server-task.cpp 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. #include "server-common.h"
  2. #include "server-task.h"
  3. #include "common.h"
  4. #include "llama.h"
  5. #include "chat.h"
  6. #include "sampling.h"
  7. #include "json-schema-to-grammar.h"
  8. using json = nlohmann::ordered_json;
  9. //
  10. // task_params
  11. //
  12. json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
  13. json data = json::array();
  14. for (const auto & lb : logit_bias) {
  15. data.push_back(json{
  16. {"bias", lb.bias},
  17. {"token", lb.token},
  18. });
  19. }
  20. return data;
  21. }
  22. json task_params::to_json(bool only_metrics) const {
  23. std::vector<std::string> samplers;
  24. samplers.reserve(sampling.samplers.size());
  25. for (const auto & sampler : sampling.samplers) {
  26. samplers.emplace_back(common_sampler_type_to_str(sampler));
  27. }
  28. json lora = json::array();
  29. for (size_t i = 0; i < this->lora.size(); ++i) {
  30. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  31. }
  32. if (only_metrics) {
  33. return json {
  34. {"seed", sampling.seed},
  35. {"temperature", sampling.temp},
  36. {"dynatemp_range", sampling.dynatemp_range},
  37. {"dynatemp_exponent", sampling.dynatemp_exponent},
  38. {"top_k", sampling.top_k},
  39. {"top_p", sampling.top_p},
  40. {"min_p", sampling.min_p},
  41. {"top_n_sigma", sampling.top_n_sigma},
  42. {"xtc_probability", sampling.xtc_probability},
  43. {"xtc_threshold", sampling.xtc_threshold},
  44. {"typical_p", sampling.typ_p},
  45. {"repeat_last_n", sampling.penalty_last_n},
  46. {"repeat_penalty", sampling.penalty_repeat},
  47. {"presence_penalty", sampling.penalty_present},
  48. {"frequency_penalty", sampling.penalty_freq},
  49. {"dry_multiplier", sampling.dry_multiplier},
  50. {"dry_base", sampling.dry_base},
  51. {"dry_allowed_length", sampling.dry_allowed_length},
  52. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  53. {"mirostat", sampling.mirostat},
  54. {"mirostat_tau", sampling.mirostat_tau},
  55. {"mirostat_eta", sampling.mirostat_eta},
  56. {"max_tokens", n_predict},
  57. {"n_predict", n_predict}, // TODO: deduplicate?
  58. {"n_keep", n_keep},
  59. {"n_discard", n_discard},
  60. {"ignore_eos", sampling.ignore_eos},
  61. {"stream", stream},
  62. {"n_probs", sampling.n_probs},
  63. {"min_keep", sampling.min_keep},
  64. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  65. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  66. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  67. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  68. {"samplers", samplers},
  69. {"speculative.n_max", speculative.n_max},
  70. {"speculative.n_min", speculative.n_min},
  71. {"speculative.p_min", speculative.p_min},
  72. {"timings_per_token", timings_per_token},
  73. {"post_sampling_probs", post_sampling_probs},
  74. {"lora", lora},
  75. };
  76. }
  77. auto grammar_triggers = json::array();
  78. for (const auto & trigger : sampling.grammar_triggers) {
  79. server_grammar_trigger ct(trigger);
  80. grammar_triggers.push_back(ct.to_json());
  81. }
  82. return json {
  83. {"seed", sampling.seed},
  84. {"temperature", sampling.temp},
  85. {"dynatemp_range", sampling.dynatemp_range},
  86. {"dynatemp_exponent", sampling.dynatemp_exponent},
  87. {"top_k", sampling.top_k},
  88. {"top_p", sampling.top_p},
  89. {"min_p", sampling.min_p},
  90. {"top_n_sigma", sampling.top_n_sigma},
  91. {"xtc_probability", sampling.xtc_probability},
  92. {"xtc_threshold", sampling.xtc_threshold},
  93. {"typical_p", sampling.typ_p},
  94. {"repeat_last_n", sampling.penalty_last_n},
  95. {"repeat_penalty", sampling.penalty_repeat},
  96. {"presence_penalty", sampling.penalty_present},
  97. {"frequency_penalty", sampling.penalty_freq},
  98. {"dry_multiplier", sampling.dry_multiplier},
  99. {"dry_base", sampling.dry_base},
  100. {"dry_allowed_length", sampling.dry_allowed_length},
  101. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  102. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  103. {"mirostat", sampling.mirostat},
  104. {"mirostat_tau", sampling.mirostat_tau},
  105. {"mirostat_eta", sampling.mirostat_eta},
  106. {"stop", antiprompt},
  107. {"max_tokens", n_predict},
  108. {"n_predict", n_predict}, // TODO: deduplicate?
