ggml.c 612 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. //
  198. // tensor access macros
  199. //
  200. #define GGML_TENSOR_UNARY_OP_LOCALS \
  201. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  202. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  205. #define GGML_TENSOR_BINARY_OP_LOCALS \
  206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  208. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  209. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  210. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  211. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  212. #if defined(GGML_USE_ACCELERATE)
  213. #include <Accelerate/Accelerate.h>
  214. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  215. #include "ggml-opencl.h"
  216. #endif
  217. #elif defined(GGML_USE_OPENBLAS)
  218. #if defined(GGML_BLAS_USE_MKL)
  219. #include <mkl.h>
  220. #else
  221. #include <cblas.h>
  222. #endif
  223. #elif defined(GGML_USE_CUBLAS)
  224. #include "ggml-cuda.h"
  225. #elif defined(GGML_USE_CLBLAST)
  226. #include "ggml-opencl.h"
  227. #endif
  228. // floating point type used to accumulate sums
  229. typedef double ggml_float;
  230. #undef MIN
  231. #undef MAX
  232. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  233. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  234. //
  235. // global data
  236. //
  237. // precomputed gelu table for f16 (128 KB)
  238. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  239. // precomputed quick gelu table for f16 (128 KB)
  240. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  246. float ggml_table_f32_f16[1 << 16];
  247. // note: do not use these inside ggml.c
  248. // these are meant to be used via the ggml.h API
  249. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  250. return (float) GGML_FP16_TO_FP32(x);
  251. }
  252. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  253. return GGML_FP32_TO_FP16(x);
  254. }
  255. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  256. for (int i = 0; i < n; i++) {
  257. y[i] = GGML_FP16_TO_FP32(x[i]);
  258. }
  259. }
  260. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  261. int i = 0;
  262. #if defined(__F16C__)
  263. for (; i + 7 < n; i += 8) {
  264. __m256 x_vec = _mm256_loadu_ps(x + i);
  265. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  266. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  267. }
  268. for(; i + 3 < n; i += 4) {
  269. __m128 x_vec = _mm_loadu_ps(x + i);
  270. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  271. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  272. }
  273. #endif
  274. for (; i < n; i++) {
  275. y[i] = GGML_FP32_TO_FP16(x[i]);
  276. }
  277. }
  278. //
  279. // timing
  280. //
  281. #if defined(_MSC_VER) || defined(__MINGW32__)
  282. static int64_t timer_freq, timer_start;
  283. void ggml_time_init(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceFrequency(&t);
  286. timer_freq = t.QuadPart;
  287. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  288. // and the uptime is high enough.
  289. // We subtract the program start time to reduce the likelihood of that happening.
  290. QueryPerformanceCounter(&t);
  291. timer_start = t.QuadPart;
  292. }
  293. int64_t ggml_time_ms(void) {
  294. LARGE_INTEGER t;
  295. QueryPerformanceCounter(&t);
  296. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  297. }
  298. int64_t ggml_time_us(void) {
  299. LARGE_INTEGER t;
  300. QueryPerformanceCounter(&t);
  301. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  302. }
  303. #else
  304. void ggml_time_init(void) {}
  305. int64_t ggml_time_ms(void) {
  306. struct timespec ts;
  307. clock_gettime(CLOCK_MONOTONIC, &ts);
  308. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  309. }
  310. int64_t ggml_time_us(void) {
  311. struct timespec ts;
  312. clock_gettime(CLOCK_MONOTONIC, &ts);
  313. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  314. }
  315. #endif
  316. int64_t ggml_cycles(void) {
  317. return clock();
  318. }
  319. int64_t ggml_cycles_per_ms(void) {
  320. return CLOCKS_PER_SEC/1000;
  321. }
  322. #ifdef GGML_PERF
  323. #define ggml_perf_time_ms() ggml_time_ms()
  324. #define ggml_perf_time_us() ggml_time_us()
  325. #define ggml_perf_cycles() ggml_cycles()
  326. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  327. #else
  328. #define ggml_perf_time_ms() 0
  329. #define ggml_perf_time_us() 0
  330. #define ggml_perf_cycles() 0
  331. #define ggml_perf_cycles_per_ms() 0
  332. #endif
  333. //
  334. // cache line
  335. //
  336. #if defined(__cpp_lib_hardware_interference_size)
  337. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  338. #else
  339. #if defined(__POWER9_VECTOR__)
  340. #define CACHE_LINE_SIZE 128
  341. #else
  342. #define CACHE_LINE_SIZE 64
  343. #endif
  344. #endif
