;
  16375. for (int64_t i = 0; i < nx; ++i) {
  16376. sum += (ggml_float)(g[i]*g[i]);
  16377. }
  16378. ggml_float norm = sqrt(sum);
  16379. if (norm > (ggml_float) gclip) {
  16380. gnorm = (float) ((ggml_float) gclip / norm);
  16381. }
  16382. }
  16383. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16384. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16385. int64_t i = 0;
  16386. for (int p = 0; p < np; ++p) {
  16387. const int64_t ne = ggml_nelements(ps[p]);
  16388. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16389. for (int64_t j = 0; j < ne; ++j) {
  16390. float x = ggml_get_f32_1d(ps[p], j);
  16391. float g_ = g[i]*gnorm;
  16392. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16393. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16394. float mh = m[i]*beta1h;
  16395. float vh = v[i]*beta2h;
  16396. vh = sqrtf(vh) + eps;
  16397. x = x*(1.0f - p_decay) - mh/vh;
  16398. ggml_set_f32_1d(ps[p], j, x);
  16399. ++i;
  16400. }
  16401. }
  16402. }
  16403. fx = 0;
  16404. ggml_set_zero(opt->adam.g);
  16405. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16406. if (callback) {
  16407. callback(callback_data, accum_step, &sched, &cancel);
  16408. if (cancel) {
  16409. return GGML_OPT_RESULT_CANCEL;;
  16410. }
  16411. }
  16412. // ggml_graph_reset (gf);
  16413. ggml_set_f32 (f->grad, 1.0f);
  16414. ggml_graph_compute(gb, &cplan);
  16415. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16416. fx += ggml_get_f32_1d(f, 0);
  16417. }
  16418. fx *= accum_norm;
  16419. opt->loss_after = fx;
  16420. // check convergence
  16421. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16422. GGML_PRINT_DEBUG("converged\n");
  16423. return GGML_OPT_RESULT_OK;
  16424. }
  16425. // delta-based convergence test
  16426. if (pf != NULL) {
  16427. // need at least params.past iterations to start checking for convergence
  16428. if (params.past <= iter0 + t) {
  16429. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16430. if (fabsf(rate) < params.delta) {
  16431. return GGML_OPT_RESULT_OK;
  16432. }
  16433. }
  16434. pf[(iter0 + t)%params.past] = fx;
  16435. }
  16436. // check for improvement
  16437. if (params.max_no_improvement > 0) {
  16438. if (fx_best[0] > fx) {
  16439. fx_best[0] = fx;
  16440. n_no_improvement[0] = 0;
  16441. } else {
  16442. ++n_no_improvement[0];
  16443. if (n_no_improvement[0] >= params.max_no_improvement) {
  16444. return GGML_OPT_RESULT_OK;
  16445. }
  16446. }
  16447. }
  16448. fx_prev[0] = fx;
  16449. {
  16450. const int64_t t_end_cpu = ggml_cycles();
  16451. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16452. UNUSED(t_end_cpu);
  16453. const int64_t t_end_wall = ggml_time_us();
  16454. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16455. UNUSED(t_end_wall);
  16456. }
  16457. }
  16458. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16459. }
  16460. //
  16461. // L-BFGS
  16462. //
  16463. // the L-BFGS implementation below is based on the following implementation:
  16464. //
  16465. // https://github.com/chokkan/liblbfgs
  16466. //
  16467. struct ggml_lbfgs_iteration_data {
  16468. float alpha;
  16469. float ys;
  16470. float * s;
  16471. float * y;
  16472. };
  16473. static enum ggml_opt_result linesearch_backtracking(
  16474. const struct ggml_opt_params * params,
  16475. int nx,
  16476. float * x,
  16477. float * fx,
  16478. float * g,
  16479. float * d,
  16480. float * step,
  16481. const float * xp,
  16482. struct ggml_tensor * f,
  16483. struct ggml_cgraph * gb,
  16484. struct ggml_cplan * cplan,
  16485. const int np,
  16486. struct ggml_tensor * ps[],
  16487. bool * cancel,
  16488. ggml_opt_callback callback,
  16489. void * callback_data) {
  16490. int count = 0;
  16491. float width = 0.0f;
  16492. float dg = 0.0f;
  16493. float finit = 0.0f;
  16494. float dginit = 0.0f;
  16495. float dgtest = 0.0f;
  16496. const float dec = 0.5f;
  16497. const float inc = 2.1f;
  16498. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16499. const float accum_norm = 1.0f / (float) n_accum;
  16500. if (*step <= 0.f) {
  16501. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16502. }
  16503. // compute the initial gradient in the search direction
  16504. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16505. // make sure that d points to a descent direction
  16506. if (0 < dginit) {
  16507. return GGML_LINESEARCH_FAIL;
  16508. }
  16509. // initialize local variables
  16510. finit = *fx;
  16511. dgtest = params->lbfgs.ftol*dginit;
  16512. while (true) {
  16513. ggml_vec_cpy_f32(nx, x, xp);
  16514. ggml_vec_mad_f32(nx, x, d, *step);
  16515. // evaluate the function and gradient values
  16516. {
  16517. ggml_opt_set_params(np, ps, x);
  16518. *fx = 0;
  16519. memset(g, 0, sizeof(float)*nx);
  16520. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16521. if (callback) {
  16522. // LBFG-S does not support learning rate -> ignore learning schedule
  16523. float sched = 0;
  16524. callback(callback_data, accum_step, &sched, cancel);
  16525. if (*cancel) {
  16526. return GGML_OPT_RESULT_CANCEL;
  16527. }
  16528. }
  16529. // ggml_graph_reset (gf);
  16530. ggml_set_f32 (f->grad, 1.0f);
  16531. ggml_graph_compute(gb, cplan);
  16532. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16533. *fx += ggml_get_f32_1d(f, 0);
  16534. }
  16535. *fx *= accum_norm;
  16536. }
  16537. ++count;
  16538. if (*fx > finit + (*step)*dgtest) {
  16539. width = dec;
  16540. } else {
  16541. // Armijo condition is satisfied
  16542. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16543. return count;
  16544. }
  16545. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16546. // check the Wolfe condition
  16547. if (dg < params->lbfgs.wolfe * dginit) {
  16548. width = inc;
  16549. } else {
  16550. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16551. // regular Wolfe conditions
  16552. return count;
  16553. }
  16554. if(dg > -params->lbfgs.wolfe*dginit) {
  16555. width = dec;
  16556. } else {
  16557. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16558. return count;
  16559. }
  16560. }
  16561. }
  16562. if (*step < params->lbfgs.min_step) {
  16563. return GGML_LINESEARCH_MINIMUM_STEP;
  16564. }
  16565. if (*step > params->lbfgs.max_step) {
  16566. return GGML_LINESEARCH_MAXIMUM_STEP;
  16567. }
  16568. if (params->lbfgs.max_linesearch <= count) {
  16569. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16570. }
  16571. (*step) *= width;
  16572. }
  16573. GGML_ABORT("line search failed");
  16574. //return GGML_LINESEARCH_FAIL;
  16575. }
  16576. static enum ggml_opt_result ggml_opt_lbfgs(
  16577. struct ggml_context * ctx,