  109. {"n_keep", n_keep},
  110. {"n_discard", n_discard},
  111. {"ignore_eos", sampling.ignore_eos},
  112. {"stream", stream},
  113. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  114. {"n_probs", sampling.n_probs},
  115. {"min_keep", sampling.min_keep},
  116. {"grammar", sampling.grammar},
  117. {"grammar_lazy", sampling.grammar_lazy},
  118. {"grammar_triggers", grammar_triggers},
  119. {"preserved_tokens", sampling.preserved_tokens},
  120. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  121. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  122. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  123. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  124. {"samplers", samplers},
  125. {"speculative.n_max", speculative.n_max},
  126. {"speculative.n_min", speculative.n_min},
  127. {"speculative.p_min", speculative.p_min},
  128. {"timings_per_token", timings_per_token},
  129. {"post_sampling_probs", post_sampling_probs},
  130. {"lora", lora},
  131. };
  132. }
  133. //
  134. // server_task
  135. //
  136. task_params server_task::params_from_json_cmpl(
  137. const llama_context * ctx,
  138. const common_params & params_base,
  139. const json & data) {
  140. const llama_model * model = llama_get_model(ctx);
  141. const llama_vocab * vocab = llama_model_get_vocab(model);
  142. task_params params;
  143. // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
  144. task_params defaults;
  145. defaults.sampling = params_base.sampling;
  146. defaults.speculative = params_base.speculative;
  147. defaults.n_keep = params_base.n_keep;
  148. defaults.n_predict = params_base.n_predict;
  149. defaults.antiprompt = params_base.antiprompt;
  150. // enabling this will output extra debug information in the HTTP responses from the server
  151. params.verbose = params_base.verbosity > 9;
  152. params.timings_per_token = json_value(data, "timings_per_token", false);
  153. params.stream = json_value(data, "stream", false);
  154. auto stream_opt = json_value(data, "stream_options", json::object());
  155. params.include_usage = json_value(stream_opt, "include_usage", false);
  156. params.cache_prompt = json_value(data, "cache_prompt", true);
  157. params.return_tokens = json_value(data, "return_tokens", false);
  158. params.return_progress = json_value(data, "return_progress", false);
  159. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  160. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  161. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  162. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  163. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  164. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  165. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  166. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  167. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  168. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  169. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  170. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  171. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  172. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  173. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  174. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  175. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  176. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  177. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  178. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  179. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  180. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  181. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  182. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  183. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  184. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  185. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  186. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  187. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  188. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  189. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  190. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  191. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  192. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  193. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  194. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  195. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  196. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  197. // Use OpenAI API logprobs only if n_probs wasn't provided
  198. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  199. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  200. }
