k_quants.c 167 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #else
  13. #ifdef __wasm_simd128__
  14. #include <wasm_simd128.h>
  15. #else
  16. #ifdef __POWER9_VECTOR__
  17. #include <altivec.h>
  18. #undef bool
  19. #define bool _Bool
  20. #else
  21. #if defined(_MSC_VER) || defined(__MINGW32__)
  22. #include <intrin.h>
  23. #else
  24. #if !defined(__riscv)
  25. #include <immintrin.h>
  26. #endif
  27. #endif
  28. #endif
  29. #endif
  30. #endif
  31. #undef MIN
  32. #undef MAX
  33. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  34. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  35. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  36. //
  37. // 2-6 bit quantization in super-blocks
  38. //
  39. //
  40. // ===================== Helper functions
  41. //
  42. static inline int nearest_int(float fval) {
  43. assert(fval <= 4194303.f);
  44. float val = fval + 12582912.f;
  45. int i; memcpy(&i, &val, sizeof(int));
  46. return (i & 0x007fffff) - 0x00400000;
  47. }
  48. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  49. float max = 0;
  50. float amax = 0;
  51. for (int i = 0; i < n; ++i) {
  52. float ax = fabsf(x[i]);
  53. if (ax > amax) { amax = ax; max = x[i]; }
  54. }
  55. if (!amax) { // all zero
  56. for (int i = 0; i < n; ++i) {
  57. L[i] = 0;
  58. }
  59. return 0.f;
  60. }
  61. float iscale = -nmax / max;
  62. if (rmse_type == 0) {
  63. for (int i = 0; i < n; ++i) {
  64. int l = nearest_int(iscale * x[i]);
  65. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  66. }
  67. return 1/iscale;
  68. }
  69. int weight_type = rmse_type%2;
  70. float sumlx = 0;
  71. float suml2 = 0;
  72. for (int i = 0; i < n; ++i) {
  73. int l = nearest_int(iscale * x[i]);
  74. l = MAX(-nmax, MIN(nmax-1, l));
  75. L[i] = l + nmax;
  76. float w = weight_type == 1 ? x[i] * x[i] : 1;
  77. sumlx += w*x[i]*l;
  78. suml2 += w*l*l;
  79. }
  80. float scale = sumlx/suml2;
  81. float best = scale * sumlx;
  82. for (int itry = 0; itry < 3; ++itry) {
  83. iscale = 1/scale;
  84. float slx = 0;
  85. float sl2 = 0;
  86. bool changed = false;
  87. for (int i = 0; i < n; ++i) {
  88. int l = nearest_int(iscale * x[i]);
  89. l = MAX(-nmax, MIN(nmax-1, l));
  90. if (l + nmax != L[i]) { changed = true; }
  91. float w = weight_type == 1 ? x[i] * x[i] : 1.f;
  92. slx += w*x[i]*l;
  93. sl2 += w*l*l;
  94. }
  95. if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
  96. for (int i = 0; i < n; ++i) {
  97. int l = nearest_int(iscale * x[i]);
  98. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  99. }
  100. sumlx = slx; suml2 = sl2;
  101. scale = sumlx/suml2;
  102. best = scale * sumlx;
  103. }
  104. for (int itry = 0; itry < 5; ++itry) {
  105. int n_changed = 0;
  106. for (int i = 0; i < n; ++i) {
  107. float w = weight_type == 1 ? x[i]*x[i] : 1;
  108. int l = L[i] - nmax;
  109. float slx = sumlx - w*x[i]*l;
  110. if (slx > 0) {
  111. float sl2 = suml2 - w*l*l;
  112. int new_l = nearest_int(x[i] * sl2 / slx);
  113. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  114. if (new_l != l) {
  115. slx += w*x[i]*new_l;
  116. sl2 += w*new_l*new_l;
  117. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  118. L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
  119. scale = sumlx / suml2; best = scale * sumlx;
  120. ++n_changed;
  121. }
  122. }
  123. }
  124. }
  125. if (!n_changed) { break; }
  126. }
  127. if (rmse_type < 3) {
  128. return scale;
  129. }
  130. for (int is = -4; is <= 4; ++is) {
  131. if (is == 0) {
  132. continue;
  133. }
  134. iscale = -(nmax + 0.1f*is) / max;
  135. sumlx = suml2 = 0;
  136. for (int i = 0; i < n; ++i) {
  137. int l = nearest_int(iscale * x[i]);
  138. l = MAX(-nmax, MIN(nmax-1, l));
  139. float w = weight_type == 1 ? x[i] * x[i] : 1;
  140. sumlx += w*x[i]*l;
  141. suml2 += w*l*l;
  142. }
  143. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  144. for (int i = 0; i < n; ++i) {
  145. int l = nearest_int(iscale * x[i]);
  146. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  147. }
  148. scale = sumlx/suml2; best = scale*sumlx;
  149. }
  150. }
  151. return scale;
  152. }
  153. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  154. float max = 0;
  155. float amax = 0;
  156. for (int i = 0; i < n; ++i) {
  157. float ax = fabsf(x[i]);
  158. if (ax > amax) { amax = ax; max = x[i]; }
  159. }
  160. if (!amax) { // all zero
  161. for (int i = 0; i < n; ++i) { L[i] = 0; }
  162. return 0.f;
  163. }
  164. float iscale = -nmax / max;
  165. if (do_rmse) {
  166. float sumlx = 0;
  167. float suml2 = 0;
  168. for (int i = 0; i < n; ++i) {
  169. int l = nearest_int(iscale * x[i]);
  170. l = MAX(-nmax, MIN(nmax-1, l));
  171. L[i] = l;
  172. float w = x[i]*x[i];
  173. sumlx += w*x[i]*l;
  174. suml2 += w*l*l;
  175. }
  176. for (int itry = 0; itry < 5; ++itry) {
  177. int n_changed = 0;
  178. for (int i = 0; i < n; ++i) {
  179. float w = x[i]*x[i];
  180. float slx = sumlx - w*x[i]*L[i];
  181. if (slx > 0) {
  182. float sl2 = suml2 - w*L[i]*L[i];
  183. int new_l = nearest_int(x[i] * sl2 / slx);
  184. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  185. if (new_l != L[i]) {
  186. slx += w*x[i]*new_l;
  187. sl2 += w*new_l*new_l;
  188. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  189. L[i] = new_l; sumlx = slx; suml2 = sl2;
  190. ++n_changed;
  191. }
  192. }
  193. }
  194. }
  195. if (!n_changed) {
  196. break;
  197. }
  198. }
  199. for (int i = 0; i < n; ++i) {
  200. L[i] += nmax;
  201. }
  202. return sumlx / suml2;
  203. }
  204. for (int i = 0; i < n; ++i) {
  205. int l = nearest_int(iscale * x[i]);
  206. l = MAX(-nmax, MIN(nmax-1, l));
  207. L[i] = l + nmax;
  208. }
  209. return 1/iscale;
  210. }
  211. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
  212. float min = x[0];
  213. float max = x[0];
  214. for (int i = 1; i < n; ++i) {
  215. if (x[i] < min) min = x[i];
  216. if (x[i] > max) max = x[i];
  217. }
  218. if (max == min) {
  219. for (int i = 0; i < n; ++i) L[i] = 0;
  220. *the_min = 0;
  221. return 0.f;
  222. }
  223. if (min > 0) min = 0;
  224. float iscale = nmax/(max - min);
  225. float scale = 1/iscale;
  226. for (int itry = 0; itry < ntry; ++itry) {
  227. float sumlx = 0; int suml2 = 0;
  228. bool did_change = false;
  229. for (int i = 0; i < n; ++i) {
  230. int l = nearest_int(iscale*(x[i] - min));
  231. l = MAX(0, MIN(nmax, l));
  232. if (l != L[i]) {
  233. L[i] = l;
  234. did_change = true;
  235. }
  236. sumlx += (x[i] - min)*l;
  237. suml2 += l*l;
  238. }
  239. scale = sumlx/suml2;
  240. float sum = 0;
  241. for (int i = 0; i < n; ++i) {
  242. sum += x[i] - scale*L[i];
  243. }
  244. min = sum/n;
  245. if (min > 0) min = 0;
  246. iscale = 1/scale;
  247. if (!did_change) break;
  248. }
  249. *the_min = -min;
  250. return scale;
  251. }
  252. #if QK_K == 256
  253. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  254. if (j < 4) {
  255. *d = q[j] & 63; *m = q[j + 4] & 63;
  256. } else {
  257. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  258. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  259. }
  260. }
  261. #endif
  262. //========================- 2-bit (de)-quantization
  263. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  264. assert(k % QK_K == 0);
  265. const int nb = k / QK_K;
  266. uint8_t L[QK_K];
  267. float mins[QK_K/16];
  268. float scales[QK_K/16];
  269. const float q4scale = 15.f;
  270. for (int i = 0; i < nb; i++) {
  271. float max_scale = 0; // as we are deducting the min, scales are always positive
  272. float max_min = 0;
  273. for (int j = 0; j < QK_K/16; ++j) {
  274. scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
  275. float scale = scales[j];
  276. if (scale > max_scale) {
  277. max_scale = scale;
  278. }
  279. float min = mins[j];
  280. if (min > max_min) {
  281. max_min = min;
  282. }
  283. }
  284. if (max_scale > 0) {
  285. float iscale = q4scale/max_scale;
  286. for (int j = 0; j < QK_K/16; ++j) {
  287. int l = nearest_int(iscale*scales[j]);
  288. y[i].scales[j] = l;
  289. }
  290. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  291. } else {
  292. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  293. y[i].d = ggml_fp32_to_fp16(0.f);
  294. }
  295. if (max_min > 0) {
  296. float iscale = q4scale/max_min;
  297. for (int j = 0; j < QK_K/16; ++j) {
  298. int l = nearest_int(iscale*mins[j]);
  299. y[i].scales[j] |= (l << 4);
  300. }
  301. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  302. } else {
  303. y[i].dmin = ggml_fp32_to_fp16(0.f);
  304. }
  305. for (int j = 0; j < QK_K/16; ++j) {
  306. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  307. if (!d) continue;
  308. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  309. for (int ii = 0; ii < 16; ++ii) {
  310. int l = nearest_int((x[16*j + ii] + dm)/d);
  311. l = MAX(0, MIN(3, l));
  312. L[16*j + ii] = l;
  313. }
  314. }
  315. #if QK_K == 256
  316. for (int j = 0; j < QK_K; j += 128) {
  317. for (int l = 0; l < 32; ++l) {
  318. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  319. }
  320. }
  321. #else
  322. for (int l = 0; l < 16; ++l) {
  323. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  324. }
  325. #endif
  326. x += QK_K;
  327. }
  328. }
  329. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  330. assert(k % QK_K == 0);
  331. const int nb = k / QK_K;
  332. for (int i = 0; i < nb; i++) {
  333. const float d = ggml_fp16_to_fp32(x[i].d);
  334. const float min = ggml_fp16_to_fp32(x[i].dmin);
  335. const uint8_t * q = x[i].qs;
  336. #if QK_K == 256
  337. int is = 0;
  338. float dl, ml;
  339. for (int n = 0; n < QK_K; n += 128) {
  340. int shift = 0;
  341. for (int j = 0; j < 4; ++j) {
  342. uint8_t sc = x[i].scales[is++];
  343. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  344. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  345. sc = x[i].scales[is++];
  346. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  347. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  348. shift += 2;
  349. }
  350. q += 32;
  351. }
  352. #else
  353. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  354. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  355. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  356. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  357. for (int l = 0; l < 16; ++l) {
  358. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  359. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  360. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  361. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  362. }
  363. y += QK_K;
  364. #endif
  365. }
  366. }
  367. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  368. quantize_row_q2_K_reference(x, vy, k);
  369. }
  370. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  371. const int nb = k / QK_K;
  372. // TODO - collect histograms - although, at a second thought, I don't really care about them
  373. (void)hist;
  374. for (int j = 0; j < nb; j += k) {
  375. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  376. quantize_row_q2_K_reference(src + j, y, k);
  377. }
  378. return (n/QK_K*sizeof(block_q2_K));
  379. }
  380. //========================= 3-bit (de)-quantization
  381. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  382. assert(k % QK_K == 0);
  383. const int nb = k / QK_K;
  384. int8_t L[QK_K];
  385. float scales[QK_K / 16];
  386. for (int i = 0; i < nb; i++) {
  387. float max_scale = 0;
  388. float amax = 0;
  389. for (int j = 0; j < QK_K/16; ++j) {
  390. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  391. float scale = fabsf(scales[j]);
  392. if (scale > amax) {
  393. amax = scale; max_scale = scales[j];
  394. }
  395. }
  396. #if QK_K == 256
  397. memset(y[i].scales, 0, 12);
  398. if (max_scale) {
  399. float iscale = -32.f/max_scale;
  400. for (int j = 0; j < QK_K/16; ++j) {
  401. int8_t l = nearest_int(iscale*scales[j]);
  402. l = MAX(-32, MIN(31, l)) + 32;
  403. if (j < 8) {
  404. y[i].scales[j] = l & 0xF;
  405. } else {
  406. y[i].scales[j-8] |= ((l & 0xF) << 4);
  407. }
  408. l >>= 4;
  409. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  410. }
  411. y[i].d = ggml_fp32_to_fp16(1/iscale);
  412. } else {
  413. y[i].d = ggml_fp32_to_fp16(0.f);
  414. }
  415. int8_t sc;
  416. for (int j = 0; j < QK_K/16; ++j) {
  417. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  418. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  419. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  420. if (!d) {
  421. continue;
  422. }
  423. for (int ii = 0; ii < 16; ++ii) {
  424. int l = nearest_int(x[16*j + ii]/d);
  425. l = MAX(-4, MIN(3, l));
  426. L[16*j + ii] = l + 4;
  427. }
  428. }
  429. #else
  430. if (max_scale) {
  431. float iscale = -8.f/max_scale;
  432. for (int j = 0; j < QK_K/16; j+=2) {
  433. int l1 = nearest_int(iscale*scales[j]);
  434. l1 = 8 + MAX(-8, MIN(7, l1));
  435. int l2 = nearest_int(iscale*scales[j+1]);
  436. l2 = 8 + MAX(-8, MIN(7, l2));
  437. y[i].scales[j/2] = l1 | (l2 << 4);
  438. }
  439. y[i].d = ggml_fp32_to_fp16(1/iscale);
  440. } else {
  441. for (int j = 0; j < QK_K/16; j+=2) {
  442. y[i].scales[j/2] = 0;
  443. }
  444. y[i].d = ggml_fp32_to_fp16(0.f);
  445. }
  446. for (int j = 0; j < QK_K/16; ++j) {
  447. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  448. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  449. if (!d) {
  450. continue;
  451. }
  452. for (int ii = 0; ii < 16; ++ii) {
  453. int l = nearest_int(x[16*j + ii]/d);
  454. l = MAX(-4, MIN(3, l));
  455. L[16*j + ii] = l + 4;
  456. }
  457. }
  458. #endif
  459. memset(y[i].hmask, 0, QK_K/8);
  460. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  461. int m = 0;
  462. uint8_t hm = 1;
  463. for (int j = 0; j < QK_K; ++j) {
  464. if (L[j] > 3) {
  465. y[i].hmask[m] |= hm;
  466. L[j] -= 4;
  467. }
  468. if (++m == QK_K/8) {
  469. m = 0; hm <<= 1;
  470. }
  471. }
  472. #if QK_K == 256
  473. for (int j = 0; j < QK_K; j += 128) {
  474. for (int l = 0; l < 32; ++l) {
  475. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  476. }
  477. }
  478. #else
  479. for (int l = 0; l < 16; ++l) {
  480. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  481. }
  482. #endif
  483. x += QK_K;
  484. }
  485. }
  486. #if QK_K == 256
  487. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  488. assert(k % QK_K == 0);
  489. const int nb = k / QK_K;
  490. const uint32_t kmask1 = 0x03030303;
  491. const uint32_t kmask2 = 0x0f0f0f0f;
  492. uint32_t aux[4];
  493. const int8_t * scales = (const int8_t*)aux;
  494. for (int i = 0; i < nb; i++) {
  495. const float d_all = ggml_fp16_to_fp32(x[i].d);
  496. const uint8_t * restrict q = x[i].qs;
  497. const uint8_t * restrict hm = x[i].hmask;
  498. uint8_t m = 1;
  499. memcpy(aux, x[i].scales, 12);
  500. uint32_t tmp = aux[2];
  501. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  502. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  503. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  504. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  505. int is = 0;
  506. float dl;
  507. for (int n = 0; n < QK_K; n += 128) {
  508. int shift = 0;
  509. for (int j = 0; j < 4; ++j) {
  510. dl = d_all * (scales[is++] - 32);
  511. for (int l = 0; l < 16; ++l) {
  512. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  513. }
  514. dl = d_all * (scales[is++] - 32);
  515. for (int l = 0; l < 16; ++l) {
  516. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  517. }
  518. shift += 2;
  519. m <<= 1;
  520. }
  521. q += 32;
  522. }
  523. }
  524. }
  525. #else
  526. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  527. assert(k % QK_K == 0);
  528. assert(QK_K == 64);
  529. const int nb = k / QK_K;
  530. for (int i = 0; i < nb; i++) {
  531. const float d_all = ggml_fp16_to_fp32(x[i].d);
  532. const uint8_t * restrict q = x[i].qs;
  533. const uint8_t * restrict hm = x[i].hmask;
  534. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  535. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  536. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  537. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  538. for (int l=0; l<8; ++l) {
  539. uint8_t h = hm[l];
  540. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  541. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  542. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  543. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  544. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  545. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  546. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  547. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  548. }
  549. y += QK_K;
  550. }
  551. }
  552. #endif
  553. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  554. quantize_row_q3_K_reference(x, vy, k);
  555. }
  556. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  557. const int nb = k / QK_K;
  558. // TODO - collect histograms - although, at a second thought, I don't really care about them
  559. (void)hist;
  560. for (int j = 0; j < nb; j += k) {
  561. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  562. quantize_row_q3_K_reference(src + j, y, k);
  563. }
  564. return (n/QK_K*sizeof(block_q3_K));
  565. }
  566. // ====================== 4-bit (de)-quantization
  567. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  568. assert(k % QK_K == 0);
  569. const int nb = k / QK_K;
