convert-hf-to-gguf.py 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast, overload
  14. import numpy as np
  15. import torch
  16. if TYPE_CHECKING:
  17. from torch import Tensor
  18. if 'NO_LOCAL_GGUF' not in os.environ:
  19. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  20. import gguf
  21. from convert import LlamaHfVocab
  22. logger = logging.getLogger("hf-to-gguf")
  23. ###### MODEL DEFINITIONS ######
  24. class SentencePieceTokenTypes(IntEnum):
  25. NORMAL = 1
  26. UNKNOWN = 2
  27. CONTROL = 3
  28. USER_DEFINED = 4
  29. UNUSED = 5
  30. BYTE = 6
  31. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  32. class Model:
  33. _model_classes: dict[str, type[Model]] = {}
  34. dir_model: Path
  35. ftype: int
  36. fname_out: Path
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. part_names: list[str]
  42. is_safetensors: bool
  43. hparams: dict[str, Any]
  44. gguf_writer: gguf.GGUFWriter
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. # subclasses should define this!
  49. model_arch: gguf.MODEL_ARCH
  50. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
  51. if self.__class__ == Model:
  52. raise TypeError(f"{self.__class__.__name__!r} should not be directly instantiated")
  53. self.dir_model = dir_model
  54. self.ftype = ftype
  55. self.fname_out = fname_out
  56. self.is_big_endian = is_big_endian
  57. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  58. self.use_temp_file = use_temp_file
  59. self.lazy = not eager
  60. self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
  61. self.is_safetensors = len(self.part_names) > 0
  62. if not self.is_safetensors:
  63. self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
  64. self.hparams = Model.load_hparams(self.dir_model)
  65. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  66. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  67. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  68. self.tensor_names = None
  69. @classmethod
  70. def __init_subclass__(cls):
  71. # can't use an abstract property, because overriding it without type errors
  72. # would require using decorated functions instead of simply defining the property
  73. if "model_arch" not in cls.__dict__:
  74. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  75. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  76. key = next((k for k in keys if k in self.hparams), None)
  77. if key is not None:
  78. return self.hparams[key]
  79. if optional:
  80. return None
  81. raise KeyError(f"could not find any of: {keys}")
  82. def set_vocab(self):
  83. self._set_vocab_gpt2()
  84. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  85. tensor_names_from_parts: set[str] = set()
  86. if len(self.part_names) > 1:
  87. self.tensor_names = set()
  88. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  89. index_name += ".index.json"
  90. logger.info(f"gguf: loading model weight map from '{index_name}'")
  91. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  92. index: dict[str, Any] = json.load(f)
  93. weight_map = index.get("weight_map")
  94. if weight_map is None or not isinstance(weight_map, dict):
  95. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  96. self.tensor_names.update(weight_map.keys())
  97. else:
  98. self.tensor_names = tensor_names_from_parts
  99. for part_name in self.part_names:
  100. logger.info(f"gguf: loading model part '{part_name}'")
  101. ctx: ContextManager[Any]
  102. if self.is_safetensors:
  103. from safetensors import safe_open
  104. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  105. else:
  106. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  107. with ctx as model_part:
  108. tensor_names_from_parts.update(model_part.keys())
  109. for name in model_part.keys():
  110. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  111. if self.lazy:
  112. data = LazyTorchTensor.from_eager(data)
  113. yield name, data
  114. # only verify tensor name presence; it doesn't matter if they are not in the right files
  115. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  116. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  117. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  118. name: str = gguf.TENSOR_NAMES[key]
  119. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  120. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  121. if "{bid}" in name:
  122. assert bid is not None
  123. name = name.format(bid=bid)
  124. return name + suffix
  125. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  126. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  127. if new_name is None:
  128. raise ValueError(f"Can not map tensor {name!r}")
  129. return new_name
  130. def set_gguf_parameters(self):
  131. self.gguf_writer.add_name(self.dir_model.name)
  132. self.gguf_writer.add_block_count(self.block_count)
  133. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  134. self.gguf_writer.add_context_length(n_ctx)
  135. logger.info(f"gguf: context length = {n_ctx}")
  136. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  137. self.gguf_writer.add_embedding_length(n_embd)
  138. logger.info(f"gguf: embedding length = {n_embd}")
  139. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  140. self.gguf_writer.add_feed_forward_length(n_ff)
  141. logger.info(f"gguf: feed forward length = {n_ff}")
  142. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  143. self.gguf_writer.add_head_count(n_head)
  144. logger.info(f"gguf: head count = {n_head}")
  145. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  146. self.gguf_writer.add_head_count_kv(n_head_kv)
  147. logger.info(f"gguf: key-value head count = {n_head_kv}")
  148. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  149. self.gguf_writer.add_rope_freq_base(rope_theta)
  150. logger.info(f"gguf: rope theta = {rope_theta}")
  151. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  152. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  153. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  154. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  155. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  156. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  157. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  158. self.gguf_writer.add_expert_count(n_experts)
  159. logger.info(f"gguf: expert count = {n_experts}")
  160. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  161. self.gguf_writer.add_expert_used_count(n_experts_used)
  162. logger.info(f"gguf: experts used count = {n_experts_used}")
  163. self.gguf_writer.add_file_type(self.ftype)
  164. logger.info(f"gguf: file type = {self.ftype}")
  165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  166. del bid # unused
  167. return [(self.map_tensor_name(name), data_torch)]
  168. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  169. del name, new_name, bid, n_dims # unused
  170. return False
  171. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  172. del name, new_name, bid, n_dims # unused
  173. return False
  174. def write_tensors(self):
  175. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  176. for name, data_torch in self.get_tensors():
  177. # we don't need these
  178. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  179. continue
  180. old_dtype = data_torch.dtype
  181. # convert any unsupported data types to float32
  182. if data_torch.dtype not in (torch.float16, torch.float32):
  183. data_torch = data_torch.to(torch.float32)
  184. # use the first number-like part of the tensor name as the block id
  185. bid = None
  186. for part in name.split("."):
  187. if part.isdecimal():
  188. bid = int(part)
  189. break
  190. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  191. data: np.ndarray = data # type hint
  192. n_dims = len(data.shape)
  193. data_dtype = data.dtype
  194. # if f32 desired, convert any float16 to float32
  195. if self.ftype == 0 and data_dtype == np.float16:
  196. data = data.astype(np.float32)
  197. # when both are True, f32 should win
  198. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  199. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  200. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  201. extra_f32 = extra_f32 or n_dims == 1 or new_name.endswith("_norm.weight")
  202. # if f16 desired, convert any float32 2-dim weight tensors to float16
  203. extra_f16 = extra_f16 or (name.endswith(".weight") and n_dims >= 2)
  204. # when both extra_f32 and extra_f16 are False, convert to float32 by default
  205. if self.ftype == 1 and data_dtype == np.float16 and (extra_f32 or not extra_f16):
  206. data = data.astype(np.float32)
  207. if self.ftype == 1 and data_dtype == np.float32 and extra_f16 and not extra_f32:
  208. data = data.astype(np.float16)
  209. # reverse shape to make it similar to the internal ggml dimension order
  210. shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
  211. # n_dims is implicit in the shape
  212. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data.dtype}, shape = {shape_str}")
  213. self.gguf_writer.add_tensor(new_name, data)
  214. def write(self):
  215. self.write_tensors()
  216. self.gguf_writer.write_header_to_file()
  217. self.gguf_writer.write_kv_data_to_file()
  218. self.gguf_writer.write_tensors_to_file(progress=True)
  219. self.gguf_writer.close()
  220. def write_vocab(self):
  221. self.gguf_writer.write_header_to_file()
  222. self.gguf_writer.write_kv_data_to_file()
  223. self.gguf_writer.close()
  224. @staticmethod
  225. def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
  226. part_names: list[str] = []
  227. for filename in os.listdir(dir_model):
  228. if filename.endswith(suffix):
  229. part_names.append(filename)
  230. part_names.sort()
  231. return part_names
  232. @staticmethod
  233. def load_hparams(dir_model: Path):
  234. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  235. return json.load(f)
  236. @classmethod
  237. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  238. assert names
  239. def func(modelcls: AnyModel) -> AnyModel:
  240. for name in names:
  241. cls._model_classes[name] = modelcls
  242. return modelcls
  243. return func
  244. @classmethod
  245. def from_model_architecture(cls, arch: str) -> type[Model]:
  246. try:
  247. return cls._model_classes[arch]
  248. except KeyError:
  249. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  250. # used for GPT-2 BPE and WordPiece vocabs
  251. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  252. tokens: list[str] = []
  253. toktypes: list[int] = []
  254. from transformers import AutoTokenizer
  255. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  256. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  257. assert max(tokenizer.vocab.values()) < vocab_size
  258. tokpre = self.get_vocab_base_pre(tokenizer)
  259. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  260. added_vocab = tokenizer.get_added_vocab()
  261. for i in range(vocab_size):
  262. if i not in reverse_vocab:
  263. tokens.append(f"[PAD{i}]")
  264. toktypes.append(gguf.TokenType.USER_DEFINED)
  265. elif reverse_vocab[i] in added_vocab:
  266. tokens.append(reverse_vocab[i])
  267. if tokenizer.added_tokens_decoder[i].special:
  268. toktypes.append(gguf.TokenType.CONTROL)
  269. else:
  270. toktypes.append(gguf.TokenType.USER_DEFINED)
  271. else:
  272. tokens.append(reverse_vocab[i])
  273. toktypes.append(gguf.TokenType.NORMAL)
  274. return tokens, toktypes, tokpre
  275. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  276. # do not modify it manually!