  201. if (data.contains("lora")) {
  202. if (data.at("lora").is_array()) {
  203. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  204. } else {
  205. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  206. }
  207. } else {
  208. params.lora = params_base.lora_adapters;
  209. }
  210. // TODO: add more sanity checks for the input parameters
  211. if (params.sampling.penalty_last_n < -1) {
  212. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  213. }
  214. if (params.sampling.dry_penalty_last_n < -1) {
  215. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  216. }
  217. if (params.sampling.penalty_last_n == -1) {
  218. // note: should be the slot's context and not the full context, but it's ok
  219. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  220. }
  221. if (params.sampling.dry_penalty_last_n == -1) {
  222. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  223. }
  224. if (params.sampling.dry_base < 1.0f) {
  225. params.sampling.dry_base = defaults.sampling.dry_base;
  226. }
  227. // sequence breakers for DRY
  228. {
  229. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  230. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  231. if (data.contains("dry_sequence_breakers")) {
  232. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  233. if (params.sampling.dry_sequence_breakers.empty()) {
  234. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  235. }
  236. }
  237. }
  238. // process "json_schema" and "grammar"
  239. if (data.contains("json_schema") && !data.contains("grammar")) {
  240. try {
  241. auto schema = json_value(data, "json_schema", json::object());
  242. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  243. params.sampling.grammar = json_schema_to_grammar(schema);
  244. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  245. } catch (const std::exception & e) {
  246. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  247. }
  248. } else {
  249. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  250. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  251. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  252. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  253. }
  254. {
  255. auto it = data.find("chat_format");
  256. if (it != data.end()) {
  257. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  258. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  259. } else {
  260. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  261. }
  262. common_reasoning_format reasoning_format = params_base.reasoning_format;
  263. if (data.contains("reasoning_format")) {
  264. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  265. }
  266. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  267. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  268. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  269. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  270. }
  271. {
  272. const auto preserved_tokens = data.find("preserved_tokens");
  273. if (preserved_tokens != data.end()) {
  274. for (const auto & t : *preserved_tokens) {
  275. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  276. if (ids.size() == 1) {
  277. SRV_DBG("Preserved token: %d\n", ids[0]);
  278. params.sampling.preserved_tokens.insert(ids[0]);
  279. } else {
  280. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  281. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  282. }
  283. }
  284. }
  285. const auto grammar_triggers = data.find("grammar_triggers");
  286. if (grammar_triggers != data.end()) {
  287. for (const auto & t : *grammar_triggers) {
  288. server_grammar_trigger ct(t);
  289. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  290. const auto & word = ct.value.value;
  291. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  292. if (ids.size() == 1) {
  293. auto token = ids[0];
  294. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  295. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  296. }
  297. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  298. common_grammar_trigger trigger;
  299. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  300. trigger.value = word;
  301. trigger.token = token;
  302. params.sampling.grammar_triggers.push_back(std::move(trigger));
  303. } else {
  304. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  305. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  306. }
  307. } else {
  308. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  309. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  310. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  311. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  312. } else {
  313. throw std::runtime_error("Unknown grammar trigger type");