  345. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  346. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  347. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  348. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  349. [GGML_TYPE_I8] = {
  350. .type_name = "i8",
  351. .blck_size = 1,
  352. .type_size = sizeof(int8_t),
  353. .is_quantized = false,
  354. },
  355. [GGML_TYPE_I16] = {
  356. .type_name = "i16",
  357. .blck_size = 1,
  358. .type_size = sizeof(int16_t),
  359. .is_quantized = false,
  360. },
  361. [GGML_TYPE_I32] = {
  362. .type_name = "i32",
  363. .blck_size = 1,
  364. .type_size = sizeof(int32_t),
  365. .is_quantized = false,
  366. },
  367. [GGML_TYPE_F32] = {
  368. .type_name = "f32",
  369. .blck_size = 1,
  370. .type_size = sizeof(float),
  371. .is_quantized = false,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  373. .vec_dot_type = GGML_TYPE_F32,
  374. },
  375. [GGML_TYPE_F16] = {
  376. .type_name = "f16",
  377. .blck_size = 1,
  378. .type_size = sizeof(ggml_fp16_t),
  379. .is_quantized = false,
  380. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  381. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  382. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  383. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  384. .vec_dot_type = GGML_TYPE_F16,
  385. },
  386. [GGML_TYPE_Q4_0] = {
  387. .type_name = "q4_0",
  388. .blck_size = QK4_0,
  389. .type_size = sizeof(block_q4_0),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  392. .from_float = quantize_row_q4_0,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  394. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  395. .vec_dot_type = GGML_TYPE_Q8_0,
  396. },
  397. [GGML_TYPE_Q4_1] = {
  398. .type_name = "q4_1",
  399. .blck_size = QK4_1,
  400. .type_size = sizeof(block_q4_1),
  401. .is_quantized = true,
  402. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  403. .from_float = quantize_row_q4_1,
  404. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  405. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  406. .vec_dot_type = GGML_TYPE_Q8_1,
  407. },
  408. [4] = { // GGML_TYPE_Q4_2
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [5] = { // GGML_TYPE_Q4_3
  420. .type_name = "DEPRECATED",
  421. .blck_size = 0,
  422. .type_size = 0,
  423. .is_quantized = false,
  424. .to_float = NULL,
  425. .from_float = NULL,
  426. .from_float_reference = NULL,
  427. .vec_dot = NULL,
  428. .vec_dot_type = GGML_TYPE_COUNT,
  429. },
  430. [GGML_TYPE_Q5_0] = {
  431. .type_name = "q5_0",
  432. .blck_size = QK5_0,
  433. .type_size = sizeof(block_q5_0),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  436. .from_float = quantize_row_q5_0,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  438. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  439. .vec_dot_type = GGML_TYPE_Q8_0,
  440. },
  441. [GGML_TYPE_Q5_1] = {
  442. .type_name = "q5_1",
  443. .blck_size = QK5_1,
  444. .type_size = sizeof(block_q5_1),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  447. .from_float = quantize_row_q5_1,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  449. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  450. .vec_dot_type = GGML_TYPE_Q8_1,
  451. },
  452. [GGML_TYPE_Q8_0] = {
  453. .type_name = "q8_0",
  454. .blck_size = QK8_0,
  455. .type_size = sizeof(block_q8_0),
  456. .is_quantized = true,
  457. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  458. .from_float = quantize_row_q8_0,
  459. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  460. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  461. .vec_dot_type = GGML_TYPE_Q8_0,
  462. },
  463. [GGML_TYPE_Q8_1] = {
  464. .type_name = "q8_1",
  465. .blck_size = QK8_1,
  466. .type_size = sizeof(block_q8_1),
  467. .is_quantized = true,
  468. .from_float = quantize_row_q8_1,
  469. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  470. .vec_dot_type = GGML_TYPE_Q8_1,
  471. },
  472. [GGML_TYPE_Q2_K] = {
  473. .type_name = "q2_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q2_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  478. .from_float = quantize_row_q2_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  480. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q3_K] = {
  484. .type_name = "q3_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q3_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  489. .from_float = quantize_row_q3_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  491. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q4_K] = {
  495. .type_name = "q4_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q4_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  500. .from_float = quantize_row_q4_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  502. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q5_K] = {
  506. .type_name = "q5_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q5_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  511. .from_float = quantize_row_q5_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  513. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_Q6_K] = {