  277. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  278. def get_vocab_base_pre(self, tokenizer) -> str:
  279. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  280. # is specific for the BPE pre-tokenizer used by the model
  281. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  282. # use in llama.cpp to implement the same pre-tokenizer
  283. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  284. chktok = tokenizer.encode(chktxt)
  285. chkhsh = sha256(str(chktok).encode()).hexdigest()
  286. logger.debug(f"chktok: {chktok}")
  287. logger.debug(f"chkhsh: {chkhsh}")
  288. res = None
  289. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  290. # or pull the latest version of the model from Huggingface
  291. # don't edit the hashes manually!
  292. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  293. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  294. res = "llama-bpe"
  295. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  296. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  297. res = "deepseek-llm"
  298. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  299. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  300. res = "deepseek-coder"
  301. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  302. # ref: https://huggingface.co/tiiuae/falcon-7b
  303. res = "falcon"
  304. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  305. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  306. res = "bert-bge"
  307. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  308. # ref: https://huggingface.co/mosaicml/mpt-7b
  309. res = "mpt"
  310. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  311. # ref: https://huggingface.co/bigcode/starcoder2-3b
  312. res = "starcoder"
  313. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  314. # ref: https://huggingface.co/openai-community/gpt2
  315. res = "gpt-2"
  316. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  317. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  318. res = "refact"
  319. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  320. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  321. res = "command-r"
  322. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  323. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  324. res = "qwen2"
  325. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  326. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  327. res = "olmo"
  328. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  329. # ref: https://huggingface.co/databricks/dbrx-base
  330. res = "dbrx"
  331. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  332. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  333. res = "jina-en"
  334. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  335. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  336. res = "jina-es"
  337. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  338. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  339. res = "jina-de"
  340. if res is None:
  341. logger.warning("\n")
  342. logger.warning("**************************************************************************************")
  343. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  344. logger.warning("** There are 2 possible reasons for this:")
  345. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  346. logger.warning("** - the pre-tokenization config has changed upstream")
  347. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  348. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  349. logger.warning("**")
  350. logger.warning(f"** chkhsh: {chkhsh}")
  351. logger.warning("**************************************************************************************")
  352. logger.warning("\n")
  353. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  354. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  355. logger.debug(f"chkhsh: {chkhsh}")
  356. return res
  357. def _set_vocab_gpt2(self) -> None:
  358. tokens, toktypes, tokpre = self.get_vocab_base()
  359. self.gguf_writer.add_tokenizer_model("gpt2")
  360. self.gguf_writer.add_tokenizer_pre(tokpre)
  361. self.gguf_writer.add_token_list(tokens)
  362. self.gguf_writer.add_token_types(toktypes)
  363. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  364. special_vocab.add_to_gguf(self.gguf_writer)
  365. def _set_vocab_qwen(self):
  366. dir_model = self.dir_model
  367. hparams = self.hparams
  368. tokens: list[str] = []
  369. toktypes: list[int] = []
  370. from transformers import AutoTokenizer
  371. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  372. vocab_size = hparams["vocab_size"]
  373. assert max(tokenizer.get_vocab().values()) < vocab_size
  374. tokpre = self.get_vocab_base_pre(tokenizer)
  375. merges = []
  376. vocab = {}
  377. mergeable_ranks = tokenizer.mergeable_ranks
  378. for token, rank in mergeable_ranks.items():
  379. vocab[QwenModel.token_bytes_to_string(token)] = rank
  380. if len(token) == 1:
  381. continue
  382. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  383. assert len(merged) == 2
  384. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  385. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  386. added_vocab = tokenizer.special_tokens
  387. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  388. for i in range(vocab_size):
  389. if i not in reverse_vocab:
  390. tokens.append(f"[PAD{i}]")
  391. toktypes.append(gguf.TokenType.USER_DEFINED)
  392. elif reverse_vocab[i] in added_vocab:
  393. tokens.append(reverse_vocab[i])
  394. toktypes.append(gguf.TokenType.CONTROL)
  395. else:
  396. tokens.append(reverse_vocab[i])
  397. toktypes.append(gguf.TokenType.NORMAL)
  398. self.gguf_writer.add_tokenizer_model("gpt2")
  399. self.gguf_writer.add_tokenizer_pre(tokpre)
  400. self.gguf_writer.add_token_list(tokens)
  401. self.gguf_writer.add_token_types(toktypes)
  402. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  403. special_vocab.merges = merges
  404. # only add special tokens when they were not already loaded from config.json
  405. if len(special_vocab.special_token_ids) == 0:
  406. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  407. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  408. # this one is usually not in config.json anyway
  409. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  410. special_vocab.add_to_gguf(self.gguf_writer)
  411. def _set_vocab_sentencepiece(self):
  412. from sentencepiece import SentencePieceProcessor
  413. tokenizer_path = self.dir_model / 'tokenizer.model'
  414. tokens: list[bytes] = []
  415. scores: list[float] = []
  416. toktypes: list[int] = []
  417. if not tokenizer_path.is_file():
  418. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  419. tokenizer = SentencePieceProcessor()
  420. tokenizer.LoadFromFile(str(tokenizer_path))
  421. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  422. for token_id in range(tokenizer.vocab_size()):
  423. piece = tokenizer.IdToPiece(token_id)
  424. text = piece.encode("utf-8")
  425. score = tokenizer.GetScore(token_id)
  426. toktype = SentencePieceTokenTypes.NORMAL
  427. if tokenizer.IsUnknown(token_id):
  428. toktype = SentencePieceTokenTypes.UNKNOWN
  429. elif tokenizer.IsControl(token_id):
  430. toktype = SentencePieceTokenTypes.CONTROL
  431. elif tokenizer.IsUnused(token_id):
  432. toktype = SentencePieceTokenTypes.UNUSED
  433. elif tokenizer.IsByte(token_id):
  434. toktype = SentencePieceTokenTypes.BYTE
  435. tokens.append(text)
  436. scores.append(score)
  437. toktypes.append(toktype)
  438. added_tokens_file = self.dir_model / 'added_tokens.json'
  439. if added_tokens_file.is_file():
  440. with open(added_tokens_file, "r", encoding="utf-8") as f:
  441. added_tokens_json = json.load(f)
  442. for key in added_tokens_json:
  443. key = key.encode("utf-8")
  444. if key not in tokens:
  445. tokens.append(key)
  446. scores.append(-1000.0)
  447. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  448. if vocab_size > len(tokens):
  449. pad_count = vocab_size - len(tokens)
  450. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  451. for i in range(1, pad_count + 1):
  452. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  453. scores.append(-1000.0)
  454. toktypes.append(SentencePieceTokenTypes.UNUSED)
  455. assert len(tokens) == vocab_size
  456. self.gguf_writer.add_tokenizer_model("llama")
  457. self.gguf_writer.add_tokenizer_pre("default")
  458. self.gguf_writer.add_token_list(tokens)
  459. self.gguf_writer.add_token_scores(scores)
  460. self.gguf_writer.add_token_types(toktypes)
  461. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  462. special_vocab.add_to_gguf(self.gguf_writer)
  463. def _set_vocab_llama_hf(self):
  464. vocab = LlamaHfVocab(self.dir_model)
  465. tokens = []
  466. scores = []
  467. toktypes = []
  468. for text, score, toktype in vocab.all_tokens():
  469. tokens.append(text)
  470. scores.append(score)
  471. toktypes.append(toktype)
  472. assert len(tokens) == vocab.vocab_size
  473. self.gguf_writer.add_tokenizer_model("llama")
  474. self.gguf_writer.add_tokenizer_pre("default")
  475. self.gguf_writer.add_token_list(tokens)
  476. self.gguf_writer.add_token_scores(scores)
  477. self.gguf_writer.add_token_types(toktypes)
  478. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  479. special_vocab.add_to_gguf(self.gguf_writer)
  480. @Model.register("GPTNeoXForCausalLM")
  481. class GPTNeoXModel(Model):
  482. model_arch = gguf.MODEL_ARCH.GPTNEOX
  483. def set_gguf_parameters(self):
  484. block_count = self.hparams["num_hidden_layers"]
  485. self.gguf_writer.add_name(self.dir_model.name)
  486. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  487. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  488. self.gguf_writer.add_block_count(block_count)
  489. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  490. self.gguf_writer.add_rope_dimension_count(
  491. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  492. )
  493. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  494. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  495. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  496. @Model.register("BloomForCausalLM")
  497. class BloomModel(Model):
  498. model_arch = gguf.MODEL_ARCH.BLOOM
  499. def set_gguf_parameters(self):
  500. self.gguf_writer.add_name("Bloom")
  501. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  502. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  503. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  504. self.gguf_writer.add_embedding_length(n_embed)
  505. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  506. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  507. self.gguf_writer.add_head_count(n_head)
  508. self.gguf_writer.add_head_count_kv(n_head)
  509. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  510. self.gguf_writer.add_file_type(self.ftype)
  511. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  512. del bid # unused
  513. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  514. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  515. name = re.sub(r'transformer\.', '', name)
  516. tensors: list[tuple[str, Tensor]] = []
  517. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  518. # Map bloom-style qkv_linear to gpt-style qkv_linear
  519. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  520. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  521. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  522. data_torch = torch.cat(
  523. (
  524. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  525. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  526. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  527. ),
  528. dim=0,
  529. )
  530. logger.info("re-format attention.linear_qkv.weight")
  531. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  532. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  533. data_torch = torch.cat(
  534. (
  535. qkv_bias[:, 0, :].reshape((n_embed,)),
  536. qkv_bias[:, 1, :].reshape((n_embed,)),
  537. qkv_bias[:, 2, :].reshape((n_embed,)),
  538. ),
  539. dim=0,
  540. )
  541. logger.info("re-format attention.linear_qkv.bias")
  542. tensors.append((self.map_tensor_name(name), data_torch))
  543. if name == "word_embeddings.weight":
  544. assert self.tensor_names is not None
  545. # TODO: tie them at runtime, don't duplicate in the model file
  546. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  547. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  548. return tensors
  549. @Model.register("MPTForCausalLM")
  550. class MPTModel(Model):
  551. model_arch = gguf.MODEL_ARCH.MPT
  552. def set_vocab(self):
  553. try:
  554. self._set_vocab_gpt2()
  555. except Exception:
  556. # Fallback for SEA-LION model
  557. self._set_vocab_sentencepiece()
  558. self.gguf_writer.add_add_bos_token(False)
  559. self.gguf_writer.add_pad_token_id(3)
  560. self.gguf_writer.add_eos_token_id(1)
  561. self.gguf_writer.add_unk_token_id(0)
  562. def set_gguf_parameters(self):
  563. block_count = self.hparams["n_layers"]
  564. self.gguf_writer.add_name(self.dir_model.name)
  565. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  566. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  567. self.gguf_writer.add_block_count(block_count)
  568. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  569. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  570. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  571. self.gguf_writer.add_head_count_kv(kv_n_heads)
  572. self.gguf_writer.add_layer_norm_eps(1e-5)
  573. if self.hparams["attn_config"]["clip_qkv"] is not None:
  574. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  575. if self.hparams["attn_config"]["alibi"]:
  576. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  577. else:
  578. self.gguf_writer.add_max_alibi_bias(0.0)
  579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  580. del bid # unused
  581. if "scales" in name:
  582. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  583. new_name = new_name.replace("scales", "act.scales")
  584. else:
  585. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  586. return [(new_name, data_torch)]
  587. @Model.register("OrionForCausalLM")
  588. class OrionModel(Model):
  589. model_arch = gguf.MODEL_ARCH.ORION
  590. def set_vocab(self):
  591. self._set_vocab_sentencepiece()
  592. def set_gguf_parameters(self):
  593. block_count = self.hparams["num_hidden_layers"]
  594. head_count = self.hparams["num_attention_heads"]
  595. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  596. hf_repo = self.hparams.get("_name_or_path", "")
  597. ctx_length = 0
  598. if "max_sequence_length" in self.hparams:
  599. ctx_length = self.hparams["max_sequence_length"]
  600. elif "max_position_embeddings" in self.hparams:
  601. ctx_length = self.hparams["max_position_embeddings"]
  602. elif "model_max_length" in self.hparams:
  603. ctx_length = self.hparams["model_max_length"]
  604. else:
  605. raise ValueError("gguf: can not find ctx length parameter.")
