ggml.c 591 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void* ggml_aligned_malloc(size_t size) {
  163. void* aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  181. __func__, error_desc, size/(1024.0*1024.0));
  182. return NULL;
  183. }
  184. return aligned_memory;
  185. }
  186. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  187. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  188. #endif
  189. #define UNUSED GGML_UNUSED
  190. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  191. //
  192. // tensor access macros
  193. //
  194. #define GGML_TENSOR_UNARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  199. #define GGML_TENSOR_BINARY_OP_LOCALS \
  200. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  202. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  203. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  204. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  206. #if defined(GGML_USE_ACCELERATE)
  207. #include <Accelerate/Accelerate.h>
  208. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  209. #include "ggml-opencl.h"
  210. #endif
  211. #elif defined(GGML_USE_OPENBLAS)
  212. #if defined(GGML_BLAS_USE_MKL)
  213. #include <mkl.h>
  214. #else
  215. #include <cblas.h>
  216. #endif
  217. #elif defined(GGML_USE_CUBLAS)
  218. #include "ggml-cuda.h"
  219. #elif defined(GGML_USE_CLBLAST)
  220. #include "ggml-opencl.h"
  221. #endif
  222. #undef MIN
  223. #undef MAX
  224. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  225. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  226. // floating point type used to accumulate sums
  227. typedef double ggml_float;
  228. // 16-bit float
  229. // on Arm, we use __fp16
  230. // on x86, we use uint16_t
  231. #ifdef __ARM_NEON
  232. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  233. //
  234. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  235. //
  236. #include <arm_neon.h>
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  239. #define GGML_FP16_TO_FP32(x) ((float) (x))
  240. #define GGML_FP32_TO_FP16(x) (x)
  241. #else
  242. #ifdef __wasm_simd128__
  243. #include <wasm_simd128.h>
  244. #else
  245. #ifdef __POWER9_VECTOR__
  246. #include <altivec.h>
  247. #undef bool
  248. #define bool _Bool
  249. #else
  250. #if defined(_MSC_VER) || defined(__MINGW32__)
  251. #include <intrin.h>
  252. #else
  253. #if !defined(__riscv)
  254. #include <immintrin.h>
  255. #endif
  256. #endif
  257. #endif
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  703. return
  704. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  705. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  706. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  707. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  708. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  709. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  710. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  711. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  712. }
  713. inline static int16_t vaddvq_s8(int8x16_t v) {
  714. return
  715. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  716. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  717. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  718. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  719. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  720. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  721. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  722. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  723. }
  724. inline static int32_t vaddvq_s16(int16x8_t v) {
  725. return
  726. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  727. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  728. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  729. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  730. }
  731. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  732. return
  733. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  734. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  735. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  736. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  737. }
  738. inline static int32_t vaddvq_s32(int32x4_t v) {
  739. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  740. }
  741. inline static float vaddvq_f32(float32x4_t v) {
  742. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  743. }
  744. inline static float vminvq_f32(float32x4_t v) {
  745. return
  746. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  747. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  748. }
  749. inline static float vmaxvq_f32(float32x4_t v) {
  750. return
  751. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  752. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  753. }
  754. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  755. int32x4_t res;
  756. res[0] = roundf(vgetq_lane_f32(v, 0));
  757. res[1] = roundf(vgetq_lane_f32(v, 1));
  758. res[2] = roundf(vgetq_lane_f32(v, 2));
  759. res[3] = roundf(vgetq_lane_f32(v, 3));
  760. return res;
  761. }
  762. #endif
  763. #endif
  764. #define QK4_0 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  768. } block_q4_0;
  769. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  770. #define QK4_1 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. ggml_fp16_t m; // min
  774. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  775. } block_q4_1;
  776. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  777. #define QK5_0 32
  778. typedef struct {
  779. ggml_fp16_t d; // delta
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  782. } block_q5_0;
  783. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  784. #define QK5_1 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. ggml_fp16_t m; // min
  788. uint8_t qh[4]; // 5-th bit of quants
  789. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  790. } block_q5_1;
  791. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  792. #define QK8_0 32
  793. typedef struct {
  794. ggml_fp16_t d; // delta
  795. int8_t qs[QK8_0]; // quants
  796. } block_q8_0;
  797. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  798. #define QK8_1 32
  799. typedef struct {
  800. float d; // delta
  801. float s; // d * sum(qs[i])
  802. int8_t qs[QK8_1]; // quants
  803. } block_q8_1;
  804. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  805. // reference implementation for deterministic creation of model files
  806. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  807. static const int qk = QK4_0;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float amax = 0.0f; // absolute max
  812. float max = 0.0f;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (amax < fabsf(v)) {
  816. amax = fabsf(v);
  817. max = v;
  818. }
  819. }
  820. const float d = max / -8;
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = GGML_FP32_TO_FP16(d);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = x[i*qk + 0 + j]*id;
  825. const float x1 = x[i*qk + qk/2 + j]*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_0_reference(x, y, k);
  835. }
  836. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  837. const int qk = QK4_1;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float min = FLT_MAX;
  842. float max = -FLT_MAX;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (v < min) min = v;
  846. if (v > max) max = v;
  847. }
  848. const float d = (max - min) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].d = GGML_FP32_TO_FP16(d);
  851. y[i].m = GGML_FP32_TO_FP16(min);
  852. for (int j = 0; j < qk/2; ++j) {
  853. const float x0 = (x[i*qk + 0 + j] - min)*id;
  854. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  855. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  856. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  857. y[i].qs[j] = xi0;
  858. y[i].qs[j] |= xi1 << 4;
  859. }
  860. }
  861. }
  862. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  863. quantize_row_q4_1_reference(x, y, k);
  864. }
  865. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  866. static const int qk = QK5_0;
  867. assert(k % qk == 0);
  868. const int nb = k / qk;
  869. for (int i = 0; i < nb; i++) {
  870. float amax = 0.0f; // absolute max
  871. float max = 0.0f;
  872. for (int j = 0; j < qk; j++) {
  873. const float v = x[i*qk + j];
  874. if (amax < fabsf(v)) {
  875. amax = fabsf(v);
  876. max = v;
  877. }
  878. }
  879. const float d = max / -16;
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. uint32_t qh = 0;
  883. for (int j = 0; j < qk/2; ++j) {
  884. const float x0 = x[i*qk + 0 + j]*id;
  885. const float x1 = x[i*qk + qk/2 + j]*id;
  886. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  887. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  888. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  889. // get the 5-th bit and store it in qh at the right position
  890. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  891. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  892. }
  893. memcpy(&y[i].qh, &qh, sizeof(qh));
  894. }
  895. }
  896. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  897. quantize_row_q5_0_reference(x, y, k);
  898. }
  899. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  900. const int qk = QK5_1;
  901. assert(k % qk == 0);
  902. const int nb = k / qk;
  903. for (int i = 0; i < nb; i++) {
  904. float min = FLT_MAX;
  905. float max = -FLT_MAX;
  906. for (int j = 0; j < qk; j++) {
  907. const float v = x[i*qk + j];
  908. if (v < min) min = v;
  909. if (v > max) max = v;
  910. }
  911. const float d = (max - min) / ((1 << 5) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. y[i].m = GGML_FP32_TO_FP16(min);
  915. uint32_t qh = 0;
  916. for (int j = 0; j < qk/2; ++j) {
  917. const float x0 = (x[i*qk + 0 + j] - min)*id;
  918. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  919. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  920. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  921. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  922. // get the 5-th bit and store it in qh at the right position
  923. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  924. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  925. }
  926. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  927. }
  928. }
  929. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  930. quantize_row_q5_1_reference(x, y, k);
  931. }
  932. // reference implementation for deterministic creation of model files
  933. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  934. assert(k % QK8_0 == 0);
  935. const int nb = k / QK8_0;
  936. for (int i = 0; i < nb; i++) {
  937. float amax = 0.0f; // absolute max
  938. for (int j = 0; j < QK8_0; j++) {
  939. const float v = x[i*QK8_0 + j];
  940. amax = MAX(amax, fabsf(v));
  941. }
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < QK8_0; ++j) {
  946. const float x0 = x[i*QK8_0 + j]*id;
  947. y[i].qs[j] = roundf(x0);
  948. }
  949. }
  950. }
  951. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  952. assert(QK8_0 == 32);
  953. assert(k % QK8_0 == 0);
  954. const int nb = k / QK8_0;
  955. block_q8_0 * restrict y = vy;
  956. #if defined(__ARM_NEON)
  957. for (int i = 0; i < nb; i++) {
  958. float32x4_t srcv [8];
  959. float32x4_t asrcv[8];
  960. float32x4_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = vmaxvq_f32(amaxv[0]);
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < 8; j++) {
  971. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  972. const int32x4_t vi = vcvtnq_s32_f32(v);
  973. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  974. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  975. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  976. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  977. }
  978. }
  979. #elif defined(__wasm_simd128__)
  980. for (int i = 0; i < nb; i++) {
  981. v128_t srcv [8];
  982. v128_t asrcv[8];
  983. v128_t amaxv[8];
  984. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  985. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  986. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  987. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  988. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  989. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  990. wasm_f32x4_extract_lane(amaxv[0], 1)),
  991. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  992. wasm_f32x4_extract_lane(amaxv[0], 3)));
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. for (int j = 0; j < 8; j++) {
  997. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  998. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  999. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1000. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1001. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1002. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1003. }
  1004. }
  1005. #elif defined(__AVX2__) || defined(__AVX__)
  1006. for (int i = 0; i < nb; i++) {
  1007. // Load elements into 4 AVX vectors
  1008. __m256 v0 = _mm256_loadu_ps( x );
  1009. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1010. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1011. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1012. x += 32;
  1013. // Compute max(abs(e)) for the block
  1014. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1015. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1018. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Quantize these floats
  1024. const float d = maxScalar / 127.f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1027. const __m256 mul = _mm256_set1_ps( id );
  1028. // Apply the multiplier
  1029. v0 = _mm256_mul_ps( v0, mul );
  1030. v1 = _mm256_mul_ps( v1, mul );
  1031. v2 = _mm256_mul_ps( v2, mul );
  1032. v3 = _mm256_mul_ps( v3, mul );
  1033. // Round to nearest integer
  1034. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1035. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1036. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1037. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1038. // Convert floats to integers
  1039. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1040. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1041. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1042. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1043. #if defined(__AVX2__)
  1044. // Convert int32 to int16
  1045. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1046. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1047. // Convert int16 to int8
  1048. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1049. // We got our precious signed bytes, but the order is now wrong
  1050. // These AVX2 pack instructions process 16-byte pieces independently
  1051. // The following instruction is fixing the order
  1052. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1053. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1054. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1055. #else
  1056. // Since we don't have in AVX some necessary functions,
  1057. // we split the registers in half and call AVX2 analogs from SSE
  1058. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1059. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1060. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1061. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1062. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1063. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1064. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1065. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1066. // Convert int32 to int16
  1067. ni0 = _mm_packs_epi32( ni0, ni1 );
  1068. ni2 = _mm_packs_epi32( ni2, ni3 );
  1069. ni4 = _mm_packs_epi32( ni4, ni5 );
  1070. ni6 = _mm_packs_epi32( ni6, ni7 );
  1071. // Convert int16 to int8
  1072. ni0 = _mm_packs_epi16( ni0, ni2 );
  1073. ni4 = _mm_packs_epi16( ni4, ni6 );
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1075. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1076. #endif
  1077. }
  1078. #else
  1079. // scalar
  1080. quantize_row_q8_0_reference(x, y, k);
  1081. #endif
  1082. }
  1083. // reference implementation for deterministic creation of model files
  1084. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1085. assert(QK8_1 == 32);
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. for (int i = 0; i < nb; i++) {
  1089. float amax = 0.0f; // absolute max
  1090. for (int j = 0; j < QK8_1; j++) {
  1091. const float v = x[i*QK8_1 + j];
  1092. amax = MAX(amax, fabsf(v));
  1093. }
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int sum = 0;
  1098. for (int j = 0; j < QK8_1/2; ++j) {
  1099. const float v0 = x[i*QK8_1 + j]*id;
  1100. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1101. y[i].qs[ j] = roundf(v0);
  1102. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1103. sum += y[i].qs[ j];
  1104. sum += y[i].qs[QK8_1/2 + j];
  1105. }
  1106. y[i].s = sum*d;
  1107. }
  1108. }
  1109. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK8_1 == 0);
  1111. const int nb = k / QK8_1;
  1112. block_q8_1 * restrict y = vy;
  1113. #if defined(__ARM_NEON)
  1114. for (int i = 0; i < nb; i++) {
  1115. float32x4_t srcv [8];
  1116. float32x4_t asrcv[8];
  1117. float32x4_t amaxv[8];
  1118. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1119. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1120. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1121. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1122. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1123. const float amax = vmaxvq_f32(amaxv[0]);
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. int32x4_t accv = vdupq_n_s32(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1130. const int32x4_t vi = vcvtnq_s32_f32(v);
  1131. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1132. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1133. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1134. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1135. accv = vaddq_s32(accv, vi);
  1136. }
  1137. y[i].s = d * vaddvq_s32(accv);
  1138. }
  1139. #elif defined(__wasm_simd128__)
  1140. for (int i = 0; i < nb; i++) {
  1141. v128_t srcv [8];
  1142. v128_t asrcv[8];
  1143. v128_t amaxv[8];
  1144. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1145. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1146. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1147. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1148. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1149. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1150. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1151. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1152. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1153. const float d = amax / ((1 << 7) - 1);
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = d;
  1156. v128_t accv = wasm_i32x4_splat(0);
  1157. for (int j = 0; j < 8; j++) {
  1158. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1159. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1160. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1161. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1162. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1163. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1164. accv = wasm_i32x4_add(accv, vi);
  1165. }
  1166. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1167. wasm_i32x4_extract_lane(accv, 1) +
  1168. wasm_i32x4_extract_lane(accv, 2) +
  1169. wasm_i32x4_extract_lane(accv, 3));
  1170. }
  1171. #elif defined(__AVX2__) || defined(__AVX__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // Load elements into 4 AVX vectors
  1174. __m256 v0 = _mm256_loadu_ps( x );
  1175. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1176. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1177. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1178. x += 32;
  1179. // Compute max(abs(e)) for the block
  1180. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1181. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1184. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1185. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1186. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1187. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1188. const float maxScalar = _mm_cvtss_f32( max4 );
  1189. // Quantize these floats
  1190. const float d = maxScalar / 127.f;
  1191. y[i].d = d;
  1192. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1193. const __m256 mul = _mm256_set1_ps( id );
  1194. // Apply the multiplier
  1195. v0 = _mm256_mul_ps( v0, mul );
  1196. v1 = _mm256_mul_ps( v1, mul );
  1197. v2 = _mm256_mul_ps( v2, mul );
  1198. v3 = _mm256_mul_ps( v3, mul );
  1199. // Round to nearest integer
  1200. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1201. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1202. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1203. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1204. // Convert floats to integers
  1205. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1206. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1207. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1208. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1209. #if defined(__AVX2__)
  1210. // Compute the sum of the quants and set y[i].s
  1211. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1212. // Convert int32 to int16
  1213. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1214. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1215. // Convert int16 to int8
  1216. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1217. // We got our precious signed bytes, but the order is now wrong
  1218. // These AVX2 pack instructions process 16-byte pieces independently
  1219. // The following instruction is fixing the order
  1220. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1221. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1222. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1223. #else
  1224. // Since we don't have in AVX some necessary functions,
  1225. // we split the registers in half and call AVX2 analogs from SSE
  1226. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1227. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1228. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1229. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1230. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1231. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1232. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1233. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1234. // Compute the sum of the quants and set y[i].s
  1235. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1236. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1237. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1238. // Convert int32 to int16
  1239. ni0 = _mm_packs_epi32( ni0, ni1 );
  1240. ni2 = _mm_packs_epi32( ni2, ni3 );
  1241. ni4 = _mm_packs_epi32( ni4, ni5 );
  1242. ni6 = _mm_packs_epi32( ni6, ni7 );
  1243. // Convert int16 to int8
  1244. ni0 = _mm_packs_epi16( ni0, ni2 );
  1245. ni4 = _mm_packs_epi16( ni4, ni6 );
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1247. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1248. #endif
  1249. }
  1250. #else
  1251. // scalar
  1252. quantize_row_q8_1_reference(x, y, k);
  1253. #endif
  1254. }
  1255. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK4_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. for (int j = 0; j < qk/2; ++j) {
  1262. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1263. const int x1 = (x[i].qs[j] >> 4) - 8;
  1264. y[i*qk + j + 0 ] = x0*d;
  1265. y[i*qk + j + qk/2] = x1*d;
  1266. }
  1267. }
  1268. }
  1269. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1270. static const int qk = QK4_1;
  1271. assert(k % qk == 0);
  1272. const int nb = k / qk;
  1273. for (int i = 0; i < nb; i++) {
  1274. const float d = GGML_FP16_TO_FP32(x[i].d);
  1275. const float m = GGML_FP16_TO_FP32(x[i].m);
  1276. for (int j = 0; j < qk/2; ++j) {
  1277. const int x0 = (x[i].qs[j] & 0x0F);
  1278. const int x1 = (x[i].qs[j] >> 4);
  1279. y[i*qk + j + 0 ] = x0*d + m;
  1280. y[i*qk + j + qk/2] = x1*d + m;
  1281. }
  1282. }
  1283. }
  1284. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1285. static const int qk = QK5_0;
  1286. assert(k % qk == 0);
  1287. const int nb = k / qk;
  1288. for (int i = 0; i < nb; i++) {
  1289. const float d = GGML_FP16_TO_FP32(x[i].d);
  1290. uint32_t qh;
  1291. memcpy(&qh, x[i].qh, sizeof(qh));
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1294. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1295. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1296. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1297. y[i*qk + j + 0 ] = x0*d;
  1298. y[i*qk + j + qk/2] = x1*d;
  1299. }
  1300. }
  1301. }
  1302. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1303. static const int qk = QK5_1;
  1304. assert(k % qk == 0);
  1305. const int nb = k / qk;
  1306. for (int i = 0; i < nb; i++) {
  1307. const float d = GGML_FP16_TO_FP32(x[i].d);
  1308. const float m = GGML_FP16_TO_FP32(x[i].m);
  1309. uint32_t qh;
  1310. memcpy(&qh, x[i].qh, sizeof(qh));
  1311. for (int j = 0; j < qk/2; ++j) {
  1312. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1313. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1314. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1315. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1316. y[i*qk + j + 0 ] = x0*d + m;
  1317. y[i*qk + j + qk/2] = x1*d + m;
  1318. }
  1319. }
  1320. }
  1321. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1322. static const int qk = QK8_0;
  1323. assert(k % qk == 0);
  1324. const int nb = k / qk;
  1325. const block_q8_0 * restrict x = vx;
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d = GGML_FP16_TO_FP32(x[i].d);
  1328. for (int j = 0; j < qk; ++j) {
  1329. y[i*qk + j] = x[i].qs[j]*d;
  1330. }
  1331. }
  1332. }
  1333. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1334. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1335. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1341. [GGML_TYPE_F32] = {
  1342. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1343. .vec_dot_type = GGML_TYPE_F32,
  1344. },
  1345. [GGML_TYPE_F16] = {
  1346. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1347. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1348. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1350. .vec_dot_type = GGML_TYPE_F16,
  1351. },
  1352. [GGML_TYPE_Q4_0] = {
  1353. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1354. .from_float = quantize_row_q4_0,
  1355. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1356. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1357. .vec_dot_type = GGML_TYPE_Q8_0,
  1358. },
  1359. [GGML_TYPE_Q4_1] = {
  1360. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1361. .from_float = quantize_row_q4_1,
  1362. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1363. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1364. .vec_dot_type = GGML_TYPE_Q8_1,
  1365. },
  1366. [GGML_TYPE_Q5_0] = {
  1367. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1368. .from_float = quantize_row_q5_0,
  1369. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1370. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1371. .vec_dot_type = GGML_TYPE_Q8_0,
  1372. },
  1373. [GGML_TYPE_Q5_1] = {
  1374. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1375. .from_float = quantize_row_q5_1,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1377. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1378. .vec_dot_type = GGML_TYPE_Q8_1,
  1379. },
  1380. [GGML_TYPE_Q8_0] = {
  1381. .to_float = dequantize_row_q8_0,
  1382. .from_float = quantize_row_q8_0,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1384. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1385. .vec_dot_type = GGML_TYPE_Q8_0,
  1386. },
  1387. [GGML_TYPE_Q8_1] = {
  1388. .from_float = quantize_row_q8_1,
  1389. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1390. .vec_dot_type = GGML_TYPE_Q8_1,
  1391. },
  1392. #ifdef GGML_USE_K_QUANTS
  1393. [GGML_TYPE_Q2_K] = {
  1394. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1395. .from_float = quantize_row_q2_K,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1397. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1398. .vec_dot_type = GGML_TYPE_Q8_K,
  1399. },
  1400. [GGML_TYPE_Q3_K] = {
  1401. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1402. .from_float = quantize_row_q3_K,
  1403. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1404. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1405. .vec_dot_type = GGML_TYPE_Q8_K,
  1406. },
  1407. [GGML_TYPE_Q4_K] = {
  1408. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1409. .from_float = quantize_row_q4_K,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1411. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1412. .vec_dot_type = GGML_TYPE_Q8_K,
  1413. },
  1414. [GGML_TYPE_Q5_K] = {
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1416. .from_float = quantize_row_q5_K,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1418. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1419. .vec_dot_type = GGML_TYPE_Q8_K,
  1420. },
  1421. [GGML_TYPE_Q6_K] = {
  1422. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1423. .from_float = quantize_row_q6_K,
  1424. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1425. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1426. .vec_dot_type = GGML_TYPE_Q8_K,
  1427. },
  1428. [GGML_TYPE_Q8_K] = {
  1429. .from_float = quantize_row_q8_K,
  1430. }
  1431. #endif
  1432. };
  1433. // For internal test use
  1434. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1435. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1436. return type_traits[i];
  1437. }
  1438. //
  1439. // simd mappings
  1440. //
  1441. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1442. // we then implement the fundamental computation operations below using only these macros
  1443. // adding support for new architectures requires to define the corresponding SIMD macros
  1444. //
  1445. // GGML_F32_STEP / GGML_F16_STEP
  1446. // number of elements to process in a single step
  1447. //
  1448. // GGML_F32_EPR / GGML_F16_EPR
  1449. // number of elements to fit in a single register
  1450. //
  1451. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1452. #define GGML_SIMD
  1453. // F32 NEON
  1454. #define GGML_F32_STEP 16
  1455. #define GGML_F32_EPR 4
  1456. #define GGML_F32x4 float32x4_t
  1457. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1458. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1459. #define GGML_F32x4_LOAD vld1q_f32
  1460. #define GGML_F32x4_STORE vst1q_f32
  1461. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1462. #define GGML_F32x4_ADD vaddq_f32
  1463. #define GGML_F32x4_MUL vmulq_f32
  1464. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1465. #define GGML_F32x4_REDUCE(res, x) \
  1466. { \
  1467. int offset = GGML_F32_ARR >> 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. offset >>= 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1478. } \
  1479. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1480. }
  1481. #define GGML_F32_VEC GGML_F32x4
  1482. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1483. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1484. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1485. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1486. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1487. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1488. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1489. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1490. // F16 NEON
  1491. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1492. #define GGML_F16_STEP 32
  1493. #define GGML_F16_EPR 8
  1494. #define GGML_F16x8 float16x8_t
  1495. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1496. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1497. #define GGML_F16x8_LOAD vld1q_f16
  1498. #define GGML_F16x8_STORE vst1q_f16
  1499. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1500. #define GGML_F16x8_ADD vaddq_f16
  1501. #define GGML_F16x8_MUL vmulq_f16
  1502. #define GGML_F16x8_REDUCE(res, x) \
  1503. { \
  1504. int offset = GGML_F16_ARR >> 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. offset >>= 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1515. } \
  1516. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1517. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1518. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1519. }
  1520. #define GGML_F16_VEC GGML_F16x8
  1521. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1529. #else
  1530. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1531. // and take advantage of the vcvt_ functions to convert to/from FP16
  1532. #define GGML_F16_STEP 16
  1533. #define GGML_F16_EPR 4
  1534. #define GGML_F32Cx4 float32x4_t
  1535. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1536. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1537. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1538. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1539. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1540. #define GGML_F32Cx4_ADD vaddq_f32
  1541. #define GGML_F32Cx4_MUL vmulq_f32
  1542. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1543. #define GGML_F16_VEC GGML_F32Cx4
  1544. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1545. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1546. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1547. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1548. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1549. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1550. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1551. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1552. #endif
  1553. #elif defined(__AVX__)
  1554. #define GGML_SIMD
  1555. // F32 AVX
  1556. #define GGML_F32_STEP 32
  1557. #define GGML_F32_EPR 8
  1558. #define GGML_F32x8 __m256
  1559. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1560. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1561. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1562. #define GGML_F32x8_STORE _mm256_storeu_ps
  1563. #if defined(__FMA__)
  1564. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1565. #else
  1566. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1567. #endif
  1568. #define GGML_F32x8_ADD _mm256_add_ps
  1569. #define GGML_F32x8_MUL _mm256_mul_ps
  1570. #define GGML_F32x8_REDUCE(res, x) \
  1571. { \
  1572. int offset = GGML_F32_ARR >> 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. offset >>= 1; \
  1581. for (int i = 0; i < offset; ++i) { \
  1582. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1583. } \
  1584. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1585. _mm256_extractf128_ps(x[0], 1)); \
  1586. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1587. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1588. }
  1589. // TODO: is this optimal ?
  1590. #define GGML_F32_VEC GGML_F32x8
  1591. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1592. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1593. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1594. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1595. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1596. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1597. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1598. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1599. // F16 AVX
  1600. #define GGML_F16_STEP 32
  1601. #define GGML_F16_EPR 8
  1602. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1603. #define GGML_F32Cx8 __m256
  1604. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1605. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1606. #if defined(__F16C__)
  1607. // the _mm256_cvt intrinsics require F16C
  1608. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1609. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1610. #else
  1611. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1612. float tmp[8];
  1613. for (int i = 0; i < 8; i++) {
  1614. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1615. }
  1616. return _mm256_loadu_ps(tmp);
  1617. }
  1618. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1619. float arr[8];
  1620. _mm256_storeu_ps(arr, y);
  1621. for (int i = 0; i < 8; i++)
  1622. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1623. }
  1624. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1625. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1626. #endif
  1627. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1628. #define GGML_F32Cx8_ADD _mm256_add_ps
  1629. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1630. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1631. #define GGML_F16_VEC GGML_F32Cx8
  1632. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1633. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1634. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1635. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1636. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1637. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1638. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1639. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1640. #elif defined(__POWER9_VECTOR__)
  1641. #define GGML_SIMD
  1642. // F32 POWER9
  1643. #define GGML_F32_STEP 32
  1644. #define GGML_F32_EPR 4
  1645. #define GGML_F32x4 vector float
  1646. #define GGML_F32x4_ZERO 0.0f
  1647. #define GGML_F32x4_SET1 vec_splats
  1648. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1649. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1650. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1651. #define GGML_F32x4_ADD vec_add
  1652. #define GGML_F32x4_MUL vec_mul
  1653. #define GGML_F32x4_REDUCE(res, x) \
  1654. { \
  1655. int offset = GGML_F32_ARR >> 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. offset >>= 1; \
  1664. for (int i = 0; i < offset; ++i) { \
  1665. x[i] = vec_add(x[i], x[offset+i]); \
  1666. } \
  1667. res = vec_extract(x[0], 0) + \
  1668. vec_extract(x[0], 1) + \
  1669. vec_extract(x[0], 2) + \
  1670. vec_extract(x[0], 3); \
  1671. }
  1672. #define GGML_F32_VEC GGML_F32x4
  1673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // F16 POWER9
  1682. #define GGML_F16_STEP GGML_F32_STEP
  1683. #define GGML_F16_EPR GGML_F32_EPR
  1684. #define GGML_F16_VEC GGML_F32x4
  1685. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1686. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1687. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1688. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1689. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1690. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1691. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1692. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1693. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1694. #define GGML_F16_VEC_STORE(p, r, i) \
  1695. if (i & 0x1) \
  1696. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1697. r[i - GGML_ENDIAN_BYTE(0)]), \
  1698. 0, p - GGML_F16_EPR)
  1699. #elif defined(__wasm_simd128__)
  1700. #define GGML_SIMD
  1701. // F32 WASM
  1702. #define GGML_F32_STEP 16
  1703. #define GGML_F32_EPR 4
  1704. #define GGML_F32x4 v128_t
  1705. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1706. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1707. #define GGML_F32x4_LOAD wasm_v128_load
  1708. #define GGML_F32x4_STORE wasm_v128_store
  1709. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1710. #define GGML_F32x4_ADD wasm_f32x4_add
  1711. #define GGML_F32x4_MUL wasm_f32x4_mul
  1712. #define GGML_F32x4_REDUCE(res, x) \
  1713. { \
  1714. int offset = GGML_F32_ARR >> 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. offset >>= 1; \
  1723. for (int i = 0; i < offset; ++i) { \
  1724. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1725. } \
  1726. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1727. wasm_f32x4_extract_lane(x[0], 1) + \
  1728. wasm_f32x4_extract_lane(x[0], 2) + \
  1729. wasm_f32x4_extract_lane(x[0], 3); \
  1730. }
  1731. #define GGML_F32_VEC GGML_F32x4
  1732. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1733. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1734. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1735. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1736. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1738. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1739. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1740. // F16 WASM
  1741. #define GGML_F16_STEP 16
  1742. #define GGML_F16_EPR 4
  1743. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1744. float tmp[4];
  1745. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1746. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1747. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1748. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1749. return wasm_v128_load(tmp);
  1750. }
  1751. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1752. float tmp[4];
  1753. wasm_v128_store(tmp, x);
  1754. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1755. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1756. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1757. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1758. }
  1759. #define GGML_F16x4 v128_t
  1760. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1761. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1762. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1763. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1764. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1765. #define GGML_F16x4_ADD wasm_f32x4_add
  1766. #define GGML_F16x4_MUL wasm_f32x4_mul
  1767. #define GGML_F16x4_REDUCE(res, x) \
  1768. { \
  1769. int offset = GGML_F16_ARR >> 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. offset >>= 1; \
  1778. for (int i = 0; i < offset; ++i) { \
  1779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1780. } \
  1781. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1782. wasm_f32x4_extract_lane(x[0], 1) + \
  1783. wasm_f32x4_extract_lane(x[0], 2) + \
  1784. wasm_f32x4_extract_lane(x[0], 3); \
  1785. }
  1786. #define GGML_F16_VEC GGML_F16x4
  1787. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1795. #elif defined(__SSE3__)
  1796. #define GGML_SIMD
  1797. // F32 SSE
  1798. #define GGML_F32_STEP 32
  1799. #define GGML_F32_EPR 4
  1800. #define GGML_F32x4 __m128
  1801. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1802. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1803. #define GGML_F32x4_LOAD _mm_loadu_ps
  1804. #define GGML_F32x4_STORE _mm_storeu_ps
  1805. #if defined(__FMA__)
  1806. // TODO: Does this work?
  1807. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1808. #else
  1809. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1810. #endif
  1811. #define GGML_F32x4_ADD _mm_add_ps
  1812. #define GGML_F32x4_MUL _mm_mul_ps
  1813. #define GGML_F32x4_REDUCE(res, x) \
  1814. { \
  1815. int offset = GGML_F32_ARR >> 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. offset >>= 1; \
  1824. for (int i = 0; i < offset; ++i) { \
  1825. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1826. } \
  1827. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1828. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1829. }
  1830. // TODO: is this optimal ?
  1831. #define GGML_F32_VEC GGML_F32x4
  1832. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1833. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1834. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1835. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1836. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1837. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1838. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1839. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1840. // F16 SSE
  1841. #define GGML_F16_STEP 32
  1842. #define GGML_F16_EPR 4
  1843. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1844. float tmp[4];
  1845. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1846. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1847. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1848. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1849. return _mm_loadu_ps(tmp);
  1850. }
  1851. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1852. float arr[4];
  1853. _mm_storeu_ps(arr, y);
  1854. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1855. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1856. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1857. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1858. }
  1859. #define GGML_F32Cx4 __m128
  1860. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1861. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1862. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1863. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1864. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1865. #define GGML_F32Cx4_ADD _mm_add_ps
  1866. #define GGML_F32Cx4_MUL _mm_mul_ps
  1867. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1868. #define GGML_F16_VEC GGML_F32Cx4
  1869. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1870. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1871. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1872. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1873. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1874. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1875. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1876. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1877. #endif
  1878. // GGML_F32_ARR / GGML_F16_ARR
  1879. // number of registers to use per step
  1880. #ifdef GGML_SIMD
  1881. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1882. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1883. #endif
  1884. //
  1885. // fundamental operations
  1886. //
  1887. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1890. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1891. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1892. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1893. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1894. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1895. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1896. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1898. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1899. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1900. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1901. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1902. #ifdef GGML_SIMD
  1903. float sumf = 0.0f;
  1904. const int np = (n & ~(GGML_F32_STEP - 1));
  1905. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1906. GGML_F32_VEC ax[GGML_F32_ARR];
  1907. GGML_F32_VEC ay[GGML_F32_ARR];
  1908. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1909. for (int j = 0; j < GGML_F32_ARR; j++) {
  1910. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1911. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1912. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1913. }
  1914. }
  1915. // reduce sum0..sum3 to sum0
  1916. GGML_F32_VEC_REDUCE(sumf, sum);
  1917. // leftovers
  1918. for (int i = np; i < n; ++i) {
  1919. sumf += x[i]*y[i];
  1920. }
  1921. #else
  1922. // scalar
  1923. ggml_float sumf = 0.0;
  1924. for (int i = 0; i < n; ++i) {
  1925. sumf += (ggml_float)(x[i]*y[i]);
  1926. }
  1927. #endif
  1928. *s = sumf;
  1929. }
  1930. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1931. ggml_float sumf = 0.0;
  1932. #if defined(GGML_SIMD)
  1933. const int np = (n & ~(GGML_F16_STEP - 1));
  1934. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1935. GGML_F16_VEC ax[GGML_F16_ARR];
  1936. GGML_F16_VEC ay[GGML_F16_ARR];
  1937. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1938. for (int j = 0; j < GGML_F16_ARR; j++) {
  1939. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1940. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1941. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1942. }
  1943. }
  1944. // reduce sum0..sum3 to sum0
  1945. GGML_F16_VEC_REDUCE(sumf, sum);
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #else
  1951. for (int i = 0; i < n; ++i) {
  1952. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1953. }
  1954. #endif
  1955. *s = sumf;
  1956. }
  1957. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1958. const int qk = QK8_0;
  1959. const int nb = n / qk;
  1960. assert(n % qk == 0);
  1961. assert(nb % 2 == 0);
  1962. const block_q4_0 * restrict x = vx;
  1963. const block_q8_0 * restrict y = vy;
  1964. #if defined(__ARM_NEON)
  1965. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1966. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1967. for (int i = 0; i < nb; i += 2) {
  1968. const block_q4_0 * restrict x0 = &x[i + 0];
  1969. const block_q4_0 * restrict x1 = &x[i + 1];
  1970. const block_q8_0 * restrict y0 = &y[i + 0];
  1971. const block_q8_0 * restrict y1 = &y[i + 1];
  1972. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1973. const int8x16_t s8b = vdupq_n_s8(0x8);
  1974. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1975. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1976. // 4-bit -> 8-bit
  1977. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1978. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1979. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1980. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1981. // sub 8
  1982. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1983. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1984. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1985. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1986. // load y
  1987. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1988. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1989. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1990. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1991. #if defined(__ARM_FEATURE_DOTPROD)
  1992. // dot product into int32x4_t
  1993. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1994. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1995. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1996. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1997. #else
  1998. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1999. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2000. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2001. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2002. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2003. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2004. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2005. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2006. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2007. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2008. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2009. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2011. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2012. #endif
  2013. }
  2014. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2015. #elif defined(__AVX2__)
  2016. // Initialize accumulator with zeros
  2017. __m256 acc = _mm256_setzero_ps();
  2018. // Main loop
  2019. for (int i = 0; i < nb; ++i) {
  2020. /* Compute combined scale for the block */
  2021. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2022. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2023. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2024. const __m256i off = _mm256_set1_epi8( 8 );
  2025. bx = _mm256_sub_epi8( bx, off );
  2026. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2027. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2028. /* Multiply q with scale and accumulate */
  2029. acc = _mm256_fmadd_ps( d, q, acc );
  2030. }
  2031. *s = hsum_float_8(acc);
  2032. #elif defined(__AVX__)
  2033. // Initialize accumulator with zeros
  2034. __m256 acc = _mm256_setzero_ps();
  2035. // Main loop
  2036. for (int i = 0; i < nb; ++i) {
  2037. // Compute combined scale for the block
  2038. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2039. const __m128i lowMask = _mm_set1_epi8(0xF);
  2040. const __m128i off = _mm_set1_epi8(8);
  2041. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2042. __m128i bx = _mm_and_si128(lowMask, tmp);
  2043. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2046. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2047. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2048. bx = _mm_sub_epi8(bx, off);
  2049. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2050. // Convert int32_t to float
  2051. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2052. // Apply the scale, and accumulate
  2053. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2054. }
  2055. *s = hsum_float_8(acc);
  2056. #elif defined(__SSSE3__)
  2057. // set constants
  2058. const __m128i lowMask = _mm_set1_epi8(0xF);
  2059. const __m128i off = _mm_set1_epi8(8);
  2060. // Initialize accumulator with zeros
  2061. __m128 acc_0 = _mm_setzero_ps();
  2062. __m128 acc_1 = _mm_setzero_ps();
  2063. __m128 acc_2 = _mm_setzero_ps();
  2064. __m128 acc_3 = _mm_setzero_ps();
  2065. // First round without accumulation
  2066. {
  2067. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2068. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2069. // Compute combined scale for the block 0 and 1
  2070. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2071. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2072. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2073. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2074. bx_0 = _mm_sub_epi8(bx_0, off);
  2075. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2076. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2077. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2078. bx_1 = _mm_sub_epi8(bx_1, off);
  2079. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2080. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 2 and 3
  2083. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2084. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2085. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2086. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2087. bx_2 = _mm_sub_epi8(bx_2, off);
  2088. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2089. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2090. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2091. bx_3 = _mm_sub_epi8(bx_3, off);
  2092. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2093. // Convert int32_t to float
  2094. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2095. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2096. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2097. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2098. // Apply the scale
  2099. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2100. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2101. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2102. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2103. }
  2104. // Main loop
  2105. for (int i = 2; i < nb; i+=2) {
  2106. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2107. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2108. // Compute combined scale for the block 0 and 1
  2109. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2110. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2111. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2112. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2113. bx_0 = _mm_sub_epi8(bx_0, off);
  2114. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2115. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2116. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2117. bx_1 = _mm_sub_epi8(bx_1, off);
  2118. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2119. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2120. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2121. // Compute combined scale for the block 2 and 3
  2122. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2123. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2124. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2125. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2126. bx_2 = _mm_sub_epi8(bx_2, off);
  2127. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2128. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2129. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2130. bx_3 = _mm_sub_epi8(bx_3, off);
  2131. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2132. // Convert int32_t to float
  2133. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2134. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2135. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2136. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2137. // Apply the scale
  2138. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2139. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2140. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2141. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2142. // Acummulate
  2143. acc_0 = _mm_add_ps(p0_d, acc_0);
  2144. acc_1 = _mm_add_ps(p1_d, acc_1);
  2145. acc_2 = _mm_add_ps(p2_d, acc_2);
  2146. acc_3 = _mm_add_ps(p3_d, acc_3);
  2147. }
  2148. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2149. #else
  2150. // scalar
  2151. float sumf = 0.0;
  2152. for (int i = 0; i < nb; i++) {
  2153. int sumi = 0;
  2154. for (int j = 0; j < qk/2; ++j) {
  2155. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2156. const int v1 = (x[i].qs[j] >> 4) - 8;
  2157. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2158. }
  2159. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2160. }
  2161. *s = sumf;
  2162. #endif
  2163. }
  2164. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2165. const int qk = QK8_1;
  2166. const int nb = n / qk;
  2167. assert(n % qk == 0);
  2168. assert(nb % 2 == 0);
  2169. const block_q4_1 * restrict x = vx;
  2170. const block_q8_1 * restrict y = vy;
  2171. // TODO: add WASM SIMD
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. float summs = 0;
  2176. for (int i = 0; i < nb; i += 2) {
  2177. const block_q4_1 * restrict x0 = &x[i + 0];
  2178. const block_q4_1 * restrict x1 = &x[i + 1];
  2179. const block_q8_1 * restrict y0 = &y[i + 0];
  2180. const block_q8_1 * restrict y1 = &y[i + 1];
  2181. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2182. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // load y
  2191. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2192. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2193. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2194. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2195. #if defined(__ARM_FEATURE_DOTPROD)
  2196. // dot product into int32x4_t
  2197. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2198. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2199. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2201. #else
  2202. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2203. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2204. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2205. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2206. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2207. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2208. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2209. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2210. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2211. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2212. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2213. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2214. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2215. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2216. #endif
  2217. }
  2218. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2219. #elif defined(__AVX2__) || defined(__AVX__)
  2220. // Initialize accumulator with zeros
  2221. __m256 acc = _mm256_setzero_ps();
  2222. float summs = 0;
  2223. // Main loop
  2224. for (int i = 0; i < nb; ++i) {
  2225. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2226. const float d1 = y[i].d;
  2227. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2228. const __m256 d0v = _mm256_set1_ps( d0 );
  2229. const __m256 d1v = _mm256_set1_ps( d1 );
  2230. // Compute combined scales
  2231. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2232. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2233. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2234. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2235. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2236. // Accumulate d0*d1*x*y
  2237. #if defined(__AVX2__)
  2238. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2239. #else
  2240. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2241. #endif
  2242. }
  2243. *s = hsum_float_8(acc) + summs;
  2244. #else
  2245. // scalar
  2246. float sumf = 0.0;
  2247. for (int i = 0; i < nb; i++) {
  2248. int sumi = 0;
  2249. for (int j = 0; j < qk/2; ++j) {
  2250. const int v0 = (x[i].qs[j] & 0x0F);
  2251. const int v1 = (x[i].qs[j] >> 4);
  2252. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2253. }
  2254. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2255. }
  2256. *s = sumf;
  2257. #endif
  2258. }
  2259. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int qk = QK8_0;
  2261. const int nb = n / qk;
  2262. assert(n % qk == 0);
  2263. assert(nb % 2 == 0);
  2264. assert(qk == QK5_0);
  2265. const block_q5_0 * restrict x = vx;
  2266. const block_q8_0 * restrict y = vy;
  2267. #if defined(__ARM_NEON)
  2268. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2269. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2270. uint32_t qh0;
  2271. uint32_t qh1;
  2272. uint64_t tmp0[4];
  2273. uint64_t tmp1[4];
  2274. for (int i = 0; i < nb; i += 2) {
  2275. const block_q5_0 * restrict x0 = &x[i];
  2276. const block_q5_0 * restrict x1 = &x[i + 1];
  2277. const block_q8_0 * restrict y0 = &y[i];
  2278. const block_q8_0 * restrict y1 = &y[i + 1];
  2279. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2280. // extract the 5th bit via lookup table ((!b) << 4)
  2281. memcpy(&qh0, x0->qh, sizeof(qh0));
  2282. memcpy(&qh1, x1->qh, sizeof(qh1));
  2283. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2284. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2285. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2286. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2287. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2288. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2289. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2290. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2291. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2292. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2293. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2294. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2295. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2296. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2297. // 4-bit -> 8-bit
  2298. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2299. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2300. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2301. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2302. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2303. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2304. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2305. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2306. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2307. // load y
  2308. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2309. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2310. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2311. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2312. #if defined(__ARM_FEATURE_DOTPROD)
  2313. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2317. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2318. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2319. #else
  2320. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2321. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2322. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2323. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2324. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2325. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2326. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2327. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2328. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2329. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2330. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2331. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2333. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2334. #endif
  2335. }
  2336. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2337. #elif defined(__wasm_simd128__)
  2338. v128_t sumv = wasm_f32x4_splat(0.0f);
  2339. uint32_t qh;
  2340. uint64_t tmp[4];
  2341. // TODO: check if unrolling this is better
  2342. for (int i = 0; i < nb; ++i) {
  2343. const block_q5_0 * restrict x0 = &x[i];
  2344. const block_q8_0 * restrict y0 = &y[i];
  2345. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2346. // extract the 5th bit
  2347. memcpy(&qh, x0->qh, sizeof(qh));
  2348. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2349. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2350. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2351. tmp[3] = table_b2b_1[(qh >> 24) ];
  2352. const v128_t qhl = wasm_v128_load(tmp + 0);
  2353. const v128_t qhh = wasm_v128_load(tmp + 2);
  2354. const v128_t v0 = wasm_v128_load(x0->qs);
  2355. // 4-bit -> 8-bit
  2356. const v128_t v0l = wasm_v128_and (v0, m4b);
  2357. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2358. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2359. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2360. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2361. // load y
  2362. const v128_t v1l = wasm_v128_load(y0->qs);
  2363. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2364. // int8x16 -> int16x8
  2365. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2366. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2367. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2368. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2369. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2370. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2371. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2372. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2373. // dot product
  2374. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2375. wasm_i32x4_add(
  2376. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2377. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2378. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2379. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2380. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2381. }
  2382. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2383. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2384. #elif defined(__AVX2__)
  2385. // Initialize accumulator with zeros
  2386. __m256 acc = _mm256_setzero_ps();
  2387. // Main loop
  2388. for (int i = 0; i < nb; i++) {
  2389. /* Compute combined scale for the block */
  2390. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2391. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2392. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2393. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2394. bx = _mm256_or_si256(bx, bxhi);
  2395. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2396. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2397. /* Multiply q with scale and accumulate */
  2398. acc = _mm256_fmadd_ps(d, q, acc);
  2399. }
  2400. *s = hsum_float_8(acc);
  2401. #elif defined(__AVX__)
  2402. // Initialize accumulator with zeros
  2403. __m256 acc = _mm256_setzero_ps();
  2404. __m128i mask = _mm_set1_epi8((char)0xF0);
  2405. // Main loop
  2406. for (int i = 0; i < nb; i++) {
  2407. /* Compute combined scale for the block */
  2408. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2409. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2410. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2411. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2412. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2413. bxhil = _mm_andnot_si128(bxhil, mask);
  2414. bxhih = _mm_andnot_si128(bxhih, mask);
  2415. __m128i bxl = _mm256_castsi256_si128(bx);
  2416. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2417. bxl = _mm_or_si128(bxl, bxhil);
  2418. bxh = _mm_or_si128(bxh, bxhih);
  2419. bx = MM256_SET_M128I(bxh, bxl);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #else
  2427. // scalar
  2428. float sumf = 0.0;
  2429. for (int i = 0; i < nb; i++) {
  2430. uint32_t qh;
  2431. memcpy(&qh, x[i].qh, sizeof(qh));
  2432. int sumi = 0;
  2433. for (int j = 0; j < qk/2; ++j) {
  2434. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2435. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2436. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2437. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2438. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2439. }
  2440. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2441. }
  2442. *s = sumf;
  2443. #endif
  2444. }
  2445. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2446. const int qk = QK8_1;
  2447. const int nb = n / qk;
  2448. assert(n % qk == 0);
  2449. assert(nb % 2 == 0);
  2450. assert(qk == QK5_1);
  2451. const block_q5_1 * restrict x = vx;
  2452. const block_q8_1 * restrict y = vy;
  2453. #if defined(__ARM_NEON)
  2454. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2455. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2456. float summs0 = 0.0f;
  2457. float summs1 = 0.0f;
  2458. uint32_t qh0;
  2459. uint32_t qh1;
  2460. uint64_t tmp0[4];
  2461. uint64_t tmp1[4];
  2462. for (int i = 0; i < nb; i += 2) {
  2463. const block_q5_1 * restrict x0 = &x[i];
  2464. const block_q5_1 * restrict x1 = &x[i + 1];
  2465. const block_q8_1 * restrict y0 = &y[i];
  2466. const block_q8_1 * restrict y1 = &y[i + 1];
  2467. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2468. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2469. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2470. // extract the 5th bit via lookup table ((b) << 4)
  2471. memcpy(&qh0, x0->qh, sizeof(qh0));
  2472. memcpy(&qh1, x1->qh, sizeof(qh1));
  2473. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2474. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2475. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2476. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2477. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2478. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2479. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2480. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2481. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2482. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2483. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2484. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2485. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2486. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2487. // 4-bit -> 8-bit
  2488. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2489. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2490. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2491. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2492. // add high bit
  2493. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2494. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2495. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2496. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2497. // load y
  2498. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2499. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2500. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2501. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2502. #if defined(__ARM_FEATURE_DOTPROD)
  2503. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2506. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2507. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2508. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2509. #else
  2510. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2511. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2512. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2513. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2514. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2515. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2516. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2517. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2518. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2519. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2520. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2521. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2522. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2523. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2524. #endif
  2525. }
  2526. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2527. #elif defined(__wasm_simd128__)
  2528. v128_t sumv = wasm_f32x4_splat(0.0f);
  2529. float summs = 0.0f;
  2530. uint32_t qh;
  2531. uint64_t tmp[4];
  2532. // TODO: check if unrolling this is better
  2533. for (int i = 0; i < nb; ++i) {
  2534. const block_q5_1 * restrict x0 = &x[i];
  2535. const block_q8_1 * restrict y0 = &y[i];
  2536. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2537. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2538. // extract the 5th bit
  2539. memcpy(&qh, x0->qh, sizeof(qh));
  2540. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2541. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2542. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2543. tmp[3] = table_b2b_0[(qh >> 24) ];
  2544. const v128_t qhl = wasm_v128_load(tmp + 0);
  2545. const v128_t qhh = wasm_v128_load(tmp + 2);
  2546. const v128_t v0 = wasm_v128_load(x0->qs);
  2547. // 4-bit -> 8-bit
  2548. const v128_t v0l = wasm_v128_and (v0, m4b);
  2549. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2550. // add high bit
  2551. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2552. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2553. // load y
  2554. const v128_t v1l = wasm_v128_load(y0->qs);
  2555. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2556. // int8x16 -> int16x8
  2557. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2558. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2559. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2560. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2561. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2562. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2563. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2564. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2565. // dot product
  2566. sumv = wasm_f32x4_add(sumv,
  2567. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2568. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2569. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2570. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2571. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2572. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2573. }
  2574. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2575. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2576. #elif defined(__AVX2__)
  2577. // Initialize accumulator with zeros
  2578. __m256 acc = _mm256_setzero_ps();
  2579. float summs = 0.0f;
  2580. // Main loop
  2581. for (int i = 0; i < nb; i++) {
  2582. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2583. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2584. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2585. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2586. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2587. bx = _mm256_or_si256(bx, bxhi);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #elif defined(__AVX__)
  2595. // Initialize accumulator with zeros
  2596. __m256 acc = _mm256_setzero_ps();
  2597. __m128i mask = _mm_set1_epi8(0x10);
  2598. float summs = 0.0f;
  2599. // Main loop
  2600. for (int i = 0; i < nb; i++) {
  2601. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2602. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2603. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2604. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2605. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2606. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2607. bxhil = _mm_and_si128(bxhil, mask);
  2608. bxhih = _mm_and_si128(bxhih, mask);
  2609. __m128i bxl = _mm256_castsi256_si128(bx);
  2610. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2611. bxl = _mm_or_si128(bxl, bxhil);
  2612. bxh = _mm_or_si128(bxh, bxhih);
  2613. bx = MM256_SET_M128I(bxh, bxl);
  2614. const __m256 dy = _mm256_set1_ps(y[i].d);
  2615. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2616. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2617. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2618. }
  2619. *s = hsum_float_8(acc) + summs;
  2620. #else
  2621. // scalar
  2622. float sumf = 0.0;
  2623. for (int i = 0; i < nb; i++) {
  2624. uint32_t qh;
  2625. memcpy(&qh, x[i].qh, sizeof(qh));
  2626. int sumi = 0;
  2627. for (int j = 0; j < qk/2; ++j) {
  2628. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2629. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2630. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2631. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2632. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2633. }
  2634. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2635. }
  2636. *s = sumf;
  2637. #endif
  2638. }
  2639. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2640. const int qk = QK8_0;
  2641. const int nb = n / qk;
  2642. assert(n % qk == 0);
  2643. assert(nb % 2 == 0);
  2644. const block_q8_0 * restrict x = vx;
  2645. const block_q8_0 * restrict y = vy;
  2646. #if defined(__ARM_NEON)
  2647. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2648. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2649. for (int i = 0; i < nb; i += 2) {
  2650. const block_q8_0 * restrict x0 = &x[i + 0];
  2651. const block_q8_0 * restrict x1 = &x[i + 1];
  2652. const block_q8_0 * restrict y0 = &y[i + 0];
  2653. const block_q8_0 * restrict y1 = &y[i + 1];
  2654. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2655. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2656. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2657. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2658. // load y
  2659. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2660. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2661. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2662. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2663. #if defined(__ARM_FEATURE_DOTPROD)
  2664. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2666. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2667. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2668. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2669. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2670. #else
  2671. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2672. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2673. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2674. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2675. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2676. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2677. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2678. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2679. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2680. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2681. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2682. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2683. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2684. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2685. #endif
  2686. }
  2687. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2688. #elif defined(__AVX2__) || defined(__AVX__)
  2689. // Initialize accumulator with zeros
  2690. __m256 acc = _mm256_setzero_ps();
  2691. // Main loop
  2692. for (int i = 0; i < nb; ++i) {
  2693. // Compute combined scale for the block
  2694. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2695. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2696. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2697. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2698. // Multiply q with scale and accumulate
  2699. #if defined(__AVX2__)
  2700. acc = _mm256_fmadd_ps( d, q, acc );
  2701. #else
  2702. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2703. #endif
  2704. }
  2705. *s = hsum_float_8(acc);
  2706. #else
  2707. // scalar
  2708. float sumf = 0.0;
  2709. for (int i = 0; i < nb; i++) {
  2710. int sumi = 0;
  2711. for (int j = 0; j < qk; j++) {
  2712. sumi += x[i].qs[j]*y[i].qs[j];
  2713. }
  2714. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2715. }
  2716. *s = sumf;
  2717. #endif
  2718. }
  2719. // compute GGML_VEC_DOT_UNROLL dot products at once
  2720. // xs - x row stride in bytes
  2721. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2722. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2723. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2724. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2725. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2726. }
  2727. #if defined(GGML_SIMD)
  2728. const int np = (n & ~(GGML_F16_STEP - 1));
  2729. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2730. GGML_F16_VEC ax[GGML_F16_ARR];
  2731. GGML_F16_VEC ay[GGML_F16_ARR];
  2732. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2733. for (int j = 0; j < GGML_F16_ARR; j++) {
  2734. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2735. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2736. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2737. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2738. }
  2739. }
  2740. }
  2741. // reduce sum0..sum3 to sum0
  2742. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2743. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2744. }
  2745. // leftovers
  2746. for (int i = np; i < n; ++i) {
  2747. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2748. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2749. }
  2750. }
  2751. #else
  2752. for (int i = 0; i < n; ++i) {
  2753. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2754. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2755. }
  2756. }
  2757. #endif
  2758. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2759. s[i] = sumf[i];
  2760. }
  2761. }
  2762. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ax[GGML_F32_ARR];
  2767. GGML_F32_VEC ay[GGML_F32_ARR];
  2768. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2769. for (int j = 0; j < GGML_F32_ARR; j++) {
  2770. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2771. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2772. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2773. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2774. }
  2775. }
  2776. // leftovers
  2777. for (int i = np; i < n; ++i) {
  2778. y[i] += x[i]*v;
  2779. }
  2780. #else
  2781. // scalar
  2782. for (int i = 0; i < n; ++i) {
  2783. y[i] += x[i]*v;
  2784. }
  2785. #endif
  2786. }
  2787. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2788. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2789. #if defined(GGML_USE_ACCELERATE)
  2790. vDSP_vsmul(y, 1, &v, y, 1, n);
  2791. #elif defined(GGML_SIMD)
  2792. const int np = (n & ~(GGML_F32_STEP - 1));
  2793. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2794. GGML_F32_VEC ay[GGML_F32_ARR];
  2795. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2796. for (int j = 0; j < GGML_F32_ARR; j++) {
  2797. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2798. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2799. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2800. }
  2801. }
  2802. // leftovers
  2803. for (int i = np; i < n; ++i) {
  2804. y[i] *= v;
  2805. }
  2806. #else
  2807. // scalar
  2808. for (int i = 0; i < n; ++i) {
  2809. y[i] *= v;
  2810. }
  2811. #endif
  2812. }
  2813. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2814. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2815. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2816. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2817. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2818. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2819. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2820. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2821. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2822. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2823. static const float GELU_COEF_A = 0.044715f;
  2824. static const float GELU_QUICK_COEF = -1.702f;
  2825. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2826. inline static float ggml_gelu_f32(float x) {
  2827. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2828. }
  2829. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2830. const uint16_t * i16 = (const uint16_t *) x;
  2831. for (int i = 0; i < n; ++i) {
  2832. y[i] = table_gelu_f16[i16[i]];
  2833. }
  2834. }
  2835. #ifdef GGML_GELU_FP16
  2836. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2837. uint16_t t;
  2838. for (int i = 0; i < n; ++i) {
  2839. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2840. memcpy(&t, &fp16, sizeof(uint16_t));
  2841. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2842. }
  2843. }
  2844. #else
  2845. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2846. for (int i = 0; i < n; ++i) {
  2847. y[i] = ggml_gelu_f32(x[i]);
  2848. }
  2849. }
  2850. #endif
  2851. inline static float ggml_gelu_quick_f32(float x) {
  2852. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2853. }
  2854. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2855. // const uint16_t * i16 = (const uint16_t *) x;
  2856. // for (int i = 0; i < n; ++i) {
  2857. // y[i] = table_gelu_quick_f16[i16[i]];
  2858. // }
  2859. //}
  2860. #ifdef GGML_GELU_QUICK_FP16
  2861. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2862. uint16_t t;
  2863. for (int i = 0; i < n; ++i) {
  2864. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2865. memcpy(&t, &fp16, sizeof(uint16_t));
  2866. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2867. }
  2868. }
  2869. #else
  2870. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2871. for (int i = 0; i < n; ++i) {
  2872. y[i] = ggml_gelu_quick_f32(x[i]);
  2873. }
  2874. }
  2875. #endif
  2876. // Sigmoid Linear Unit (SiLU) function
  2877. inline static float ggml_silu_f32(float x) {
  2878. return x/(1.0f + expf(-x));
  2879. }
  2880. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2881. // const uint16_t * i16 = (const uint16_t *) x;
  2882. // for (int i = 0; i < n; ++i) {
  2883. // y[i] = table_silu_f16[i16[i]];
  2884. // }
  2885. //}
  2886. #ifdef GGML_SILU_FP16
  2887. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2888. uint16_t t;
  2889. for (int i = 0; i < n; ++i) {
  2890. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2891. memcpy(&t, &fp16, sizeof(uint16_t));
  2892. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2893. }
  2894. }
  2895. #else
  2896. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2897. for (int i = 0; i < n; ++i) {
  2898. y[i] = ggml_silu_f32(x[i]);
  2899. }
  2900. }
  2901. #endif
  2902. inline static float ggml_silu_backward_f32(float x, float dy) {
  2903. const float s = 1.0f/(1.0f + expf(-x));
  2904. return dy*s*(1.0f + x*(1.0f - s));
  2905. }
  2906. #ifdef GGML_SILU_FP16
  2907. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2908. for (int i = 0; i < n; ++i) {
  2909. // we did not use x[i] to compute forward silu but its f16 equivalent
  2910. // take derivative at f16 of x[i]:
  2911. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2912. float usedx = GGML_FP16_TO_FP32(fp16);
  2913. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2914. }
  2915. }
  2916. #else
  2917. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2918. for (int i = 0; i < n; ++i) {
  2919. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2920. }
  2921. }
  2922. #endif
  2923. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2924. #ifndef GGML_USE_ACCELERATE
  2925. ggml_float sum = 0.0;
  2926. for (int i = 0; i < n; ++i) {
  2927. sum += (ggml_float)x[i];
  2928. }
  2929. *s = sum;
  2930. #else
  2931. vDSP_sve(x, 1, s, n);
  2932. #endif
  2933. }
  2934. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2935. ggml_float sum = 0.0;
  2936. for (int i = 0; i < n; ++i) {
  2937. sum += (ggml_float)x[i];
  2938. }
  2939. *s = sum;
  2940. }
  2941. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2942. float sum = 0.0f;
  2943. for (int i = 0; i < n; ++i) {
  2944. sum += GGML_FP16_TO_FP32(x[i]);
  2945. }
  2946. *s = sum;
  2947. }
  2948. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2949. #ifndef GGML_USE_ACCELERATE
  2950. float max = -INFINITY;
  2951. for (int i = 0; i < n; ++i) {
  2952. max = MAX(max, x[i]);
  2953. }
  2954. *s = max;
  2955. #else
  2956. vDSP_maxv(x, 1, s, n);
  2957. #endif
  2958. }
  2959. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2960. ggml_vec_norm_f32(n, s, x);
  2961. *s = 1.f/(*s);
  2962. }
  2963. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2964. float max = -INFINITY;
  2965. int idx = 0;
  2966. for (int i = 0; i < n; ++i) {
  2967. max = MAX(max, x[i]);
  2968. if (max == x[i]) { idx = i; }
  2969. }
  2970. *s = idx;
  2971. }
  2972. //
  2973. // data types
  2974. //
  2975. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2976. [GGML_TYPE_F32] = 1,
  2977. [GGML_TYPE_F16] = 1,
  2978. [GGML_TYPE_Q4_0] = QK4_0,
  2979. [GGML_TYPE_Q4_1] = QK4_1,
  2980. [GGML_TYPE_Q5_0] = QK5_0,
  2981. [GGML_TYPE_Q5_1] = QK5_1,
  2982. [GGML_TYPE_Q8_0] = QK8_0,
  2983. [GGML_TYPE_Q8_1] = QK8_1,
  2984. #ifdef GGML_USE_K_QUANTS
  2985. [GGML_TYPE_Q2_K] = QK_K,
  2986. [GGML_TYPE_Q3_K] = QK_K,
  2987. [GGML_TYPE_Q4_K] = QK_K,
  2988. [GGML_TYPE_Q5_K] = QK_K,
  2989. [GGML_TYPE_Q6_K] = QK_K,
  2990. [GGML_TYPE_Q8_K] = QK_K,
  2991. #endif
  2992. [GGML_TYPE_I8] = 1,
  2993. [GGML_TYPE_I16] = 1,
  2994. [GGML_TYPE_I32] = 1,
  2995. };
  2996. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2997. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2998. [GGML_TYPE_F32] = sizeof(float),
  2999. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3000. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3001. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3002. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3003. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3004. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3005. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3006. #ifdef GGML_USE_K_QUANTS
  3007. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  3008. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3009. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3010. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3011. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3012. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3013. #endif
  3014. [GGML_TYPE_I8] = sizeof(int8_t),
  3015. [GGML_TYPE_I16] = sizeof(int16_t),
  3016. [GGML_TYPE_I32] = sizeof(int32_t),
  3017. };
  3018. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3019. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3020. [GGML_TYPE_F32] = "f32",
  3021. [GGML_TYPE_F16] = "f16",
  3022. [GGML_TYPE_Q4_0] = "q4_0",
  3023. [GGML_TYPE_Q4_1] = "q4_1",
  3024. [GGML_TYPE_Q5_0] = "q5_0",
  3025. [GGML_TYPE_Q5_1] = "q5_1",
  3026. [GGML_TYPE_Q8_0] = "q8_0",
  3027. [GGML_TYPE_Q8_1] = "q8_1",
  3028. [GGML_TYPE_Q2_K] = "q2_K",
  3029. [GGML_TYPE_Q3_K] = "q3_K",
  3030. [GGML_TYPE_Q4_K] = "q4_K",
  3031. [GGML_TYPE_Q5_K] = "q5_K",
  3032. [GGML_TYPE_Q6_K] = "q6_K",
  3033. [GGML_TYPE_Q8_K] = "q8_K",
  3034. [GGML_TYPE_I8] = "i8",
  3035. [GGML_TYPE_I16] = "i16",
  3036. [GGML_TYPE_I32] = "i32",
  3037. };
  3038. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3039. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3040. [GGML_TYPE_F32] = false,
  3041. [GGML_TYPE_F16] = false,
  3042. [GGML_TYPE_Q4_0] = true,
  3043. [GGML_TYPE_Q4_1] = true,
  3044. [GGML_TYPE_Q5_0] = true,
  3045. [GGML_TYPE_Q5_1] = true,
  3046. [GGML_TYPE_Q8_0] = true,
  3047. [GGML_TYPE_Q8_1] = true,
  3048. [GGML_TYPE_Q2_K] = true,
  3049. [GGML_TYPE_Q3_K] = true,
  3050. [GGML_TYPE_Q4_K] = true,
  3051. [GGML_TYPE_Q5_K] = true,
  3052. [GGML_TYPE_Q6_K] = true,
  3053. [GGML_TYPE_Q8_K] = true,
  3054. [GGML_TYPE_I8] = false,
  3055. [GGML_TYPE_I16] = false,
  3056. [GGML_TYPE_I32] = false,
  3057. };
  3058. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3059. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3060. "NONE",
  3061. "DUP",
  3062. "ADD",
  3063. "ADD1",
  3064. "ACC",
  3065. "SUB",
  3066. "MUL",
  3067. "DIV",
  3068. "SQR",
  3069. "SQRT",
  3070. "LOG",
  3071. "SUM",
  3072. "SUM_ROWS",
  3073. "MEAN",
  3074. "ARGMAX",
  3075. "REPEAT",
  3076. "REPEAT_BACK",
  3077. "SILU_BACK",
  3078. "NORM",
  3079. "RMS_NORM",
  3080. "RMS_NORM_BACK",
  3081. "MUL_MAT",
  3082. "OUT_PROD",
  3083. "SCALE",
  3084. "SET",
  3085. "CPY",
  3086. "CONT",
  3087. "RESHAPE",
  3088. "VIEW",
  3089. "PERMUTE",
  3090. "TRANSPOSE",
  3091. "GET_ROWS",
  3092. "GET_ROWS_BACK",
  3093. "DIAG",
  3094. "DIAG_MASK_INF",
  3095. "DIAG_MASK_ZERO",
  3096. "SOFT_MAX",
  3097. "SOFT_MAX_BACK",
  3098. "ROPE",
  3099. "ROPE_BACK",
  3100. "ALIBI",
  3101. "CLAMP",
  3102. "CONV_1D",
  3103. "CONV_2D",
  3104. "POOL_1D",
  3105. "POOL_2D",
  3106. "FLASH_ATTN",
  3107. "FLASH_FF",
  3108. "FLASH_ATTN_BACK",
  3109. "WIN_PART",
  3110. "WIN_UNPART",
  3111. "UNARY",
  3112. "MAP_UNARY",
  3113. "MAP_BINARY",
  3114. "MAP_CUSTOM1",
  3115. "MAP_CUSTOM2",
  3116. "MAP_CUSTOM3",
  3117. "CROSS_ENTROPY_LOSS",
  3118. "CROSS_ENTROPY_LOSS_BACK",
  3119. };
  3120. static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
  3121. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3122. "none",
  3123. "x",
  3124. "x+y",
  3125. "x+y",
  3126. "view(x,nb,offset)+=y->x",
  3127. "x-y",
  3128. "x*y",
  3129. "x/y",
  3130. "x^2",
  3131. "√x",
  3132. "log(x)",
  3133. "Σx",
  3134. "Σx_k",
  3135. "Σx/n",
  3136. "argmax(x)",
  3137. "repeat(x)",
  3138. "repeat_back(x)",
  3139. "silu_back(x)",
  3140. "norm(x)",
  3141. "rms_norm(x)",
  3142. "rms_norm_back(x)",
  3143. "X*Y",
  3144. "X*Y",
  3145. "x*v",
  3146. "y-\\>view(x)",
  3147. "x-\\>y",
  3148. "cont(x)",
  3149. "reshape(x)",
  3150. "view(x)",
  3151. "permute(x)",
  3152. "transpose(x)",
  3153. "get_rows(x)",
  3154. "get_rows_back(x)",
  3155. "diag(x)",
  3156. "diag_mask_inf(x)",
  3157. "diag_mask_zero(x)",
  3158. "soft_max(x)",
  3159. "soft_max_back(x)",
  3160. "rope(x)",
  3161. "rope_back(x)",
  3162. "alibi(x)",
  3163. "clamp(x)",
  3164. "conv_1d(x)",
  3165. "conv_2d(x)",
  3166. "pool_1d(x)",
  3167. "pool_2d(x)",
  3168. "flash_attn(x)",
  3169. "flash_ff(x)",
  3170. "flash_attn_back(x)",
  3171. "win_part(x)",
  3172. "win_unpart(x)",
  3173. "unary(x)",
  3174. "f(x)",
  3175. "f(x,y)",
  3176. "custom(x)",
  3177. "custom(x,y)",
  3178. "custom(x,y,z)",
  3179. "cross_entropy_loss(x,y)",
  3180. "cross_entropy_loss_back(x,y)",
  3181. };
  3182. static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
  3183. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3184. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3185. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3186. // WARN:
  3187. // Mis-confguration can lead to problem that's hard to reason about:
  3188. // * At best it crash or talks nosense.