  16578. struct ggml_opt_context * opt,
  16579. struct ggml_opt_params params,
  16580. struct ggml_tensor * f,
  16581. struct ggml_cgraph * gf,
  16582. struct ggml_cgraph * gb,
  16583. ggml_opt_callback callback,
  16584. void * callback_data) {
  16585. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16586. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16587. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16588. return GGML_OPT_RESULT_INVALID_WOLFE;
  16589. }
  16590. }
  16591. const int m = params.lbfgs.m;
  16592. // these will store the parameters we want to optimize
  16593. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16594. int np = 0;
  16595. int nx = 0;
  16596. for (int i = 0; i < gf->n_nodes; ++i) {
  16597. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16598. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16599. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16600. ps[np++] = gf->nodes[i];
  16601. nx += ggml_nelements(gf->nodes[i]);
  16602. }
  16603. }
  16604. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16605. int iter = opt->iter;
  16606. ggml_opt_init(ctx, opt, params, nx);
  16607. opt->iter = iter;
  16608. }
  16609. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16610. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16611. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16612. float * x = opt->lbfgs.x->data; // current parameters
  16613. float * xp = opt->lbfgs.xp->data; // previous parameters
  16614. float * g = opt->lbfgs.g->data; // current gradient
  16615. float * gp = opt->lbfgs.gp->data; // previous gradient
  16616. float * d = opt->lbfgs.d->data; // search direction
  16617. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16618. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16619. const float accum_norm = 1.0f / (float) n_accum;
  16620. float fx = 0.0f; // cost function value
  16621. float xnorm = 0.0f; // ||x||
  16622. float gnorm = 0.0f; // ||g||
  16623. // initialize x from the graph nodes
  16624. ggml_opt_get_params(np, ps, x);
  16625. // the L-BFGS memory
  16626. float * lm_alpha = opt->lbfgs.lmal->data;
  16627. float * lm_ys = opt->lbfgs.lmys->data;
  16628. float * lm_s = opt->lbfgs.lms->data;
  16629. float * lm_y = opt->lbfgs.lmy->data;
  16630. bool cancel = false;
  16631. // evaluate the function value and its gradient
  16632. {
  16633. ggml_opt_set_params(np, ps, x);
  16634. fx = 0;
  16635. memset(g, 0, sizeof(float)*nx);
  16636. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16637. if (callback) {
  16638. // LBFG-S does not support learning rate -> ignore learning schedule
  16639. float sched = 0;
  16640. callback(callback_data, accum_step, &sched, &cancel);
  16641. if (cancel) {
  16642. return GGML_OPT_RESULT_CANCEL;
  16643. }
  16644. }
  16645. // ggml_graph_reset (gf);
  16646. ggml_set_f32 (f->grad, 1.0f);
  16647. ggml_graph_compute(gb, &cplan);
  16648. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16649. fx += ggml_get_f32_1d(f, 0);
  16650. }
  16651. fx *= accum_norm;
  16652. opt->loss_before = fx;
  16653. opt->loss_after = fx;
  16654. }
  16655. // search direction = -gradient
  16656. ggml_vec_neg_f32(nx, d, g);
  16657. // ||x||, ||g||
  16658. ggml_vec_norm_f32(nx, &xnorm, x);
  16659. ggml_vec_norm_f32(nx, &gnorm, g);
  16660. if (xnorm < 1.0f) {
  16661. xnorm = 1.0f;
  16662. }
  16663. // already optimized
  16664. if (gnorm/xnorm <= params.lbfgs.eps) {
  16665. return GGML_OPT_RESULT_OK;
  16666. }
  16667. if (opt->just_initialized) {
  16668. if (pf) {
  16669. pf[0] = fx;
  16670. }
  16671. opt->lbfgs.fx_best = fx;
  16672. // initial step
  16673. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16674. opt->lbfgs.j = 0;
  16675. opt->lbfgs.k = 1;
  16676. opt->lbfgs.end = 0;
  16677. opt->lbfgs.n_no_improvement = 0;
  16678. opt->just_initialized = false;
  16679. }
  16680. float * fx_best = &opt->lbfgs.fx_best;
  16681. float * step = &opt->lbfgs.step;
  16682. int * j = &opt->lbfgs.j;
  16683. int * k = &opt->lbfgs.k;
  16684. int * end = &opt->lbfgs.end;
  16685. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16686. int ls = 0;
  16687. int bound = 0;
  16688. float ys = 0.0f;
  16689. float yy = 0.0f;
  16690. float beta = 0.0f;
  16691. int it = 0;
  16692. while (true) {
  16693. // store the current position and gradient vectors
  16694. ggml_vec_cpy_f32(nx, xp, x);
  16695. ggml_vec_cpy_f32(nx, gp, g);
  16696. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16697. // to determine if the optimization should be cancelled
  16698. // this is a simple change, but not doing this atm, since I don't have a nice
  16699. // way to test and don't want to break something with so many changes lined up
  16700. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16701. if (cancel) {
  16702. return GGML_OPT_RESULT_CANCEL;
  16703. }
  16704. if (ls < 0) {
  16705. // linesearch failed - go back to the previous point and return
  16706. ggml_vec_cpy_f32(nx, x, xp);
  16707. ggml_vec_cpy_f32(nx, g, gp);
  16708. return ls;
  16709. }
  16710. opt->loss_after = fx;
  16711. ggml_vec_norm_f32(nx, &xnorm, x);
  16712. ggml_vec_norm_f32(nx, &gnorm, g);
  16713. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16714. if (xnorm < 1.0f) {
  16715. xnorm = 1.0f;
  16716. }
  16717. if (gnorm/xnorm <= params.lbfgs.eps) {
  16718. // converged
  16719. return GGML_OPT_RESULT_OK;
  16720. }
  16721. // delta-based convergence test
  16722. if (pf != NULL) {
  16723. // need at least params.past iterations to start checking for convergence
  16724. if (params.past <= k[0]) {
  16725. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16726. if (fabsf(rate) < params.delta) {
  16727. return GGML_OPT_RESULT_OK;
  16728. }
  16729. }
  16730. pf[k[0]%params.past] = fx;
  16731. }
  16732. // check for improvement
  16733. if (params.max_no_improvement > 0) {
  16734. if (fx < fx_best[0]) {
  16735. fx_best[0] = fx;
  16736. n_no_improvement[0] = 0;
  16737. } else {
  16738. n_no_improvement[0]++;
  16739. if (n_no_improvement[0] >= params.max_no_improvement) {
  16740. return GGML_OPT_RESULT_OK;
  16741. }
  16742. }
  16743. }
  16744. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16745. // reached the maximum number of iterations
  16746. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16747. }
  16748. // update vectors s and y:
  16749. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16750. // y_{k+1} = g_{k+1} - g_{k}.
  16751. //
  16752. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16753. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16754. // compute scalars ys and yy:
  16755. // ys = y^t \cdot s -> 1 / \rho.
  16756. // yy = y^t \cdot y.