  570. uint8_t L[QK_K];
  571. float mins[QK_K/32];
  572. float scales[QK_K/32];
  573. for (int i = 0; i < nb; i++) {
  574. float max_scale = 0; // as we are deducting the min, scales are always positive
  575. float max_min = 0;
  576. for (int j = 0; j < QK_K/32; ++j) {
  577. scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
  578. float scale = scales[j];
  579. if (scale > max_scale) {
  580. max_scale = scale;
  581. }
  582. float min = mins[j];
  583. if (min > max_min) {
  584. max_min = min;
  585. }
  586. }
  587. #if QK_K == 256
  588. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  589. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  590. for (int j = 0; j < QK_K/32; ++j) {
  591. uint8_t ls = nearest_int(inv_scale*scales[j]);
  592. uint8_t lm = nearest_int(inv_min*mins[j]);
  593. ls = MIN(63, ls);
  594. lm = MIN(63, lm);
  595. if (j < 4) {
  596. y[i].scales[j] = ls;
  597. y[i].scales[j+4] = lm;
  598. } else {
  599. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  600. y[i].scales[j-4] |= ((ls >> 4) << 6);
  601. y[i].scales[j-0] |= ((lm >> 4) << 6);
  602. }
  603. }
  604. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  605. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  606. uint8_t sc, m;
  607. for (int j = 0; j < QK_K/32; ++j) {
  608. get_scale_min_k4(j, y[i].scales, &sc, &m);
  609. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  610. if (!d) continue;
  611. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  612. for (int ii = 0; ii < 32; ++ii) {
  613. int l = nearest_int((x[32*j + ii] + dm)/d);
  614. l = MAX(0, MIN(15, l));
  615. L[32*j + ii] = l;
  616. }
  617. }
  618. #else
  619. const float s_factor = 15.f;
  620. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  621. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  622. int d1 = nearest_int(inv_scale*scales[0]);
  623. int m1 = nearest_int(inv_min*mins[0]);
  624. int d2 = nearest_int(inv_scale*scales[1]);
  625. int m2 = nearest_int(inv_min*mins[1]);
  626. y[i].scales[0] = d1 | (m1 << 4);
  627. y[i].scales[1] = d2 | (m2 << 4);
  628. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  629. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  630. float sumlx = 0;
  631. int suml2 = 0;
  632. for (int j = 0; j < QK_K/32; ++j) {
  633. const uint8_t sd = y[i].scales[j] & 0xF;
  634. const uint8_t sm = y[i].scales[j] >> 4;
  635. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  636. if (!d) continue;
  637. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  638. for (int ii = 0; ii < 32; ++ii) {
  639. int l = nearest_int((x[32*j + ii] + m)/d);
  640. l = MAX(0, MIN(15, l));
  641. L[32*j + ii] = l;
  642. sumlx += (x[32*j + ii] + m)*l*sd;
  643. suml2 += l*l*sd*sd;
  644. }
  645. }
  646. if (suml2) {
  647. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  648. }
  649. #endif
  650. uint8_t * q = y[i].qs;
  651. for (int j = 0; j < QK_K; j += 64) {
  652. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  653. q += 32;
  654. }
  655. x += QK_K;
  656. }
  657. }
  658. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  659. assert(k % QK_K == 0);
  660. const int nb = k / QK_K;
  661. for (int i = 0; i < nb; i++) {
  662. const uint8_t * q = x[i].qs;
  663. #if QK_K == 256
  664. const float d = ggml_fp16_to_fp32(x[i].d);
  665. const float min = ggml_fp16_to_fp32(x[i].dmin);
  666. int is = 0;
  667. uint8_t sc, m;
  668. for (int j = 0; j < QK_K; j += 64) {
  669. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  670. const float d1 = d * sc; const float m1 = min * m;
  671. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  672. const float d2 = d * sc; const float m2 = min * m;
  673. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  674. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  675. q += 32; is += 2;
  676. }
  677. #else
  678. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  679. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  680. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  681. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  682. for (int l = 0; l < 32; ++l) {
  683. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  684. y[l+32] = d2 * (q[l] >> 4) - m2;
  685. }
  686. y += QK_K;
  687. #endif
  688. }
  689. }
  690. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  691. assert(k % QK_K == 0);
  692. block_q4_K * restrict y = vy;
  693. quantize_row_q4_K_reference(x, y, k);
  694. }
  695. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  696. assert(k % QK_K == 0);
  697. const int nb = k / QK_K;
  698. (void)hist; // TODO: collect histograms
  699. for (int j = 0; j < nb; j += k) {
  700. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  701. quantize_row_q4_K_reference(src + j, y, k);
  702. }
  703. return (n/QK_K*sizeof(block_q4_K));
  704. }
  705. // ====================== 5-bit (de)-quantization
  706. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  707. assert(k % QK_K == 0);
  708. const int nb = k / QK_K;
  709. #if QK_K == 256
  710. uint8_t L[QK_K];
  711. float mins[QK_K/32];
  712. float scales[QK_K/32];
  713. #else
  714. int8_t L[QK_K];
  715. float scales[QK_K/16];
  716. #endif
  717. for (int i = 0; i < nb; i++) {
  718. #if QK_K == 256
  719. float max_scale = 0; // as we are deducting the min, scales are always positive
  720. float max_min = 0;
  721. for (int j = 0; j < QK_K/32; ++j) {
  722. scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
  723. float scale = scales[j];
  724. if (scale > max_scale) {
  725. max_scale = scale;
  726. }
  727. float min = mins[j];
  728. if (min > max_min) {
  729. max_min = min;
  730. }
  731. }
  732. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  733. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  734. for (int j = 0; j < QK_K/32; ++j) {
  735. uint8_t ls = nearest_int(inv_scale*scales[j]);
  736. uint8_t lm = nearest_int(inv_min*mins[j]);
  737. ls = MIN(63, ls);
  738. lm = MIN(63, lm);
  739. if (j < 4) {
  740. y[i].scales[j] = ls;
  741. y[i].scales[j+4] = lm;
  742. } else {
  743. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  744. y[i].scales[j-4] |= ((ls >> 4) << 6);
  745. y[i].scales[j-0] |= ((lm >> 4) << 6);
  746. }
  747. }
  748. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  749. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  750. uint8_t sc, m;
  751. for (int j = 0; j < QK_K/32; ++j) {
  752. get_scale_min_k4(j, y[i].scales, &sc, &m);
  753. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  754. if (!d) continue;
  755. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  756. for (int ii = 0; ii < 32; ++ii) {
  757. int l = nearest_int((x[32*j + ii] + dm)/d);
  758. l = MAX(0, MIN(31, l));
  759. L[32*j + ii] = l;
  760. }
  761. }
  762. uint8_t * restrict qh = y[i].qh;
  763. uint8_t * restrict ql = y[i].qs;
  764. memset(qh, 0, QK_K/8);
  765. uint8_t m1 = 1, m2 = 2;
  766. for (int n = 0; n < QK_K; n += 64) {
  767. for (int j = 0; j < 32; ++j) {
  768. int l1 = L[n + j];
  769. if (l1 > 15) {
  770. l1 -= 16; qh[j] |= m1;
  771. }
  772. int l2 = L[n + j + 32];
  773. if (l2 > 15) {
  774. l2 -= 16; qh[j] |= m2;
  775. }
  776. ql[j] = l1 | (l2 << 4);
  777. }
  778. m1 <<= 2; m2 <<= 2;
  779. ql += 32;
  780. }
  781. #else
  782. float max_scale = 0, amax = 0;
  783. for (int j = 0; j < QK_K/16; ++j) {
  784. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  785. float abs_scale = fabsf(scales[j]);
  786. if (abs_scale > amax) {
  787. amax = abs_scale;
  788. max_scale = scales[j];
  789. }
  790. }
  791. float iscale = -128.f/max_scale;
  792. for (int j = 0; j < QK_K/16; ++j) {
  793. int l = nearest_int(iscale*scales[j]);
  794. y[i].scales[j] = MAX(-128, MIN(127, l));
  795. }
  796. y[i].d = ggml_fp32_to_fp16(1/iscale);
  797. for (int j = 0; j < QK_K/16; ++j) {
  798. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  799. if (!d) continue;
  800. for (int ii = 0; ii < 16; ++ii) {
  801. int l = nearest_int(x[16*j + ii]/d);
  802. l = MAX(-16, MIN(15, l));
  803. L[16*j + ii] = l + 16;
  804. }
  805. }
  806. uint8_t * restrict qh = y[i].qh;
  807. uint8_t * restrict ql = y[i].qs;
  808. memset(qh, 0, QK_K/8);
  809. for (int j = 0; j < 32; ++j) {
  810. int jm = j%8;
  811. int is = j/8;
  812. int l1 = L[j];
  813. if (l1 > 15) {
  814. l1 -= 16; qh[jm] |= (1 << is);
  815. }
  816. int l2 = L[j + 32];
  817. if (l2 > 15) {
  818. l2 -= 16; qh[jm] |= (1 << (4 + is));
  819. }
  820. ql[j] = l1 | (l2 << 4);
  821. }
  822. #endif
  823. x += QK_K;
  824. }
  825. }
  826. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  827. assert(k % QK_K == 0);
  828. const int nb = k / QK_K;
  829. for (int i = 0; i < nb; i++) {
  830. const uint8_t * ql = x[i].qs;
  831. const uint8_t * qh = x[i].qh;
  832. #if QK_K == 256
  833. const float d = ggml_fp16_to_fp32(x[i].d);
  834. const float min = ggml_fp16_to_fp32(x[i].dmin);
  835. int is = 0;
  836. uint8_t sc, m;
  837. uint8_t u1 = 1, u2 = 2;
  838. for (int j = 0; j < QK_K; j += 64) {
  839. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  840. const float d1 = d * sc; const float m1 = min * m;
  841. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  842. const float d2 = d * sc; const float m2 = min * m;
  843. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  844. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  845. ql += 32; is += 2;
  846. u1 <<= 2; u2 <<= 2;
  847. }
  848. #else
  849. float d = ggml_fp16_to_fp32(x[i].d);
  850. const int8_t * restrict s = x[i].scales;
  851. for (int l = 0; l < 8; ++l) {
  852. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  853. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  854. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  855. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  856. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  857. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  858. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  859. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  860. }
  861. y += QK_K;
  862. #endif
  863. }
  864. }
  865. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  866. assert(k % QK_K == 0);
  867. block_q5_K * restrict y = vy;
  868. quantize_row_q5_K_reference(x, y, k);
  869. }
  870. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  871. assert(k % QK_K == 0);
  872. const int nb = k / QK_K;
  873. (void)hist;
  874. for (int j = 0; j < nb; j += k) {
  875. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  876. quantize_row_q5_K_reference(src + j, y, k);
  877. }
  878. return (n/QK_K*sizeof(block_q5_K));
  879. }
  880. // ====================== 6-bit (de)-quantization
  881. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  882. assert(k % QK_K == 0);
  883. const int nb = k / QK_K;
  884. int8_t L[QK_K];
  885. float scales[QK_K/16];
  886. for (int i = 0; i < nb; i++) {
  887. float max_scale = 0;
  888. float max_abs_scale = 0;
  889. for (int ib = 0; ib < QK_K/16; ++ib) {
  890. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  891. scales[ib] = scale;
  892. const float abs_scale = fabsf(scale);
  893. if (abs_scale > max_abs_scale) {
  894. max_abs_scale = abs_scale;
  895. max_scale = scale;
  896. }
  897. }
  898. float iscale = -128.f/max_scale;
  899. y[i].d = ggml_fp32_to_fp16(1/iscale);
  900. for (int ib = 0; ib < QK_K/16; ++ib) {
  901. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  902. }
  903. for (int j = 0; j < QK_K/16; ++j) {
  904. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  905. if (!d) {
  906. continue;
  907. }
  908. for (int ii = 0; ii < 16; ++ii) {
  909. int l = nearest_int(x[16*j + ii]/d);
  910. l = MAX(-32, MIN(31, l));
  911. L[16*j + ii] = l + 32;
  912. }
  913. }
  914. uint8_t * restrict ql = y[i].ql;
  915. uint8_t * restrict qh = y[i].qh;
  916. #if QK_K == 256
  917. for (int j = 0; j < QK_K; j += 128) {
  918. for (int l = 0; l < 32; ++l) {
  919. const uint8_t q1 = L[j + l + 0] & 0xF;
  920. const uint8_t q2 = L[j + l + 32] & 0xF;
  921. const uint8_t q3 = L[j + l + 64] & 0xF;
  922. const uint8_t q4 = L[j + l + 96] & 0xF;
  923. ql[l+ 0] = q1 | (q3 << 4);
  924. ql[l+32] = q2 | (q4 << 4);
  925. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  926. }
  927. ql += 64;
  928. qh += 32;
  929. }
  930. #else
  931. for (int l = 0; l < 32; ++l) {
  932. const uint8_t q1 = L[l + 0] & 0xF;
  933. const uint8_t q2 = L[l + 32] & 0xF;
  934. ql[l] = q1 | (q2 << 4);
  935. }
  936. for (int l = 0; l < 16; ++l) {
  937. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  938. }
  939. #endif
  940. x += QK_K;
  941. }
  942. }
  943. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  944. assert(k % QK_K == 0);
  945. const int nb = k / QK_K;
  946. for (int i = 0; i < nb; i++) {
  947. const float d = ggml_fp16_to_fp32(x[i].d);
  948. const uint8_t * restrict ql = x[i].ql;
  949. const uint8_t * restrict qh = x[i].qh;
  950. const int8_t * restrict sc = x[i].scales;
  951. #if QK_K == 256
  952. for (int n = 0; n < QK_K; n += 128) {
  953. for (int l = 0; l < 32; ++l) {
  954. int is = l/16;
  955. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  956. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  957. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  958. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  959. y[l + 0] = d * sc[is + 0] * q1;
  960. y[l + 32] = d * sc[is + 2] * q2;
  961. y[l + 64] = d * sc[is + 4] * q3;
  962. y[l + 96] = d * sc[is + 6] * q4;
  963. }
  964. y += 128;
  965. ql += 64;
  966. qh += 32;
  967. sc += 8;
  968. }
  969. #else
  970. for (int l = 0; l < 16; ++l) {
  971. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  972. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  973. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  974. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  975. y[l+ 0] = d * sc[0] * q1;
  976. y[l+16] = d * sc[1] * q2;
  977. y[l+32] = d * sc[2] * q3;
  978. y[l+48] = d * sc[3] * q4;
  979. }
  980. y += 64;
  981. #endif
  982. }
  983. }
  984. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  985. assert(k % QK_K == 0);
  986. block_q6_K * restrict y = vy;
  987. quantize_row_q6_K_reference(x, y, k);
  988. }
  989. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  990. assert(k % QK_K == 0);
  991. const int nb = k / QK_K;
  992. (void)hist; // TODO
  993. for (int j = 0; j < nb; j += k) {
  994. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  995. quantize_row_q6_K_reference(src + j, y, k);
  996. }
  997. return (n/QK_K*sizeof(block_q6_K));
  998. }
  999. //===================================== Q8_K ==============================================
  1000. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1001. assert(k % QK_K == 0);
  1002. const int nb = k / QK_K;
  1003. for (int i = 0; i < nb; i++) {
  1004. float max = 0;
  1005. float amax = 0;
  1006. for (int j = 0; j < QK_K; ++j) {
  1007. float ax = fabsf(x[j]);
  1008. if (ax > amax) {
  1009. amax = ax; max = x[j];
  1010. }
  1011. }
  1012. if (!amax) {
  1013. y[i].d = 0;
  1014. memset(y[i].qs, 0, QK_K);
  1015. x += QK_K;
  1016. continue;
  1017. }
  1018. const float iscale = -128.f/max;
  1019. for (int j = 0; j < QK_K; ++j) {
  1020. int v = nearest_int(iscale*x[j]);
  1021. y[i].qs[j] = MIN(127, v);
  1022. }
  1023. for (int j = 0; j < QK_K/16; ++j) {
  1024. int sum = 0;
  1025. for (int ii = 0; ii < 16; ++ii) {
  1026. sum += y[i].qs[j*16 + ii];
  1027. }
  1028. y[i].bsums[j] = sum;
  1029. }
  1030. y[i].d = 1/iscale;
  1031. x += QK_K;
  1032. }
  1033. }
  1034. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1035. assert(k % QK_K == 0);
  1036. const int nb = k / QK_K;
  1037. for (int i = 0; i < nb; i++) {
  1038. for (int j = 0; j < QK_K; ++j) {
  1039. *y++ = x[i].d * x[i].qs[j];
  1040. }
  1041. }
  1042. }
  1043. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1044. quantize_row_q8_K_reference(x, y, k);
  1045. }
  1046. //===================================== Dot ptoducts =================================
  1047. //
  1048. // Helper functions
  1049. //
  1050. #if __AVX__ || __AVX2__ || __AVX512F__
  1051. // horizontally add 8 floats
  1052. static inline float hsum_float_8(const __m256 x) {
  1053. __m128 res = _mm256_extractf128_ps(x, 1);
  1054. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1055. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1056. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1057. return _mm_cvtss_f32(res);
  1058. }
  1059. // shuffles to pick the required scales in dot products
  1060. static inline __m256i get_scale_shuffle_q3k(int i) {
  1061. static const uint8_t k_shuffle[128] = {
  1062. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1063. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1064. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1065. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1066. };
  1067. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1068. }
  1069. static inline __m256i get_scale_shuffle_k4(int i) {
  1070. static const uint8_t k_shuffle[256] = {
  1071. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1072. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1073. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1074. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1075. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1076. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1077. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1078. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1079. };