  3189. // * At worst it talks slightly difference but hard to perceive.
  3190. //
  3191. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3192. // Take care about compile options (e.g., GGML_USE_xxx).
  3193. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3194. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3195. static void ggml_setup_op_has_task_pass(void) {
  3196. { // INIT
  3197. bool * p = GGML_OP_HAS_INIT;
  3198. p[GGML_OP_ACC ] = true;
  3199. p[GGML_OP_MUL_MAT ] = true;
  3200. p[GGML_OP_OUT_PROD ] = true;
  3201. p[GGML_OP_SET ] = true;
  3202. p[GGML_OP_GET_ROWS_BACK ] = true;
  3203. p[GGML_OP_DIAG_MASK_INF ] = true;
  3204. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3205. p[GGML_OP_CONV_1D ] = true;
  3206. p[GGML_OP_CONV_2D ] = true;
  3207. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3208. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3209. }
  3210. { // FINALIZE
  3211. bool * p = GGML_OP_HAS_FINALIZE;
  3212. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3213. }
  3214. }
  3215. //
  3216. // ggml context
  3217. //
  3218. struct ggml_context {
  3219. size_t mem_size;
  3220. void * mem_buffer;
  3221. bool mem_buffer_owned;
  3222. bool no_alloc;
  3223. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3224. int n_objects;
  3225. struct ggml_object * objects_begin;
  3226. struct ggml_object * objects_end;
  3227. struct ggml_scratch scratch;
  3228. struct ggml_scratch scratch_save;
  3229. };
  3230. struct ggml_context_container {
  3231. bool used;
  3232. struct ggml_context context;
  3233. };
  3234. //
  3235. // NUMA support
  3236. //
  3237. #define GGML_NUMA_MAX_NODES 8
  3238. #define GGML_NUMA_MAX_CPUS 512
  3239. struct ggml_numa_node {
  3240. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3241. uint32_t n_cpus;
  3242. };
  3243. struct ggml_numa_nodes {
  3244. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3245. uint32_t n_nodes;
  3246. uint32_t total_cpus; // hardware threads on system
  3247. };
  3248. //
  3249. // ggml state
  3250. //
  3251. struct ggml_state {
  3252. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3253. struct ggml_numa_nodes numa;
  3254. };
  3255. // global state
  3256. static struct ggml_state g_state;
  3257. static atomic_int g_state_barrier = 0;
  3258. // barrier via spin lock
  3259. inline static void ggml_critical_section_start(void) {
  3260. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3261. while (processing > 0) {
  3262. // wait for other threads to finish
  3263. atomic_fetch_sub(&g_state_barrier, 1);
  3264. sched_yield(); // TODO: reconsider this
  3265. processing = atomic_fetch_add(&g_state_barrier, 1);
  3266. }
  3267. }
  3268. // TODO: make this somehow automatically executed
  3269. // some sort of "sentry" mechanism
  3270. inline static void ggml_critical_section_end(void) {
  3271. atomic_fetch_sub(&g_state_barrier, 1);
  3272. }
  3273. void ggml_numa_init(void) {
  3274. if (g_state.numa.n_nodes > 0) {
  3275. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3276. return;
  3277. }
  3278. #ifdef __linux__
  3279. struct stat st;
  3280. char path[256];
  3281. int rv;
  3282. // enumerate nodes
  3283. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3284. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3285. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3286. if (stat(path, &st) != 0) { break; }
  3287. ++g_state.numa.n_nodes;
  3288. }
  3289. // enumerate CPUs
  3290. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3291. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3292. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3293. if (stat(path, &st) != 0) { break; }
  3294. ++g_state.numa.total_cpus;
  3295. }
  3296. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3297. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3298. g_state.numa.n_nodes = 0;
  3299. return;
  3300. }
  3301. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3302. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3303. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3304. node->n_cpus = 0;
  3305. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3306. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3307. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3308. if (stat(path, &st) == 0) {
  3309. node->cpus[node->n_cpus++] = c;
  3310. GGML_PRINT_DEBUG(" %u", c);
  3311. }
  3312. }
  3313. GGML_PRINT_DEBUG("\n");
  3314. }
  3315. if (ggml_is_numa()) {
  3316. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3317. if (fptr != NULL) {
  3318. char buf[42];
  3319. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3320. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3321. }
  3322. fclose(fptr);
  3323. }
  3324. }
  3325. #else
  3326. // TODO
  3327. #endif
  3328. }
  3329. bool ggml_is_numa(void) {
  3330. return g_state.numa.n_nodes > 1;
  3331. }
  3332. ////////////////////////////////////////////////////////////////////////////////
  3333. void ggml_print_object(const struct ggml_object * obj) {
  3334. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3335. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3336. }
  3337. void ggml_print_objects(const struct ggml_context * ctx) {
  3338. struct ggml_object * obj = ctx->objects_begin;
  3339. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3340. while (obj != NULL) {
  3341. ggml_print_object(obj);
  3342. obj = obj->next;
  3343. }
  3344. GGML_PRINT("%s: --- end ---\n", __func__);
  3345. }
  3346. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3349. }
  3350. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3353. }
  3354. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3356. // this should handle cases where the tensor is not contiguous in memory
  3357. // probaby just:
  3358. //
  3359. // return tensor->ne[3]*tensor->nb[3]
  3360. //
  3361. // is enough, but just in case, adding the second part
  3362. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3363. }
  3364. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3365. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3366. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3367. }
  3368. int ggml_blck_size(enum ggml_type type) {
  3369. return GGML_BLCK_SIZE[type];
  3370. }
  3371. size_t ggml_type_size(enum ggml_type type) {
  3372. return GGML_TYPE_SIZE[type];
  3373. }
  3374. float ggml_type_sizef(enum ggml_type type) {
  3375. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3376. }
  3377. const char * ggml_type_name(enum ggml_type type) {
  3378. return GGML_TYPE_NAME[type];
  3379. }
  3380. const char * ggml_op_name(enum ggml_op op) {
  3381. return GGML_OP_NAME[op];
  3382. }
  3383. const char * ggml_op_symbol(enum ggml_op op) {
  3384. return GGML_OP_SYMBOL[op];
  3385. }
  3386. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3387. return GGML_TYPE_SIZE[tensor->type];
  3388. }
  3389. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3392. }
  3393. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3394. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3395. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3396. }
  3397. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3398. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3399. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3400. }
  3401. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3402. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3403. return (t0->ne[0] == t1->ne[0]) &&
  3404. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3405. (t1->ne[3]%t0->ne[3] == 0);
  3406. }
  3407. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return
  3410. (t0->ne[1] == t1->ne[1]) &&
  3411. (t0->ne[2] == t1->ne[2]) &&
  3412. (t0->ne[3] == t1->ne[3]);
  3413. }
  3414. bool ggml_is_quantized(enum ggml_type type) {
  3415. return GGML_IS_QUANTIZED[type];
  3416. }
  3417. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3418. enum ggml_type wtype = GGML_TYPE_COUNT;
  3419. switch (ftype) {
  3420. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3421. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3422. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3423. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3424. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3425. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3426. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3427. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3428. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3429. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3430. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3431. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3432. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3433. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3434. }
  3435. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3436. return wtype;
  3437. }
  3438. size_t ggml_tensor_overhead(void) {
  3439. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3440. }
  3441. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3442. return tensor->nb[0] > tensor->nb[1];
  3443. }
  3444. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3445. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3446. return
  3447. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3448. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3449. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3450. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3451. }
  3452. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3453. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3454. return
  3455. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3456. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3457. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3458. }
  3459. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3460. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3461. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3462. }
  3463. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3464. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3465. return
  3466. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3467. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3468. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3469. }
  3470. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3471. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3472. return
  3473. (t0->ne[0] == t1->ne[0] ) &&
  3474. (t0->ne[1] == t1->ne[1] ) &&
  3475. (t0->ne[2] == t1->ne[2] ) &&
  3476. (t0->ne[3] == t1->ne[3] );
  3477. }
  3478. // check if t1 can be represented as a repeatition of t0
  3479. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3480. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3481. return
  3482. (t1->ne[0]%t0->ne[0] == 0) &&
  3483. (t1->ne[1]%t0->ne[1] == 0) &&
  3484. (t1->ne[2]%t0->ne[2] == 0) &&
  3485. (t1->ne[3]%t0->ne[3] == 0);
  3486. }
  3487. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3488. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3489. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3490. }
  3491. static inline int ggml_up32(int n) {
  3492. return (n + 31) & ~31;
  3493. }
  3494. //static inline int ggml_up64(int n) {
  3495. // return (n + 63) & ~63;
  3496. //}
  3497. static inline int ggml_up(int n, int m) {
  3498. // assert m is a power of 2
  3499. GGML_ASSERT((m & (m - 1)) == 0);
  3500. return (n + m - 1) & ~(m - 1);
  3501. }
  3502. // assert that pointer is aligned to GGML_MEM_ALIGN
  3503. #define ggml_assert_aligned(ptr) \
  3504. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3505. ////////////////////////////////////////////////////////////////////////////////
  3506. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3507. // make this function thread safe
  3508. ggml_critical_section_start();
  3509. static bool is_first_call = true;
  3510. if (is_first_call) {
  3511. // initialize time system (required on Windows)
  3512. ggml_time_init();
  3513. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3514. {
  3515. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3516. ggml_fp16_t ii;
  3517. for (int i = 0; i < (1 << 16); ++i) {
  3518. uint16_t ui = i;
  3519. memcpy(&ii, &ui, sizeof(ii));
  3520. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3521. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3522. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3523. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3524. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3525. }
  3526. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3527. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3528. }
  3529. // initialize g_state
  3530. {
  3531. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3532. g_state = (struct ggml_state) {
  3533. /*.contexts =*/ { { 0 } },
  3534. /*.numa =*/ {
  3535. .n_nodes = 0,
  3536. .total_cpus = 0,
  3537. },
  3538. };
  3539. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3540. g_state.contexts[i].used = false;
  3541. }
  3542. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3543. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3544. }
  3545. #if defined(GGML_USE_CUBLAS)
  3546. ggml_init_cublas();
  3547. #elif defined(GGML_USE_CLBLAST)
  3548. ggml_cl_init();
  3549. #endif
  3550. ggml_setup_op_has_task_pass();
  3551. is_first_call = false;
  3552. }
  3553. // find non-used context in g_state
  3554. struct ggml_context * ctx = NULL;
  3555. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3556. if (!g_state.contexts[i].used) {
  3557. g_state.contexts[i].used = true;
  3558. ctx = &g_state.contexts[i].context;
  3559. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3560. break;
  3561. }
  3562. }
  3563. if (ctx == NULL) {
  3564. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3565. ggml_critical_section_end();
  3566. return NULL;
  3567. }
  3568. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3569. *ctx = (struct ggml_context) {
  3570. /*.mem_size =*/ mem_size,
  3571. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3572. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3573. /*.no_alloc =*/ params.no_alloc,
  3574. /*.no_alloc_save =*/ params.no_alloc,
  3575. /*.n_objects =*/ 0,
  3576. /*.objects_begin =*/ NULL,
  3577. /*.objects_end =*/ NULL,
  3578. /*.scratch =*/ { 0, 0, NULL, },
  3579. /*.scratch_save =*/ { 0, 0, NULL, },
  3580. };
  3581. GGML_ASSERT(ctx->mem_buffer != NULL);
  3582. ggml_assert_aligned(ctx->mem_buffer);
  3583. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3584. ggml_critical_section_end();
  3585. return ctx;
  3586. }
  3587. void ggml_free(struct ggml_context * ctx) {
  3588. // make this function thread safe
  3589. ggml_critical_section_start();
  3590. bool found = false;
  3591. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3592. if (&g_state.contexts[i].context == ctx) {
  3593. g_state.contexts[i].used = false;
  3594. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3595. __func__, i, ggml_used_mem(ctx));
  3596. if (ctx->mem_buffer_owned) {
  3597. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3598. }
  3599. found = true;
  3600. break;
  3601. }
  3602. }
  3603. if (!found) {
  3604. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3605. }
  3606. ggml_critical_section_end();
  3607. }
  3608. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3609. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3610. }
  3611. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3612. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3613. ctx->scratch = scratch;
  3614. return result;
  3615. }
  3616. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3617. return ctx->no_alloc;
  3618. }
  3619. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3620. ctx->no_alloc = no_alloc;
  3621. }
  3622. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3623. return ctx->mem_buffer;
  3624. }
  3625. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3626. return ctx->mem_size;
  3627. }
  3628. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3629. size_t max_size = 0;
  3630. struct ggml_object * obj = ctx->objects_begin;
  3631. while (obj != NULL) {
  3632. if (obj->type == GGML_OBJECT_TENSOR) {
  3633. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3634. const size_t size = ggml_nbytes(tensor);
  3635. if (max_size < size) {
  3636. max_size = size;
  3637. }
  3638. }
  3639. obj = obj->next;
  3640. }
  3641. return max_size;
  3642. }
  3643. // IMPORTANT:
  3644. // when creating "opt" tensors, always save and load the scratch buffer
  3645. // this is an error prone process, but it is necessary to support inplace
  3646. // operators when using scratch buffers
  3647. // TODO: implement a better way
  3648. static void ggml_scratch_save(struct ggml_context * ctx) {
  3649. // this is needed to allow opt tensors to store their data
  3650. // TODO: again, need to find a better way
  3651. ctx->no_alloc_save = ctx->no_alloc;
  3652. ctx->no_alloc = false;
  3653. ctx->scratch_save = ctx->scratch;
  3654. ctx->scratch.data = NULL;
  3655. }
  3656. static void ggml_scratch_load(struct ggml_context * ctx) {
  3657. ctx->no_alloc = ctx->no_alloc_save;
  3658. ctx->scratch = ctx->scratch_save;
  3659. }
  3660. ////////////////////////////////////////////////////////////////////////////////
  3661. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3662. // always insert objects at the end of the context's memory pool
  3663. struct ggml_object * obj_cur = ctx->objects_end;
  3664. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3665. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3666. const size_t cur_end = cur_offs + cur_size;
  3667. // align to GGML_MEM_ALIGN
  3668. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3669. char * const mem_buffer = ctx->mem_buffer;
  3670. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3671. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3672. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3673. __func__, cur_end + size_needed, ctx->mem_size);
  3674. assert(false);
  3675. return NULL;
  3676. }
  3677. *obj_new = (struct ggml_object) {
  3678. .offs = cur_end + GGML_OBJECT_SIZE,
  3679. .size = size_needed,
  3680. .next = NULL,
  3681. .type = type,
  3682. };
  3683. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3684. if (obj_cur != NULL) {
  3685. obj_cur->next = obj_new;
  3686. } else {
  3687. // this is the first object in this context
  3688. ctx->objects_begin = obj_new;
  3689. }
  3690. ctx->objects_end = obj_new;
  3691. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3692. return obj_new;
  3693. }
  3694. static struct ggml_tensor * ggml_new_tensor_impl(
  3695. struct ggml_context * ctx,
  3696. enum ggml_type type,
  3697. int n_dims,
  3698. const int64_t * ne,
  3699. void * data) {
  3700. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3701. size_t data_size = 0;
  3702. if (data == NULL && !ctx->no_alloc) {
  3703. data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3704. for (int i = 1; i < n_dims; i++) {
  3705. data_size *= ne[i];
  3706. }
  3707. }
  3708. if (ctx->scratch.data != NULL && data == NULL) {
  3709. // allocate tensor data in the scratch buffer
  3710. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3711. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3712. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3713. assert(false);
  3714. return NULL;
  3715. }
  3716. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3717. ctx->scratch.offs += data_size;
  3718. data_size = 0;
  3719. }
  3720. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3721. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3722. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3723. *result = (struct ggml_tensor) {
  3724. /*.type =*/ type,
  3725. /*.backend =*/ GGML_BACKEND_CPU,
  3726. /*.n_dims =*/ n_dims,
  3727. /*.ne =*/ { 1, 1, 1, 1 },
  3728. /*.nb =*/ { 0, 0, 0, 0 },
  3729. /*.op =*/ GGML_OP_NONE,
  3730. /*.op_params =*/ {0},
  3731. /*.is_param =*/ false,
  3732. /*.grad =*/ NULL,
  3733. /*.src =*/ { NULL },
  3734. /*.perf_runs =*/ 0,
  3735. /*.perf_cycles =*/ 0,
  3736. /*.perf_time_us =*/ 0,
  3737. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3738. /*.name =*/ { 0 },
  3739. /*.extra =*/ NULL,
  3740. /*.padding =*/ { 0 },
  3741. };
  3742. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3743. //ggml_assert_aligned(result->data);
  3744. for (int i = 0; i < n_dims; i++) {
  3745. result->ne[i] = ne[i];
  3746. }
  3747. result->nb[0] = GGML_TYPE_SIZE[type];
  3748. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3749. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3750. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3751. }
  3752. ctx->n_objects++;
  3753. return result;
  3754. }
  3755. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3756. assert(params_size <= GGML_MAX_OP_PARAMS);
  3757. memcpy(tensor->op_params, params, params_size);
  3758. }
  3759. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3760. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3761. return ((const int32_t *)(tensor->op_params))[i];
  3762. }
  3763. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3764. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3765. ((int32_t *)(tensor->op_params))[i] = value;
  3766. }
  3767. struct ggml_tensor * ggml_new_tensor(
  3768. struct ggml_context * ctx,
  3769. enum ggml_type type,
  3770. int n_dims,
  3771. const int64_t * ne) {
  3772. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3773. }
  3774. struct ggml_tensor * ggml_new_tensor_1d(
  3775. struct ggml_context * ctx,
  3776. enum ggml_type type,
  3777. int64_t ne0) {
  3778. return ggml_new_tensor(ctx, type, 1, &ne0);
  3779. }
  3780. struct ggml_tensor * ggml_new_tensor_2d(
  3781. struct ggml_context * ctx,
  3782. enum ggml_type type,
  3783. int64_t ne0,
  3784. int64_t ne1) {
  3785. const int64_t ne[2] = { ne0, ne1 };
  3786. return ggml_new_tensor(ctx, type, 2, ne);
  3787. }
  3788. struct ggml_tensor * ggml_new_tensor_3d(
  3789. struct ggml_context * ctx,
  3790. enum ggml_type type,
  3791. int64_t ne0,
  3792. int64_t ne1,
  3793. int64_t ne2) {
  3794. const int64_t ne[3] = { ne0, ne1, ne2 };
  3795. return ggml_new_tensor(ctx, type, 3, ne);
  3796. }
  3797. struct ggml_tensor * ggml_new_tensor_4d(
  3798. struct ggml_context * ctx,
  3799. enum ggml_type type,
  3800. int64_t ne0,
  3801. int64_t ne1,
  3802. int64_t ne2,
  3803. int64_t ne3) {
  3804. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3805. return ggml_new_tensor(ctx, type, 4, ne);
  3806. }
  3807. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3808. ggml_scratch_save(ctx);
  3809. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3810. ggml_scratch_load(ctx);
  3811. ggml_set_i32(result, value);
  3812. return result;
  3813. }
  3814. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3815. ggml_scratch_save(ctx);
  3816. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3817. ggml_scratch_load(ctx);
  3818. ggml_set_f32(result, value);
  3819. return result;
  3820. }
  3821. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3822. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3823. }
  3824. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3825. memset(tensor->data, 0, ggml_nbytes(tensor));
  3826. return tensor;
  3827. }
  3828. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3829. const int n = ggml_nrows(tensor);
  3830. const int nc = tensor->ne[0];
  3831. const size_t n1 = tensor->nb[1];
  3832. char * const data = tensor->data;
  3833. switch (tensor->type) {
  3834. case GGML_TYPE_I8:
  3835. {
  3836. assert(tensor->nb[0] == sizeof(int8_t));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3839. }
  3840. } break;
  3841. case GGML_TYPE_I16:
  3842. {
  3843. assert(tensor->nb[0] == sizeof(int16_t));
  3844. for (int i = 0; i < n; i++) {
  3845. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3846. }
  3847. } break;
  3848. case GGML_TYPE_I32:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(int32_t));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. case GGML_TYPE_F16:
  3856. {
  3857. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3858. for (int i = 0; i < n; i++) {
  3859. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3860. }
  3861. } break;
  3862. case GGML_TYPE_F32:
  3863. {
  3864. assert(tensor->nb[0] == sizeof(float));
  3865. for (int i = 0; i < n; i++) {
  3866. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3867. }
  3868. } break;
  3869. default:
  3870. {
  3871. GGML_ASSERT(false);
  3872. } break;
  3873. }
  3874. return tensor;
  3875. }
  3876. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3877. const int n = ggml_nrows(tensor);
  3878. const int nc = tensor->ne[0];
  3879. const size_t n1 = tensor->nb[1];
  3880. char * const data = tensor->data;
  3881. switch (tensor->type) {
  3882. case GGML_TYPE_I8:
  3883. {
  3884. assert(tensor->nb[0] == sizeof(int8_t));
  3885. for (int i = 0; i < n; i++) {
  3886. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3887. }
  3888. } break;
  3889. case GGML_TYPE_I16:
  3890. {
  3891. assert(tensor->nb[0] == sizeof(int16_t));
  3892. for (int i = 0; i < n; i++) {
  3893. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3894. }
  3895. } break;
  3896. case GGML_TYPE_I32:
  3897. {
  3898. assert(tensor->nb[0] == sizeof(int32_t));
  3899. for (int i = 0; i < n; i++) {
  3900. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3901. }
  3902. } break;
  3903. case GGML_TYPE_F16:
  3904. {
  3905. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3906. for (int i = 0; i < n; i++) {
  3907. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3908. }
  3909. } break;
  3910. case GGML_TYPE_F32:
  3911. {
  3912. assert(tensor->nb[0] == sizeof(float));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3915. }
  3916. } break;
  3917. default:
  3918. {
  3919. GGML_ASSERT(false);
  3920. } break;
  3921. }
  3922. return tensor;
  3923. }
  3924. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3925. switch (tensor->type) {
  3926. case GGML_TYPE_I8:
  3927. {
  3928. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3929. return ((int8_t *)(tensor->data))[i];
  3930. } break;
  3931. case GGML_TYPE_I16:
  3932. {
  3933. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3934. return ((int16_t *)(tensor->data))[i];
  3935. } break;
  3936. case GGML_TYPE_I32:
  3937. {
  3938. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3939. return ((int32_t *)(tensor->data))[i];
  3940. } break;
  3941. case GGML_TYPE_F16:
  3942. {
  3943. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3944. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3945. } break;
  3946. case GGML_TYPE_F32:
  3947. {
  3948. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3949. return ((float *)(tensor->data))[i];
  3950. } break;
  3951. default:
  3952. {
  3953. GGML_ASSERT(false);
  3954. } break;
  3955. }
  3956. return 0.0f;
  3957. }
  3958. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3959. switch (tensor->type) {
  3960. case GGML_TYPE_I8:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3963. ((int8_t *)(tensor->data))[i] = value;
  3964. } break;
  3965. case GGML_TYPE_I16:
  3966. {
  3967. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3968. ((int16_t *)(tensor->data))[i] = value;
  3969. } break;
  3970. case GGML_TYPE_I32:
  3971. {
  3972. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3973. ((int32_t *)(tensor->data))[i] = value;
  3974. } break;
  3975. case GGML_TYPE_F16:
  3976. {
  3977. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3978. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3979. } break;
  3980. case GGML_TYPE_F32:
  3981. {
  3982. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3983. ((float *)(tensor->data))[i] = value;
  3984. } break;
  3985. default:
  3986. {
  3987. GGML_ASSERT(false);
  3988. } break;
  3989. }
  3990. }
  3991. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3992. switch (tensor->type) {
  3993. case GGML_TYPE_I8:
  3994. {
  3995. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3996. return ((int8_t *)(tensor->data))[i];
  3997. } break;
  3998. case GGML_TYPE_I16:
  3999. {
  4000. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4001. return ((int16_t *)(tensor->data))[i];
  4002. } break;
  4003. case GGML_TYPE_I32:
  4004. {
  4005. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4006. return ((int32_t *)(tensor->data))[i];
  4007. } break;
  4008. case GGML_TYPE_F16:
  4009. {
  4010. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4011. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4012. } break;
  4013. case GGML_TYPE_F32:
  4014. {
  4015. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4016. return ((float *)(tensor->data))[i];
  4017. } break;
  4018. default:
  4019. {
  4020. GGML_ASSERT(false);
  4021. } break;
  4022. }
  4023. return 0.0f;
  4024. }
  4025. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4026. switch (tensor->type) {
  4027. case GGML_TYPE_I8:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4030. ((int8_t *)(tensor->data))[i] = value;
  4031. } break;
  4032. case GGML_TYPE_I16:
  4033. {
  4034. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4035. ((int16_t *)(tensor->data))[i] = value;
  4036. } break;
  4037. case GGML_TYPE_I32:
  4038. {
  4039. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4040. ((int32_t *)(tensor->data))[i] = value;
  4041. } break;
  4042. case GGML_TYPE_F16:
  4043. {
  4044. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4045. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4046. } break;
  4047. case GGML_TYPE_F32:
  4048. {
  4049. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4050. ((float *)(tensor->data))[i] = value;
  4051. } break;
  4052. default:
  4053. {
  4054. GGML_ASSERT(false);
  4055. } break;
  4056. }
  4057. }
  4058. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4059. return tensor->data;
  4060. }
  4061. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4062. assert(tensor->type == GGML_TYPE_F32);
  4063. return (float *)(tensor->data);
  4064. }
  4065. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4066. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4067. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4068. }
  4069. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4070. return tensor->name;
  4071. }
  4072. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4073. strncpy(tensor->name, name, sizeof(tensor->name));
  4074. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4075. return tensor;
  4076. }
  4077. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4078. va_list args;
  4079. va_start(args, fmt);
  4080. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4081. va_end(args);
  4082. return tensor;
  4083. }
  4084. struct ggml_tensor * ggml_view_tensor(
  4085. struct ggml_context * ctx,
  4086. const struct ggml_tensor * src) {
  4087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4088. ggml_format_name(result, "%s (view)", src->name);
  4089. result->nb[0] = src->nb[0];
  4090. result->nb[1] = src->nb[1];
  4091. result->nb[2] = src->nb[2];
  4092. result->nb[3] = src->nb[3];
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4096. struct ggml_object * obj = ctx->objects_begin;
  4097. char * const mem_buffer = ctx->mem_buffer;
  4098. while (obj != NULL) {
  4099. if (obj->type == GGML_OBJECT_TENSOR) {
  4100. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4101. if (strcmp(cur->name, name) == 0) {
  4102. return cur;
  4103. }
  4104. }
  4105. obj = obj->next;
  4106. }
  4107. return NULL;
  4108. }
  4109. ////////////////////////////////////////////////////////////////////////////////
  4110. // ggml_dup
  4111. static struct ggml_tensor * ggml_dup_impl(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. bool inplace) {
  4115. bool is_node = false;
  4116. if (!inplace && (a->grad)) {
  4117. is_node = true;
  4118. }
  4119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4120. result->op = GGML_OP_DUP;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_dup(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a) {
  4128. return ggml_dup_impl(ctx, a, false);
  4129. }
  4130. struct ggml_tensor * ggml_dup_inplace(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a) {
  4133. return ggml_dup_impl(ctx, a, true);
  4134. }
  4135. // ggml_add
  4136. static struct ggml_tensor * ggml_add_impl(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. struct ggml_tensor * b,
  4140. bool inplace) {
  4141. // TODO: support less-strict constraint
  4142. // GGML_ASSERT(ggml_can_repeat(b, a));
  4143. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4144. bool is_node = false;
  4145. if (!inplace && (a->grad || b->grad)) {
  4146. // TODO: support backward pass for broadcasting
  4147. GGML_ASSERT(ggml_are_same_shape(a, b));
  4148. is_node = true;
  4149. }
  4150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. result->op = GGML_OP_ADD;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. struct ggml_tensor * ggml_add(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_add_impl(ctx, a, b, false);
  4162. }
  4163. struct ggml_tensor * ggml_add_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b) {
  4167. return ggml_add_impl(ctx, a, b, true);
  4168. }
  4169. // ggml_add1
  4170. static struct ggml_tensor * ggml_add1_impl(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. bool inplace) {
  4175. GGML_ASSERT(ggml_is_scalar(b));
  4176. GGML_ASSERT(ggml_is_padded_1d(a));
  4177. bool is_node = false;
  4178. if (a->grad || b->grad) {
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. result->op = GGML_OP_ADD1;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src[0] = a;
  4185. result->src[1] = b;
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_add1(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b) {
  4192. return ggml_add1_impl(ctx, a, b, false);
  4193. }
  4194. struct ggml_tensor * ggml_add1_inplace(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. struct ggml_tensor * b) {
  4198. return ggml_add1_impl(ctx, a, b, true);
  4199. }
  4200. // ggml_acc
  4201. static struct ggml_tensor * ggml_acc_impl(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. struct ggml_tensor * b,
  4205. size_t nb1,
  4206. size_t nb2,
  4207. size_t nb3,
  4208. size_t offset,
  4209. bool inplace) {
  4210. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4211. GGML_ASSERT(ggml_is_contiguous(a));
  4212. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4213. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4214. bool is_node = false;
  4215. if (!inplace && (a->grad || b->grad)) {
  4216. is_node = true;
  4217. }
  4218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4219. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4220. ggml_set_op_params(result, params, sizeof(params));
  4221. result->op = GGML_OP_ACC;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src[0] = a;
  4224. result->src[1] = b;
  4225. return result;
  4226. }
  4227. struct ggml_tensor * ggml_acc(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. struct ggml_tensor * b,
  4231. size_t nb1,
  4232. size_t nb2,
  4233. size_t nb3,
  4234. size_t offset) {
  4235. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4236. }
  4237. struct ggml_tensor * ggml_acc_inplace(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b,
  4241. size_t nb1,
  4242. size_t nb2,
  4243. size_t nb3,
  4244. size_t offset) {
  4245. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4246. }
  4247. // ggml_sub
  4248. static struct ggml_tensor * ggml_sub_impl(
  4249. struct ggml_context * ctx,
  4250. struct ggml_tensor * a,
  4251. struct ggml_tensor * b,
  4252. bool inplace) {
  4253. GGML_ASSERT(ggml_are_same_shape(a, b));
  4254. bool is_node = false;
  4255. if (!inplace && (a->grad || b->grad)) {
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_SUB;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src[0] = a;
  4262. result->src[1] = b;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_sub(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. struct ggml_tensor * b) {
  4269. return ggml_sub_impl(ctx, a, b, false);
  4270. }
  4271. struct ggml_tensor * ggml_sub_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b) {
  4275. return ggml_sub_impl(ctx, a, b, true);
  4276. }
  4277. // ggml_mul
  4278. static struct ggml_tensor * ggml_mul_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b,
  4282. bool inplace) {
  4283. // TODO: support less-strict constraint
  4284. // GGML_ASSERT(ggml_can_repeat(b, a));
  4285. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4286. bool is_node = false;
  4287. if (!inplace && (a->grad || b->grad)) {
  4288. // TODO: support backward pass for broadcasting
  4289. GGML_ASSERT(ggml_are_same_shape(a, b));
  4290. is_node = true;
  4291. }
  4292. if (inplace) {
  4293. GGML_ASSERT(is_node == false);
  4294. }
  4295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4296. result->op = GGML_OP_MUL;
  4297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4298. result->src[0] = a;
  4299. result->src[1] = b;
  4300. return result;
  4301. }
  4302. struct ggml_tensor * ggml_mul(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. struct ggml_tensor * b) {
  4306. return ggml_mul_impl(ctx, a, b, false);
  4307. }
  4308. struct ggml_tensor * ggml_mul_inplace(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b) {
  4312. return ggml_mul_impl(ctx, a, b, true);
  4313. }
  4314. // ggml_div
  4315. static struct ggml_tensor * ggml_div_impl(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. struct ggml_tensor * b,
  4319. bool inplace) {
  4320. GGML_ASSERT(ggml_are_same_shape(a, b));
  4321. bool is_node = false;
  4322. if (!inplace && (a->grad || b->grad)) {
  4323. is_node = true;
  4324. }
  4325. if (inplace) {
  4326. GGML_ASSERT(is_node == false);
  4327. }
  4328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. result->op = GGML_OP_DIV;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src[0] = a;
  4332. result->src[1] = b;
  4333. return result;
  4334. }
  4335. struct ggml_tensor * ggml_div(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b) {
  4339. return ggml_div_impl(ctx, a, b, false);
  4340. }
  4341. struct ggml_tensor * ggml_div_inplace(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. return ggml_div_impl(ctx, a, b, true);
  4346. }
  4347. // ggml_sqr
  4348. static struct ggml_tensor * ggml_sqr_impl(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. bool inplace) {
  4352. bool is_node = false;
  4353. if (!inplace && (a->grad)) {
  4354. is_node = true;
  4355. }
  4356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4357. result->op = GGML_OP_SQR;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src[0] = a;
  4360. return result;
  4361. }
  4362. struct ggml_tensor * ggml_sqr(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a) {
  4365. return ggml_sqr_impl(ctx, a, false);
  4366. }
  4367. struct ggml_tensor * ggml_sqr_inplace(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a) {
  4370. return ggml_sqr_impl(ctx, a, true);
  4371. }
  4372. // ggml_sqrt
  4373. static struct ggml_tensor * ggml_sqrt_impl(
  4374. struct ggml_context * ctx,
  4375. struct ggml_tensor * a,
  4376. bool inplace) {
  4377. bool is_node = false;
  4378. if (!inplace && (a->grad)) {
  4379. is_node = true;
  4380. }
  4381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4382. result->op = GGML_OP_SQRT;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src[0] = a;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_sqrt(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_sqrt_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_sqrt_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_sqrt_impl(ctx, a, true);
  4396. }
  4397. // ggml_log
  4398. static struct ggml_tensor * ggml_log_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. bool inplace) {
  4402. bool is_node = false;
  4403. if (!inplace && (a->grad)) {
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4407. result->op = GGML_OP_LOG;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_log(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a) {
  4415. return ggml_log_impl(ctx, a, false);
  4416. }
  4417. struct ggml_tensor * ggml_log_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. return ggml_log_impl(ctx, a, true);
  4421. }
  4422. // ggml_sum
  4423. struct ggml_tensor * ggml_sum(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a) {
  4426. bool is_node = false;
  4427. if (a->grad) {
  4428. is_node = true;
  4429. }
  4430. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4431. result->op = GGML_OP_SUM;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src[0] = a;
  4434. return result;
  4435. }
  4436. // ggml_sum_rows
  4437. struct ggml_tensor * ggml_sum_rows(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. bool is_node = false;
  4441. if (a->grad) {
  4442. is_node = true;
  4443. }
  4444. int64_t ne[4] = {1,1,1,1};
  4445. for (int i=1; i<a->n_dims; ++i) {
  4446. ne[i] = a->ne[i];
  4447. }
  4448. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4449. result->op = GGML_OP_SUM_ROWS;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. return result;
  4453. }
  4454. // ggml_mean
  4455. struct ggml_tensor * ggml_mean(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a) {
  4458. bool is_node = false;
  4459. if (a->grad) {
  4460. GGML_ASSERT(false); // TODO: implement
  4461. is_node = true;
  4462. }
  4463. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4464. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4465. result->op = GGML_OP_MEAN;
  4466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4467. result->src[0] = a;
  4468. return result;
  4469. }
  4470. // ggml_argmax
  4471. struct ggml_tensor * ggml_argmax(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a) {
  4474. GGML_ASSERT(ggml_is_matrix(a));
  4475. bool is_node = false;
  4476. if (a->grad) {
  4477. GGML_ASSERT(false);
  4478. is_node = true;
  4479. }
  4480. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4481. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4482. result->op = GGML_OP_ARGMAX;
  4483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4484. result->src[0] = a;
  4485. return result;
  4486. }
  4487. // ggml_repeat
  4488. struct ggml_tensor * ggml_repeat(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b) {
  4492. GGML_ASSERT(ggml_can_repeat(a, b));
  4493. bool is_node = false;
  4494. if (a->grad) {
  4495. is_node = true;
  4496. }
  4497. if (ggml_are_same_shape(a, b) && !is_node) {
  4498. return a;
  4499. }
  4500. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4501. result->op = GGML_OP_REPEAT;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b;
  4505. return result;
  4506. }
  4507. // ggml_repeat_back
  4508. struct ggml_tensor * ggml_repeat_back(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. GGML_ASSERT(ggml_can_repeat(b, a));
  4513. bool is_node = false;
  4514. if (a->grad) {
  4515. is_node = true;
  4516. }
  4517. if (ggml_are_same_shape(a, b) && !is_node) {
  4518. return a;
  4519. }
  4520. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4521. result->op = GGML_OP_REPEAT_BACK;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src[0] = a;
  4524. result->src[1] = b;
  4525. return result;
  4526. }
  4527. // ggml_abs
  4528. struct ggml_tensor * ggml_abs(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a) {
  4531. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4532. }
  4533. struct ggml_tensor * ggml_abs_inplace(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a) {
  4536. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4537. }
  4538. // ggml_sgn
  4539. struct ggml_tensor * ggml_sgn(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4543. }
  4544. struct ggml_tensor * ggml_sgn_inplace(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a) {
  4547. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4548. }
  4549. // ggml_neg
  4550. struct ggml_tensor * ggml_neg(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a) {
  4553. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4554. }
  4555. struct ggml_tensor * ggml_neg_inplace(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a) {
  4558. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4559. }
  4560. // ggml_step
  4561. struct ggml_tensor * ggml_step(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a) {
  4564. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4565. }
  4566. struct ggml_tensor * ggml_step_inplace(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a) {
  4569. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4570. }
  4571. // ggml_tanh
  4572. struct ggml_tensor * ggml_tanh(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a) {
  4575. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4576. }
  4577. struct ggml_tensor * ggml_tanh_inplace(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a) {
  4580. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4581. }
  4582. // ggml_elu
  4583. struct ggml_tensor * ggml_elu(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a) {
  4586. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4587. }
  4588. struct ggml_tensor * ggml_elu_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a) {
  4591. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4592. }
  4593. // ggml_relu
  4594. struct ggml_tensor * ggml_relu(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a) {
  4597. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4598. }
  4599. struct ggml_tensor * ggml_relu_inplace(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a) {
  4602. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4603. }
  4604. // ggml_gelu
  4605. struct ggml_tensor * ggml_gelu(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a) {
  4608. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4609. }
  4610. struct ggml_tensor * ggml_gelu_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a) {
  4613. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4614. }
  4615. // ggml_gelu_quick
  4616. struct ggml_tensor * ggml_gelu_quick(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4620. }
  4621. struct ggml_tensor * ggml_gelu_quick_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4625. }
  4626. // ggml_silu
  4627. struct ggml_tensor * ggml_silu(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a) {
  4630. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4631. }
  4632. struct ggml_tensor * ggml_silu_inplace(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a) {
  4635. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4636. }
  4637. // ggml_silu_back
  4638. struct ggml_tensor * ggml_silu_back(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. struct ggml_tensor * b) {
  4642. bool is_node = false;
  4643. if (a->grad || b->grad) {
  4644. // TODO: implement backward
  4645. is_node = true;
  4646. }
  4647. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4648. result->op = GGML_OP_SILU_BACK;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src[0] = a;
  4651. result->src[1] = b;
  4652. return result;
  4653. }
  4654. // ggml_norm
  4655. static struct ggml_tensor * ggml_norm_impl(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. bool inplace) {
  4659. bool is_node = false;
  4660. if (!inplace && (a->grad)) {
  4661. GGML_ASSERT(false); // TODO: implement backward
  4662. is_node = true;
  4663. }
  4664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4665. // TODO: maybe store epsilon here?