  16757. //
  16758. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16759. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16760. lm_ys[end[0]] = ys;
  16761. // find new search direction
  16762. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16763. bound = (m <= k[0]) ? m : k[0];
  16764. k[0]++;
  16765. it++;
  16766. end[0] = (end[0] + 1)%m;
  16767. // initialize search direction with -g
  16768. ggml_vec_neg_f32(nx, d, g);
  16769. j[0] = end[0];
  16770. for (int i = 0; i < bound; ++i) {
  16771. j[0] = (j[0] + m - 1) % m;
  16772. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16773. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16774. lm_alpha[j[0]] /= lm_ys[j[0]];
  16775. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16776. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16777. }
  16778. ggml_vec_scale_f32(nx, d, ys/yy);
  16779. for (int i = 0; i < bound; ++i) {
  16780. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16781. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16782. beta /= lm_ys[j[0]];
  16783. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16784. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16785. j[0] = (j[0] + 1)%m;
  16786. }
  16787. step[0] = 1.0;
  16788. }
  16789. GGML_ABORT("lbfgs failed");
  16790. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16791. }
  16792. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16793. struct ggml_opt_params result;
  16794. switch (type) {
  16795. case GGML_OPT_TYPE_ADAM:
  16796. {
  16797. result = (struct ggml_opt_params) {
  16798. .type = GGML_OPT_TYPE_ADAM,
  16799. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16800. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16801. .past = 0,
  16802. .delta = 1e-5f,
  16803. .max_no_improvement = 100,
  16804. .print_forward_graph = true,
  16805. .print_backward_graph = true,
  16806. .n_gradient_accumulation = 1,
  16807. .adam = {
  16808. .n_iter = 10000,
  16809. .sched = 1.000f,
  16810. .decay = 0.0f,
  16811. .decay_min_ndim = 2,
  16812. .alpha = 0.001f,
  16813. .beta1 = 0.9f,
  16814. .beta2 = 0.999f,
  16815. .eps = 1e-8f,
  16816. .eps_f = 1e-5f,
  16817. .eps_g = 1e-3f,
  16818. .gclip = 0.0f,
  16819. },
  16820. };
  16821. } break;
  16822. case GGML_OPT_TYPE_LBFGS:
  16823. {
  16824. result = (struct ggml_opt_params) {
  16825. .type = GGML_OPT_TYPE_LBFGS,
  16826. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16827. .n_threads = 1,
  16828. .past = 0,
  16829. .delta = 1e-5f,
  16830. .max_no_improvement = 0,
  16831. .print_forward_graph = true,
  16832. .print_backward_graph = true,
  16833. .n_gradient_accumulation = 1,
  16834. .lbfgs = {
  16835. .m = 6,
  16836. .n_iter = 100,
  16837. .max_linesearch = 20,
  16838. .eps = 1e-5f,
  16839. .ftol = 1e-4f,
  16840. .wolfe = 0.9f,
  16841. .min_step = 1e-20f,
  16842. .max_step = 1e+20f,
  16843. .linesearch = GGML_LINESEARCH_DEFAULT,
  16844. },
  16845. };
  16846. } break;
  16847. }
  16848. return result;
  16849. }
  16850. GGML_API void ggml_opt_init(
  16851. struct ggml_context * ctx,
  16852. struct ggml_opt_context * opt,
  16853. struct ggml_opt_params params,
  16854. int64_t nx) {
  16855. opt->ctx = ctx;
  16856. opt->params = params;
  16857. opt->iter = 0;
  16858. opt->nx = nx;
  16859. opt->just_initialized = true;
  16860. if (opt->ctx == NULL) {
  16861. struct ggml_init_params ctx_opt_params;
  16862. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16863. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16864. if (opt->params.past > 0) {
  16865. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16866. }
  16867. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16868. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16869. if (opt->params.past > 0) {
  16870. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16871. }
  16872. }
  16873. ctx_opt_params.mem_buffer = NULL;
  16874. ctx_opt_params.no_alloc = false;
  16875. opt->ctx = ggml_init(ctx_opt_params);
  16876. }
  16877. switch (opt->params.type) {
  16878. case GGML_OPT_TYPE_ADAM:
  16879. {
  16880. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16881. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16882. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16883. opt->adam.pf = params.past > 0
  16884. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16885. : NULL;
  16886. ggml_set_zero(opt->adam.m);
  16887. ggml_set_zero(opt->adam.v);
  16888. if (opt->adam.pf) {
  16889. ggml_set_zero(opt->adam.pf);
  16890. }
  16891. } break;
  16892. case GGML_OPT_TYPE_LBFGS:
  16893. {
  16894. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16895. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16896. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16897. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16898. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16899. opt->lbfgs.pf = params.past > 0
  16900. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16901. : NULL;
  16902. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16903. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16904. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16905. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16906. ggml_set_zero(opt->lbfgs.x);
  16907. ggml_set_zero(opt->lbfgs.xp);
  16908. ggml_set_zero(opt->lbfgs.g);
  16909. ggml_set_zero(opt->lbfgs.gp);
  16910. ggml_set_zero(opt->lbfgs.d);
  16911. if (opt->lbfgs.pf) {
  16912. ggml_set_zero(opt->lbfgs.pf);
  16913. }
  16914. ggml_set_zero(opt->lbfgs.lmal);
  16915. ggml_set_zero(opt->lbfgs.lmys);
  16916. ggml_set_zero(opt->lbfgs.lms);
  16917. ggml_set_zero(opt->lbfgs.lmy);
  16918. } break;
  16919. }
  16920. }
  16921. enum ggml_opt_result ggml_opt(
  16922. struct ggml_context * ctx,
  16923. struct ggml_opt_params params,
  16924. struct ggml_tensor * f) {
  16925. bool free_ctx = false;
  16926. if (ctx == NULL) {
  16927. struct ggml_init_params params_ctx = {
  16928. .mem_size = 16*1024*1024,
  16929. .mem_buffer = NULL,
  16930. .no_alloc = false,
  16931. };
  16932. ctx = ggml_init(params_ctx);
  16933. if (ctx == NULL) {
  16934. return GGML_OPT_RESULT_NO_CONTEXT;
  16935. }
  16936. free_ctx = true;
  16937. }
  16938. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16939. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16940. ggml_opt_init(ctx, opt, params, 0);
  16941. result = ggml_opt_resume(ctx, opt, f);
  16942. if (free_ctx) {
  16943. ggml_free(ctx);
  16944. }
  16945. return result;
  16946. }
  16947. enum ggml_opt_result ggml_opt_resume(
  16948. struct ggml_context * ctx,
  16949. struct ggml_opt_context * opt,
  16950. struct ggml_tensor * f) {
  16951. // build forward + backward compute graphs
  16952. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16953. ggml_build_forward_expand(gf, f);
  16954. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16955. ggml_build_backward_expand(ctx, gf, gb, true);
  16956. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16957. }
  16958. enum ggml_opt_result ggml_opt_resume_g(
  16959. struct ggml_context * ctx,
  16960. struct ggml_opt_context * opt,
  16961. struct ggml_tensor * f,
  16962. struct ggml_cgraph * gf,
  16963. struct ggml_cgraph * gb,
  16964. ggml_opt_callback callback,
  16965. void * callback_data) {
  16966. // build forward + backward compute graphs
  16967. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16968. switch (opt->params.type) {
  16969. case GGML_OPT_TYPE_ADAM:
  16970. {
  16971. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16972. } break;
  16973. case GGML_OPT_TYPE_LBFGS:
  16974. {
  16975. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16976. } break;
  16977. }
  16978. if (opt->params.print_forward_graph) {
  16979. ggml_graph_print (gf);
  16980. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16981. }
  16982. if (opt->params.print_backward_graph) {
  16983. ggml_graph_print (gb);
  16984. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16985. }
  16986. return result;
  16987. }
  16988. ////////////////////////////////////////////////////////////////////////////////
  16989. void ggml_set_input(struct ggml_tensor * tensor) {
  16990. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16991. }
  16992. void ggml_set_output(struct ggml_tensor * tensor) {
  16993. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16994. }
  16995. ////////////////////////////////////////////////////////////////////////////////
  16996. void ggml_quantize_init(enum ggml_type type) {
  16997. ggml_critical_section_start();
  16998. switch (type) {
  16999. case GGML_TYPE_IQ2_XXS:
  17000. case GGML_TYPE_IQ2_XS:
  17001. case GGML_TYPE_IQ2_S:
  17002. case GGML_TYPE_IQ1_S:
  17003. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17004. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17005. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17006. default: // nothing
  17007. break;
  17008. }
  17009. ggml_critical_section_end();
  17010. }
  17011. void ggml_quantize_free(void) {
  17012. ggml_critical_section_start();
  17013. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17014. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17015. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17016. iq3xs_free_impl(256);
  17017. ggml_critical_section_end();
  17018. }
  17019. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17020. return
  17021. type == GGML_TYPE_IQ2_XXS ||
  17022. type == GGML_TYPE_IQ2_XS ||
  17023. type == GGML_TYPE_IQ1_S;// ||
  17024. //type == GGML_TYPE_IQ1_M;
  17025. }
  17026. size_t ggml_quantize_chunk(
  17027. enum ggml_type type,
  17028. const float * src,
  17029. void * dst,
  17030. int64_t start,
  17031. int64_t nrows,
  17032. int64_t n_per_row,
  17033. const float * imatrix) {
  17034. const int64_t n = (int64_t) nrows * n_per_row;
  17035. if (ggml_quantize_requires_imatrix(type)) {
  17036. GGML_ASSERT(imatrix != NULL);
  17037. }
  17038. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17039. GGML_ASSERT(start % n_per_row == 0);
  17040. ggml_quantize_init(type); // this is noop if already initialized
  17041. const size_t start_row = start / n_per_row;
  17042. const size_t row_size = ggml_row_size(type, n_per_row);
  17043. size_t result = 0;
  17044. switch (type) {
  17045. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17046. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17047. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17048. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17049. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17050. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17051. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17052. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17053. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17054. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17055. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17056. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17057. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17058. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17059. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17060. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17061. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17062. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17063. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17064. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17065. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17066. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17067. case GGML_TYPE_F16:
  17068. {
  17069. size_t elemsize = sizeof(ggml_fp16_t);
  17070. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17071. result = n * elemsize;
  17072. } break;
  17073. case GGML_TYPE_BF16:
  17074. {
  17075. size_t elemsize = sizeof(ggml_bf16_t);
  17076. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  17077. result = n * elemsize;
  17078. } break;
  17079. case GGML_TYPE_F32:
  17080. {
  17081. size_t elemsize = sizeof(float);
  17082. result = n * elemsize;
  17083. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17084. } break;
  17085. default:
  17086. assert(false);
  17087. }
  17088. GGML_ASSERT(result == nrows * row_size);
  17089. return result;
  17090. }
  17091. ////////////////////////////////////////////////////////////////////////////////
  17092. struct gguf_str {
  17093. uint64_t n; // GGUFv2
  17094. char * data;
  17095. };
  17096. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17097. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17098. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17099. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17100. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17101. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17102. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17103. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17104. [GGUF_TYPE_BOOL] = sizeof(bool),
  17105. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17106. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17107. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17108. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17109. [GGUF_TYPE_ARRAY] = 0, // undefined
  17110. };
  17111. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17112. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17113. [GGUF_TYPE_UINT8] = "u8",
  17114. [GGUF_TYPE_INT8] = "i8",
  17115. [GGUF_TYPE_UINT16] = "u16",
  17116. [GGUF_TYPE_INT16] = "i16",
  17117. [GGUF_TYPE_UINT32] = "u32",
  17118. [GGUF_TYPE_INT32] = "i32",
  17119. [GGUF_TYPE_FLOAT32] = "f32",
  17120. [GGUF_TYPE_BOOL] = "bool",
  17121. [GGUF_TYPE_STRING] = "str",
  17122. [GGUF_TYPE_ARRAY] = "arr",
  17123. [GGUF_TYPE_UINT64] = "u64",
  17124. [GGUF_TYPE_INT64] = "i64",
  17125. [GGUF_TYPE_FLOAT64] = "f64",
  17126. };
  17127. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17128. union gguf_value {
  17129. uint8_t uint8;
  17130. int8_t int8;
  17131. uint16_t uint16;
  17132. int16_t int16;
  17133. uint32_t uint32;
  17134. int32_t int32;
  17135. float float32;
  17136. uint64_t uint64;
  17137. int64_t int64;
  17138. double float64;
  17139. bool bool_;
  17140. struct gguf_str str;
  17141. struct {
  17142. enum gguf_type type;
  17143. uint64_t n; // GGUFv2
  17144. void * data;
  17145. } arr;
  17146. };
  17147. struct gguf_kv {
  17148. struct gguf_str key;
  17149. enum gguf_type type;
  17150. union gguf_value value;
  17151. };
  17152. struct gguf_header {
  17153. char magic[4];
  17154. uint32_t version;
  17155. uint64_t n_tensors; // GGUFv2
  17156. uint64_t n_kv; // GGUFv2
  17157. };
  17158. struct gguf_tensor_info {
  17159. struct gguf_str name;
  17160. uint32_t n_dims;
  17161. uint64_t ne[GGML_MAX_DIMS];
  17162. enum ggml_type type;
  17163. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17164. // for writing API
  17165. const void * data;
  17166. size_t size;
  17167. };
  17168. struct gguf_context {
  17169. struct gguf_header header;
  17170. struct gguf_kv * kv;
  17171. struct gguf_tensor_info * infos;
  17172. size_t alignment;
  17173. size_t offset; // offset of `data` from beginning of file
  17174. size_t size; // size of `data` in bytes
  17175. //uint8_t * padding;
  17176. void * data;
  17177. };
  17178. static size_t gguf_type_size(enum gguf_type type) {
  17179. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17180. return GGUF_TYPE_SIZE[type];
  17181. }
  17182. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17183. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17184. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17185. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17186. GGML_ASSERT(info->ne[i] > 0);
  17187. }
  17188. // prevent overflow for total number of elements
  17189. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17190. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17191. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17192. }
  17193. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17194. const size_t n = fread(dst, 1, size, file);
  17195. *offset += n;
  17196. return n == size;
  17197. }
  17198. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17199. p->n = 0;
  17200. p->data = NULL;
  17201. bool ok = true;
  17202. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17203. // early exit if string length is invalid, prevents from integer overflow
  17204. if (p->n == SIZE_MAX) {
  17205. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17206. return false;
  17207. }
  17208. p->data = GGML_CALLOC(p->n + 1, 1);
  17209. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17210. return ok;
  17211. }
  17212. static void gguf_free_kv(struct gguf_kv * kv) {
  17213. if (kv->key.data) {
  17214. GGML_FREE(kv->key.data);
  17215. }
  17216. if (kv->type == GGUF_TYPE_STRING) {
  17217. if (kv->value.str.data) {
  17218. GGML_FREE(kv->value.str.data);
  17219. }
  17220. }
  17221. if (kv->type == GGUF_TYPE_ARRAY) {
  17222. if (kv->value.arr.data) {
  17223. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17224. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17225. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17226. if (str->data) {