  1080. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1081. }
  1082. static inline __m128i get_scale_shuffle(int i) {
  1083. static const uint8_t k_shuffle[128] = {
  1084. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1085. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1086. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1087. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1088. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1089. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1090. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1091. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1092. };
  1093. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1094. }
  1095. #endif
  1096. #if QK_K == 256
  1097. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1098. const block_q2_K * restrict x = vx;
  1099. const block_q8_K * restrict y = vy;
  1100. const int nb = n / QK_K;
  1101. #ifdef __ARM_NEON
  1102. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1103. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1104. const int32x4_t vzero = vdupq_n_s32(0);
  1105. int8x16x2_t q2bytes;
  1106. uint8_t aux[16];
  1107. float sum = 0;
  1108. for (int i = 0; i < nb; ++i) {
  1109. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1110. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1111. const uint8_t * restrict q2 = x[i].qs;
  1112. const int8_t * restrict q8 = y[i].qs;
  1113. const uint8_t * restrict sc = x[i].scales;
  1114. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1115. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1116. vst1q_u8(aux, scales);
  1117. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1118. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1119. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1120. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1121. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1122. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1123. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1124. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1125. int isum = 0;
  1126. int is = 0;
  1127. // We use this macro instead of a function call because for some reason
  1128. // the code runs 2-3% slower, even if the function is declared inline
  1129. #if defined(__ARM_FEATURE_DOTPROD)
  1130. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1131. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1132. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1133. #else
  1134. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1135. {\
  1136. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1137. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1138. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1139. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1140. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1141. }
  1142. #endif
  1143. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1144. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1145. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1146. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1147. MULTIPLY_ACCUM_WITH_SCALE((index));
  1148. for (int j = 0; j < QK_K/128; ++j) {
  1149. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1150. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1151. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1152. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1153. MULTIPLY_ACCUM_WITH_SCALE(0);
  1154. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1155. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1156. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1157. is += 8;
  1158. }
  1159. sum += d * isum;
  1160. }
  1161. *s = sum;
  1162. #elif defined __AVX2__
  1163. const __m256i m3 = _mm256_set1_epi8(3);
  1164. const __m128i m4 = _mm_set1_epi8(0xF);
  1165. __m256 acc = _mm256_setzero_ps();
  1166. for (int i = 0; i < nb; ++i) {
  1167. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1168. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1169. const uint8_t * restrict q2 = x[i].qs;
  1170. const int8_t * restrict q8 = y[i].qs;
  1171. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1172. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1173. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1174. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1175. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1176. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1177. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1178. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1179. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1180. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1181. __m256i sumi = _mm256_setzero_si256();
  1182. for (int j = 0; j < QK_K/128; ++j) {
  1183. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1184. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1185. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1186. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1187. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1188. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1189. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1190. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1191. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1192. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1193. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1194. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1195. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1196. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1197. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1198. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1199. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1200. p0 = _mm256_add_epi32(p0, p1);
  1201. p2 = _mm256_add_epi32(p2, p3);
  1202. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1203. }
  1204. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1205. }
  1206. *s = hsum_float_8(acc);
  1207. #elif defined __AVX__
  1208. const __m128i m3 = _mm_set1_epi8(0x3);
  1209. const __m128i m4 = _mm_set1_epi8(0xF);
  1210. const __m128i m2 = _mm_set1_epi8(0x2);
  1211. __m256 acc = _mm256_setzero_ps();
  1212. for (int i = 0; i < nb; ++i) {
  1213. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1214. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1215. const uint8_t * restrict q2 = x[i].qs;
  1216. const int8_t * restrict q8 = y[i].qs;
  1217. // load mins and scales from block_q2_K.scales[QK_K/16]
  1218. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1219. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1220. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1221. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1222. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1223. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1224. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1225. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1226. // sumf += -dmin * summs in 32bits*8
  1227. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  1228. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1229. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1230. const __m128i scales[2] = { scales_0, scales_1 };
  1231. __m128i sumi_0 = _mm_setzero_si128();
  1232. __m128i sumi_1 = _mm_setzero_si128();
  1233. for (int j = 0; j < QK_K/128; ++j) {
  1234. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1235. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1236. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1237. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1238. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1239. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1240. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1241. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1242. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1243. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1244. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1245. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1246. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1247. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1248. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1249. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1250. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1251. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1252. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1253. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1254. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1255. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1256. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1257. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1258. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1259. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1260. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1261. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1262. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1263. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1264. __m128i shuffle = _mm_set1_epi16(0x0100);
  1265. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1266. shuffle = _mm_add_epi16(shuffle, m2);
  1267. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1268. shuffle = _mm_add_epi16(shuffle, m2);
  1269. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1270. shuffle = _mm_add_epi16(shuffle, m2);
  1271. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1272. shuffle = _mm_add_epi16(shuffle, m2);
  1273. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1274. shuffle = _mm_add_epi16(shuffle, m2);
  1275. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1276. shuffle = _mm_add_epi16(shuffle, m2);
  1277. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1278. shuffle = _mm_add_epi16(shuffle, m2);
  1279. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1280. p0 = _mm_add_epi32(p0, p1);
  1281. p2 = _mm_add_epi32(p2, p3);
  1282. p4 = _mm_add_epi32(p4, p5);
  1283. p6 = _mm_add_epi32(p6, p7);
  1284. // isum in 32bits*4*2
  1285. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1286. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1287. }
  1288. // sumf += dall * isum - dmin * summs in 32bits
  1289. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1290. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1291. }
  1292. *s = hsum_float_8(acc);
  1293. #else
  1294. float sumf = 0;
  1295. for (int i = 0; i < nb; ++i) {
  1296. const uint8_t * q2 = x[i].qs;
  1297. const int8_t * q8 = y[i].qs;
  1298. const uint8_t * sc = x[i].scales;
  1299. int summs = 0;
  1300. for (int j = 0; j < 16; ++j) {
  1301. summs += y[i].bsums[j] * (sc[j] >> 4);
  1302. }
  1303. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1304. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1305. int isum = 0;
  1306. int is = 0;
  1307. int d;
  1308. for (int k = 0; k < QK_K/128; ++k) {
  1309. int shift = 0;
  1310. for (int j = 0; j < 4; ++j) {
  1311. d = sc[is++] & 0xF;
  1312. int isuml = 0;
  1313. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1314. isum += d * isuml;
  1315. d = sc[is++] & 0xF;
  1316. isuml = 0;
  1317. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1318. isum += d * isuml;
  1319. shift += 2;
  1320. q8 += 32;
  1321. }
  1322. q2 += 32;
  1323. }
  1324. sumf += dall * isum - dmin * summs;
  1325. }
  1326. *s = sumf;
  1327. #endif
  1328. }
  1329. #else
  1330. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1331. const block_q2_K * restrict x = vx;
  1332. const block_q8_K * restrict y = vy;
  1333. const int nb = n / QK_K;
  1334. #ifdef __ARM_NEON
  1335. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1336. const int32x4_t vzero = vdupq_n_s32(0);
  1337. int8x16x4_t q2bytes;
  1338. uint32_t aux32[2];
  1339. const uint8_t * scales = (const uint8_t *)aux32;
  1340. float sum = 0;
  1341. for (int i = 0; i < nb; ++i) {
  1342. const float d = y[i].d * (float)x[i].d;
  1343. const float dmin = -y[i].d * (float)x[i].dmin;
  1344. const uint8_t * restrict q2 = x[i].qs;
  1345. const int8_t * restrict q8 = y[i].qs;
  1346. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1347. aux32[0] = sc[0] & 0x0f0f0f0f;
  1348. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1349. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1350. int isum1 = 0, isum2 = 0;
  1351. const uint8x16_t q2bits = vld1q_u8(q2);
  1352. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1353. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1354. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1355. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1356. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1357. #if defined(__ARM_FEATURE_DOTPROD)
  1358. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1359. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1360. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1361. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1362. #else
  1363. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1364. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1365. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1366. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1367. isum1 += vaddvq_s16(p1) * scales[0];
  1368. isum2 += vaddvq_s16(p2) * scales[1];
  1369. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1370. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1371. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1372. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1373. isum1 += vaddvq_s16(p3) * scales[2];
  1374. isum2 += vaddvq_s16(p4) * scales[3];
  1375. #endif
  1376. sum += d * (isum1 + isum2);
  1377. }
  1378. *s = sum;
  1379. #elif defined __AVX2__
  1380. const __m256i m3 = _mm256_set1_epi8(3);
  1381. __m256 acc = _mm256_setzero_ps();
  1382. uint32_t ud, um;
  1383. const uint8_t * restrict db = (const uint8_t *)&ud;
  1384. const uint8_t * restrict mb = (const uint8_t *)&um;
  1385. float summs = 0;
  1386. // TODO: optimize this
  1387. for (int i = 0; i < nb; ++i) {
  1388. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1389. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1390. const uint8_t * restrict q2 = x[i].qs;
  1391. const int8_t * restrict q8 = y[i].qs;
  1392. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1393. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1394. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1395. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1396. summs += dmin * smin;
  1397. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1398. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1399. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1400. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1401. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1402. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1403. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1404. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1405. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1406. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1407. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1408. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1409. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1410. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1411. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1412. }
  1413. *s = hsum_float_8(acc) + summs;
  1414. #elif defined __AVX__
  1415. const __m128i m3 = _mm_set1_epi8(3);
  1416. __m256 acc = _mm256_setzero_ps();
  1417. uint32_t ud, um;
  1418. const uint8_t * restrict db = (const uint8_t *)&ud;
  1419. const uint8_t * restrict mb = (const uint8_t *)&um;
  1420. float summs = 0;
  1421. // TODO: optimize this
  1422. for (int i = 0; i < nb; ++i) {
  1423. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1424. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1425. const uint8_t * restrict q2 = x[i].qs;
  1426. const int8_t * restrict q8 = y[i].qs;
  1427. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1428. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1429. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1430. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1431. summs += dmin * smin;
  1432. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1433. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1434. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1435. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1436. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1437. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1438. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1439. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  1440. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  1441. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  1442. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  1443. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  1444. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  1445. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  1446. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  1447. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  1448. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  1449. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  1450. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  1451. }
  1452. *s = hsum_float_8(acc) + summs;
  1453. #else