  4666. result->op = GGML_OP_NORM;
  4667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4668. result->src[0] = a;
  4669. return result;
  4670. }
  4671. struct ggml_tensor * ggml_norm(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a) {
  4674. return ggml_norm_impl(ctx, a, false);
  4675. }
  4676. struct ggml_tensor * ggml_norm_inplace(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. return ggml_norm_impl(ctx, a, true);
  4680. }
  4681. static struct ggml_tensor * ggml_rms_norm_impl(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. float eps,
  4685. bool inplace) {
  4686. bool is_node = false;
  4687. if (!inplace && (a->grad)) {
  4688. is_node = true;
  4689. }
  4690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. ggml_set_op_params(result, &eps, sizeof(eps));
  4692. result->op = GGML_OP_RMS_NORM;
  4693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4694. result->src[0] = a;
  4695. return result;
  4696. }
  4697. struct ggml_tensor * ggml_rms_norm(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. float eps) {
  4701. return ggml_rms_norm_impl(ctx, a, eps, false);
  4702. }
  4703. struct ggml_tensor * ggml_rms_norm_inplace(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. float eps) {
  4707. return ggml_rms_norm_impl(ctx, a, eps, true);
  4708. }
  4709. struct ggml_tensor * ggml_rms_norm_back(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. struct ggml_tensor * b) {
  4713. bool is_node = false;
  4714. if (a->grad) {
  4715. // TODO: implement backward
  4716. is_node = true;
  4717. }
  4718. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4719. result->op = GGML_OP_RMS_NORM_BACK;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = a;
  4722. result->src[1] = b;
  4723. return result;
  4724. }
  4725. // ggml_mul_mat
  4726. struct ggml_tensor * ggml_mul_mat(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b) {
  4730. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4731. GGML_ASSERT(!ggml_is_transposed(a));
  4732. bool is_node = false;
  4733. if (a->grad || b->grad) {
  4734. is_node = true;
  4735. }
  4736. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4737. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4738. result->op = GGML_OP_MUL_MAT;
  4739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4740. result->src[0] = a;
  4741. result->src[1] = b;
  4742. return result;
  4743. }
  4744. // ggml_out_prod
  4745. struct ggml_tensor * ggml_out_prod(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. struct ggml_tensor * b) {
  4749. GGML_ASSERT(ggml_can_out_prod(a, b));
  4750. GGML_ASSERT(!ggml_is_transposed(a));
  4751. bool is_node = false;
  4752. if (a->grad || b->grad) {
  4753. is_node = true;
  4754. }
  4755. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4756. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4757. result->op = GGML_OP_OUT_PROD;
  4758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4759. result->src[0] = a;
  4760. result->src[1] = b;
  4761. return result;
  4762. }
  4763. // ggml_scale
  4764. static struct ggml_tensor * ggml_scale_impl(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a,
  4767. struct ggml_tensor * b,
  4768. bool inplace) {
  4769. GGML_ASSERT(ggml_is_scalar(b));
  4770. GGML_ASSERT(ggml_is_padded_1d(a));
  4771. bool is_node = false;
  4772. if (a->grad || b->grad) {
  4773. is_node = true;
  4774. }
  4775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4776. result->op = GGML_OP_SCALE;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. result->src[1] = b;
  4780. return result;
  4781. }
  4782. struct ggml_tensor * ggml_scale(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * b) {
  4786. return ggml_scale_impl(ctx, a, b, false);
  4787. }
  4788. struct ggml_tensor * ggml_scale_inplace(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. struct ggml_tensor * b) {
  4792. return ggml_scale_impl(ctx, a, b, true);
  4793. }
  4794. // ggml_set
  4795. static struct ggml_tensor * ggml_set_impl(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. struct ggml_tensor * b,
  4799. size_t nb1,
  4800. size_t nb2,
  4801. size_t nb3,
  4802. size_t offset,
  4803. bool inplace) {
  4804. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4805. bool is_node = false;
  4806. if (a->grad || b->grad) {
  4807. is_node = true;
  4808. }
  4809. // make a view of the destination
  4810. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4811. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4812. ggml_set_op_params(result, params, sizeof(params));
  4813. result->op = GGML_OP_SET;
  4814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4815. result->src[0] = a;
  4816. result->src[1] = b;
  4817. return result;
  4818. }
  4819. struct ggml_tensor * ggml_set(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b,
  4823. size_t nb1,
  4824. size_t nb2,
  4825. size_t nb3,
  4826. size_t offset) {
  4827. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4828. }
  4829. struct ggml_tensor * ggml_set_inplace(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. struct ggml_tensor * b,
  4833. size_t nb1,
  4834. size_t nb2,
  4835. size_t nb3,
  4836. size_t offset) {
  4837. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4838. }
  4839. struct ggml_tensor * ggml_set_1d(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. struct ggml_tensor * b,
  4843. size_t offset) {
  4844. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4845. }
  4846. struct ggml_tensor * ggml_set_1d_inplace(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. struct ggml_tensor * b,
  4850. size_t offset) {
  4851. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4852. }
  4853. struct ggml_tensor * ggml_set_2d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * b,
  4857. size_t nb1,
  4858. size_t offset) {
  4859. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4860. }
  4861. struct ggml_tensor * ggml_set_2d_inplace(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * a,
  4864. struct ggml_tensor * b,
  4865. size_t nb1,
  4866. size_t offset) {
  4867. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4868. }
  4869. // ggml_cpy
  4870. static struct ggml_tensor * ggml_cpy_impl(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b,
  4874. bool inplace) {
  4875. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4876. bool is_node = false;
  4877. if (!inplace && (a->grad || b->grad)) {
  4878. is_node = true;
  4879. }
  4880. // make a view of the destination
  4881. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4882. if (strlen(b->name) > 0) {
  4883. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4884. } else {
  4885. ggml_format_name(result, "%s (copy)", a->name);
  4886. }
  4887. result->op = GGML_OP_CPY;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = b;
  4891. return result;
  4892. }
  4893. struct ggml_tensor * ggml_cpy(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. struct ggml_tensor * b) {
  4897. return ggml_cpy_impl(ctx, a, b, false);
  4898. }
  4899. struct ggml_tensor * ggml_cpy_inplace(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. struct ggml_tensor * b) {
  4903. return ggml_cpy_impl(ctx, a, b, true);
  4904. }
  4905. // ggml_cont
  4906. static struct ggml_tensor * ggml_cont_impl(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. bool inplace) {
  4910. bool is_node = false;
  4911. if (!inplace && a->grad) {
  4912. is_node = true;
  4913. }
  4914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4915. ggml_format_name(result, "%s (cont)", a->name);
  4916. result->op = GGML_OP_CONT;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src[0] = a;
  4919. return result;
  4920. }
  4921. struct ggml_tensor * ggml_cont(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a) {
  4924. return ggml_cont_impl(ctx, a, false);
  4925. }
  4926. struct ggml_tensor * ggml_cont_inplace(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a) {
  4929. return ggml_cont_impl(ctx, a, true);
  4930. }
  4931. // ggml_reshape
  4932. struct ggml_tensor * ggml_reshape(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * b) {
  4936. GGML_ASSERT(ggml_is_contiguous(a));
  4937. GGML_ASSERT(ggml_is_contiguous(b));
  4938. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. is_node = true;
  4942. }
  4943. if (b->grad) {
  4944. // gradient propagation is not supported
  4945. //GGML_ASSERT(false);
  4946. }
  4947. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4948. ggml_format_name(result, "%s (reshaped)", a->name);
  4949. result->op = GGML_OP_RESHAPE;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_reshape_1d(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. int64_t ne0) {
  4958. GGML_ASSERT(ggml_is_contiguous(a));
  4959. GGML_ASSERT(ggml_nelements(a) == ne0);
  4960. bool is_node = false;
  4961. if (a->grad) {
  4962. is_node = true;
  4963. }
  4964. const int64_t ne[1] = { ne0 };
  4965. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4966. ggml_format_name(result, "%s (reshaped)", a->name);
  4967. result->op = GGML_OP_RESHAPE;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src[0] = a;
  4970. return result;
  4971. }
  4972. struct ggml_tensor * ggml_reshape_2d(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. int64_t ne0,
  4976. int64_t ne1) {
  4977. GGML_ASSERT(ggml_is_contiguous(a));
  4978. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4979. bool is_node = false;
  4980. if (a->grad) {
  4981. is_node = true;
  4982. }
  4983. const int64_t ne[2] = { ne0, ne1 };
  4984. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4985. ggml_format_name(result, "%s (reshaped)", a->name);
  4986. result->op = GGML_OP_RESHAPE;
  4987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4988. result->src[0] = a;
  4989. return result;
  4990. }
  4991. struct ggml_tensor * ggml_reshape_3d(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. int64_t ne0,
  4995. int64_t ne1,
  4996. int64_t ne2) {
  4997. GGML_ASSERT(ggml_is_contiguous(a));
  4998. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4999. bool is_node = false;
  5000. if (a->grad) {
  5001. is_node = true;
  5002. }
  5003. const int64_t ne[3] = { ne0, ne1, ne2 };
  5004. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5005. ggml_format_name(result, "%s (reshaped)", a->name);
  5006. result->op = GGML_OP_RESHAPE;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src[0] = a;
  5009. return result;
  5010. }
  5011. struct ggml_tensor * ggml_reshape_4d(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int64_t ne0,
  5015. int64_t ne1,
  5016. int64_t ne2,
  5017. int64_t ne3) {
  5018. GGML_ASSERT(ggml_is_contiguous(a));
  5019. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5020. bool is_node = false;
  5021. if (a->grad) {
  5022. is_node = true;
  5023. }
  5024. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5025. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5026. ggml_format_name(result, "%s (reshaped)", a->name);
  5027. result->op = GGML_OP_RESHAPE;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src[0] = a;
  5030. return result;
  5031. }
  5032. // ggml_view_1d
  5033. static struct ggml_tensor * ggml_view_tensor_offset(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. int n_dims,
  5037. const int64_t * ne,
  5038. size_t offset) {
  5039. // don't calculate an offset from an unallocated tensor
  5040. void * data = NULL;
  5041. if (a->data != NULL) {
  5042. data = (char *) a->data + offset;
  5043. }
  5044. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5045. ggml_format_name(result, "%s (view)", a->name);
  5046. ggml_set_op_params(result, &offset, sizeof(offset));
  5047. return result;
  5048. }
  5049. struct ggml_tensor * ggml_view_1d(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. int64_t ne0,
  5053. size_t offset) {
  5054. bool is_node = false;
  5055. if (a->grad) {
  5056. is_node = true;
  5057. }
  5058. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5059. result->op = GGML_OP_VIEW;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src[0] = a;
  5062. return result;
  5063. }
  5064. // ggml_view_2d
  5065. struct ggml_tensor * ggml_view_2d(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. int64_t ne0,
  5069. int64_t ne1,
  5070. size_t nb1,
  5071. size_t offset) {
  5072. bool is_node = false;
  5073. if (a->grad) {
  5074. is_node = true;
  5075. }
  5076. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5077. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5078. result->nb[1] = nb1;
  5079. result->nb[2] = result->nb[1]*ne1;
  5080. result->nb[3] = result->nb[2];
  5081. result->op = GGML_OP_VIEW;
  5082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5083. result->src[0] = a;
  5084. return result;
  5085. }
  5086. // ggml_view_3d
  5087. struct ggml_tensor * ggml_view_3d(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. int64_t ne0,
  5091. int64_t ne1,
  5092. int64_t ne2,
  5093. size_t nb1,
  5094. size_t nb2,
  5095. size_t offset) {
  5096. bool is_node = false;
  5097. if (a->grad) {
  5098. is_node = true;
  5099. }
  5100. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5101. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5102. result->nb[1] = nb1;
  5103. result->nb[2] = nb2;
  5104. result->nb[3] = result->nb[2]*ne2;
  5105. result->op = GGML_OP_VIEW;
  5106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5107. result->src[0] = a;
  5108. return result;
  5109. }
  5110. // ggml_view_4d
  5111. struct ggml_tensor * ggml_view_4d(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int64_t ne0,
  5115. int64_t ne1,
  5116. int64_t ne2,
  5117. int64_t ne3,
  5118. size_t nb1,
  5119. size_t nb2,
  5120. size_t nb3,
  5121. size_t offset) {
  5122. bool is_node = false;
  5123. if (a->grad) {
  5124. is_node = true;
  5125. }
  5126. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5127. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5128. result->nb[1] = nb1;
  5129. result->nb[2] = nb2;
  5130. result->nb[3] = nb3;
  5131. result->op = GGML_OP_VIEW;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src[0] = a;
  5134. return result;
  5135. }
  5136. // ggml_permute
  5137. struct ggml_tensor * ggml_permute(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. int axis0,
  5141. int axis1,
  5142. int axis2,
  5143. int axis3) {
  5144. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5145. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5146. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5147. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5148. GGML_ASSERT(axis0 != axis1);
  5149. GGML_ASSERT(axis0 != axis2);
  5150. GGML_ASSERT(axis0 != axis3);
  5151. GGML_ASSERT(axis1 != axis2);
  5152. GGML_ASSERT(axis1 != axis3);
  5153. GGML_ASSERT(axis2 != axis3);
  5154. bool is_node = false;
  5155. if (a->grad) {
  5156. is_node = true;
  5157. }
  5158. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5159. ggml_format_name(result, "%s (permuted)", a->name);
  5160. int ne[GGML_MAX_DIMS];
  5161. int nb[GGML_MAX_DIMS];
  5162. ne[axis0] = a->ne[0];
  5163. ne[axis1] = a->ne[1];
  5164. ne[axis2] = a->ne[2];
  5165. ne[axis3] = a->ne[3];
  5166. nb[axis0] = a->nb[0];
  5167. nb[axis1] = a->nb[1];
  5168. nb[axis2] = a->nb[2];
  5169. nb[axis3] = a->nb[3];
  5170. result->ne[0] = ne[0];
  5171. result->ne[1] = ne[1];
  5172. result->ne[2] = ne[2];
  5173. result->ne[3] = ne[3];
  5174. result->nb[0] = nb[0];
  5175. result->nb[1] = nb[1];
  5176. result->nb[2] = nb[2];
  5177. result->nb[3] = nb[3];
  5178. result->op = GGML_OP_PERMUTE;
  5179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5180. result->src[0] = a;
  5181. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5182. ggml_set_op_params(result, &params, sizeof(params));
  5183. return result;
  5184. }
  5185. // ggml_transpose
  5186. struct ggml_tensor * ggml_transpose(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a) {
  5189. bool is_node = false;
  5190. if (a->grad) {
  5191. is_node = true;
  5192. }
  5193. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5194. ggml_format_name(result, "%s (transposed)", a->name);
  5195. result->ne[0] = a->ne[1];
  5196. result->ne[1] = a->ne[0];
  5197. result->nb[0] = a->nb[1];
  5198. result->nb[1] = a->nb[0];
  5199. result->op = GGML_OP_TRANSPOSE;
  5200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5201. result->src[0] = a;
  5202. return result;
  5203. }
  5204. // ggml_get_rows
  5205. struct ggml_tensor * ggml_get_rows(
  5206. struct ggml_context * ctx,
  5207. struct ggml_tensor * a,
  5208. struct ggml_tensor * b) {
  5209. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5210. bool is_node = false;
  5211. if (a->grad || b->grad) {
  5212. is_node = true;
  5213. }
  5214. // TODO: implement non F32 return
  5215. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5216. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5217. result->op = GGML_OP_GET_ROWS;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. result->src[1] = b;
  5221. return result;
  5222. }
  5223. // ggml_get_rows_back
  5224. struct ggml_tensor * ggml_get_rows_back(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * a,
  5227. struct ggml_tensor * b,
  5228. struct ggml_tensor * c) {
  5229. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5230. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5231. bool is_node = false;
  5232. if (a->grad || b->grad) {
  5233. is_node = true;
  5234. }
  5235. // TODO: implement non F32 return
  5236. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5237. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5238. result->op = GGML_OP_GET_ROWS_BACK;
  5239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5240. result->src[0] = a;
  5241. result->src[1] = b;
  5242. result->src[2] = c;
  5243. return result;
  5244. }
  5245. // ggml_diag
  5246. struct ggml_tensor * ggml_diag(
  5247. struct ggml_context * ctx,
  5248. struct ggml_tensor * a) {
  5249. GGML_ASSERT(a->ne[1] == 1);
  5250. bool is_node = false;
  5251. if (a->grad) {
  5252. is_node = true;
  5253. }
  5254. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5255. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5256. result->op = GGML_OP_DIAG;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src[0] = a;
  5259. return result;
  5260. }
  5261. // ggml_diag_mask_inf
  5262. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a,
  5265. int n_past,
  5266. bool inplace) {
  5267. bool is_node = false;
  5268. if (a->grad) {
  5269. is_node = true;
  5270. }
  5271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5272. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5273. ggml_set_op_params(result, &params, sizeof(params));
  5274. result->op = GGML_OP_DIAG_MASK_INF;
  5275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5276. result->src[0] = a;
  5277. return result;
  5278. }
  5279. struct ggml_tensor * ggml_diag_mask_inf(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. int n_past) {
  5283. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5284. }
  5285. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. int n_past) {
  5289. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5290. }
  5291. // ggml_diag_mask_zero
  5292. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. int n_past,
  5296. bool inplace) {
  5297. bool is_node = false;
  5298. if (a->grad) {
  5299. is_node = true;
  5300. }
  5301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5302. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5303. ggml_set_op_params(result, &params, sizeof(params));
  5304. result->op = GGML_OP_DIAG_MASK_ZERO;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. return result;
  5308. }
  5309. struct ggml_tensor * ggml_diag_mask_zero(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. int n_past) {
  5313. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5314. }
  5315. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. int n_past) {
  5319. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5320. }
  5321. // ggml_soft_max
  5322. static struct ggml_tensor * ggml_soft_max_impl(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. bool inplace) {
  5326. bool is_node = false;
  5327. if (a->grad) {
  5328. is_node = true;
  5329. }
  5330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5331. result->op = GGML_OP_SOFT_MAX;
  5332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5333. result->src[0] = a;
  5334. return result;
  5335. }
  5336. struct ggml_tensor * ggml_soft_max(
  5337. struct ggml_context * ctx,
  5338. struct ggml_tensor * a) {
  5339. return ggml_soft_max_impl(ctx, a, false);
  5340. }
  5341. struct ggml_tensor * ggml_soft_max_inplace(
  5342. struct ggml_context * ctx,
  5343. struct ggml_tensor * a) {
  5344. return ggml_soft_max_impl(ctx, a, true);
  5345. }
  5346. // ggml_soft_max_back
  5347. static struct ggml_tensor * ggml_soft_max_back_impl(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. struct ggml_tensor * b,
  5351. bool inplace) {
  5352. bool is_node = false;
  5353. if (a->grad || b->grad) {
  5354. is_node = true; // TODO : implement backward pass
  5355. }
  5356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5357. result->op = GGML_OP_SOFT_MAX_BACK;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. result->src[1] = b;
  5361. return result;
  5362. }
  5363. struct ggml_tensor * ggml_soft_max_back(
  5364. struct ggml_context * ctx,
  5365. struct ggml_tensor * a,
  5366. struct ggml_tensor * b) {
  5367. return ggml_soft_max_back_impl(ctx, a, b, false);
  5368. }
  5369. struct ggml_tensor * ggml_soft_max_back_inplace(
  5370. struct ggml_context * ctx,
  5371. struct ggml_tensor * a,
  5372. struct ggml_tensor * b) {
  5373. return ggml_soft_max_back_impl(ctx, a, b, true);
  5374. }
  5375. // ggml_rope
  5376. static struct ggml_tensor * ggml_rope_impl(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. int n_past,
  5380. int n_dims,
  5381. int mode,
  5382. int n_ctx,
  5383. float freq_base,
  5384. float freq_scale,
  5385. bool inplace) {
  5386. GGML_ASSERT(n_past >= 0);
  5387. bool is_node = false;
  5388. if (a->grad) {
  5389. is_node = true;
  5390. }
  5391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5392. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5393. memcpy(params + 4, &freq_base, sizeof(float));
  5394. memcpy(params + 5, &freq_scale, sizeof(float));
  5395. ggml_set_op_params(result, &params, sizeof(params));
  5396. result->op = GGML_OP_ROPE;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. return result;
  5400. }
  5401. struct ggml_tensor * ggml_rope(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. int n_past,
  5405. int n_dims,
  5406. int mode,
  5407. int n_ctx) {
  5408. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5409. }
  5410. struct ggml_tensor * ggml_rope_inplace(
  5411. struct ggml_context * ctx,
  5412. struct ggml_tensor * a,
  5413. int n_past,
  5414. int n_dims,
  5415. int mode,
  5416. int n_ctx) {
  5417. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5418. }
  5419. struct ggml_tensor * ggml_rope_custom(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. int n_past,
  5423. int n_dims,
  5424. int mode,
  5425. int n_ctx,
  5426. float freq_base,
  5427. float freq_scale) {
  5428. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
  5429. }
  5430. struct ggml_tensor * ggml_rope_custom_inplace(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. int n_past,
  5434. int n_dims,
  5435. int mode,
  5436. int n_ctx,
  5437. float freq_base,
  5438. float freq_scale) {
  5439. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5440. }
  5441. // ggml_rope_back
  5442. struct ggml_tensor * ggml_rope_back(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * a,
  5445. int n_past,
  5446. int n_dims,
  5447. int mode,
  5448. int n_ctx) {
  5449. GGML_ASSERT(n_past >= 0);
  5450. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5451. bool is_node = false;
  5452. if (a->grad) {
  5453. is_node = false; // TODO: implement backward
  5454. }
  5455. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5456. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5457. ggml_set_op_params(result, &params, sizeof(params));
  5458. result->op = GGML_OP_ROPE_BACK;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src[0] = a;
  5461. return result;
  5462. }
  5463. // ggml_alibi
  5464. struct ggml_tensor * ggml_alibi(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past,
  5468. int n_head,
  5469. float bias_max) {
  5470. GGML_ASSERT(n_past >= 0);
  5471. bool is_node = false;
  5472. if (a->grad) {
  5473. GGML_ASSERT(false); // TODO: implement backward
  5474. is_node = true;
  5475. }
  5476. // TODO: when implement backward, fix this:
  5477. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5478. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5479. int32_t op_params[3] = { n_past, n_head };
  5480. memcpy(op_params + 2, &bias_max, sizeof(float));
  5481. ggml_set_op_params(result, &op_params, sizeof(op_params));
  5482. result->op = GGML_OP_ALIBI;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src[0] = a;
  5485. return result;
  5486. }
  5487. // ggml_clamp
  5488. struct ggml_tensor * ggml_clamp(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. float min,
  5492. float max) {
  5493. bool is_node = false;
  5494. if (a->grad) {
  5495. GGML_ASSERT(false); // TODO: implement backward
  5496. is_node = true;
  5497. }
  5498. // TODO: when implement backward, fix this:
  5499. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5500. float params[] = { min, max };
  5501. ggml_set_op_params(result, &params, sizeof(params));
  5502. result->op = GGML_OP_CLAMP;
  5503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5504. result->src[0] = a;
  5505. return result;
  5506. }
  5507. // ggml_conv_1d
  5508. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5509. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5510. }
  5511. GGML_API struct ggml_tensor * ggml_conv_1d(
  5512. struct ggml_context * ctx,
  5513. struct ggml_tensor * a,
  5514. struct ggml_tensor * b,
  5515. int s0,
  5516. int p0,
  5517. int d0) {
  5518. GGML_ASSERT(ggml_is_matrix(b));
  5519. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5520. bool is_node = false;
  5521. if (a->grad || b->grad) {
  5522. GGML_ASSERT(false); // TODO: implement backward
  5523. is_node = true;
  5524. }
  5525. const int64_t ne[4] = {
  5526. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5527. a->ne[2], 1, 1,
  5528. };
  5529. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5530. int32_t params[] = { s0, p0, d0 };
  5531. ggml_set_op_params(result, &params, sizeof(params));
  5532. result->op = GGML_OP_CONV_1D;
  5533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5534. result->src[0] = a;
  5535. result->src[1] = b;
  5536. return result;
  5537. }
  5538. // ggml_conv_2d
  5539. struct ggml_tensor* ggml_conv_2d(
  5540. struct ggml_context* ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. int s0,
  5544. int s1,
  5545. int p0,
  5546. int p1,
  5547. int d0,
  5548. int d1) {
  5549. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5550. bool is_node = false;
  5551. if (a->grad || b->grad) {
  5552. GGML_ASSERT(false); // TODO: implement backward
  5553. is_node = true;
  5554. }
  5555. const int64_t ne[4] = {
  5556. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5557. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5558. a->ne[3], b->ne[3],
  5559. };
  5560. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5561. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5562. ggml_set_op_params(result, &params, sizeof(params));
  5563. result->op = GGML_OP_CONV_2D;
  5564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5565. result->src[0] = a;
  5566. result->src[1] = b;
  5567. return result;
  5568. }
  5569. // ggml_conv_1d_ph
  5570. struct ggml_tensor* ggml_conv_1d_ph(
  5571. struct ggml_context * ctx,
  5572. struct ggml_tensor * a,
  5573. struct ggml_tensor * b,
  5574. int s,
  5575. int d) {
  5576. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5577. }
  5578. // ggml_pool_*
  5579. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5580. return (ins + 2 * p - ks) / s + 1;
  5581. }
  5582. // ggml_pool_1d
  5583. struct ggml_tensor* ggml_pool_1d(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. enum ggml_op_pool op,
  5587. int k0,
  5588. int s0,
  5589. int p0) {
  5590. bool is_node = false;
  5591. if (a->grad) {
  5592. GGML_ASSERT(false); // TODO: implement backward
  5593. is_node = true;
  5594. }
  5595. const int64_t ne[3] = {
  5596. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5597. a->ne[1],
  5598. };
  5599. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5600. int32_t params[] = { op, k0, s0, p0 };
  5601. ggml_set_op_params(result, &params, sizeof(params));
  5602. result->op = GGML_OP_POOL_1D;
  5603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5604. result->src[0] = a;
  5605. return result;
  5606. }
  5607. // ggml_pool_2d
  5608. struct ggml_tensor* ggml_pool_2d(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. enum ggml_op_pool op,
  5612. int k0,
  5613. int k1,
  5614. int s0,
  5615. int s1,
  5616. int p0,
  5617. int p1) {
  5618. bool is_node = false;
  5619. if (a->grad) {
  5620. GGML_ASSERT(false); // TODO: implement backward
  5621. is_node = true;
  5622. }
  5623. const int64_t ne[3] = {
  5624. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5625. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5626. a->ne[2],
  5627. };
  5628. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5629. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5630. ggml_set_op_params(result, &params, sizeof(params));
  5631. result->op = GGML_OP_POOL_2D;
  5632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5633. result->src[0] = a;
  5634. return result;
  5635. }
  5636. // ggml_flash_attn
  5637. struct ggml_tensor * ggml_flash_attn(
  5638. struct ggml_context * ctx,
  5639. struct ggml_tensor * q,
  5640. struct ggml_tensor * k,
  5641. struct ggml_tensor * v,
  5642. bool masked) {
  5643. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5644. // TODO: check if vT can be multiplied by (k*qT)
  5645. bool is_node = false;
  5646. if (q->grad || k->grad || v->grad) {
  5647. is_node = true;
  5648. }
  5649. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5650. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5651. int32_t t = masked ? 1 : 0;
  5652. ggml_set_op_params(result, &t, sizeof(t));
  5653. result->op = GGML_OP_FLASH_ATTN;
  5654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5655. result->src[0] = q;
  5656. result->src[1] = k;
  5657. result->src[2] = v;
  5658. return result;
  5659. }
  5660. // ggml_flash_ff
  5661. struct ggml_tensor * ggml_flash_ff(
  5662. struct ggml_context * ctx,
  5663. struct ggml_tensor * a,
  5664. struct ggml_tensor * b0,
  5665. struct ggml_tensor * b1,
  5666. struct ggml_tensor * c0,
  5667. struct ggml_tensor * c1) {
  5668. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5669. // TODO: more checks
  5670. bool is_node = false;
  5671. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5672. is_node = true;
  5673. }
  5674. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5676. result->op = GGML_OP_FLASH_FF;
  5677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5678. result->src[0] = a;
  5679. result->src[1] = b0;
  5680. result->src[2] = b1;
  5681. result->src[3] = c0;
  5682. result->src[4] = c1;
  5683. return result;
  5684. }
  5685. // ggml_flash_attn_back
  5686. struct ggml_tensor * ggml_flash_attn_back(
  5687. struct ggml_context * ctx,
  5688. struct ggml_tensor * q,
  5689. struct ggml_tensor * k,
  5690. struct ggml_tensor * v,
  5691. struct ggml_tensor * d,
  5692. bool masked) {
  5693. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5694. // TODO: check if vT can be multiplied by (k*qT)
  5695. // d shape [D,N,ne2,ne3]
  5696. // q shape [D,N,ne2,ne3]
  5697. // k shape [D,M,ne2,ne3]
  5698. // v shape [M,D,ne2,ne3]
  5699. const int64_t D = q->ne[0];
  5700. const int64_t N = q->ne[1];
  5701. const int64_t M = k->ne[1];
  5702. const int64_t ne2 = q->ne[2];
  5703. const int64_t ne3 = q->ne[3];
  5704. GGML_ASSERT(k->ne[0] == D);
  5705. GGML_ASSERT(v->ne[0] == M);
  5706. GGML_ASSERT(v->ne[1] == D);
  5707. GGML_ASSERT(d->ne[0] == D);
  5708. GGML_ASSERT(d->ne[1] == N);
  5709. GGML_ASSERT(k->ne[2] == ne2);
  5710. GGML_ASSERT(k->ne[3] == ne3);
  5711. GGML_ASSERT(v->ne[2] == ne2);
  5712. GGML_ASSERT(v->ne[3] == ne3);
  5713. GGML_ASSERT(d->ne[2] == ne2);
  5714. GGML_ASSERT(d->ne[3] == ne3);
  5715. bool is_node = false;
  5716. if (q->grad || k->grad || v->grad) {
  5717. // when using this operation (in backwards pass) these grads are set.
  5718. // we don't want to create (big) grad of our result, so is_node is false.
  5719. is_node = false;
  5720. }
  5721. // store gradients of q, k and v as continuous tensors concatenated in result.
  5722. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5723. // gradq->data = result->data
  5724. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5725. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5726. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5727. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5728. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5729. int32_t masked_i = masked ? 1 : 0;
  5730. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5731. result->op = GGML_OP_FLASH_ATTN_BACK;
  5732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5733. result->src[0] = q;
  5734. result->src[1] = k;
  5735. result->src[2] = v;
  5736. result->src[3] = d;
  5737. return result;
  5738. }
  5739. // ggml_win_part
  5740. struct ggml_tensor * ggml_win_part(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. int w) {
  5744. GGML_ASSERT(a->ne[3] == 1);
  5745. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5746. bool is_node = false;
  5747. if (a->grad) {
  5748. GGML_ASSERT(false); // TODO: implement backward
  5749. is_node = true;
  5750. }
  5751. // padding
  5752. const int px = (w - a->ne[1]%w)%w;
  5753. const int py = (w - a->ne[2]%w)%w;
  5754. const int npx = (px + a->ne[1])/w;
  5755. const int npy = (py + a->ne[2])/w;
  5756. const int np = npx*npy;
  5757. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5758. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5759. int32_t params[] = { npx, npy, w };
  5760. ggml_set_op_params(result, &params, sizeof(params));
  5761. result->op = GGML_OP_WIN_PART;
  5762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5763. result->src[0] = a;
  5764. return result;
  5765. }
  5766. // ggml_win_unpart
  5767. struct ggml_tensor * ggml_win_unpart(
  5768. struct ggml_context * ctx,
  5769. struct ggml_tensor * a,
  5770. int w0,
  5771. int h0,
  5772. int w) {
  5773. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5774. bool is_node = false;
  5775. if (a->grad) {
  5776. GGML_ASSERT(false); // TODO: implement backward
  5777. is_node = true;
  5778. }
  5779. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5780. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5781. int32_t params[] = { w };
  5782. ggml_set_op_params(result, &params, sizeof(params));
  5783. result->op = GGML_OP_WIN_UNPART;
  5784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5785. result->src[0] = a;
  5786. return result;
  5787. }
  5788. // gmml_unary
  5789. static struct ggml_tensor * ggml_unary_impl(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * a,
  5792. enum ggml_unary_op op,
  5793. bool inplace) {
  5794. bool is_node = false;
  5795. if (!inplace && (a->grad)) {
  5796. is_node = true;
  5797. }
  5798. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5799. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5800. result->op = GGML_OP_UNARY;
  5801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5802. result->src[0] = a;
  5803. return result;
  5804. }
  5805. struct ggml_tensor * ggml_unary(
  5806. struct ggml_context * ctx,
  5807. struct ggml_tensor * a,
  5808. enum ggml_unary_op op) {
  5809. return ggml_unary_impl(ctx, a, op, false);
  5810. }
  5811. struct ggml_tensor * ggml_unary_inplace(
  5812. struct ggml_context * ctx,
  5813. struct ggml_tensor * a,
  5814. enum ggml_unary_op op) {
  5815. return ggml_unary_impl(ctx, a, op, true);
  5816. }
  5817. // ggml_map_unary
  5818. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5819. struct ggml_context * ctx,
  5820. struct ggml_tensor * a,
  5821. const ggml_unary_op_f32_t fun,
  5822. bool inplace) {
  5823. bool is_node = false;
  5824. if (!inplace && a->grad) {
  5825. is_node = true;
  5826. }
  5827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5828. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5829. result->op = GGML_OP_MAP_UNARY;
  5830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5831. result->src[0] = a;
  5832. return result;
  5833. }
  5834. struct ggml_tensor * ggml_map_unary_f32(
  5835. struct ggml_context * ctx,
  5836. struct ggml_tensor * a,
  5837. const ggml_unary_op_f32_t fun) {
  5838. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5839. }
  5840. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5841. struct ggml_context * ctx,
  5842. struct ggml_tensor * a,
  5843. const ggml_unary_op_f32_t fun) {
  5844. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5845. }
  5846. // ggml_map_binary
  5847. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5848. struct ggml_context * ctx,
  5849. struct ggml_tensor * a,
  5850. struct ggml_tensor * b,
  5851. const ggml_binary_op_f32_t fun,
  5852. bool inplace) {
  5853. GGML_ASSERT(ggml_are_same_shape(a, b));
  5854. bool is_node = false;
  5855. if (!inplace && (a->grad || b->grad)) {
  5856. is_node = true;
  5857. }
  5858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5859. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5860. result->op = GGML_OP_MAP_BINARY;
  5861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5862. result->src[0] = a;
  5863. result->src[1] = b;
  5864. return result;
  5865. }
  5866. struct ggml_tensor * ggml_map_binary_f32(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * a,
  5869. struct ggml_tensor * b,
  5870. const ggml_binary_op_f32_t fun) {
  5871. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5872. }
  5873. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5874. struct ggml_context * ctx,
  5875. struct ggml_tensor * a,
  5876. struct ggml_tensor * b,
  5877. const ggml_binary_op_f32_t fun) {
  5878. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5879. }
  5880. // ggml_map_custom1
  5881. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5882. struct ggml_context * ctx,
  5883. struct ggml_tensor * a,
  5884. const ggml_custom1_op_f32_t fun,
  5885. bool inplace) {
  5886. bool is_node = false;
  5887. if (!inplace && a->grad) {
  5888. is_node = true;
  5889. }
  5890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5891. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5892. result->op = GGML_OP_MAP_CUSTOM1;
  5893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5894. result->src[0] = a;
  5895. return result;
  5896. }
  5897. struct ggml_tensor * ggml_map_custom1_f32(
  5898. struct ggml_context * ctx,
  5899. struct ggml_tensor * a,
  5900. const ggml_custom1_op_f32_t fun) {
  5901. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5902. }
  5903. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5904. struct ggml_context * ctx,
  5905. struct ggml_tensor * a,
  5906. const ggml_custom1_op_f32_t fun) {
  5907. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5908. }
  5909. // ggml_map_custom2
  5910. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5911. struct ggml_context * ctx,
  5912. struct ggml_tensor * a,
  5913. struct ggml_tensor * b,
  5914. const ggml_custom2_op_f32_t fun,
  5915. bool inplace) {
  5916. bool is_node = false;
  5917. if (!inplace && (a->grad || b->grad)) {
  5918. is_node = true;
  5919. }
  5920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5921. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5922. result->op = GGML_OP_MAP_CUSTOM2;
  5923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5924. result->src[0] = a;
  5925. result->src[1] = b;
  5926. return result;
  5927. }
  5928. struct ggml_tensor * ggml_map_custom2_f32(
  5929. struct ggml_context * ctx,
  5930. struct ggml_tensor * a,
  5931. struct ggml_tensor * b,
  5932. const ggml_custom2_op_f32_t fun) {
  5933. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5934. }
  5935. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. struct ggml_tensor * b,
  5939. const ggml_custom2_op_f32_t fun) {
  5940. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5941. }
  5942. // ggml_map_custom3
  5943. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5944. struct ggml_context * ctx,
  5945. struct ggml_tensor * a,
  5946. struct ggml_tensor * b,
  5947. struct ggml_tensor * c,
  5948. const ggml_custom3_op_f32_t fun,
  5949. bool inplace) {
  5950. bool is_node = false;
  5951. if (!inplace && (a->grad || b->grad || c->grad)) {
  5952. is_node = true;
  5953. }
  5954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5955. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5956. result->op = GGML_OP_MAP_CUSTOM3;
  5957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5958. result->src[0] = a;
  5959. result->src[1] = b;
  5960. result->src[2] = c;
  5961. return result;
  5962. }
  5963. struct ggml_tensor * ggml_map_custom3_f32(
  5964. struct ggml_context * ctx,
  5965. struct ggml_tensor * a,
  5966. struct ggml_tensor * b,
  5967. struct ggml_tensor * c,
  5968. const ggml_custom3_op_f32_t fun) {
  5969. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5970. }
  5971. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5972. struct ggml_context * ctx,
  5973. struct ggml_tensor * a,
  5974. struct ggml_tensor * b,
  5975. struct ggml_tensor * c,
  5976. const ggml_custom3_op_f32_t fun) {
  5977. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5978. }
  5979. // ggml_cross_entropy_loss
  5980. struct ggml_tensor * ggml_cross_entropy_loss(
  5981. struct ggml_context * ctx,
  5982. struct ggml_tensor * a,
  5983. struct ggml_tensor * b) {
  5984. GGML_ASSERT(ggml_are_same_shape(a, b));
  5985. bool is_node = false;
  5986. if (a->grad || b->grad) {
  5987. is_node = true;
  5988. }
  5989. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5990. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5992. result->src[0] = a;
  5993. result->src[1] = b;
  5994. return result;
  5995. }
  5996. // ggml_cross_entropy_loss_back
  5997. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5998. struct ggml_context * ctx,
  5999. struct ggml_tensor * a,
  6000. struct ggml_tensor * b,
  6001. struct ggml_tensor * c) {
  6002. GGML_ASSERT(ggml_are_same_shape(a, b));
  6003. GGML_ASSERT(ggml_is_scalar(c));
  6004. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6005. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6006. result->grad = NULL;
  6007. result->src[0] = a;
  6008. result->src[1] = b;
  6009. result->src[2] = c;
  6010. return result;
  6011. }
  6012. ////////////////////////////////////////////////////////////////////////////////
  6013. void ggml_set_param(
  6014. struct ggml_context * ctx,
  6015. struct ggml_tensor * tensor) {
  6016. tensor->is_param = true;
  6017. GGML_ASSERT(tensor->grad == NULL);
  6018. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6019. }
  6020. // ggml_compute_forward_dup
  6021. static void ggml_compute_forward_dup_same_cont(
  6022. const struct ggml_compute_params * params,
  6023. const struct ggml_tensor * src0,
  6024. struct ggml_tensor * dst) {
  6025. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6026. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6027. GGML_ASSERT(src0->type == dst->type);
  6028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6029. return;
  6030. }
  6031. const size_t nb00 = src0->nb[0];
  6032. const size_t nb0 = dst->nb[0];
  6033. const int ith = params->ith; // thread index
  6034. const int nth = params->nth; // number of threads
  6035. // parallelize by elements
  6036. const int ne = ggml_nelements(dst);
  6037. const int dr = (ne + nth - 1) / nth;
  6038. const int ie0 = dr * ith;
  6039. const int ie1 = MIN(ie0 + dr, ne);
  6040. if (ie0 < ie1) {
  6041. memcpy(
  6042. ((char *) dst->data + ie0*nb0),
  6043. ((char *) src0->data + ie0*nb00),
  6044. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6045. }
  6046. }
  6047. static void ggml_compute_forward_dup_f16(
  6048. const struct ggml_compute_params * params,
  6049. const struct ggml_tensor * src0,
  6050. struct ggml_tensor * dst) {
  6051. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6053. return;
  6054. }
  6055. GGML_TENSOR_UNARY_OP_LOCALS;
  6056. const int ith = params->ith; // thread index
  6057. const int nth = params->nth; // number of threads
  6058. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6059. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6060. return;
  6061. }
  6062. // parallelize by rows
  6063. const int nr = ne01;
  6064. // number of rows per thread
  6065. const int dr = (nr + nth - 1) / nth;
  6066. // row range for this thread
  6067. const int ir0 = dr * ith;
  6068. const int ir1 = MIN(ir0 + dr, nr);
  6069. if (src0->type == dst->type &&
  6070. ne00 == ne0 &&
  6071. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6072. // copy by rows
  6073. const size_t rs = ne00*nb00;
  6074. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6075. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6076. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6077. memcpy(
  6078. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6079. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6080. rs);
  6081. }
  6082. }
  6083. }
  6084. return;
  6085. }
  6086. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6087. if (ggml_is_contiguous(dst)) {
  6088. if (nb00 == sizeof(ggml_fp16_t)) {
  6089. if (dst->type == GGML_TYPE_F16) {
  6090. size_t id = 0;
  6091. const size_t rs = ne00 * nb00;
  6092. char * dst_ptr = (char *) dst->data;
  6093. for (int i03 = 0; i03 < ne03; i03++) {
  6094. for (int i02 = 0; i02 < ne02; i02++) {
  6095. id += rs * ir0;
  6096. for (int i01 = ir0; i01 < ir1; i01++) {
  6097. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6098. memcpy(dst_ptr + id, src0_ptr, rs);
  6099. id += rs;
  6100. }
  6101. id += rs * (ne01 - ir1);
  6102. }
  6103. }
  6104. } else if (dst->type == GGML_TYPE_F32) {
  6105. size_t id = 0;
  6106. float * dst_ptr = (float *) dst->data;
  6107. for (int i03 = 0; i03 < ne03; i03++) {
  6108. for (int i02 = 0; i02 < ne02; i02++) {
  6109. id += ne00 * ir0;
  6110. for (int i01 = ir0; i01 < ir1; i01++) {
  6111. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6112. for (int i00 = 0; i00 < ne00; i00++) {
  6113. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6114. id++;
  6115. }
  6116. }
  6117. id += ne00 * (ne01 - ir1);
  6118. }
  6119. }
  6120. } else if (type_traits[dst->type].from_float) {
  6121. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6122. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6123. size_t id = 0;
  6124. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6125. char * dst_ptr = (char *) dst->data;
  6126. for (int i03 = 0; i03 < ne03; i03++) {
  6127. for (int i02 = 0; i02 < ne02; i02++) {
  6128. id += rs * ir0;
  6129. for (int i01 = ir0; i01 < ir1; i01++) {
  6130. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6131. for (int i00 = 0; i00 < ne00; i00++) {
  6132. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6133. }
  6134. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6135. id += rs;
  6136. }
  6137. id += rs * (ne01 - ir1);
  6138. }
  6139. }
  6140. } else {
  6141. GGML_ASSERT(false); // TODO: implement
  6142. }
  6143. } else {
  6144. //printf("%s: this is not optimal - fix me\n", __func__);
  6145. if (dst->type == GGML_TYPE_F32) {
  6146. size_t id = 0;
  6147. float * dst_ptr = (float *) dst->data;
  6148. for (int i03 = 0; i03 < ne03; i03++) {
  6149. for (int i02 = 0; i02 < ne02; i02++) {
  6150. id += ne00 * ir0;
  6151. for (int i01 = ir0; i01 < ir1; i01++) {
  6152. for (int i00 = 0; i00 < ne00; i00++) {
  6153. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6154. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6155. id++;
  6156. }
  6157. }
  6158. id += ne00 * (ne01 - ir1);
  6159. }
  6160. }
  6161. } else if (dst->type == GGML_TYPE_F16) {
  6162. size_t id = 0;
  6163. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6164. for (int i03 = 0; i03 < ne03; i03++) {
  6165. for (int i02 = 0; i02 < ne02; i02++) {
  6166. id += ne00 * ir0;
  6167. for (int i01 = ir0; i01 < ir1; i01++) {
  6168. for (int i00 = 0; i00 < ne00; i00++) {
  6169. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6170. dst_ptr[id] = *src0_ptr;
  6171. id++;
  6172. }
  6173. }
  6174. id += ne00 * (ne01 - ir1);
  6175. }
  6176. }
  6177. } else {
  6178. GGML_ASSERT(false); // TODO: implement
  6179. }
  6180. }
  6181. return;
  6182. }
  6183. // dst counters
  6184. int64_t i10 = 0;
  6185. int64_t i11 = 0;
  6186. int64_t i12 = 0;
  6187. int64_t i13 = 0;
  6188. if (dst->type == GGML_TYPE_F16) {
  6189. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6190. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6191. i10 += ne00 * ir0;
  6192. while (i10 >= ne0) {
  6193. i10 -= ne0;
  6194. if (++i11 == ne1) {
  6195. i11 = 0;
  6196. if (++i12 == ne2) {
  6197. i12 = 0;
  6198. if (++i13 == ne3) {
  6199. i13 = 0;
  6200. }
  6201. }
  6202. }
  6203. }
  6204. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6205. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6206. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6207. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6208. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6209. if (++i10 == ne00) {
  6210. i10 = 0;
  6211. if (++i11 == ne01) {
  6212. i11 = 0;
  6213. if (++i12 == ne02) {
  6214. i12 = 0;
  6215. if (++i13 == ne03) {
  6216. i13 = 0;
  6217. }
  6218. }
  6219. }
  6220. }
  6221. }
  6222. }
  6223. i10 += ne00 * (ne01 - ir1);
  6224. while (i10 >= ne0) {
  6225. i10 -= ne0;
  6226. if (++i11 == ne1) {
  6227. i11 = 0;
  6228. if (++i12 == ne2) {
  6229. i12 = 0;
  6230. if (++i13 == ne3) {
  6231. i13 = 0;
  6232. }
  6233. }
  6234. }
  6235. }
  6236. }
  6237. }
  6238. } else if (dst->type == GGML_TYPE_F32) {
  6239. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6240. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6241. i10 += ne00 * ir0;
  6242. while (i10 >= ne0) {
  6243. i10 -= ne0;
  6244. if (++i11 == ne1) {
  6245. i11 = 0;
  6246. if (++i12 == ne2) {
  6247. i12 = 0;
  6248. if (++i13 == ne3) {
  6249. i13 = 0;
  6250. }
  6251. }
  6252. }
  6253. }
  6254. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6255. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6256. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6257. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6258. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6259. if (++i10 == ne0) {
  6260. i10 = 0;
  6261. if (++i11 == ne1) {
  6262. i11 = 0;
  6263. if (++i12 == ne2) {
  6264. i12 = 0;
  6265. if (++i13 == ne3) {
  6266. i13 = 0;
  6267. }
  6268. }
  6269. }
  6270. }
  6271. }
  6272. }
  6273. i10 += ne00 * (ne01 - ir1);
  6274. while (i10 >= ne0) {
  6275. i10 -= ne0;
  6276. if (++i11 == ne1) {
  6277. i11 = 0;
  6278. if (++i12 == ne2) {
  6279. i12 = 0;
  6280. if (++i13 == ne3) {
  6281. i13 = 0;
  6282. }
  6283. }
  6284. }
  6285. }
  6286. }
  6287. }
  6288. } else {
  6289. GGML_ASSERT(false); // TODO: implement
  6290. }
  6291. }
  6292. static void ggml_compute_forward_dup_f32(
  6293. const struct ggml_compute_params * params,
  6294. const struct ggml_tensor * src0,
  6295. struct ggml_tensor * dst) {
  6296. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6298. return;
  6299. }
  6300. GGML_TENSOR_UNARY_OP_LOCALS;
  6301. const int ith = params->ith; // thread index
  6302. const int nth = params->nth; // number of threads
  6303. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6304. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6305. return;
  6306. }
  6307. // parallelize by rows
  6308. const int nr = ne01;
  6309. // number of rows per thread
  6310. const int dr = (nr + nth - 1) / nth;
  6311. // row range for this thread
  6312. const int ir0 = dr * ith;
  6313. const int ir1 = MIN(ir0 + dr, nr);
  6314. if (src0->type == dst->type &&
  6315. ne00 == ne0 &&
  6316. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6317. // copy by rows
  6318. const size_t rs = ne00*nb00;
  6319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6321. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6322. memcpy(
  6323. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6324. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6325. rs);
  6326. }
  6327. }
  6328. }
  6329. return;
  6330. }
  6331. if (ggml_is_contiguous(dst)) {
  6332. // TODO: simplify
  6333. if (nb00 == sizeof(float)) {
  6334. if (dst->type == GGML_TYPE_F32) {
  6335. size_t id = 0;
  6336. const size_t rs = ne00 * nb00;
  6337. char * dst_ptr = (char *) dst->data;
  6338. for (int i03 = 0; i03 < ne03; i03++) {
  6339. for (int i02 = 0; i02 < ne02; i02++) {
  6340. id += rs * ir0;
  6341. for (int i01 = ir0; i01 < ir1; i01++) {
  6342. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6343. memcpy(dst_ptr + id, src0_ptr, rs);
  6344. id += rs;
  6345. }
  6346. id += rs * (ne01 - ir1);
  6347. }
  6348. }
  6349. } else if (type_traits[dst->type].from_float) {
  6350. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6351. size_t id = 0;
  6352. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6353. char * dst_ptr = (char *) dst->data;
  6354. for (int i03 = 0; i03 < ne03; i03++) {
  6355. for (int i02 = 0; i02 < ne02; i02++) {
  6356. id += rs * ir0;
  6357. for (int i01 = ir0; i01 < ir1; i01++) {
  6358. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6359. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6360. id += rs;
  6361. }
  6362. id += rs * (ne01 - ir1);
  6363. }
  6364. }
  6365. } else {
  6366. GGML_ASSERT(false); // TODO: implement
  6367. }
  6368. } else {
  6369. //printf("%s: this is not optimal - fix me\n", __func__);
  6370. if (dst->type == GGML_TYPE_F32) {
  6371. size_t id = 0;
  6372. float * dst_ptr = (float *) dst->data;
  6373. for (int i03 = 0; i03 < ne03; i03++) {
  6374. for (int i02 = 0; i02 < ne02; i02++) {
  6375. id += ne00 * ir0;
  6376. for (int i01 = ir0; i01 < ir1; i01++) {
  6377. for (int i00 = 0; i00 < ne00; i00++) {
  6378. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6379. dst_ptr[id] = *src0_ptr;
  6380. id++;
  6381. }
  6382. }
  6383. id += ne00 * (ne01 - ir1);
  6384. }
  6385. }
  6386. } else if (dst->type == GGML_TYPE_F16) {
  6387. size_t id = 0;
  6388. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6389. for (int i03 = 0; i03 < ne03; i03++) {
  6390. for (int i02 = 0; i02 < ne02; i02++) {
  6391. id += ne00 * ir0;
  6392. for (int i01 = ir0; i01 < ir1; i01++) {
  6393. for (int i00 = 0; i00 < ne00; i00++) {
  6394. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6395. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6396. id++;
  6397. }
  6398. }
  6399. id += ne00 * (ne01 - ir1);
  6400. }
  6401. }
  6402. } else {
  6403. GGML_ASSERT(false); // TODO: implement
  6404. }
  6405. }
  6406. return;
  6407. }
  6408. // dst counters
  6409. int64_t i10 = 0;
  6410. int64_t i11 = 0;
  6411. int64_t i12 = 0;
  6412. int64_t i13 = 0;
  6413. if (dst->type == GGML_TYPE_F32) {
  6414. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6415. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6416. i10 += ne00 * ir0;
  6417. while (i10 >= ne0) {
  6418. i10 -= ne0;
  6419. if (++i11 == ne1) {
  6420. i11 = 0;
  6421. if (++i12 == ne2) {
  6422. i12 = 0;
  6423. if (++i13 == ne3) {
  6424. i13 = 0;
  6425. }
  6426. }
  6427. }
  6428. }
  6429. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6430. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6431. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6432. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6433. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6434. if (++i10 == ne0) {
  6435. i10 = 0;
  6436. if (++i11 == ne1) {
  6437. i11 = 0;
  6438. if (++i12 == ne2) {
  6439. i12 = 0;
  6440. if (++i13 == ne3) {
  6441. i13 = 0;
  6442. }
  6443. }
  6444. }
  6445. }
  6446. }
  6447. }
  6448. i10 += ne00 * (ne01 - ir1);
  6449. while (i10 >= ne0) {
  6450. i10 -= ne0;
  6451. if (++i11 == ne1) {
  6452. i11 = 0;
  6453. if (++i12 == ne2) {
  6454. i12 = 0;
  6455. if (++i13 == ne3) {
  6456. i13 = 0;
  6457. }
  6458. }
  6459. }
  6460. }
  6461. }
  6462. }
  6463. } else if (dst->type == GGML_TYPE_F16) {
  6464. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6465. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6466. i10 += ne00 * ir0;
  6467. while (i10 >= ne0) {
  6468. i10 -= ne0;
  6469. if (++i11 == ne1) {
  6470. i11 = 0;
  6471. if (++i12 == ne2) {
  6472. i12 = 0;
  6473. if (++i13 == ne3) {
  6474. i13 = 0;
  6475. }
  6476. }
  6477. }
  6478. }
  6479. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6480. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6481. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6482. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6483. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6484. if (++i10 == ne0) {
  6485. i10 = 0;
  6486. if (++i11 == ne1) {
  6487. i11 = 0;
  6488. if (++i12 == ne2) {
  6489. i12 = 0;
  6490. if (++i13 == ne3) {
  6491. i13 = 0;
  6492. }
  6493. }
  6494. }
  6495. }
  6496. }
  6497. }
  6498. i10 += ne00 * (ne01 - ir1);
  6499. while (i10 >= ne0) {
  6500. i10 -= ne0;
  6501. if (++i11 == ne1) {
  6502. i11 = 0;
  6503. if (++i12 == ne2) {
  6504. i12 = 0;
  6505. if (++i13 == ne3) {
  6506. i13 = 0;
  6507. }
  6508. }
  6509. }
  6510. }
  6511. }
  6512. }
  6513. } else {
  6514. GGML_ASSERT(false); // TODO: implement
  6515. }
  6516. }
  6517. static void ggml_compute_forward_dup(
  6518. const struct ggml_compute_params * params,
  6519. const struct ggml_tensor * src0,
  6520. struct ggml_tensor * dst) {
  6521. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6522. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6523. return;
  6524. }
  6525. switch (src0->type) {
  6526. case GGML_TYPE_F16:
  6527. {
  6528. ggml_compute_forward_dup_f16(params, src0, dst);
  6529. } break;
  6530. case GGML_TYPE_F32:
  6531. {
  6532. ggml_compute_forward_dup_f32(params, src0, dst);
  6533. } break;
  6534. default:
  6535. {
  6536. GGML_ASSERT(false);
  6537. } break;
  6538. }
  6539. }
  6540. // ggml_compute_forward_add
  6541. static void ggml_compute_forward_add_f32(
  6542. const struct ggml_compute_params * params,
  6543. const struct ggml_tensor * src0,
  6544. const struct ggml_tensor * src1,
  6545. struct ggml_tensor * dst) {
  6546. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6548. return;
  6549. }
  6550. const int ith = params->ith;
  6551. const int nth = params->nth;
  6552. const int nr = ggml_nrows(src0);
  6553. GGML_TENSOR_BINARY_OP_LOCALS;
  6554. GGML_ASSERT( nb0 == sizeof(float));
  6555. GGML_ASSERT(nb00 == sizeof(float));
  6556. // rows per thread
  6557. const int dr = (nr + nth - 1)/nth;
  6558. // row range for this thread
  6559. const int ir0 = dr*ith;
  6560. const int ir1 = MIN(ir0 + dr, nr);
  6561. if (nb10 == sizeof(float)) {
  6562. for (int ir = ir0; ir < ir1; ++ir) {
  6563. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6564. const int64_t i03 = ir/(ne02*ne01);
  6565. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6566. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6567. const int64_t i13 = i03 % ne13;
  6568. const int64_t i12 = i02 % ne12;
  6569. const int64_t i11 = i01 % ne11;
  6570. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6571. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6572. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6573. #ifdef GGML_USE_ACCELERATE
  6574. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6575. #else
  6576. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6577. #endif
  6578. // }
  6579. // }
  6580. }
  6581. } else {
  6582. // src1 is not contiguous
  6583. for (int ir = ir0; ir < ir1; ++ir) {
  6584. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6585. const int64_t i03 = ir/(ne02*ne01);
  6586. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6587. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6588. const int64_t i13 = i03 % ne13;
  6589. const int64_t i12 = i02 % ne12;
  6590. const int64_t i11 = i01 % ne11;
  6591. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6592. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6593. for (int i0 = 0; i0 < ne0; i0++) {
  6594. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6595. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6596. }
  6597. }
  6598. }
  6599. }
  6600. static void ggml_compute_forward_add_f16_f32(
  6601. const struct ggml_compute_params * params,
  6602. const struct ggml_tensor * src0,
  6603. const struct ggml_tensor * src1,
  6604. struct ggml_tensor * dst) {
  6605. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6607. return;
  6608. }
  6609. const int ith = params->ith;
  6610. const int nth = params->nth;
  6611. const int nr = ggml_nrows(src0);
  6612. GGML_TENSOR_BINARY_OP_LOCALS;
  6613. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6614. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6615. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6616. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6617. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6618. // rows per thread
  6619. const int dr = (nr + nth - 1)/nth;
  6620. // row range for this thread
  6621. const int ir0 = dr*ith;
  6622. const int ir1 = MIN(ir0 + dr, nr);
  6623. if (nb10 == sizeof(float)) {
  6624. for (int ir = ir0; ir < ir1; ++ir) {
  6625. // src0, src1 and dst are same shape => same indices
  6626. const int i3 = ir/(ne2*ne1);
  6627. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6628. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6629. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6630. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6631. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6632. for (int i = 0; i < ne0; i++) {
  6633. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6634. }
  6635. }
  6636. }
  6637. else {
  6638. // src1 is not contiguous
  6639. GGML_ASSERT(false);
  6640. }
  6641. }
  6642. static void ggml_compute_forward_add_f16_f16(
  6643. const struct ggml_compute_params * params,
  6644. const struct ggml_tensor * src0,
  6645. const struct ggml_tensor * src1,
  6646. struct ggml_tensor * dst) {
  6647. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. const int ith = params->ith;
  6652. const int nth = params->nth;
  6653. const int nr = ggml_nrows(src0);
  6654. GGML_TENSOR_BINARY_OP_LOCALS;
  6655. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6656. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6657. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6658. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6659. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6660. // rows per thread
  6661. const int dr = (nr + nth - 1)/nth;
  6662. // row range for this thread
  6663. const int ir0 = dr*ith;
  6664. const int ir1 = MIN(ir0 + dr, nr);
  6665. if (nb10 == sizeof(ggml_fp16_t)) {
  6666. for (int ir = ir0; ir < ir1; ++ir) {
  6667. // src0, src1 and dst are same shape => same indices
  6668. const int i3 = ir/(ne2*ne1);
  6669. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6670. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6671. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6672. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6673. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6674. for (int i = 0; i < ne0; i++) {
  6675. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6676. }
  6677. }
  6678. }
  6679. else {
  6680. // src1 is not contiguous
  6681. GGML_ASSERT(false);
  6682. }
  6683. }
  6684. static void ggml_compute_forward_add_q_f32(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. const struct ggml_tensor * src1,
  6688. struct ggml_tensor * dst) {
  6689. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6691. return;
  6692. }
  6693. const int nr = ggml_nrows(src0);
  6694. GGML_TENSOR_BINARY_OP_LOCALS;
  6695. const int ith = params->ith;
  6696. const int nth = params->nth;
  6697. const enum ggml_type type = src0->type;
  6698. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6699. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6700. // we don't support permuted src0 or src1
  6701. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6702. GGML_ASSERT(nb10 == sizeof(float));
  6703. // dst cannot be transposed or permuted
  6704. GGML_ASSERT(nb0 <= nb1);
  6705. GGML_ASSERT(nb1 <= nb2);
  6706. GGML_ASSERT(nb2 <= nb3);
  6707. GGML_ASSERT(ggml_is_quantized(src0->type));
  6708. GGML_ASSERT(dst->type == src0->type);
  6709. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6710. // rows per thread
  6711. const int dr = (nr + nth - 1)/nth;
  6712. // row range for this thread
  6713. const int ir0 = dr*ith;
  6714. const int ir1 = MIN(ir0 + dr, nr);
  6715. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6716. for (int ir = ir0; ir < ir1; ++ir) {
  6717. // src0 indices
  6718. const int i03 = ir/(ne02*ne01);
  6719. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6720. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6721. // src1 and dst are same shape as src0 => same indices
  6722. const int i13 = i03;
  6723. const int i12 = i02;
  6724. const int i11 = i01;
  6725. const int i3 = i03;
  6726. const int i2 = i02;
  6727. const int i1 = i01;
  6728. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6729. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6730. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6731. assert(ne00 % 32 == 0);
  6732. // unquantize row from src0 to temp buffer
  6733. dequantize_row_q(src0_row, wdata, ne00);
  6734. // add src1
  6735. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6736. // quantize row to dst
  6737. quantize_row_q(wdata, dst_row, ne00);
  6738. }
  6739. }
  6740. static void ggml_compute_forward_add(
  6741. const struct ggml_compute_params * params,
  6742. const struct ggml_tensor * src0,
  6743. const struct ggml_tensor * src1,
  6744. struct ggml_tensor * dst) {
  6745. switch (src0->type) {
  6746. case GGML_TYPE_F32:
  6747. {
  6748. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6749. } break;
  6750. case GGML_TYPE_F16:
  6751. {
  6752. if (src1->type == GGML_TYPE_F16) {
  6753. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6754. }
  6755. else if (src1->type == GGML_TYPE_F32) {
  6756. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6757. }
  6758. else {
  6759. GGML_ASSERT(false);
  6760. }
  6761. } break;
  6762. case GGML_TYPE_Q4_0:
  6763. case GGML_TYPE_Q4_1:
  6764. case GGML_TYPE_Q5_0:
  6765. case GGML_TYPE_Q5_1:
  6766. case GGML_TYPE_Q8_0:
  6767. case GGML_TYPE_Q2_K:
  6768. case GGML_TYPE_Q3_K:
  6769. case GGML_TYPE_Q4_K:
  6770. case GGML_TYPE_Q5_K:
  6771. case GGML_TYPE_Q6_K:
  6772. {
  6773. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6774. } break;
  6775. default:
  6776. {
  6777. GGML_ASSERT(false);
  6778. } break;
  6779. }
  6780. }
  6781. // ggml_compute_forward_add1
  6782. static void ggml_compute_forward_add1_f32(
  6783. const struct ggml_compute_params * params,
  6784. const struct ggml_tensor * src0,
  6785. const struct ggml_tensor * src1,
  6786. struct ggml_tensor * dst) {
  6787. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6788. GGML_ASSERT(ggml_is_scalar(src1));
  6789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6790. return;
  6791. }
  6792. const int ith = params->ith;
  6793. const int nth = params->nth;
  6794. const int nr = ggml_nrows(src0);
  6795. GGML_TENSOR_UNARY_OP_LOCALS;
  6796. GGML_ASSERT( nb0 == sizeof(float));
  6797. GGML_ASSERT(nb00 == sizeof(float));
  6798. // rows per thread
  6799. const int dr = (nr + nth - 1)/nth;
  6800. // row range for this thread
  6801. const int ir0 = dr*ith;
  6802. const int ir1 = MIN(ir0 + dr, nr);
  6803. for (int ir = ir0; ir < ir1; ++ir) {
  6804. // src0 and dst are same shape => same indices
  6805. const int i3 = ir/(ne2*ne1);
  6806. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6807. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6808. #ifdef GGML_USE_ACCELERATE
  6809. UNUSED(ggml_vec_add1_f32);
  6810. vDSP_vadd(
  6811. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6812. (float *) ((char *) src1->data), 0,
  6813. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6814. ne0);
  6815. #else
  6816. ggml_vec_add1_f32(ne0,
  6817. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6818. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6819. *(float *) src1->data);
  6820. #endif
  6821. }
  6822. }
  6823. static void ggml_compute_forward_add1_f16_f32(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. const struct ggml_tensor * src1,
  6827. struct ggml_tensor * dst) {
  6828. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6829. GGML_ASSERT(ggml_is_scalar(src1));
  6830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6831. return;
  6832. }
  6833. // scalar to add
  6834. const float v = *(float *) src1->data;
  6835. const int ith = params->ith;
  6836. const int nth = params->nth;
  6837. const int nr = ggml_nrows(src0);
  6838. GGML_TENSOR_UNARY_OP_LOCALS;
  6839. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6840. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6841. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6842. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6843. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6844. // rows per thread
  6845. const int dr = (nr + nth - 1)/nth;
  6846. // row range for this thread
  6847. const int ir0 = dr*ith;
  6848. const int ir1 = MIN(ir0 + dr, nr);
  6849. for (int ir = ir0; ir < ir1; ++ir) {
  6850. // src0 and dst are same shape => same indices
  6851. const int i3 = ir/(ne2*ne1);
  6852. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6853. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6854. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6855. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6856. for (int i = 0; i < ne0; i++) {
  6857. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6858. }
  6859. }
  6860. }
  6861. static void ggml_compute_forward_add1_f16_f16(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. const struct ggml_tensor * src1,
  6865. struct ggml_tensor * dst) {
  6866. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6867. GGML_ASSERT(ggml_is_scalar(src1));
  6868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6869. return;
  6870. }
  6871. // scalar to add
  6872. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6873. const int ith = params->ith;
  6874. const int nth = params->nth;
  6875. const int nr = ggml_nrows(src0);
  6876. GGML_TENSOR_UNARY_OP_LOCALS;
  6877. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6878. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6879. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6880. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6881. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6882. // rows per thread
  6883. const int dr = (nr + nth - 1)/nth;
  6884. // row range for this thread
  6885. const int ir0 = dr*ith;
  6886. const int ir1 = MIN(ir0 + dr, nr);
  6887. for (int ir = ir0; ir < ir1; ++ir) {
  6888. // src0 and dst are same shape => same indices
  6889. const int i3 = ir/(ne2*ne1);
  6890. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6891. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6892. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6893. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6894. for (int i = 0; i < ne0; i++) {
  6895. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6896. }
  6897. }
  6898. }
  6899. static void ggml_compute_forward_add1_q_f32(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. const struct ggml_tensor * src1,
  6903. struct ggml_tensor * dst) {
  6904. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6905. GGML_ASSERT(ggml_is_scalar(src1));
  6906. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6907. return;
  6908. }
  6909. // scalar to add
  6910. const float v = *(float *) src1->data;
  6911. const int ith = params->ith;
  6912. const int nth = params->nth;
  6913. const int nr = ggml_nrows(src0);
  6914. GGML_TENSOR_UNARY_OP_LOCALS;
  6915. const enum ggml_type type = src0->type;
  6916. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6917. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6918. // we don't support permuted src0
  6919. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6920. // dst cannot be transposed or permuted
  6921. GGML_ASSERT(nb0 <= nb1);
  6922. GGML_ASSERT(nb1 <= nb2);
  6923. GGML_ASSERT(nb2 <= nb3);
  6924. GGML_ASSERT(ggml_is_quantized(src0->type));
  6925. GGML_ASSERT(dst->type == src0->type);
  6926. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6927. // rows per thread
  6928. const int dr = (nr + nth - 1)/nth;
  6929. // row range for this thread
  6930. const int ir0 = dr*ith;
  6931. const int ir1 = MIN(ir0 + dr, nr);
  6932. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6933. for (int ir = ir0; ir < ir1; ++ir) {
  6934. // src0 and dst are same shape => same indices
  6935. const int i3 = ir/(ne2*ne1);
  6936. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6937. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6938. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6939. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6940. assert(ne0 % 32 == 0);
  6941. // unquantize row from src0 to temp buffer
  6942. dequantize_row_q(src0_row, wdata, ne0);
  6943. // add src1
  6944. ggml_vec_acc1_f32(ne0, wdata, v);
  6945. // quantize row to dst
  6946. quantize_row_q(wdata, dst_row, ne0);
  6947. }
  6948. }
  6949. static void ggml_compute_forward_add1(
  6950. const struct ggml_compute_params * params,
  6951. const struct ggml_tensor * src0,
  6952. const struct ggml_tensor * src1,
  6953. struct ggml_tensor * dst) {
  6954. switch (src0->type) {
  6955. case GGML_TYPE_F32:
  6956. {
  6957. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6958. } break;
  6959. case GGML_TYPE_F16:
  6960. {
  6961. if (src1->type == GGML_TYPE_F16) {
  6962. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6963. }
  6964. else if (src1->type == GGML_TYPE_F32) {
  6965. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6966. }
  6967. else {
  6968. GGML_ASSERT(false);
  6969. }
  6970. } break;
  6971. case GGML_TYPE_Q4_0:
  6972. case GGML_TYPE_Q4_1:
  6973. case GGML_TYPE_Q5_0:
  6974. case GGML_TYPE_Q5_1:
  6975. case GGML_TYPE_Q8_0:
  6976. case GGML_TYPE_Q8_1:
  6977. case GGML_TYPE_Q2_K:
  6978. case GGML_TYPE_Q3_K:
  6979. case GGML_TYPE_Q4_K:
  6980. case GGML_TYPE_Q5_K:
  6981. case GGML_TYPE_Q6_K:
  6982. {
  6983. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6984. } break;
  6985. default:
  6986. {
  6987. GGML_ASSERT(false);
  6988. } break;
  6989. }
  6990. }
  6991. // ggml_compute_forward_acc
  6992. static void ggml_compute_forward_acc_f32(
  6993. const struct ggml_compute_params * params,
  6994. const struct ggml_tensor * src0,
  6995. const struct ggml_tensor * src1,
  6996. struct ggml_tensor * dst) {
  6997. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6998. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6999. // view src0 and dst with these strides and data offset inbytes during acc
  7000. // nb0 is implicitely element_size because src0 and dst are contiguous
  7001. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7002. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7003. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7004. size_t offset = ((int32_t *) dst->op_params)[3];
  7005. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7006. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7007. // memcpy needs to be synchronized across threads to avoid race conditions.