  606. self.gguf_writer.add_file_type(self.ftype)
  607. self.gguf_writer.add_name(self.dir_model.name)
  608. self.gguf_writer.add_source_hf_repo(hf_repo)
  609. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  610. self.gguf_writer.add_context_length(ctx_length)
  611. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  612. self.gguf_writer.add_block_count(block_count)
  613. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  614. self.gguf_writer.add_head_count(head_count)
  615. self.gguf_writer.add_head_count_kv(head_count_kv)
  616. # note: config provides rms norm but it is actually layer norm
  617. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  618. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  619. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  620. class BaichuanModel(Model):
  621. model_arch = gguf.MODEL_ARCH.BAICHUAN
  622. def set_vocab(self):
  623. self._set_vocab_sentencepiece()
  624. def set_gguf_parameters(self):
  625. block_count = self.hparams["num_hidden_layers"]
  626. head_count = self.hparams["num_attention_heads"]
  627. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  628. hf_repo = self.hparams.get("_name_or_path", "")
  629. ctx_length = 0
  630. if "max_sequence_length" in self.hparams:
  631. ctx_length = self.hparams["max_sequence_length"]
  632. elif "max_position_embeddings" in self.hparams:
  633. ctx_length = self.hparams["max_position_embeddings"]
  634. elif "model_max_length" in self.hparams:
  635. ctx_length = self.hparams["model_max_length"]
  636. else:
  637. raise ValueError("gguf: can not find ctx length parameter.")
  638. self.gguf_writer.add_name(self.dir_model.name)
  639. self.gguf_writer.add_source_hf_repo(hf_repo)
  640. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  641. self.gguf_writer.add_context_length(ctx_length)
  642. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  643. self.gguf_writer.add_block_count(block_count)
  644. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  645. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  646. self.gguf_writer.add_head_count(head_count)
  647. self.gguf_writer.add_head_count_kv(head_count_kv)
  648. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  649. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  650. if self.hparams["rope_scaling"].get("type") == "linear":
  651. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  652. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  654. head_count = self.hparams["num_attention_heads"]
  655. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  656. tensors: list[tuple[str, Tensor]] = []
  657. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  658. logger.info(f"Unpacking and permuting layer {bid}")
  659. tensors = [
  660. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  661. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  662. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  663. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  664. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  665. self._reverse_hf_part(data_torch, 2)),
  666. ]
  667. else:
  668. tensors = [(self.map_tensor_name(name), data_torch)]
  669. return tensors
  670. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  671. if n_kv_head is not None and n_head != n_kv_head:
  672. n_head //= n_kv_head
  673. return (
  674. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  675. .swapaxes(1, 2)
  676. .reshape(weights.shape)
  677. )
  678. def _reverse_hf_permute_part(
  679. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  680. ) -> Tensor:
  681. r = weights.shape[0] // 3
  682. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  683. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  684. r = weights.shape[0] // 3
  685. return weights[r * n_part:r * n_part + r, ...]
  686. @Model.register("XverseForCausalLM")
  687. class XverseModel(Model):
  688. model_arch = gguf.MODEL_ARCH.XVERSE
  689. def set_vocab(self):
  690. assert (self.dir_model / "tokenizer.json").is_file()
  691. dir_model = self.dir_model
  692. hparams = self.hparams
  693. tokens: list[bytes] = []
  694. toktypes: list[int] = []
  695. from transformers import AutoTokenizer
  696. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  697. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  698. assert max(tokenizer.vocab.values()) < vocab_size
  699. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  700. added_vocab = tokenizer.get_added_vocab()
  701. for token_id in range(vocab_size):
  702. token_text = reverse_vocab[token_id].encode('utf-8')
  703. # replace "\x00" to string with length > 0
  704. if token_text == b"\x00":
  705. toktype = gguf.TokenType.BYTE # special
  706. token_text = f"<{token_text}>".encode('utf-8')
  707. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  708. toktype = gguf.TokenType.BYTE # special
  709. elif reverse_vocab[token_id] in added_vocab:
  710. if tokenizer.added_tokens_decoder[token_id].special:
  711. toktype = gguf.TokenType.CONTROL
  712. else:
  713. toktype = gguf.TokenType.USER_DEFINED
  714. else:
  715. toktype = gguf.TokenType.NORMAL
  716. tokens.append(token_text)
  717. toktypes.append(toktype)
  718. self.gguf_writer.add_tokenizer_model("llama")
  719. self.gguf_writer.add_tokenizer_pre("default")
  720. self.gguf_writer.add_token_list(tokens)
  721. self.gguf_writer.add_token_types(toktypes)
  722. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  723. special_vocab.add_to_gguf(self.gguf_writer)
  724. def set_gguf_parameters(self):
  725. block_count = self.hparams["num_hidden_layers"]
  726. head_count = self.hparams["num_attention_heads"]
  727. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  728. hf_repo = self.hparams.get("_name_or_path", "")
  729. ctx_length = 0
  730. if "max_sequence_length" in self.hparams:
  731. ctx_length = self.hparams["max_sequence_length"]
  732. elif "max_position_embeddings" in self.hparams:
  733. ctx_length = self.hparams["max_position_embeddings"]
  734. elif "model_max_length" in self.hparams:
  735. ctx_length = self.hparams["model_max_length"]
  736. else:
  737. raise ValueError("gguf: can not find ctx length parameter.")
  738. self.gguf_writer.add_name(self.dir_model.name)
  739. self.gguf_writer.add_source_hf_repo(hf_repo)
  740. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  741. self.gguf_writer.add_context_length(ctx_length)
  742. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  743. self.gguf_writer.add_block_count(block_count)
  744. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  745. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  746. self.gguf_writer.add_head_count(head_count)
  747. self.gguf_writer.add_head_count_kv(head_count_kv)
  748. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  749. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  750. if self.hparams["rope_scaling"].get("type") == "linear":
  751. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  752. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  753. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  754. del bid # unused
  755. head_count = self.hparams["num_attention_heads"]
  756. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  757. # HF models permute some of the tensors, so we need to undo that
  758. if name.endswith("q_proj.weight"):
  759. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  760. if name.endswith("k_proj.weight"):
  761. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  762. return [(self.map_tensor_name(name), data_torch)]
  763. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  764. if n_kv_head is not None and n_head != n_kv_head:
  765. n_head //= n_kv_head
  766. return (
  767. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  768. .swapaxes(1, 2)
  769. .reshape(weights.shape)
  770. )
  771. @Model.register("FalconForCausalLM", "RWForCausalLM")
  772. class FalconModel(Model):
  773. model_arch = gguf.MODEL_ARCH.FALCON
  774. def set_gguf_parameters(self):
  775. block_count = self.hparams.get("num_hidden_layers")
  776. if block_count is None:
  777. block_count = self.hparams["n_layer"] # old name
  778. n_head = self.hparams.get("num_attention_heads")
  779. if n_head is None:
  780. n_head = self.hparams["n_head"] # old name
  781. n_head_kv = self.hparams.get("num_kv_heads")
  782. if n_head_kv is None:
  783. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  784. self.gguf_writer.add_name("Falcon")
  785. self.gguf_writer.add_context_length(2048) # not in config.json
  786. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  787. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  788. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  789. self.gguf_writer.add_block_count(block_count)
  790. self.gguf_writer.add_head_count(n_head)
  791. self.gguf_writer.add_head_count_kv(n_head_kv)
  792. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  793. self.gguf_writer.add_file_type(self.ftype)
  794. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  795. del bid # unused
  796. # QKV tensor transform
  797. # The original query_key_value tensor contains n_head_kv "kv groups",
  798. # each consisting of n_head/n_head_kv query weights followed by one key
  799. # and one value weight (shared by all query heads in the kv group).