  1454. float sumf = 0;
  1455. int isum[4];
  1456. for (int i = 0; i < nb; ++i) {
  1457. const uint8_t * q2 = x[i].qs;
  1458. const int8_t * q8 = y[i].qs;
  1459. const uint8_t * sc = x[i].scales;
  1460. int summs = 0;
  1461. for (int j = 0; j < QK_K/16; ++j) {
  1462. summs += y[i].bsums[j] * (sc[j] >> 4);
  1463. }
  1464. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1465. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1466. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1467. for (int l = 0; l < 16; ++l) {
  1468. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1469. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1470. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1471. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1472. }
  1473. for (int l = 0; l < 4; ++l) {
  1474. isum[l] *= (sc[l] & 0xF);
  1475. }
  1476. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1477. }
  1478. *s = sumf;
  1479. #endif
  1480. }
  1481. #endif
  1482. #if QK_K == 256
  1483. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1484. assert(n % QK_K == 0);
  1485. const uint32_t kmask1 = 0x03030303;
  1486. const uint32_t kmask2 = 0x0f0f0f0f;
  1487. const block_q3_K * restrict x = vx;
  1488. const block_q8_K * restrict y = vy;
  1489. const int nb = n / QK_K;
  1490. #ifdef __ARM_NEON
  1491. uint32_t aux[3];
  1492. uint32_t utmp[4];
  1493. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1494. #ifdef __ARM_FEATURE_DOTPROD
  1495. const int32x4_t vzero = vdupq_n_s32(0);
  1496. #endif
  1497. const uint8x16_t m0 = vdupq_n_u8(1);
  1498. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1499. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1500. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1501. const int8_t m32 = 32;
  1502. int8x16x4_t q3bytes;
  1503. float sum = 0;
  1504. for (int i = 0; i < nb; ++i) {
  1505. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1506. const uint8_t * restrict q3 = x[i].qs;
  1507. const uint8_t * restrict qh = x[i].hmask;
  1508. const int8_t * restrict q8 = y[i].qs;
  1509. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1510. uint8x16x4_t q3h;
  1511. int32_t isum = 0;
  1512. // Set up scales
  1513. memcpy(aux, x[i].scales, 12);
  1514. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1515. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1516. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1517. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1518. int8_t * scale = (int8_t *)utmp;
  1519. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1520. for (int j = 0; j < QK_K/128; ++j) {
  1521. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1522. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1523. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1524. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1525. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1526. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1527. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1528. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1529. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1530. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1531. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1532. #if defined(__ARM_FEATURE_DOTPROD)
  1533. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1534. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1535. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1536. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1537. #else
  1538. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1539. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1540. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1541. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1542. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1543. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1544. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1545. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1546. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1547. #endif
  1548. scale += 4;
  1549. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1550. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1551. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1552. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1553. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1554. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1555. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1556. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1557. #if defined(__ARM_FEATURE_DOTPROD)
  1558. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1559. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1560. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1561. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1562. #else
  1563. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1564. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1565. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1566. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1567. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1568. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1569. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1570. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1571. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1572. #endif
  1573. scale += 4;
  1574. if (j == 0) {
  1575. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1576. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1577. }
  1578. }
  1579. sum += d * isum;
  1580. }
  1581. *s = sum;
  1582. #elif defined __AVX2__
  1583. const __m256i m3 = _mm256_set1_epi8(3);
  1584. const __m256i mone = _mm256_set1_epi8(1);
  1585. const __m128i m32 = _mm_set1_epi8(32);
  1586. __m256 acc = _mm256_setzero_ps();
  1587. uint32_t aux[3];
  1588. for (int i = 0; i < nb; ++i) {
  1589. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1590. const uint8_t * restrict q3 = x[i].qs;
  1591. const int8_t * restrict q8 = y[i].qs;
  1592. // Set up scales
  1593. memcpy(aux, x[i].scales, 12);
  1594. __m128i scales128 = _mm_set_epi32(
  1595. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1596. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1597. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1598. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1599. scales128 = _mm_sub_epi8(scales128, m32);
  1600. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1601. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1602. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1603. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1604. // high bit
  1605. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1606. // integer accumulator
  1607. __m256i sumi = _mm256_setzero_si256();
  1608. int bit = 0;
  1609. int is = 0;
  1610. for (int j = 0; j < QK_K/128; ++j) {
  1611. // load low 2 bits
  1612. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1613. // prepare low and high bits
  1614. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1615. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1616. ++bit;
  1617. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1618. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1619. ++bit;
  1620. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1621. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1622. ++bit;
  1623. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1624. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1625. ++bit;
  1626. // load Q8 quants
  1627. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1628. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1629. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1630. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1631. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1632. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1633. // and 2 if the high bit was set)
  1634. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1635. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1636. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1637. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1638. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1639. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1640. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1641. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1642. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1643. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1644. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1645. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1646. // multiply with scales
  1647. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1648. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1649. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1650. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1651. // accumulate
  1652. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1653. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1654. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1655. }
  1656. // multiply with block scale and accumulate
  1657. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1658. }
  1659. *s = hsum_float_8(acc);
  1660. #elif defined __AVX__
  1661. const __m128i m3 = _mm_set1_epi8(3);
  1662. const __m128i mone = _mm_set1_epi8(1);
  1663. const __m128i m32 = _mm_set1_epi8(32);
  1664. const __m128i m2 = _mm_set1_epi8(2);
  1665. __m256 acc = _mm256_setzero_ps();
  1666. uint32_t *aux;
  1667. for (int i = 0; i < nb; ++i) {
  1668. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1669. const uint8_t * restrict q3 = x[i].qs;
  1670. const int8_t * restrict q8 = y[i].qs;
  1671. // Set up scales
  1672. aux = (uint32_t *)x[i].scales;
  1673. __m128i scales128 = _mm_set_epi32(
  1674. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1675. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1676. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1677. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1678. scales128 = _mm_sub_epi8(scales128, m32);
  1679. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1680. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1681. const __m128i scales[2] = { scales_0, scales_1 };
  1682. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1683. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1684. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1685. // integer accumulator
  1686. __m128i sumi_0 = _mm_setzero_si128();
  1687. __m128i sumi_1 = _mm_setzero_si128();
  1688. for (int j = 0; j < QK_K/128; ++j) {
  1689. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1690. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1691. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1692. // prepare low and high bits
  1693. const int bit = j << 2;
  1694. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1695. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1696. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1697. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1698. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1699. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1700. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1701. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1702. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1703. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1704. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1705. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1706. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1707. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1708. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1709. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1710. // load Q8 quants from block_q8_K.qs[QK_K]
  1711. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1712. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1713. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1714. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1715. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1716. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1717. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1718. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1719. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1720. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1721. // and 2 if the high bit was set)
  1722. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1723. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1724. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1725. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1726. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1727. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1728. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1729. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1730. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1731. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1732. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1733. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1734. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1735. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1736. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1737. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1738. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1739. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1740. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1741. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1742. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1743. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1744. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1745. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1746. // multiply with scales
  1747. __m128i shuffle = _mm_set1_epi16(0x0100);
  1748. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1749. shuffle = _mm_add_epi16(shuffle, m2);
  1750. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1751. shuffle = _mm_add_epi16(shuffle, m2);
  1752. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1753. shuffle = _mm_add_epi16(shuffle, m2);
  1754. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1755. shuffle = _mm_add_epi16(shuffle, m2);
  1756. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1757. shuffle = _mm_add_epi16(shuffle, m2);
  1758. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1759. shuffle = _mm_add_epi16(shuffle, m2);
  1760. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1761. shuffle = _mm_add_epi16(shuffle, m2);
  1762. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1763. // accumulate
  1764. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1765. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1766. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1767. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1768. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1769. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1770. }
  1771. // multiply with block scale and accumulate
  1772. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1773. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1774. }
  1775. *s = hsum_float_8(acc);
  1776. #else
  1777. // scalar version
  1778. // This function is written like this so the compiler can manage to vectorize most of it
  1779. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1780. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1781. // The ideal situation would be if we could just write the code once, and the compiler would
  1782. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1783. // write vectorized versions for AVX, ARM_NEON, etc.
  1784. int8_t aux8[QK_K];
  1785. int16_t aux16[8];
  1786. float sums [8];
  1787. int32_t aux32[8];
  1788. memset(sums, 0, 8*sizeof(float));
  1789. uint32_t auxs[4];
  1790. const int8_t * scales = (const int8_t*)auxs;
  1791. float sumf = 0;
  1792. for (int i = 0; i < nb; ++i) {
  1793. const uint8_t * restrict q3 = x[i].qs;
  1794. const uint8_t * restrict hm = x[i].hmask;
  1795. const int8_t * restrict q8 = y[i].qs;
  1796. memset(aux32, 0, 8*sizeof(int32_t));
  1797. int8_t * restrict a = aux8;
  1798. uint8_t m = 1;
  1799. for (int j = 0; j < QK_K; j += 128) {
  1800. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1801. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1802. a += 32; m <<= 1;
  1803. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1804. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1805. a += 32; m <<= 1;
  1806. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1807. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1808. a += 32; m <<= 1;
  1809. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1810. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1811. a += 32; m <<= 1;
  1812. q3 += 32;
  1813. }
  1814. a = aux8;
  1815. memcpy(auxs, x[i].scales, 12);
  1816. uint32_t tmp = auxs[2];
  1817. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1818. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1819. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1820. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1821. for (int j = 0; j < QK_K/16; ++j) {
  1822. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1823. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1824. q8 += 8; a += 8;
  1825. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1826. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1827. q8 += 8; a += 8;
  1828. }