  7008. // => do it in INIT phase
  7009. memcpy(
  7010. ((char *) dst->data),
  7011. ((char *) src0->data),
  7012. ggml_nbytes(dst));
  7013. }
  7014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7015. return;
  7016. }
  7017. const int ith = params->ith;
  7018. const int nth = params->nth;
  7019. const int nr = ggml_nrows(src1);
  7020. const int nc = src1->ne[0];
  7021. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7022. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7023. // src0 and dst as viewed during acc
  7024. const size_t nb0 = ggml_element_size(src0);
  7025. const size_t nb00 = nb0;
  7026. const size_t nb01 = nb1;
  7027. const size_t nb02 = nb2;
  7028. const size_t nb03 = nb3;
  7029. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7030. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7031. GGML_ASSERT(nb10 == sizeof(float));
  7032. // rows per thread
  7033. const int dr = (nr + nth - 1)/nth;
  7034. // row range for this thread
  7035. const int ir0 = dr*ith;
  7036. const int ir1 = MIN(ir0 + dr, nr);
  7037. for (int ir = ir0; ir < ir1; ++ir) {
  7038. // src0 and dst are viewed with shape of src1 and offset
  7039. // => same indices
  7040. const int i3 = ir/(ne12*ne11);
  7041. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7042. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7043. #ifdef GGML_USE_ACCELERATE
  7044. vDSP_vadd(
  7045. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7046. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7047. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7048. #else
  7049. ggml_vec_add_f32(nc,
  7050. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7051. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7052. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7053. #endif
  7054. }
  7055. }
  7056. static void ggml_compute_forward_acc(
  7057. const struct ggml_compute_params * params,
  7058. const struct ggml_tensor * src0,
  7059. const struct ggml_tensor * src1,
  7060. struct ggml_tensor * dst) {
  7061. switch (src0->type) {
  7062. case GGML_TYPE_F32:
  7063. {
  7064. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7065. } break;
  7066. case GGML_TYPE_F16:
  7067. case GGML_TYPE_Q4_0:
  7068. case GGML_TYPE_Q4_1:
  7069. case GGML_TYPE_Q5_0:
  7070. case GGML_TYPE_Q5_1:
  7071. case GGML_TYPE_Q8_0:
  7072. case GGML_TYPE_Q8_1:
  7073. case GGML_TYPE_Q2_K:
  7074. case GGML_TYPE_Q3_K:
  7075. case GGML_TYPE_Q4_K:
  7076. case GGML_TYPE_Q5_K:
  7077. case GGML_TYPE_Q6_K:
  7078. default:
  7079. {
  7080. GGML_ASSERT(false);
  7081. } break;
  7082. }
  7083. }
  7084. // ggml_compute_forward_sub
  7085. static void ggml_compute_forward_sub_f32(
  7086. const struct ggml_compute_params * params,
  7087. const struct ggml_tensor * src0,
  7088. const struct ggml_tensor * src1,
  7089. struct ggml_tensor * dst) {
  7090. assert(params->ith == 0);
  7091. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7092. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7093. return;
  7094. }
  7095. const int nr = ggml_nrows(src0);
  7096. GGML_TENSOR_BINARY_OP_LOCALS;
  7097. GGML_ASSERT( nb0 == sizeof(float));
  7098. GGML_ASSERT(nb00 == sizeof(float));
  7099. if (nb10 == sizeof(float)) {
  7100. for (int ir = 0; ir < nr; ++ir) {
  7101. // src0, src1 and dst are same shape => same indices
  7102. const int i3 = ir/(ne2*ne1);
  7103. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7104. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7105. #ifdef GGML_USE_ACCELERATE
  7106. vDSP_vsub(
  7107. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7108. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7109. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7110. ne0);
  7111. #else
  7112. ggml_vec_sub_f32(ne0,
  7113. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7114. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7115. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7116. #endif
  7117. // }
  7118. // }
  7119. }
  7120. } else {
  7121. // src1 is not contiguous
  7122. for (int ir = 0; ir < nr; ++ir) {
  7123. // src0, src1 and dst are same shape => same indices
  7124. const int i3 = ir/(ne2*ne1);
  7125. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7126. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7127. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7128. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7129. for (int i0 = 0; i0 < ne0; i0++) {
  7130. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7131. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7132. }
  7133. }
  7134. }
  7135. }
  7136. static void ggml_compute_forward_sub(
  7137. const struct ggml_compute_params * params,
  7138. const struct ggml_tensor * src0,
  7139. const struct ggml_tensor * src1,
  7140. struct ggml_tensor * dst) {
  7141. switch (src0->type) {
  7142. case GGML_TYPE_F32:
  7143. {
  7144. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7145. } break;
  7146. default:
  7147. {
  7148. GGML_ASSERT(false);
  7149. } break;
  7150. }
  7151. }
  7152. // ggml_compute_forward_mul
  7153. static void ggml_compute_forward_mul_f32(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. const struct ggml_tensor * src1,
  7157. struct ggml_tensor * dst) {
  7158. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7160. return;
  7161. }
  7162. const int ith = params->ith;
  7163. const int nth = params->nth;
  7164. #ifdef GGML_USE_CLBLAST
  7165. if (src1->backend == GGML_BACKEND_GPU) {
  7166. if (ith == 0) {
  7167. ggml_cl_mul(src0, src1, dst);
  7168. }
  7169. return;
  7170. }
  7171. #endif
  7172. const int64_t nr = ggml_nrows(src0);
  7173. GGML_TENSOR_BINARY_OP_LOCALS;
  7174. GGML_ASSERT( nb0 == sizeof(float));
  7175. GGML_ASSERT(nb00 == sizeof(float));
  7176. GGML_ASSERT(ne00 == ne10);
  7177. if (nb10 == sizeof(float)) {
  7178. for (int64_t ir = ith; ir < nr; ir += nth) {
  7179. // src0 and dst are same shape => same indices
  7180. const int64_t i03 = ir/(ne02*ne01);
  7181. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7182. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7183. const int64_t i13 = i03 % ne13;
  7184. const int64_t i12 = i02 % ne12;
  7185. const int64_t i11 = i01 % ne11;
  7186. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7187. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7188. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7189. #ifdef GGML_USE_ACCELERATE
  7190. UNUSED(ggml_vec_mul_f32);
  7191. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7192. #else
  7193. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7194. #endif
  7195. // }
  7196. // }
  7197. }
  7198. } else {
  7199. // src1 is not contiguous
  7200. for (int64_t ir = ith; ir < nr; ir += nth) {
  7201. // src0 and dst are same shape => same indices
  7202. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7203. const int64_t i03 = ir/(ne02*ne01);
  7204. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7205. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7206. const int64_t i13 = i03 % ne13;
  7207. const int64_t i12 = i02 % ne12;
  7208. const int64_t i11 = i01 % ne11;
  7209. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7210. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7211. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7212. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7213. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7214. }
  7215. }
  7216. }
  7217. }
  7218. static void ggml_compute_forward_mul(
  7219. const struct ggml_compute_params * params,
  7220. const struct ggml_tensor * src0,
  7221. const struct ggml_tensor * src1,
  7222. struct ggml_tensor * dst) {
  7223. switch (src0->type) {
  7224. case GGML_TYPE_F32:
  7225. {
  7226. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7227. } break;
  7228. default:
  7229. {
  7230. GGML_ASSERT(false);
  7231. } break;
  7232. }
  7233. }
  7234. // ggml_compute_forward_div
  7235. static void ggml_compute_forward_div_f32(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. const struct ggml_tensor * src1,
  7239. struct ggml_tensor * dst) {
  7240. assert(params->ith == 0);
  7241. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7243. return;
  7244. }
  7245. const int nr = ggml_nrows(src0);
  7246. GGML_TENSOR_BINARY_OP_LOCALS;
  7247. GGML_ASSERT( nb0 == sizeof(float));
  7248. GGML_ASSERT(nb00 == sizeof(float));
  7249. if (nb10 == sizeof(float)) {
  7250. for (int ir = 0; ir < nr; ++ir) {
  7251. // src0, src1 and dst are same shape => same indices
  7252. const int i3 = ir/(ne2*ne1);
  7253. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7254. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7255. #ifdef GGML_USE_ACCELERATE
  7256. vDSP_vdiv(
  7257. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7258. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7259. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7260. ne0);
  7261. #else
  7262. ggml_vec_div_f32(ne0,
  7263. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7264. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7265. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7266. #endif
  7267. // }
  7268. // }
  7269. }
  7270. } else {
  7271. // src1 is not contiguous
  7272. for (int ir = 0; ir < nr; ++ir) {
  7273. // src0, src1 and dst are same shape => same indices
  7274. const int i3 = ir/(ne2*ne1);
  7275. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7276. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7277. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7278. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7279. for (int i0 = 0; i0 < ne0; i0++) {
  7280. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7281. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7282. }
  7283. }
  7284. }
  7285. }
  7286. static void ggml_compute_forward_div(
  7287. const struct ggml_compute_params * params,
  7288. const struct ggml_tensor * src0,
  7289. const struct ggml_tensor * src1,
  7290. struct ggml_tensor * dst) {
  7291. switch (src0->type) {
  7292. case GGML_TYPE_F32:
  7293. {
  7294. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7295. } break;
  7296. default:
  7297. {
  7298. GGML_ASSERT(false);
  7299. } break;
  7300. }
  7301. }
  7302. // ggml_compute_forward_sqr
  7303. static void ggml_compute_forward_sqr_f32(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. struct ggml_tensor * dst) {
  7307. assert(params->ith == 0);
  7308. assert(ggml_are_same_shape(src0, dst));
  7309. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7310. return;
  7311. }
  7312. const int n = ggml_nrows(src0);
  7313. const int nc = src0->ne[0];
  7314. assert( dst->nb[0] == sizeof(float));
  7315. assert(src0->nb[0] == sizeof(float));
  7316. for (int i = 0; i < n; i++) {
  7317. ggml_vec_sqr_f32(nc,
  7318. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7319. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7320. }
  7321. }
  7322. static void ggml_compute_forward_sqr(
  7323. const struct ggml_compute_params * params,
  7324. const struct ggml_tensor * src0,
  7325. struct ggml_tensor * dst) {
  7326. switch (src0->type) {
  7327. case GGML_TYPE_F32:
  7328. {
  7329. ggml_compute_forward_sqr_f32(params, src0, dst);
  7330. } break;
  7331. default:
  7332. {
  7333. GGML_ASSERT(false);
  7334. } break;
  7335. }
  7336. }
  7337. // ggml_compute_forward_sqrt
  7338. static void ggml_compute_forward_sqrt_f32(
  7339. const struct ggml_compute_params * params,
  7340. const struct ggml_tensor * src0,
  7341. struct ggml_tensor * dst) {
  7342. assert(params->ith == 0);
  7343. assert(ggml_are_same_shape(src0, dst));
  7344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7345. return;
  7346. }
  7347. const int n = ggml_nrows(src0);
  7348. const int nc = src0->ne[0];
  7349. assert( dst->nb[0] == sizeof(float));
  7350. assert(src0->nb[0] == sizeof(float));
  7351. for (int i = 0; i < n; i++) {
  7352. ggml_vec_sqrt_f32(nc,
  7353. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7354. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7355. }
  7356. }
  7357. static void ggml_compute_forward_sqrt(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_log
  7373. static void ggml_compute_forward_log_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. struct ggml_tensor * dst) {
  7377. GGML_ASSERT(params->ith == 0);
  7378. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7380. return;
  7381. }
  7382. const int n = ggml_nrows(src0);
  7383. const int nc = src0->ne[0];
  7384. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7385. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7386. for (int i = 0; i < n; i++) {
  7387. ggml_vec_log_f32(nc,
  7388. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7389. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7390. }
  7391. }
  7392. static void ggml_compute_forward_log(
  7393. const struct ggml_compute_params * params,
  7394. const struct ggml_tensor * src0,
  7395. struct ggml_tensor * dst) {
  7396. switch (src0->type) {
  7397. case GGML_TYPE_F32:
  7398. {
  7399. ggml_compute_forward_log_f32(params, src0, dst);
  7400. } break;
  7401. default:
  7402. {
  7403. GGML_ASSERT(false);
  7404. } break;
  7405. }
  7406. }
  7407. // ggml_compute_forward_sum
  7408. static void ggml_compute_forward_sum_f32(
  7409. const struct ggml_compute_params * params,
  7410. const struct ggml_tensor * src0,
  7411. struct ggml_tensor * dst) {
  7412. assert(params->ith == 0);
  7413. assert(ggml_is_scalar(dst));
  7414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7415. return;
  7416. }
  7417. assert(ggml_is_scalar(dst));
  7418. assert(src0->nb[0] == sizeof(float));
  7419. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7420. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7421. ggml_float sum = 0;
  7422. ggml_float row_sum = 0;
  7423. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7424. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7425. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7426. ggml_vec_sum_f32_ggf(ne00,
  7427. &row_sum,
  7428. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7429. sum += row_sum;
  7430. }
  7431. }
  7432. }
  7433. ((float *) dst->data)[0] = sum;
  7434. }
  7435. static void ggml_compute_forward_sum_f16(
  7436. const struct ggml_compute_params * params,
  7437. const struct ggml_tensor * src0,
  7438. struct ggml_tensor * dst) {
  7439. assert(params->ith == 0);
  7440. assert(ggml_is_scalar(dst));
  7441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7442. return;
  7443. }
  7444. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7445. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7446. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7447. float sum = 0;
  7448. float row_sum = 0;
  7449. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7450. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7451. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7452. ggml_vec_sum_f16_ggf(ne00,
  7453. &row_sum,
  7454. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7455. sum += row_sum;
  7456. }
  7457. }
  7458. }
  7459. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7460. }
  7461. static void ggml_compute_forward_sum(
  7462. const struct ggml_compute_params * params,
  7463. const struct ggml_tensor * src0,
  7464. struct ggml_tensor * dst) {
  7465. switch (src0->type) {
  7466. case GGML_TYPE_F32:
  7467. {
  7468. ggml_compute_forward_sum_f32(params, src0, dst);
  7469. } break;
  7470. case GGML_TYPE_F16:
  7471. {
  7472. ggml_compute_forward_sum_f16(params, src0, dst);
  7473. } break;
  7474. default:
  7475. {
  7476. GGML_ASSERT(false);
  7477. } break;
  7478. }
  7479. }
  7480. // ggml_compute_forward_sum_rows
  7481. static void ggml_compute_forward_sum_rows_f32(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. struct ggml_tensor * dst) {
  7485. GGML_ASSERT(params->ith == 0);
  7486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7487. return;
  7488. }
  7489. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7490. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7491. GGML_TENSOR_UNARY_OP_LOCALS;
  7492. GGML_ASSERT(ne0 == 1);
  7493. GGML_ASSERT(ne1 == ne01);
  7494. GGML_ASSERT(ne2 == ne02);
  7495. GGML_ASSERT(ne3 == ne03);
  7496. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7497. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7498. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7499. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7500. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7501. float row_sum = 0;
  7502. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7503. dst_row[0] = row_sum;
  7504. }
  7505. }
  7506. }
  7507. }
  7508. static void ggml_compute_forward_sum_rows(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. struct ggml_tensor * dst) {
  7512. switch (src0->type) {
  7513. case GGML_TYPE_F32:
  7514. {
  7515. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7516. } break;
  7517. default:
  7518. {
  7519. GGML_ASSERT(false);
  7520. } break;
  7521. }
  7522. }
  7523. // ggml_compute_forward_mean
  7524. static void ggml_compute_forward_mean_f32(
  7525. const struct ggml_compute_params * params,
  7526. const struct ggml_tensor * src0,
  7527. struct ggml_tensor * dst) {
  7528. assert(params->ith == 0);
  7529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7530. return;
  7531. }
  7532. assert(src0->nb[0] == sizeof(float));
  7533. GGML_TENSOR_UNARY_OP_LOCALS;
  7534. assert(ne0 == 1);
  7535. assert(ne1 == ne01);
  7536. assert(ne2 == ne02);
  7537. assert(ne3 == ne03);
  7538. UNUSED(ne0);
  7539. UNUSED(ne1);
  7540. UNUSED(ne2);
  7541. UNUSED(ne3);
  7542. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7543. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7544. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7545. ggml_vec_sum_f32(ne00,
  7546. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7547. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7548. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7549. }
  7550. }
  7551. }
  7552. }
  7553. static void ggml_compute_forward_mean(
  7554. const struct ggml_compute_params * params,
  7555. const struct ggml_tensor * src0,
  7556. struct ggml_tensor * dst) {
  7557. switch (src0->type) {
  7558. case GGML_TYPE_F32:
  7559. {
  7560. ggml_compute_forward_mean_f32(params, src0, dst);
  7561. } break;
  7562. default:
  7563. {
  7564. GGML_ASSERT(false);
  7565. } break;
  7566. }
  7567. }
  7568. // ggml_compute_forward_argmax
  7569. static void ggml_compute_forward_argmax_f32(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * src0,
  7572. struct ggml_tensor * dst) {
  7573. assert(params->ith == 0);
  7574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7575. return;
  7576. }
  7577. assert(src0->nb[0] == sizeof(float));
  7578. assert(dst->nb[0] == sizeof(float));
  7579. const int64_t ne00 = src0->ne[0];
  7580. const int64_t ne01 = src0->ne[1];
  7581. const size_t nb01 = src0->nb[1];
  7582. const size_t nb0 = dst->nb[0];
  7583. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7584. float * src = (float *) ((char *) src0->data + i1*nb01);
  7585. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7586. int v = 0;
  7587. ggml_vec_argmax_f32(ne00, &v, src);
  7588. dst_[0] = v;
  7589. }
  7590. }
  7591. static void ggml_compute_forward_argmax(
  7592. const struct ggml_compute_params * params,
  7593. const struct ggml_tensor * src0,
  7594. struct ggml_tensor * dst) {
  7595. switch (src0->type) {
  7596. case GGML_TYPE_F32:
  7597. {
  7598. ggml_compute_forward_argmax_f32(params, src0, dst);
  7599. } break;
  7600. default:
  7601. {
  7602. GGML_ASSERT(false);
  7603. } break;
  7604. }
  7605. }
  7606. // ggml_compute_forward_repeat
  7607. static void ggml_compute_forward_repeat_f32(
  7608. const struct ggml_compute_params * params,
  7609. const struct ggml_tensor * src0,
  7610. struct ggml_tensor * dst) {
  7611. GGML_ASSERT(params->ith == 0);
  7612. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7613. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7614. return;
  7615. }
  7616. GGML_TENSOR_UNARY_OP_LOCALS;
  7617. // guaranteed to be an integer due to the check in ggml_can_repeat
  7618. const int nr0 = (int)(ne0/ne00);
  7619. const int nr1 = (int)(ne1/ne01);
  7620. const int nr2 = (int)(ne2/ne02);
  7621. const int nr3 = (int)(ne3/ne03);
  7622. // TODO: support for transposed / permuted tensors
  7623. GGML_ASSERT(nb0 == sizeof(float));
  7624. GGML_ASSERT(nb00 == sizeof(float));
  7625. // TODO: maybe this is not optimal?
  7626. for (int i3 = 0; i3 < nr3; i3++) {
  7627. for (int k3 = 0; k3 < ne03; k3++) {
  7628. for (int i2 = 0; i2 < nr2; i2++) {
  7629. for (int k2 = 0; k2 < ne02; k2++) {
  7630. for (int i1 = 0; i1 < nr1; i1++) {
  7631. for (int k1 = 0; k1 < ne01; k1++) {
  7632. for (int i0 = 0; i0 < nr0; i0++) {
  7633. ggml_vec_cpy_f32(ne00,
  7634. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7635. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7636. }
  7637. }
  7638. }
  7639. }
  7640. }
  7641. }
  7642. }
  7643. }
  7644. static void ggml_compute_forward_repeat(
  7645. const struct ggml_compute_params * params,
  7646. const struct ggml_tensor * src0,
  7647. struct ggml_tensor * dst) {
  7648. switch (src0->type) {
  7649. case GGML_TYPE_F32:
  7650. {
  7651. ggml_compute_forward_repeat_f32(params, src0, dst);
  7652. } break;
  7653. default:
  7654. {
  7655. GGML_ASSERT(false);
  7656. } break;
  7657. }
  7658. }
  7659. // ggml_compute_forward_repeat_back
  7660. static void ggml_compute_forward_repeat_back_f32(
  7661. const struct ggml_compute_params * params,
  7662. const struct ggml_tensor * src0,
  7663. struct ggml_tensor * dst) {
  7664. GGML_ASSERT(params->ith == 0);
  7665. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7667. return;
  7668. }
  7669. GGML_TENSOR_UNARY_OP_LOCALS;
  7670. // guaranteed to be an integer due to the check in ggml_can_repeat
  7671. const int nr0 = (int)(ne00/ne0);
  7672. const int nr1 = (int)(ne01/ne1);
  7673. const int nr2 = (int)(ne02/ne2);
  7674. const int nr3 = (int)(ne03/ne3);
  7675. // TODO: support for transposed / permuted tensors
  7676. GGML_ASSERT(nb0 == sizeof(float));
  7677. GGML_ASSERT(nb00 == sizeof(float));
  7678. if (ggml_is_contiguous(dst)) {
  7679. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7680. } else {
  7681. for (int k3 = 0; k3 < ne3; k3++) {
  7682. for (int k2 = 0; k2 < ne2; k2++) {
  7683. for (int k1 = 0; k1 < ne1; k1++) {
  7684. ggml_vec_set_f32(ne0,
  7685. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7686. 0);
  7687. }
  7688. }
  7689. }
  7690. }
  7691. // TODO: maybe this is not optimal?
  7692. for (int i3 = 0; i3 < nr3; i3++) {
  7693. for (int k3 = 0; k3 < ne3; k3++) {
  7694. for (int i2 = 0; i2 < nr2; i2++) {
  7695. for (int k2 = 0; k2 < ne2; k2++) {
  7696. for (int i1 = 0; i1 < nr1; i1++) {
  7697. for (int k1 = 0; k1 < ne1; k1++) {
  7698. for (int i0 = 0; i0 < nr0; i0++) {
  7699. ggml_vec_acc_f32(ne0,
  7700. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7701. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7702. }
  7703. }
  7704. }
  7705. }
  7706. }
  7707. }
  7708. }
  7709. }
  7710. static void ggml_compute_forward_repeat_back(
  7711. const struct ggml_compute_params * params,
  7712. const struct ggml_tensor * src0,
  7713. struct ggml_tensor * dst) {
  7714. switch (src0->type) {
  7715. case GGML_TYPE_F32:
  7716. {
  7717. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7718. } break;
  7719. default:
  7720. {
  7721. GGML_ASSERT(false);
  7722. } break;
  7723. }
  7724. }
  7725. // ggml_compute_forward_abs
  7726. static void ggml_compute_forward_abs_f32(
  7727. const struct ggml_compute_params * params,
  7728. const struct ggml_tensor * src0,
  7729. struct ggml_tensor * dst) {
  7730. assert(params->ith == 0);
  7731. assert(ggml_are_same_shape(src0, dst));
  7732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7733. return;
  7734. }
  7735. const int n = ggml_nrows(src0);
  7736. const int nc = src0->ne[0];
  7737. assert(dst->nb[0] == sizeof(float));
  7738. assert(src0->nb[0] == sizeof(float));
  7739. for (int i = 0; i < n; i++) {
  7740. ggml_vec_abs_f32(nc,
  7741. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7742. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7743. }
  7744. }
  7745. static void ggml_compute_forward_abs(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. switch (src0->type) {
  7750. case GGML_TYPE_F32:
  7751. {
  7752. ggml_compute_forward_abs_f32(params, src0, dst);
  7753. } break;
  7754. default:
  7755. {
  7756. GGML_ASSERT(false);
  7757. } break;
  7758. }
  7759. }
  7760. // ggml_compute_forward_sgn
  7761. static void ggml_compute_forward_sgn_f32(
  7762. const struct ggml_compute_params * params,
  7763. const struct ggml_tensor * src0,
  7764. struct ggml_tensor * dst) {
  7765. assert(params->ith == 0);
  7766. assert(ggml_are_same_shape(src0, dst));
  7767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7768. return;
  7769. }
  7770. const int n = ggml_nrows(src0);
  7771. const int nc = src0->ne[0];
  7772. assert(dst->nb[0] == sizeof(float));
  7773. assert(src0->nb[0] == sizeof(float));
  7774. for (int i = 0; i < n; i++) {
  7775. ggml_vec_sgn_f32(nc,
  7776. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7777. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7778. }
  7779. }
  7780. static void ggml_compute_forward_sgn(
  7781. const struct ggml_compute_params * params,
  7782. const struct ggml_tensor * src0,
  7783. struct ggml_tensor * dst) {
  7784. switch (src0->type) {
  7785. case GGML_TYPE_F32:
  7786. {
  7787. ggml_compute_forward_sgn_f32(params, src0, dst);
  7788. } break;
  7789. default:
  7790. {
  7791. GGML_ASSERT(false);
  7792. } break;
  7793. }
  7794. }
  7795. // ggml_compute_forward_neg
  7796. static void ggml_compute_forward_neg_f32(
  7797. const struct ggml_compute_params * params,
  7798. const struct ggml_tensor * src0,
  7799. struct ggml_tensor * dst) {
  7800. assert(params->ith == 0);
  7801. assert(ggml_are_same_shape(src0, dst));
  7802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7803. return;
  7804. }
  7805. const int n = ggml_nrows(src0);
  7806. const int nc = src0->ne[0];
  7807. assert(dst->nb[0] == sizeof(float));
  7808. assert(src0->nb[0] == sizeof(float));
  7809. for (int i = 0; i < n; i++) {
  7810. ggml_vec_neg_f32(nc,
  7811. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7812. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7813. }
  7814. }
  7815. static void ggml_compute_forward_neg(
  7816. const struct ggml_compute_params * params,
  7817. const struct ggml_tensor * src0,
  7818. struct ggml_tensor * dst) {
  7819. switch (src0->type) {
  7820. case GGML_TYPE_F32:
  7821. {
  7822. ggml_compute_forward_neg_f32(params, src0, dst);
  7823. } break;
  7824. default:
  7825. {
  7826. GGML_ASSERT(false);
  7827. } break;
  7828. }
  7829. }
  7830. // ggml_compute_forward_step
  7831. static void ggml_compute_forward_step_f32(
  7832. const struct ggml_compute_params * params,
  7833. const struct ggml_tensor * src0,
  7834. struct ggml_tensor * dst) {
  7835. assert(params->ith == 0);
  7836. assert(ggml_are_same_shape(src0, dst));
  7837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7838. return;
  7839. }
  7840. const int n = ggml_nrows(src0);
  7841. const int nc = src0->ne[0];
  7842. assert(dst->nb[0] == sizeof(float));
  7843. assert(src0->nb[0] == sizeof(float));
  7844. for (int i = 0; i < n; i++) {
  7845. ggml_vec_step_f32(nc,
  7846. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7847. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7848. }
  7849. }
  7850. static void ggml_compute_forward_step(
  7851. const struct ggml_compute_params * params,
  7852. const struct ggml_tensor * src0,
  7853. struct ggml_tensor * dst) {
  7854. switch (src0->type) {
  7855. case GGML_TYPE_F32:
  7856. {
  7857. ggml_compute_forward_step_f32(params, src0, dst);
  7858. } break;
  7859. default:
  7860. {
  7861. GGML_ASSERT(false);
  7862. } break;
  7863. }
  7864. }
  7865. // ggml_compute_forward_tanh
  7866. static void ggml_compute_forward_tanh_f32(
  7867. const struct ggml_compute_params * params,
  7868. const struct ggml_tensor * src0,
  7869. struct ggml_tensor * dst) {
  7870. assert(params->ith == 0);
  7871. assert(ggml_are_same_shape(src0, dst));
  7872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7873. return;
  7874. }
  7875. const int n = ggml_nrows(src0);
  7876. const int nc = src0->ne[0];
  7877. assert(dst->nb[0] == sizeof(float));
  7878. assert(src0->nb[0] == sizeof(float));
  7879. for (int i = 0; i < n; i++) {
  7880. ggml_vec_tanh_f32(nc,
  7881. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7882. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7883. }
  7884. }
  7885. static void ggml_compute_forward_tanh(
  7886. const struct ggml_compute_params * params,
  7887. const struct ggml_tensor * src0,
  7888. struct ggml_tensor * dst) {
  7889. switch (src0->type) {
  7890. case GGML_TYPE_F32:
  7891. {
  7892. ggml_compute_forward_tanh_f32(params, src0, dst);
  7893. } break;
  7894. default:
  7895. {
  7896. GGML_ASSERT(false);
  7897. } break;
  7898. }
  7899. }
  7900. // ggml_compute_forward_elu
  7901. static void ggml_compute_forward_elu_f32(
  7902. const struct ggml_compute_params * params,
  7903. const struct ggml_tensor * src0,
  7904. struct ggml_tensor * dst) {
  7905. assert(params->ith == 0);
  7906. assert(ggml_are_same_shape(src0, dst));
  7907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7908. return;
  7909. }
  7910. const int n = ggml_nrows(src0);
  7911. const int nc = src0->ne[0];
  7912. assert(dst->nb[0] == sizeof(float));
  7913. assert(src0->nb[0] == sizeof(float));
  7914. for (int i = 0; i < n; i++) {
  7915. ggml_vec_elu_f32(nc,
  7916. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7917. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7918. }
  7919. }
  7920. static void ggml_compute_forward_elu(
  7921. const struct ggml_compute_params * params,
  7922. const struct ggml_tensor * src0,
  7923. struct ggml_tensor * dst) {
  7924. switch (src0->type) {
  7925. case GGML_TYPE_F32:
  7926. {
  7927. ggml_compute_forward_elu_f32(params, src0, dst);
  7928. } break;
  7929. default:
  7930. {
  7931. GGML_ASSERT(false);
  7932. } break;
  7933. }
  7934. }
  7935. // ggml_compute_forward_relu
  7936. static void ggml_compute_forward_relu_f32(
  7937. const struct ggml_compute_params * params,
  7938. const struct ggml_tensor * src0,
  7939. struct ggml_tensor * dst) {
  7940. assert(params->ith == 0);
  7941. assert(ggml_are_same_shape(src0, dst));
  7942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7943. return;
  7944. }
  7945. const int n = ggml_nrows(src0);
  7946. const int nc = src0->ne[0];
  7947. assert(dst->nb[0] == sizeof(float));
  7948. assert(src0->nb[0] == sizeof(float));
  7949. for (int i = 0; i < n; i++) {
  7950. ggml_vec_relu_f32(nc,
  7951. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7952. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7953. }
  7954. }
  7955. static void ggml_compute_forward_relu(
  7956. const struct ggml_compute_params * params,
  7957. const struct ggml_tensor * src0,
  7958. struct ggml_tensor * dst) {
  7959. switch (src0->type) {
  7960. case GGML_TYPE_F32:
  7961. {
  7962. ggml_compute_forward_relu_f32(params, src0, dst);
  7963. } break;
  7964. default:
  7965. {
  7966. GGML_ASSERT(false);
  7967. } break;
  7968. }
  7969. }
  7970. // ggml_compute_forward_gelu
  7971. static void ggml_compute_forward_gelu_f32(
  7972. const struct ggml_compute_params * params,
  7973. const struct ggml_tensor * src0,
  7974. struct ggml_tensor * dst) {
  7975. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7976. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7977. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7979. return;
  7980. }
  7981. const int ith = params->ith;
  7982. const int nth = params->nth;
  7983. const int nc = src0->ne[0];
  7984. const int nr = ggml_nrows(src0);
  7985. // rows per thread
  7986. const int dr = (nr + nth - 1)/nth;
  7987. // row range for this thread
  7988. const int ir0 = dr*ith;
  7989. const int ir1 = MIN(ir0 + dr, nr);
  7990. for (int i1 = ir0; i1 < ir1; i1++) {
  7991. ggml_vec_gelu_f32(nc,
  7992. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7993. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7994. #ifndef NDEBUG
  7995. for (int k = 0; k < nc; k++) {
  7996. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7997. UNUSED(x);
  7998. assert(!isnan(x));
  7999. assert(!isinf(x));
  8000. }
  8001. #endif
  8002. }
  8003. }
  8004. static void ggml_compute_forward_gelu(
  8005. const struct ggml_compute_params * params,
  8006. const struct ggml_tensor * src0,
  8007. struct ggml_tensor * dst) {
  8008. switch (src0->type) {
  8009. case GGML_TYPE_F32:
  8010. {
  8011. ggml_compute_forward_gelu_f32(params, src0, dst);
  8012. } break;
  8013. default:
  8014. {
  8015. GGML_ASSERT(false);
  8016. } break;
  8017. }
  8018. }
  8019. // ggml_compute_forward_gelu_quick
  8020. static void ggml_compute_forward_gelu_quick_f32(
  8021. const struct ggml_compute_params * params,
  8022. const struct ggml_tensor * src0,
  8023. struct ggml_tensor * dst) {
  8024. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8025. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8026. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8028. return;
  8029. }
  8030. const int ith = params->ith;
  8031. const int nth = params->nth;
  8032. const int nc = src0->ne[0];
  8033. const int nr = ggml_nrows(src0);
  8034. // rows per thread
  8035. const int dr = (nr + nth - 1)/nth;
  8036. // row range for this thread
  8037. const int ir0 = dr*ith;
  8038. const int ir1 = MIN(ir0 + dr, nr);
  8039. for (int i1 = ir0; i1 < ir1; i1++) {
  8040. ggml_vec_gelu_quick_f32(nc,
  8041. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8042. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8043. #ifndef NDEBUG
  8044. for (int k = 0; k < nc; k++) {
  8045. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8046. UNUSED(x);
  8047. assert(!isnan(x));
  8048. assert(!isinf(x));
  8049. }
  8050. #endif
  8051. }
  8052. }
  8053. static void ggml_compute_forward_gelu_quick(
  8054. const struct ggml_compute_params * params,
  8055. const struct ggml_tensor * src0,
  8056. struct ggml_tensor * dst) {
  8057. switch (src0->type) {
  8058. case GGML_TYPE_F32:
  8059. {
  8060. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8061. } break;
  8062. default:
  8063. {
  8064. GGML_ASSERT(false);
  8065. } break;
  8066. }
  8067. }
  8068. // ggml_compute_forward_silu
  8069. static void ggml_compute_forward_silu_f32(
  8070. const struct ggml_compute_params * params,
  8071. const struct ggml_tensor * src0,
  8072. struct ggml_tensor * dst) {
  8073. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8074. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8075. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8077. return;
  8078. }
  8079. const int ith = params->ith;
  8080. const int nth = params->nth;
  8081. const int nc = src0->ne[0];
  8082. const int nr = ggml_nrows(src0);
  8083. // rows per thread
  8084. const int dr = (nr + nth - 1)/nth;
  8085. // row range for this thread
  8086. const int ir0 = dr*ith;
  8087. const int ir1 = MIN(ir0 + dr, nr);
  8088. for (int i1 = ir0; i1 < ir1; i1++) {
  8089. ggml_vec_silu_f32(nc,
  8090. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8091. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8092. #ifndef NDEBUG
  8093. for (int k = 0; k < nc; k++) {
  8094. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8095. UNUSED(x);
  8096. assert(!isnan(x));
  8097. assert(!isinf(x));
  8098. }
  8099. #endif
  8100. }
  8101. }
  8102. static void ggml_compute_forward_silu(
  8103. const struct ggml_compute_params * params,
  8104. const struct ggml_tensor * src0,
  8105. struct ggml_tensor * dst) {
  8106. switch (src0->type) {
  8107. case GGML_TYPE_F32:
  8108. {
  8109. ggml_compute_forward_silu_f32(params, src0, dst);
  8110. } break;
  8111. default:
  8112. {
  8113. GGML_ASSERT(false);
  8114. } break;
  8115. }
  8116. }
  8117. // ggml_compute_forward_silu_back
  8118. static void ggml_compute_forward_silu_back_f32(
  8119. const struct ggml_compute_params * params,
  8120. const struct ggml_tensor * src0,
  8121. const struct ggml_tensor * grad,
  8122. struct ggml_tensor * dst) {
  8123. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8124. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8125. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8126. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8127. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8129. return;
  8130. }
  8131. const int ith = params->ith;
  8132. const int nth = params->nth;
  8133. const int nc = src0->ne[0];
  8134. const int nr = ggml_nrows(src0);
  8135. // rows per thread
  8136. const int dr = (nr + nth - 1)/nth;
  8137. // row range for this thread
  8138. const int ir0 = dr*ith;
  8139. const int ir1 = MIN(ir0 + dr, nr);
  8140. for (int i1 = ir0; i1 < ir1; i1++) {
  8141. ggml_vec_silu_backward_f32(nc,
  8142. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8143. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8144. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8145. #ifndef NDEBUG
  8146. for (int k = 0; k < nc; k++) {
  8147. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8148. UNUSED(x);
  8149. assert(!isnan(x));
  8150. assert(!isinf(x));
  8151. }
  8152. #endif
  8153. }
  8154. }
  8155. static void ggml_compute_forward_silu_back(
  8156. const struct ggml_compute_params * params,
  8157. const struct ggml_tensor * src0,
  8158. const struct ggml_tensor * grad,
  8159. struct ggml_tensor * dst) {
  8160. switch (src0->type) {
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8164. } break;
  8165. default:
  8166. {
  8167. GGML_ASSERT(false);
  8168. } break;
  8169. }
  8170. }
  8171. // ggml_compute_forward_norm
  8172. static void ggml_compute_forward_norm_f32(
  8173. const struct ggml_compute_params * params,
  8174. const struct ggml_tensor * src0,
  8175. struct ggml_tensor * dst) {
  8176. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8178. return;
  8179. }
  8180. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8181. const int ith = params->ith;
  8182. const int nth = params->nth;
  8183. GGML_TENSOR_UNARY_OP_LOCALS;
  8184. const float eps = 1e-5f; // TODO: make this a parameter
  8185. // TODO: optimize
  8186. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8187. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8188. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8189. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8190. ggml_float sum = 0.0;
  8191. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8192. sum += (ggml_float)x[i00];
  8193. }
  8194. float mean = sum/ne00;
  8195. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8196. ggml_float sum2 = 0.0;
  8197. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8198. float v = x[i00] - mean;
  8199. y[i00] = v;
  8200. sum2 += (ggml_float)(v*v);
  8201. }
  8202. float variance = sum2/ne00;
  8203. const float scale = 1.0f/sqrtf(variance + eps);
  8204. ggml_vec_scale_f32(ne00, y, scale);
  8205. }
  8206. }
  8207. }
  8208. }
  8209. static void ggml_compute_forward_norm(
  8210. const struct ggml_compute_params * params,
  8211. const struct ggml_tensor * src0,
  8212. struct ggml_tensor * dst) {
  8213. switch (src0->type) {
  8214. case GGML_TYPE_F32:
  8215. {
  8216. ggml_compute_forward_norm_f32(params, src0, dst);
  8217. } break;
  8218. default:
  8219. {
  8220. GGML_ASSERT(false);
  8221. } break;
  8222. }
  8223. }
  8224. static void ggml_compute_forward_rms_norm_f32(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. struct ggml_tensor * dst) {
  8228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8233. const int ith = params->ith;
  8234. const int nth = params->nth;
  8235. GGML_TENSOR_UNARY_OP_LOCALS;
  8236. float eps;
  8237. memcpy(&eps, dst->op_params, sizeof(float));
  8238. // TODO: optimize
  8239. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8240. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8241. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8242. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8243. ggml_float sum = 0.0;
  8244. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8245. sum += (ggml_float)(x[i00] * x[i00]);
  8246. }
  8247. const float mean = sum/ne00;
  8248. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8249. memcpy(y, x, ne00 * sizeof(float));
  8250. // for (int i00 = 0; i00 < ne00; i00++) {
  8251. // y[i00] = x[i00];
  8252. // }
  8253. const float scale = 1.0f/sqrtf(mean + eps);
  8254. ggml_vec_scale_f32(ne00, y, scale);
  8255. }
  8256. }
  8257. }
  8258. }
  8259. static void ggml_compute_forward_rms_norm(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0,
  8262. struct ggml_tensor * dst) {
  8263. switch (src0->type) {
  8264. case GGML_TYPE_F32:
  8265. {
  8266. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8267. } break;
  8268. default:
  8269. {
  8270. GGML_ASSERT(false);
  8271. } break;
  8272. }
  8273. }
  8274. static void ggml_compute_forward_rms_norm_back_f32(
  8275. const struct ggml_compute_params * params,
  8276. const struct ggml_tensor * src0,
  8277. const struct ggml_tensor * src1,
  8278. struct ggml_tensor * dst) {
  8279. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8281. return;
  8282. }
  8283. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8284. const int ith = params->ith;
  8285. const int nth = params->nth;
  8286. GGML_TENSOR_BINARY_OP_LOCALS;
  8287. const float eps = 1e-6f; // TODO: make this a parameter
  8288. // TODO: optimize
  8289. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8290. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8291. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8292. // src1 is same shape as src0 => same indices
  8293. const int64_t i11 = i01;
  8294. const int64_t i12 = i02;
  8295. const int64_t i13 = i03;
  8296. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8297. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8298. ggml_float sum_xx = 0.0;
  8299. ggml_float sum_xdz = 0.0;
  8300. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8301. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8302. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8303. }
  8304. //const float mean = (float)(sum_xx)/ne00;
  8305. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8306. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8307. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8308. // we could cache rms from forward pass to improve performance.