  800. # This layout makes it a big pain to work with in GGML.
  801. # So we rearrange them here,, so that we have n_head query weights
  802. # followed by n_head_kv key weights followed by n_head_kv value weights,
  803. # in contiguous fashion.
  804. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  805. if "query_key_value" in name:
  806. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  807. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  808. head_dim = self.hparams["hidden_size"] // n_head
  809. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  810. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  811. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  812. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  813. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  814. return [(self.map_tensor_name(name), data_torch)]
  815. @Model.register("GPTBigCodeForCausalLM")
  816. class StarCoderModel(Model):
  817. model_arch = gguf.MODEL_ARCH.STARCODER
  818. def set_gguf_parameters(self):
  819. block_count = self.hparams["n_layer"]
  820. self.gguf_writer.add_name("StarCoder")
  821. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  822. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  823. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  824. self.gguf_writer.add_block_count(block_count)
  825. self.gguf_writer.add_head_count(self.hparams["n_head"])
  826. self.gguf_writer.add_head_count_kv(1)
  827. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  828. self.gguf_writer.add_file_type(self.ftype)
  829. @Model.register("GPTRefactForCausalLM")
  830. class RefactModel(Model):
  831. model_arch = gguf.MODEL_ARCH.REFACT
  832. def set_vocab(self):
  833. super().set_vocab()
  834. # TODO: how to determine special FIM tokens automatically?
  835. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  836. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  837. special_vocab._set_special_token("prefix", 1)
  838. special_vocab._set_special_token("suffix", 3)
  839. special_vocab._set_special_token("middle", 2)
  840. special_vocab._set_special_token("fsep", 4) # is this correct?
  841. special_vocab.add_to_gguf(self.gguf_writer)
  842. def set_gguf_parameters(self):
  843. hidden_dim = self.hparams["n_embd"]
  844. inner_dim = 4 * hidden_dim
  845. hidden_dim = int(2 * inner_dim / 3)
  846. multiple_of = 256
  847. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  848. block_count = self.hparams["n_layer"]
  849. self.gguf_writer.add_name("Refact")
  850. # refact uses Alibi. So this is from config.json which might be used by training.
  851. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  852. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  853. self.gguf_writer.add_feed_forward_length(ff_dim)
  854. self.gguf_writer.add_block_count(block_count)
  855. self.gguf_writer.add_head_count(self.hparams["n_head"])
  856. self.gguf_writer.add_head_count_kv(1)
  857. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  858. self.gguf_writer.add_file_type(self.ftype)
  859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  860. hidden_dim = self.hparams["n_embd"]
  861. inner_dim = 4 * hidden_dim
  862. hidden_dim = int(2 * inner_dim / 3)
  863. multiple_of = 256
  864. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  865. n_head = self.hparams["n_head"]
  866. n_head_kv = 1
  867. head_dim = self.hparams["n_embd"] // n_head
  868. tensors: list[tuple[str, Tensor]] = []
  869. if bid is not None:
  870. if name == f"transformer.h.{bid}.attn.kv.weight":
  871. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  872. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  873. elif name == f"transformer.h.{bid}.attn.q.weight":
  874. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  875. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  876. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  877. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  878. if len(tensors) == 0:
  879. tensors.append((self.map_tensor_name(name), data_torch))
  880. return tensors
  881. @Model.register("PersimmonForCausalLM")
  882. class PersimmonModel(Model):
  883. model_arch = gguf.MODEL_ARCH.PERSIMMON
  884. def set_gguf_parameters(self):
  885. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  886. head_count = self.hparams["num_attention_heads"]
  887. head_count_kv = head_count
  888. hidden_size = self.hparams["hidden_size"]
  889. self.gguf_writer.add_name('persimmon-8b-chat')
  890. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  891. self.gguf_writer.add_embedding_length(hidden_size)
  892. self.gguf_writer.add_block_count(block_count)
  893. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  894. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  895. # than the head size?
  896. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  897. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  898. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  899. self.gguf_writer.add_head_count(head_count)
  900. self.gguf_writer.add_head_count_kv(head_count_kv)
  901. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  902. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  903. def set_vocab(self):
  904. self._set_vocab_sentencepiece()
  905. # self.gguf_writer.add_bos_token_id(71013)
  906. # self.gguf_writer.add_eos_token_id(71013)
  907. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  908. del name, new_name, bid, n_dims # unused
  909. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  910. return True
  911. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  912. class StableLMModel(Model):
  913. model_arch = gguf.MODEL_ARCH.STABLELM
  914. def set_vocab(self):
  915. if (self.dir_model / "tokenizer.json").is_file():
  916. self._set_vocab_gpt2()
  917. else:
  918. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  919. self._set_vocab_qwen()
  920. def set_gguf_parameters(self):
  921. hparams = self.hparams
  922. block_count = hparams["num_hidden_layers"]
  923. self.gguf_writer.add_name(self.dir_model.name)
  924. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  925. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  926. self.gguf_writer.add_block_count(block_count)
  927. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  928. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  929. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  930. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  931. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  932. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  933. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  934. _q_norms: list[dict[str, Tensor]] | None = None
  935. _k_norms: list[dict[str, Tensor]] | None = None
  936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  937. n_head = self.hparams["num_attention_heads"]
  938. n_kv_head = self.hparams["num_key_value_heads"]
  939. if name.find("q_layernorm.norms") != -1:
  940. assert bid is not None
  941. if self._q_norms is None:
  942. self._q_norms = [{} for _ in range(self.block_count)]
  943. self._q_norms[bid][name] = data_torch
  944. if len(self._q_norms[bid]) >= n_head:
  945. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  946. else:
  947. return []
  948. if name.find("k_layernorm.norms") != -1:
  949. assert bid is not None
  950. if self._k_norms is None:
  951. self._k_norms = [{} for _ in range(self.block_count)]
  952. self._k_norms[bid][name] = data_torch
  953. if len(self._k_norms[bid]) >= n_kv_head:
  954. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  955. else:
  956. return []
  957. return [(self.map_tensor_name(name), data_torch)]
  958. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  959. datas: list[Tensor] = []
  960. # extract the norms in order
  961. for xid in range(n_head):
  962. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  963. datas.append(norms[ename])
  964. del norms[ename]
  965. data_torch = torch.stack(datas, dim=0)
  966. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  967. new_name = self.map_tensor_name(merged_name)
  968. return [(new_name, data_torch)]
  969. def write_tensors(self):
  970. super().write_tensors()
  971. if self._q_norms is not None or self._k_norms is not None:
  972. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  973. norms = (
  974. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  975. ) + (
  976. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  977. )
  978. if len(norms) > 0:
  979. raise ValueError(f"Unprocessed norms: {norms}")
  980. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  981. class LlamaModel(Model):
  982. model_arch = gguf.MODEL_ARCH.LLAMA
  983. def set_vocab(self):
  984. try:
  985. self. _set_vocab_sentencepiece()
  986. except FileNotFoundError:
  987. try:
  988. self._set_vocab_llama_hf()
  989. except (FileNotFoundError, TypeError):
  990. # Llama 3
  991. self._set_vocab_gpt2()
  992. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  993. if self.hparams.get("vocab_size", 32000) == 32016:
  994. special_vocab = gguf.SpecialVocab(
  995. self.dir_model, load_merges=False,
  996. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  997. )
  998. special_vocab._set_special_token("prefix", 32007)
  999. special_vocab._set_special_token("suffix", 32008)
  1000. special_vocab._set_special_token("middle", 32009)
  1001. special_vocab._set_special_token("eot", 32010)
  1002. special_vocab.add_to_gguf(self.gguf_writer)
  1003. def set_gguf_parameters(self):
  1004. super().set_gguf_parameters()
  1005. hparams = self.hparams
  1006. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1007. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1008. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1009. if self.hparams["rope_scaling"].get("type") == "linear":
  1010. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1011. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1012. @staticmethod
  1013. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1014. if n_head_kv is not None and n_head != n_head_kv:
  1015. n_head = n_head_kv
  1016. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1017. .swapaxes(1, 2)
  1018. .reshape(weights.shape))
  1019. _experts: list[dict[str, Tensor]] | None = None
  1020. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1021. n_head = self.hparams["num_attention_heads"]
  1022. n_kv_head = self.hparams.get("num_key_value_heads")
  1023. if name.endswith("q_proj.weight"):
  1024. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1025. if name.endswith("k_proj.weight"):
  1026. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1027. # process the experts separately
  1028. if name.find("block_sparse_moe.experts") != -1:
  1029. n_experts = self.hparams["num_local_experts"]
  1030. assert bid is not None
  1031. if self._experts is None:
  1032. self._experts = [{} for _ in range(self.block_count)]
  1033. self._experts[bid][name] = data_torch
  1034. if len(self._experts[bid]) >= n_experts * 3:
  1035. tensors: list[tuple[str, Tensor]] = []
  1036. # merge the experts into a single 3d tensor
  1037. for wid in ["w1", "w2", "w3"]:
  1038. datas: list[Tensor] = []
  1039. for xid in range(n_experts):
  1040. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1041. datas.append(self._experts[bid][ename])
  1042. del self._experts[bid][ename]
  1043. data_torch = torch.stack(datas, dim=0)
  1044. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1045. new_name = self.map_tensor_name(merged_name)
  1046. tensors.append((new_name, data_torch))
  1047. return tensors
  1048. else:
  1049. return []
  1050. return [(self.map_tensor_name(name), data_torch)]
  1051. def write_tensors(self):