  314. }
  315. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  316. }
  317. }
  318. }
  319. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  320. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  321. }
  322. }
  323. {
  324. params.sampling.logit_bias.clear();
  325. const auto & logit_bias = data.find("logit_bias");
  326. if (logit_bias != data.end() && logit_bias->is_array()) {
  327. const int n_vocab = llama_vocab_n_tokens(vocab);
  328. for (const auto & el : *logit_bias) {
  329. // TODO: we may want to throw errors here, in case "el" is incorrect
  330. if (el.is_array() && el.size() == 2) {
  331. float bias;
  332. if (el[1].is_number()) {
  333. bias = el[1].get<float>();
  334. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  335. bias = -INFINITY;
  336. } else {
  337. continue;
  338. }
  339. if (el[0].is_number_integer()) {
  340. llama_token tok = el[0].get<llama_token>();
  341. if (tok >= 0 && tok < n_vocab) {
  342. params.sampling.logit_bias.push_back({tok, bias});
  343. }
  344. } else if (el[0].is_string()) {
  345. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  346. for (auto tok : toks) {
  347. params.sampling.logit_bias.push_back({tok, bias});
  348. }
  349. }
  350. }
  351. }
  352. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  353. const int n_vocab = llama_vocab_n_tokens(vocab);
  354. for (const auto & el : logit_bias->items()) {
  355. float bias;
  356. const auto & key = el.key();
  357. const auto & value = el.value();
  358. if (value.is_number()) {
  359. bias = value.get<float>();
  360. } else if (value.is_boolean() && !value.get<bool>()) {
  361. bias = -INFINITY;
  362. } else {
  363. continue;
  364. }
  365. char *end;
  366. llama_token tok = strtol(key.c_str(), &end, 10);
  367. if (*end == 0) {
  368. if (tok >= 0 && tok < n_vocab) {
  369. params.sampling.logit_bias.push_back({tok, bias});
  370. }
  371. } else {
  372. auto toks = common_tokenize(vocab, key, false);
  373. for (auto tok : toks) {
  374. params.sampling.logit_bias.push_back({tok, bias});
  375. }
  376. }
  377. }
  378. }
  379. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  380. if (params.sampling.ignore_eos) {
  381. params.sampling.logit_bias.insert(
  382. params.sampling.logit_bias.end(),
  383. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  384. }
  385. }
  386. {
  387. params.antiprompt.clear();
  388. const auto & stop = data.find("stop");
  389. if (stop != data.end() && stop->is_array()) {
  390. for (const auto & word : *stop) {
  391. if (!word.empty()) {
  392. params.antiprompt.push_back(word);
  393. }
  394. }
  395. }
  396. // set reverse prompt from cli args if not set in the request
  397. if (params.antiprompt.empty()) {
  398. params.antiprompt = defaults.antiprompt;
  399. }
  400. }
  401. {
  402. const auto samplers = data.find("samplers");
  403. if (samplers != data.end()) {
  404. if (samplers->is_array()) {
  405. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  406. } else if (samplers->is_string()){
  407. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  408. }
  409. } else {
  410. params.sampling.samplers = defaults.sampling.samplers;
  411. }
  412. }
  413. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  414. params.oaicompat_model = json_value(data, "model", model_name);
  415. return params;
  416. }
  417. //
  418. // result_timings
  419. //
  420. json result_timings::to_json() const {
  421. json base = {
  422. {"cache_n", cache_n},
  423. {"prompt_n", prompt_n},
  424. {"prompt_ms", prompt_ms},
  425. {"prompt_per_token_ms", prompt_per_token_ms},
  426. {"prompt_per_second", prompt_per_second},
  427. {"predicted_n", predicted_n},
  428. {"predicted_ms", predicted_ms},
  429. {"predicted_per_token_ms", predicted_per_token_ms},
  430. {"predicted_per_second", predicted_per_second},
  431. };
  432. if (draft_n > 0) {
  433. base["draft_n"] = draft_n;
  434. base["draft_n_accepted"] = draft_n_accepted;
  435. }
  436. return base;
  437. }
  438. //
  439. // result_prompt_progress
  440. //
  441. json result_prompt_progress::to_json() const {
  442. return json {
  443. {"total", total},
  444. {"cache", cache},
  445. {"processed", processed},
  446. {"time_ms", time_ms},
  447. };
  448. }
  449. static inline std::string stop_type_to_str(stop_type type) {
  450. switch (type) {
  451. case STOP_TYPE_EOS: return "eos";
  452. case STOP_TYPE_WORD: return "word";
  453. case STOP_TYPE_LIMIT: return "limit";
  454. default: return "none";
  455. }
  456. }
  457. //
  458. // completion_token_output
  459. //
  460. json completion_token_output::to_json(bool post_sampling_probs) const {
  461. json probs_for_token = json::array();