  8309. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8310. //const float rms = sqrtf(mean_eps);
  8311. const float rrms = 1.0f / sqrtf(mean_eps);
  8312. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8313. {
  8314. // z = rms_norm(x)
  8315. //
  8316. // rms_norm(src0) =
  8317. // scale(
  8318. // src0,
  8319. // div(
  8320. // 1,
  8321. // sqrt(
  8322. // add(
  8323. // scale(
  8324. // sum(
  8325. // sqr(
  8326. // src0)),
  8327. // (1.0/N)),
  8328. // eps))));
  8329. // postorder:
  8330. // ## op args grad
  8331. // 00 param src0 grad[#00]
  8332. // 01 const 1
  8333. // 02 sqr (#00) grad[#02]
  8334. // 03 sum (#02) grad[#03]
  8335. // 04 const 1/N
  8336. // 05 scale (#03, #04) grad[#05]
  8337. // 06 const eps
  8338. // 07 add (#05, #06) grad[#07]
  8339. // 08 sqrt (#07) grad[#08]
  8340. // 09 div (#01,#08) grad[#09]
  8341. // 10 scale (#00,#09) grad[#10]
  8342. //
  8343. // backward pass, given grad[#10]
  8344. // #10: scale
  8345. // grad[#00] += scale(grad[#10],#09)
  8346. // grad[#09] += sum(mul(grad[#10],#00))
  8347. // #09: div
  8348. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8349. // #08: sqrt
  8350. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8351. // #07: add
  8352. // grad[#05] += grad[#07]
  8353. // #05: scale
  8354. // grad[#03] += scale(grad[#05],#04)
  8355. // #03: sum
  8356. // grad[#02] += repeat(grad[#03], #02)
  8357. // #02:
  8358. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8359. //
  8360. // substitute and simplify:
  8361. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8362. // grad[#02] = repeat(grad[#03], #02)
  8363. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8364. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8365. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8366. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8367. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8368. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8369. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8370. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8371. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8372. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8373. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8374. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8375. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8376. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8377. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8378. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8379. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8380. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8381. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8382. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8383. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8384. // a = b*c + d*e
  8385. // a = b*c*f/f + d*e*f/f
  8386. // a = (b*c*f + d*e*f)*(1/f)
  8387. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8388. // a = (b + d*e/c)*c
  8389. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8390. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8391. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8392. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8393. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8394. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8395. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8396. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8397. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8398. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8399. }
  8400. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8401. // post-order:
  8402. // dx := x
  8403. // dx := scale(dx,-mean_xdz/mean_eps)
  8404. // dx := add(dx, dz)
  8405. // dx := scale(dx, rrms)
  8406. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8407. ggml_vec_cpy_f32 (ne00, dx, x);
  8408. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8409. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8410. ggml_vec_acc_f32 (ne00, dx, dz);
  8411. ggml_vec_scale_f32(ne00, dx, rrms);
  8412. }
  8413. }
  8414. }
  8415. }
  8416. static void ggml_compute_forward_rms_norm_back(
  8417. const struct ggml_compute_params * params,
  8418. const struct ggml_tensor * src0,
  8419. const struct ggml_tensor * src1,
  8420. struct ggml_tensor * dst) {
  8421. switch (src0->type) {
  8422. case GGML_TYPE_F32:
  8423. {
  8424. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8425. } break;
  8426. default:
  8427. {
  8428. GGML_ASSERT(false);
  8429. } break;
  8430. }
  8431. }
  8432. // ggml_compute_forward_mul_mat
  8433. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8434. // helper function to determine if it is better to use BLAS or not
  8435. // for large matrices, BLAS is faster
  8436. static bool ggml_compute_forward_mul_mat_use_blas(
  8437. const struct ggml_tensor * src0,
  8438. const struct ggml_tensor * src1,
  8439. struct ggml_tensor * dst) {
  8440. //const int64_t ne00 = src0->ne[0];
  8441. //const int64_t ne01 = src0->ne[1];
  8442. const int64_t ne10 = src1->ne[0];
  8443. const int64_t ne0 = dst->ne[0];
  8444. const int64_t ne1 = dst->ne[1];
  8445. // TODO: find the optimal values for these
  8446. if (ggml_is_contiguous(src0) &&
  8447. ggml_is_contiguous(src1) &&
  8448. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8449. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8450. return true;
  8451. }
  8452. return false;
  8453. }
  8454. #endif
  8455. static void ggml_compute_forward_mul_mat(
  8456. const struct ggml_compute_params * params,
  8457. const struct ggml_tensor * src0,
  8458. const struct ggml_tensor * src1,
  8459. struct ggml_tensor * dst) {
  8460. int64_t t0 = ggml_perf_time_us();
  8461. UNUSED(t0);
  8462. GGML_TENSOR_BINARY_OP_LOCALS;
  8463. const int ith = params->ith;
  8464. const int nth = params->nth;
  8465. const enum ggml_type type = src0->type;
  8466. const bool src1_cont = ggml_is_contiguous(src1);
  8467. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8468. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8469. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8470. GGML_ASSERT(ne0 == ne01);
  8471. GGML_ASSERT(ne1 == ne11);
  8472. GGML_ASSERT(ne2 == ne12);
  8473. GGML_ASSERT(ne3 == ne13);
  8474. // we don't support permuted src0 or src1
  8475. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8476. GGML_ASSERT(nb10 == sizeof(float));
  8477. // dst cannot be transposed or permuted
  8478. GGML_ASSERT(nb0 == sizeof(float));
  8479. GGML_ASSERT(nb0 <= nb1);
  8480. GGML_ASSERT(nb1 <= nb2);
  8481. GGML_ASSERT(nb2 <= nb3);
  8482. // nb01 >= nb00 - src0 is not transposed
  8483. // compute by src0 rows
  8484. #if defined(GGML_USE_CLBLAST)
  8485. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8486. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8487. // ref: https://github.com/ggerganov/ggml/pull/224
  8488. GGML_ASSERT(ne02 == ne12);
  8489. GGML_ASSERT(ne03 == ne13);
  8490. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8491. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8492. }
  8493. return;
  8494. }
  8495. #endif
  8496. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8497. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8498. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8499. // ref: https://github.com/ggerganov/ggml/pull/224
  8500. GGML_ASSERT(ne02 == ne12);
  8501. GGML_ASSERT(ne03 == ne13);
  8502. if (params->ith != 0) {
  8503. return;
  8504. }
  8505. if (params->type == GGML_TASK_INIT) {
  8506. return;
  8507. }
  8508. if (params->type == GGML_TASK_FINALIZE) {
  8509. return;
  8510. }
  8511. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8512. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8513. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8514. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8515. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8516. if (type != GGML_TYPE_F32) {
  8517. float * const wdata = params->wdata;
  8518. ggml_to_float_t const to_float = type_traits[type].to_float;
  8519. size_t id = 0;
  8520. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8521. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8522. id += ne00;
  8523. }
  8524. assert(id*sizeof(float) <= params->wsize);
  8525. x = wdata;
  8526. }
  8527. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8528. ne11, ne01, ne10,
  8529. 1.0f, y, ne10,
  8530. x, ne00,
  8531. 0.0f, d, ne01);
  8532. }
  8533. }
  8534. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8535. return;
  8536. }
  8537. #endif
  8538. if (params->type == GGML_TASK_INIT) {
  8539. if (src1->type != vec_dot_type) {
  8540. char * wdata = params->wdata;
  8541. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8542. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8543. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8544. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8545. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8546. wdata += row_size;
  8547. }
  8548. }
  8549. }
  8550. }
  8551. return;
  8552. }
  8553. if (params->type == GGML_TASK_FINALIZE) {
  8554. return;
  8555. }
  8556. // parallelize by src0 rows
  8557. const int64_t dr = (ne01 + nth - 1)/nth;
  8558. const int64_t ir10 = dr*ith;
  8559. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8560. // src1 rows
  8561. const int64_t nr1 = ne11*ne12*ne13;
  8562. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8563. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8564. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8565. const int64_t i13 = (ir1/(ne12*ne11));
  8566. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8567. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8568. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8569. const int64_t i03 = (ir0/(ne02));
  8570. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8571. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8572. // GG: this is likely the correct way to broadcast, though need some more thought
  8573. // therefore leaving the comments to remind us for now
  8574. const int64_t i02 = (i12 / (ne12 / ne02));
  8575. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8576. // const int64_t i02 = (ir0 - i03*ne02);
  8577. const int64_t i1 = i11;
  8578. const int64_t i2 = i12;
  8579. const int64_t i3 = i13;
  8580. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8581. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8582. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8583. // the original src1 data pointer, so we should index using the indices directly
  8584. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8585. const char * src1_col = (const char *) wdata +
  8586. (src1_cont || src1->type != vec_dot_type
  8587. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8588. : (i11*nb11 + i12*nb12 + i13*nb13));
  8589. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8590. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8591. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8592. }
  8593. }
  8594. //int64_t t1 = ggml_time_us();
  8595. //static int64_t acc = 0;
  8596. //acc += t1 - t0;
  8597. //if (t1 - t0 > 10) {
  8598. // printf("\n");
  8599. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8600. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8601. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8602. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8603. //}
  8604. }
  8605. // ggml_compute_forward_out_prod
  8606. static void ggml_compute_forward_out_prod_f32(
  8607. const struct ggml_compute_params * params,
  8608. const struct ggml_tensor * src0,
  8609. const struct ggml_tensor * src1,
  8610. struct ggml_tensor * dst) {
  8611. int64_t t0 = ggml_perf_time_us();
  8612. UNUSED(t0);
  8613. GGML_TENSOR_BINARY_OP_LOCALS;
  8614. const int ith = params->ith;
  8615. const int nth = params->nth;
  8616. GGML_ASSERT(ne02 == ne12);
  8617. GGML_ASSERT(ne03 == ne13);
  8618. GGML_ASSERT(ne2 == ne12);
  8619. GGML_ASSERT(ne3 == ne13);
  8620. // we don't support permuted src0 or src1
  8621. GGML_ASSERT(nb00 == sizeof(float));
  8622. // dst cannot be transposed or permuted
  8623. GGML_ASSERT(nb0 == sizeof(float));
  8624. // GGML_ASSERT(nb0 <= nb1);
  8625. // GGML_ASSERT(nb1 <= nb2);
  8626. // GGML_ASSERT(nb2 <= nb3);
  8627. GGML_ASSERT(ne0 == ne00);
  8628. GGML_ASSERT(ne1 == ne10);
  8629. GGML_ASSERT(ne2 == ne02);
  8630. GGML_ASSERT(ne3 == ne03);
  8631. // nb01 >= nb00 - src0 is not transposed
  8632. // compute by src0 rows
  8633. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8634. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8635. if (params->type == GGML_TASK_INIT) {
  8636. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8637. return;
  8638. }
  8639. if (params->type == GGML_TASK_FINALIZE) {
  8640. return;
  8641. }
  8642. // parallelize by last three dimensions
  8643. // total rows in dst
  8644. const int64_t nr = ne1*ne2*ne3;
  8645. // rows per thread
  8646. const int64_t dr = (nr + nth - 1)/nth;
  8647. // row range for this thread
  8648. const int64_t ir0 = dr*ith;
  8649. const int64_t ir1 = MIN(ir0 + dr, nr);
  8650. // dst[:,:,:,:] = 0
  8651. // for i2,i3:
  8652. // for i1:
  8653. // for i01:
  8654. // for i0:
  8655. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8656. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8657. // dst indices
  8658. const int64_t i3 = ir/(ne2*ne1);
  8659. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8660. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8661. const int64_t i02 = i2;
  8662. const int64_t i03 = i3;
  8663. //const int64_t i10 = i1;
  8664. const int64_t i12 = i2;
  8665. const int64_t i13 = i3;
  8666. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8667. const int64_t i11 = i01;
  8668. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8669. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8670. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8671. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8672. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8673. // d[i0] += s0[i0] * s1[i1];
  8674. // }
  8675. }
  8676. }
  8677. //int64_t t1 = ggml_perf_time_us();
  8678. //static int64_t acc = 0;
  8679. //acc += t1 - t0;
  8680. //if (t1 - t0 > 10) {
  8681. // printf("\n");
  8682. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8683. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8684. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8685. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8686. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8687. //}
  8688. }
  8689. static void ggml_compute_forward_out_prod(
  8690. const struct ggml_compute_params * params,
  8691. const struct ggml_tensor * src0,
  8692. const struct ggml_tensor * src1,
  8693. struct ggml_tensor * dst) {
  8694. switch (src0->type) {
  8695. case GGML_TYPE_Q4_0:
  8696. case GGML_TYPE_Q4_1:
  8697. case GGML_TYPE_Q5_0:
  8698. case GGML_TYPE_Q5_1:
  8699. case GGML_TYPE_Q8_0:
  8700. case GGML_TYPE_Q8_1:
  8701. {
  8702. GGML_ASSERT(false); // todo
  8703. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8704. } break;
  8705. case GGML_TYPE_F16:
  8706. {
  8707. GGML_ASSERT(false); // todo
  8708. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8709. } break;
  8710. case GGML_TYPE_F32:
  8711. {
  8712. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8713. } break;
  8714. default:
  8715. {
  8716. GGML_ASSERT(false);
  8717. } break;
  8718. }
  8719. }
  8720. // ggml_compute_forward_scale
  8721. static void ggml_compute_forward_scale_f32(
  8722. const struct ggml_compute_params * params,
  8723. const struct ggml_tensor * src0,
  8724. const struct ggml_tensor * src1,
  8725. struct ggml_tensor * dst) {
  8726. GGML_ASSERT(ggml_is_contiguous(src0));
  8727. GGML_ASSERT(ggml_is_contiguous(dst));
  8728. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8729. GGML_ASSERT(ggml_is_scalar(src1));
  8730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8731. return;
  8732. }
  8733. // scale factor
  8734. const float v = *(float *) src1->data;
  8735. const int ith = params->ith;
  8736. const int nth = params->nth;
  8737. const int nc = src0->ne[0];
  8738. const int nr = ggml_nrows(src0);
  8739. // rows per thread
  8740. const int dr = (nr + nth - 1)/nth;
  8741. // row range for this thread
  8742. const int ir0 = dr*ith;
  8743. const int ir1 = MIN(ir0 + dr, nr);
  8744. const size_t nb01 = src0->nb[1];
  8745. const size_t nb1 = dst->nb[1];
  8746. for (int i1 = ir0; i1 < ir1; i1++) {
  8747. if (dst->data != src0->data) {
  8748. // src0 is same shape as dst => same indices
  8749. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8750. }
  8751. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8752. }
  8753. }
  8754. static void ggml_compute_forward_scale(
  8755. const struct ggml_compute_params * params,
  8756. const struct ggml_tensor * src0,
  8757. const struct ggml_tensor * src1,
  8758. struct ggml_tensor * dst) {
  8759. switch (src0->type) {
  8760. case GGML_TYPE_F32:
  8761. {
  8762. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8763. } break;
  8764. default:
  8765. {
  8766. GGML_ASSERT(false);
  8767. } break;
  8768. }
  8769. }
  8770. // ggml_compute_forward_set
  8771. static void ggml_compute_forward_set_f32(
  8772. const struct ggml_compute_params * params,
  8773. const struct ggml_tensor * src0,
  8774. const struct ggml_tensor * src1,
  8775. struct ggml_tensor * dst) {
  8776. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8777. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8778. // view src0 and dst with these strides and data offset inbytes during set
  8779. // nb0 is implicitely element_size because src0 and dst are contiguous
  8780. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8781. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8782. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8783. size_t offset = ((int32_t *) dst->op_params)[3];
  8784. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8785. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8786. // memcpy needs to be synchronized across threads to avoid race conditions.
  8787. // => do it in INIT phase
  8788. memcpy(
  8789. ((char *) dst->data),
  8790. ((char *) src0->data),
  8791. ggml_nbytes(dst));
  8792. }
  8793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8794. return;
  8795. }
  8796. const int ith = params->ith;
  8797. const int nth = params->nth;
  8798. const int nr = ggml_nrows(src1);
  8799. const int nc = src1->ne[0];
  8800. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8801. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8802. // src0 and dst as viewed during set
  8803. const size_t nb0 = ggml_element_size(src0);
  8804. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8805. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8806. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8807. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8808. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8809. GGML_ASSERT(nb10 == sizeof(float));
  8810. // rows per thread
  8811. const int dr = (nr + nth - 1)/nth;
  8812. // row range for this thread
  8813. const int ir0 = dr*ith;
  8814. const int ir1 = MIN(ir0 + dr, nr);
  8815. for (int ir = ir0; ir < ir1; ++ir) {
  8816. // src0 and dst are viewed with shape of src1 and offset
  8817. // => same indices
  8818. const int i3 = ir/(ne12*ne11);
  8819. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8820. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8821. ggml_vec_cpy_f32(nc,
  8822. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8823. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8824. }
  8825. }
  8826. static void ggml_compute_forward_set(
  8827. const struct ggml_compute_params * params,
  8828. const struct ggml_tensor * src0,
  8829. const struct ggml_tensor * src1,
  8830. struct ggml_tensor * dst) {
  8831. switch (src0->type) {
  8832. case GGML_TYPE_F32:
  8833. {
  8834. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8835. } break;
  8836. case GGML_TYPE_F16:
  8837. case GGML_TYPE_Q4_0:
  8838. case GGML_TYPE_Q4_1:
  8839. case GGML_TYPE_Q5_0:
  8840. case GGML_TYPE_Q5_1:
  8841. case GGML_TYPE_Q8_0:
  8842. case GGML_TYPE_Q8_1:
  8843. case GGML_TYPE_Q2_K:
  8844. case GGML_TYPE_Q3_K:
  8845. case GGML_TYPE_Q4_K:
  8846. case GGML_TYPE_Q5_K:
  8847. case GGML_TYPE_Q6_K:
  8848. default:
  8849. {
  8850. GGML_ASSERT(false);
  8851. } break;
  8852. }
  8853. }
  8854. // ggml_compute_forward_cpy
  8855. static void ggml_compute_forward_cpy(
  8856. const struct ggml_compute_params * params,
  8857. const struct ggml_tensor * src0,
  8858. struct ggml_tensor * dst) {
  8859. ggml_compute_forward_dup(params, src0, dst);
  8860. }
  8861. // ggml_compute_forward_cont
  8862. static void ggml_compute_forward_cont(
  8863. const struct ggml_compute_params * params,
  8864. const struct ggml_tensor * src0,
  8865. struct ggml_tensor * dst) {
  8866. ggml_compute_forward_dup(params, src0, dst);
  8867. }
  8868. // ggml_compute_forward_reshape
  8869. static void ggml_compute_forward_reshape(
  8870. const struct ggml_compute_params * params,
  8871. const struct ggml_tensor * src0,
  8872. struct ggml_tensor * dst) {
  8873. // NOP
  8874. UNUSED(params);
  8875. UNUSED(src0);
  8876. UNUSED(dst);
  8877. }
  8878. // ggml_compute_forward_view
  8879. static void ggml_compute_forward_view(
  8880. const struct ggml_compute_params * params,
  8881. const struct ggml_tensor * src0) {
  8882. // NOP
  8883. UNUSED(params);
  8884. UNUSED(src0);
  8885. }
  8886. // ggml_compute_forward_permute
  8887. static void ggml_compute_forward_permute(
  8888. const struct ggml_compute_params * params,
  8889. const struct ggml_tensor * src0) {
  8890. // NOP
  8891. UNUSED(params);
  8892. UNUSED(src0);
  8893. }
  8894. // ggml_compute_forward_transpose
  8895. static void ggml_compute_forward_transpose(
  8896. const struct ggml_compute_params * params,
  8897. const struct ggml_tensor * src0) {
  8898. // NOP
  8899. UNUSED(params);
  8900. UNUSED(src0);
  8901. }
  8902. // ggml_compute_forward_get_rows
  8903. static void ggml_compute_forward_get_rows_q(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. const struct ggml_tensor * src1,
  8907. struct ggml_tensor * dst) {
  8908. assert(params->ith == 0);
  8909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8910. return;
  8911. }
  8912. const int nc = src0->ne[0];
  8913. const int nr = ggml_nelements(src1);
  8914. const enum ggml_type type = src0->type;
  8915. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8916. assert( dst->ne[0] == nc);
  8917. assert( dst->ne[1] == nr);
  8918. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8919. for (int i = 0; i < nr; ++i) {
  8920. const int r = ((int32_t *) src1->data)[i];
  8921. dequantize_row_q(
  8922. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8923. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8924. }
  8925. }
  8926. static void ggml_compute_forward_get_rows_f16(
  8927. const struct ggml_compute_params * params,
  8928. const struct ggml_tensor * src0,
  8929. const struct ggml_tensor * src1,
  8930. struct ggml_tensor * dst) {
  8931. assert(params->ith == 0);
  8932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8933. return;
  8934. }
  8935. const int nc = src0->ne[0];
  8936. const int nr = ggml_nelements(src1);
  8937. assert( dst->ne[0] == nc);
  8938. assert( dst->ne[1] == nr);
  8939. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8940. for (int i = 0; i < nr; ++i) {
  8941. const int r = ((int32_t *) src1->data)[i];
  8942. for (int j = 0; j < nc; ++j) {
  8943. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8944. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8945. }
  8946. }
  8947. }
  8948. static void ggml_compute_forward_get_rows_f32(
  8949. const struct ggml_compute_params * params,
  8950. const struct ggml_tensor * src0,
  8951. const struct ggml_tensor * src1,
  8952. struct ggml_tensor * dst) {
  8953. assert(params->ith == 0);
  8954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8955. return;
  8956. }
  8957. const int nc = src0->ne[0];
  8958. const int nr = ggml_nelements(src1);
  8959. assert( dst->ne[0] == nc);
  8960. assert( dst->ne[1] == nr);
  8961. assert(src0->nb[0] == sizeof(float));
  8962. for (int i = 0; i < nr; ++i) {
  8963. const int r = ((int32_t *) src1->data)[i];
  8964. ggml_vec_cpy_f32(nc,
  8965. (float *) ((char *) dst->data + i*dst->nb[1]),
  8966. (float *) ((char *) src0->data + r*src0->nb[1]));
  8967. }
  8968. }
  8969. static void ggml_compute_forward_get_rows(
  8970. const struct ggml_compute_params * params,
  8971. const struct ggml_tensor * src0,
  8972. const struct ggml_tensor * src1,
  8973. struct ggml_tensor * dst) {
  8974. switch (src0->type) {
  8975. case GGML_TYPE_Q4_0:
  8976. case GGML_TYPE_Q4_1:
  8977. case GGML_TYPE_Q5_0:
  8978. case GGML_TYPE_Q5_1:
  8979. case GGML_TYPE_Q8_0:
  8980. case GGML_TYPE_Q8_1:
  8981. case GGML_TYPE_Q2_K:
  8982. case GGML_TYPE_Q3_K:
  8983. case GGML_TYPE_Q4_K:
  8984. case GGML_TYPE_Q5_K:
  8985. case GGML_TYPE_Q6_K:
  8986. {
  8987. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8988. } break;
  8989. case GGML_TYPE_F16:
  8990. {
  8991. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8992. } break;
  8993. case GGML_TYPE_F32:
  8994. {
  8995. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8996. } break;
  8997. default:
  8998. {
  8999. GGML_ASSERT(false);
  9000. } break;
  9001. }
  9002. //static bool first = true;
  9003. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9004. //if (first) {
  9005. // first = false;
  9006. //} else {
  9007. // for (int k = 0; k < dst->ne[1]; ++k) {
  9008. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9009. // for (int i = 0; i < 16; ++i) {
  9010. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9011. // }
  9012. // printf("\n");
  9013. // }
  9014. // printf("\n");
  9015. // }
  9016. // printf("\n");
  9017. // exit(0);
  9018. //}
  9019. }
  9020. // ggml_compute_forward_get_rows_back
  9021. static void ggml_compute_forward_get_rows_back_f32_f16(
  9022. const struct ggml_compute_params * params,
  9023. const struct ggml_tensor * src0,
  9024. const struct ggml_tensor * src1,
  9025. const struct ggml_tensor * opt0,
  9026. struct ggml_tensor * dst) {
  9027. GGML_ASSERT(params->ith == 0);
  9028. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9029. GGML_ASSERT(ggml_is_contiguous(opt0));
  9030. GGML_ASSERT(ggml_is_contiguous(dst));
  9031. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9032. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9033. return;
  9034. }
  9035. const int nc = src0->ne[0];
  9036. const int nr = ggml_nelements(src1);
  9037. GGML_ASSERT( dst->ne[0] == nc);
  9038. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9039. for (int i = 0; i < nr; ++i) {
  9040. const int r = ((int32_t *) src1->data)[i];
  9041. for (int j = 0; j < nc; ++j) {
  9042. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9043. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9044. }
  9045. }
  9046. }
  9047. static void ggml_compute_forward_get_rows_back_f32(
  9048. const struct ggml_compute_params * params,
  9049. const struct ggml_tensor * src0,
  9050. const struct ggml_tensor * src1,
  9051. const struct ggml_tensor * opt0,
  9052. struct ggml_tensor * dst) {
  9053. GGML_ASSERT(params->ith == 0);
  9054. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9055. GGML_ASSERT(ggml_is_contiguous(opt0));
  9056. GGML_ASSERT(ggml_is_contiguous(dst));
  9057. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9058. if (params->type == GGML_TASK_INIT) {
  9059. memset(dst->data, 0, ggml_nbytes(dst));
  9060. }
  9061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9062. return;
  9063. }
  9064. const int nc = src0->ne[0];
  9065. const int nr = ggml_nelements(src1);
  9066. GGML_ASSERT( dst->ne[0] == nc);
  9067. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9068. for (int i = 0; i < nr; ++i) {
  9069. const int r = ((int32_t *) src1->data)[i];
  9070. ggml_vec_add_f32(nc,
  9071. (float *) ((char *) dst->data + r*dst->nb[1]),
  9072. (float *) ((char *) dst->data + r*dst->nb[1]),
  9073. (float *) ((char *) src0->data + i*src0->nb[1]));
  9074. }
  9075. }
  9076. static void ggml_compute_forward_get_rows_back(
  9077. const struct ggml_compute_params * params,
  9078. const struct ggml_tensor * src0,
  9079. const struct ggml_tensor * src1,
  9080. const struct ggml_tensor * opt0,
  9081. struct ggml_tensor * dst) {
  9082. switch (src0->type) {
  9083. case GGML_TYPE_F16:
  9084. {
  9085. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9086. } break;
  9087. case GGML_TYPE_F32:
  9088. {
  9089. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9090. } break;
  9091. default:
  9092. {
  9093. GGML_ASSERT(false);
  9094. } break;
  9095. }
  9096. //static bool first = true;
  9097. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9098. //if (first) {
  9099. // first = false;
  9100. //} else {
  9101. // for (int k = 0; k < dst->ne[1]; ++k) {
  9102. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9103. // for (int i = 0; i < 16; ++i) {
  9104. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9105. // }
  9106. // printf("\n");
  9107. // }
  9108. // printf("\n");
  9109. // }
  9110. // printf("\n");
  9111. // exit(0);
  9112. //}
  9113. }
  9114. // ggml_compute_forward_diag
  9115. static void ggml_compute_forward_diag_f32(
  9116. const struct ggml_compute_params * params,
  9117. const struct ggml_tensor * src0,
  9118. struct ggml_tensor * dst) {
  9119. GGML_ASSERT(params->ith == 0);
  9120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9121. return;
  9122. }
  9123. // TODO: handle transposed/permuted matrices
  9124. GGML_TENSOR_UNARY_OP_LOCALS;
  9125. GGML_ASSERT(ne00 == ne0);
  9126. GGML_ASSERT(ne00 == ne1);
  9127. GGML_ASSERT(ne01 == 1);
  9128. GGML_ASSERT(ne02 == ne2);
  9129. GGML_ASSERT(ne03 == ne3);
  9130. GGML_ASSERT(nb00 == sizeof(float));
  9131. GGML_ASSERT(nb0 == sizeof(float));
  9132. for (int i3 = 0; i3 < ne3; i3++) {
  9133. for (int i2 = 0; i2 < ne2; i2++) {
  9134. for (int i1 = 0; i1 < ne1; i1++) {
  9135. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9136. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9137. for (int i0 = 0; i0 < i1; i0++) {
  9138. d[i0] = 0;
  9139. }
  9140. d[i1] = s[i1];
  9141. for (int i0 = i1+1; i0 < ne0; i0++) {
  9142. d[i0] = 0;
  9143. }
  9144. }
  9145. }
  9146. }
  9147. }
  9148. static void ggml_compute_forward_diag(
  9149. const struct ggml_compute_params * params,
  9150. const struct ggml_tensor * src0,
  9151. struct ggml_tensor * dst) {
  9152. switch (src0->type) {
  9153. case GGML_TYPE_F32:
  9154. {
  9155. ggml_compute_forward_diag_f32(params, src0, dst);
  9156. } break;
  9157. default:
  9158. {
  9159. GGML_ASSERT(false);
  9160. } break;
  9161. }
  9162. }
  9163. // ggml_compute_forward_diag_mask_inf
  9164. static void ggml_compute_forward_diag_mask_f32(
  9165. const struct ggml_compute_params * params,
  9166. const struct ggml_tensor * src0,
  9167. struct ggml_tensor * dst,
  9168. const float value) {
  9169. const int ith = params->ith;
  9170. const int nth = params->nth;
  9171. const int n_past = ((int32_t *) dst->op_params)[0];
  9172. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9173. GGML_ASSERT(n_past >= 0);
  9174. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9175. // memcpy needs to be synchronized across threads to avoid race conditions.
  9176. // => do it in INIT phase
  9177. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9178. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9179. memcpy(
  9180. ((char *) dst->data),
  9181. ((char *) src0->data),
  9182. ggml_nbytes(dst));
  9183. }
  9184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9185. return;
  9186. }
  9187. // TODO: handle transposed/permuted matrices
  9188. const int n = ggml_nrows(src0);
  9189. const int nc = src0->ne[0];
  9190. const int nr = src0->ne[1];
  9191. const int nz = n/nr;
  9192. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9193. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9194. for (int k = 0; k < nz; k++) {
  9195. for (int j = ith; j < nr; j += nth) {
  9196. for (int i = n_past; i < nc; i++) {
  9197. if (i > n_past + j) {
  9198. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9199. }
  9200. }
  9201. }
  9202. }
  9203. }
  9204. static void ggml_compute_forward_diag_mask_inf(
  9205. const struct ggml_compute_params * params,
  9206. const struct ggml_tensor * src0,
  9207. struct ggml_tensor * dst) {
  9208. switch (src0->type) {
  9209. case GGML_TYPE_F32:
  9210. {
  9211. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9212. } break;
  9213. default:
  9214. {
  9215. GGML_ASSERT(false);
  9216. } break;
  9217. }
  9218. }
  9219. static void ggml_compute_forward_diag_mask_zero(
  9220. const struct ggml_compute_params * params,
  9221. const struct ggml_tensor * src0,
  9222. struct ggml_tensor * dst) {
  9223. switch (src0->type) {
  9224. case GGML_TYPE_F32:
  9225. {
  9226. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9227. } break;
  9228. default:
  9229. {
  9230. GGML_ASSERT(false);
  9231. } break;
  9232. }
  9233. }
  9234. // ggml_compute_forward_soft_max
  9235. static void ggml_compute_forward_soft_max_f32(
  9236. const struct ggml_compute_params * params,
  9237. const struct ggml_tensor * src0,
  9238. struct ggml_tensor * dst) {
  9239. GGML_ASSERT(ggml_is_contiguous(src0));
  9240. GGML_ASSERT(ggml_is_contiguous(dst));
  9241. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9243. return;
  9244. }
  9245. // TODO: handle transposed/permuted matrices
  9246. const int ith = params->ith;
  9247. const int nth = params->nth;
  9248. const int nc = src0->ne[0];
  9249. const int nr = ggml_nrows(src0);
  9250. // rows per thread
  9251. const int dr = (nr + nth - 1)/nth;
  9252. // row range for this thread
  9253. const int ir0 = dr*ith;
  9254. const int ir1 = MIN(ir0 + dr, nr);
  9255. for (int i1 = ir0; i1 < ir1; i1++) {
  9256. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9257. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9258. #ifndef NDEBUG
  9259. for (int i = 0; i < nc; ++i) {
  9260. //printf("p[%d] = %f\n", i, p[i]);
  9261. assert(!isnan(sp[i]));
  9262. }
  9263. #endif
  9264. float max = -INFINITY;
  9265. ggml_vec_max_f32(nc, &max, sp);
  9266. ggml_float sum = 0.0;
  9267. uint16_t scvt;
  9268. for (int i = 0; i < nc; i++) {
  9269. if (sp[i] == -INFINITY) {
  9270. dp[i] = 0.0f;
  9271. } else {
  9272. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9273. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9274. memcpy(&scvt, &s, sizeof(scvt));
  9275. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9276. sum += (ggml_float)val;
  9277. dp[i] = val;
  9278. }
  9279. }
  9280. assert(sum > 0.0);
  9281. sum = 1.0/sum;
  9282. ggml_vec_scale_f32(nc, dp, sum);
  9283. #ifndef NDEBUG
  9284. for (int i = 0; i < nc; ++i) {
  9285. assert(!isnan(dp[i]));
  9286. assert(!isinf(dp[i]));
  9287. }
  9288. #endif
  9289. }
  9290. }
  9291. static void ggml_compute_forward_soft_max(
  9292. const struct ggml_compute_params * params,
  9293. const struct ggml_tensor * src0,
  9294. struct ggml_tensor * dst) {
  9295. switch (src0->type) {
  9296. case GGML_TYPE_F32:
  9297. {
  9298. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9299. } break;
  9300. default:
  9301. {
  9302. GGML_ASSERT(false);
  9303. } break;
  9304. }
  9305. }
  9306. // ggml_compute_forward_soft_max_back
  9307. static void ggml_compute_forward_soft_max_back_f32(
  9308. const struct ggml_compute_params * params,
  9309. const struct ggml_tensor * src0,
  9310. const struct ggml_tensor * src1,
  9311. struct ggml_tensor * dst) {
  9312. GGML_ASSERT(ggml_is_contiguous(src0));
  9313. GGML_ASSERT(ggml_is_contiguous(src1));
  9314. GGML_ASSERT(ggml_is_contiguous(dst));
  9315. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9316. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9318. return;
  9319. }
  9320. // TODO: handle transposed/permuted matrices
  9321. const int ith = params->ith;
  9322. const int nth = params->nth;
  9323. const int nc = src0->ne[0];
  9324. const int nr = ggml_nrows(src0);
  9325. // rows per thread
  9326. const int dr = (nr + nth - 1)/nth;
  9327. // row range for this thread
  9328. const int ir0 = dr*ith;
  9329. const int ir1 = MIN(ir0 + dr, nr);
  9330. for (int i1 = ir0; i1 < ir1; i1++) {
  9331. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9332. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9333. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9334. #ifndef NDEBUG
  9335. for (int i = 0; i < nc; ++i) {
  9336. //printf("p[%d] = %f\n", i, p[i]);
  9337. assert(!isnan(dy[i]));
  9338. assert(!isnan(y[i]));
  9339. }
  9340. #endif
  9341. // Jii = yi - yi*yi
  9342. // Jij = -yi*yj
  9343. // J = diag(y)-y.T*y
  9344. // dx = J * dy
  9345. // dxk = sum_i(Jki * dyi)
  9346. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9347. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9348. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9349. // dxk = -yk * dot(y, dy) + yk*dyk
  9350. // dxk = yk * (- dot(y, dy) + dyk)
  9351. // dxk = yk * (dyk - dot(y, dy))
  9352. //
  9353. // post-order:
  9354. // dot_y_dy := dot(y, dy)
  9355. // dx := dy
  9356. // dx := dx - dot_y_dy
  9357. // dx := dx * y
  9358. // linear runtime, no additional memory
  9359. float dot_y_dy = 0;
  9360. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9361. ggml_vec_cpy_f32 (nc, dx, dy);
  9362. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9363. ggml_vec_mul_f32 (nc, dx, dx, y);
  9364. #ifndef NDEBUG
  9365. for (int i = 0; i < nc; ++i) {
  9366. assert(!isnan(dx[i]));
  9367. assert(!isinf(dx[i]));
  9368. }
  9369. #endif
  9370. }
  9371. }
  9372. static void ggml_compute_forward_soft_max_back(
  9373. const struct ggml_compute_params * params,
  9374. const struct ggml_tensor * src0,
  9375. const struct ggml_tensor * src1,
  9376. struct ggml_tensor * dst) {
  9377. switch (src0->type) {
  9378. case GGML_TYPE_F32:
  9379. {
  9380. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9381. } break;
  9382. default:
  9383. {
  9384. GGML_ASSERT(false);
  9385. } break;
  9386. }
  9387. }
  9388. // ggml_compute_forward_alibi
  9389. static void ggml_compute_forward_alibi_f32(
  9390. const struct ggml_compute_params * params,
  9391. const struct ggml_tensor * src0,
  9392. struct ggml_tensor * dst) {
  9393. assert(params->ith == 0);
  9394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9395. return;
  9396. }
  9397. const int n_past = ((int32_t *) dst->op_params)[0];
  9398. const int n_head = ((int32_t *) dst->op_params)[1];
  9399. float max_bias;
  9400. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9401. assert(n_past >= 0);
  9402. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9403. const int ne1 = src0->ne[1]; // seq_len_without_past
  9404. const int ne2 = src0->ne[2]; // n_head -> this is k
  9405. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9406. const int n = ggml_nrows(src0);
  9407. const int ne2_ne3 = n/ne1; // ne2*ne3
  9408. const int nb0 = src0->nb[0];
  9409. const int nb1 = src0->nb[1];
  9410. const int nb2 = src0->nb[2];
  9411. //const int nb3 = src0->nb[3];
  9412. GGML_ASSERT(nb0 == sizeof(float));
  9413. GGML_ASSERT(ne1 + n_past == ne0);
  9414. GGML_ASSERT(n_head == ne2);
  9415. // add alibi to src0 (KQ_scaled)
  9416. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9417. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9418. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9419. for (int i = 0; i < ne0; i++) {
  9420. for (int j = 0; j < ne1; j++) {
  9421. for (int k = 0; k < ne2_ne3; k++) {
  9422. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9423. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9424. // TODO: k*nb2 or k*nb3
  9425. float m_k;
  9426. if (k < n_heads_log2_floor) {
  9427. m_k = powf(m0, k + 1);
  9428. } else {
  9429. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9430. }
  9431. pdst[0] = i * m_k + src[0];
  9432. }
  9433. }
  9434. }
  9435. }
  9436. static void ggml_compute_forward_alibi_f16(
  9437. const struct ggml_compute_params * params,
  9438. const struct ggml_tensor * src0,
  9439. struct ggml_tensor * dst) {
  9440. assert(params->ith == 0);
  9441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9442. return;
  9443. }
  9444. const int n_past = ((int32_t *) dst->op_params)[0];
  9445. const int n_head = ((int32_t *) dst->op_params)[1];
  9446. float max_bias;
  9447. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9448. assert(n_past >= 0);
  9449. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9450. const int ne1 = src0->ne[1]; // seq_len_without_past
  9451. const int ne2 = src0->ne[2]; // n_head -> this is k
  9452. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9453. const int n = ggml_nrows(src0);
  9454. const int ne2_ne3 = n/ne1; // ne2*ne3
  9455. const int nb0 = src0->nb[0];
  9456. const int nb1 = src0->nb[1];
  9457. const int nb2 = src0->nb[2];
  9458. //const int nb3 = src0->nb[3];
  9459. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9460. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9461. GGML_ASSERT(n_head == ne2);
  9462. // add alibi to src0 (KQ_scaled)
  9463. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9464. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9465. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9466. for (int i = 0; i < ne0; i++) {
  9467. for (int j = 0; j < ne1; j++) {
  9468. for (int k = 0; k < ne2_ne3; k++) {
  9469. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9470. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9471. // TODO: k*nb2 or k*nb3
  9472. float m_k;
  9473. if (k < n_heads_log2_floor) {
  9474. m_k = powf(m0, k + 1);
  9475. } else {
  9476. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9477. }
  9478. // we return F32
  9479. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9480. }
  9481. }
  9482. }
  9483. }
  9484. static void ggml_compute_forward_alibi(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * src0,
  9487. struct ggml_tensor * dst) {
  9488. switch (src0->type) {
  9489. case GGML_TYPE_F16:
  9490. {
  9491. ggml_compute_forward_alibi_f16(params, src0, dst);
  9492. } break;
  9493. case GGML_TYPE_F32:
  9494. {
  9495. ggml_compute_forward_alibi_f32(params, src0, dst);
  9496. } break;
  9497. case GGML_TYPE_Q4_0:
  9498. case GGML_TYPE_Q4_1:
  9499. case GGML_TYPE_Q5_0:
  9500. case GGML_TYPE_Q5_1:
  9501. case GGML_TYPE_Q8_0:
  9502. case GGML_TYPE_Q8_1:
  9503. case GGML_TYPE_Q2_K:
  9504. case GGML_TYPE_Q3_K:
  9505. case GGML_TYPE_Q4_K:
  9506. case GGML_TYPE_Q5_K:
  9507. case GGML_TYPE_Q6_K:
  9508. case GGML_TYPE_Q8_K:
  9509. case GGML_TYPE_I8:
  9510. case GGML_TYPE_I16:
  9511. case GGML_TYPE_I32:
  9512. case GGML_TYPE_COUNT:
  9513. {
  9514. GGML_ASSERT(false);
  9515. } break;
  9516. }
  9517. }
  9518. // ggml_compute_forward_clamp
  9519. static void ggml_compute_forward_clamp_f32(
  9520. const struct ggml_compute_params * params,
  9521. const struct ggml_tensor * src0,
  9522. struct ggml_tensor * dst) {
  9523. assert(params->ith == 0);
  9524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9525. return;
  9526. }
  9527. float min;
  9528. float max;
  9529. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9530. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9531. const int ith = params->ith;
  9532. const int nth = params->nth;
  9533. const int n = ggml_nrows(src0);
  9534. const int nc = src0->ne[0];
  9535. const size_t nb00 = src0->nb[0];
  9536. const size_t nb01 = src0->nb[1];
  9537. const size_t nb0 = dst->nb[0];
  9538. const size_t nb1 = dst->nb[1];
  9539. GGML_ASSERT( nb0 == sizeof(float));
  9540. GGML_ASSERT(nb00 == sizeof(float));
  9541. for (int j = ith; j < n; j += nth) {
  9542. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9543. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9544. for (int i = 0; i < nc; i++) {
  9545. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9546. }
  9547. }
  9548. }
  9549. static void ggml_compute_forward_clamp(
  9550. const struct ggml_compute_params * params,
  9551. const struct ggml_tensor * src0,
  9552. struct ggml_tensor * dst) {
  9553. switch (src0->type) {
  9554. case GGML_TYPE_F32:
  9555. {
  9556. ggml_compute_forward_clamp_f32(params, src0, dst);
  9557. } break;
  9558. case GGML_TYPE_F16:
  9559. case GGML_TYPE_Q4_0:
  9560. case GGML_TYPE_Q4_1:
  9561. case GGML_TYPE_Q5_0:
  9562. case GGML_TYPE_Q5_1:
  9563. case GGML_TYPE_Q8_0:
  9564. case GGML_TYPE_Q8_1:
  9565. case GGML_TYPE_Q2_K:
  9566. case GGML_TYPE_Q3_K:
  9567. case GGML_TYPE_Q4_K:
  9568. case GGML_TYPE_Q5_K:
  9569. case GGML_TYPE_Q6_K:
  9570. case GGML_TYPE_Q8_K:
  9571. case GGML_TYPE_I8:
  9572. case GGML_TYPE_I16:
  9573. case GGML_TYPE_I32:
  9574. case GGML_TYPE_COUNT:
  9575. {
  9576. GGML_ASSERT(false);
  9577. } break;
  9578. }
  9579. }
  9580. // ggml_compute_forward_rope
  9581. static void ggml_compute_forward_rope_f32(
  9582. const struct ggml_compute_params * params,
  9583. const struct ggml_tensor * src0,
  9584. struct ggml_tensor * dst) {
  9585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9586. return;
  9587. }
  9588. float freq_base;
  9589. float freq_scale;
  9590. const int n_past = ((int32_t *) dst->op_params)[0];
  9591. const int n_dims = ((int32_t *) dst->op_params)[1];
  9592. const int mode = ((int32_t *) dst->op_params)[2];
  9593. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9594. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9595. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9596. assert(n_past >= 0);
  9597. GGML_TENSOR_UNARY_OP_LOCALS;
  9598. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9599. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9600. GGML_ASSERT(nb00 == sizeof(float));
  9601. const int ith = params->ith;
  9602. const int nth = params->nth;
  9603. const int nr = ggml_nrows(dst);
  9604. GGML_ASSERT(n_dims <= ne0);
  9605. GGML_ASSERT(n_dims % 2 == 0);
  9606. // rows per thread
  9607. const int dr = (nr + nth - 1)/nth;
  9608. // row range for this thread
  9609. const int ir0 = dr*ith;
  9610. const int ir1 = MIN(ir0 + dr, nr);
  9611. // row index used to determine which thread to use
  9612. int ir = 0;
  9613. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9614. const bool is_neox = mode & 2;
  9615. const bool is_glm = mode & 4;
  9616. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9617. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9618. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9619. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9620. if (ir++ < ir0) continue;
  9621. if (ir > ir1) break;
  9622. float theta = freq_scale * (float)p;
  9623. if (is_glm) {
  9624. theta = MIN(p, n_ctx - 2);
  9625. float block_theta = MAX(p - (n_ctx - 2), 0);
  9626. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9627. const float cos_theta = cosf(theta);
  9628. const float sin_theta = sinf(theta);
  9629. const float cos_block_theta = cosf(block_theta);
  9630. const float sin_block_theta = sinf(block_theta);
  9631. theta *= theta_scale;
  9632. block_theta *= theta_scale;
  9633. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9634. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9635. const float x0 = src[0];
  9636. const float x1 = src[n_dims/2];
  9637. const float x2 = src[n_dims];
  9638. const float x3 = src[n_dims/2*3];
  9639. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9640. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9641. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9642. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9643. }
  9644. } else if (!is_neox) {
  9645. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9646. const float cos_theta = cosf(theta);
  9647. const float sin_theta = sinf(theta);
  9648. theta *= theta_scale;
  9649. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9650. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9651. const float x0 = src[0];
  9652. const float x1 = src[1];
  9653. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9654. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9655. }
  9656. } else {
  9657. // TODO: this is probably wrong, but I can't figure it out ..
  9658. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9659. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9660. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9661. const float cos_theta = cosf(theta);
  9662. const float sin_theta = sinf(theta);
  9663. theta *= theta_scale;
  9664. const int64_t i0 = ib*n_dims + ic/2;
  9665. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9666. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9667. const float x0 = src[0];
  9668. const float x1 = src[n_dims/2];
  9669. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9670. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9671. }
  9672. }
  9673. }
  9674. }
  9675. }
  9676. }
  9677. }
  9678. static void ggml_compute_forward_rope_f16(
  9679. const struct ggml_compute_params * params,
  9680. const struct ggml_tensor * src0,
  9681. struct ggml_tensor * dst) {
  9682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9683. return;
  9684. }
  9685. float freq_base;
  9686. float freq_scale;
  9687. const int n_past = ((int32_t *) dst->op_params)[0];
  9688. const int n_dims = ((int32_t *) dst->op_params)[1];
  9689. const int mode = ((int32_t *) dst->op_params)[2];
  9690. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9691. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9692. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9693. assert(n_past >= 0);
  9694. GGML_TENSOR_UNARY_OP_LOCALS;
  9695. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9696. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9697. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9698. const int ith = params->ith;
  9699. const int nth = params->nth;
  9700. const int nr = ggml_nrows(dst);
  9701. GGML_ASSERT(n_dims <= ne0);
  9702. GGML_ASSERT(n_dims % 2 == 0);
  9703. // rows per thread
  9704. const int dr = (nr + nth - 1)/nth;
  9705. // row range for this thread
  9706. const int ir0 = dr*ith;
  9707. const int ir1 = MIN(ir0 + dr, nr);
  9708. // row index used to determine which thread to use
  9709. int ir = 0;
  9710. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9711. const bool is_neox = mode & 2;
  9712. const bool is_glm = mode & 4;
  9713. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9714. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9715. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9716. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9717. if (ir++ < ir0) continue;
  9718. if (ir > ir1) break;
  9719. float theta = freq_scale * (float)p;
  9720. if (is_glm) {
  9721. theta = MIN(p, n_ctx - 2);
  9722. float block_theta = MAX(p - (n_ctx - 2), 0);
  9723. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9724. const float cos_theta = cosf(theta);
  9725. const float sin_theta = sinf(theta);
  9726. const float cos_block_theta = cosf(block_theta);
  9727. const float sin_block_theta = sinf(block_theta);
  9728. theta *= theta_scale;
  9729. block_theta *= theta_scale;
  9730. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9731. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9732. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9733. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9734. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9735. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9736. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9737. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9738. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9739. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9740. }
  9741. } if (!is_neox) {
  9742. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9743. const float cos_theta = cosf(theta);
  9744. const float sin_theta = sinf(theta);
  9745. theta *= theta_scale;
  9746. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9747. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9748. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9749. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9750. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9751. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9752. }
  9753. } else {
  9754. // TODO: this is probably wrong, but I can't figure it out ..