  1052. super().write_tensors()
  1053. if self._experts is not None:
  1054. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1055. experts = [k for d in self._experts for k in d.keys()]
  1056. if len(experts) > 0:
  1057. raise ValueError(f"Unprocessed experts: {experts}")
  1058. @Model.register("GrokForCausalLM")
  1059. class GrokModel(Model):
  1060. model_arch = gguf.MODEL_ARCH.GROK
  1061. def set_vocab(self):
  1062. self._set_vocab_sentencepiece()
  1063. def __init__(self, *args, **kwargs):
  1064. super().__init__(*args, **kwargs)
  1065. def set_gguf_parameters(self):
  1066. super().set_gguf_parameters()
  1067. self.gguf_writer.add_name("Grok")
  1068. _experts: list[dict[str, Tensor]] | None = None
  1069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1070. # process the experts separately
  1071. if name.find(".moe.") != -1:
  1072. n_experts = self.hparams["num_local_experts"]
  1073. assert bid is not None
  1074. if self._experts is None:
  1075. self._experts = [{} for _ in range(self.block_count)]
  1076. self._experts[bid][name] = data_torch
  1077. if len(self._experts[bid]) >= n_experts * 3:
  1078. tensors: list[tuple[str, Tensor]] = []
  1079. # merge the experts into a single 3d tensor
  1080. for wid in ["linear", "linear_1", "linear_v"]:
  1081. datas: list[Tensor] = []
  1082. for xid in range(n_experts):
  1083. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1084. datas.append(self._experts[bid][ename])
  1085. del self._experts[bid][ename]
  1086. data_torch = torch.stack(datas, dim=0)
  1087. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1088. new_name = self.map_tensor_name(merged_name)
  1089. tensors.append((new_name, data_torch))
  1090. return tensors
  1091. else:
  1092. return []
  1093. return [(self.map_tensor_name(name), data_torch)]
  1094. @Model.register("DbrxForCausalLM")
  1095. class DbrxModel(Model):
  1096. model_arch = gguf.MODEL_ARCH.DBRX
  1097. def set_gguf_parameters(self):
  1098. ffn_config = self.hparams["ffn_config"]
  1099. attn_config = self.hparams["attn_config"]
  1100. self.gguf_writer.add_name(self.hparams["model_type"])
  1101. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1102. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1103. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1104. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1105. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1106. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1107. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1108. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1109. self.gguf_writer.add_file_type(self.ftype)
  1110. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1111. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1112. self.gguf_writer.add_layer_norm_eps(1e-5)
  1113. self.gguf_writer.add_file_type(self.ftype)
  1114. logger.info(f"gguf: file type = {self.ftype}")
  1115. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1116. del bid # unused
  1117. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1118. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1119. n_embd = self.hparams["d_model"]
  1120. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1121. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1122. # But llama.cpp moe graph works differently
  1123. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1124. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1125. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1126. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1127. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1128. experts = False
  1129. for exp_tensor_name in exp_tensor_names.keys():
  1130. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1131. experts = True
  1132. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1133. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1134. data_torch = data_torch.permute(*permute_tensor)
  1135. break
  1136. # map tensor names
  1137. # In MoE models the ffn tensors are typically most of the model weights,
  1138. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1139. # Every other model has the weight names ending in .weight,
  1140. # let's assume that is the convention which is not the case for dbrx:
  1141. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1142. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1143. return [(new_name, data_torch)]
  1144. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1145. del name, new_name, bid # unused
  1146. return n_dims > 1
  1147. @Model.register("MiniCPMForCausalLM")
  1148. class MiniCPMModel(Model):
  1149. model_arch = gguf.MODEL_ARCH.MINICPM
  1150. def set_gguf_parameters(self):
  1151. block_count = self.hparams["num_hidden_layers"]
  1152. self.gguf_writer.add_name("MiniCPM")
  1153. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1154. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1155. self.gguf_writer.add_block_count(block_count)
  1156. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1157. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1158. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1159. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1160. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1161. self.gguf_writer.add_file_type(self.ftype)
  1162. def set_vocab(self):
  1163. self._set_vocab_llama_hf()
  1164. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1165. if n_kv_head is not None and n_head != n_kv_head:
  1166. n_head //= n_kv_head
  1167. return (
  1168. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1169. .swapaxes(1, 2)
  1170. .reshape(weights.shape)
  1171. )
  1172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1173. del bid # unused
  1174. n_head = self.hparams["num_attention_heads"]
  1175. n_kv_head = self.hparams.get("num_key_value_heads")
  1176. # HF models permute some of the tensors, so we need to undo that
  1177. if name.endswith(("q_proj.weight")):
  1178. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1179. if name.endswith(("k_proj.weight")):
  1180. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1181. return [(self.map_tensor_name(name), data_torch)]
  1182. @Model.register("QWenLMHeadModel")
  1183. class QwenModel(Model):
  1184. model_arch = gguf.MODEL_ARCH.QWEN
  1185. @staticmethod
  1186. def token_bytes_to_string(b):
  1187. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1188. byte_encoder = bytes_to_unicode()
  1189. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1190. @staticmethod
  1191. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1192. parts = [bytes([b]) for b in token]
  1193. while True:
  1194. min_idx = None
  1195. min_rank = None
  1196. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1197. rank = mergeable_ranks.get(pair[0] + pair[1])
  1198. if rank is not None and (min_rank is None or rank < min_rank):
  1199. min_idx = i
  1200. min_rank = rank
  1201. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1202. break
  1203. assert min_idx is not None
  1204. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1205. return parts
  1206. def set_vocab(self):
  1207. self._set_vocab_qwen()
  1208. def set_gguf_parameters(self):
  1209. self.gguf_writer.add_name("Qwen")
  1210. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1211. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1212. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1213. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1214. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1215. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1216. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1217. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1218. @Model.register("Qwen2ForCausalLM")
  1219. class Qwen2Model(Model):
  1220. model_arch = gguf.MODEL_ARCH.QWEN2
  1221. def set_vocab(self):
  1222. try:
  1223. self._set_vocab_sentencepiece()
  1224. except FileNotFoundError:
  1225. self._set_vocab_gpt2()
  1226. @Model.register("Qwen2MoeForCausalLM")
  1227. class Qwen2MoeModel(Model):
  1228. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1229. def set_gguf_parameters(self):
  1230. super().set_gguf_parameters()
  1231. if (n_experts := self.hparams.get("num_experts")) is not None:
  1232. self.gguf_writer.add_expert_count(n_experts)
  1233. _experts: list[dict[str, Tensor]] | None = None
  1234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1235. # process the experts separately
  1236. if name.find("experts") != -1:
  1237. n_experts = self.hparams["num_experts"]
  1238. assert bid is not None
  1239. if self._experts is None:
  1240. self._experts = [{} for _ in range(self.block_count)]
  1241. self._experts[bid][name] = data_torch
  1242. if len(self._experts[bid]) >= n_experts * 3:
  1243. tensors: list[tuple[str, Tensor]] = []
  1244. # merge the experts into a single 3d tensor
  1245. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1246. datas: list[Tensor] = []
  1247. for xid in range(n_experts):
  1248. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1249. datas.append(self._experts[bid][ename])
  1250. del self._experts[bid][ename]
  1251. data_torch = torch.stack(datas, dim=0)
  1252. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1253. new_name = self.map_tensor_name(merged_name)
  1254. tensors.append((new_name, data_torch))
  1255. return tensors
  1256. else:
  1257. return []
  1258. return [(self.map_tensor_name(name), data_torch)]
  1259. def write_tensors(self):
  1260. super().write_tensors()
  1261. if self._experts is not None:
  1262. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1263. experts = [k for d in self._experts for k in d.keys()]
  1264. if len(experts) > 0:
  1265. raise ValueError(f"Unprocessed experts: {experts}")
  1266. @Model.register("GPT2LMHeadModel")
  1267. class GPT2Model(Model):
  1268. model_arch = gguf.MODEL_ARCH.GPT2
  1269. def set_gguf_parameters(self):
  1270. self.gguf_writer.add_name(self.dir_model.name)
  1271. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1272. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1273. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1274. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1275. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1276. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1277. self.gguf_writer.add_file_type(self.ftype)
  1278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1279. del bid # unused
  1280. tensors: list[tuple[str, Tensor]] = []
  1281. # we don't need these
  1282. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1283. return tensors
  1284. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1285. data_torch = data_torch.transpose(1, 0)
  1286. new_name = self.map_tensor_name(name)
  1287. tensors.append((new_name, data_torch))
  1288. # note: GPT2 output is tied to (same as) wte in original model
  1289. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1290. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1291. return tensors
  1292. @Model.register("PhiForCausalLM")
  1293. class Phi2Model(Model):
  1294. model_arch = gguf.MODEL_ARCH.PHI2
  1295. def set_gguf_parameters(self):
  1296. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1297. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1298. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1299. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1300. self.gguf_writer.add_name("Phi2")
  1301. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1302. self.gguf_writer.add_embedding_length(n_embd)
  1303. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1304. self.gguf_writer.add_block_count(block_count)
  1305. self.gguf_writer.add_head_count(n_head)