  517. .type_name = "q6_K",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_q6_K),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  522. .from_float = quantize_row_q6_K,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  524. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_Q8_K] = {
  528. .type_name = "q8_K",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_q8_K),
  531. .is_quantized = true,
  532. .from_float = quantize_row_q8_K,
  533. }
  534. };
  535. // For internal test use
  536. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  537. GGML_ASSERT(type < GGML_TYPE_COUNT);
  538. return type_traits[type];
  539. }
  540. //
  541. // simd mappings
  542. //
  543. #if defined(__ARM_NEON)
  544. #if !defined(__aarch64__)
  545. // 64-bit compatibility
  546. inline static float vaddvq_f32(float32x4_t v) {
  547. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  548. }
  549. #endif
  550. #endif
  551. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  552. // we then implement the fundamental computation operations below using only these macros
  553. // adding support for new architectures requires to define the corresponding SIMD macros
  554. //
  555. // GGML_F32_STEP / GGML_F16_STEP
  556. // number of elements to process in a single step
  557. //
  558. // GGML_F32_EPR / GGML_F16_EPR
  559. // number of elements to fit in a single register
  560. //
  561. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  562. #define GGML_SIMD
  563. // F32 NEON
  564. #define GGML_F32_STEP 16
  565. #define GGML_F32_EPR 4
  566. #define GGML_F32x4 float32x4_t
  567. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  568. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  569. #define GGML_F32x4_LOAD vld1q_f32
  570. #define GGML_F32x4_STORE vst1q_f32
  571. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  572. #define GGML_F32x4_ADD vaddq_f32
  573. #define GGML_F32x4_MUL vmulq_f32
  574. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  575. #define GGML_F32x4_REDUCE(res, x) \
  576. { \
  577. int offset = GGML_F32_ARR >> 1; \
  578. for (int i = 0; i < offset; ++i) { \
  579. x[i] = vaddq_f32(x[i], x[offset+i]); \
  580. } \
  581. offset >>= 1; \
  582. for (int i = 0; i < offset; ++i) { \
  583. x[i] = vaddq_f32(x[i], x[offset+i]); \
  584. } \
  585. offset >>= 1; \
  586. for (int i = 0; i < offset; ++i) { \
  587. x[i] = vaddq_f32(x[i], x[offset+i]); \
  588. } \
  589. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  590. }
  591. #define GGML_F32_VEC GGML_F32x4
  592. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  593. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  594. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  595. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  596. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  597. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  598. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  599. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  600. // F16 NEON
  601. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  602. #define GGML_F16_STEP 32
  603. #define GGML_F16_EPR 8
  604. #define GGML_F16x8 float16x8_t
  605. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  606. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  607. #define GGML_F16x8_LOAD vld1q_f16
  608. #define GGML_F16x8_STORE vst1q_f16
  609. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  610. #define GGML_F16x8_ADD vaddq_f16
  611. #define GGML_F16x8_MUL vmulq_f16
  612. #define GGML_F16x8_REDUCE(res, x) \
  613. do { \
  614. int offset = GGML_F16_ARR >> 1; \
  615. for (int i = 0; i < offset; ++i) { \
  616. x[i] = vaddq_f16(x[i], x[offset+i]); \
  617. } \
  618. offset >>= 1; \
  619. for (int i = 0; i < offset; ++i) { \
  620. x[i] = vaddq_f16(x[i], x[offset+i]); \
  621. } \
  622. offset >>= 1; \
  623. for (int i = 0; i < offset; ++i) { \
  624. x[i] = vaddq_f16(x[i], x[offset+i]); \
  625. } \
  626. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  627. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  628. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  629. } while (0)
  630. #define GGML_F16_VEC GGML_F16x8
  631. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  632. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  633. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  634. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  635. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  636. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  637. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  638. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  639. #else
  640. // if FP16 vector arithmetic is not supported, we use FP32 instead
  641. // and take advantage of the vcvt_ functions to convert to/from FP16
  642. #define GGML_F16_STEP 16
  643. #define GGML_F16_EPR 4
  644. #define GGML_F32Cx4 float32x4_t