  9755. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9756. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9757. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9758. const float cos_theta = cosf(theta);
  9759. const float sin_theta = sinf(theta);
  9760. theta *= theta_scale;
  9761. const int64_t i0 = ib*n_dims + ic/2;
  9762. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9763. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9764. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9765. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9766. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9767. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9768. }
  9769. }
  9770. }
  9771. }
  9772. }
  9773. }
  9774. }
  9775. static void ggml_compute_forward_rope(
  9776. const struct ggml_compute_params * params,
  9777. const struct ggml_tensor * src0,
  9778. struct ggml_tensor * dst) {
  9779. switch (src0->type) {
  9780. case GGML_TYPE_F16:
  9781. {
  9782. ggml_compute_forward_rope_f16(params, src0, dst);
  9783. } break;
  9784. case GGML_TYPE_F32:
  9785. {
  9786. ggml_compute_forward_rope_f32(params, src0, dst);
  9787. } break;
  9788. default:
  9789. {
  9790. GGML_ASSERT(false);
  9791. } break;
  9792. }
  9793. }
  9794. // ggml_compute_forward_rope_back
  9795. static void ggml_compute_forward_rope_back_f32(
  9796. const struct ggml_compute_params * params,
  9797. const struct ggml_tensor * src0,
  9798. struct ggml_tensor * dst) {
  9799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9800. return;
  9801. }
  9802. // y = rope(x, src1)
  9803. // dx = rope_back(dy, src1)
  9804. // src0 is dy, src1 contains options
  9805. const int n_past = ((int32_t *) dst->op_params)[0];
  9806. const int n_dims = ((int32_t *) dst->op_params)[1];
  9807. const int mode = ((int32_t *) dst->op_params)[2];
  9808. assert(n_past >= 0);
  9809. GGML_TENSOR_UNARY_OP_LOCALS;
  9810. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9811. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9812. assert(nb0 == sizeof(float));
  9813. const int ith = params->ith;
  9814. const int nth = params->nth;
  9815. const int nr = ggml_nrows(dst);
  9816. // rows per thread
  9817. const int dr = (nr + nth - 1)/nth;
  9818. // row range for this thread
  9819. const int ir0 = dr*ith;
  9820. const int ir1 = MIN(ir0 + dr, nr);
  9821. // row index used to determine which thread to use
  9822. int ir = 0;
  9823. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9824. const bool is_neox = mode & 2;
  9825. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9826. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9827. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9828. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9829. if (ir++ < ir0) continue;
  9830. if (ir > ir1) break;
  9831. float theta = (float)p;
  9832. if (!is_neox) {
  9833. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9834. const float cos_theta = cosf(theta);
  9835. const float sin_theta = sinf(theta);
  9836. theta *= theta_scale;
  9837. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9838. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9839. const float dy0 = dy[0];
  9840. const float dy1 = dy[1];
  9841. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9842. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9843. }
  9844. } else {
  9845. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9846. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9847. const float cos_theta = cosf(theta);
  9848. const float sin_theta = sinf(theta);
  9849. theta *= theta_scale;
  9850. const int64_t i0 = ib*n_dims + ic/2;
  9851. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9852. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9853. const float dy0 = dy[0];
  9854. const float dy1 = dy[n_dims/2];
  9855. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9856. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9857. }
  9858. }
  9859. }
  9860. }
  9861. }
  9862. }
  9863. }
  9864. static void ggml_compute_forward_rope_back_f16(
  9865. const struct ggml_compute_params * params,
  9866. const struct ggml_tensor * src0,
  9867. struct ggml_tensor * dst) {
  9868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9869. return;
  9870. }
  9871. // y = rope(x, src1)
  9872. // dx = rope_back(dy, src1)
  9873. // src0 is dy, src1 contains options
  9874. const int n_past = ((int32_t *) dst->op_params)[0];
  9875. const int n_dims = ((int32_t *) dst->op_params)[1];
  9876. const int mode = ((int32_t *) dst->op_params)[2];
  9877. assert(n_past >= 0);
  9878. GGML_TENSOR_UNARY_OP_LOCALS;
  9879. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9880. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9881. assert(nb0 == sizeof(ggml_fp16_t));
  9882. const int ith = params->ith;
  9883. const int nth = params->nth;
  9884. const int nr = ggml_nrows(dst);
  9885. // rows per thread
  9886. const int dr = (nr + nth - 1)/nth;
  9887. // row range for this thread
  9888. const int ir0 = dr*ith;
  9889. const int ir1 = MIN(ir0 + dr, nr);
  9890. // row index used to determine which thread to use
  9891. int ir = 0;
  9892. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9893. const bool is_neox = mode & 2;
  9894. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9895. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9896. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9897. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9898. if (ir++ < ir0) continue;
  9899. if (ir > ir1) break;
  9900. float theta = (float)p;
  9901. if (!is_neox) {
  9902. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9903. const float cos_theta = cosf(theta);
  9904. const float sin_theta = sinf(theta);
  9905. theta *= theta_scale;
  9906. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9907. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9908. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9909. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9910. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9911. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9912. }
  9913. } else {
  9914. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9915. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9916. const float cos_theta = cosf(theta);
  9917. const float sin_theta = sinf(theta);
  9918. theta *= theta_scale;
  9919. const int64_t i0 = ib*n_dims + ic/2;
  9920. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9921. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9922. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9923. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9924. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9925. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9926. }
  9927. }
  9928. }
  9929. }
  9930. }
  9931. }
  9932. }
  9933. static void ggml_compute_forward_rope_back(
  9934. const struct ggml_compute_params * params,
  9935. const struct ggml_tensor * src0,
  9936. struct ggml_tensor * dst) {
  9937. switch (src0->type) {
  9938. case GGML_TYPE_F16:
  9939. {
  9940. ggml_compute_forward_rope_back_f16(params, src0, dst);
  9941. } break;
  9942. case GGML_TYPE_F32:
  9943. {
  9944. ggml_compute_forward_rope_back_f32(params, src0, dst);
  9945. } break;
  9946. default:
  9947. {
  9948. GGML_ASSERT(false);
  9949. } break;
  9950. }
  9951. }
  9952. // ggml_compute_forward_conv_1d
  9953. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  9954. const struct ggml_compute_params * params,
  9955. const struct ggml_tensor * src0,
  9956. const struct ggml_tensor * src1,
  9957. struct ggml_tensor * dst) {
  9958. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9959. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9960. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9961. int64_t t0 = ggml_perf_time_us();
  9962. UNUSED(t0);
  9963. GGML_TENSOR_BINARY_OP_LOCALS;
  9964. const int ith = params->ith;
  9965. const int nth = params->nth;
  9966. const int nk = ne00;
  9967. const int nh = nk/2;
  9968. const int ew0 = ggml_up32(ne01);
  9969. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9970. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9971. GGML_ASSERT(nb10 == sizeof(float));
  9972. if (params->type == GGML_TASK_INIT) {
  9973. // TODO: fix this memset (wsize is overestimated)
  9974. memset(params->wdata, 0, params->wsize);
  9975. // prepare kernel data (src0)
  9976. {
  9977. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9978. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9979. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9980. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9981. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9982. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9983. dst_data[i00*ew0 + i01] = src[i00];
  9984. }
  9985. }
  9986. }
  9987. }
  9988. // prepare source data (src1)
  9989. {
  9990. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9991. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9992. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9993. ggml_fp16_t * dst_data = wdata;
  9994. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9995. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9996. }
  9997. }
  9998. }
  9999. return;
  10000. }
  10001. if (params->type == GGML_TASK_FINALIZE) {
  10002. return;
  10003. }
  10004. // total rows in dst
  10005. const int nr = ne02;
  10006. // rows per thread
  10007. const int dr = (nr + nth - 1)/nth;
  10008. // row range for this thread
  10009. const int ir0 = dr*ith;
  10010. const int ir1 = MIN(ir0 + dr, nr);
  10011. for (int i1 = ir0; i1 < ir1; i1++) {
  10012. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10013. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10014. dst_data[i0] = 0;
  10015. for (int k = -nh; k <= nh; k++) {
  10016. float v = 0.0f;
  10017. ggml_vec_dot_f16(ew0, &v,
  10018. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10019. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10020. dst_data[i0] += v;
  10021. }
  10022. }
  10023. }
  10024. }
  10025. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10026. const struct ggml_compute_params * params,
  10027. const struct ggml_tensor * src0,
  10028. const struct ggml_tensor * src1,
  10029. struct ggml_tensor * dst) {
  10030. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10031. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10032. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10033. int64_t t0 = ggml_perf_time_us();
  10034. UNUSED(t0);
  10035. GGML_TENSOR_BINARY_OP_LOCALS;
  10036. const int ith = params->ith;
  10037. const int nth = params->nth;
  10038. const int nk = ne00;
  10039. const int nh = nk/2;
  10040. const int ew0 = ggml_up32(ne01);
  10041. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10042. GGML_ASSERT(nb00 == sizeof(float));
  10043. GGML_ASSERT(nb10 == sizeof(float));
  10044. if (params->type == GGML_TASK_INIT) {
  10045. // TODO: fix this memset (wsize is overestimated)
  10046. memset(params->wdata, 0, params->wsize);
  10047. // prepare kernel data (src0)
  10048. {
  10049. float * const wdata = (float *) params->wdata + 0;
  10050. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10051. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10052. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10053. float * dst_data = wdata + i02*ew0*ne00;
  10054. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10055. dst_data[i00*ew0 + i01] = src[i00];
  10056. }
  10057. }
  10058. }
  10059. }
  10060. // prepare source data (src1)
  10061. {
  10062. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10063. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10064. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10065. float * dst_data = wdata;
  10066. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10067. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10068. }
  10069. }
  10070. }
  10071. return;
  10072. }
  10073. if (params->type == GGML_TASK_FINALIZE) {
  10074. return;
  10075. }
  10076. // total rows in dst
  10077. const int nr = ne02;
  10078. // rows per thread
  10079. const int dr = (nr + nth - 1)/nth;
  10080. // row range for this thread
  10081. const int ir0 = dr*ith;
  10082. const int ir1 = MIN(ir0 + dr, nr);
  10083. for (int i1 = ir0; i1 < ir1; i1++) {
  10084. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10085. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10086. dst_data[i0] = 0;
  10087. for (int k = -nh; k <= nh; k++) {
  10088. float v = 0.0f;
  10089. ggml_vec_dot_f32(ew0, &v,
  10090. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10091. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10092. dst_data[i0] += v;
  10093. }
  10094. }
  10095. }
  10096. }
  10097. static void ggml_compute_forward_conv_1d_s1_ph(
  10098. const struct ggml_compute_params * params,
  10099. const struct ggml_tensor * src0,
  10100. const struct ggml_tensor * src1,
  10101. struct ggml_tensor * dst) {
  10102. switch (src0->type) {
  10103. case GGML_TYPE_F16:
  10104. {
  10105. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10106. } break;
  10107. case GGML_TYPE_F32:
  10108. {
  10109. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10110. } break;
  10111. default:
  10112. {
  10113. GGML_ASSERT(false);
  10114. } break;
  10115. }
  10116. }
  10117. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10118. const struct ggml_compute_params * params,
  10119. const struct ggml_tensor * src0,
  10120. const struct ggml_tensor * src1,
  10121. struct ggml_tensor * dst) {
  10122. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10123. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10124. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10125. int64_t t0 = ggml_perf_time_us();
  10126. UNUSED(t0);
  10127. GGML_TENSOR_BINARY_OP_LOCALS;
  10128. const int ith = params->ith;
  10129. const int nth = params->nth;
  10130. const int nk = ne00;
  10131. const int nh = nk/2;
  10132. const int ew0 = ggml_up32(ne01);
  10133. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10134. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10135. GGML_ASSERT(nb10 == sizeof(float));
  10136. if (params->type == GGML_TASK_INIT) {
  10137. // TODO: fix this memset (wsize is overestimated)
  10138. memset(params->wdata, 0, params->wsize);
  10139. // prepare kernel data (src0)
  10140. {
  10141. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10142. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10143. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10144. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10145. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10146. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10147. dst_data[i00*ew0 + i01] = src[i00];
  10148. }
  10149. }
  10150. }
  10151. }
  10152. // prepare source data (src1)
  10153. {
  10154. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10155. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10156. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10157. ggml_fp16_t * dst_data = wdata;
  10158. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10159. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10160. }
  10161. }
  10162. }
  10163. return;
  10164. }
  10165. if (params->type == GGML_TASK_FINALIZE) {
  10166. return;
  10167. }
  10168. // total rows in dst
  10169. const int nr = ne02;
  10170. // rows per thread
  10171. const int dr = (nr + nth - 1)/nth;
  10172. // row range for this thread
  10173. const int ir0 = dr*ith;
  10174. const int ir1 = MIN(ir0 + dr, nr);
  10175. for (int i1 = ir0; i1 < ir1; i1++) {
  10176. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10177. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10178. dst_data[i0/2] = 0;
  10179. for (int k = -nh; k <= nh; k++) {
  10180. float v = 0.0f;
  10181. ggml_vec_dot_f16(ew0, &v,
  10182. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10183. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10184. dst_data[i0/2] += v;
  10185. }
  10186. }
  10187. }
  10188. }
  10189. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10190. const struct ggml_compute_params * params,
  10191. const struct ggml_tensor * src0,
  10192. const struct ggml_tensor * src1,
  10193. struct ggml_tensor * dst) {
  10194. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10195. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10196. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10197. int64_t t0 = ggml_perf_time_us();
  10198. UNUSED(t0);
  10199. GGML_TENSOR_BINARY_OP_LOCALS;
  10200. const int ith = params->ith;
  10201. const int nth = params->nth;
  10202. const int nk = ne00;
  10203. const int nh = nk/2;
  10204. const int ew0 = ggml_up32(ne01);
  10205. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10206. GGML_ASSERT(nb00 == sizeof(float));
  10207. GGML_ASSERT(nb10 == sizeof(float));
  10208. if (params->type == GGML_TASK_INIT) {
  10209. // TODO: fix this memset (wsize is overestimated)
  10210. memset(params->wdata, 0, params->wsize);
  10211. // prepare kernel data (src0)
  10212. {
  10213. float * const wdata = (float *) params->wdata + 0;
  10214. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10215. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10216. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10217. float * dst_data = wdata + i02*ew0*ne00;
  10218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10219. dst_data[i00*ew0 + i01] = src[i00];
  10220. }
  10221. }
  10222. }
  10223. }
  10224. // prepare source data (src1)
  10225. {
  10226. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10227. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10228. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10229. float * dst_data = wdata;
  10230. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10231. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10232. }
  10233. }
  10234. }
  10235. return;
  10236. }
  10237. if (params->type == GGML_TASK_FINALIZE) {
  10238. return;
  10239. }
  10240. // total rows in dst
  10241. const int nr = ne02;
  10242. // rows per thread
  10243. const int dr = (nr + nth - 1)/nth;
  10244. // row range for this thread
  10245. const int ir0 = dr*ith;
  10246. const int ir1 = MIN(ir0 + dr, nr);
  10247. for (int i1 = ir0; i1 < ir1; i1++) {
  10248. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10249. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10250. dst_data[i0/2] = 0;
  10251. for (int k = -nh; k <= nh; k++) {
  10252. float v = 0.0f;
  10253. ggml_vec_dot_f32(ew0, &v,
  10254. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10255. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10256. dst_data[i0/2] += v;
  10257. }
  10258. }
  10259. }
  10260. }
  10261. static void ggml_compute_forward_conv_1d_s2_ph(
  10262. const struct ggml_compute_params * params,
  10263. const struct ggml_tensor * src0,
  10264. const struct ggml_tensor * src1,
  10265. struct ggml_tensor * dst) {
  10266. switch (src0->type) {
  10267. case GGML_TYPE_F16:
  10268. {
  10269. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10270. } break;
  10271. case GGML_TYPE_F32:
  10272. {
  10273. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10274. } break;
  10275. default:
  10276. {
  10277. GGML_ASSERT(false);
  10278. } break;
  10279. }
  10280. }
  10281. // ggml_compute_forward_conv_1d
  10282. static void ggml_compute_forward_conv_1d(
  10283. const struct ggml_compute_params * params,
  10284. const struct ggml_tensor * src0,
  10285. const struct ggml_tensor * src1,
  10286. struct ggml_tensor * dst) {
  10287. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10288. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10289. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10290. GGML_ASSERT(d0 == 1); // dilation not supported
  10291. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10292. if (s0 == 1) {
  10293. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10294. } else if (s0 == 2) {
  10295. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10296. } else {
  10297. GGML_ASSERT(false); // only stride 1 and 2 supported
  10298. };
  10299. }
  10300. // ggml_compute_forward_conv_2d
  10301. static void ggml_compute_forward_conv_2d_f16_f32(
  10302. const struct ggml_compute_params * params,
  10303. const struct ggml_tensor * src0,
  10304. const struct ggml_tensor * src1,
  10305. struct ggml_tensor * dst) {
  10306. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10307. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10308. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10309. int64_t t0 = ggml_perf_time_us();
  10310. UNUSED(t0);
  10311. GGML_TENSOR_BINARY_OP_LOCALS;
  10312. const int ith = params->ith;
  10313. const int nth = params->nth;
  10314. const int nk0 = ne00;
  10315. const int nk1 = ne01;
  10316. // size of the convolution row - the kernel size unrolled across all channels
  10317. const int ew0 = nk0*nk1*ne02;
  10318. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10319. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10320. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10321. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10322. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10323. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10324. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10325. GGML_ASSERT(nb10 == sizeof(float));
  10326. if (params->type == GGML_TASK_INIT) {
  10327. memset(params->wdata, 0, params->wsize);
  10328. // prepare source data (src1)
  10329. {
  10330. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10331. for (int i12 = 0; i12 < ne12; i12++) {
  10332. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10333. ggml_fp16_t * dst_data = wdata;
  10334. for (int i1 = 0; i1 < ne1; i1++) {
  10335. for (int i0 = 0; i0 < ne0; i0++) {
  10336. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10337. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10338. const int idx0 = i0*s0 + ik0*d0 - p0;
  10339. const int idx1 = i1*s1 + ik1*d1 - p1;
  10340. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10341. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10342. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10343. }
  10344. }
  10345. }
  10346. }
  10347. }
  10348. }
  10349. }
  10350. return;
  10351. }
  10352. if (params->type == GGML_TASK_FINALIZE) {
  10353. return;
  10354. }
  10355. // total patches in dst
  10356. const int np = ne2;
  10357. // patches per thread
  10358. const int dp = (np + nth - 1)/nth;
  10359. // patch range for this thread
  10360. const int ip0 = dp*ith;
  10361. const int ip1 = MIN(ip0 + dp, np);
  10362. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10363. for (int i3 = 0; i3 < ne3; i3++) {
  10364. for (int i2 = ip0; i2 < ip1; i2++) {
  10365. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10366. for (int i1 = 0; i1 < ne1; ++i1) {
  10367. for (int i0 = 0; i0 < ne0; ++i0) {
  10368. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10369. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10370. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10371. }
  10372. }
  10373. }
  10374. }
  10375. }
  10376. static void ggml_compute_forward_conv_2d(
  10377. const struct ggml_compute_params * params,
  10378. const struct ggml_tensor * src0,
  10379. const struct ggml_tensor * src1,
  10380. struct ggml_tensor * dst) {
  10381. switch (src0->type) {
  10382. case GGML_TYPE_F16:
  10383. {
  10384. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10385. } break;
  10386. case GGML_TYPE_F32:
  10387. {
  10388. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10389. GGML_ASSERT(false);
  10390. } break;
  10391. default:
  10392. {
  10393. GGML_ASSERT(false);
  10394. } break;
  10395. }
  10396. }
  10397. // ggml_compute_forward_pool_1d_sk_p0
  10398. static void ggml_compute_forward_pool_1d_sk_p0(
  10399. const struct ggml_compute_params * params,
  10400. const enum ggml_op_pool op,
  10401. const struct ggml_tensor * src,
  10402. const int k,
  10403. struct ggml_tensor * dst) {
  10404. assert(src->type == GGML_TYPE_F32);
  10405. assert(params->ith == 0);
  10406. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10407. return;
  10408. }
  10409. const char * cdata = (const char *)src->data;
  10410. const char * const data_end = cdata + ggml_nbytes(src);
  10411. float * drow = (float *)dst->data;
  10412. const int64_t rs = dst->ne[0];
  10413. while (cdata < data_end) {
  10414. const float * const srow = (const float *)cdata;
  10415. int j = 0;
  10416. for (int64_t i = 0; i < rs; ++i) {
  10417. switch (op) {
  10418. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10419. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10420. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10421. }
  10422. for (int ki = 0; ki < k; ++ki) {
  10423. switch (op) {
  10424. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10425. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10426. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10427. }
  10428. ++j;
  10429. }
  10430. switch (op) {
  10431. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10432. case GGML_OP_POOL_MAX: break;
  10433. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10434. }
  10435. }
  10436. cdata += src->nb[1];
  10437. drow += rs;
  10438. }
  10439. }
  10440. // ggml_compute_forward_pool_1d
  10441. static void ggml_compute_forward_pool_1d(
  10442. const struct ggml_compute_params * params,
  10443. const struct ggml_tensor * src0,
  10444. struct ggml_tensor * dst) {
  10445. const int32_t* opts = (const int32_t*)dst->op_params;
  10446. enum ggml_op_pool op = opts[0];
  10447. const int k0 = opts[1];
  10448. const int s0 = opts[2];
  10449. const int p0 = opts[3];
  10450. GGML_ASSERT(p0 == 0); // padding not supported
  10451. GGML_ASSERT(k0 == s0); // only s = k supported
  10452. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10453. }
  10454. // ggml_compute_forward_pool_2d_sk_p0
  10455. static void ggml_compute_forward_pool_2d_sk_p0(
  10456. const struct ggml_compute_params * params,
  10457. const enum ggml_op_pool op,
  10458. const struct ggml_tensor * src,
  10459. const int k0,
  10460. const int k1,
  10461. struct ggml_tensor * dst) {
  10462. assert(src->type == GGML_TYPE_F32);
  10463. assert(params->ith == 0);
  10464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10465. return;
  10466. }
  10467. const char * cdata = (const char*)src->data;
  10468. const char * const data_end = cdata + ggml_nbytes(src);
  10469. const int64_t px = dst->ne[0];
  10470. const int64_t py = dst->ne[1];
  10471. const int64_t pa = px * py;
  10472. float * dplane = (float *)dst->data;
  10473. const int ka = k0 * k1;
  10474. while (cdata < data_end) {
  10475. for (int oy = 0; oy < py; ++oy) {
  10476. float * const drow = dplane + oy * px;
  10477. for (int ox = 0; ox < px; ++ox) {
  10478. float * const out = drow + ox;
  10479. switch (op) {
  10480. case GGML_OP_POOL_AVG: *out = 0; break;
  10481. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10482. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10483. }
  10484. const int ix = ox * k0;
  10485. const int iy = oy * k1;
  10486. for (int ky = 0; ky < k1; ++ky) {
  10487. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10488. for (int kx = 0; kx < k0; ++kx) {
  10489. int j = ix + kx;
  10490. switch (op) {
  10491. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10492. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10493. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10494. }
  10495. }
  10496. }
  10497. switch (op) {
  10498. case GGML_OP_POOL_AVG: *out /= ka; break;
  10499. case GGML_OP_POOL_MAX: break;
  10500. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10501. }
  10502. }
  10503. }
  10504. cdata += src->nb[2];
  10505. dplane += pa;
  10506. }
  10507. }
  10508. // ggml_compute_forward_pool_2d
  10509. static void ggml_compute_forward_pool_2d(
  10510. const struct ggml_compute_params * params,
  10511. const struct ggml_tensor * src0,
  10512. struct ggml_tensor * dst) {
  10513. const int32_t * opts = (const int32_t *)dst->op_params;
  10514. enum ggml_op_pool op = opts[0];
  10515. const int k0 = opts[1];
  10516. const int k1 = opts[2];
  10517. const int s0 = opts[3];
  10518. const int s1 = opts[4];
  10519. const int p0 = opts[5];
  10520. const int p1 = opts[6];
  10521. GGML_ASSERT(p0 == 0);
  10522. GGML_ASSERT(p1 == 0); // padding not supported
  10523. GGML_ASSERT(k0 == s0);
  10524. GGML_ASSERT(k1 == s1); // only s = k supported
  10525. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10526. }
  10527. // ggml_compute_forward_flash_attn
  10528. static void ggml_compute_forward_flash_attn_f32(
  10529. const struct ggml_compute_params * params,
  10530. const struct ggml_tensor * q,
  10531. const struct ggml_tensor * k,
  10532. const struct ggml_tensor * v,
  10533. const bool masked,
  10534. struct ggml_tensor * dst) {
  10535. int64_t t0 = ggml_perf_time_us();
  10536. UNUSED(t0);
  10537. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10538. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10539. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10540. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10541. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10542. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10543. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10544. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10545. const int ith = params->ith;
  10546. const int nth = params->nth;
  10547. const int64_t D = neq0;
  10548. const int64_t N = neq1;
  10549. const int64_t P = nek1 - N;
  10550. const int64_t M = P + N;
  10551. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10552. GGML_ASSERT(ne0 == D);
  10553. GGML_ASSERT(ne1 == N);
  10554. GGML_ASSERT(P >= 0);
  10555. GGML_ASSERT(nbq0 == sizeof(float));
  10556. GGML_ASSERT(nbk0 == sizeof(float));
  10557. GGML_ASSERT(nbv0 == sizeof(float));
  10558. GGML_ASSERT(neq0 == D);
  10559. GGML_ASSERT(nek0 == D);
  10560. GGML_ASSERT(nev1 == D);
  10561. GGML_ASSERT(neq1 == N);
  10562. GGML_ASSERT(nek1 == N + P);
  10563. GGML_ASSERT(nev1 == D);
  10564. // dst cannot be transposed or permuted
  10565. GGML_ASSERT(nb0 == sizeof(float));
  10566. GGML_ASSERT(nb0 <= nb1);
  10567. GGML_ASSERT(nb1 <= nb2);
  10568. GGML_ASSERT(nb2 <= nb3);
  10569. if (params->type == GGML_TASK_INIT) {
  10570. return;
  10571. }
  10572. if (params->type == GGML_TASK_FINALIZE) {
  10573. return;
  10574. }
  10575. // parallelize by q rows using ggml_vec_dot_f32
  10576. // total rows in q
  10577. const int nr = neq1*neq2*neq3;
  10578. // rows per thread
  10579. const int dr = (nr + nth - 1)/nth;
  10580. // row range for this thread
  10581. const int ir0 = dr*ith;
  10582. const int ir1 = MIN(ir0 + dr, nr);
  10583. const float scale = 1.0f/sqrtf(D);
  10584. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10585. for (int ir = ir0; ir < ir1; ++ir) {
  10586. // q indices
  10587. const int iq3 = ir/(neq2*neq1);
  10588. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10589. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10590. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10591. for (int i = M; i < Mup; ++i) {
  10592. S[i] = -INFINITY;
  10593. }
  10594. for (int64_t ic = 0; ic < nek1; ++ic) {
  10595. // k indices
  10596. const int ik3 = iq3;
  10597. const int ik2 = iq2;
  10598. const int ik1 = ic;
  10599. // S indices
  10600. const int i1 = ik1;
  10601. ggml_vec_dot_f32(neq0,
  10602. S + i1,
  10603. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10604. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10605. }
  10606. // scale
  10607. ggml_vec_scale_f32(nek1, S, scale);
  10608. if (masked) {
  10609. for (int64_t i = P; i < M; i++) {
  10610. if (i > P + iq1) {
  10611. S[i] = -INFINITY;
  10612. }
  10613. }
  10614. }
  10615. // softmax
  10616. {
  10617. float max = -INFINITY;
  10618. ggml_vec_max_f32(M, &max, S);
  10619. ggml_float sum = 0.0;
  10620. {
  10621. #ifdef GGML_SOFT_MAX_ACCELERATE
  10622. max = -max;
  10623. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10624. vvexpf(S, S, &Mup);
  10625. ggml_vec_sum_f32(Mup, &sum, S);
  10626. #else
  10627. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10628. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10629. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10630. float * SS = S + i;
  10631. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10632. if (SS[j] == -INFINITY) {
  10633. SS[j] = 0.0f;
  10634. } else {
  10635. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10636. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10637. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10638. sump[j] += (ggml_float)val;
  10639. SS[j] = val;
  10640. }
  10641. }
  10642. }
  10643. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10644. sum += sump[i];
  10645. }
  10646. #endif
  10647. }
  10648. assert(sum > 0.0);
  10649. sum = 1.0/sum;
  10650. ggml_vec_scale_f32(M, S, sum);
  10651. #ifndef NDEBUG
  10652. for (int i = 0; i < M; ++i) {
  10653. assert(!isnan(S[i]));
  10654. assert(!isinf(S[i]));
  10655. }
  10656. #endif
  10657. }
  10658. for (int64_t ic = 0; ic < nev1; ++ic) {
  10659. // dst indices
  10660. const int i1 = iq1;
  10661. const int i2 = iq2;
  10662. const int i3 = iq3;
  10663. ggml_vec_dot_f32(nek1,
  10664. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10665. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10666. S);
  10667. }
  10668. }
  10669. }
  10670. static void ggml_compute_forward_flash_attn_f16(
  10671. const struct ggml_compute_params * params,
  10672. const struct ggml_tensor * q,
  10673. const struct ggml_tensor * k,
  10674. const struct ggml_tensor * v,
  10675. const bool masked,
  10676. struct ggml_tensor * dst) {
  10677. int64_t t0 = ggml_perf_time_us();
  10678. UNUSED(t0);
  10679. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10680. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10681. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10682. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10683. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10684. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10685. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10686. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10687. const int ith = params->ith;
  10688. const int nth = params->nth;
  10689. const int64_t D = neq0;
  10690. const int64_t N = neq1;
  10691. const int64_t P = nek1 - N;
  10692. const int64_t M = P + N;
  10693. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10694. GGML_ASSERT(ne0 == D);
  10695. GGML_ASSERT(ne1 == N);
  10696. GGML_ASSERT(P >= 0);
  10697. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10698. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10699. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10700. GGML_ASSERT(neq0 == D);
  10701. GGML_ASSERT(nek0 == D);
  10702. GGML_ASSERT(nev1 == D);
  10703. GGML_ASSERT(neq1 == N);
  10704. GGML_ASSERT(nek1 == N + P);
  10705. GGML_ASSERT(nev1 == D);
  10706. // dst cannot be transposed or permuted
  10707. GGML_ASSERT(nb0 == sizeof(float));
  10708. GGML_ASSERT(nb0 <= nb1);
  10709. GGML_ASSERT(nb1 <= nb2);
  10710. GGML_ASSERT(nb2 <= nb3);
  10711. if (params->type == GGML_TASK_INIT) {
  10712. return;
  10713. }
  10714. if (params->type == GGML_TASK_FINALIZE) {
  10715. return;
  10716. }
  10717. // parallelize by q rows using ggml_vec_dot_f32
  10718. // total rows in q
  10719. const int nr = neq1*neq2*neq3;
  10720. // rows per thread
  10721. const int dr = (nr + nth - 1)/nth;
  10722. // row range for this thread
  10723. const int ir0 = dr*ith;
  10724. const int ir1 = MIN(ir0 + dr, nr);
  10725. const float scale = 1.0f/sqrtf(D);
  10726. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10727. for (int ir = ir0; ir < ir1; ++ir) {
  10728. // q indices
  10729. const int iq3 = ir/(neq2*neq1);
  10730. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10731. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10732. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10733. for (int i = M; i < Mup; ++i) {
  10734. S[i] = -INFINITY;
  10735. }
  10736. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10737. for (int64_t ic = 0; ic < nek1; ++ic) {
  10738. // k indices
  10739. const int ik3 = iq3;
  10740. const int ik2 = iq2;
  10741. const int ik1 = ic;
  10742. // S indices
  10743. const int i1 = ik1;
  10744. ggml_vec_dot_f16(neq0,
  10745. S + i1,
  10746. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10747. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10748. }
  10749. } else {
  10750. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10751. // k indices
  10752. const int ik3 = iq3;
  10753. const int ik2 = iq2;
  10754. const int ik1 = ic;
  10755. // S indices
  10756. const int i1 = ik1;
  10757. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10758. S + i1,
  10759. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10760. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10761. }
  10762. }
  10763. // scale
  10764. ggml_vec_scale_f32(nek1, S, scale);
  10765. if (masked) {
  10766. for (int64_t i = P; i < M; i++) {
  10767. if (i > P + iq1) {
  10768. S[i] = -INFINITY;
  10769. }
  10770. }
  10771. }
  10772. // softmax
  10773. {
  10774. float max = -INFINITY;
  10775. ggml_vec_max_f32(M, &max, S);
  10776. ggml_float sum = 0.0;
  10777. {
  10778. #ifdef GGML_SOFT_MAX_ACCELERATE
  10779. max = -max;
  10780. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10781. vvexpf(S, S, &Mup);
  10782. ggml_vec_sum_f32(Mup, &sum, S);
  10783. #else
  10784. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10785. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10786. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10787. float * SS = S + i;
  10788. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10789. if (SS[j] == -INFINITY) {
  10790. SS[j] = 0.0f;
  10791. } else {
  10792. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10793. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10794. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10795. sump[j] += (ggml_float)val;
  10796. SS[j] = val;
  10797. }
  10798. }
  10799. }
  10800. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10801. sum += sump[i];
  10802. }
  10803. #endif
  10804. }
  10805. assert(sum > 0.0);
  10806. sum = 1.0/sum;
  10807. ggml_vec_scale_f32(M, S, sum);
  10808. #ifndef NDEBUG
  10809. for (int i = 0; i < M; ++i) {
  10810. assert(!isnan(S[i]));
  10811. assert(!isinf(S[i]));
  10812. }
  10813. #endif
  10814. }
  10815. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10816. for (int64_t i = 0; i < M; i++) {
  10817. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10818. }
  10819. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10820. for (int64_t ic = 0; ic < nev1; ++ic) {
  10821. // dst indices
  10822. const int i1 = iq1;
  10823. const int i2 = iq2;
  10824. const int i3 = iq3;
  10825. ggml_vec_dot_f16(nek1,
  10826. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10827. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10828. S16);
  10829. }
  10830. } else {
  10831. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10832. // dst indices
  10833. const int i1 = iq1;
  10834. const int i2 = iq2;
  10835. const int i3 = iq3;
  10836. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10837. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10838. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10839. S16);
  10840. }
  10841. }
  10842. }
  10843. }
  10844. static void ggml_compute_forward_flash_attn(
  10845. const struct ggml_compute_params * params,
  10846. const struct ggml_tensor * q,
  10847. const struct ggml_tensor * k,
  10848. const struct ggml_tensor * v,
  10849. const bool masked,
  10850. struct ggml_tensor * dst) {
  10851. switch (q->type) {
  10852. case GGML_TYPE_F16:
  10853. {
  10854. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10855. } break;
  10856. case GGML_TYPE_F32:
  10857. {
  10858. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10859. } break;
  10860. default:
  10861. {
  10862. GGML_ASSERT(false);
  10863. } break;
  10864. }
  10865. }
  10866. // ggml_compute_forward_flash_ff
  10867. static void ggml_compute_forward_flash_ff_f16(
  10868. const struct ggml_compute_params * params,
  10869. const struct ggml_tensor * a, // F16
  10870. const struct ggml_tensor * b0, // F16 fc_w
  10871. const struct ggml_tensor * b1, // F32 fc_b
  10872. const struct ggml_tensor * c0, // F16 proj_w
  10873. const struct ggml_tensor * c1, // F32 proj_b
  10874. struct ggml_tensor * dst) {
  10875. int64_t t0 = ggml_perf_time_us();
  10876. UNUSED(t0);
  10877. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10878. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10879. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10880. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10881. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10882. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10883. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10884. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10885. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10886. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10887. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10888. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10889. const int ith = params->ith;
  10890. const int nth = params->nth;
  10891. const int64_t D = nea0;
  10892. //const int64_t N = nea1;
  10893. const int64_t M = neb01;
  10894. GGML_ASSERT(ne0 == nea0);
  10895. GGML_ASSERT(ne1 == nea1);
  10896. GGML_ASSERT(ne2 == nea2);
  10897. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10898. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10899. GGML_ASSERT(nbb10 == sizeof(float));
  10900. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10901. GGML_ASSERT(nbc10 == sizeof(float));
  10902. GGML_ASSERT(neb00 == D);
  10903. GGML_ASSERT(neb01 == M);
  10904. GGML_ASSERT(neb10 == M);
  10905. GGML_ASSERT(neb11 == 1);
  10906. GGML_ASSERT(nec00 == M);
  10907. GGML_ASSERT(nec01 == D);
  10908. GGML_ASSERT(nec10 == D);
  10909. GGML_ASSERT(nec11 == 1);
  10910. // dst cannot be transposed or permuted
  10911. GGML_ASSERT(nb0 == sizeof(float));
  10912. GGML_ASSERT(nb0 <= nb1);
  10913. GGML_ASSERT(nb1 <= nb2);
  10914. GGML_ASSERT(nb2 <= nb3);
  10915. if (params->type == GGML_TASK_INIT) {
  10916. return;
  10917. }
  10918. if (params->type == GGML_TASK_FINALIZE) {
  10919. return;
  10920. }
  10921. // parallelize by a rows using ggml_vec_dot_f32
  10922. // total rows in a
  10923. const int nr = nea1*nea2*nea3;
  10924. // rows per thread
  10925. const int dr = (nr + nth - 1)/nth;
  10926. // row range for this thread
  10927. const int ir0 = dr*ith;
  10928. const int ir1 = MIN(ir0 + dr, nr);
  10929. for (int ir = ir0; ir < ir1; ++ir) {
  10930. // a indices
  10931. const int ia3 = ir/(nea2*nea1);
  10932. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10933. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10934. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10935. for (int64_t ic = 0; ic < neb01; ++ic) {
  10936. // b0 indices
  10937. const int ib03 = ia3;
  10938. const int ib02 = ia2;
  10939. const int ib01 = ic;
  10940. // S indices
  10941. const int i1 = ib01;
  10942. ggml_vec_dot_f16(nea0,
  10943. S + i1,
  10944. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10945. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10946. }
  10947. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10948. //ggml_vec_gelu_f32(neb01, S, S);
  10949. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10950. for (int64_t i = 0; i < M; i++) {
  10951. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10952. }
  10953. ggml_vec_gelu_f16(neb01, S16, S16);
  10954. {
  10955. // dst indices
  10956. const int i1 = ia1;
  10957. const int i2 = ia2;
  10958. const int i3 = ia3;
  10959. for (int64_t ic = 0; ic < nec01; ++ic) {
  10960. ggml_vec_dot_f16(neb01,
  10961. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10962. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10963. S16);
  10964. }
  10965. ggml_vec_add_f32(nec01,
  10966. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10967. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10968. (float *) c1->data);
  10969. }
  10970. }
  10971. }
  10972. static void ggml_compute_forward_flash_ff(
  10973. const struct ggml_compute_params * params,
  10974. const struct ggml_tensor * a,
  10975. const struct ggml_tensor * b0,
  10976. const struct ggml_tensor * b1,
  10977. const struct ggml_tensor * c0,
  10978. const struct ggml_tensor * c1,
  10979. struct ggml_tensor * dst) {
  10980. switch (b0->type) {
  10981. case GGML_TYPE_F16:
  10982. {
  10983. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10984. } break;
  10985. case GGML_TYPE_F32:
  10986. {
  10987. GGML_ASSERT(false); // TODO
  10988. } break;
  10989. default:
  10990. {
  10991. GGML_ASSERT(false);
  10992. } break;
  10993. }
  10994. }
  10995. // ggml_compute_forward_flash_attn_back
  10996. static void ggml_compute_forward_flash_attn_back_f32(
  10997. const struct ggml_compute_params * params,
  10998. const struct ggml_tensor * q,
  10999. const struct ggml_tensor * k,
  11000. const struct ggml_tensor * v,
  11001. const struct ggml_tensor * d,
  11002. const bool masked,
  11003. struct ggml_tensor * dst) {
  11004. int64_t t0 = ggml_perf_time_us();
  11005. UNUSED(t0);
  11006. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11007. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11008. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11009. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11010. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11011. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11012. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11013. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11014. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11015. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11016. const int ith = params->ith;
  11017. const int nth = params->nth;
  11018. const int64_t D = neq0;
  11019. const int64_t N = neq1;
  11020. const int64_t P = nek1 - N;
  11021. const int64_t M = P + N;
  11022. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11023. const int mxDM = MAX(D, Mup);
  11024. // GGML_ASSERT(ne0 == D);
  11025. // GGML_ASSERT(ne1 == N);
  11026. GGML_ASSERT(P >= 0);
  11027. GGML_ASSERT(nbq0 == sizeof(float));
  11028. GGML_ASSERT(nbk0 == sizeof(float));
  11029. GGML_ASSERT(nbv0 == sizeof(float));
  11030. GGML_ASSERT(neq0 == D);
  11031. GGML_ASSERT(nek0 == D);
  11032. GGML_ASSERT(nev1 == D);
  11033. GGML_ASSERT(ned0 == D);
  11034. GGML_ASSERT(neq1 == N);
  11035. GGML_ASSERT(nek1 == N + P);
  11036. GGML_ASSERT(nev1 == D);
  11037. GGML_ASSERT(ned1 == N);
  11038. // dst cannot be transposed or permuted
  11039. GGML_ASSERT(nb0 == sizeof(float));
  11040. GGML_ASSERT(nb0 <= nb1);
  11041. GGML_ASSERT(nb1 <= nb2);
  11042. GGML_ASSERT(nb2 <= nb3);
  11043. if (params->type == GGML_TASK_INIT) {
  11044. if (ith == 0) {
  11045. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11046. }
  11047. return;
  11048. }
  11049. if (params->type == GGML_TASK_FINALIZE) {
  11050. return;
  11051. }
  11052. // parallelize by q rows using ggml_vec_dot_f32
  11053. // total rows in q
  11054. const int nr = neq2*neq3;
  11055. // rows per thread
  11056. const int dr = (nr + nth - 1)/nth;
  11057. // row range for this thread
  11058. const int ir0 = dr*ith;
  11059. const int ir1 = MIN(ir0 + dr, nr);
  11060. const float scale = 1.0f/sqrtf(D);
  11061. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11062. for (int ir = ir0; ir < ir1; ++ir) {
  11063. // q indices
  11064. const int iq3 = ir/(neq2);
  11065. const int iq2 = ir - iq3*neq2;
  11066. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11067. // not sure about CACHE_LINE_SIZE_F32..
  11068. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11069. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11070. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11071. for (int i = M; i < Mup; ++i) {
  11072. S[i] = -INFINITY;
  11073. }
  11074. for (int64_t ic = 0; ic < nek1; ++ic) {
  11075. // k indices
  11076. const int ik3 = iq3;
  11077. const int ik2 = iq2;
  11078. const int ik1 = ic;
  11079. // S indices
  11080. const int i1 = ik1;
  11081. ggml_vec_dot_f32(neq0,
  11082. S + i1,
  11083. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11084. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11085. }
  11086. // scale
  11087. ggml_vec_scale_f32(nek1, S, scale);
  11088. if (masked) {
  11089. for (int64_t i = P; i < M; i++) {
  11090. if (i > P + iq1) {
  11091. S[i] = -INFINITY;
  11092. }
  11093. }
  11094. }
  11095. // softmax
  11096. {
  11097. float max = -INFINITY;
  11098. ggml_vec_max_f32(M, &max, S);
  11099. ggml_float sum = 0.0;
  11100. {
  11101. #ifdef GGML_SOFT_MAX_ACCELERATE
  11102. max = -max;
  11103. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11104. vvexpf(SM, SM, &Mup);
  11105. ggml_vec_sum_f32(Mup, &sum, SM);
  11106. #else
  11107. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11108. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11109. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11110. float * SR = S + i;
  11111. float * SW = SM + i;
  11112. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11113. if (SR[j] == -INFINITY) {
  11114. SW[j] = 0.0f;
  11115. } else {
  11116. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11117. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11118. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11119. sump[j] += (ggml_float)val;
  11120. SW[j] = val;
  11121. }
  11122. }
  11123. }
  11124. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11125. sum += sump[i];
  11126. }
  11127. #endif
  11128. }
  11129. assert(sum > 0.0);
  11130. sum = 1.0/sum;
  11131. ggml_vec_scale_f32(M, SM, sum);
  11132. }
  11133. // step-by-step explanation
  11134. {
  11135. // forward-process shape grads from backward process
  11136. // parallel_for iq2,iq3:
  11137. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11138. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11139. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11140. // for iq1:
  11141. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11142. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11143. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11144. // S0 = -Inf [D,1,1,1]
  11145. // ~S1[i] = dot(kcur[:D,i], qcur)
  11146. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11147. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11148. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11149. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11150. // ~S5[i] = dot(vcur[:,i], S4)
  11151. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11152. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11153. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11154. // dst backward-/ grad[dst] = d
  11155. //
  11156. // output gradients with their dependencies:
  11157. //
  11158. // grad[kcur] = grad[S1].T @ qcur
  11159. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11160. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11161. // grad[S4] = grad[S5] @ vcur
  11162. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11163. // grad[qcur] = grad[S1] @ kcur
  11164. // grad[vcur] = grad[S5].T @ S4
  11165. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11166. //
  11167. // in post-order:
  11168. //
  11169. // S1 = qcur @ kcur.T
  11170. // S2 = S1 * scale
  11171. // S3 = diag_mask_inf(S2, P)
  11172. // S4 = softmax(S3)
  11173. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11174. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11175. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11176. // grad[qcur] = grad[S1] @ kcur
  11177. // grad[kcur] = grad[S1].T @ qcur
  11178. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11179. //
  11180. // using less variables (SM=S4):
  11181. //
  11182. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11183. // SM = softmax(S)
  11184. // S = d[:D,iq1,iq2,iq3] @ vcur
  11185. // dot_SM_gradSM = dot(SM, S)
  11186. // S = SM * (S - dot(SM, S))
  11187. // S = diag_mask_zero(S, P) * scale
  11188. //
  11189. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11190. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11191. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11192. }
  11193. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11194. // S = d[:D,iq1,iq2,iq3] @ vcur
  11195. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11196. ggml_vec_set_f32(M, S, 0);
  11197. for (int64_t ic = 0; ic < D; ++ic) {
  11198. // dst indices
  11199. const int i1 = iq1;
  11200. const int i2 = iq2;
  11201. const int i3 = iq3;
  11202. ggml_vec_mad_f32(M,
  11203. S,
  11204. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11205. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11206. }
  11207. // S = SM * (S - dot(SM, S))
  11208. float dot_SM_gradSM = 0;
  11209. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11210. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11211. ggml_vec_mul_f32 (M, S, S, SM);
  11212. // S = diag_mask_zero(S, P) * scale
  11213. if (masked) {
  11214. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11215. // S[i] = 0;
  11216. // }
  11217. for (int64_t i = P; i < M; i++) {
  11218. if (i > P + iq1) {
  11219. S[i] = 0;
  11220. }
  11221. }
  11222. }
  11223. ggml_vec_scale_f32(M, S, scale);
  11224. void * grad_q = (char *) dst->data;
  11225. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11226. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11227. const size_t nbgq1 = nb0*neq0;
  11228. const size_t nbgq2 = nb0*neq0*neq1;
  11229. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11230. const size_t nbgk1 = nb0*nek0;
  11231. const size_t nbgk2 = nb0*nek0*nek1;
  11232. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11233. const size_t nbgv1 = nb0*nev0;
  11234. const size_t nbgv2 = nb0*nev0*nev1;
  11235. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11236. // S shape [M,1]
  11237. // SM shape [M,1]
  11238. // kcur shape [D,M]
  11239. // qcur shape [D,1]
  11240. // vcur shape [M,D]
  11241. //
  11242. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11243. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11244. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11245. //
  11246. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11247. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11248. for (int64_t ic = 0; ic < M; ++ic) {
  11249. // dst indices
  11250. const int i1 = iq1;
  11251. const int i2 = iq2;
  11252. const int i3 = iq3;
  11253. ggml_vec_mad_f32(D,
  11254. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11255. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11256. S[ic]);
  11257. }
  11258. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11259. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11260. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11261. for (int64_t ic = 0; ic < M; ++ic) {
  11262. // dst indices
  11263. const int i1 = iq1;
  11264. const int i2 = iq2;
  11265. const int i3 = iq3;
  11266. // ggml_vec_set_f32(D,
  11267. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11268. // 0);
  11269. ggml_vec_mad_f32(D,
  11270. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11271. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11272. S[ic]);
  11273. }
  11274. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11275. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11276. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11277. for (int64_t ic = 0; ic < D; ++ic) {
  11278. // dst indices
  11279. const int i1 = iq1;
  11280. const int i2 = iq2;
  11281. const int i3 = iq3;
  11282. // ggml_vec_set_f32(M,
  11283. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11284. // 0);
  11285. ggml_vec_mad_f32(M,
  11286. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11287. SM,
  11288. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11289. }
  11290. }
  11291. }
  11292. }
  11293. static void ggml_compute_forward_flash_attn_back(
  11294. const struct ggml_compute_params * params,
  11295. const struct ggml_tensor * q,
  11296. const struct ggml_tensor * k,
  11297. const struct ggml_tensor * v,
  11298. const struct ggml_tensor * d,
  11299. const bool masked,
  11300. struct ggml_tensor * dst) {
  11301. switch (q->type) {
  11302. case GGML_TYPE_F32:
  11303. {
  11304. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11305. } break;
  11306. default:
  11307. {
  11308. GGML_ASSERT(false);
  11309. } break;
  11310. }
  11311. }
  11312. // ggml_compute_forward_win_part
  11313. static void ggml_compute_forward_win_part_f32(
  11314. const struct ggml_compute_params * params,
  11315. const struct ggml_tensor * src0,
  11316. struct ggml_tensor * dst) {
  11317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11318. return;
  11319. }
  11320. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11321. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11322. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11323. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11324. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11325. assert(ne00 == ne0);
  11326. assert(ne3 == nep0*nep1);
  11327. // TODO: optimize / multi-thread
  11328. for (int py = 0; py < nep1; ++py) {
  11329. for (int px = 0; px < nep0; ++px) {
  11330. const int64_t i3 = py*nep0 + px;
  11331. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11332. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11333. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11334. const int64_t i02 = py*w + i2;
  11335. const int64_t i01 = px*w + i1;
  11336. const int64_t i00 = i0;
  11337. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11338. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11339. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11340. ((float *) dst->data)[i] = 0.0f;
  11341. } else {
  11342. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11343. }
  11344. }
  11345. }
  11346. }
  11347. }
  11348. }
  11349. }
  11350. static void ggml_compute_forward_win_part(
  11351. const struct ggml_compute_params * params,
  11352. const struct ggml_tensor * src0,
  11353. struct ggml_tensor * dst) {
  11354. switch (src0->type) {
  11355. case GGML_TYPE_F32:
  11356. {
  11357. ggml_compute_forward_win_part_f32(params, src0, dst);
  11358. } break;
  11359. default:
  11360. {
  11361. GGML_ASSERT(false);
  11362. } break;
  11363. }
  11364. }
  11365. // ggml_compute_forward_win_unpart