  1829. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1830. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1831. }
  1832. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1833. *s = sumf;
  1834. #endif
  1835. }
  1836. #else
  1837. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1838. assert(n % QK_K == 0);
  1839. const block_q3_K * restrict x = vx;
  1840. const block_q8_K * restrict y = vy;
  1841. const int nb = n / QK_K;
  1842. #ifdef __ARM_NEON
  1843. #ifdef __ARM_FEATURE_DOTPROD
  1844. const int32x4_t vzero = vdupq_n_s32(0);
  1845. #endif
  1846. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1847. const uint8x16_t mh = vdupq_n_u8(4);
  1848. int8x16x4_t q3bytes;
  1849. uint16_t aux16[2];
  1850. int8_t * scales = (int8_t *)aux16;
  1851. float sum = 0;
  1852. for (int i = 0; i < nb; ++i) {
  1853. uint8x16x4_t q3h;
  1854. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1855. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1856. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1857. const uint16_t a = *(const uint16_t *)x[i].scales;
  1858. aux16[0] = a & 0x0f0f;
  1859. aux16[1] = (a >> 4) & 0x0f0f;
  1860. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1861. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1862. const float d = y[i].d * (float)x[i].d;
  1863. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1864. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1865. q3h.val[1] = vandq_u8(mh, htmp);
  1866. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1867. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1868. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1869. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1870. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1871. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1872. #if defined(__ARM_FEATURE_DOTPROD)
  1873. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1874. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1875. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1876. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1877. #else
  1878. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1879. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1880. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1881. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1882. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1883. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1884. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1885. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1886. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1887. #endif
  1888. sum += d * isum;
  1889. }
  1890. *s = sum;
  1891. #elif defined __AVX2__
  1892. const __m256i m3 = _mm256_set1_epi8(3);
  1893. const __m256i m1 = _mm256_set1_epi8(1);
  1894. __m256 acc = _mm256_setzero_ps();
  1895. uint64_t aux64;
  1896. uint16_t aux16[2];
  1897. const int8_t * aux8 = (const int8_t *)aux16;
  1898. for (int i = 0; i < nb; ++i) {
  1899. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1900. const uint8_t * restrict q3 = x[i].qs;
  1901. const int8_t * restrict q8 = y[i].qs;
  1902. const uint16_t a = *(const uint16_t *)x[i].scales;
  1903. aux16[0] = a & 0x0f0f;
  1904. aux16[1] = (a >> 4) & 0x0f0f;
  1905. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1906. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1907. memcpy(&aux64, x[i].hmask, 8);
  1908. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1909. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  1910. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1911. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1912. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1913. // load low 2 bits
  1914. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1915. // prepare low and high bits
  1916. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  1917. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1918. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1919. // load Q8 quants
  1920. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1921. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1922. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1923. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1924. // and 2 if the high bit was set)
  1925. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1926. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1927. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1928. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1929. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1930. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1931. // multiply with scales
  1932. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1933. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1934. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1935. // multiply with block scale and accumulate
  1936. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1937. }
  1938. *s = hsum_float_8(acc);
  1939. #elif defined __AVX__
  1940. const __m128i m3 = _mm_set1_epi8(3);
  1941. const __m128i m1 = _mm_set1_epi8(1);
  1942. __m256 acc = _mm256_setzero_ps();
  1943. uint64_t aux64;
  1944. uint16_t aux16[2];
  1945. const int8_t * aux8 = (const int8_t *)aux16;
  1946. for (int i = 0; i < nb; ++i) {
  1947. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1948. const uint8_t * restrict q3 = x[i].qs;
  1949. const int8_t * restrict q8 = y[i].qs;
  1950. const uint16_t a = *(const uint16_t *)x[i].scales;
  1951. aux16[0] = a & 0x0f0f;
  1952. aux16[1] = (a >> 4) & 0x0f0f;
  1953. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  1954. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  1955. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  1956. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  1957. memcpy(&aux64, x[i].hmask, 8);
  1958. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1959. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  1960. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  1961. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  1962. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  1963. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  1964. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  1965. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  1966. // load low 2 bits
  1967. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1968. // prepare low and high bits
  1969. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  1970. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  1971. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  1972. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  1973. // load Q8 quants
  1974. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1975. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1976. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  1977. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1978. // and 2 if the high bit was set)
  1979. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  1980. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  1981. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  1982. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  1983. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  1984. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  1985. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  1986. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  1987. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1988. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1989. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1990. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1991. // multiply with scales
  1992. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  1993. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  1994. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  1995. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  1996. p16_0 = _mm_add_epi32(p16_0, p16_2);
  1997. p16_1 = _mm_add_epi32(p16_1, p16_3);
  1998. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  1999. // multiply with block scale and accumulate
  2000. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  2001. }
  2002. *s = hsum_float_8(acc);
  2003. #else
  2004. int8_t aux8[QK_K];
  2005. int16_t aux16[8];
  2006. float sums [8];
  2007. int32_t aux32[8];
  2008. int32_t scales[4];
  2009. memset(sums, 0, 8*sizeof(float));
  2010. float sumf = 0;
  2011. for (int i = 0; i < nb; ++i) {
  2012. const uint8_t * restrict q3 = x[i].qs;
  2013. const uint8_t * restrict hm = x[i].hmask;
  2014. const int8_t * restrict q8 = y[i].qs;
  2015. int8_t * restrict a = aux8;
  2016. for (int l = 0; l < 8; ++l) {
  2017. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  2018. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  2019. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  2020. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  2021. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  2022. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  2023. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  2024. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  2025. }
  2026. scales[0] = (x[i].scales[0] & 0xF) - 8;
  2027. scales[1] = (x[i].scales[0] >> 4) - 8;
  2028. scales[2] = (x[i].scales[1] & 0xF) - 8;
  2029. scales[3] = (x[i].scales[1] >> 4) - 8;
  2030. memset(aux32, 0, 8*sizeof(int32_t));
  2031. for (int j = 0; j < QK_K/16; ++j) {
  2032. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2033. q8 += 8; a += 8;
  2034. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  2035. q8 += 8; a += 8;
  2036. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  2037. }
  2038. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2039. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2040. }
  2041. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2042. *s = sumf;
  2043. #endif
  2044. }
  2045. #endif
  2046. #if QK_K == 256
  2047. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2048. assert(n % QK_K == 0);
  2049. const block_q4_K * restrict x = vx;
  2050. const block_q8_K * restrict y = vy;
  2051. const int nb = n / QK_K;
  2052. static const uint32_t kmask1 = 0x3f3f3f3f;
  2053. static const uint32_t kmask2 = 0x0f0f0f0f;
  2054. static const uint32_t kmask3 = 0x03030303;
  2055. uint32_t utmp[4];
  2056. #ifdef __ARM_NEON
  2057. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2058. #ifdef __ARM_FEATURE_DOTPROD
  2059. const int32x4_t mzero = vdupq_n_s32(0);
  2060. #endif
  2061. int8x16x2_t q4bytes;
  2062. int8x16x2_t q8bytes;
  2063. float sumf = 0;
  2064. for (int i = 0; i < nb; ++i) {
  2065. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2066. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2067. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2068. memcpy(utmp, x[i].scales, 12);
  2069. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  2070. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2071. utmp[0] &= kmask1;
  2072. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  2073. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2074. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2075. sumf -= dmin * vaddvq_s32(prod);
  2076. const uint8_t * scales = (const uint8_t *)utmp;
  2077. const uint8_t * restrict q4 = x[i].qs;
  2078. const int8_t * restrict q8 = y[i].qs;
  2079. //int32x4_t isum = mzero;
  2080. int32_t sumi1 = 0;
  2081. int32_t sumi2 = 0;
  2082. for (int j = 0; j < QK_K/64; ++j) {
  2083. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2084. #ifdef __ARM_FEATURE_DOTPROD
  2085. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2086. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2087. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2088. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2089. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2090. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2091. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2092. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2093. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2094. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2095. #else
  2096. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2097. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2098. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2099. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2100. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2101. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2102. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2103. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2104. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2105. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2106. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2107. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2108. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2109. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2110. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2111. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2112. #endif
  2113. }
  2114. sumf += d * (sumi1 + sumi2);
  2115. }
  2116. *s = sumf;
  2117. #elif defined __AVX2__
  2118. const __m256i m4 = _mm256_set1_epi8(0xF);
  2119. __m256 acc = _mm256_setzero_ps();
  2120. __m128 acc_m = _mm_setzero_ps();
  2121. for (int i = 0; i < nb; ++i) {
  2122. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2123. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2124. memcpy(utmp, x[i].scales, 12);
  2125. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2126. const uint32_t uaux = utmp[1] & kmask1;
  2127. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2128. utmp[2] = uaux;
  2129. utmp[0] &= kmask1;
  2130. const uint8_t * restrict q4 = x[i].qs;
  2131. const int8_t * restrict q8 = y[i].qs;
  2132. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2133. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2134. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2135. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2136. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2137. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2138. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2139. __m256i sumi = _mm256_setzero_si256();
  2140. for (int j = 0; j < QK_K/64; ++j) {
  2141. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2142. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2143. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2144. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2145. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2146. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2147. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2148. p16l = _mm256_madd_epi16(scale_l, p16l);
  2149. sumi = _mm256_add_epi32(sumi, p16l);
  2150. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2151. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2152. p16h = _mm256_madd_epi16(scale_h, p16h);
  2153. sumi = _mm256_add_epi32(sumi, p16h);
  2154. }
  2155. __m256 vd = _mm256_set1_ps(d);
  2156. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2157. }
  2158. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2159. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2160. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2161. #elif defined __AVX__
  2162. const __m128i m4 = _mm_set1_epi8(0xF);
  2163. const __m128i m2 = _mm_set1_epi8(0x2);
  2164. __m256 acc = _mm256_setzero_ps();
  2165. __m128 acc_m = _mm_setzero_ps();
  2166. for (int i = 0; i < nb; ++i) {
  2167. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2168. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2169. const uint8_t * restrict q4 = x[i].qs;
  2170. const int8_t * restrict q8 = y[i].qs;
  2171. memcpy(utmp, x[i].scales, 12);
  2172. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2173. const uint32_t uaux = utmp[1] & kmask1;
  2174. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2175. utmp[2] = uaux;
  2176. utmp[0] &= kmask1;
  2177. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2178. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2179. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2180. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2181. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2182. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2183. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2184. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2185. __m128i sumi_0 = _mm_setzero_si128();
  2186. __m128i sumi_1 = _mm_setzero_si128();
  2187. __m128i shuffle = _mm_set1_epi16(0x0100);
  2188. for (int j = 0; j < QK_K/64; ++j) {
  2189. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2190. shuffle = _mm_add_epi16(shuffle, m2);
  2191. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2192. shuffle = _mm_add_epi16(shuffle, m2);
  2193. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2194. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2195. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2196. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2197. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2198. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2199. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2200. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2201. p16l = _mm_madd_epi16(scale_l, p16l);
  2202. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2203. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2204. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2205. p16l = _mm_madd_epi16(scale_l, p16l);