  645. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  646. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  647. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  648. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  649. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  650. #define GGML_F32Cx4_ADD vaddq_f32
  651. #define GGML_F32Cx4_MUL vmulq_f32
  652. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  653. #define GGML_F16_VEC GGML_F32Cx4
  654. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  655. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  656. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  657. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  658. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  659. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  660. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  661. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  662. #endif
  663. #elif defined(__AVX__)
  664. #define GGML_SIMD
  665. // F32 AVX
  666. #define GGML_F32_STEP 32
  667. #define GGML_F32_EPR 8
  668. #define GGML_F32x8 __m256
  669. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  670. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  671. #define GGML_F32x8_LOAD _mm256_loadu_ps
  672. #define GGML_F32x8_STORE _mm256_storeu_ps
  673. #if defined(__FMA__)
  674. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  675. #else
  676. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  677. #endif
  678. #define GGML_F32x8_ADD _mm256_add_ps
  679. #define GGML_F32x8_MUL _mm256_mul_ps
  680. #define GGML_F32x8_REDUCE(res, x) \
  681. do { \
  682. int offset = GGML_F32_ARR >> 1; \
  683. for (int i = 0; i < offset; ++i) { \
  684. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  685. } \
  686. offset >>= 1; \
  687. for (int i = 0; i < offset; ++i) { \
  688. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  689. } \
  690. offset >>= 1; \
  691. for (int i = 0; i < offset; ++i) { \
  692. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  693. } \
  694. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  695. _mm256_extractf128_ps(x[0], 1)); \
  696. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  697. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  698. } while (0)
  699. // TODO: is this optimal ?
  700. #define GGML_F32_VEC GGML_F32x8
  701. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  702. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  703. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  704. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  705. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  706. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  707. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  708. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  709. // F16 AVX
  710. #define GGML_F16_STEP 32
  711. #define GGML_F16_EPR 8
  712. // F16 arithmetic is not supported by AVX, so we use F32 instead
  713. #define GGML_F32Cx8 __m256
  714. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  715. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  716. #if defined(__F16C__)
  717. // the _mm256_cvt intrinsics require F16C
  718. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  719. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  720. #else
  721. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  722. float tmp[8];
  723. for (int i = 0; i < 8; i++) {
  724. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  725. }
  726. return _mm256_loadu_ps(tmp);
  727. }
  728. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  729. float arr[8];
  730. _mm256_storeu_ps(arr, y);
  731. for (int i = 0; i < 8; i++)
  732. x[i] = GGML_FP32_TO_FP16(arr[i]);
  733. }
  734. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  735. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  736. #endif
  737. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  738. #define GGML_F32Cx8_ADD _mm256_add_ps
  739. #define GGML_F32Cx8_MUL _mm256_mul_ps
  740. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  741. #define GGML_F16_VEC GGML_F32Cx8
  742. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  743. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  744. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  745. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  746. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  747. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  748. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  749. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  750. #elif defined(__POWER9_VECTOR__)
  751. #define GGML_SIMD
  752. // F32 POWER9
  753. #define GGML_F32_STEP 32
  754. #define GGML_F32_EPR 4
  755. #define GGML_F32x4 vector float
  756. #define GGML_F32x4_ZERO 0.0f
  757. #define GGML_F32x4_SET1 vec_splats