  17227. GGML_FREE(str->data);
  17228. }
  17229. }
  17230. }
  17231. GGML_FREE(kv->value.arr.data);
  17232. }
  17233. }
  17234. }
  17235. struct gguf_context * gguf_init_empty(void) {
  17236. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17237. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17238. ctx->header.version = GGUF_VERSION;
  17239. ctx->header.n_tensors = 0;
  17240. ctx->header.n_kv = 0;
  17241. ctx->kv = NULL;
  17242. ctx->infos = NULL;
  17243. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17244. ctx->offset = 0;
  17245. ctx->size = 0;
  17246. ctx->data = NULL;
  17247. return ctx;
  17248. }
  17249. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17250. FILE * file = ggml_fopen(fname, "rb");
  17251. if (!file) {
  17252. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  17253. return NULL;
  17254. }
  17255. // offset from start of file
  17256. size_t offset = 0;
  17257. char magic[4];
  17258. // check the magic before making allocations
  17259. {
  17260. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17261. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17262. if (magic[i] != GGUF_MAGIC[i]) {
  17263. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17264. fclose(file);
  17265. return NULL;
  17266. }
  17267. }
  17268. }
  17269. bool ok = true;
  17270. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17271. // read the header
  17272. {
  17273. strncpy(ctx->header.magic, magic, 4);
  17274. ctx->kv = NULL;
  17275. ctx->infos = NULL;
  17276. ctx->data = NULL;
  17277. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17278. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17279. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17280. if (ctx->header.version == 1) {
  17281. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17282. fclose(file);
  17283. gguf_free(ctx);
  17284. return NULL;
  17285. }
  17286. // sanity-checks to prevent from integer/buffer overflows
  17287. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17288. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17289. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17290. if (!ok) {
  17291. fprintf(stderr, "%s: failed to read header\n", __func__);
  17292. fclose(file);
  17293. gguf_free(ctx);
  17294. return NULL;
  17295. }
  17296. }
  17297. // read the kv pairs
  17298. {
  17299. const uint64_t n_kv = ctx->header.n_kv;
  17300. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17301. ctx->header.n_kv = 0;
  17302. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17303. for (uint64_t i = 0; i < n_kv; ++i) {
  17304. struct gguf_kv * kv = &ctx->kv[i];
  17305. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17306. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17307. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17308. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17309. switch (kv->type) {
  17310. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17311. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17312. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17313. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17314. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17315. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17316. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17317. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17318. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17319. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17320. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17321. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17322. case GGUF_TYPE_ARRAY:
  17323. {
  17324. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17325. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17326. switch (kv->value.arr.type) {
  17327. case GGUF_TYPE_UINT8:
  17328. case GGUF_TYPE_INT8:
  17329. case GGUF_TYPE_UINT16:
  17330. case GGUF_TYPE_INT16:
  17331. case GGUF_TYPE_UINT32:
  17332. case GGUF_TYPE_INT32:
  17333. case GGUF_TYPE_FLOAT32:
  17334. case GGUF_TYPE_UINT64:
  17335. case GGUF_TYPE_INT64:
  17336. case GGUF_TYPE_FLOAT64:
  17337. case GGUF_TYPE_BOOL:
  17338. {
  17339. // prevent from integer overflow in the malloc below
  17340. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17341. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17342. fclose(file);
  17343. gguf_free(ctx);
  17344. return NULL;
  17345. }
  17346. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17347. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17348. } break;
  17349. case GGUF_TYPE_STRING:
  17350. {
  17351. // prevent from integer overflow in the malloc below
  17352. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17353. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17354. fclose(file);
  17355. gguf_free(ctx);
  17356. return NULL;
  17357. }
  17358. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17359. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17360. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17361. }
  17362. } break;
  17363. case GGUF_TYPE_ARRAY:
  17364. default: GGML_ABORT("invalid type");
  17365. }
  17366. } break;
  17367. default: GGML_ABORT("invalid type");
  17368. }
  17369. if (!ok) {
  17370. break;
  17371. }
  17372. ctx->header.n_kv++;
  17373. }
  17374. if (!ok) {
  17375. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17376. fclose(file);
  17377. gguf_free(ctx);
  17378. return NULL;
  17379. }
  17380. }
  17381. // read the tensor infos
  17382. if (ctx->header.n_tensors > 0) {
  17383. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17384. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17385. struct gguf_tensor_info * info = &ctx->infos[i];
  17386. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17387. info->ne[j] = 1;
  17388. }
  17389. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17390. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17391. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17392. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17393. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17394. }
  17395. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17396. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17397. // TODO: return an error instead of crashing with GGML_ASSERT
  17398. gguf_tensor_info_sanitize(info);
  17399. // make sure there is no duplicated tensor names
  17400. for (uint64_t j = 0; j < i && ok; ++j) {
  17401. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17402. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17403. ok = false;
  17404. }
  17405. }
  17406. if (!ok) {
  17407. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17408. fclose(file);
  17409. gguf_free(ctx);
  17410. return NULL;
  17411. }
  17412. }
  17413. }
  17414. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17415. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17416. if (alignment_idx != -1) {
  17417. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17418. }
  17419. // we require the data section to be aligned, so take into account any padding
  17420. {
  17421. const size_t offset_pad = offset % ctx->alignment;
  17422. if (offset_pad != 0) {
  17423. offset += ctx->alignment - offset_pad;
  17424. fseek(file, offset, SEEK_SET);
  17425. }
  17426. }
  17427. // store the current file offset - this is where the data section starts
  17428. ctx->offset = offset;
  17429. // compute the total size of the data section, taking into account the alignment
  17430. {
  17431. ctx->size = 0;
  17432. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17433. struct gguf_tensor_info * info = &ctx->infos[i];
  17434. const int64_t ne =
  17435. (int64_t) info->ne[0] *
  17436. (int64_t) info->ne[1] *
  17437. (int64_t) info->ne[2] *
  17438. (int64_t) info->ne[3];
  17439. if (ne % ggml_blck_size(info->type) != 0) {
  17440. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  17441. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17442. fclose(file);
  17443. gguf_free(ctx);
  17444. return NULL;
  17445. }
  17446. const size_t size_cur = ggml_row_size(info->type, ne);
  17447. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17448. }
  17449. }
  17450. // load the tensor data only if requested
  17451. if (params.ctx != NULL) {
  17452. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17453. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17454. // the ggml_tensor structs to the appropriate locations in the binary blob
  17455. // compute the exact size needed for the new ggml_context
  17456. const size_t mem_size =
  17457. params.no_alloc ?