  11366. static void ggml_compute_forward_win_unpart_f32(
  11367. const struct ggml_compute_params * params,
  11368. const struct ggml_tensor * src0,
  11369. struct ggml_tensor * dst) {
  11370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11371. return;
  11372. }
  11373. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11374. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11375. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11376. // padding
  11377. const int px = (w - ne1%w)%w;
  11378. //const int py = (w - ne2%w)%w;
  11379. const int npx = (px + ne1)/w;
  11380. //const int npy = (py + ne2)/w;
  11381. assert(ne0 == ne00);
  11382. // TODO: optimize / multi-thread
  11383. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11384. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11385. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11386. const int ip2 = i2/w;
  11387. const int ip1 = i1/w;
  11388. const int64_t i02 = i2%w;
  11389. const int64_t i01 = i1%w;
  11390. const int64_t i00 = i0;
  11391. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11392. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11393. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11394. }
  11395. }
  11396. }
  11397. }
  11398. static void ggml_compute_forward_win_unpart(
  11399. const struct ggml_compute_params * params,
  11400. const struct ggml_tensor * src0,
  11401. struct ggml_tensor * dst) {
  11402. switch (src0->type) {
  11403. case GGML_TYPE_F32:
  11404. {
  11405. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11406. } break;
  11407. default:
  11408. {
  11409. GGML_ASSERT(false);
  11410. } break;
  11411. }
  11412. }
  11413. //gmml_compute_forward_unary
  11414. static void ggml_compute_forward_unary(
  11415. const struct ggml_compute_params * params,
  11416. const struct ggml_tensor * src0,
  11417. struct ggml_tensor * dst) {
  11418. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11419. switch (op) {
  11420. case GGML_UNARY_OP_ABS:
  11421. {
  11422. ggml_compute_forward_abs(params, src0, dst);
  11423. } break;
  11424. case GGML_UNARY_OP_SGN:
  11425. {
  11426. ggml_compute_forward_sgn(params, src0, dst);
  11427. } break;
  11428. case GGML_UNARY_OP_NEG:
  11429. {
  11430. ggml_compute_forward_neg(params, src0, dst);
  11431. } break;
  11432. case GGML_UNARY_OP_STEP:
  11433. {
  11434. ggml_compute_forward_step(params, src0, dst);
  11435. } break;
  11436. case GGML_UNARY_OP_TANH:
  11437. {
  11438. ggml_compute_forward_tanh(params, src0, dst);
  11439. } break;
  11440. case GGML_UNARY_OP_ELU:
  11441. {
  11442. ggml_compute_forward_elu(params, src0, dst);
  11443. } break;
  11444. case GGML_UNARY_OP_RELU:
  11445. {
  11446. ggml_compute_forward_relu(params, src0, dst);
  11447. } break;
  11448. case GGML_UNARY_OP_GELU:
  11449. {
  11450. ggml_compute_forward_gelu(params, src0, dst);
  11451. } break;
  11452. case GGML_UNARY_OP_GELU_QUICK:
  11453. {
  11454. ggml_compute_forward_gelu_quick(params, src0, dst);
  11455. } break;
  11456. case GGML_UNARY_OP_SILU:
  11457. {
  11458. ggml_compute_forward_silu(params, src0, dst);
  11459. } break;
  11460. default:
  11461. {
  11462. GGML_ASSERT(false);
  11463. } break;
  11464. }
  11465. }
  11466. // ggml_compute_forward_map_unary
  11467. static void ggml_compute_forward_map_unary_f32(
  11468. const struct ggml_compute_params * params,
  11469. const struct ggml_tensor * src0,
  11470. struct ggml_tensor * dst,
  11471. const ggml_unary_op_f32_t fun) {
  11472. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11474. return;
  11475. }
  11476. const int n = ggml_nrows(src0);
  11477. const int nc = src0->ne[0];
  11478. assert( dst->nb[0] == sizeof(float));
  11479. assert(src0->nb[0] == sizeof(float));
  11480. for (int i = 0; i < n; i++) {
  11481. fun(nc,
  11482. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11483. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11484. }
  11485. }
  11486. static void ggml_compute_forward_map_unary(
  11487. const struct ggml_compute_params * params,
  11488. const struct ggml_tensor * src0,
  11489. struct ggml_tensor * dst,
  11490. const ggml_unary_op_f32_t fun) {
  11491. switch (src0->type) {
  11492. case GGML_TYPE_F32:
  11493. {
  11494. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11495. } break;
  11496. default:
  11497. {
  11498. GGML_ASSERT(false);
  11499. } break;
  11500. }
  11501. }
  11502. // ggml_compute_forward_map_binary
  11503. static void ggml_compute_forward_map_binary_f32(
  11504. const struct ggml_compute_params * params,
  11505. const struct ggml_tensor * src0,
  11506. const struct ggml_tensor * src1,
  11507. struct ggml_tensor * dst,
  11508. const ggml_binary_op_f32_t fun) {
  11509. assert(params->ith == 0);
  11510. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11512. return;
  11513. }
  11514. const int n = ggml_nrows(src0);
  11515. const int nc = src0->ne[0];
  11516. assert( dst->nb[0] == sizeof(float));
  11517. assert(src0->nb[0] == sizeof(float));
  11518. assert(src1->nb[0] == sizeof(float));
  11519. for (int i = 0; i < n; i++) {
  11520. fun(nc,
  11521. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11522. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11523. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11524. }
  11525. }
  11526. static void ggml_compute_forward_map_binary(
  11527. const struct ggml_compute_params * params,
  11528. const struct ggml_tensor * src0,
  11529. const struct ggml_tensor * src1,
  11530. struct ggml_tensor * dst,
  11531. const ggml_binary_op_f32_t fun) {
  11532. switch (src0->type) {
  11533. case GGML_TYPE_F32:
  11534. {
  11535. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11536. } break;
  11537. default:
  11538. {
  11539. GGML_ASSERT(false);
  11540. } break;
  11541. }
  11542. }
  11543. // ggml_compute_forward_map_custom1
  11544. static void ggml_compute_forward_map_custom1_f32(
  11545. const struct ggml_compute_params * params,
  11546. const struct ggml_tensor * a,
  11547. struct ggml_tensor * dst,
  11548. const ggml_custom1_op_f32_t fun) {
  11549. assert(params->ith == 0);
  11550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11551. return;
  11552. }
  11553. fun(dst, a);
  11554. }
  11555. static void ggml_compute_forward_map_custom1(
  11556. const struct ggml_compute_params * params,
  11557. const struct ggml_tensor * a,
  11558. struct ggml_tensor * dst,
  11559. const ggml_custom1_op_f32_t fun) {
  11560. switch (a->type) {
  11561. case GGML_TYPE_F32:
  11562. {
  11563. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11564. } break;
  11565. default:
  11566. {
  11567. GGML_ASSERT(false);
  11568. } break;
  11569. }
  11570. }
  11571. // ggml_compute_forward_map_custom2
  11572. static void ggml_compute_forward_map_custom2_f32(
  11573. const struct ggml_compute_params * params,
  11574. const struct ggml_tensor * a,
  11575. const struct ggml_tensor * b,
  11576. struct ggml_tensor * dst,
  11577. const ggml_custom2_op_f32_t fun) {
  11578. assert(params->ith == 0);
  11579. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11580. return;
  11581. }
  11582. fun(dst, a, b);
  11583. }
  11584. static void ggml_compute_forward_map_custom2(
  11585. const struct ggml_compute_params * params,
  11586. const struct ggml_tensor * a,
  11587. const struct ggml_tensor * b,
  11588. struct ggml_tensor * dst,
  11589. const ggml_custom2_op_f32_t fun) {
  11590. switch (a->type) {
  11591. case GGML_TYPE_F32:
  11592. {
  11593. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11594. } break;
  11595. default:
  11596. {
  11597. GGML_ASSERT(false);
  11598. } break;
  11599. }
  11600. }
  11601. // ggml_compute_forward_map_custom3
  11602. static void ggml_compute_forward_map_custom3_f32(
  11603. const struct ggml_compute_params * params,
  11604. const struct ggml_tensor * a,
  11605. const struct ggml_tensor * b,
  11606. const struct ggml_tensor * c,
  11607. struct ggml_tensor * dst,
  11608. const ggml_custom3_op_f32_t fun) {
  11609. assert(params->ith == 0);
  11610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11611. return;
  11612. }
  11613. fun(dst, a, b, c);
  11614. }
  11615. static void ggml_compute_forward_map_custom3(
  11616. const struct ggml_compute_params * params,
  11617. const struct ggml_tensor * a,
  11618. const struct ggml_tensor * b,
  11619. const struct ggml_tensor * c,
  11620. struct ggml_tensor * dst,
  11621. const ggml_custom3_op_f32_t fun) {
  11622. switch (a->type) {
  11623. case GGML_TYPE_F32:
  11624. {
  11625. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11626. } break;
  11627. default:
  11628. {
  11629. GGML_ASSERT(false);
  11630. } break;
  11631. }
  11632. }
  11633. // ggml_compute_forward_cross_entropy_loss
  11634. static void ggml_compute_forward_cross_entropy_loss_f32(
  11635. const struct ggml_compute_params * params,
  11636. const struct ggml_tensor * src0,
  11637. const struct ggml_tensor * src1,
  11638. struct ggml_tensor * dst) {
  11639. GGML_ASSERT(ggml_is_contiguous(src0));
  11640. GGML_ASSERT(ggml_is_contiguous(src1));
  11641. GGML_ASSERT(ggml_is_scalar(dst));
  11642. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11643. const int ith = params->ith;
  11644. const int nth = params->nth;
  11645. float * sums = (float *) params->wdata;
  11646. // TODO: handle transposed/permuted matrices
  11647. const int nc = src0->ne[0];
  11648. const int nr = ggml_nrows(src0);
  11649. if (params->type == GGML_TASK_INIT) {
  11650. if (ith == 0) {
  11651. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11652. }
  11653. return;
  11654. }
  11655. if (params->type == GGML_TASK_FINALIZE) {
  11656. if (ith == 0) {
  11657. float * dp = (float *) dst->data;
  11658. ggml_vec_sum_f32(nth, dp, sums);
  11659. dp[0] *= -1.0f;
  11660. }
  11661. return;
  11662. }
  11663. const double eps = 1e-9;
  11664. // rows per thread
  11665. const int dr = (nr + nth - 1)/nth;
  11666. // row range for this thread
  11667. const int ir0 = dr*ith;
  11668. const int ir1 = MIN(ir0 + dr, nr);
  11669. for (int i1 = ir0; i1 < ir1; i1++) {
  11670. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11671. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11672. float * st = (float *) params->wdata + nth + ith*nc;
  11673. #ifndef NDEBUG
  11674. for (int i = 0; i < nc; ++i) {
  11675. //printf("p[%d] = %f\n", i, p[i]);
  11676. assert(!isnan(s0[i]));
  11677. assert(!isnan(s1[i]));
  11678. }
  11679. #endif
  11680. // soft_max
  11681. ggml_float sum = 0.0;
  11682. {
  11683. float max = -INFINITY;
  11684. ggml_vec_max_f32(nc, &max, s0);
  11685. uint16_t scvt;
  11686. for (int i = 0; i < nc; i++) {
  11687. if (s0[i] == -INFINITY) {
  11688. st[i] = 0.0f;
  11689. } else {
  11690. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11691. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11692. memcpy(&scvt, &s, sizeof(scvt));
  11693. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11694. sum += (ggml_float)val;
  11695. st[i] = val;
  11696. }
  11697. }
  11698. assert(sum > 0.0);
  11699. // sum = 1.0/sum;
  11700. }
  11701. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11702. sum = (1.0 - eps) / sum;
  11703. ggml_vec_scale_f32(nc, st, sum);
  11704. ggml_vec_add1_f32(nc, st, st, eps);
  11705. ggml_vec_log_f32(nc, st, st);
  11706. ggml_vec_mul_f32(nc, st, st, s1);
  11707. ggml_vec_sum_f32(nc, sums + ith, st);
  11708. #ifndef NDEBUG
  11709. for (int i = 0; i < nc; ++i) {
  11710. assert(!isnan(st[i]));
  11711. assert(!isinf(st[i]));
  11712. }
  11713. #endif
  11714. }
  11715. }
  11716. static void ggml_compute_forward_cross_entropy_loss(
  11717. const struct ggml_compute_params * params,
  11718. const struct ggml_tensor * src0,
  11719. const struct ggml_tensor * src1,
  11720. struct ggml_tensor * dst) {
  11721. switch (src0->type) {
  11722. case GGML_TYPE_F32:
  11723. {
  11724. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11725. } break;
  11726. default:
  11727. {
  11728. GGML_ASSERT(false);
  11729. } break;
  11730. }
  11731. }
  11732. // ggml_compute_forward_cross_entropy_loss_back
  11733. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11734. const struct ggml_compute_params * params,
  11735. const struct ggml_tensor * src0,
  11736. const struct ggml_tensor * src1,
  11737. const struct ggml_tensor * opt0,
  11738. struct ggml_tensor * dst) {
  11739. GGML_ASSERT(ggml_is_contiguous(dst));
  11740. GGML_ASSERT(ggml_is_contiguous(src0));
  11741. GGML_ASSERT(ggml_is_contiguous(src1));
  11742. GGML_ASSERT(ggml_is_contiguous(opt0));
  11743. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11744. const int64_t ith = params->ith;
  11745. const int64_t nth = params->nth;
  11746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11747. return;
  11748. }
  11749. const float eps = 1e-9f;
  11750. // TODO: handle transposed/permuted matrices
  11751. const int64_t nc = src0->ne[0];
  11752. const int64_t nr = ggml_nrows(src0);
  11753. // rows per thread
  11754. const int64_t dr = (nr + nth - 1)/nth;
  11755. // row range for this thread
  11756. const int64_t ir0 = dr*ith;
  11757. const int64_t ir1 = MIN(ir0 + dr, nr);
  11758. float * d = (float *) opt0->data;
  11759. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11760. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11761. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11762. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11763. float * sm = (float *) params->wdata + ith*nc;
  11764. #ifndef NDEBUG
  11765. for (int i = 0; i < nc; ++i) {
  11766. //printf("p[%d] = %f\n", i, p[i]);
  11767. assert(!isnan(s0[i]));
  11768. assert(!isnan(s1[i]));
  11769. }
  11770. #endif
  11771. // step by step explanation:
  11772. {
  11773. //float * sums = (float *) params->wdata;
  11774. // forward pass with annotated gradients from backward pass
  11775. // (built by going in reverse operation order, adding to gradients of current operation args)
  11776. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11777. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11778. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11779. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11780. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11781. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11782. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11783. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11784. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11785. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11786. // postorder:
  11787. // grad[st1] := softmax(s0)
  11788. // grad[st1] := grad[st1]*(1.0 - eps)
  11789. // grad[st1] := grad[st1] + eps
  11790. // grad[st1] := s1 / grad[st1]
  11791. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11792. // src0 gradients by going through softmax_back
  11793. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11794. // from softmax_back:
  11795. // dxk = yk * (dyk - dot(y, dy))
  11796. // dot_y_dy := dot(y, dy)
  11797. // dx := dy
  11798. // dx := dx - dot_y_dy
  11799. // dx := dx * y
  11800. // postorder:
  11801. // dot_st1_dst1 := dot(st1, grad[st1])
  11802. // grad[s0] := grad[st1]
  11803. // grad[s0] := grad[s0] - dot_st1_dst1
  11804. // grad[s0] := grad[s0] * st1
  11805. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11806. // sm := softmax(s0)
  11807. // grad[s0] := sm*(1.0 - eps)
  11808. // grad[s0] := grad[s0] + eps
  11809. // grad[s0] := s1 / grad[s0]
  11810. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11811. // dot_st1_dst1 := dot(sm, grad[s0])
  11812. // grad[s0] := grad[s0] - dot_st1_dst1
  11813. // grad[s0] := grad[s0] * sm
  11814. }
  11815. // soft_max
  11816. ggml_float sum = 0.0;
  11817. {
  11818. float max = -INFINITY;
  11819. ggml_vec_max_f32(nc, &max, s0);
  11820. uint16_t scvt;
  11821. for (int i = 0; i < nc; i++) {
  11822. if (s0[i] == -INFINITY) {
  11823. sm[i] = 0.0f;
  11824. } else {
  11825. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11826. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11827. memcpy(&scvt, &s, sizeof(scvt));
  11828. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11829. sum += (ggml_float)val;
  11830. sm[i] = val;
  11831. }
  11832. }
  11833. assert(sum > 0.0);
  11834. sum = 1.0/sum;
  11835. }
  11836. float dot_st1_dst1 = 0;
  11837. ggml_vec_scale_f32(nc, sm, sum);
  11838. ggml_vec_cpy_f32 (nc, ds0, sm);
  11839. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11840. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11841. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11842. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11843. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11844. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11845. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11846. #ifndef NDEBUG
  11847. for (int i = 0; i < nc; ++i) {
  11848. assert(!isnan(sm[i]));
  11849. assert(!isinf(sm[i]));
  11850. assert(!isnan(ds0[i]));
  11851. assert(!isinf(ds0[i]));
  11852. }
  11853. #endif
  11854. }
  11855. }
  11856. static void ggml_compute_forward_cross_entropy_loss_back(
  11857. const struct ggml_compute_params * params,
  11858. const struct ggml_tensor * src0,
  11859. const struct ggml_tensor * src1,
  11860. const struct ggml_tensor * opt0,
  11861. struct ggml_tensor * dst) {
  11862. switch (src0->type) {
  11863. case GGML_TYPE_F32:
  11864. {
  11865. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11866. } break;
  11867. default:
  11868. {
  11869. GGML_ASSERT(false);
  11870. } break;
  11871. }
  11872. }
  11873. /////////////////////////////////
  11874. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11875. GGML_ASSERT(params);
  11876. #ifdef GGML_USE_CUBLAS
  11877. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11878. if (skip_cpu) {
  11879. return;
  11880. }
  11881. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11882. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11883. #endif // GGML_USE_CUBLAS
  11884. switch (tensor->op) {
  11885. case GGML_OP_DUP:
  11886. {
  11887. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11888. } break;
  11889. case GGML_OP_ADD:
  11890. {
  11891. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11892. } break;
  11893. case GGML_OP_ADD1:
  11894. {
  11895. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11896. } break;
  11897. case GGML_OP_ACC:
  11898. {
  11899. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11900. } break;
  11901. case GGML_OP_SUB:
  11902. {
  11903. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11904. } break;
  11905. case GGML_OP_MUL:
  11906. {
  11907. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11908. } break;
  11909. case GGML_OP_DIV:
  11910. {
  11911. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11912. } break;
  11913. case GGML_OP_SQR:
  11914. {
  11915. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11916. } break;
  11917. case GGML_OP_SQRT:
  11918. {
  11919. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11920. } break;
  11921. case GGML_OP_LOG:
  11922. {
  11923. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11924. } break;
  11925. case GGML_OP_SUM:
  11926. {
  11927. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_SUM_ROWS:
  11930. {
  11931. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_MEAN:
  11934. {
  11935. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_ARGMAX:
  11938. {
  11939. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11940. } break;
  11941. case GGML_OP_REPEAT:
  11942. {
  11943. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11944. } break;
  11945. case GGML_OP_REPEAT_BACK:
  11946. {
  11947. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_SILU_BACK:
  11950. {
  11951. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11952. } break;
  11953. case GGML_OP_NORM:
  11954. {
  11955. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11956. } break;
  11957. case GGML_OP_RMS_NORM:
  11958. {
  11959. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11960. } break;
  11961. case GGML_OP_RMS_NORM_BACK:
  11962. {
  11963. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11964. } break;
  11965. case GGML_OP_MUL_MAT:
  11966. {
  11967. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11968. } break;
  11969. case GGML_OP_OUT_PROD:
  11970. {
  11971. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11972. } break;
  11973. case GGML_OP_SCALE:
  11974. {
  11975. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11976. } break;
  11977. case GGML_OP_SET:
  11978. {
  11979. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11980. } break;
  11981. case GGML_OP_CPY:
  11982. {
  11983. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11984. } break;
  11985. case GGML_OP_CONT:
  11986. {
  11987. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11988. } break;
  11989. case GGML_OP_RESHAPE:
  11990. {
  11991. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11992. } break;
  11993. case GGML_OP_VIEW:
  11994. {
  11995. ggml_compute_forward_view(params, tensor->src[0]);
  11996. } break;
  11997. case GGML_OP_PERMUTE:
  11998. {
  11999. ggml_compute_forward_permute(params, tensor->src[0]);
  12000. } break;
  12001. case GGML_OP_TRANSPOSE:
  12002. {
  12003. ggml_compute_forward_transpose(params, tensor->src[0]);
  12004. } break;
  12005. case GGML_OP_GET_ROWS:
  12006. {
  12007. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12008. } break;
  12009. case GGML_OP_GET_ROWS_BACK:
  12010. {
  12011. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12012. } break;
  12013. case GGML_OP_DIAG:
  12014. {
  12015. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12016. } break;
  12017. case GGML_OP_DIAG_MASK_INF:
  12018. {
  12019. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12020. } break;
  12021. case GGML_OP_DIAG_MASK_ZERO:
  12022. {
  12023. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12024. } break;
  12025. case GGML_OP_SOFT_MAX:
  12026. {
  12027. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12028. } break;
  12029. case GGML_OP_SOFT_MAX_BACK:
  12030. {
  12031. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12032. } break;
  12033. case GGML_OP_ROPE:
  12034. {
  12035. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12036. } break;
  12037. case GGML_OP_ROPE_BACK:
  12038. {
  12039. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12040. } break;
  12041. case GGML_OP_ALIBI:
  12042. {
  12043. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12044. } break;
  12045. case GGML_OP_CLAMP:
  12046. {
  12047. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12048. } break;
  12049. case GGML_OP_CONV_1D:
  12050. {
  12051. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12052. } break;
  12053. case GGML_OP_CONV_2D:
  12054. {
  12055. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12056. } break;
  12057. case GGML_OP_POOL_1D:
  12058. {
  12059. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12060. } break;
  12061. case GGML_OP_POOL_2D:
  12062. {
  12063. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12064. } break;
  12065. case GGML_OP_FLASH_ATTN:
  12066. {
  12067. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12068. GGML_ASSERT(t == 0 || t == 1);
  12069. const bool masked = t != 0;
  12070. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12071. } break;
  12072. case GGML_OP_FLASH_FF:
  12073. {
  12074. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12075. } break;
  12076. case GGML_OP_FLASH_ATTN_BACK:
  12077. {
  12078. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12079. GGML_ASSERT(t == 0 || t == 1);
  12080. bool masked = t != 0;
  12081. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12082. } break;
  12083. case GGML_OP_WIN_PART:
  12084. {
  12085. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12086. } break;
  12087. case GGML_OP_WIN_UNPART:
  12088. {
  12089. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12090. } break;
  12091. case GGML_OP_UNARY:
  12092. {
  12093. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12094. } break;
  12095. case GGML_OP_MAP_UNARY:
  12096. {
  12097. ggml_unary_op_f32_t fun;
  12098. memcpy(&fun, tensor->op_params, sizeof(fun));
  12099. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12100. }
  12101. break;
  12102. case GGML_OP_MAP_BINARY:
  12103. {
  12104. ggml_binary_op_f32_t fun;
  12105. memcpy(&fun, tensor->op_params, sizeof(fun));
  12106. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12107. }
  12108. break;
  12109. case GGML_OP_MAP_CUSTOM1:
  12110. {
  12111. ggml_custom1_op_f32_t fun;
  12112. memcpy(&fun, tensor->op_params, sizeof(fun));
  12113. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12114. }
  12115. break;
  12116. case GGML_OP_MAP_CUSTOM2:
  12117. {
  12118. ggml_custom2_op_f32_t fun;
  12119. memcpy(&fun, tensor->op_params, sizeof(fun));
  12120. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12121. }
  12122. break;
  12123. case GGML_OP_MAP_CUSTOM3:
  12124. {
  12125. ggml_custom3_op_f32_t fun;
  12126. memcpy(&fun, tensor->op_params, sizeof(fun));
  12127. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12128. }
  12129. break;
  12130. case GGML_OP_CROSS_ENTROPY_LOSS:
  12131. {
  12132. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12133. }
  12134. break;
  12135. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12136. {
  12137. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12138. }
  12139. break;
  12140. case GGML_OP_NONE:
  12141. {
  12142. // nop
  12143. } break;
  12144. case GGML_OP_COUNT:
  12145. {
  12146. GGML_ASSERT(false);
  12147. } break;
  12148. }
  12149. }
  12150. ////////////////////////////////////////////////////////////////////////////////
  12151. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12152. struct ggml_tensor * src0 = tensor->src[0];
  12153. struct ggml_tensor * src1 = tensor->src[1];
  12154. switch (tensor->op) {
  12155. case GGML_OP_DUP:
  12156. {
  12157. if (src0->grad) {
  12158. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12159. }
  12160. } break;
  12161. case GGML_OP_ADD:
  12162. {
  12163. if (src0->grad) {
  12164. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12165. }
  12166. if (src1->grad) {
  12167. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12168. }
  12169. } break;
  12170. case GGML_OP_ADD1:
  12171. {
  12172. if (src0->grad) {
  12173. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12174. }
  12175. if (src1->grad) {
  12176. src1->grad = ggml_add_impl(ctx,
  12177. src1->grad,
  12178. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12179. inplace);
  12180. }
  12181. } break;
  12182. case GGML_OP_ACC:
  12183. {
  12184. if (src0->grad) {
  12185. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12186. }
  12187. if (src1->grad) {
  12188. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12189. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12190. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12191. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12192. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12193. tensor->grad,
  12194. src1->grad->ne[0],
  12195. src1->grad->ne[1],
  12196. src1->grad->ne[2],
  12197. src1->grad->ne[3],
  12198. nb1, nb2, nb3, offset);
  12199. src1->grad =
  12200. ggml_add_impl(ctx,
  12201. src1->grad,
  12202. ggml_reshape(ctx,
  12203. ggml_cont(ctx, tensor_grad_view),
  12204. src1->grad),
  12205. inplace);
  12206. }
  12207. } break;
  12208. case GGML_OP_SUB:
  12209. {
  12210. if (src0->grad) {
  12211. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12212. }
  12213. if (src1->grad) {
  12214. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12215. }
  12216. } break;
  12217. case GGML_OP_MUL:
  12218. {
  12219. if (src0->grad) {
  12220. src0->grad =
  12221. ggml_add_impl(ctx,
  12222. src0->grad,
  12223. ggml_mul(ctx, src1, tensor->grad),
  12224. inplace);
  12225. }
  12226. if (src1->grad) {
  12227. src1->grad =
  12228. ggml_add_impl(ctx,
  12229. src1->grad,
  12230. ggml_mul(ctx, src0, tensor->grad),
  12231. inplace);
  12232. }
  12233. } break;
  12234. case GGML_OP_DIV:
  12235. {
  12236. if (src0->grad) {
  12237. src0->grad =
  12238. ggml_add_impl(ctx,
  12239. src0->grad,
  12240. ggml_div(ctx, tensor->grad, src1),
  12241. inplace);
  12242. }
  12243. if (src1->grad) {
  12244. src1->grad =
  12245. ggml_sub_impl(ctx,
  12246. src1->grad,
  12247. ggml_mul(ctx,
  12248. tensor->grad,
  12249. ggml_div(ctx, tensor, src1)),
  12250. inplace);
  12251. }
  12252. } break;
  12253. case GGML_OP_SQR:
  12254. {
  12255. if (src0->grad) {
  12256. src0->grad =
  12257. ggml_add_impl(ctx,
  12258. src0->grad,
  12259. ggml_scale(ctx,
  12260. ggml_mul(ctx, src0, tensor->grad),
  12261. ggml_new_f32(ctx, 2.0f)),
  12262. inplace);
  12263. }
  12264. } break;
  12265. case GGML_OP_SQRT:
  12266. {
  12267. if (src0->grad) {
  12268. src0->grad =
  12269. ggml_add_impl(ctx,
  12270. src0->grad,
  12271. ggml_scale(ctx,
  12272. ggml_div(ctx,
  12273. tensor->grad,
  12274. tensor),
  12275. ggml_new_f32(ctx, 0.5f)),
  12276. inplace);
  12277. }
  12278. } break;
  12279. case GGML_OP_LOG:
  12280. {
  12281. if (src0->grad) {
  12282. src0->grad =
  12283. ggml_add_impl(ctx,
  12284. src0->grad,
  12285. ggml_div(ctx,
  12286. tensor->grad,
  12287. src0),
  12288. inplace);
  12289. }
  12290. } break;
  12291. case GGML_OP_SUM:
  12292. {
  12293. if (src0->grad) {
  12294. src0->grad =
  12295. ggml_add1_impl(ctx,
  12296. src0->grad,
  12297. tensor->grad,
  12298. inplace);
  12299. }
  12300. } break;
  12301. case GGML_OP_SUM_ROWS:
  12302. {
  12303. if (src0->grad) {
  12304. src0->grad =
  12305. ggml_add_impl(ctx,
  12306. src0->grad,
  12307. ggml_repeat(ctx,
  12308. tensor->grad,
  12309. src0->grad),
  12310. inplace);
  12311. }
  12312. } break;
  12313. case GGML_OP_MEAN:
  12314. case GGML_OP_ARGMAX:
  12315. {
  12316. GGML_ASSERT(false); // TODO: implement
  12317. } break;
  12318. case GGML_OP_REPEAT:
  12319. {
  12320. // necessary for llama
  12321. if (src0->grad) {
  12322. src0->grad = ggml_add_impl(ctx,
  12323. src0->grad,
  12324. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12325. inplace);
  12326. }
  12327. } break;
  12328. case GGML_OP_REPEAT_BACK:
  12329. {
  12330. if (src0->grad) {
  12331. // TODO: test this
  12332. src0->grad = ggml_add_impl(ctx,
  12333. src0->grad,
  12334. ggml_repeat(ctx, tensor->grad, src0->grad),
  12335. inplace);
  12336. }
  12337. } break;
  12338. case GGML_OP_SILU_BACK:
  12339. {
  12340. GGML_ASSERT(false); // TODO: not implemented
  12341. } break;
  12342. case GGML_OP_NORM:
  12343. {
  12344. GGML_ASSERT(false); // TODO: not implemented
  12345. } break;
  12346. case GGML_OP_RMS_NORM:
  12347. {
  12348. // necessary for llama
  12349. if (src0->grad) {
  12350. src0->grad = ggml_add_impl(ctx,
  12351. src0->grad,
  12352. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12353. inplace);
  12354. }
  12355. } break;
  12356. case GGML_OP_RMS_NORM_BACK:
  12357. {
  12358. GGML_ASSERT(false); // TODO: not implemented
  12359. } break;
  12360. case GGML_OP_MUL_MAT:
  12361. {
  12362. // https://cs231n.github.io/optimization-2/#staged
  12363. // # forward pass
  12364. // s0 = np.random.randn(5, 10)
  12365. // s1 = np.random.randn(10, 3)
  12366. // t = s0.dot(s1)
  12367. // # now suppose we had the gradient on t from above in the circuit
  12368. // dt = np.random.randn(*t.shape) # same shape as t
  12369. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12370. // ds1 = t.T.dot(dt)
  12371. // tensor.shape [m,p]
  12372. // src0.shape [n,m]
  12373. // src1.shape [n,p]
  12374. // necessary for llama
  12375. if (src0->grad) {
  12376. src0->grad =
  12377. ggml_add_impl(ctx,
  12378. src0->grad,
  12379. ggml_out_prod(ctx, // [n,m]
  12380. src1, // [n,p]
  12381. tensor->grad), // [m,p]
  12382. inplace);
  12383. }
  12384. if (src1->grad) {
  12385. src1->grad =
  12386. ggml_add_impl(ctx,
  12387. src1->grad,
  12388. // ggml_mul_mat(ctx, // [n,p]
  12389. // ggml_cont(ctx, // [m,n]
  12390. // ggml_transpose(ctx, src0)), // [m,n]
  12391. // tensor->grad), // [m,p]
  12392. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12393. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12394. // // and then use ggml_out_prod
  12395. ggml_out_prod(ctx, // [n,p]
  12396. src0, // [n,m]
  12397. ggml_transpose(ctx, // [p,m]
  12398. tensor->grad)), // [m,p]
  12399. inplace);
  12400. }
  12401. } break;
  12402. case GGML_OP_OUT_PROD:
  12403. {
  12404. GGML_ASSERT(false); // TODO: not implemented
  12405. } break;
  12406. case GGML_OP_SCALE:
  12407. {
  12408. // necessary for llama
  12409. if (src0->grad) {
  12410. src0->grad =
  12411. ggml_add_impl(ctx,
  12412. src0->grad,
  12413. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12414. inplace);
  12415. }
  12416. if (src1->grad) {
  12417. src1->grad =
  12418. ggml_add_impl(ctx,
  12419. src1->grad,
  12420. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12421. inplace);
  12422. }
  12423. } break;
  12424. case GGML_OP_SET:
  12425. {
  12426. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12427. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12428. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12429. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12430. struct ggml_tensor * tensor_grad_view = NULL;
  12431. if (src0->grad || src1->grad) {
  12432. GGML_ASSERT(src0->type == tensor->type);
  12433. GGML_ASSERT(tensor->grad->type == tensor->type);
  12434. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12435. tensor_grad_view = ggml_view_4d(ctx,
  12436. tensor->grad,
  12437. src1->grad->ne[0],
  12438. src1->grad->ne[1],
  12439. src1->grad->ne[2],
  12440. src1->grad->ne[3],
  12441. nb1, nb2, nb3, offset);
  12442. }
  12443. if (src0->grad) {
  12444. src0->grad = ggml_add_impl(ctx,
  12445. src0->grad,
  12446. ggml_acc_impl(ctx,
  12447. tensor->grad,
  12448. ggml_neg(ctx, tensor_grad_view),
  12449. nb1, nb2, nb3, offset, false),
  12450. inplace);
  12451. }
  12452. if (src1->grad) {
  12453. src1->grad =
  12454. ggml_add_impl(ctx,
  12455. src1->grad,
  12456. ggml_reshape(ctx,
  12457. ggml_cont(ctx, tensor_grad_view),
  12458. src1->grad),
  12459. inplace);
  12460. }
  12461. } break;
  12462. case GGML_OP_CPY:
  12463. {
  12464. // necessary for llama
  12465. // cpy overwrites value of src1 by src0 and returns view(src1)
  12466. // the overwriting is mathematically equivalent to:
  12467. // tensor = src0 * 1 + src1 * 0
  12468. if (src0->grad) {
  12469. // dsrc0 = dtensor * 1
  12470. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12471. }
  12472. if (src1->grad) {
  12473. // dsrc1 = dtensor * 0 -> noop
  12474. }
  12475. } break;
  12476. case GGML_OP_CONT:
  12477. {
  12478. // same as cpy
  12479. if (src0->grad) {
  12480. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12481. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12482. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12483. }
  12484. } break;
  12485. case GGML_OP_RESHAPE:
  12486. {
  12487. // necessary for llama
  12488. if (src0->grad) {
  12489. src0->grad =
  12490. ggml_add_impl(ctx, src0->grad,
  12491. ggml_reshape(ctx, tensor->grad, src0->grad),
  12492. inplace);
  12493. }
  12494. } break;
  12495. case GGML_OP_VIEW:
  12496. {
  12497. // necessary for llama
  12498. if (src0->grad) {
  12499. size_t offset;
  12500. memcpy(&offset, tensor->op_params, sizeof(offset));
  12501. size_t nb1 = tensor->nb[1];
  12502. size_t nb2 = tensor->nb[2];
  12503. size_t nb3 = tensor->nb[3];
  12504. if (src0->type != src0->grad->type) {
  12505. // gradient is typically F32, but src0 could be other type
  12506. size_t ng = ggml_element_size(src0->grad);
  12507. size_t n0 = ggml_element_size(src0);
  12508. GGML_ASSERT(offset % n0 == 0);
  12509. GGML_ASSERT(nb1 % n0 == 0);
  12510. GGML_ASSERT(nb2 % n0 == 0);
  12511. GGML_ASSERT(nb3 % n0 == 0);
  12512. offset = (offset / n0) * ng;
  12513. nb1 = (nb1 / n0) * ng;
  12514. nb2 = (nb2 / n0) * ng;
  12515. nb3 = (nb3 / n0) * ng;
  12516. }
  12517. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12518. }
  12519. } break;
  12520. case GGML_OP_PERMUTE:
  12521. {
  12522. // necessary for llama
  12523. if (src0->grad) {
  12524. int32_t * axes = (int32_t *) tensor->op_params;
  12525. int axis0 = axes[0] & 0x3;
  12526. int axis1 = axes[1] & 0x3;
  12527. int axis2 = axes[2] & 0x3;
  12528. int axis3 = axes[3] & 0x3;
  12529. int axes_backward[4] = {0,0,0,0};
  12530. axes_backward[axis0] = 0;
  12531. axes_backward[axis1] = 1;
  12532. axes_backward[axis2] = 2;
  12533. axes_backward[axis3] = 3;
  12534. src0->grad =
  12535. ggml_add_impl(ctx, src0->grad,
  12536. ggml_permute(ctx,
  12537. tensor->grad,
  12538. axes_backward[0],
  12539. axes_backward[1],
  12540. axes_backward[2],
  12541. axes_backward[3]),
  12542. inplace);
  12543. }
  12544. } break;
  12545. case GGML_OP_TRANSPOSE:
  12546. {
  12547. // necessary for llama
  12548. if (src0->grad) {
  12549. src0->grad =
  12550. ggml_add_impl(ctx, src0->grad,
  12551. ggml_transpose(ctx, tensor->grad),
  12552. inplace);
  12553. }
  12554. } break;
  12555. case GGML_OP_GET_ROWS:
  12556. {
  12557. // necessary for llama (only for tokenizer)
  12558. if (src0->grad) {
  12559. src0->grad =
  12560. ggml_add_impl(ctx, src0->grad,
  12561. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12562. inplace);
  12563. }
  12564. if (src1->grad) {
  12565. // noop
  12566. }
  12567. } break;
  12568. case GGML_OP_GET_ROWS_BACK:
  12569. {
  12570. GGML_ASSERT(false); // TODO: not implemented
  12571. } break;
  12572. case GGML_OP_DIAG:
  12573. {
  12574. GGML_ASSERT(false); // TODO: not implemented
  12575. } break;
  12576. case GGML_OP_DIAG_MASK_INF:
  12577. {
  12578. // necessary for llama
  12579. if (src0->grad) {
  12580. const int n_past = ((int32_t *) tensor->op_params)[0];
  12581. src0->grad =
  12582. ggml_add_impl(ctx, src0->grad,
  12583. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12584. inplace);
  12585. }
  12586. } break;
  12587. case GGML_OP_DIAG_MASK_ZERO:
  12588. {
  12589. // necessary for llama
  12590. if (src0->grad) {
  12591. const int n_past = ((int32_t *) tensor->op_params)[0];
  12592. src0->grad =
  12593. ggml_add_impl(ctx, src0->grad,
  12594. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12595. inplace);
  12596. }
  12597. } break;
  12598. case GGML_OP_SOFT_MAX:
  12599. {
  12600. // necessary for llama
  12601. if (src0->grad) {
  12602. src0->grad =
  12603. ggml_add_impl(ctx, src0->grad,
  12604. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12605. inplace);
  12606. }
  12607. } break;
  12608. case GGML_OP_SOFT_MAX_BACK:
  12609. {
  12610. GGML_ASSERT(false); // TODO: not implemented
  12611. } break;
  12612. case GGML_OP_ROPE:
  12613. {
  12614. // necessary for llama
  12615. if (src0->grad) {
  12616. const int n_past = ((int32_t *) tensor->op_params)[0];
  12617. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12618. const int mode = ((int32_t *) tensor->op_params)[2];
  12619. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12620. src0->grad = ggml_add_impl(ctx,
  12621. src0->grad,
  12622. ggml_rope_back(ctx,
  12623. tensor->grad,
  12624. n_past,
  12625. n_dims,
  12626. mode,
  12627. n_ctx),
  12628. inplace);
  12629. }
  12630. } break;
  12631. case GGML_OP_ROPE_BACK:
  12632. {
  12633. if (src0->grad) {
  12634. const int n_past = ((int32_t *) tensor->op_params)[0];
  12635. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12636. const int mode = ((int32_t *) tensor->op_params)[2];
  12637. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12638. src0->grad = ggml_add_impl(ctx,
  12639. src0->grad,
  12640. ggml_rope(ctx,
  12641. tensor->grad,
  12642. n_past,
  12643. n_dims,
  12644. mode,
  12645. n_ctx),
  12646. inplace);
  12647. }
  12648. } break;
  12649. case GGML_OP_ALIBI:
  12650. {
  12651. GGML_ASSERT(false); // TODO: not implemented
  12652. } break;
  12653. case GGML_OP_CLAMP:
  12654. {
  12655. GGML_ASSERT(false); // TODO: not implemented
  12656. } break;
  12657. case GGML_OP_CONV_1D:
  12658. {
  12659. GGML_ASSERT(false); // TODO: not implemented
  12660. } break;
  12661. case GGML_OP_CONV_2D:
  12662. {
  12663. GGML_ASSERT(false); // TODO: not implemented
  12664. } break;
  12665. case GGML_OP_POOL_1D:
  12666. {
  12667. GGML_ASSERT(false); // TODO: not implemented
  12668. } break;
  12669. case GGML_OP_POOL_2D:
  12670. {
  12671. GGML_ASSERT(false); // TODO: not implemented
  12672. } break;
  12673. case GGML_OP_FLASH_ATTN:
  12674. {
  12675. struct ggml_tensor * flash_grad = NULL;
  12676. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12677. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12678. GGML_ASSERT(t == 0 || t == 1);
  12679. bool masked = t != 0;
  12680. flash_grad =
  12681. ggml_flash_attn_back(ctx,
  12682. src0,
  12683. src1,
  12684. tensor->src[2],
  12685. tensor->grad,
  12686. masked);
  12687. }
  12688. if (src0->grad) {
  12689. struct ggml_tensor * grad_q = NULL;
  12690. const size_t nb0 = flash_grad->nb[0];
  12691. const size_t offset = 0;
  12692. switch(src0->n_dims) {
  12693. case 2:
  12694. {
  12695. grad_q = ggml_view_2d(ctx,
  12696. flash_grad,
  12697. src0->ne[0],
  12698. src0->ne[1],
  12699. nb0*src0->ne[0],
  12700. offset);
  12701. } break;
  12702. case 3:
  12703. {
  12704. grad_q = ggml_view_3d(ctx,
  12705. flash_grad,
  12706. src0->ne[0],
  12707. src0->ne[1],
  12708. src0->ne[2],
  12709. nb0*src0->ne[0],
  12710. nb0*src0->ne[0]*src0->ne[1],
  12711. offset);
  12712. } break;
  12713. case 4:
  12714. {
  12715. grad_q = ggml_view_4d(ctx,
  12716. flash_grad,
  12717. src0->ne[0],
  12718. src0->ne[1],
  12719. src0->ne[2],
  12720. src0->ne[3],
  12721. nb0*src0->ne[0],
  12722. nb0*src0->ne[0]*src0->ne[1],
  12723. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12724. offset);
  12725. } break;
  12726. }
  12727. src0->grad = ggml_add_impl(ctx,
  12728. src0->grad,
  12729. grad_q,
  12730. inplace);
  12731. }
  12732. if (src1->grad) {
  12733. struct ggml_tensor * grad_k = NULL;
  12734. const size_t nb0 = flash_grad->nb[0];
  12735. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12736. switch(src1->n_dims) {
  12737. case 2:
  12738. {
  12739. grad_k = ggml_view_2d(ctx,
  12740. flash_grad,
  12741. src1->ne[0],
  12742. src1->ne[1],
  12743. nb0*src1->ne[0],
  12744. offset);
  12745. } break;
  12746. case 3:
  12747. {
  12748. grad_k = ggml_view_3d(ctx,
  12749. flash_grad,
  12750. src1->ne[0],
  12751. src1->ne[1],
  12752. src1->ne[2],
  12753. nb0*src1->ne[0],
  12754. nb0*src1->ne[0]*src1->ne[1],
  12755. offset);
  12756. } break;
  12757. case 4:
  12758. {
  12759. grad_k = ggml_view_4d(ctx,
  12760. flash_grad,
  12761. src1->ne[0],
  12762. src1->ne[1],
  12763. src1->ne[2],
  12764. src1->ne[3],
  12765. nb0*src1->ne[0],
  12766. nb0*src1->ne[0]*src1->ne[1],
  12767. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12768. offset);
  12769. } break;
  12770. }
  12771. src1->grad = ggml_add_impl(ctx,
  12772. src1->grad,
  12773. grad_k,
  12774. inplace);
  12775. }
  12776. struct ggml_tensor * opt0 = tensor->src[2];
  12777. if (opt0->grad) {
  12778. struct ggml_tensor * grad_v = NULL;
  12779. const size_t nb0 = flash_grad->nb[0];
  12780. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12781. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12782. switch(opt0->n_dims) {
  12783. case 2:
  12784. {
  12785. grad_v = ggml_view_2d(ctx,
  12786. flash_grad,
  12787. opt0->ne[0],
  12788. opt0->ne[1],
  12789. nb0*opt0->ne[0],
  12790. offset);
  12791. } break;
  12792. case 3:
  12793. {
  12794. grad_v = ggml_view_3d(ctx,
  12795. flash_grad,
  12796. opt0->ne[0],
  12797. opt0->ne[1],
  12798. opt0->ne[2],
  12799. nb0*opt0->ne[0],
  12800. nb0*opt0->ne[0]*opt0->ne[1],
  12801. offset);
  12802. } break;
  12803. case 4:
  12804. {
  12805. grad_v = ggml_view_4d(ctx,
  12806. flash_grad,
  12807. opt0->ne[0],
  12808. opt0->ne[1],
  12809. opt0->ne[2],
  12810. opt0->ne[3],
  12811. nb0*opt0->ne[0],
  12812. nb0*opt0->ne[0]*opt0->ne[1],
  12813. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12814. offset);
  12815. } break;
  12816. }
  12817. opt0->grad = ggml_add_impl(ctx,
  12818. opt0->grad,
  12819. grad_v,
  12820. inplace);
  12821. }
  12822. } break;
  12823. case GGML_OP_FLASH_FF:
  12824. {
  12825. GGML_ASSERT(false); // not supported
  12826. } break;
  12827. case GGML_OP_FLASH_ATTN_BACK:
  12828. {
  12829. GGML_ASSERT(false); // not supported
  12830. } break;
  12831. case GGML_OP_WIN_PART:
  12832. case GGML_OP_WIN_UNPART:
  12833. case GGML_OP_UNARY:
  12834. {
  12835. switch (ggml_get_unary_op(tensor)) {
  12836. case GGML_UNARY_OP_ABS:
  12837. {
  12838. if (src0->grad) {
  12839. src0->grad =
  12840. ggml_add_impl(ctx,
  12841. src0->grad,
  12842. ggml_mul(ctx,
  12843. ggml_sgn(ctx, src0),
  12844. tensor->grad),
  12845. inplace);
  12846. }
  12847. } break;
  12848. case GGML_UNARY_OP_SGN:
  12849. {
  12850. if (src0->grad) {
  12851. // noop
  12852. }
  12853. } break;
  12854. case GGML_UNARY_OP_NEG:
  12855. {
  12856. if (src0->grad) {
  12857. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12858. }
  12859. } break;
  12860. case GGML_UNARY_OP_STEP:
  12861. {
  12862. if (src0->grad) {
  12863. // noop
  12864. }
  12865. } break;
  12866. case GGML_UNARY_OP_TANH:
  12867. {
  12868. GGML_ASSERT(false); // TODO: not implemented
  12869. } break;
  12870. case GGML_UNARY_OP_ELU:
  12871. {
  12872. GGML_ASSERT(false); // TODO: not implemented
  12873. } break;
  12874. case GGML_UNARY_OP_RELU:
  12875. {
  12876. if (src0->grad) {
  12877. src0->grad = ggml_add_impl(ctx,
  12878. src0->grad,
  12879. ggml_mul(ctx,
  12880. ggml_step(ctx, src0),
  12881. tensor->grad),
  12882. inplace);
  12883. }
  12884. } break;
  12885. case GGML_UNARY_OP_GELU:
  12886. {
  12887. GGML_ASSERT(false); // TODO: not implemented
  12888. } break;
  12889. case GGML_UNARY_OP_GELU_QUICK:
  12890. {
  12891. GGML_ASSERT(false); // TODO: not implemented
  12892. } break;
  12893. case GGML_UNARY_OP_SILU:
  12894. {
  12895. // necessary for llama
  12896. if (src0->grad) {
  12897. src0->grad = ggml_add_impl(ctx,
  12898. src0->grad,
  12899. ggml_silu_back(ctx, src0, tensor->grad),
  12900. inplace);
  12901. }
  12902. } break;
  12903. default:
  12904. GGML_ASSERT(false);
  12905. }
  12906. } break;
  12907. case GGML_OP_MAP_UNARY:
  12908. case GGML_OP_MAP_BINARY:
  12909. case GGML_OP_MAP_CUSTOM1:
  12910. case GGML_OP_MAP_CUSTOM2:
  12911. case GGML_OP_MAP_CUSTOM3:
  12912. {
  12913. GGML_ASSERT(false); // not supported
  12914. } break;
  12915. case GGML_OP_CROSS_ENTROPY_LOSS:
  12916. {
  12917. if (src0->grad) {
  12918. src0->grad = ggml_add_impl(ctx,
  12919. src0->grad,
  12920. ggml_cross_entropy_loss_back(ctx,
  12921. src0,
  12922. src1,
  12923. tensor->grad),
  12924. inplace);
  12925. }
  12926. } break;
  12927. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12928. {
  12929. GGML_ASSERT(false); // not supported
  12930. } break;
  12931. case GGML_OP_NONE:
  12932. {
  12933. // nop
  12934. } break;
  12935. case GGML_OP_COUNT:
  12936. {
  12937. GGML_ASSERT(false);
  12938. } break;
  12939. }
  12940. }
  12941. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12942. static size_t hash(void * p) {
  12943. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12944. }
  12945. static bool hash_insert(void * hash_table[], void * p) {
  12946. size_t h = hash(p);
  12947. // linear probing
  12948. size_t i = h;
  12949. while (hash_table[i] != NULL && hash_table[i] != p) {
  12950. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12951. if (i == h) {
  12952. // hash table is full
  12953. GGML_ASSERT(false);
  12954. }
  12955. }
  12956. if (hash_table[i] == p) {
  12957. return true;
  12958. }
  12959. // insert
  12960. hash_table[i] = p;
  12961. return false;
  12962. }
  12963. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12964. if (node->grad == NULL) {
  12965. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12966. // it can also happen during forward pass, if the user performs computations with constants
  12967. if (node->op != GGML_OP_NONE) {
  12968. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12969. }
  12970. }
  12971. // check if already visited
  12972. if (hash_insert(cgraph->visited_hash_table, node)) {
  12973. return;
  12974. }
  12975. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12976. if (node->src[i]) {
  12977. ggml_visit_parents(cgraph, node->src[i]);
  12978. }
  12979. }
  12980. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12981. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12982. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12983. if (strlen(node->name) == 0) {
  12984. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12985. }
  12986. cgraph->leafs[cgraph->n_leafs] = node;
  12987. cgraph->n_leafs++;
  12988. } else {
  12989. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12990. if (strlen(node->name) == 0) {
  12991. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12992. }
  12993. cgraph->nodes[cgraph->n_nodes] = node;
  12994. cgraph->grads[cgraph->n_nodes] = node->grad;
  12995. cgraph->n_nodes++;
  12996. }
  12997. }
  12998. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12999. if (!expand) {
  13000. cgraph->n_nodes = 0;
  13001. cgraph->n_leafs = 0;
  13002. }
  13003. const int n0 = cgraph->n_nodes;
  13004. UNUSED(n0);
  13005. ggml_visit_parents(cgraph, tensor);
  13006. const int n_new = cgraph->n_nodes - n0;
  13007. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13008. if (n_new > 0) {
  13009. // the last added node should always be starting point
  13010. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13011. }
  13012. }
  13013. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13014. ggml_build_forward_impl(cgraph, tensor, true);
  13015. }
  13016. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13017. struct ggml_cgraph result = {
  13018. /*.n_nodes =*/ 0,
  13019. /*.n_leafs =*/ 0,
  13020. /*.nodes =*/ { NULL },
  13021. /*.grads =*/ { NULL },
  13022. /*.leafs =*/ { NULL },
  13023. /*.hash_table =*/ { NULL },
  13024. /*.perf_runs =*/ 0,
  13025. /*.perf_cycles =*/ 0,
  13026. /*.perf_time_us =*/ 0,
  13027. };
  13028. ggml_build_forward_impl(&result, tensor, false);
  13029. return result;
  13030. }
  13031. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13032. struct ggml_cgraph result = *gf;
  13033. GGML_ASSERT(gf->n_nodes > 0);
  13034. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13035. if (keep) {
  13036. for (int i = 0; i < gf->n_nodes; i++) {
  13037. struct ggml_tensor * node = gf->nodes[i];
  13038. if (node->grad) {
  13039. node->grad = ggml_dup_tensor(ctx, node);
  13040. gf->grads[i] = node->grad;
  13041. }
  13042. }
  13043. }
  13044. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13045. struct ggml_tensor * node = gf->nodes[i];
  13046. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13047. if (node->grad) {
  13048. ggml_compute_backward(ctx, node, keep);
  13049. }
  13050. }
  13051. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13052. struct ggml_tensor * node = gf->nodes[i];
  13053. if (node->is_param) {
  13054. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13055. ggml_build_forward_expand(&result, node->grad);
  13056. }
  13057. }
  13058. return result;
  13059. }
  13060. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13061. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13062. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13063. *cgraph = (struct ggml_cgraph) {
  13064. /*.n_nodes =*/ 0,
  13065. /*.n_leafs =*/ 0,
  13066. /*.nodes =*/ { NULL },
  13067. /*.grads =*/ { NULL },
  13068. /*.leafs =*/ { NULL },
  13069. /*.hash_table =*/ { NULL },
  13070. /*.perf_runs =*/ 0,
  13071. /*.perf_cycles =*/ 0,
  13072. /*.perf_time_us =*/ 0,
  13073. };
  13074. return cgraph;
  13075. }
  13076. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13077. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13078. ggml_build_forward_impl(cgraph, tensor, false);
  13079. return cgraph;
  13080. }
  13081. size_t ggml_graph_overhead(void) {
  13082. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13083. }
  13084. //
  13085. // thread data
  13086. //
  13087. // synchronization is done via busy loops
  13088. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13089. //
  13090. #ifdef __APPLE__
  13091. //#include <os/lock.h>
  13092. //
  13093. //typedef os_unfair_lock ggml_lock_t;
  13094. //
  13095. //#define ggml_lock_init(x) UNUSED(x)
  13096. //#define ggml_lock_destroy(x) UNUSED(x)
  13097. //#define ggml_lock_lock os_unfair_lock_lock
  13098. //#define ggml_lock_unlock os_unfair_lock_unlock
  13099. //
  13100. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13101. typedef int ggml_lock_t;
  13102. #define ggml_lock_init(x) UNUSED(x)
  13103. #define ggml_lock_destroy(x) UNUSED(x)
  13104. #define ggml_lock_lock(x) UNUSED(x)
  13105. #define ggml_lock_unlock(x) UNUSED(x)
  13106. #define GGML_LOCK_INITIALIZER 0
  13107. typedef pthread_t ggml_thread_t;
  13108. #define ggml_thread_create pthread_create
  13109. #define ggml_thread_join pthread_join
  13110. #else
  13111. //typedef pthread_spinlock_t ggml_lock_t;
  13112. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13113. //#define ggml_lock_destroy pthread_spin_destroy
  13114. //#define ggml_lock_lock pthread_spin_lock
  13115. //#define ggml_lock_unlock pthread_spin_unlock
  13116. typedef int ggml_lock_t;
  13117. #define ggml_lock_init(x) UNUSED(x)
  13118. #define ggml_lock_destroy(x) UNUSED(x)
  13119. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13120. #define ggml_lock_lock(x) _mm_pause()
  13121. #else
  13122. #define ggml_lock_lock(x) UNUSED(x)
  13123. #endif
  13124. #define ggml_lock_unlock(x) UNUSED(x)
  13125. #define GGML_LOCK_INITIALIZER 0
  13126. typedef pthread_t ggml_thread_t;
  13127. #define ggml_thread_create pthread_create
  13128. #define ggml_thread_join pthread_join
  13129. #endif
  13130. // Android's libc implementation "bionic" does not support setting affinity
  13131. #if defined(__linux__) && !defined(__BIONIC__)
  13132. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13133. if (!ggml_is_numa()) {
  13134. return;
  13135. }
  13136. // run thread on node_num thread_n / (threads per node)
  13137. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13138. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13139. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13140. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13141. CPU_ZERO_S(setsize, cpus);
  13142. for (size_t i = 0; i < node->n_cpus; ++i) {
  13143. CPU_SET_S(node->cpus[i], setsize, cpus);
  13144. }
  13145. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13146. if (rv) {
  13147. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13148. strerror(rv));
  13149. }
  13150. CPU_FREE(cpus);
  13151. }
  13152. static void clear_numa_thread_affinity(void) {
  13153. if (!ggml_is_numa()) {
  13154. return;
  13155. }
  13156. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13157. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13158. CPU_ZERO_S(setsize, cpus);
  13159. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13160. CPU_SET_S(i, setsize, cpus);
  13161. }
  13162. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13163. if (rv) {
  13164. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13165. strerror(rv));
  13166. }
  13167. CPU_FREE(cpus);
  13168. }
  13169. #else
  13170. // TODO: Windows etc.
  13171. // (the linux implementation may also work on BSD, someone should test)
  13172. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13173. static void clear_numa_thread_affinity(void) {}
  13174. #endif
  13175. struct ggml_compute_state_shared {
  13176. const struct ggml_cgraph * cgraph;
  13177. const struct ggml_cplan * cplan;
  13178. int64_t perf_node_start_cycles;
  13179. int64_t perf_node_start_time_us;
  13180. const int n_threads;
  13181. // synchronization primitives
  13182. atomic_int n_active; // num active threads
  13183. atomic_int node_n; // active graph node
  13184. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13185. void * abort_callback_data;
  13186. };
  13187. struct ggml_compute_state {
  13188. ggml_thread_t thrd;
  13189. int ith;
  13190. struct ggml_compute_state_shared * shared;
  13191. };
  13192. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13193. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13194. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13195. node->perf_runs++;
  13196. node->perf_cycles += cycles_cur;
  13197. node->perf_time_us += time_us_cur;
  13198. }
  13199. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13200. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13201. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13202. const struct ggml_cplan * cplan = state->shared->cplan;
  13203. const int * n_tasks_arr = cplan->n_tasks;
  13204. const int n_threads = state->shared->n_threads;
  13205. set_numa_thread_affinity(state->ith, n_threads);
  13206. int node_n = -1;
  13207. while (true) {
  13208. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13209. state->shared->node_n += 1;
  13210. return (thread_ret_t) GGML_EXIT_ABORTED;
  13211. }
  13212. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13213. // all other threads are finished and spinning
  13214. // do finalize and init here so we don't have synchronize again
  13215. struct ggml_compute_params params = {
  13216. /*.type =*/ GGML_TASK_FINALIZE,
  13217. /*.ith =*/ 0,
  13218. /*.nth =*/ 0,
  13219. /*.wsize =*/ cplan->work_size,
  13220. /*.wdata =*/ cplan->work_data,
  13221. };
  13222. if (node_n != -1) {
  13223. /* FINALIZE */
  13224. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13225. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13226. params.nth = n_tasks_arr[node_n];
  13227. ggml_compute_forward(&params, node);
  13228. }
  13229. ggml_graph_compute_perf_stats_node(node, state->shared);
  13230. }
  13231. // distribute new work or execute it direct if 1T
  13232. while (++node_n < cgraph->n_nodes) {
  13233. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13234. struct ggml_tensor * node = cgraph->nodes[node_n];
  13235. const int n_tasks = n_tasks_arr[node_n];
  13236. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13237. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13238. params.nth = n_tasks;
  13239. /* INIT */
  13240. if (GGML_OP_HAS_INIT[node->op]) {
  13241. params.type = GGML_TASK_INIT;
  13242. ggml_compute_forward(&params, node);
  13243. }
  13244. if (n_tasks == 1) {
  13245. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13246. // they do something more efficient than spinning (?)