  462. for (const auto & p : probs) {
  463. std::string txt(p.txt);
  464. txt.resize(validate_utf8(txt));
  465. probs_for_token.push_back(json {
  466. {"id", p.tok},
  467. {"token", txt},
  468. {"bytes", str_to_bytes(p.txt)},
  469. {
  470. post_sampling_probs ? "prob" : "logprob",
  471. post_sampling_probs ? p.prob : logarithm(p.prob)
  472. },
  473. });
  474. }
  475. return probs_for_token;
  476. }
  477. json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  478. json out = json::array();
  479. for (const auto & p : probs) {
  480. std::string txt(p.text_to_send);
  481. txt.resize(validate_utf8(txt));
  482. out.push_back(json {
  483. {"id", p.tok},
  484. {"token", txt},
  485. {"bytes", str_to_bytes(p.text_to_send)},
  486. {
  487. post_sampling_probs ? "prob" : "logprob",
  488. post_sampling_probs ? p.prob : logarithm(p.prob)
  489. },
  490. {
  491. post_sampling_probs ? "top_probs" : "top_logprobs",
  492. p.to_json(post_sampling_probs)
  493. },
  494. });
  495. }
  496. return out;
  497. }
  498. float completion_token_output::logarithm(float x) {
  499. // nlohmann::json converts -inf to null, so we need to prevent that
  500. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  501. }
  502. std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
  503. std::vector<unsigned char> bytes;
  504. for (unsigned char c : str) {
  505. bytes.push_back(c);
  506. }
  507. return bytes;
  508. }
  509. //
  510. // server_task_result_cmpl_final
  511. //
  512. json server_task_result_cmpl_final::to_json() {
  513. switch (oaicompat) {
  514. case OAICOMPAT_TYPE_NONE:
  515. return to_json_non_oaicompat();
  516. case OAICOMPAT_TYPE_COMPLETION:
  517. return to_json_oaicompat();
  518. case OAICOMPAT_TYPE_CHAT:
  519. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  520. default:
  521. GGML_ASSERT(false && "Invalid oaicompat_type");
  522. }
  523. }
  524. json server_task_result_cmpl_final::to_json_non_oaicompat() {
  525. json res = json {
  526. {"index", index},
  527. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  528. {"tokens", stream ? llama_tokens {} : tokens},
  529. {"id_slot", id_slot},
  530. {"stop", true},
  531. {"model", oaicompat_model},
  532. {"tokens_predicted", n_decoded},
  533. {"tokens_evaluated", n_prompt_tokens},
  534. {"generation_settings", generation_params.to_json()},
  535. {"prompt", prompt},
  536. {"has_new_line", has_new_line},
  537. {"truncated", truncated},
  538. {"stop_type", stop_type_to_str(stop)},
  539. {"stopping_word", stopping_word},
  540. {"tokens_cached", n_tokens_cached},
  541. {"timings", timings.to_json()},
  542. };
  543. if (!stream && !probs_output.empty()) {
  544. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  545. }
  546. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  547. }
  548. json server_task_result_cmpl_final::to_json_oaicompat() {
  549. std::time_t t = std::time(0);
  550. json logprobs = json(nullptr); // OAI default to null
  551. if (!stream && probs_output.size() > 0) {
  552. logprobs = json{
  553. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  554. };
  555. }
  556. json finish_reason = "length";
  557. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  558. finish_reason = "stop";
  559. }
  560. json res = json {
  561. {"choices", json::array({
  562. json{
  563. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  564. {"index", index},
  565. {"logprobs", logprobs},
  566. {"finish_reason", finish_reason},
  567. }
  568. })},
  569. {"created", t},
  570. {"model", oaicompat_model},
  571. {"system_fingerprint", build_info},
  572. {"object", "text_completion"},
  573. {"usage", json {
  574. {"completion_tokens", n_decoded},
  575. {"prompt_tokens", n_prompt_tokens},
  576. {"total_tokens", n_decoded + n_prompt_tokens}
  577. }},
  578. {"id", oaicompat_cmpl_id}
  579. };
  580. // extra fields for debugging purposes
  581. if (verbose) {
  582. res["__verbose"] = to_json_non_oaicompat();
  583. }
  584. if (timings.prompt_n >= 0) {
  585. res.push_back({"timings", timings.to_json()});
  586. }
  587. return res;
  588. }
  589. json server_task_result_cmpl_final::to_json_oaicompat_chat() {
  590. std::string finish_reason = "length";
  591. common_chat_msg msg;
  592. if (!oaicompat_msg.empty()) {
  593. msg = oaicompat_msg;
  594. } else {
  595. msg.role = "assistant";
  596. msg.content = content;
  597. }
  598. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  599. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  600. }
  601. json choice {
  602. {"finish_reason", finish_reason},
  603. {"index", 0},
  604. {"message", msg.to_json_oaicompat<json>()},
  605. };
  606. if (!stream && probs_output.size() > 0) {