  17458. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17459. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17460. struct ggml_init_params pdata = {
  17461. .mem_size = mem_size,
  17462. .mem_buffer = NULL,
  17463. .no_alloc = params.no_alloc,
  17464. };
  17465. *params.ctx = ggml_init(pdata);
  17466. if (*params.ctx == NULL) {
  17467. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  17468. fclose(file);
  17469. gguf_free(ctx);
  17470. return NULL;
  17471. }
  17472. struct ggml_context * ctx_data = *params.ctx;
  17473. struct ggml_tensor * data = NULL;
  17474. if (!params.no_alloc) {
  17475. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17476. ok = ok && data != NULL;
  17477. // read the binary blob with the tensor data
  17478. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17479. if (!ok) {
  17480. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17481. fclose(file);
  17482. ggml_free(ctx_data);
  17483. gguf_free(ctx);
  17484. return NULL;
  17485. }
  17486. ctx->data = data->data;
  17487. }
  17488. ggml_set_no_alloc(ctx_data, true);
  17489. // create the tensors
  17490. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17491. const int64_t ne[GGML_MAX_DIMS] = {
  17492. ctx->infos[i].ne[0],
  17493. ctx->infos[i].ne[1],
  17494. ctx->infos[i].ne[2],
  17495. ctx->infos[i].ne[3],
  17496. };
  17497. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17498. ok = ok && cur != NULL;
  17499. if (!ok) {
  17500. break;
  17501. }
  17502. ggml_set_name(cur, ctx->infos[i].name.data);
  17503. // point the data member to the appropriate location in the binary blob using the tensor infos
  17504. if (!params.no_alloc) {
  17505. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17506. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17507. }
  17508. }
  17509. if (!ok) {
  17510. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17511. fclose(file);
  17512. ggml_free(ctx_data);
  17513. gguf_free(ctx);
  17514. return NULL;
  17515. }
  17516. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17517. }
  17518. fclose(file);
  17519. return ctx;
  17520. }
  17521. void gguf_free(struct gguf_context * ctx) {
  17522. if (ctx == NULL) {
  17523. return;
  17524. }
  17525. if (ctx->kv) {
  17526. // free string memory - not great..
  17527. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17528. gguf_free_kv(&ctx->kv[i]);
  17529. }
  17530. GGML_FREE(ctx->kv);
  17531. }
  17532. if (ctx->infos) {
  17533. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17534. struct gguf_tensor_info * info = &ctx->infos[i];
  17535. if (info->name.data) {
  17536. GGML_FREE(info->name.data);
  17537. }
  17538. }
  17539. GGML_FREE(ctx->infos);
  17540. }
  17541. GGML_FREE(ctx);
  17542. }
  17543. const char * gguf_type_name(enum gguf_type type) {
  17544. return GGUF_TYPE_NAME[type];
  17545. }
  17546. int gguf_get_version(const struct gguf_context * ctx) {
  17547. return ctx->header.version;
  17548. }
  17549. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17550. return ctx->alignment;
  17551. }
  17552. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17553. return ctx->offset;
  17554. }
  17555. void * gguf_get_data(const struct gguf_context * ctx) {
  17556. return ctx->data;
  17557. }
  17558. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17559. return ctx->header.n_kv;
  17560. }
  17561. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17562. // return -1 if key not found
  17563. int keyfound = -1;
  17564. const int n_kv = gguf_get_n_kv(ctx);
  17565. for (int i = 0; i < n_kv; ++i) {
  17566. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17567. keyfound = i;
  17568. break;
  17569. }
  17570. }
  17571. return keyfound;
  17572. }
  17573. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17574. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17575. return ctx->kv[key_id].key.data;
  17576. }
  17577. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17578. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17579. return ctx->kv[key_id].type;
  17580. }
  17581. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17582. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17583. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17584. return ctx->kv[key_id].value.arr.type;
  17585. }
  17586. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17587. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17588. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17589. return ctx->kv[key_id].value.arr.data;
  17590. }
  17591. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17592. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17593. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17594. struct gguf_kv * kv = &ctx->kv[key_id];
  17595. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17596. return str->data;
  17597. }
  17598. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17599. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17600. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17601. return ctx->kv[key_id].value.arr.n;
  17602. }
  17603. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17604. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17605. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17606. return ctx->kv[key_id].value.uint8;
  17607. }
  17608. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17609. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17610. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17611. return ctx->kv[key_id].value.int8;
  17612. }
  17613. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17614. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17615. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17616. return ctx->kv[key_id].value.uint16;
  17617. }
  17618. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17619. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17620. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17621. return ctx->kv[key_id].value.int16;
  17622. }
  17623. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17624. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17625. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17626. return ctx->kv[key_id].value.uint32;
  17627. }
  17628. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17629. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17630. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17631. return ctx->kv[key_id].value.int32;
  17632. }
  17633. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17634. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17635. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17636. return ctx->kv[key_id].value.float32;
  17637. }
  17638. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17639. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17640. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17641. return ctx->kv[key_id].value.uint64;
  17642. }
  17643. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17644. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17645. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17646. return ctx->kv[key_id].value.int64;
  17647. }
  17648. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17649. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17650. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17651. return ctx->kv[key_id].value.float64;
  17652. }
  17653. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17654. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17655. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17656. return ctx->kv[key_id].value.bool_;
  17657. }
  17658. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17659. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17660. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17661. return ctx->kv[key_id].value.str.data;
  17662. }
  17663. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17664. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17665. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17666. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17667. return &ctx->kv[key_id].value;
  17668. }
  17669. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17670. return ctx->header.n_tensors;
  17671. }
  17672. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17673. // return -1 if tensor not found
  17674. int tensorfound = -1;
  17675. const int n_tensors = gguf_get_n_tensors(ctx);
  17676. for (int i = 0; i < n_tensors; ++i) {
  17677. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17678. tensorfound = i;
  17679. break;
  17680. }
  17681. }
  17682. return tensorfound;
  17683. }
  17684. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17685. return ctx->infos[i].offset;
  17686. }
  17687. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17688. return ctx->infos[i].name.data;
  17689. }
  17690. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17691. return ctx->infos[i].type;
  17692. }
  17693. // returns the index
  17694. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17695. const int idx = gguf_find_key(ctx, key);
  17696. if (idx >= 0) {
  17697. return idx;
  17698. }
  17699. const int n_kv = gguf_get_n_kv(ctx);