  1306. self.gguf_writer.add_head_count_kv(n_head)
  1307. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1308. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1309. self.gguf_writer.add_file_type(self.ftype)
  1310. self.gguf_writer.add_add_bos_token(False)
  1311. @Model.register("Phi3ForCausalLM")
  1312. class Phi3MiniModel(Model):
  1313. model_arch = gguf.MODEL_ARCH.PHI3
  1314. def set_vocab(self):
  1315. from sentencepiece import SentencePieceProcessor
  1316. tokenizer_path = self.dir_model / 'tokenizer.model'
  1317. if not tokenizer_path.is_file():
  1318. raise ValueError(f'Error: Missing {tokenizer_path}')
  1319. tokenizer = SentencePieceProcessor()
  1320. tokenizer.LoadFromFile(str(tokenizer_path))
  1321. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1322. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1323. scores: list[float] = [-10000.0] * vocab_size
  1324. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1325. for token_id in range(tokenizer.vocab_size()):
  1326. piece = tokenizer.IdToPiece(token_id)
  1327. text = piece.encode("utf-8")
  1328. score = tokenizer.GetScore(token_id)
  1329. toktype = SentencePieceTokenTypes.NORMAL
  1330. if tokenizer.IsUnknown(token_id):
  1331. toktype = SentencePieceTokenTypes.UNKNOWN
  1332. elif tokenizer.IsControl(token_id):
  1333. toktype = SentencePieceTokenTypes.CONTROL
  1334. elif tokenizer.IsUnused(token_id):
  1335. toktype = SentencePieceTokenTypes.UNUSED
  1336. elif tokenizer.IsByte(token_id):
  1337. toktype = SentencePieceTokenTypes.BYTE
  1338. tokens[token_id] = text
  1339. scores[token_id] = score
  1340. toktypes[token_id] = toktype
  1341. added_tokens_file = self.dir_model / 'added_tokens.json'
  1342. if added_tokens_file.is_file():
  1343. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1344. added_tokens_json = json.load(f)
  1345. for key in added_tokens_json:
  1346. token_id = added_tokens_json[key]
  1347. if (token_id >= vocab_size):
  1348. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1349. continue
  1350. tokens[token_id] = key.encode("utf-8")
  1351. scores[token_id] = -1000.0
  1352. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1353. self.gguf_writer.add_tokenizer_model("llama")
  1354. self.gguf_writer.add_tokenizer_pre("default")
  1355. self.gguf_writer.add_token_list(tokens)
  1356. self.gguf_writer.add_token_scores(scores)
  1357. self.gguf_writer.add_token_types(toktypes)
  1358. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1359. special_vocab.add_to_gguf(self.gguf_writer)
  1360. def set_gguf_parameters(self):
  1361. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1362. rot_pct = 1.0
  1363. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1364. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1365. rms_eps = self.find_hparam(["rms_norm_eps"])
  1366. self.gguf_writer.add_name("Phi3")
  1367. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1368. self.gguf_writer.add_embedding_length(n_embd)
  1369. self.gguf_writer.add_feed_forward_length(8192)
  1370. self.gguf_writer.add_block_count(block_count)
  1371. self.gguf_writer.add_head_count(n_head)
  1372. self.gguf_writer.add_head_count_kv(n_head)
  1373. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1374. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1375. self.gguf_writer.add_file_type(self.ftype)
  1376. @Model.register("PlamoForCausalLM")
  1377. class PlamoModel(Model):
  1378. model_arch = gguf.MODEL_ARCH.PLAMO
  1379. def set_vocab(self):
  1380. self._set_vocab_sentencepiece()
  1381. def set_gguf_parameters(self):
  1382. hparams = self.hparams
  1383. block_count = hparams["num_hidden_layers"]
  1384. self.gguf_writer.add_name("PLaMo")
  1385. self.gguf_writer.add_context_length(4096) # not in config.json
  1386. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1387. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1388. self.gguf_writer.add_block_count(block_count)
  1389. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1390. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1391. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1392. def shuffle_attn_q_weight(self, data_torch):
  1393. assert data_torch.size() == (5120, 5120)
  1394. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1395. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1396. data_torch = torch.reshape(data_torch, (5120, 5120))
  1397. return data_torch
  1398. def shuffle_attn_output_weight(self, data_torch):
  1399. assert data_torch.size() == (5120, 5120)
  1400. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1401. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1402. data_torch = torch.reshape(data_torch, (5120, 5120))
  1403. return data_torch
  1404. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1405. del bid # unused
  1406. new_name = self.map_tensor_name(name)
  1407. # shuffle for broadcasting of gqa in ggml_mul_mat
  1408. if new_name.endswith("attn_q.weight"):
  1409. data_torch = self.shuffle_attn_q_weight(data_torch)
  1410. elif new_name.endswith("attn_output.weight"):
  1411. data_torch = self.shuffle_attn_output_weight(data_torch)
  1412. return [(new_name, data_torch)]
  1413. @Model.register("CodeShellForCausalLM")
  1414. class CodeShellModel(Model):
  1415. model_arch = gguf.MODEL_ARCH.CODESHELL
  1416. def set_gguf_parameters(self):
  1417. block_count = self.hparams["n_layer"]
  1418. self.gguf_writer.add_name("CodeShell")
  1419. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1420. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1421. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1422. self.gguf_writer.add_block_count(block_count)
  1423. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1424. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1425. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1426. self.gguf_writer.add_file_type(self.ftype)
  1427. self.gguf_writer.add_rope_freq_base(10000.0)
  1428. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1429. self.gguf_writer.add_rope_scaling_factor(1.0)
  1430. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1431. del bid # unused
  1432. new_name = self.map_tensor_name(name)
  1433. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1434. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1435. assert self.tensor_names is not None
  1436. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1437. # copy tok_embd.weight to output.weight
  1438. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1439. return tensors
  1440. @Model.register("InternLM2ForCausalLM")
  1441. class InternLM2Model(Model):
  1442. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1443. def set_vocab(self):
  1444. # (TODO): Is there a better way?
  1445. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1446. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1447. # recognized as an empty string in C++.
  1448. from sentencepiece import SentencePieceProcessor
  1449. from sentencepiece import sentencepiece_model_pb2 as model
  1450. tokenizer_path = self.dir_model / 'tokenizer.model'
  1451. tokens: list[bytes] = []
  1452. scores: list[float] = []
  1453. toktypes: list[int] = []
  1454. if not tokenizer_path.is_file():
  1455. logger.error(f'Error: Missing {tokenizer_path}')
  1456. sys.exit(1)
  1457. sentencepiece_model = model.ModelProto()
  1458. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1459. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1460. tokenizer = SentencePieceProcessor()
  1461. tokenizer.LoadFromFile(str(tokenizer_path))
  1462. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1463. for token_id in range(vocab_size):
  1464. piece = tokenizer.IdToPiece(token_id)
  1465. text = piece.encode("utf-8")
  1466. score = tokenizer.GetScore(token_id)
  1467. if text == b"\x00":
  1468. # (TODO): fixme
  1469. # Hack here and replace the \x00 characters.
  1470. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1471. text = "🐉".encode("utf-8")
  1472. toktype = SentencePieceTokenTypes.NORMAL
  1473. if tokenizer.IsUnknown(token_id):
  1474. toktype = SentencePieceTokenTypes.UNKNOWN
  1475. elif tokenizer.IsControl(token_id):
  1476. toktype = SentencePieceTokenTypes.CONTROL
  1477. elif tokenizer.IsUnused(token_id):
  1478. toktype = SentencePieceTokenTypes.UNUSED
  1479. elif tokenizer.IsByte(token_id):
  1480. toktype = SentencePieceTokenTypes.BYTE
  1481. tokens.append(text)
  1482. scores.append(score)
  1483. toktypes.append(toktype)
  1484. added_tokens_file = self.dir_model / 'added_tokens.json'
  1485. if added_tokens_file.is_file():
  1486. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1487. added_tokens_json = json.load(f)
  1488. for key in added_tokens_json:
  1489. tokens.append(key.encode("utf-8"))
  1490. scores.append(-1000.0)
  1491. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1492. self.gguf_writer.add_tokenizer_model("llama")
  1493. self.gguf_writer.add_tokenizer_pre("default")
  1494. self.gguf_writer.add_token_list(tokens)
  1495. self.gguf_writer.add_token_scores(scores)
  1496. self.gguf_writer.add_token_types(toktypes)
  1497. self.gguf_writer.add_add_space_prefix(add_prefix)
  1498. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1499. old_eos = special_vocab.special_token_ids["eos"]
  1500. if "chat" in os.path.basename(self.dir_model.absolute()):
  1501. # For the chat model, we replace the eos with '<|im_end|>'.
  1502. # TODO: this is a hack, should be fixed
  1503. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1504. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1505. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1506. in chat mode so that the conversation can end normally.")
  1507. special_vocab.add_to_gguf(self.gguf_writer)
  1508. def _try_get_sft_eos(self, tokenizer):
  1509. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1510. im_end_list = tokenizer.Encode('<|im_end|>')
  1511. eos_token = None
  1512. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1513. if len(unused_145_list) == 1:
  1514. eos_token = unused_145_list[0]
  1515. if len(im_end_list) == 1:
  1516. eos_token = im_end_list[0]
  1517. assert eos_token
  1518. return eos_token
  1519. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1520. if n_head_kv is not None and n_head != n_head_kv:
  1521. n_head = n_head_kv
  1522. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1523. .swapaxes(1, 2)
  1524. .reshape(weights.shape))
  1525. def set_gguf_parameters(self):
  1526. self.gguf_writer.add_name("InternLM2")
  1527. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1528. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1529. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1530. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1531. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1532. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1533. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1534. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1535. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1536. num_heads = self.hparams["num_attention_heads"]
  1537. num_kv_heads = self.hparams["num_key_value_heads"]
  1538. hidden_size = self.hparams["hidden_size"]
  1539. q_per_kv = num_heads // num_kv_heads
  1540. head_dim = hidden_size // num_heads
  1541. num_groups = num_heads // q_per_kv
  1542. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1543. if re.match(qkv_pattern, name):
  1544. bid = re.findall(qkv_pattern, name)[0]
  1545. qkv = data_torch
  1546. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1547. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1548. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1549. # The model weights of q and k equire additional reshape.