  2206. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2207. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2208. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2209. p16h = _mm_madd_epi16(scale_h, p16h);
  2210. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2211. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2212. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2213. p16h = _mm_madd_epi16(scale_h, p16h);
  2214. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2215. }
  2216. __m256 vd = _mm256_set1_ps(d);
  2217. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2218. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2219. }
  2220. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2221. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2222. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2223. #else
  2224. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2225. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2226. int8_t aux8[QK_K];
  2227. int16_t aux16[8];
  2228. float sums [8];
  2229. int32_t aux32[8];
  2230. memset(sums, 0, 8*sizeof(float));
  2231. float sumf = 0;
  2232. for (int i = 0; i < nb; ++i) {
  2233. const uint8_t * restrict q4 = x[i].qs;
  2234. const int8_t * restrict q8 = y[i].qs;
  2235. memset(aux32, 0, 8*sizeof(int32_t));
  2236. int8_t * restrict a = aux8;
  2237. for (int j = 0; j < QK_K/64; ++j) {
  2238. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2239. a += 32;
  2240. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2241. a += 32; q4 += 32;
  2242. }
  2243. memcpy(utmp, x[i].scales, 12);
  2244. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2245. const uint32_t uaux = utmp[1] & kmask1;
  2246. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2247. utmp[2] = uaux;
  2248. utmp[0] &= kmask1;
  2249. int sumi = 0;
  2250. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2251. a = aux8;
  2252. int is = 0;
  2253. for (int j = 0; j < QK_K/32; ++j) {
  2254. int32_t scale = scales[is++];
  2255. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2256. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2257. q8 += 8; a += 8;
  2258. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2259. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2260. q8 += 8; a += 8;
  2261. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2262. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2263. q8 += 8; a += 8;
  2264. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2265. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2266. q8 += 8; a += 8;
  2267. }
  2268. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2269. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2270. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2271. sumf -= dmin * sumi;
  2272. }
  2273. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2274. *s = sumf;
  2275. #endif
  2276. }
  2277. #else
  2278. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2279. assert(n % QK_K == 0);
  2280. const block_q4_K * restrict x = vx;
  2281. const block_q8_K * restrict y = vy;
  2282. const int nb = n / QK_K;
  2283. #ifdef __ARM_NEON
  2284. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2285. #ifdef __ARM_FEATURE_DOTPROD
  2286. const int32x4_t mzero = vdupq_n_s32(0);
  2287. #endif
  2288. float sumf = 0;
  2289. int8x16x2_t q4bytes;
  2290. int8x16x4_t q8bytes;
  2291. float sum_mins = 0.f;
  2292. uint16_t aux16[2];
  2293. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2294. for (int i = 0; i < nb; ++i) {
  2295. const uint8_t * restrict q4 = x[i].qs;
  2296. const int8_t * restrict q8 = y[i].qs;
  2297. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2298. aux16[0] = a[0] & 0x0f0f;
  2299. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2300. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2301. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2302. const float d = y[i].d * (float)x[i].d[0];
  2303. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2304. #ifdef __ARM_FEATURE_DOTPROD
  2305. q8bytes = vld1q_s8_x4(q8);
  2306. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2307. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2308. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2309. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2310. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2311. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2312. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2313. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2314. #else
  2315. q8bytes = vld1q_s8_x4(q8);
  2316. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2317. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2318. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2319. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2320. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2321. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2322. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2323. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2324. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2325. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2326. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2327. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2328. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2329. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2330. #endif
  2331. sumf += d * (sumi1 + sumi2);
  2332. }
  2333. *s = sumf - sum_mins;
  2334. #elif defined __AVX2__
  2335. const __m256i m4 = _mm256_set1_epi8(0xF);
  2336. __m256 acc = _mm256_setzero_ps();
  2337. float summs = 0;
  2338. uint16_t aux16[2];
  2339. const uint8_t * scales = (const uint8_t *)aux16;
  2340. for (int i = 0; i < nb; ++i) {
  2341. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2342. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2343. const __m256 vd = _mm256_set1_ps(d);
  2344. const uint16_t * a = (const uint16_t *)x[i].scales;
  2345. aux16[0] = a[0] & 0x0f0f;
  2346. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2347. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2348. const uint8_t * restrict q4 = x[i].qs;
  2349. const int8_t * restrict q8 = y[i].qs;
  2350. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2351. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2352. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2353. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2354. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2355. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2356. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2357. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2358. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2359. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2360. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2361. }
  2362. *s = hsum_float_8(acc) - summs;
  2363. #elif defined __AVX__
  2364. const __m128i m4 = _mm_set1_epi8(0xF);
  2365. __m256 acc = _mm256_setzero_ps();
  2366. float summs = 0;
  2367. uint16_t aux16[2];
  2368. const uint8_t * scales = (const uint8_t *)aux16;
  2369. for (int i = 0; i < nb; ++i) {
  2370. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2371. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2372. const __m256 vd = _mm256_set1_ps(d);
  2373. const uint16_t * a = (const uint16_t *)x[i].scales;
  2374. aux16[0] = a[0] & 0x0f0f;
  2375. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2376. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2377. const uint8_t * restrict q4 = x[i].qs;
  2378. const int8_t * restrict q8 = y[i].qs;
  2379. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2380. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  2381. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  2382. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  2383. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  2384. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  2385. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  2386. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2387. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2388. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  2389. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  2390. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  2391. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  2392. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  2393. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  2394. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  2395. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  2396. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  2397. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  2398. }
  2399. *s = hsum_float_8(acc) - summs;
  2400. #else
  2401. uint8_t aux8[QK_K];
  2402. int16_t aux16[16];
  2403. float sums [8];
  2404. memset(sums, 0, 8*sizeof(float));
  2405. uint16_t s16[2];
  2406. const uint8_t * restrict scales = (const uint8_t *)s16;
  2407. float sumf = 0;
  2408. for (int i = 0; i < nb; ++i) {
  2409. const uint8_t * restrict q4 = x[i].qs;
  2410. const int8_t * restrict q8 = y[i].qs;
  2411. uint8_t * restrict a = aux8;
  2412. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2413. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2414. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2415. s16[0] = b[0] & 0x0f0f;
  2416. s16[1] = (b[0] >> 4) & 0x0f0f;
  2417. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2418. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2419. for (int j = 0; j < QK_K/32; ++j) {
  2420. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2421. q8 += 16; a += 16;
  2422. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2423. q8 += 16; a += 16;
  2424. const float dl = d * scales[j];
  2425. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2426. }
  2427. }
  2428. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2429. *s = sumf;
  2430. #endif
  2431. }
  2432. #endif
  2433. #if QK_K == 256
  2434. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2435. assert(n % QK_K == 0);
  2436. const block_q5_K * restrict x = vx;
  2437. const block_q8_K * restrict y = vy;
  2438. const int nb = n / QK_K;
  2439. static const uint32_t kmask1 = 0x3f3f3f3f;
  2440. static const uint32_t kmask2 = 0x0f0f0f0f;
  2441. static const uint32_t kmask3 = 0x03030303;
  2442. uint32_t utmp[4];
  2443. #ifdef __ARM_NEON
  2444. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2445. const int32x4_t mzero = vdupq_n_s32(0);
  2446. const uint8x16_t mone = vdupq_n_u8(1);
  2447. const uint8x16_t mtwo = vdupq_n_u8(2);
  2448. int8x16x4_t q5bytes;
  2449. float sumf = 0;
  2450. for (int i = 0; i < nb; ++i) {
  2451. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2452. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2453. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2454. memcpy(utmp, x[i].scales, 12);
  2455. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2456. const uint32_t uaux = utmp[1] & kmask1;
  2457. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2458. utmp[2] = uaux;
  2459. utmp[0] &= kmask1;
  2460. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2461. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2462. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2463. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2464. int32_t sumi_mins = vaddvq_s32(prod);
  2465. const uint8_t * scales = (const uint8_t *)utmp;
  2466. const uint8_t * restrict q5 = x[i].qs;
  2467. const uint8_t * restrict qh = x[i].qh;
  2468. const int8_t * restrict q8 = y[i].qs;
  2469. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2470. uint8x16x4_t q5h;
  2471. int32_t sumi = 0;
  2472. for (int j = 0; j < QK_K/64; ++j) {
  2473. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2474. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2475. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2476. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2477. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2478. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2479. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2480. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2481. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2482. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2483. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2484. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2485. #if defined(__ARM_FEATURE_DOTPROD)
  2486. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2487. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2488. #else
  2489. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2490. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2491. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2492. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2493. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2494. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2495. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2496. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2497. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2498. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2499. #endif
  2500. }
  2501. sumf += d * sumi - dmin * sumi_mins;
  2502. }
  2503. *s = sumf;
  2504. #elif defined __AVX2__
  2505. const __m256i m4 = _mm256_set1_epi8(0xF);
  2506. const __m128i mzero = _mm_setzero_si128();
  2507. const __m256i mone = _mm256_set1_epi8(1);
  2508. __m256 acc = _mm256_setzero_ps();
  2509. float summs = 0.f;
  2510. for (int i = 0; i < nb; ++i) {
  2511. const uint8_t * restrict q5 = x[i].qs;
  2512. const int8_t * restrict q8 = y[i].qs;
  2513. #if QK_K == 256
  2514. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2515. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2516. memcpy(utmp, x[i].scales, 12);
  2517. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2518. const uint32_t uaux = utmp[1] & kmask1;
  2519. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2520. utmp[2] = uaux;
  2521. utmp[0] &= kmask1;
  2522. #else
  2523. // TODO
  2524. const float d = 0, dmin = 0;
  2525. #endif
  2526. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2527. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2528. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2529. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2530. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2531. summs += dmin * _mm_extract_epi32(hsum, 0);
  2532. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2533. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2534. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2535. __m256i hmask = mone;
  2536. __m256i sumi = _mm256_setzero_si256();
  2537. int bit = 0;
  2538. for (int j = 0; j < QK_K/64; ++j) {
  2539. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2540. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2541. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2542. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2543. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2544. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2545. hmask = _mm256_slli_epi16(hmask, 1);
  2546. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2547. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2548. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2549. hmask = _mm256_slli_epi16(hmask, 1);
  2550. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2551. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2552. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2553. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2554. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2555. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2556. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2557. }
  2558. __m256 vd = _mm256_set1_ps(d);
  2559. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2560. }
  2561. *s = hsum_float_8(acc) + summs;
  2562. #elif defined __AVX__
  2563. const __m128i m4 = _mm_set1_epi8(0xF);
  2564. const __m128i mzero = _mm_setzero_si128();
  2565. const __m128i mone = _mm_set1_epi8(1);
  2566. const __m128i m2 = _mm_set1_epi8(2);
  2567. __m256 acc = _mm256_setzero_ps();
  2568. float summs = 0.f;
  2569. for (int i = 0; i < nb; ++i) {
  2570. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2571. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2572. const uint8_t * restrict q5 = x[i].qs;
  2573. const int8_t * restrict q8 = y[i].qs;
  2574. memcpy(utmp, x[i].scales, 12);
  2575. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2576. const uint32_t uaux = utmp[1] & kmask1;
  2577. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2578. utmp[2] = uaux;
  2579. utmp[0] &= kmask1;
  2580. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2581. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2582. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2583. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2584. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2585. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2586. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2587. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2588. summs += dmin * _mm_extract_epi32(hsum, 0);
  2589. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2590. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2591. __m128i hmask = mone;
  2592. __m128i sumi_0 = _mm_setzero_si128();