  17700. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17701. ctx->kv[n_kv].key.n = strlen(key);
  17702. ctx->kv[n_kv].key.data = strdup(key);
  17703. ctx->header.n_kv++;
  17704. return n_kv;
  17705. }
  17706. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17707. const int idx = gguf_find_key(ctx, key);
  17708. if (idx >= 0) {
  17709. const int n_kv = gguf_get_n_kv(ctx);
  17710. gguf_free_kv(&ctx->kv[idx]);
  17711. for (int i = idx; i < n_kv-1; ++i) {
  17712. ctx->kv[i] = ctx->kv[i+1];
  17713. }
  17714. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17715. ctx->header.n_kv--;
  17716. }
  17717. }
  17718. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17719. const int idx = gguf_get_or_add_key(ctx, key);
  17720. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17721. ctx->kv[idx].value.uint8 = val;
  17722. }
  17723. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17724. const int idx = gguf_get_or_add_key(ctx, key);
  17725. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17726. ctx->kv[idx].value.int8 = val;
  17727. }
  17728. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17729. const int idx = gguf_get_or_add_key(ctx, key);
  17730. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17731. ctx->kv[idx].value.uint16 = val;
  17732. }
  17733. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17734. const int idx = gguf_get_or_add_key(ctx, key);
  17735. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17736. ctx->kv[idx].value.int16 = val;
  17737. }
  17738. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17739. const int idx = gguf_get_or_add_key(ctx, key);
  17740. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17741. ctx->kv[idx].value.uint32 = val;
  17742. }
  17743. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17744. const int idx = gguf_get_or_add_key(ctx, key);
  17745. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17746. ctx->kv[idx].value.int32 = val;
  17747. }
  17748. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17749. const int idx = gguf_get_or_add_key(ctx, key);
  17750. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17751. ctx->kv[idx].value.float32 = val;
  17752. }
  17753. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17754. const int idx = gguf_get_or_add_key(ctx, key);
  17755. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17756. ctx->kv[idx].value.uint64 = val;
  17757. }
  17758. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17759. const int idx = gguf_get_or_add_key(ctx, key);
  17760. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17761. ctx->kv[idx].value.int64 = val;
  17762. }
  17763. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17764. const int idx = gguf_get_or_add_key(ctx, key);
  17765. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17766. ctx->kv[idx].value.float64 = val;
  17767. }
  17768. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17769. const int idx = gguf_get_or_add_key(ctx, key);
  17770. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17771. ctx->kv[idx].value.bool_ = val;
  17772. }
  17773. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17774. const int idx = gguf_get_or_add_key(ctx, key);
  17775. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17776. ctx->kv[idx].value.str.n = strlen(val);
  17777. ctx->kv[idx].value.str.data = strdup(val);
  17778. }
  17779. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17780. const int idx = gguf_get_or_add_key(ctx, key);
  17781. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17782. ctx->kv[idx].value.arr.type = type;
  17783. ctx->kv[idx].value.arr.n = n;
  17784. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  17785. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17786. }
  17787. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17788. const int idx = gguf_get_or_add_key(ctx, key);
  17789. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17790. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17791. ctx->kv[idx].value.arr.n = n;
  17792. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  17793. for (int i = 0; i < n; i++) {
  17794. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17795. str->n = strlen(data[i]);
  17796. str->data = strdup(data[i]);
  17797. }
  17798. }
  17799. // set or add KV pairs from another context
  17800. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17801. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17802. switch (src->kv[i].type) {
  17803. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17804. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17805. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17806. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17807. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17808. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17809. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17810. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17811. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17812. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17813. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17814. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17815. case GGUF_TYPE_ARRAY:
  17816. {
  17817. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17818. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  17819. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17820. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17821. }
  17822. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17823. GGML_FREE((void *)data);
  17824. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17825. GGML_ABORT("nested arrays not supported");
  17826. } else {
  17827. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17828. }
  17829. } break;
  17830. default: GGML_ABORT("invalid type");
  17831. }
  17832. }
  17833. }
  17834. void gguf_add_tensor(
  17835. struct gguf_context * ctx,
  17836. const struct ggml_tensor * tensor) {
  17837. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  17838. GGML_ABORT("duplicated tensor name");
  17839. }
  17840. const int idx = ctx->header.n_tensors;
  17841. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17842. ctx->infos[idx].name.n = strlen(tensor->name);
  17843. ctx->infos[idx].name.data = strdup(tensor->name);
  17844. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17845. ctx->infos[idx].ne[i] = 1;
  17846. }
  17847. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17848. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17849. ctx->infos[idx].ne[i] = tensor->ne[i];
  17850. }
  17851. ctx->infos[idx].type = tensor->type;
  17852. ctx->infos[idx].offset = 0;
  17853. ctx->infos[idx].data = tensor->data;
  17854. ctx->infos[idx].size = ggml_nbytes(tensor);
  17855. if (ctx->header.n_tensors > 0) {
  17856. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17857. }
  17858. ctx->header.n_tensors++;
  17859. }
  17860. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17861. const int idx = gguf_find_tensor(ctx, name);
  17862. if (idx < 0) {
  17863. GGML_ABORT("tensor not found");
  17864. }
  17865. ctx->infos[idx].type = type;
  17866. }
  17867. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17868. const int idx = gguf_find_tensor(ctx, name);
  17869. if (idx < 0) {
  17870. GGML_ABORT("tensor not found");
  17871. }
  17872. ctx->infos[idx].data = data;
  17873. ctx->infos[idx].size = size;
  17874. // update offsets
  17875. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17876. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17877. }
  17878. }
  17879. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17880. // fwrite(&val->n, sizeof(val->n), 1, file);
  17881. // fwrite(val->data, sizeof(char), val->n, file);
  17882. //}
  17883. //
  17884. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17885. // fwrite(val, sizeof(char), size, file);
  17886. //}
  17887. struct gguf_buf {
  17888. void * data;
  17889. size_t size;
  17890. size_t offset;
  17891. };
  17892. static struct gguf_buf gguf_buf_init(size_t size) {
  17893. struct gguf_buf buf = {
  17894. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  17895. /*buf.size =*/ size,
  17896. /*buf.offset =*/ 0,
  17897. };
  17898. return buf;
  17899. }
  17900. static void gguf_buf_free(struct gguf_buf buf) {
  17901. if (buf.data) {
  17902. GGML_FREE(buf.data);
  17903. }
  17904. }
  17905. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17906. if (buf->offset + size > buf->size) {
  17907. buf->size = 1.5*(buf->offset + size);
  17908. if (buf->data) {
  17909. buf->data = realloc(buf->data, buf->size);
  17910. }
  17911. }
  17912. }
  17913. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17914. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17915. if (buf->data) {
  17916. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17917. }
  17918. buf->offset += sizeof(val->n);
  17919. if (buf->data) {
  17920. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17921. }
  17922. buf->offset += val->n;
  17923. }
  17924. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17925. gguf_buf_grow(buf, el_size);
  17926. if (buf->data) {
  17927. memcpy((char *) buf->data + buf->offset, val, el_size);
  17928. }
  17929. buf->offset += el_size;
  17930. }