  1550. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1551. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1552. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1553. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1554. # v = rearrange(v, " o g n i -> o (g n i)").T
  1555. v = v.reshape((v.shape[0], -1)).T
  1556. return [
  1557. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1558. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1559. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1560. ]
  1561. else:
  1562. return [(self.map_tensor_name(name), data_torch)]
  1563. @Model.register("BertModel", "CamembertModel")
  1564. class BertModel(Model):
  1565. model_arch = gguf.MODEL_ARCH.BERT
  1566. def __init__(self, *args, **kwargs):
  1567. super().__init__(*args, **kwargs)
  1568. self.vocab_size = None
  1569. def set_gguf_parameters(self):
  1570. super().set_gguf_parameters()
  1571. self.gguf_writer.add_causal_attention(False)
  1572. # get pooling path
  1573. pooling_path = None
  1574. module_path = self.dir_model / "modules.json"
  1575. if module_path.is_file():
  1576. with open(module_path, encoding="utf-8") as f:
  1577. modules = json.load(f)
  1578. for mod in modules:
  1579. if mod["type"] == "sentence_transformers.models.Pooling":
  1580. pooling_path = mod["path"]
  1581. break
  1582. # get pooling type
  1583. if pooling_path is not None:
  1584. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1585. pooling = json.load(f)
  1586. if pooling["pooling_mode_mean_tokens"]:
  1587. pooling_type = gguf.PoolingType.MEAN
  1588. elif pooling["pooling_mode_cls_token"]:
  1589. pooling_type = gguf.PoolingType.CLS
  1590. else:
  1591. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1592. self.gguf_writer.add_pooling_type(pooling_type)
  1593. def set_vocab(self):
  1594. tokens, toktypes, tokpre = self.get_vocab_base()
  1595. self.vocab_size = len(tokens)
  1596. # we need this to validate the size of the token_type embeddings
  1597. # though currently we are passing all zeros to the token_type embeddings
  1598. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1599. # convert to phantom space vocab
  1600. def phantom(tok):
  1601. if tok.startswith("[") and tok.endswith("]"):
  1602. return tok
  1603. if tok.startswith("##"):
  1604. return tok[2:]
  1605. return "\u2581" + tok
  1606. tokens = list(map(phantom, tokens))
  1607. # add vocab to gguf
  1608. self.gguf_writer.add_tokenizer_model("bert")
  1609. self.gguf_writer.add_tokenizer_pre(tokpre)
  1610. self.gguf_writer.add_token_list(tokens)
  1611. self.gguf_writer.add_token_types(toktypes)
  1612. # handle special tokens
  1613. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1614. special_vocab.add_to_gguf(self.gguf_writer)
  1615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1616. del bid # unused
  1617. # we are only using BERT for embeddings so we don't need the pooling layer
  1618. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1619. return [] # we don't need these
  1620. return [(self.map_tensor_name(name), data_torch)]
  1621. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1622. del new_name, bid, n_dims # unused
  1623. # not used with get_rows, must be F32
  1624. return name == "embeddings.token_type_embeddings.weight"
  1625. @Model.register("NomicBertModel")
  1626. class NomicBertModel(BertModel):
  1627. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1628. def __init__(self, *args, **kwargs):
  1629. super().__init__(*args, **kwargs)
  1630. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1631. self.hparams["n_ctx"] = 2048
  1632. # SwigLU activation
  1633. assert self.hparams["activation_function"] == "swiglu"
  1634. # this doesn't do anything in the HF version
  1635. assert self.hparams["causal"] is False
  1636. # no bias tensors
  1637. assert self.hparams["qkv_proj_bias"] is False
  1638. assert self.hparams["mlp_fc1_bias"] is False
  1639. assert self.hparams["mlp_fc2_bias"] is False
  1640. # norm at end of layer
  1641. assert self.hparams["prenorm"] is False
  1642. # standard RoPE
  1643. assert self.hparams["rotary_emb_fraction"] == 1.0
  1644. assert self.hparams["rotary_emb_interleaved"] is False
  1645. assert self.hparams["rotary_emb_scale_base"] is None
  1646. def set_gguf_parameters(self):
  1647. super().set_gguf_parameters()
  1648. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1649. @Model.register("GemmaForCausalLM")
  1650. class GemmaModel(Model):
  1651. model_arch = gguf.MODEL_ARCH.GEMMA
  1652. def set_vocab(self):
  1653. self._set_vocab_sentencepiece()
  1654. # TODO: these special tokens should be exported only for the CodeGemma family
  1655. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1656. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1657. special_vocab._set_special_token("prefix", 67)
  1658. special_vocab._set_special_token("suffix", 69)
  1659. special_vocab._set_special_token("middle", 68)
  1660. special_vocab._set_special_token("fsep", 70)
  1661. special_vocab._set_special_token("eot", 107)
  1662. special_vocab.add_to_gguf(self.gguf_writer)
  1663. def set_gguf_parameters(self):
  1664. hparams = self.hparams
  1665. block_count = hparams["num_hidden_layers"]
  1666. self.gguf_writer.add_name(self.dir_model.name)
  1667. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1668. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1669. self.gguf_writer.add_block_count(block_count)
  1670. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1671. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1672. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1673. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1674. self.gguf_writer.add_key_length(hparams["head_dim"])
  1675. self.gguf_writer.add_value_length(hparams["head_dim"])
  1676. self.gguf_writer.add_file_type(self.ftype)
  1677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1678. del bid # unused
  1679. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1680. # To prevent errors, skip loading lm_head.weight.
  1681. if name == "lm_head.weight":
  1682. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1683. return []
  1684. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1685. if name.endswith("norm.weight"):
  1686. data_torch = data_torch + 1
  1687. return [(self.map_tensor_name(name), data_torch)]
  1688. @Model.register("Starcoder2ForCausalLM")
  1689. class StarCoder2Model(Model):
  1690. model_arch = gguf.MODEL_ARCH.STARCODER2
  1691. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1692. class MambaModel(Model):
  1693. model_arch = gguf.MODEL_ARCH.MAMBA
  1694. def set_vocab(self):
  1695. vocab_size = self.hparams["vocab_size"]
  1696. # Round vocab size to next multiple of 8
  1697. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1698. # pad using ceiling division
  1699. # ref: https://stackoverflow.com/a/17511341/22827863
  1700. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1701. self.hparams["vocab_size"] = vocab_size
  1702. if (self.dir_model / "tokenizer.json").is_file():
  1703. self._set_vocab_gpt2()
  1704. elif (self.dir_model / "tokenizer.model").is_file():
  1705. self._set_vocab_sentencepiece()
  1706. else:
  1707. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1708. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1709. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1710. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1711. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1712. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1713. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1714. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1715. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1716. assert field
  1717. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1718. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1719. assert field
  1720. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1721. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1722. assert field
  1723. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1724. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1725. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1726. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1727. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1728. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1729. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1730. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1731. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1732. def set_gguf_parameters(self):
  1733. d_model = self.find_hparam(["hidden_size", "d_model"])
  1734. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1735. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1736. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1737. # ceiling division
  1738. # ref: https://stackoverflow.com/a/17511341/22827863
  1739. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1740. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1741. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1742. # Fail early for models which don't have a block expansion factor of 2
  1743. assert d_inner == 2 * d_model
  1744. self.gguf_writer.add_name(self.dir_model.name)
  1745. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1746. self.gguf_writer.add_embedding_length(d_model)
  1747. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1748. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1749. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1750. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1751. self.gguf_writer.add_ssm_inner_size(d_inner)
  1752. self.gguf_writer.add_ssm_state_size(d_state)
  1753. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1754. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1755. self.gguf_writer.add_file_type(self.ftype)
  1756. _tok_embd = None
  1757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1758. del bid # unused
  1759. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1760. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1761. new_name = self.map_tensor_name(name)
  1762. if name.endswith(".A_log"):
  1763. logger.debug("A_log --> A ==> " + new_name)
  1764. data_torch = -torch.exp(data_torch)
  1765. # assuming token_embd.weight is seen before output.weight
  1766. if self._tok_embd is not None and new_name == output_name:
  1767. if torch.equal(self._tok_embd, data_torch):
  1768. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1769. return []
  1770. elif new_name == tok_embd_name:
  1771. self._tok_embd = data_torch
  1772. return [(new_name, data_torch)]
  1773. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1774. del n_dims # unused
  1775. return bid is not None and new_name in (
  1776. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1777. gguf.MODEL_TENSOR.SSM_CONV1D,