  607. choice["logprobs"] = json{
  608. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  609. };
  610. }
  611. std::time_t t = std::time(0);
  612. json res = json {
  613. {"choices", json::array({choice})},
  614. {"created", t},
  615. {"model", oaicompat_model},
  616. {"system_fingerprint", build_info},
  617. {"object", "chat.completion"},
  618. {"usage", json {
  619. {"completion_tokens", n_decoded},
  620. {"prompt_tokens", n_prompt_tokens},
  621. {"total_tokens", n_decoded + n_prompt_tokens}
  622. }},
  623. {"id", oaicompat_cmpl_id}
  624. };
  625. // extra fields for debugging purposes
  626. if (verbose) {
  627. res["__verbose"] = to_json_non_oaicompat();
  628. }
  629. if (timings.prompt_n >= 0) {
  630. res.push_back({"timings", timings.to_json()});
  631. }
  632. return res;
  633. }
  634. json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
  635. std::time_t t = std::time(0);
  636. std::string finish_reason = "length";
  637. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  638. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  639. }
  640. json deltas = json::array();
  641. for (const auto & diff : oaicompat_msg_diffs) {
  642. deltas.push_back({
  643. {"choices", json::array({
  644. json {
  645. {"finish_reason", nullptr},
  646. {"index", 0},
  647. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  648. },
  649. })},
  650. {"created", t},
  651. {"id", oaicompat_cmpl_id},
  652. {"model", oaicompat_model},
  653. {"system_fingerprint", build_info},
  654. {"object", "chat.completion.chunk"},
  655. });
  656. }
  657. deltas.push_back({
  658. {"choices", json::array({
  659. json {
  660. {"finish_reason", finish_reason},
  661. {"index", 0},
  662. {"delta", json::object()},
  663. },
  664. })},
  665. {"created", t},
  666. {"id", oaicompat_cmpl_id},
  667. {"model", oaicompat_model},
  668. {"system_fingerprint", build_info},
  669. {"object", "chat.completion.chunk"},
  670. });
  671. if (include_usage) {
  672. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  673. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  674. deltas.push_back({
  675. {"choices", json::array()},
  676. {"created", t},
  677. {"id", oaicompat_cmpl_id},
  678. {"model", oaicompat_model},
  679. {"system_fingerprint", build_info},
  680. {"object", "chat.completion.chunk"},
  681. {"usage", json {
  682. {"completion_tokens", n_decoded},
  683. {"prompt_tokens", n_prompt_tokens},
  684. {"total_tokens", n_decoded + n_prompt_tokens},
  685. }},
  686. });
  687. }
  688. if (timings.prompt_n >= 0) {
  689. deltas.back().push_back({"timings", timings.to_json()});
  690. }
  691. // extra fields for debugging purposes
  692. if (verbose && !deltas.empty()) {
  693. deltas.front()["__verbose"] = to_json_non_oaicompat();
  694. }
  695. return deltas;
  696. }
  697. //
  698. // server_task_result_cmpl_partial
  699. //
  700. json server_task_result_cmpl_partial::to_json() {
  701. switch (oaicompat) {
  702. case OAICOMPAT_TYPE_NONE:
  703. return to_json_non_oaicompat();
  704. case OAICOMPAT_TYPE_COMPLETION:
  705. return to_json_oaicompat();
  706. case OAICOMPAT_TYPE_CHAT:
  707. return to_json_oaicompat_chat();
  708. default:
  709. GGML_ASSERT(false && "Invalid oaicompat_type");
  710. }
  711. }
  712. json server_task_result_cmpl_partial::to_json_non_oaicompat() {
  713. // non-OAI-compat JSON
  714. json res = json {
  715. {"index", index},
  716. {"content", content},
  717. {"tokens", tokens},
  718. {"stop", false},
  719. {"id_slot", id_slot},
  720. {"tokens_predicted", n_decoded},
  721. {"tokens_evaluated", n_prompt_tokens},
  722. };
  723. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  724. if (timings.prompt_n > 0) {
  725. res.push_back({"timings", timings.to_json()});
  726. }
  727. if (is_progress) {
  728. res.push_back({"prompt_progress", progress.to_json()});
  729. }
  730. if (!prob_output.probs.empty()) {
  731. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  732. }
  733. return res;
  734. }
  735. json server_task_result_cmpl_partial::to_json_oaicompat() {
  736. std::time_t t = std::time(0);
  737. json logprobs = json(nullptr); // OAI default to null
  738. if (prob_output.probs.size() > 0) {
  739. logprobs = json{
  740. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  741. };
  742. }
  743. json res = json {
  744. {"choices", json::array({
  745. json{
  746. {"text", content},
  747. {"index", index},
  748. {"logprobs", logprobs},
  749. {"finish_reason", nullptr},
  750. }
  751. })},
  752. {"created", t},
  753. {"model", oaicompat_model},
  754. {"system_fingerprint", build_info},
  755. {"object", "text_completion"},
  756. {"id", oaicompat_cmpl_id}
  757. };