  17931. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17932. // write header
  17933. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17934. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17935. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17936. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17937. // write key-value pairs
  17938. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17939. struct gguf_kv * kv = &ctx->kv[i];
  17940. gguf_bwrite_str(buf, &kv->key);
  17941. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17942. switch (kv->type) {
  17943. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17944. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17945. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17946. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17947. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17948. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17949. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17950. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17951. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17952. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17953. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17954. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17955. case GGUF_TYPE_ARRAY:
  17956. {
  17957. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17958. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17959. switch (kv->value.arr.type) {
  17960. case GGUF_TYPE_UINT8:
  17961. case GGUF_TYPE_INT8:
  17962. case GGUF_TYPE_UINT16:
  17963. case GGUF_TYPE_INT16:
  17964. case GGUF_TYPE_UINT32:
  17965. case GGUF_TYPE_INT32:
  17966. case GGUF_TYPE_FLOAT32:
  17967. case GGUF_TYPE_UINT64:
  17968. case GGUF_TYPE_INT64:
  17969. case GGUF_TYPE_FLOAT64:
  17970. case GGUF_TYPE_BOOL:
  17971. {
  17972. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17973. } break;
  17974. case GGUF_TYPE_STRING:
  17975. {
  17976. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17977. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17978. }
  17979. } break;
  17980. case GGUF_TYPE_ARRAY:
  17981. default: GGML_ABORT("invalid type");
  17982. }
  17983. } break;
  17984. default: GGML_ABORT("invalid type");
  17985. }
  17986. }
  17987. // write tensor infos
  17988. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17989. struct gguf_tensor_info * info = &ctx->infos[i];
  17990. gguf_bwrite_str(buf, &info->name);
  17991. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17992. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17993. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17994. }
  17995. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17996. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17997. }
  17998. // we require the data section to be aligned, so take into account any padding
  17999. {
  18000. const size_t offset = buf->offset;
  18001. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18002. if (offset_pad != offset) {
  18003. uint8_t pad = 0;
  18004. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18005. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18006. }
  18007. }
  18008. }
  18009. if (only_meta) {
  18010. return;
  18011. }
  18012. size_t offset = 0;
  18013. // write tensor data
  18014. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18015. struct gguf_tensor_info * info = &ctx->infos[i];
  18016. const size_t size = info->size;
  18017. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18018. gguf_bwrite_el(buf, info->data, size);
  18019. if (size_pad != size) {
  18020. uint8_t pad = 0;
  18021. for (size_t j = 0; j < size_pad - size; ++j) {
  18022. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18023. }
  18024. }
  18025. GGML_ASSERT(offset == info->offset);
  18026. offset += size_pad;
  18027. }
  18028. }
  18029. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18030. FILE * file = ggml_fopen(fname, "wb");
  18031. if (!file) {
  18032. GGML_ABORT("failed to open file for writing");
  18033. }
  18034. struct gguf_buf buf = gguf_buf_init(16*1024);
  18035. gguf_write_to_buf(ctx, &buf, only_meta);
  18036. fwrite(buf.data, 1, buf.offset, file);
  18037. gguf_buf_free(buf);
  18038. fclose(file);
  18039. }
  18040. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18041. // no allocs - only compute size
  18042. struct gguf_buf buf = gguf_buf_init(0);
  18043. gguf_write_to_buf(ctx, &buf, true);
  18044. return buf.offset;
  18045. }
  18046. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18047. struct gguf_buf buf = gguf_buf_init(16*1024);
  18048. gguf_write_to_buf(ctx, &buf, true);
  18049. memcpy(data, buf.data, buf.offset);
  18050. gguf_buf_free(buf);
  18051. }
  18052. ////////////////////////////////////////////////////////////////////////////////
  18053. int ggml_cpu_has_avx(void) {
  18054. #if defined(__AVX__)
  18055. return 1;
  18056. #else
  18057. return 0;
  18058. #endif
  18059. }
  18060. int ggml_cpu_has_avx_vnni(void) {
  18061. #if defined(__AVXVNNI__)
  18062. return 1;
  18063. #else
  18064. return 0;
  18065. #endif
  18066. }
  18067. int ggml_cpu_has_avx2(void) {
  18068. #if defined(__AVX2__)
  18069. return 1;
  18070. #else
  18071. return 0;
  18072. #endif
  18073. }
  18074. int ggml_cpu_has_avx512(void) {
  18075. #if defined(__AVX512F__)
  18076. return 1;
  18077. #else
  18078. return 0;
  18079. #endif
  18080. }
  18081. int ggml_cpu_has_avx512_vbmi(void) {
  18082. #if defined(__AVX512VBMI__)
  18083. return 1;
  18084. #else
  18085. return 0;
  18086. #endif
  18087. }
  18088. int ggml_cpu_has_avx512_vnni(void) {
  18089. #if defined(__AVX512VNNI__)
  18090. return 1;
  18091. #else
  18092. return 0;
  18093. #endif
  18094. }
  18095. int ggml_cpu_has_avx512_bf16(void) {
  18096. #if defined(__AVX512BF16__)
  18097. return 1;
  18098. #else
  18099. return 0;
  18100. #endif
  18101. }
  18102. int ggml_cpu_has_fma(void) {
  18103. #if defined(__FMA__)
  18104. return 1;
  18105. #else
  18106. return 0;
  18107. #endif
  18108. }
  18109. int ggml_cpu_has_neon(void) {
  18110. #if defined(__ARM_NEON)
  18111. return 1;
  18112. #else
  18113. return 0;
  18114. #endif
  18115. }
  18116. int ggml_cpu_has_sve(void) {
  18117. #if defined(__ARM_FEATURE_SVE)
  18118. return 1;
  18119. #else
  18120. return 0;
  18121. #endif
  18122. }
  18123. int ggml_cpu_has_arm_fma(void) {
  18124. #if defined(__ARM_FEATURE_FMA)
  18125. return 1;
  18126. #else
  18127. return 0;
  18128. #endif
  18129. }
  18130. int ggml_cpu_has_metal(void) {
  18131. #if defined(GGML_USE_METAL)
  18132. return 1;
  18133. #else
  18134. return 0;
  18135. #endif
  18136. }
  18137. int ggml_cpu_has_f16c(void) {
  18138. #if defined(__F16C__)
  18139. return 1;
  18140. #else
  18141. return 0;
  18142. #endif
  18143. }
  18144. int ggml_cpu_has_fp16_va(void) {
  18145. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18146. return 1;
  18147. #else
  18148. return 0;
  18149. #endif
  18150. }
  18151. int ggml_cpu_has_wasm_simd(void) {
  18152. #if defined(__wasm_simd128__)
  18153. return 1;
  18154. #else
  18155. return 0;
  18156. #endif
  18157. }
  18158. int ggml_cpu_has_blas(void) {
  18159. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18160. return 1;
  18161. #else
  18162. return 0;
  18163. #endif
  18164. }
  18165. int ggml_cpu_has_cuda(void) {
  18166. #if defined(GGML_USE_CUDA)
  18167. return 1;
  18168. #else
  18169. return 0;
  18170. #endif
  18171. }
  18172. int ggml_cpu_has_vulkan(void) {
  18173. #if defined(GGML_USE_VULKAN)
  18174. return 1;
  18175. #else
  18176. return 0;
  18177. #endif
  18178. }
  18179. int ggml_cpu_has_kompute(void) {
  18180. #if defined(GGML_USE_KOMPUTE)
  18181. return 1;
  18182. #else
  18183. return 0;
  18184. #endif
  18185. }
  18186. int ggml_cpu_has_sycl(void) {
  18187. #if defined(GGML_USE_SYCL)
  18188. return 1;
  18189. #else
  18190. return 0;
  18191. #endif
  18192. }
  18193. int ggml_cpu_has_rpc(void) {
  18194. #if defined(GGML_USE_RPC)
  18195. return 1;
  18196. #else
  18197. return 0;
  18198. #endif
  18199. }
  18200. int ggml_cpu_has_cann(void) {
  18201. #if defined(GGML_USE_CANN)
  18202. return 1;
  18203. #else
  18204. return 0;
  18205. #endif
  18206. }
  18207. int ggml_cpu_has_llamafile(void) {
  18208. #if defined(GGML_USE_LLAMAFILE)
  18209. return 1;
  18210. #else
  18211. return 0;
  18212. #endif
  18213. }
  18214. int ggml_cpu_has_gpublas(void) {
  18215. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18216. }
  18217. int ggml_cpu_has_sse3(void) {
  18218. #if defined(__SSE3__)
  18219. return 1;
  18220. #else
  18221. return 0;
  18222. #endif
  18223. }
  18224. int ggml_cpu_has_ssse3(void) {
  18225. #if defined(__SSSE3__)
  18226. return 1;
  18227. #else
  18228. return 0;
  18229. #endif
  18230. }
  18231. int ggml_cpu_has_vsx(void) {
  18232. #if defined(__POWER9_VECTOR__)
  18233. return 1;
  18234. #else
  18235. return 0;
  18236. #endif
  18237. }
  18238. int ggml_cpu_has_matmul_int8(void) {
  18239. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18240. return 1;
  18241. #else
  18242. return 0;
  18243. #endif
  18244. }
  18245. ////////////////////////////////////////////////////////////////////////////////