  13247. params.type = GGML_TASK_COMPUTE;
  13248. ggml_compute_forward(&params, node);
  13249. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13250. params.type = GGML_TASK_FINALIZE;
  13251. ggml_compute_forward(&params, node);
  13252. }
  13253. ggml_graph_compute_perf_stats_node(node, state->shared);
  13254. } else {
  13255. break;
  13256. }
  13257. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13258. break;
  13259. }
  13260. }
  13261. atomic_store(&state->shared->n_active, n_threads);
  13262. atomic_store(&state->shared->node_n, node_n);
  13263. } else {
  13264. // wait for other threads to finish
  13265. const int last = node_n;
  13266. do {
  13267. //sched_yield();
  13268. node_n = atomic_load(&state->shared->node_n);
  13269. } while (node_n == last);
  13270. }
  13271. // check if we should stop
  13272. if (node_n >= cgraph->n_nodes) break;
  13273. /* COMPUTE */
  13274. struct ggml_tensor * node = cgraph->nodes[node_n];
  13275. const int n_tasks = n_tasks_arr[node_n];
  13276. struct ggml_compute_params params = {
  13277. /*.type =*/ GGML_TASK_COMPUTE,
  13278. /*.ith =*/ state->ith,
  13279. /*.nth =*/ n_tasks,
  13280. /*.wsize =*/ cplan->work_size,
  13281. /*.wdata =*/ cplan->work_data,
  13282. };
  13283. if (state->ith < n_tasks) {
  13284. ggml_compute_forward(&params, node);
  13285. }
  13286. }
  13287. return GGML_EXIT_SUCCESS;
  13288. }
  13289. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13290. if (n_threads <= 0) {
  13291. n_threads = GGML_DEFAULT_N_THREADS;
  13292. }
  13293. size_t work_size = 0;
  13294. struct ggml_cplan cplan;
  13295. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13296. // thread scheduling for the different operations + work buffer size estimation
  13297. for (int i = 0; i < cgraph->n_nodes; i++) {
  13298. int n_tasks = 1;
  13299. struct ggml_tensor * node = cgraph->nodes[i];
  13300. switch (node->op) {
  13301. case GGML_OP_CPY:
  13302. case GGML_OP_DUP:
  13303. {
  13304. n_tasks = n_threads;
  13305. size_t cur = 0;
  13306. if (ggml_is_quantized(node->type)) {
  13307. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13308. }
  13309. work_size = MAX(work_size, cur);
  13310. } break;
  13311. case GGML_OP_ADD:
  13312. case GGML_OP_ADD1:
  13313. {
  13314. n_tasks = n_threads;
  13315. size_t cur = 0;
  13316. if (ggml_is_quantized(node->src[0]->type)) {
  13317. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13318. }
  13319. work_size = MAX(work_size, cur);
  13320. } break;
  13321. case GGML_OP_ACC:
  13322. {
  13323. n_tasks = n_threads;
  13324. size_t cur = 0;
  13325. if (ggml_is_quantized(node->src[0]->type)) {
  13326. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13327. }
  13328. work_size = MAX(work_size, cur);
  13329. } break;
  13330. case GGML_OP_SUB:
  13331. case GGML_OP_DIV:
  13332. case GGML_OP_SQR:
  13333. case GGML_OP_SQRT:
  13334. case GGML_OP_LOG:
  13335. case GGML_OP_SUM:
  13336. case GGML_OP_SUM_ROWS:
  13337. case GGML_OP_MEAN:
  13338. case GGML_OP_ARGMAX:
  13339. case GGML_OP_REPEAT:
  13340. case GGML_OP_REPEAT_BACK:
  13341. {
  13342. n_tasks = 1;
  13343. } break;
  13344. case GGML_OP_UNARY:
  13345. {
  13346. switch (ggml_get_unary_op(node)) {
  13347. case GGML_UNARY_OP_ABS:
  13348. case GGML_UNARY_OP_SGN:
  13349. case GGML_UNARY_OP_NEG:
  13350. case GGML_UNARY_OP_STEP:
  13351. case GGML_UNARY_OP_TANH:
  13352. case GGML_UNARY_OP_ELU:
  13353. case GGML_UNARY_OP_RELU:
  13354. {
  13355. n_tasks = 1;
  13356. } break;
  13357. case GGML_UNARY_OP_GELU:
  13358. case GGML_UNARY_OP_GELU_QUICK:
  13359. case GGML_UNARY_OP_SILU:
  13360. {
  13361. n_tasks = n_threads;
  13362. } break;
  13363. }
  13364. } break;
  13365. case GGML_OP_SILU_BACK:
  13366. case GGML_OP_MUL:
  13367. case GGML_OP_NORM:
  13368. case GGML_OP_RMS_NORM:
  13369. case GGML_OP_RMS_NORM_BACK:
  13370. {
  13371. n_tasks = n_threads;
  13372. } break;
  13373. case GGML_OP_MUL_MAT:
  13374. case GGML_OP_OUT_PROD:
  13375. {
  13376. n_tasks = n_threads;
  13377. // TODO: use different scheduling for different matrix sizes
  13378. //const int nr0 = ggml_nrows(node->src[0]);
  13379. //const int nr1 = ggml_nrows(node->src[1]);
  13380. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13381. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13382. size_t cur = 0;
  13383. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13384. #if defined(GGML_USE_CUBLAS)
  13385. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13386. n_tasks = 1; // TODO: this actually is doing nothing
  13387. // the threads are still spinning
  13388. } else
  13389. #elif defined(GGML_USE_CLBLAST)
  13390. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13391. n_tasks = 1; // TODO: this actually is doing nothing
  13392. // the threads are still spinning
  13393. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13394. } else
  13395. #endif
  13396. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13397. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13398. n_tasks = 1; // TODO: this actually is doing nothing
  13399. // the threads are still spinning
  13400. if (node->src[0]->type != GGML_TYPE_F32) {
  13401. // here we need memory just for single 2D matrix from src0
  13402. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13403. }
  13404. } else
  13405. #endif
  13406. if (node->src[1]->type != vec_dot_type) {
  13407. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13408. } else {
  13409. cur = 0;
  13410. }
  13411. work_size = MAX(work_size, cur);
  13412. } break;
  13413. case GGML_OP_SCALE:
  13414. {
  13415. n_tasks = 1;
  13416. } break;
  13417. case GGML_OP_SET:
  13418. case GGML_OP_CONT:
  13419. case GGML_OP_RESHAPE:
  13420. case GGML_OP_VIEW:
  13421. case GGML_OP_PERMUTE:
  13422. case GGML_OP_TRANSPOSE:
  13423. case GGML_OP_GET_ROWS:
  13424. case GGML_OP_GET_ROWS_BACK:
  13425. case GGML_OP_DIAG:
  13426. {
  13427. n_tasks = 1;
  13428. } break;
  13429. case GGML_OP_DIAG_MASK_ZERO:
  13430. case GGML_OP_DIAG_MASK_INF:
  13431. case GGML_OP_SOFT_MAX:
  13432. case GGML_OP_SOFT_MAX_BACK:
  13433. case GGML_OP_ROPE:
  13434. case GGML_OP_ROPE_BACK:
  13435. {
  13436. n_tasks = n_threads;
  13437. } break;
  13438. case GGML_OP_ALIBI:
  13439. {
  13440. n_tasks = 1; //TODO
  13441. } break;
  13442. case GGML_OP_CLAMP:
  13443. {
  13444. n_tasks = 1; //TODO
  13445. } break;
  13446. case GGML_OP_CONV_1D:
  13447. {
  13448. n_tasks = n_threads;
  13449. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13450. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13451. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13452. size_t cur = 0;
  13453. const int nk = node->src[0]->ne[0];
  13454. if (node->src[0]->type == GGML_TYPE_F16 &&
  13455. node->src[1]->type == GGML_TYPE_F32) {
  13456. cur = sizeof(ggml_fp16_t)*(
  13457. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13458. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13459. );
  13460. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13461. node->src[1]->type == GGML_TYPE_F32) {
  13462. cur = sizeof(float)*(
  13463. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13464. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13465. );
  13466. } else {
  13467. GGML_ASSERT(false);
  13468. }
  13469. work_size = MAX(work_size, cur);
  13470. } break;
  13471. case GGML_OP_CONV_2D:
  13472. {
  13473. n_tasks = n_threads;
  13474. const int64_t ne00 = node->src[0]->ne[0]; // W
  13475. const int64_t ne01 = node->src[0]->ne[1]; // H
  13476. const int64_t ne02 = node->src[0]->ne[2]; // C
  13477. const int64_t ne03 = node->src[0]->ne[3]; // N
  13478. const int64_t ne10 = node->src[1]->ne[0]; // W
  13479. const int64_t ne11 = node->src[1]->ne[1]; // H
  13480. const int64_t ne12 = node->src[1]->ne[2]; // C
  13481. const int64_t ne0 = node->ne[0];
  13482. const int64_t ne1 = node->ne[1];
  13483. const int64_t ne2 = node->ne[2];
  13484. const int64_t nk = ne00*ne01;
  13485. const int64_t ew0 = nk * ne02;
  13486. UNUSED(ne03);
  13487. UNUSED(ne2);
  13488. size_t cur = 0;
  13489. if (node->src[0]->type == GGML_TYPE_F16 &&
  13490. node->src[1]->type == GGML_TYPE_F32) {
  13491. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13492. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13493. node->src[1]->type == GGML_TYPE_F32) {
  13494. cur = sizeof(float)* (ne10*ne11*ne12);
  13495. } else {
  13496. GGML_ASSERT(false);
  13497. }
  13498. work_size = MAX(work_size, cur);
  13499. } break;
  13500. case GGML_OP_POOL_1D:
  13501. case GGML_OP_POOL_2D:
  13502. {
  13503. n_tasks = 1;
  13504. } break;
  13505. case GGML_OP_FLASH_ATTN:
  13506. {
  13507. n_tasks = n_threads;
  13508. size_t cur = 0;
  13509. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13510. if (node->src[1]->type == GGML_TYPE_F32) {
  13511. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13512. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13513. }
  13514. if (node->src[1]->type == GGML_TYPE_F16) {
  13515. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13516. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13517. }
  13518. work_size = MAX(work_size, cur);
  13519. } break;
  13520. case GGML_OP_FLASH_FF:
  13521. {
  13522. n_tasks = n_threads;
  13523. size_t cur = 0;
  13524. if (node->src[1]->type == GGML_TYPE_F32) {
  13525. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13526. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13527. }
  13528. if (node->src[1]->type == GGML_TYPE_F16) {
  13529. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13530. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13531. }
  13532. work_size = MAX(work_size, cur);
  13533. } break;
  13534. case GGML_OP_FLASH_ATTN_BACK:
  13535. {
  13536. n_tasks = n_threads;
  13537. size_t cur = 0;
  13538. const int64_t D = node->src[0]->ne[0];
  13539. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13540. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13541. if (node->src[1]->type == GGML_TYPE_F32) {
  13542. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13543. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13544. }
  13545. if (node->src[1]->type == GGML_TYPE_F16) {
  13546. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13547. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13548. }
  13549. work_size = MAX(work_size, cur);
  13550. } break;
  13551. case GGML_OP_WIN_PART:
  13552. case GGML_OP_WIN_UNPART:
  13553. case GGML_OP_MAP_UNARY:
  13554. case GGML_OP_MAP_BINARY:
  13555. case GGML_OP_MAP_CUSTOM1:
  13556. case GGML_OP_MAP_CUSTOM2:
  13557. case GGML_OP_MAP_CUSTOM3:
  13558. {
  13559. n_tasks = 1;
  13560. } break;
  13561. case GGML_OP_CROSS_ENTROPY_LOSS:
  13562. {
  13563. n_tasks = n_threads;
  13564. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13565. work_size = MAX(work_size, cur);
  13566. } break;
  13567. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13568. {
  13569. n_tasks = n_threads;
  13570. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13571. work_size = MAX(work_size, cur);
  13572. } break;
  13573. case GGML_OP_NONE:
  13574. {
  13575. n_tasks = 1;
  13576. } break;
  13577. case GGML_OP_COUNT:
  13578. {
  13579. GGML_ASSERT(false);
  13580. } break;
  13581. }
  13582. cplan.n_tasks[i] = n_tasks;
  13583. }
  13584. if (work_size > 0) {
  13585. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13586. }
  13587. cplan.n_threads = n_threads;
  13588. cplan.work_size = work_size;
  13589. cplan.work_data = NULL;
  13590. return cplan;
  13591. }
  13592. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13593. {
  13594. GGML_ASSERT(cplan);
  13595. GGML_ASSERT(cplan->n_threads > 0);
  13596. if (cplan->work_size > 0) {
  13597. GGML_ASSERT(cplan->work_data);
  13598. }
  13599. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13600. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13601. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13602. }
  13603. }
  13604. }
  13605. const int n_threads = cplan->n_threads;
  13606. struct ggml_compute_state_shared state_shared = {
  13607. /*.cgraph =*/ cgraph,
  13608. /*.cgraph_plan =*/ cplan,
  13609. /*.perf_node_start_cycles =*/ 0,
  13610. /*.perf_node_start_time_us =*/ 0,
  13611. /*.n_threads =*/ n_threads,
  13612. /*.n_active =*/ n_threads,
  13613. /*.node_n =*/ -1,
  13614. /*.abort_callback =*/ NULL,
  13615. /*.abort_callback_data =*/ NULL,
  13616. };
  13617. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13618. // create thread pool
  13619. if (n_threads > 1) {
  13620. for (int j = 1; j < n_threads; ++j) {
  13621. workers[j] = (struct ggml_compute_state) {
  13622. .thrd = 0,
  13623. .ith = j,
  13624. .shared = &state_shared,
  13625. };
  13626. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13627. GGML_ASSERT(rc == 0);
  13628. }
  13629. }
  13630. workers[0].ith = 0;
  13631. workers[0].shared = &state_shared;
  13632. const int64_t perf_start_cycles = ggml_perf_cycles();
  13633. const int64_t perf_start_time_us = ggml_perf_time_us();
  13634. // this is a work thread too
  13635. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13636. // don't leave affinity set on the main thread
  13637. clear_numa_thread_affinity();
  13638. // join or kill thread pool
  13639. if (n_threads > 1) {
  13640. for (int j = 1; j < n_threads; j++) {
  13641. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13642. GGML_ASSERT(rc == 0);
  13643. }
  13644. }
  13645. // performance stats (graph)
  13646. {
  13647. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13648. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13649. cgraph->perf_runs++;
  13650. cgraph->perf_cycles += perf_cycles_cur;
  13651. cgraph->perf_time_us += perf_time_us_cur;
  13652. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13653. __func__, cgraph->perf_runs,
  13654. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13655. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13656. (double) perf_time_us_cur / 1000.0,
  13657. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13658. }
  13659. return compute_status;
  13660. }
  13661. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13662. for (int i = 0; i < cgraph->n_nodes; i++) {
  13663. struct ggml_tensor * grad = cgraph->grads[i];
  13664. if (grad) {
  13665. ggml_set_zero(grad);
  13666. }
  13667. }
  13668. }
  13669. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13670. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13671. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13672. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13673. ggml_graph_compute(cgraph, &cplan);
  13674. }
  13675. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13676. for (int i = 0; i < cgraph->n_leafs; i++) {
  13677. struct ggml_tensor * leaf = cgraph->leafs[i];
  13678. if (strcmp(leaf->name, name) == 0) {
  13679. return leaf;
  13680. }
  13681. }
  13682. for (int i = 0; i < cgraph->n_nodes; i++) {
  13683. struct ggml_tensor * node = cgraph->nodes[i];
  13684. if (strcmp(node->name, name) == 0) {
  13685. return node;
  13686. }
  13687. }
  13688. return NULL;
  13689. }
  13690. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13691. const int64_t * ne = tensor->ne;
  13692. const size_t * nb = tensor->nb;
  13693. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13694. ggml_type_name(tensor->type),
  13695. ggml_op_name (tensor->op),
  13696. tensor->n_dims,
  13697. ne[0], ne[1], ne[2], ne[3],
  13698. nb[0], nb[1], nb[2], nb[3],
  13699. tensor->data,
  13700. tensor->name);
  13701. }
  13702. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13703. const int64_t * ne = tensor->ne;
  13704. const size_t * nb = tensor->nb;
  13705. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13706. arg,
  13707. ggml_type_name(tensor->type),
  13708. ggml_op_name (tensor->op),
  13709. tensor->n_dims,
  13710. ne[0], ne[1], ne[2], ne[3],
  13711. nb[0], nb[1], nb[2], nb[3],
  13712. tensor->data,
  13713. tensor->name);
  13714. }
  13715. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13716. uint64_t size_eval = 0;
  13717. // compute size of intermediate results
  13718. // TODO: does not take into account scratch buffers !!!!
  13719. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13720. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13721. }
  13722. // print
  13723. {
  13724. FILE * fout = stdout;
  13725. fprintf(fout, "\n");
  13726. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13727. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13728. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13729. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13730. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13731. // header
  13732. fprintf(fout, "\n");
  13733. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13734. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13735. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13736. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13737. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13738. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13739. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13740. }
  13741. // header
  13742. fprintf(fout, "\n");
  13743. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13744. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13745. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13746. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13747. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13748. if (cgraph->nodes[i]->src[j]) {
  13749. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13750. }
  13751. }
  13752. fprintf(fout, "\n");
  13753. }
  13754. fprintf(fout, "\n");
  13755. }
  13756. // write binary data
  13757. {
  13758. FILE * fout = fopen(fname, "wb");
  13759. if (!fout) {
  13760. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13761. return;
  13762. }
  13763. // header
  13764. {
  13765. const uint32_t magic = GGML_FILE_MAGIC;
  13766. const uint32_t version = GGML_FILE_VERSION;
  13767. const uint32_t n_leafs = cgraph->n_leafs;
  13768. const uint32_t nodes = cgraph->n_nodes;
  13769. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13770. fwrite(&version, sizeof(uint32_t), 1, fout);
  13771. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13772. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13773. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13774. }
  13775. // leafs
  13776. {
  13777. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13778. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13779. const uint32_t type = tensor->type;
  13780. const uint32_t op = tensor->op;
  13781. const uint32_t n_dims = tensor->n_dims;
  13782. fwrite(&type, sizeof(uint32_t), 1, fout);
  13783. fwrite(&op, sizeof(uint32_t), 1, fout);
  13784. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13785. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13786. const uint64_t ne = tensor->ne[j];
  13787. const uint64_t nb = tensor->nb[j];
  13788. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13789. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13790. }
  13791. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13792. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13793. // dump the data
  13794. // TODO: pad this to 32 byte boundary
  13795. {
  13796. const size_t size = ggml_nbytes(tensor);
  13797. fwrite(tensor->data, sizeof(char), size, fout);
  13798. }
  13799. }
  13800. }
  13801. // nodes
  13802. {
  13803. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13804. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13805. const uint32_t type = tensor->type;
  13806. const uint32_t op = tensor->op;
  13807. const uint32_t n_dims = tensor->n_dims;
  13808. fwrite(&type, sizeof(uint32_t), 1, fout);
  13809. fwrite(&op, sizeof(uint32_t), 1, fout);
  13810. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13811. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13812. const uint64_t ne = tensor->ne[j];
  13813. const uint64_t nb = tensor->nb[j];
  13814. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13815. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13816. }
  13817. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13818. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13819. // output the op arguments
  13820. {
  13821. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13822. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13823. args[j] = tensor->src[j];
  13824. }
  13825. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13826. if (args[j]) {
  13827. int32_t idx = -1;
  13828. // check if leaf
  13829. {
  13830. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13831. if (args[j] == cgraph->leafs[k]) {
  13832. idx = k;
  13833. break;
  13834. }
  13835. }
  13836. }
  13837. // check if node
  13838. if (idx == -1) {
  13839. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13840. if (args[j] == cgraph->nodes[k]) {
  13841. idx = GGML_MAX_NODES + k;
  13842. break;
  13843. }
  13844. }
  13845. }
  13846. if (idx == -1) {
  13847. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13848. return;
  13849. }
  13850. fwrite(&idx, sizeof(int32_t), 1, fout);
  13851. } else {
  13852. const int32_t nul = -1;
  13853. fwrite(&nul, sizeof(int32_t), 1, fout);
  13854. }
  13855. }
  13856. }
  13857. }
  13858. }
  13859. fclose(fout);
  13860. }
  13861. }
  13862. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13863. assert(*ctx_data == NULL);
  13864. assert(*ctx_eval == NULL);
  13865. struct ggml_cgraph result = { 0 };
  13866. struct ggml_tensor * data = NULL;
  13867. // read file into data
  13868. {
  13869. FILE * fin = fopen(fname, "rb");
  13870. if (!fin) {
  13871. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13872. return result;
  13873. }
  13874. size_t fsize = 0;
  13875. fseek(fin, 0, SEEK_END);
  13876. fsize = ftell(fin);
  13877. fseek(fin, 0, SEEK_SET);
  13878. // create the data context
  13879. {
  13880. const size_t overhead = 1*ggml_tensor_overhead();
  13881. struct ggml_init_params params = {
  13882. .mem_size = fsize + overhead,
  13883. .mem_buffer = NULL,
  13884. .no_alloc = false,
  13885. };
  13886. *ctx_data = ggml_init(params);
  13887. if (!*ctx_data) {
  13888. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13889. fclose(fin);
  13890. return result;
  13891. }
  13892. }
  13893. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13894. {
  13895. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13896. if (ret != fsize) {
  13897. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13898. fclose(fin);
  13899. return result;
  13900. }
  13901. }
  13902. fclose(fin);
  13903. }
  13904. // populate result
  13905. {
  13906. char * ptr = (char *) data->data;
  13907. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13908. if (magic != GGML_FILE_MAGIC) {
  13909. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13910. return result;
  13911. }
  13912. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13913. if (version != GGML_FILE_VERSION) {
  13914. fprintf(stderr, "%s: invalid version number\n", __func__);
  13915. return result;
  13916. }
  13917. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13918. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13919. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13920. result.n_leafs = n_leafs;
  13921. result.n_nodes = n_nodes;
  13922. // create the data context
  13923. {
  13924. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13925. struct ggml_init_params params = {
  13926. .mem_size = size_eval + overhead,
  13927. .mem_buffer = NULL,
  13928. .no_alloc = true,
  13929. };
  13930. *ctx_eval = ggml_init(params);
  13931. if (!*ctx_eval) {
  13932. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13933. return result;
  13934. }
  13935. }
  13936. // leafs
  13937. {
  13938. uint32_t type;
  13939. uint32_t op;
  13940. uint32_t n_dims;
  13941. for (uint32_t i = 0; i < n_leafs; ++i) {
  13942. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13943. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13944. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13945. int64_t ne[GGML_MAX_DIMS];
  13946. size_t nb[GGML_MAX_DIMS];
  13947. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13948. uint64_t ne_cur;
  13949. uint64_t nb_cur;
  13950. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13951. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13952. ne[j] = ne_cur;
  13953. nb[j] = nb_cur;
  13954. }
  13955. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13956. tensor->op = (enum ggml_op) op;
  13957. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13958. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13959. tensor->data = (void *) ptr;
  13960. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13961. tensor->nb[j] = nb[j];
  13962. }
  13963. result.leafs[i] = tensor;
  13964. ptr += ggml_nbytes(tensor);
  13965. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13966. }
  13967. }
  13968. ggml_set_no_alloc(*ctx_eval, false);
  13969. // nodes
  13970. {
  13971. uint32_t type;
  13972. uint32_t op;
  13973. uint32_t n_dims;
  13974. for (uint32_t i = 0; i < n_nodes; ++i) {
  13975. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13976. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13977. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13978. enum ggml_op eop = (enum ggml_op) op;
  13979. int64_t ne[GGML_MAX_DIMS];
  13980. size_t nb[GGML_MAX_DIMS];
  13981. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13982. uint64_t ne_cur;
  13983. uint64_t nb_cur;
  13984. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13985. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13986. ne[j] = ne_cur;
  13987. nb[j] = nb_cur;
  13988. }
  13989. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13990. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13991. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13992. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13993. // parse args
  13994. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13995. const int32_t arg_idx = ptr_arg_idx[j];
  13996. if (arg_idx == -1) {
  13997. continue;
  13998. }
  13999. if (arg_idx < GGML_MAX_NODES) {
  14000. args[j] = result.leafs[arg_idx];
  14001. } else {
  14002. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14003. }
  14004. }
  14005. // create the tensor
  14006. // "view" operations are handled differently
  14007. // TODO: handle inplace ops - currently a copy is always made
  14008. struct ggml_tensor * tensor = NULL;
  14009. switch (eop) {
  14010. // TODO: implement other view ops
  14011. case GGML_OP_RESHAPE:
  14012. {
  14013. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14014. } break;
  14015. case GGML_OP_VIEW:
  14016. {
  14017. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14018. size_t offs;
  14019. memcpy(&offs, ptr_op_params, sizeof(offs));
  14020. tensor->data = ((char *) tensor->data) + offs;
  14021. } break;
  14022. case GGML_OP_TRANSPOSE:
  14023. {
  14024. tensor = ggml_transpose(*ctx_eval, args[0]);
  14025. } break;
  14026. case GGML_OP_PERMUTE:
  14027. {
  14028. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14029. } break;
  14030. default:
  14031. {
  14032. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14033. tensor->op = eop;
  14034. } break;
  14035. }
  14036. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14037. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14038. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14039. tensor->nb[j] = nb[j];
  14040. }
  14041. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14042. tensor->src[j] = args[j];
  14043. }
  14044. result.nodes[i] = tensor;
  14045. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14046. }
  14047. }
  14048. }
  14049. return result;
  14050. }
  14051. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14052. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14053. GGML_PRINT("=== GRAPH ===\n");
  14054. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14055. for (int i = 0; i < cgraph->n_nodes; i++) {
  14056. struct ggml_tensor * node = cgraph->nodes[i];
  14057. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14058. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14059. i,
  14060. node->ne[0], node->ne[1], node->ne[2],
  14061. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14062. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14063. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14064. (double) node->perf_time_us / 1000.0,
  14065. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14066. }
  14067. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14068. for (int i = 0; i < cgraph->n_leafs; i++) {
  14069. struct ggml_tensor * node = cgraph->leafs[i];
  14070. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14071. i,
  14072. node->ne[0], node->ne[1],
  14073. ggml_op_name(node->op));
  14074. }
  14075. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14076. if (perf_total_per_op_us[i] == 0) {
  14077. continue;
  14078. }
  14079. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14080. }
  14081. GGML_PRINT("========================================\n");
  14082. }
  14083. // check if node is part of the graph
  14084. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14085. if (cgraph == NULL) {
  14086. return true;
  14087. }
  14088. for (int i = 0; i < cgraph->n_nodes; i++) {
  14089. if (cgraph->nodes[i] == node) {
  14090. return true;
  14091. }
  14092. }
  14093. return false;
  14094. }
  14095. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14096. for (int i = 0; i < cgraph->n_nodes; i++) {
  14097. struct ggml_tensor * parent = cgraph->nodes[i];
  14098. if (parent->grad == node) {
  14099. return parent;
  14100. }
  14101. }
  14102. return NULL;
  14103. }
  14104. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14105. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14106. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14107. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14108. gparent0 ? (void *) gparent0 : (void *) parent,
  14109. gparent0 ? "g" : "x",
  14110. gparent ? (void *) gparent : (void *) node,
  14111. gparent ? "g" : "x",
  14112. gparent ? "empty" : "vee",
  14113. gparent ? "dashed" : "solid",
  14114. label);
  14115. }
  14116. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14117. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14118. (void *) parent, "x",
  14119. (void *) node, "x",
  14120. label);
  14121. }
  14122. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14123. char color[16];
  14124. FILE * fp = fopen(filename, "w");
  14125. GGML_ASSERT(fp);
  14126. fprintf(fp, "digraph G {\n");
  14127. fprintf(fp, " newrank = true;\n");
  14128. fprintf(fp, " rankdir = LR;\n");
  14129. for (int i = 0; i < gb->n_nodes; i++) {
  14130. struct ggml_tensor * node = gb->nodes[i];
  14131. if (ggml_graph_get_parent(gb, node) != NULL) {
  14132. continue;
  14133. }
  14134. if (node->is_param) {
  14135. snprintf(color, sizeof(color), "yellow");
  14136. } else if (node->grad) {
  14137. if (ggml_graph_find(gf, node)) {
  14138. snprintf(color, sizeof(color), "green");
  14139. } else {
  14140. snprintf(color, sizeof(color), "lightblue");
  14141. }
  14142. } else {
  14143. snprintf(color, sizeof(color), "white");
  14144. }
  14145. fprintf(fp, " \"%p\" [ "
  14146. "style = filled; fillcolor = %s; shape = record; "
  14147. "label=\"",
  14148. (void *) node, color);
  14149. if (strlen(node->name) > 0) {
  14150. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14151. } else {
  14152. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14153. }
  14154. if (node->n_dims == 2) {
  14155. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14156. } else {
  14157. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14158. }
  14159. if (node->grad) {
  14160. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14161. } else {
  14162. fprintf(fp, "\"; ]\n");
  14163. }
  14164. }
  14165. for (int i = 0; i < gb->n_leafs; i++) {
  14166. struct ggml_tensor * node = gb->leafs[i];
  14167. snprintf(color, sizeof(color), "pink");
  14168. fprintf(fp, " \"%p\" [ "
  14169. "style = filled; fillcolor = %s; shape = record; "
  14170. "label=\"<x>",
  14171. (void *) node, color);
  14172. if (strlen(node->name) > 0) {
  14173. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14174. } else {
  14175. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14176. }
  14177. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14178. if (ggml_nelements(node) < 5) {
  14179. fprintf(fp, " | (");
  14180. for (int j = 0; j < ggml_nelements(node); j++) {
  14181. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14182. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14183. }
  14184. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14185. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14186. }
  14187. else {
  14188. fprintf(fp, "#");
  14189. }
  14190. if (j < ggml_nelements(node) - 1) {
  14191. fprintf(fp, ", ");
  14192. }
  14193. }
  14194. fprintf(fp, ")");
  14195. }
  14196. fprintf(fp, "\"; ]\n");
  14197. }
  14198. for (int i = 0; i < gb->n_nodes; i++) {
  14199. struct ggml_tensor * node = gb->nodes[i];
  14200. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14201. if (node->src[j]) {
  14202. char label[16];
  14203. snprintf(label, sizeof(label), "src %d", j);
  14204. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14205. }
  14206. }
  14207. }
  14208. for (int i = 0; i < gb->n_leafs; i++) {
  14209. struct ggml_tensor * node = gb->leafs[i];
  14210. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14211. if (node->src[j]) {
  14212. char label[16];
  14213. snprintf(label, sizeof(label), "src %d", j);
  14214. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14215. }
  14216. }
  14217. }
  14218. fprintf(fp, "}\n");
  14219. fclose(fp);
  14220. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14221. }
  14222. ////////////////////////////////////////////////////////////////////////////////
  14223. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14224. int i = 0;
  14225. for (int p = 0; p < np; ++p) {
  14226. const int64_t ne = ggml_nelements(ps[p]) ;
  14227. // TODO: add function to set tensor from array
  14228. for (int64_t j = 0; j < ne; ++j) {
  14229. ggml_set_f32_1d(ps[p], j, x[i++]);
  14230. }
  14231. }
  14232. }
  14233. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14234. int i = 0;
  14235. for (int p = 0; p < np; ++p) {
  14236. const int64_t ne = ggml_nelements(ps[p]) ;
  14237. // TODO: add function to get all elements at once
  14238. for (int64_t j = 0; j < ne; ++j) {
  14239. x[i++] = ggml_get_f32_1d(ps[p], j);
  14240. }
  14241. }
  14242. }
  14243. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14244. int i = 0;
  14245. for (int p = 0; p < np; ++p) {
  14246. const int64_t ne = ggml_nelements(ps[p]) ;
  14247. // TODO: add function to get all elements at once
  14248. for (int64_t j = 0; j < ne; ++j) {
  14249. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14250. }
  14251. }
  14252. }
  14253. //
  14254. // ADAM
  14255. //
  14256. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14257. //
  14258. static enum ggml_opt_result ggml_opt_adam(
  14259. struct ggml_context * ctx,
  14260. struct ggml_opt_context * opt,
  14261. struct ggml_opt_params params,
  14262. struct ggml_tensor * f,
  14263. struct ggml_cgraph * gf,
  14264. struct ggml_cgraph * gb) {
  14265. GGML_ASSERT(ggml_is_scalar(f));
  14266. // these will store the parameters we want to optimize
  14267. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14268. int np = 0;
  14269. int nx = 0;
  14270. for (int i = 0; i < gf->n_nodes; ++i) {
  14271. if (gf->nodes[i]->is_param) {
  14272. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14273. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14274. ps[np++] = gf->nodes[i];
  14275. nx += ggml_nelements(gf->nodes[i]);
  14276. }
  14277. }
  14278. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14279. int iter = opt->iter;
  14280. ggml_opt_init(opt->ctx, opt, params, nx);
  14281. opt->iter = iter;
  14282. }
  14283. // constants
  14284. const float sched = params.adam.sched;
  14285. const float decay = params.adam.decay * sched;
  14286. const float alpha = params.adam.alpha * sched;
  14287. const float beta1 = params.adam.beta1;
  14288. const float beta2 = params.adam.beta2;
  14289. const float eps = params.adam.eps;
  14290. float * x = opt->adam.x->data; // view of the parameters
  14291. float * g1 = opt->adam.g1->data; // gradient
  14292. float * g2 = opt->adam.g2->data; // gradient squared
  14293. float * m = opt->adam.m->data; // first moment
  14294. float * v = opt->adam.v->data; // second moment
  14295. float * mh = opt->adam.mh->data; // first moment hat
  14296. float * vh = opt->adam.vh->data; // second moment hat
  14297. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14298. // update view
  14299. ggml_opt_get_params(np, ps, x);
  14300. // compute the function value
  14301. ggml_graph_reset (gf);
  14302. ggml_set_f32 (f->grad, 1.0f);
  14303. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14304. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14305. opt->adam.fx_best = opt->adam.fx_prev;
  14306. if (pf) {
  14307. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14308. }
  14309. // initialize
  14310. if (opt->just_initialized) {
  14311. opt->adam.n_no_improvement = 0;
  14312. opt->just_initialized = false;
  14313. }
  14314. float * fx_best = &opt->adam.fx_best;
  14315. float * fx_prev = &opt->adam.fx_prev;
  14316. int * n_no_improvement = &opt->adam.n_no_improvement;
  14317. int iter0 = opt->iter;
  14318. // run the optimizer
  14319. for (int t = 0; t < params.adam.n_iter; ++t) {
  14320. opt->iter = iter0 + t + 1;
  14321. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14322. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14323. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14324. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14325. for (int i = 0; i < np; ++i) {
  14326. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14327. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14328. }
  14329. const int64_t t_start_wall = ggml_time_us();
  14330. const int64_t t_start_cpu = ggml_cycles();
  14331. UNUSED(t_start_wall);
  14332. UNUSED(t_start_cpu);
  14333. {
  14334. // update the gradient
  14335. ggml_opt_get_grad(np, ps, g1);
  14336. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14337. ggml_vec_scale_f32(nx, m, beta1);
  14338. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14339. // g2 = g1^2
  14340. ggml_vec_sqr_f32 (nx, g2, g1);
  14341. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14342. ggml_vec_scale_f32(nx, v, beta2);
  14343. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14344. // m^hat = m_t / (1 - beta1^t)
  14345. // v^hat = v_t / (1 - beta2^t)
  14346. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14347. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14348. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14349. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14350. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14351. ggml_vec_cpy_f32 (nx, mh, m);
  14352. ggml_vec_cpy_f32 (nx, vh, v);
  14353. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14354. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14355. ggml_vec_sqrt_f32 (nx, vh, vh);
  14356. ggml_vec_acc1_f32 (nx, vh, eps);
  14357. ggml_vec_div_f32 (nx, mh, mh, vh);
  14358. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14359. ggml_vec_sub_f32 (nx, x, x, mh);
  14360. // update the parameters
  14361. ggml_opt_set_params(np, ps, x);
  14362. }
  14363. ggml_graph_reset (gf);
  14364. ggml_set_f32 (f->grad, 1.0f);
  14365. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14366. const float fx = ggml_get_f32_1d(f, 0);
  14367. // check convergence
  14368. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14369. GGML_PRINT_DEBUG("converged\n");
  14370. return GGML_OPT_OK;
  14371. }
  14372. // delta-based convergence test
  14373. if (pf != NULL) {
  14374. // need at least params.past iterations to start checking for convergence
  14375. if (params.past <= iter0 + t) {
  14376. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14377. if (fabsf(rate) < params.delta) {
  14378. return GGML_OPT_OK;
  14379. }
  14380. }
  14381. pf[(iter0 + t)%params.past] = fx;
  14382. }
  14383. // check for improvement
  14384. if (params.max_no_improvement > 0) {
  14385. if (fx_best[0] > fx) {
  14386. fx_best[0] = fx;
  14387. n_no_improvement[0] = 0;
  14388. } else {
  14389. ++n_no_improvement[0];
  14390. if (n_no_improvement[0] >= params.max_no_improvement) {
  14391. return GGML_OPT_OK;
  14392. }
  14393. }
  14394. }
  14395. fx_prev[0] = fx;
  14396. {
  14397. const int64_t t_end_cpu = ggml_cycles();
  14398. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14399. UNUSED(t_end_cpu);
  14400. const int64_t t_end_wall = ggml_time_us();
  14401. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14402. UNUSED(t_end_wall);
  14403. }
  14404. }
  14405. return GGML_OPT_DID_NOT_CONVERGE;
  14406. }
  14407. //
  14408. // L-BFGS
  14409. //
  14410. // the L-BFGS implementation below is based on the following implementation:
  14411. //
  14412. // https://github.com/chokkan/liblbfgs
  14413. //
  14414. struct ggml_lbfgs_iteration_data {
  14415. float alpha;
  14416. float ys;
  14417. float * s;
  14418. float * y;
  14419. };
  14420. static enum ggml_opt_result linesearch_backtracking(
  14421. struct ggml_context * ctx,
  14422. const struct ggml_opt_params * params,
  14423. int nx,
  14424. float * x,
  14425. float * fx,
  14426. float * g,
  14427. float * d,
  14428. float * step,
  14429. const float * xp,
  14430. struct ggml_tensor * f,
  14431. struct ggml_cgraph * gf,
  14432. struct ggml_cgraph * gb,
  14433. const int np,
  14434. struct ggml_tensor * ps[]) {
  14435. int count = 0;
  14436. float width = 0.0f;
  14437. float dg = 0.0f;
  14438. float finit = 0.0f;
  14439. float dginit = 0.0f;
  14440. float dgtest = 0.0f;
  14441. const float dec = 0.5f;
  14442. const float inc = 2.1f;
  14443. if (*step <= 0.f) {
  14444. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14445. }
  14446. // compute the initial gradient in the search direction
  14447. ggml_vec_dot_f32(nx, &dginit, g, d);
  14448. // make sure that d points to a descent direction
  14449. if (0 < dginit) {
  14450. return GGML_LINESEARCH_FAIL;
  14451. }
  14452. // initialize local variables
  14453. finit = *fx;
  14454. dgtest = params->lbfgs.ftol*dginit;
  14455. while (true) {
  14456. ggml_vec_cpy_f32(nx, x, xp);
  14457. ggml_vec_mad_f32(nx, x, d, *step);
  14458. // evaluate the function and gradient values
  14459. {
  14460. ggml_opt_set_params(np, ps, x);
  14461. ggml_graph_reset (gf);
  14462. ggml_set_f32 (f->grad, 1.0f);
  14463. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14464. ggml_opt_get_grad(np, ps, g);
  14465. *fx = ggml_get_f32_1d(f, 0);
  14466. }
  14467. ++count;
  14468. if (*fx > finit + (*step)*dgtest) {
  14469. width = dec;
  14470. } else {
  14471. // Armijo condition is satisfied
  14472. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14473. return count;
  14474. }
  14475. ggml_vec_dot_f32(nx, &dg, g, d);
  14476. // check the Wolfe condition
  14477. if (dg < params->lbfgs.wolfe * dginit) {
  14478. width = inc;
  14479. } else {
  14480. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14481. // regular Wolfe conditions
  14482. return count;
  14483. }
  14484. if(dg > -params->lbfgs.wolfe*dginit) {
  14485. width = dec;
  14486. } else {
  14487. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14488. return count;
  14489. }
  14490. return count;
  14491. }
  14492. }
  14493. if (*step < params->lbfgs.min_step) {
  14494. return GGML_LINESEARCH_MINIMUM_STEP;
  14495. }
  14496. if (*step > params->lbfgs.max_step) {
  14497. return GGML_LINESEARCH_MAXIMUM_STEP;
  14498. }
  14499. if (params->lbfgs.max_linesearch <= count) {
  14500. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14501. }
  14502. (*step) *= width;
  14503. }
  14504. return GGML_LINESEARCH_FAIL;
  14505. }
  14506. static enum ggml_opt_result ggml_opt_lbfgs(
  14507. struct ggml_context * ctx,
  14508. struct ggml_opt_context * opt,
  14509. struct ggml_opt_params params,
  14510. struct ggml_tensor * f,
  14511. struct ggml_cgraph * gf,
  14512. struct ggml_cgraph * gb) {
  14513. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14514. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14515. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14516. return GGML_OPT_INVALID_WOLFE;
  14517. }
  14518. }
  14519. const int m = params.lbfgs.m;
  14520. // these will store the parameters we want to optimize
  14521. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14522. int np = 0;
  14523. int nx = 0;
  14524. for (int i = 0; i < gf->n_nodes; ++i) {
  14525. if (gf->nodes[i]->is_param) {
  14526. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14527. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14528. ps[np++] = gf->nodes[i];
  14529. nx += ggml_nelements(gf->nodes[i]);
  14530. }
  14531. }
  14532. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14533. int iter = opt->iter;
  14534. ggml_opt_init(ctx, opt, params, nx);
  14535. opt->iter = iter;
  14536. }
  14537. float * x = opt->lbfgs.x->data; // current parameters
  14538. float * xp = opt->lbfgs.xp->data; // previous parameters
  14539. float * g = opt->lbfgs.g->data; // current gradient
  14540. float * gp = opt->lbfgs.gp->data; // previous gradient
  14541. float * d = opt->lbfgs.d->data; // search direction
  14542. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14543. float fx = 0.0f; // cost function value
  14544. float xnorm = 0.0f; // ||x||
  14545. float gnorm = 0.0f; // ||g||
  14546. // initialize x from the graph nodes
  14547. ggml_opt_get_params(np, ps, x);
  14548. // the L-BFGS memory
  14549. float * lm_alpha = opt->lbfgs.lmal->data;
  14550. float * lm_ys = opt->lbfgs.lmys->data;
  14551. float * lm_s = opt->lbfgs.lms->data;
  14552. float * lm_y = opt->lbfgs.lmy->data;
  14553. // evaluate the function value and its gradient
  14554. {
  14555. ggml_opt_set_params(np, ps, x);
  14556. ggml_graph_reset (gf);
  14557. ggml_set_f32 (f->grad, 1.0f);
  14558. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14559. ggml_opt_get_grad(np, ps, g);
  14560. fx = ggml_get_f32_1d(f, 0);
  14561. }
  14562. // search direction = -gradient
  14563. ggml_vec_neg_f32(nx, d, g);
  14564. // ||x||, ||g||
  14565. ggml_vec_norm_f32(nx, &xnorm, x);
  14566. ggml_vec_norm_f32(nx, &gnorm, g);
  14567. if (xnorm < 1.0f) {
  14568. xnorm = 1.0f;
  14569. }
  14570. // already optimized
  14571. if (gnorm/xnorm <= params.lbfgs.eps) {
  14572. return GGML_OPT_OK;
  14573. }
  14574. if (opt->just_initialized) {
  14575. if (pf) {
  14576. pf[0] = fx;
  14577. }
  14578. opt->lbfgs.fx_best = fx;
  14579. // initial step
  14580. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14581. opt->lbfgs.j = 0;
  14582. opt->lbfgs.k = 1;
  14583. opt->lbfgs.end = 0;
  14584. opt->lbfgs.n_no_improvement = 0;
  14585. opt->just_initialized = false;
  14586. }
  14587. float * fx_best = &opt->lbfgs.fx_best;
  14588. float * step = &opt->lbfgs.step;
  14589. int * j = &opt->lbfgs.j;
  14590. int * k = &opt->lbfgs.k;
  14591. int * end = &opt->lbfgs.end;
  14592. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14593. int ls = 0;
  14594. int bound = 0;
  14595. float ys = 0.0f;
  14596. float yy = 0.0f;
  14597. float beta = 0.0f;
  14598. int it = 0;
  14599. while (true) {
  14600. // store the current position and gradient vectors
  14601. ggml_vec_cpy_f32(nx, xp, x);
  14602. ggml_vec_cpy_f32(nx, gp, g);
  14603. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14604. if (ls < 0) {
  14605. // linesearch failed - go back to the previous point and return
  14606. ggml_vec_cpy_f32(nx, x, xp);
  14607. ggml_vec_cpy_f32(nx, g, gp);
  14608. return ls;
  14609. }
  14610. ggml_vec_norm_f32(nx, &xnorm, x);
  14611. ggml_vec_norm_f32(nx, &gnorm, g);
  14612. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14613. if (xnorm < 1.0f) {
  14614. xnorm = 1.0f;
  14615. }
  14616. if (gnorm/xnorm <= params.lbfgs.eps) {
  14617. // converged
  14618. return GGML_OPT_OK;
  14619. }
  14620. // delta-based convergence test
  14621. if (pf != NULL) {
  14622. // need at least params.past iterations to start checking for convergence
  14623. if (params.past <= k[0]) {
  14624. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14625. if (fabsf(rate) < params.delta) {
  14626. return GGML_OPT_OK;
  14627. }
  14628. }
  14629. pf[k[0]%params.past] = fx;
  14630. }
  14631. // check for improvement
  14632. if (params.max_no_improvement > 0) {
  14633. if (fx < fx_best[0]) {
  14634. fx_best[0] = fx;
  14635. n_no_improvement[0] = 0;
  14636. } else {
  14637. n_no_improvement[0]++;
  14638. if (n_no_improvement[0] >= params.max_no_improvement) {
  14639. return GGML_OPT_OK;
  14640. }
  14641. }
  14642. }
  14643. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14644. // reached the maximum number of iterations
  14645. return GGML_OPT_DID_NOT_CONVERGE;
  14646. }
  14647. // update vectors s and y:
  14648. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14649. // y_{k+1} = g_{k+1} - g_{k}.
  14650. //
  14651. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14652. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14653. // compute scalars ys and yy:
  14654. // ys = y^t \cdot s -> 1 / \rho.
  14655. // yy = y^t \cdot y.
  14656. //
  14657. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14658. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14659. lm_ys[end[0]] = ys;
  14660. // find new search direction
  14661. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14662. bound = (m <= k[0]) ? m : k[0];
  14663. k[0]++;
  14664. it++;
  14665. end[0] = (end[0] + 1)%m;
  14666. // initialize search direction with -g
  14667. ggml_vec_neg_f32(nx, d, g);
  14668. j[0] = end[0];
  14669. for (int i = 0; i < bound; ++i) {
  14670. j[0] = (j[0] + m - 1) % m;
  14671. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14672. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14673. lm_alpha[j[0]] /= lm_ys[j[0]];
  14674. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14675. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14676. }
  14677. ggml_vec_scale_f32(nx, d, ys/yy);
  14678. for (int i = 0; i < bound; ++i) {
  14679. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14680. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14681. beta /= lm_ys[j[0]];
  14682. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14683. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14684. j[0] = (j[0] + 1)%m;
  14685. }
  14686. step[0] = 1.0;
  14687. }
  14688. return GGML_OPT_DID_NOT_CONVERGE;
  14689. }
  14690. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14691. struct ggml_opt_params result;
  14692. switch (type) {
  14693. case GGML_OPT_ADAM:
  14694. {
  14695. result = (struct ggml_opt_params) {
  14696. .type = GGML_OPT_ADAM,
  14697. .n_threads = 1,
  14698. .past = 0,
  14699. .delta = 1e-5f,
  14700. .max_no_improvement = 100,
  14701. .print_forward_graph = true,
  14702. .print_backward_graph = true,
  14703. .adam = {
  14704. .n_iter = 10000,
  14705. .sched = 1.000f,
  14706. .decay = 0.001f,
  14707. .alpha = 0.001f,
  14708. .beta1 = 0.9f,
  14709. .beta2 = 0.999f,
  14710. .eps = 1e-8f,
  14711. .eps_f = 1e-5f,
  14712. .eps_g = 1e-3f,
  14713. },
  14714. };
  14715. } break;
  14716. case GGML_OPT_LBFGS:
  14717. {
  14718. result = (struct ggml_opt_params) {
  14719. .type = GGML_OPT_LBFGS,
  14720. .n_threads = 1,
  14721. .past = 0,
  14722. .delta = 1e-5f,
  14723. .max_no_improvement = 0,
  14724. .print_forward_graph = true,
  14725. .print_backward_graph = true,
  14726. .lbfgs = {
  14727. .m = 6,
  14728. .n_iter = 100,
  14729. .max_linesearch = 20,
  14730. .eps = 1e-5f,
  14731. .ftol = 1e-4f,
  14732. .wolfe = 0.9f,
  14733. .min_step = 1e-20f,
  14734. .max_step = 1e+20f,
  14735. .linesearch = GGML_LINESEARCH_DEFAULT,
  14736. },
  14737. };
  14738. } break;
  14739. }
  14740. return result;
  14741. }
  14742. GGML_API void ggml_opt_init(
  14743. struct ggml_context * ctx,
  14744. struct ggml_opt_context * opt,
  14745. struct ggml_opt_params params,
  14746. int64_t nx) {
  14747. opt->ctx = ctx;
  14748. opt->params = params;
  14749. opt->iter = 0;
  14750. opt->nx = nx;
  14751. opt->just_initialized = true;
  14752. switch (opt->params.type) {
  14753. case GGML_OPT_ADAM:
  14754. {
  14755. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14756. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14757. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14758. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14759. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14760. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14761. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14762. opt->adam.pf = params.past > 0
  14763. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14764. : NULL;
  14765. ggml_set_zero(opt->adam.x);
  14766. ggml_set_zero(opt->adam.g1);
  14767. ggml_set_zero(opt->adam.g2);
  14768. ggml_set_zero(opt->adam.m);
  14769. ggml_set_zero(opt->adam.v);
  14770. ggml_set_zero(opt->adam.mh);
  14771. ggml_set_zero(opt->adam.vh);
  14772. if (opt->adam.pf) {
  14773. ggml_set_zero(opt->adam.pf);
  14774. }
  14775. } break;
  14776. case GGML_OPT_LBFGS:
  14777. {
  14778. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14779. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14780. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14781. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14782. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14783. opt->lbfgs.pf = params.past > 0
  14784. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14785. : NULL;
  14786. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14787. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14788. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14789. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14790. ggml_set_zero(opt->lbfgs.x);
  14791. ggml_set_zero(opt->lbfgs.xp);
  14792. ggml_set_zero(opt->lbfgs.g);
  14793. ggml_set_zero(opt->lbfgs.gp);
  14794. ggml_set_zero(opt->lbfgs.d);
  14795. if (opt->lbfgs.pf) {
  14796. ggml_set_zero(opt->lbfgs.pf);
  14797. }
  14798. ggml_set_zero(opt->lbfgs.lmal);
  14799. ggml_set_zero(opt->lbfgs.lmys);
  14800. ggml_set_zero(opt->lbfgs.lms);
  14801. ggml_set_zero(opt->lbfgs.lmy);
  14802. } break;
  14803. }
  14804. }
  14805. enum ggml_opt_result ggml_opt(
  14806. struct ggml_context * ctx,
  14807. struct ggml_opt_params params,
  14808. struct ggml_tensor * f) {
  14809. bool free_ctx = false;
  14810. if (ctx == NULL) {
  14811. struct ggml_init_params params_ctx = {
  14812. .mem_size = 16*1024*1024,
  14813. .mem_buffer = NULL,
  14814. .no_alloc = false,
  14815. };
  14816. ctx = ggml_init(params_ctx);
  14817. if (ctx == NULL) {
  14818. return GGML_OPT_NO_CONTEXT;
  14819. }
  14820. free_ctx = true;
  14821. }
  14822. enum ggml_opt_result result = GGML_OPT_OK;
  14823. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14824. ggml_opt_init(ctx, opt, params, 0);
  14825. result = ggml_opt_resume(ctx, opt, f);
  14826. if (free_ctx) {
  14827. ggml_free(ctx);
  14828. }
  14829. return result;
  14830. }
  14831. enum ggml_opt_result ggml_opt_resume(
  14832. struct ggml_context * ctx,
  14833. struct ggml_opt_context * opt,
  14834. struct ggml_tensor * f) {
  14835. // build forward + backward compute graphs
  14836. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14837. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14838. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14839. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14840. *gf = ggml_build_forward (f);
  14841. *gb = ggml_build_backward(ctx, gf, true);
  14842. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14843. }
  14844. enum ggml_opt_result ggml_opt_resume_g(
  14845. struct ggml_context * ctx,
  14846. struct ggml_opt_context * opt,
  14847. struct ggml_tensor * f,
  14848. struct ggml_cgraph * gf,
  14849. struct ggml_cgraph * gb) {
  14850. // build forward + backward compute graphs
  14851. enum ggml_opt_result result = GGML_OPT_OK;
  14852. switch (opt->params.type) {
  14853. case GGML_OPT_ADAM:
  14854. {
  14855. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14856. } break;
  14857. case GGML_OPT_LBFGS:
  14858. {
  14859. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14860. } break;
  14861. }
  14862. if (opt->params.print_forward_graph) {
  14863. ggml_graph_print (gf);
  14864. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14865. }
  14866. if (opt->params.print_backward_graph) {
  14867. ggml_graph_print (gb);
  14868. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14869. }
  14870. return result;
  14871. }
  14872. ////////////////////////////////////////////////////////////////////////////////
  14873. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14874. assert(k % QK4_0 == 0);
  14875. const int nb = k / QK4_0;
  14876. for (int b = 0; b < n; b += k) {
  14877. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14878. quantize_row_q4_0_reference(src + b, y, k);
  14879. for (int i = 0; i < nb; i++) {
  14880. for (int j = 0; j < QK4_0; j += 2) {
  14881. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14882. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14883. hist[vi0]++;
  14884. hist[vi1]++;
  14885. }
  14886. }
  14887. }
  14888. return (n/QK4_0*sizeof(block_q4_0));
  14889. }
  14890. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14891. assert(k % QK4_1 == 0);
  14892. const int nb = k / QK4_1;
  14893. for (int b = 0; b < n; b += k) {
  14894. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14895. quantize_row_q4_1_reference(src + b, y, k);
  14896. for (int i = 0; i < nb; i++) {
  14897. for (int j = 0; j < QK4_1; j += 2) {
  14898. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14899. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14900. hist[vi0]++;
  14901. hist[vi1]++;
  14902. }
  14903. }
  14904. }
  14905. return (n/QK4_1*sizeof(block_q4_1));
  14906. }
  14907. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14908. assert(k % QK5_0 == 0);
  14909. const int nb = k / QK5_0;
  14910. for (int b = 0; b < n; b += k) {
  14911. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14912. quantize_row_q5_0_reference(src + b, y, k);
  14913. for (int i = 0; i < nb; i++) {
  14914. uint32_t qh;
  14915. memcpy(&qh, &y[i].qh, sizeof(qh));
  14916. for (int j = 0; j < QK5_0; j += 2) {
  14917. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14918. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14919. // cast to 16 bins
  14920. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14921. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14922. hist[vi0]++;
  14923. hist[vi1]++;
  14924. }
  14925. }
  14926. }
  14927. return (n/QK5_0*sizeof(block_q5_0));
  14928. }
  14929. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14930. assert(k % QK5_1 == 0);
  14931. const int nb = k / QK5_1;
  14932. for (int b = 0; b < n; b += k) {
  14933. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14934. quantize_row_q5_1_reference(src + b, y, k);
  14935. for (int i = 0; i < nb; i++) {
  14936. uint32_t qh;
  14937. memcpy(&qh, &y[i].qh, sizeof(qh));
  14938. for (int j = 0; j < QK5_1; j += 2) {
  14939. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14940. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14941. // cast to 16 bins
  14942. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14943. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14944. hist[vi0]++;
  14945. hist[vi1]++;
  14946. }
  14947. }
  14948. }
  14949. return (n/QK5_1*sizeof(block_q5_1));
  14950. }
  14951. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14952. assert(k % QK8_0 == 0);
  14953. const int nb = k / QK8_0;
  14954. for (int b = 0; b < n; b += k) {
  14955. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14956. quantize_row_q8_0_reference(src + b, y, k);
  14957. for (int i = 0; i < nb; i++) {
  14958. for (int j = 0; j < QK8_0; ++j) {
  14959. const int8_t vi = y[i].qs[j];
  14960. hist[vi/16 + 8]++;
  14961. }
  14962. }
  14963. }
  14964. return (n/QK8_0*sizeof(block_q8_0));
  14965. }
  14966. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14967. size_t result = 0;
  14968. switch (type) {
  14969. case GGML_TYPE_Q4_0:
  14970. {
  14971. GGML_ASSERT(start % QK4_0 == 0);
  14972. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14973. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14974. } break;
  14975. case GGML_TYPE_Q4_1:
  14976. {
  14977. GGML_ASSERT(start % QK4_1 == 0);
  14978. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14979. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14980. } break;
  14981. case GGML_TYPE_Q5_0:
  14982. {
  14983. GGML_ASSERT(start % QK5_0 == 0);
  14984. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14985. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14986. } break;
  14987. case GGML_TYPE_Q5_1:
  14988. {
  14989. GGML_ASSERT(start % QK5_1 == 0);
  14990. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14991. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14992. } break;
  14993. case GGML_TYPE_Q8_0:
  14994. {
  14995. GGML_ASSERT(start % QK8_0 == 0);
  14996. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14997. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14998. } break;
  14999. #ifdef GGML_USE_K_QUANTS
  15000. case GGML_TYPE_Q2_K:
  15001. {
  15002. GGML_ASSERT(start % QK_K == 0);
  15003. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15004. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15005. } break;
  15006. case GGML_TYPE_Q3_K:
  15007. {
  15008. GGML_ASSERT(start % QK_K == 0);
  15009. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15010. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15011. } break;
  15012. case GGML_TYPE_Q4_K:
  15013. {
  15014. GGML_ASSERT(start % QK_K == 0);
  15015. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15016. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15017. } break;
  15018. case GGML_TYPE_Q5_K:
  15019. {
  15020. GGML_ASSERT(start % QK_K == 0);
  15021. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15022. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15023. } break;
  15024. case GGML_TYPE_Q6_K:
  15025. {
  15026. GGML_ASSERT(start % QK_K == 0);
  15027. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15028. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15029. } break;
  15030. #endif
  15031. case GGML_TYPE_F16:
  15032. {
  15033. int elemsize = sizeof(ggml_fp16_t);
  15034. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15035. result = n * elemsize;
  15036. } break;
  15037. case GGML_TYPE_F32:
  15038. {
  15039. int elemsize = sizeof(float);
  15040. result = n * elemsize;
  15041. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15042. } break;
  15043. default:
  15044. assert(false);
  15045. }
  15046. return result;
  15047. }
  15048. ////////////////////////////////////////////////////////////////////////////////
  15049. int ggml_cpu_has_avx(void) {
  15050. #if defined(__AVX__)
  15051. return 1;
  15052. #else
  15053. return 0;
  15054. #endif
  15055. }
  15056. int ggml_cpu_has_avx2(void) {
  15057. #if defined(__AVX2__)
  15058. return 1;
  15059. #else
  15060. return 0;
  15061. #endif
  15062. }
  15063. int ggml_cpu_has_avx512(void) {
  15064. #if defined(__AVX512F__)
  15065. return 1;
  15066. #else
  15067. return 0;
  15068. #endif
  15069. }
  15070. int ggml_cpu_has_avx512_vbmi(void) {
  15071. #if defined(__AVX512VBMI__)
  15072. return 1;
  15073. #else
  15074. return 0;
  15075. #endif
  15076. }
  15077. int ggml_cpu_has_avx512_vnni(void) {
  15078. #if defined(__AVX512VNNI__)
  15079. return 1;
  15080. #else
  15081. return 0;
  15082. #endif
  15083. }
  15084. int ggml_cpu_has_fma(void) {
  15085. #if defined(__FMA__)
  15086. return 1;
  15087. #else
  15088. return 0;
  15089. #endif
  15090. }
  15091. int ggml_cpu_has_neon(void) {
  15092. #if defined(__ARM_NEON)
  15093. return 1;
  15094. #else
  15095. return 0;
  15096. #endif
  15097. }
  15098. int ggml_cpu_has_arm_fma(void) {
  15099. #if defined(__ARM_FEATURE_FMA)
  15100. return 1;
  15101. #else
  15102. return 0;
  15103. #endif
  15104. }
  15105. int ggml_cpu_has_f16c(void) {
  15106. #if defined(__F16C__)
  15107. return 1;
  15108. #else
  15109. return 0;
  15110. #endif
  15111. }
  15112. int ggml_cpu_has_fp16_va(void) {
  15113. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15114. return 1;
  15115. #else
  15116. return 0;
  15117. #endif
  15118. }
  15119. int ggml_cpu_has_wasm_simd(void) {
  15120. #if defined(__wasm_simd128__)
  15121. return 1;
  15122. #else
  15123. return 0;
  15124. #endif
  15125. }
  15126. int ggml_cpu_has_blas(void) {
  15127. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15128. return 1;
  15129. #else
  15130. return 0;
  15131. #endif
  15132. }
  15133. int ggml_cpu_has_cublas(void) {
  15134. #if defined(GGML_USE_CUBLAS)
  15135. return 1;
  15136. #else
  15137. return 0;
  15138. #endif
  15139. }
  15140. int ggml_cpu_has_clblast(void) {
  15141. #if defined(GGML_USE_CLBLAST)
  15142. return 1;
  15143. #else
  15144. return 0;
  15145. #endif
  15146. }
  15147. int ggml_cpu_has_gpublas(void) {
  15148. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15149. }
  15150. int ggml_cpu_has_sse3(void) {
  15151. #if defined(__SSE3__)
  15152. return 1;
  15153. #else
  15154. return 0;
  15155. #endif
  15156. }
  15157. int ggml_cpu_has_vsx(void) {
  15158. #if defined(__POWER9_VECTOR__)
  15159. return 1;
  15160. #else
  15161. return 0;
  15162. #endif
  15163. }
  15164. ////////////////////////////////////////////////////////////////////////////////