  2593. __m128i sumi_1 = _mm_setzero_si128();
  2594. int bit = 0;
  2595. __m128i shuffle = _mm_set1_epi16(0x0100);
  2596. for (int j = 0; j < QK_K/64; ++j) {
  2597. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2598. shuffle = _mm_add_epi16(shuffle, m2);
  2599. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2600. shuffle = _mm_add_epi16(shuffle, m2);
  2601. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2602. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2603. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2604. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2605. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2606. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2607. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2608. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2609. hmask = _mm_slli_epi16(hmask, 1);
  2610. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2611. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2612. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2613. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2614. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2615. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2616. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2617. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2618. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2619. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2620. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2621. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2622. hmask = _mm_slli_epi16(hmask, 1);
  2623. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2624. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2625. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2626. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2627. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2628. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2629. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2630. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2631. }
  2632. __m256 vd = _mm256_set1_ps(d);
  2633. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2634. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2635. }
  2636. *s = hsum_float_8(acc) + summs;
  2637. #else
  2638. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2639. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2640. int8_t aux8[QK_K];
  2641. int16_t aux16[8];
  2642. float sums [8];
  2643. int32_t aux32[8];
  2644. memset(sums, 0, 8*sizeof(float));
  2645. float sumf = 0;
  2646. for (int i = 0; i < nb; ++i) {
  2647. const uint8_t * restrict q4 = x[i].qs;
  2648. const uint8_t * restrict hm = x[i].qh;
  2649. const int8_t * restrict q8 = y[i].qs;
  2650. memset(aux32, 0, 8*sizeof(int32_t));
  2651. int8_t * restrict a = aux8;
  2652. uint8_t m = 1;
  2653. for (int j = 0; j < QK_K/64; ++j) {
  2654. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2655. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2656. a += 32; m <<= 1;
  2657. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2658. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2659. a += 32; m <<= 1;
  2660. q4 += 32;
  2661. }
  2662. memcpy(utmp, x[i].scales, 12);
  2663. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2664. const uint32_t uaux = utmp[1] & kmask1;
  2665. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2666. utmp[2] = uaux;
  2667. utmp[0] &= kmask1;
  2668. int sumi = 0;
  2669. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2670. a = aux8;
  2671. int is = 0;
  2672. for (int j = 0; j < QK_K/32; ++j) {
  2673. int32_t scale = scales[is++];
  2674. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2675. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2676. q8 += 8; a += 8;
  2677. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2678. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2679. q8 += 8; a += 8;
  2680. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2681. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2682. q8 += 8; a += 8;
  2683. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2684. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2685. q8 += 8; a += 8;
  2686. }
  2687. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2688. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2689. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2690. sumf -= dmin * sumi;
  2691. }
  2692. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2693. *s = sumf;
  2694. #endif
  2695. }
  2696. #else
  2697. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2698. assert(n % QK_K == 0);
  2699. const block_q5_K * restrict x = vx;
  2700. const block_q8_K * restrict y = vy;
  2701. const int nb = n / QK_K;
  2702. #ifdef __ARM_NEON
  2703. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2704. const int32x4_t mzero = vdupq_n_s32(0);
  2705. const uint8x16_t mh = vdupq_n_u8(16);
  2706. int8x16x4_t q5bytes;
  2707. uint8x16x4_t q5h;
  2708. float sumf = 0;
  2709. for (int i = 0; i < nb; ++i) {
  2710. const float d = y[i].d * (float)x[i].d;
  2711. const int8_t * sc = x[i].scales;
  2712. const uint8_t * restrict q5 = x[i].qs;
  2713. const uint8_t * restrict qh = x[i].qh;
  2714. const int8_t * restrict q8 = y[i].qs;
  2715. const uint8x8_t qhbits = vld1_u8(qh);
  2716. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2717. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2718. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2719. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2720. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2721. q5h.val[2] = vbicq_u8(mh, htmp);
  2722. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2723. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2724. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2725. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2726. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2727. #if defined(__ARM_FEATURE_DOTPROD)
  2728. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2729. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2730. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2731. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2732. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2733. #else
  2734. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2735. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2736. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2737. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2738. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2739. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2740. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2741. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2742. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2743. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2744. sumf += d*sumi;
  2745. #endif
  2746. }
  2747. *s = sumf;
  2748. #elif defined __AVX2__
  2749. const __m256i m4 = _mm256_set1_epi8(0xF);
  2750. const __m256i mone = _mm256_set1_epi8(1);
  2751. __m256 acc = _mm256_setzero_ps();
  2752. for (int i = 0; i < nb; ++i) {
  2753. const uint8_t * restrict q5 = x[i].qs;
  2754. const int8_t * restrict q8 = y[i].qs;
  2755. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2756. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2757. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2758. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2759. int64_t aux64;
  2760. memcpy(&aux64, x[i].qh, 8);
  2761. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2762. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  2763. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2764. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2765. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2766. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2767. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2768. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2769. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2770. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2771. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2772. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2773. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2774. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2775. }
  2776. *s = hsum_float_8(acc);
  2777. #elif defined __AVX__
  2778. const __m128i m4 = _mm_set1_epi8(0xF);
  2779. const __m128i mone = _mm_set1_epi8(1);
  2780. __m256 acc = _mm256_setzero_ps();
  2781. for (int i = 0; i < nb; ++i) {
  2782. const uint8_t * restrict q5 = x[i].qs;
  2783. const int8_t * restrict q8 = y[i].qs;
  2784. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2785. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2786. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  2787. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  2788. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  2789. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  2790. int64_t aux64;
  2791. memcpy(&aux64, x[i].qh, 8);
  2792. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  2793. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  2794. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  2795. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  2796. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  2797. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  2798. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  2799. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  2800. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  2801. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  2802. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2803. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2804. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  2805. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  2806. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  2807. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  2808. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  2809. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  2810. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  2811. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  2812. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  2813. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  2814. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  2815. }
  2816. *s = hsum_float_8(acc);
  2817. #else
  2818. int8_t aux8[QK_K];
  2819. int16_t aux16[16];
  2820. float sums [8];
  2821. memset(sums, 0, 8*sizeof(float));
  2822. float sumf = 0;
  2823. for (int i = 0; i < nb; ++i) {
  2824. const uint8_t * restrict q4 = x[i].qs;
  2825. const uint8_t * restrict hm = x[i].qh;
  2826. const int8_t * restrict q8 = y[i].qs;
  2827. int8_t * restrict a = aux8;
  2828. for (int l = 0; l < 32; ++l) {
  2829. a[l+ 0] = q4[l] & 0xF;
  2830. a[l+32] = q4[l] >> 4;
  2831. }
  2832. for (int is = 0; is < 8; ++is) {
  2833. uint8_t m = 1 << is;
  2834. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2835. }
  2836. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2837. const int8_t * restrict sc = x[i].scales;
  2838. for (int j = 0; j < QK_K/16; ++j) {
  2839. const float dl = d * sc[j];
  2840. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2841. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2842. q8 += 16; a += 16;
  2843. }
  2844. }
  2845. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2846. *s = sumf;
  2847. #endif
  2848. }
  2849. #endif
  2850. #if QK_K == 256
  2851. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2852. assert(n % QK_K == 0);
  2853. const block_q6_K * restrict x = vx;
  2854. const block_q8_K * restrict y = vy;
  2855. const int nb = n / QK_K;
  2856. #ifdef __ARM_NEON
  2857. float sum = 0;
  2858. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2859. const int32x4_t vzero = vdupq_n_s32(0);
  2860. //const int8x16_t m32s = vdupq_n_s8(32);
  2861. const uint8x16_t mone = vdupq_n_u8(3);
  2862. int8x16x4_t q6bytes;
  2863. uint8x16x4_t q6h;
  2864. for (int i = 0; i < nb; ++i) {
  2865. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2866. const uint8_t * restrict q6 = x[i].ql;
  2867. const uint8_t * restrict qh = x[i].qh;
  2868. const int8_t * restrict q8 = y[i].qs;
  2869. const int8_t * restrict scale = x[i].scales;
  2870. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2871. const int8x16_t scales = vld1q_s8(scale);
  2872. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2873. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2874. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2875. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2876. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2877. int32_t isum_mins = vaddvq_s32(prod);
  2878. int32_t isum = 0;
  2879. for (int j = 0; j < QK_K/128; ++j) {
  2880. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2881. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2882. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2883. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2884. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2885. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2886. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2887. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2888. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2889. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2890. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2891. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2892. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2893. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2894. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2895. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2896. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2897. #if defined(__ARM_FEATURE_DOTPROD)
  2898. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2899. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2900. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2901. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2902. scale += 4;
  2903. #else
  2904. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2905. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2906. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2907. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2908. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2909. scale += 2;
  2910. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2911. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2912. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2913. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2914. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2915. scale += 2;
  2916. #endif
  2917. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2918. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2919. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2920. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2921. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2922. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2923. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2924. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2925. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2926. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2927. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2928. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2929. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2930. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2931. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2932. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2933. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2934. #if defined(__ARM_FEATURE_DOTPROD)
  2935. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2936. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2937. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2938. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2939. scale += 4;
  2940. //for (int l = 0; l < 4; ++l) {
  2941. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2942. // isum += vaddvq_s32(p) * *scale++;
  2943. //}
  2944. #else
  2945. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2946. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2947. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2948. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2949. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2950. scale += 2;
  2951. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2952. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2953. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2954. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2955. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2956. scale += 2;
  2957. #endif
  2958. }
  2959. //sum += isum * d_all * y[i].d;
  2960. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  2961. }
  2962. *s = sum;
  2963. #elif defined __AVX2__
  2964. const __m256i m4 = _mm256_set1_epi8(0xF);
  2965. const __m256i m2 = _mm256_set1_epi8(3);
  2966. const __m256i m32s = _mm256_set1_epi8(32);
  2967. __m256 acc = _mm256_setzero_ps();
  2968. for (int i = 0; i < nb; ++i) {
  2969. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2970. const uint8_t * restrict q4 = x[i].ql;
  2971. const uint8_t * restrict qh = x[i].qh;
  2972. const int8_t * restrict q8 = y[i].qs;
  2973. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2974. __m256i sumi = _mm256_setzero_si256();