  758. // extra fields for debugging purposes
  759. if (verbose) {
  760. res["__verbose"] = to_json_non_oaicompat();
  761. }
  762. if (timings.prompt_n >= 0) {
  763. res.push_back({"timings", timings.to_json()});
  764. }
  765. if (is_progress) {
  766. res.push_back({"prompt_progress", progress.to_json()});
  767. }
  768. return res;
  769. }
  770. json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
  771. bool first = n_decoded == 1;
  772. std::time_t t = std::time(0);
  773. json choices;
  774. std::vector<json> deltas;
  775. auto add_delta = [&](const json & delta) {
  776. deltas.push_back({
  777. {"choices", json::array({
  778. json {
  779. {"finish_reason", nullptr},
  780. {"index", 0},
  781. {"delta", delta},
  782. },
  783. })},
  784. {"created", t},
  785. {"id", oaicompat_cmpl_id},
  786. {"model", oaicompat_model},
  787. {"system_fingerprint", build_info},
  788. {"object", "chat.completion.chunk"},
  789. });
  790. };
  791. // We have to send an initial update to conform to openai behavior
  792. if (first || is_progress) {
  793. add_delta({
  794. {"role", "assistant"},
  795. {"content", nullptr},
  796. });
  797. }
  798. for (const auto & diff : oaicompat_msg_diffs) {
  799. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  800. }
  801. if (!deltas.empty()) {
  802. auto & last_json = deltas[deltas.size() - 1];
  803. GGML_ASSERT(last_json.at("choices").size() >= 1);
  804. if (prob_output.probs.size() > 0) {
  805. last_json.at("choices").at(0)["logprobs"] = json {
  806. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  807. };
  808. }
  809. if (timings.prompt_n >= 0) {
  810. last_json.push_back({"timings", timings.to_json()});
  811. }
  812. if (is_progress) {
  813. last_json.push_back({"prompt_progress", progress.to_json()});
  814. }
  815. }
  816. return deltas;
  817. }
  818. //
  819. // server_task_result_embd
  820. //
  821. json server_task_result_embd::to_json() {
  822. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  823. ? to_json_oaicompat()
  824. : to_json_non_oaicompat();
  825. }
  826. json server_task_result_embd::to_json_non_oaicompat() {
  827. return json {
  828. {"index", index},
  829. {"embedding", embedding},
  830. };
  831. }
  832. json server_task_result_embd::to_json_oaicompat() {
  833. return json {
  834. {"index", index},
  835. {"embedding", embedding[0]},
  836. {"tokens_evaluated", n_tokens},
  837. };
  838. }
  839. //
  840. // server_task_result_rerank
  841. //
  842. json server_task_result_rerank::to_json() {
  843. return json {
  844. {"index", index},
  845. {"score", score},
  846. {"tokens_evaluated", n_tokens},
  847. };
  848. }
  849. //
  850. // server_task_result_error
  851. //
  852. json server_task_result_error::to_json() {
  853. json res = format_error_response(err_msg, err_type);
  854. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  855. res["n_prompt_tokens"] = n_prompt_tokens;
  856. res["n_ctx"] = n_ctx;
  857. }
  858. return res;
  859. }
  860. //
  861. // server_task_result_metrics
  862. //
  863. json server_task_result_metrics::to_json() {
  864. return json {
  865. { "idle", n_idle_slots },
  866. { "processing", n_processing_slots },
  867. { "deferred", n_tasks_deferred },
  868. { "t_start", t_start },
  869. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  870. { "t_tokens_generation_total", t_tokens_generation_total },
  871. { "n_tokens_predicted_total", n_tokens_predicted_total },
  872. { "t_prompt_processing_total", t_prompt_processing_total },
  873. { "n_tokens_max", n_tokens_max },
  874. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  875. { "t_prompt_processing", t_prompt_processing },
  876. { "n_tokens_predicted", n_tokens_predicted },
  877. { "t_tokens_generation", t_tokens_generation },
  878. { "n_decode_total", n_decode_total },
  879. { "n_busy_slots_total", n_busy_slots_total },
  880. { "slots", slots_data },
  881. };
  882. }
  883. //
  884. // server_task_result_slot_save_load
  885. //
  886. json server_task_result_slot_save_load::to_json() {
  887. if (is_save) {
  888. return json {
  889. { "id_slot", id_slot },
  890. { "filename", filename },
  891. { "n_saved", n_tokens },
  892. { "n_written", n_bytes },
  893. { "timings", {
  894. { "save_ms", t_ms }
  895. }},
  896. };
  897. }
  898. return json {
  899. { "id_slot", id_slot },
  900. { "filename", filename },
  901. { "n_restored", n_tokens },
  902. { "n_read", n_bytes },
  903. { "timings", {
  904. { "restore_ms", t_ms }
  905. }},
  906. };
  907. }
  908. //
  909. // server_task_result_slot_erase
  910. //
  911. json server_task_result_slot_erase::to_json() {
  912. return json {
  913. { "id_slot", id_slot },
  914. { "n_erased", n_erased },
  915. };