  1778. gguf.MODEL_TENSOR.SSM_X,
  1779. gguf.MODEL_TENSOR.SSM_DT,
  1780. gguf.MODEL_TENSOR.SSM_A,
  1781. gguf.MODEL_TENSOR.SSM_D,
  1782. ]
  1783. )
  1784. @Model.register("CohereForCausalLM")
  1785. class CommandR2Model(Model):
  1786. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1787. def __init__(self, *args, **kwargs):
  1788. super().__init__(*args, **kwargs)
  1789. # max_position_embeddings = 8192 in config.json but model was actually
  1790. # trained on 128k context length
  1791. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1792. def set_gguf_parameters(self):
  1793. super().set_gguf_parameters()
  1794. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1795. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1796. @Model.register("OlmoForCausalLM")
  1797. @Model.register("OLMoForCausalLM")
  1798. class OlmoModel(Model):
  1799. model_arch = gguf.MODEL_ARCH.OLMO
  1800. def set_gguf_parameters(self):
  1801. super().set_gguf_parameters()
  1802. self.gguf_writer.add_layer_norm_eps(1e-5)
  1803. clip_qkv = self.hparams.get("clip_qkv")
  1804. if clip_qkv is not None:
  1805. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1806. # Same as super class, but permuting q_proj, k_proj
  1807. # Copied from: LlamaModel
  1808. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1809. del bid # unused
  1810. n_head = self.hparams["num_attention_heads"]
  1811. n_kv_head = self.hparams.get("num_key_value_heads")
  1812. if name.endswith("q_proj.weight"):
  1813. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1814. if name.endswith("k_proj.weight"):
  1815. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1816. return [(self.map_tensor_name(name), data_torch)]
  1817. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1818. class JinaBertV2Model(BertModel):
  1819. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1820. def __init__(self, *args, **kwargs):
  1821. super().__init__(*args, **kwargs)
  1822. self.intermediate_size = self.hparams["intermediate_size"]
  1823. def get_tensors(self):
  1824. for name, data in super().get_tensors():
  1825. if 'gated_layers' in name:
  1826. d1 = data[:self.intermediate_size, :]
  1827. name1 = name.replace('gated_layers', 'gated_layers_w')
  1828. d2 = data[self.intermediate_size:, :]
  1829. name2 = name.replace('gated_layers', 'gated_layers_v')
  1830. yield name1, d1
  1831. yield name2, d2
  1832. continue
  1833. yield name, data
  1834. def set_vocab(self, *args, **kwargs):
  1835. tokenizer_class = 'BertTokenizer'
  1836. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1837. tokenizer_class = json.load(f)['tokenizer_class']
  1838. if tokenizer_class == 'BertTokenizer':
  1839. super().set_vocab()
  1840. elif tokenizer_class == 'RobertaTokenizer':
  1841. self._set_vocab_gpt2()
  1842. self.gguf_writer.add_token_type_count(2)
  1843. else:
  1844. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1845. self.gguf_writer.add_add_bos_token(True)
  1846. self.gguf_writer.add_add_eos_token(True)
  1847. ###### CONVERSION LOGIC ######
  1848. # tree of lazy tensors
  1849. class LazyTorchTensor:
  1850. _meta: Tensor
  1851. _data: Tensor | None
  1852. _args: tuple
  1853. _func: Callable[[tuple], Tensor] | None
  1854. def __init__(self, *, meta: Tensor, data: Tensor | None = None, args: tuple = (), func: Callable[[tuple], Tensor] | None = None):
  1855. self._meta = meta
  1856. self._data = data
  1857. self._args = args
  1858. self._func = func
  1859. @staticmethod
  1860. def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
  1861. # TODO: dict and set
  1862. if isinstance(o, (list, tuple)):
  1863. L = []
  1864. for item in o:
  1865. L.append(LazyTorchTensor._recurse_apply(item, fn))
  1866. if isinstance(o, tuple):
  1867. L = tuple(L)
  1868. return L
  1869. elif isinstance(o, LazyTorchTensor):
  1870. return fn(o)
  1871. else:
  1872. return o
  1873. def _wrap_fn(self, fn: Callable, use_self: bool = False) -> Callable[[Any], LazyTorchTensor]:
  1874. def wrapped_fn(*args, **kwargs):
  1875. if kwargs is None:
  1876. kwargs = {}
  1877. args = ((self,) if use_self else ()) + args
  1878. meta_args = LazyTorchTensor._recurse_apply(args, lambda t: t._meta)
  1879. return LazyTorchTensor(meta=fn(*meta_args, **kwargs), args=args, func=lambda a: fn(*a, **kwargs))
  1880. return wrapped_fn
  1881. def __getattr__(self, __name: str) -> Any:
  1882. meta_attr = getattr(self._meta, __name)
  1883. if callable(meta_attr):
  1884. return self._wrap_fn(getattr(torch.Tensor, __name), use_self=True)
  1885. elif isinstance(meta_attr, torch.Tensor):
  1886. # for things like self.T
  1887. return self._wrap_fn(lambda s: getattr(s, __name))(self)
  1888. else:
  1889. return meta_attr
  1890. _dtype_map: dict[torch.dtype, type] = {
  1891. torch.float16: np.float16,
  1892. torch.float32: np.float32,
  1893. }
  1894. def numpy(self) -> gguf.LazyTensor:
  1895. dtype = self._dtype_map[self.dtype]
  1896. return gguf.LazyTensor(lambda: LazyTorchTensor.to_eager(self).numpy(), dtype=dtype, shape=self.shape)
  1897. @overload
  1898. @staticmethod
  1899. def to_eager(t: Tensor | LazyTorchTensor) -> Tensor: ...
  1900. @overload
  1901. @staticmethod
  1902. def to_eager(t: tuple) -> tuple: ...
  1903. @staticmethod
  1904. def to_eager(t: Any) -> Any:
  1905. def simple_to_eager(_t: LazyTorchTensor) -> Tensor:
  1906. # wake up the lazy tensor
  1907. if _t._data is None and _t._func is not None:
  1908. # recurse into its arguments
  1909. _t._args = LazyTorchTensor.to_eager(_t._args)
  1910. _t._data = _t._func(_t._args)
  1911. if _t._data is not None:
  1912. return _t._data
  1913. else:
  1914. raise ValueError(f"Could not compute lazy tensor {_t!r} with args {_t._args!r}")
  1915. # recurse into lists and/or tuples, keeping their structure
  1916. return LazyTorchTensor._recurse_apply(t, simple_to_eager)
  1917. @staticmethod
  1918. def from_eager(t: Tensor) -> Tensor:
  1919. if (t.__class__ == LazyTorchTensor):
  1920. return t
  1921. return LazyTorchTensor(meta=t.detach().to("meta"), data=t) # type: ignore
  1922. @classmethod
  1923. def __torch_function__(cls, func, types, args=(), kwargs=None):
  1924. del types # unused
  1925. if kwargs is None:
  1926. kwargs = {}
  1927. if func is torch.Tensor.numpy:
  1928. return args[0].numpy()
  1929. if func is torch.equal:
  1930. eager_args = LazyTorchTensor.to_eager(args)
  1931. return func(*eager_args, **kwargs)
  1932. return LazyTorchTensor._wrap_fn(args[0], func)(*args, **kwargs)
  1933. # special methods bypass __getattr__, so they need to be added manually
  1934. # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
  1935. # NOTE: LazyTorchTensor can't be a subclass of Tensor (and then be used
  1936. # as self._meta is currently used), because then the following
  1937. # operations would by default not be wrapped, and so not propagated
  1938. # when the tensor is made eager.
  1939. # It's better to get non-silent errors for not-yet-supported operators.
  1940. # TODO: add more when needed to avoid clutter, or find a more concise way
  1941. def __neg__(self, *args): # mamba
  1942. return self._wrap_fn(torch.Tensor.__neg__)(self, *args)
  1943. def __add__(self, *args): # gemma
  1944. return self._wrap_fn(torch.Tensor.__add__)(self, *args)
  1945. def __getitem__(self, *args): # bloom falcon refact internlm2
  1946. return self._wrap_fn(torch.Tensor.__getitem__)(self, *args)
  1947. def parse_args() -> argparse.Namespace:
  1948. parser = argparse.ArgumentParser(
  1949. description="Convert a huggingface model to a GGML compatible file")
  1950. parser.add_argument(
  1951. "--vocab-only", action="store_true",
  1952. help="extract only the vocab",
  1953. )
  1954. parser.add_argument(
  1955. "--awq-path", type=Path, default=None,
  1956. help="Path to scale awq cache file",
  1957. )
  1958. parser.add_argument(
  1959. "--outfile", type=Path,
  1960. help="path to write to; default: based on input",
  1961. )
  1962. parser.add_argument(
  1963. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1964. help="output format - use f32 for float32, f16 for float16",
  1965. )
  1966. parser.add_argument(
  1967. "--bigendian", action="store_true",
  1968. help="model is executed on big endian machine",
  1969. )
  1970. parser.add_argument(
  1971. "model", type=Path,
  1972. help="directory containing model file",
  1973. )
  1974. parser.add_argument(
  1975. "--use-temp-file", action="store_true",
  1976. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  1977. )
  1978. parser.add_argument(
  1979. "--no-lazy", action="store_true",
  1980. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  1981. )
  1982. parser.add_argument(
  1983. "--model-name", type=str, default=None,
  1984. help="name of the model",
  1985. )
  1986. parser.add_argument(
  1987. "--verbose", action="store_true",
  1988. help="increase output verbosity",
  1989. )
  1990. return parser.parse_args()
  1991. def main() -> None:
  1992. args = parse_args()
  1993. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  1994. dir_model = args.model
  1995. if args.awq_path:
  1996. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1997. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1998. tmp_model_path = args.model / "weighted_model"
  1999. dir_model = tmp_model_path
  2000. if tmp_model_path.is_dir():
  2001. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2002. else:
  2003. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2004. logger.info("Saving new weighted model ...")
  2005. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2006. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2007. if not dir_model.is_dir():
  2008. logger.error(f'Error: {args.model} is not a directory')
  2009. sys.exit(1)
  2010. ftype_map = {
  2011. "f32": gguf.GGMLQuantizationType.F32,
  2012. "f16": gguf.GGMLQuantizationType.F16,
  2013. }
  2014. if args.outfile is not None:
  2015. fname_out = args.outfile
  2016. else:
  2017. # output in the same directory as the model by default
  2018. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2019. logger.info(f"Loading model: {dir_model.name}")
  2020. hparams = Model.load_hparams(dir_model)
  2021. with torch.inference_mode():
  2022. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2023. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
  2024. logger.info("Set model parameters")
  2025. model_instance.set_gguf_parameters()
  2026. logger.info("Set model tokenizer")
  2027. model_instance.set_vocab()
  2028. if args.vocab_only:
  2029. logger.info(f"Exporting model vocab to '{fname_out}'")
  2030. model_instance.write_vocab()
  2031. else:
  2032. logger.info(f"Exporting model to '{fname_out}'")
  2033. model_instance.write()
  2034. logger.info(f"Model successfully exported to '{fname_out}'")
  2035. if __name__ == '__main__':
  2036. main()