  2975. int is = 0;
  2976. for (int j = 0; j < QK_K/128; ++j) {
  2977. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  2978. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  2979. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  2980. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  2981. is += 4;
  2982. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2983. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2984. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  2985. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  2986. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  2987. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  2988. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  2989. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  2990. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  2991. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  2992. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  2993. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2994. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2995. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2996. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2997. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  2998. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  2999. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  3000. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  3001. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3002. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3003. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  3004. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  3005. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3006. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3007. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3008. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3009. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3010. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3011. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  3012. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  3013. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3014. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  3015. }
  3016. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3017. }
  3018. *s = hsum_float_8(acc);
  3019. #elif defined __AVX__
  3020. const __m128i m4 = _mm_set1_epi8(0xF);
  3021. const __m128i m3 = _mm_set1_epi8(3);
  3022. const __m128i m32s = _mm_set1_epi8(32);
  3023. const __m128i m2 = _mm_set1_epi8(2);
  3024. __m256 acc = _mm256_setzero_ps();
  3025. for (int i = 0; i < nb; ++i) {
  3026. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3027. const uint8_t * restrict q4 = x[i].ql;
  3028. const uint8_t * restrict qh = x[i].qh;
  3029. const int8_t * restrict q8 = y[i].qs;
  3030. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3031. __m128i sumi_0 = _mm_setzero_si128();
  3032. __m128i sumi_1 = _mm_setzero_si128();
  3033. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  3034. for (int j = 0; j < QK_K/128; ++j) {
  3035. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3036. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3037. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  3038. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  3039. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  3040. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  3041. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  3042. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  3043. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  3044. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  3045. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3046. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3047. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3048. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3049. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  3050. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  3051. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  3052. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  3053. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  3054. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  3055. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  3056. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  3057. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3058. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3059. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3060. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3061. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3062. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3063. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3064. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3065. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  3066. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  3067. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  3068. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  3069. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  3070. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  3071. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  3072. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  3073. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  3074. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  3075. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  3076. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  3077. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  3078. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  3079. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  3080. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  3081. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3082. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3083. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3084. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3085. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  3086. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  3087. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  3088. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  3089. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  3090. shuffle = _mm_add_epi8(shuffle, m2);
  3091. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  3092. shuffle = _mm_add_epi8(shuffle, m2);
  3093. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  3094. shuffle = _mm_add_epi8(shuffle, m2);
  3095. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  3096. shuffle = _mm_add_epi8(shuffle, m2);
  3097. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3098. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3099. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3100. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3101. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  3102. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  3103. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  3104. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  3105. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3106. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3107. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  3108. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  3109. }
  3110. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3111. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  3112. }
  3113. *s = hsum_float_8(acc);
  3114. #else
  3115. int8_t aux8[QK_K];
  3116. int16_t aux16[8];
  3117. float sums [8];
  3118. int32_t aux32[8];
  3119. memset(sums, 0, 8*sizeof(float));
  3120. float sumf = 0;
  3121. for (int i = 0; i < nb; ++i) {
  3122. const uint8_t * restrict q4 = x[i].ql;
  3123. const uint8_t * restrict qh = x[i].qh;
  3124. const int8_t * restrict q8 = y[i].qs;
  3125. memset(aux32, 0, 8*sizeof(int32_t));
  3126. int8_t * restrict a = aux8;
  3127. for (int j = 0; j < QK_K; j += 128) {
  3128. for (int l = 0; l < 32; ++l) {
  3129. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3130. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3131. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3132. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3133. }
  3134. a += 128;
  3135. q4 += 64;
  3136. qh += 32;
  3137. }
  3138. a = aux8;
  3139. int is = 0;
  3140. for (int j = 0; j < QK_K/16; ++j) {
  3141. int scale = x[i].scales[is++];
  3142. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3143. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3144. q8 += 8; a += 8;
  3145. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3146. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3147. q8 += 8; a += 8;
  3148. }
  3149. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3150. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3151. }
  3152. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3153. *s = sumf;
  3154. #endif
  3155. }
  3156. #else
  3157. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3158. assert(n % QK_K == 0);
  3159. const block_q6_K * restrict x = vx;
  3160. const block_q8_K * restrict y = vy;
  3161. const int nb = n / QK_K;
  3162. #ifdef __ARM_NEON
  3163. float sum = 0;
  3164. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3165. const int32x4_t vzero = vdupq_n_s32(0);
  3166. const int8x16_t m32s = vdupq_n_s8(32);
  3167. const uint8x16_t mone = vdupq_n_u8(3);
  3168. int8x16x4_t q6bytes;
  3169. uint8x16x4_t q6h;
  3170. for (int i = 0; i < nb; ++i) {
  3171. const float d_all = (float)x[i].d;
  3172. const uint8_t * restrict q6 = x[i].ql;
  3173. const uint8_t * restrict qh = x[i].qh;
  3174. const int8_t * restrict q8 = y[i].qs;
  3175. const int8_t * restrict scale = x[i].scales;
  3176. int32_t isum = 0;
  3177. uint8x16_t qhbits = vld1q_u8(qh);
  3178. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3179. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3180. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3181. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3182. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3183. shifted = vshrq_n_u8(qhbits, 4);
  3184. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3185. shifted = vshrq_n_u8(qhbits, 6);
  3186. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3187. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3188. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3189. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3190. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3191. #if defined(__ARM_FEATURE_DOTPROD)
  3192. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3193. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3194. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3195. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3196. #else
  3197. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3198. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3199. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3200. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3201. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3202. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3203. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3204. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3205. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3206. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3207. #endif
  3208. sum += isum * d_all * y[i].d;
  3209. }
  3210. *s = sum;
  3211. #elif defined __AVX2__
  3212. const __m256i m4 = _mm256_set1_epi8(0xF);
  3213. const __m256i m2 = _mm256_set1_epi8(3);
  3214. const __m256i m32s = _mm256_set1_epi8(32);
  3215. __m256 acc = _mm256_setzero_ps();
  3216. for (int i = 0; i < nb; ++i) {
  3217. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3218. const uint8_t * restrict q4 = x[i].ql;
  3219. const uint8_t * restrict qh = x[i].qh;
  3220. const int8_t * restrict q8 = y[i].qs;
  3221. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3222. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3223. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3224. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3225. __m256i sumi = _mm256_setzero_si256();
  3226. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3227. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3228. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3229. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3230. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3231. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3232. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3233. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3234. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3235. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3236. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3237. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3238. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3239. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3240. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3241. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3242. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3243. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3244. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3245. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3246. }
  3247. *s = hsum_float_8(acc);
  3248. #elif defined __AVX__
  3249. const __m128i m4 = _mm_set1_epi8(0xF);
  3250. const __m128i m2 = _mm_set1_epi8(3);
  3251. const __m128i m32s = _mm_set1_epi8(32);
  3252. __m256 acc = _mm256_setzero_ps();
  3253. for (int i = 0; i < nb; ++i) {
  3254. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3255. const uint8_t * restrict q4 = x[i].ql;
  3256. const uint8_t * restrict qh = x[i].qh;
  3257. const int8_t * restrict q8 = y[i].qs;
  3258. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3259. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3260. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3261. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3262. __m128i sumi_0 = _mm_setzero_si128();
  3263. __m128i sumi_1 = _mm_setzero_si128();
  3264. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3265. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3266. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3267. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3268. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  3269. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  3270. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  3271. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  3272. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  3273. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  3274. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  3275. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  3276. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3277. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3278. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  3279. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  3280. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  3281. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  3282. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  3283. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  3284. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  3285. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  3286. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3287. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3288. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3289. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3290. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3291. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3292. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3293. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3294. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3295. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3296. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  3297. }
  3298. *s = hsum_float_8(acc);
  3299. #else
  3300. int8_t aux8[QK_K];
  3301. int16_t aux16[8];
  3302. float sums [8];
  3303. int32_t aux32[8];
  3304. memset(sums, 0, 8*sizeof(float));
  3305. float sumf = 0;
  3306. for (int i = 0; i < nb; ++i) {
  3307. const uint8_t * restrict q4 = x[i].ql;
  3308. const uint8_t * restrict qh = x[i].qh;
  3309. const int8_t * restrict q8 = y[i].qs;
  3310. memset(aux32, 0, 8*sizeof(int32_t));
  3311. int8_t * restrict a = aux8;
  3312. for (int l = 0; l < 16; ++l) {
  3313. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3314. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3315. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3316. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3317. }
  3318. int is = 0;
  3319. for (int j = 0; j < QK_K/16; ++j) {
  3320. int scale = x[i].scales[is++];
  3321. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3322. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3323. q8 += 8; a += 8;
  3324. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3325. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3326. q8 += 8; a += 8;
  3327. }
  3328. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3329. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3330. }
  3331. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3332. *s = sumf;
  3333. #endif
  3334. }
  3335. #endif