  916. }
  917. //
  918. // server_task_result_apply_lora
  919. //
  920. json server_task_result_apply_lora::to_json() {
  921. return json {{ "success", true }};
  922. }
  923. //
  924. // server_prompt_cache
  925. //
  926. size_t server_prompt_cache::size() const {
  927. size_t res = 0;
  928. for (const auto & state : states) {
  929. res += state.size();
  930. }
  931. return res;
  932. }
  933. size_t server_prompt_cache::n_tokens() const {
  934. size_t res = 0;
  935. for (const auto & state : states) {
  936. res += state.n_tokens();
  937. }
  938. return res;
  939. }
  940. server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
  941. // first check if the current state is contained fully in the cache
  942. for (auto it = states.begin(); it != states.end(); ++it) {
  943. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  944. if (cur_lcp_len == (int) prompt.tokens.size()) {
  945. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  946. return nullptr;
  947. }
  948. }
  949. // next, remove any cached prompts that are fully contained in the current prompt
  950. for (auto it = states.begin(); it != states.end();) {
  951. const int len = it->tokens.get_common_prefix(prompt.tokens);
  952. if (len == (int) it->tokens.size()) {
  953. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  954. it = states.erase(it);
  955. } else {
  956. ++it;
  957. }
  958. }
  959. std::vector<uint8_t> state_data;
  960. // check if we can allocate enough memory for the new state
  961. try {
  962. state_data.resize(state_size);
  963. } catch (const std::bad_alloc & e) {
  964. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  965. limit_size = std::max<size_t>(1, 0.4*size());
  966. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  967. update();
  968. return nullptr;
  969. }
  970. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  971. auto & cur = states.emplace_back();
  972. cur = {
  973. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  974. /*.data =*/ std::move(state_data),
  975. /*.checkpoints =*/ prompt.checkpoints,
  976. };
  977. return &cur;
  978. }
  979. bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  980. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  981. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  982. float sim_best = float(lcp_best) / tokens_new.size();
  983. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  984. auto it_best = states.end();
  985. // find the most similar cached prompt, that would also preserve the most context
  986. for (auto it = states.begin(); it != states.end(); ++it) {
  987. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  988. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  989. const float sim_cur = float(lcp_cur) / tokens_new.size();
  990. // don't trash large prompts
  991. if (f_keep_cur < 0.25f) {
  992. continue;
  993. }
  994. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  995. f_keep_best = f_keep_cur;
  996. sim_best = sim_cur;
  997. it_best = it;
  998. }
  999. }
  1000. if (it_best != states.end()) {
  1001. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1002. const size_t size = it_best->data.size();
  1003. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1004. if (n != size) {
  1005. SRV_WRN("failed to restore state with size %zu\n", size);
  1006. return false;
  1007. }
  1008. it_best->data.clear();
  1009. it_best->data.shrink_to_fit();
  1010. prompt = std::move(*it_best);
  1011. states.erase(it_best);
  1012. }
  1013. return true;
  1014. }
  1015. void server_prompt_cache::update() {
  1016. if (limit_size > 0) {
  1017. // always keep at least one state, regardless of the limits
  1018. while (states.size() > 1 && size() > limit_size) {
  1019. if (states.empty()) {
  1020. break;
  1021. }
  1022. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1023. states.pop_front();
  1024. }
  1025. }
  1026. // average size per token
  1027. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1028. // dynamically increase the token limit if it can fit in the memory limit
  1029. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1030. if (limit_tokens > 0) {
  1031. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1032. if (states.empty()) {
  1033. break;
  1034. }
  1035. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1036. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1037. states.pop_front();
  1038. }
  1039. }
  1040. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1041. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1042. for (const auto & state : states) {
  1043. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1044. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1045. }
  1046. }