  758. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  759. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  760. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  761. #define GGML_F32x4_ADD vec_add
  762. #define GGML_F32x4_MUL vec_mul
  763. #define GGML_F32x4_REDUCE(res, x) \
  764. { \
  765. int offset = GGML_F32_ARR >> 1; \
  766. for (int i = 0; i < offset; ++i) { \
  767. x[i] = vec_add(x[i], x[offset+i]); \
  768. } \
  769. offset >>= 1; \
  770. for (int i = 0; i < offset; ++i) { \
  771. x[i] = vec_add(x[i], x[offset+i]); \
  772. } \
  773. offset >>= 1; \
  774. for (int i = 0; i < offset; ++i) { \
  775. x[i] = vec_add(x[i], x[offset+i]); \
  776. } \
  777. res = vec_extract(x[0], 0) + \
  778. vec_extract(x[0], 1) + \
  779. vec_extract(x[0], 2) + \
  780. vec_extract(x[0], 3); \
  781. }
  782. #define GGML_F32_VEC GGML_F32x4
  783. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  784. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  785. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  786. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  787. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  788. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  789. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  790. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  791. // F16 POWER9
  792. #define GGML_F16_STEP GGML_F32_STEP
  793. #define GGML_F16_EPR GGML_F32_EPR
  794. #define GGML_F16_VEC GGML_F32x4
  795. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  796. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  797. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  798. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  799. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  800. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  801. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  802. vec_extract_fp32_from_shortl(vec_xl(0, p))
  803. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  804. #define GGML_F16_VEC_STORE(p, r, i) \
  805. if (i & 0x1) \
  806. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  807. r[i - GGML_ENDIAN_BYTE(0)]), \
  808. 0, p - GGML_F16_EPR)
  809. #elif defined(__wasm_simd128__)
  810. #define GGML_SIMD
  811. // F32 WASM
  812. #define GGML_F32_STEP 16
  813. #define GGML_F32_EPR 4
  814. #define GGML_F32x4 v128_t
  815. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  816. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  817. #define GGML_F32x4_LOAD wasm_v128_load
  818. #define GGML_F32x4_STORE wasm_v128_store
  819. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  820. #define GGML_F32x4_ADD wasm_f32x4_add
  821. #define GGML_F32x4_MUL wasm_f32x4_mul
  822. #define GGML_F32x4_REDUCE(res, x) \
  823. { \
  824. int offset = GGML_F32_ARR >> 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  827. } \
  828. offset >>= 1; \
  829. for (int i = 0; i < offset; ++i) { \
  830. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  831. } \
  832. offset >>= 1; \
  833. for (int i = 0; i < offset; ++i) { \
  834. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  835. } \
  836. res = wasm_f32x4_extract_lane(x[0], 0) + \
  837. wasm_f32x4_extract_lane(x[0], 1) + \
  838. wasm_f32x4_extract_lane(x[0], 2) + \
  839. wasm_f32x4_extract_lane(x[0], 3); \
  840. }
  841. #define GGML_F32_VEC GGML_F32x4
  842. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  843. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  844. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  845. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  846. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  847. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  848. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  849. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  850. // F16 WASM
  851. #define GGML_F16_STEP 16
  852. #define GGML_F16_EPR 4
  853. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  854. float tmp[4];
  855. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  856. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  857. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  858. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  859. return wasm_v128_load(tmp);
  860. }
  861. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  862. float tmp[4];
  863. wasm_v128_store(tmp, x);
  864. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  865. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  866. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  867. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  868. }
  869. #define GGML_F16x4 v128_t
  870. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  871. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  872. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  873. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  874. #define GGML_F16x4_FMA GGML_F32x4_FMA
  875. #define GGML_F16x4_ADD wasm_f32x4_add
  876. #define GGML_F16x4_MUL wasm_f32x4_mul
  877. #define GGML_F16x4_REDUCE(res, x) \
  878. { \
  879. int offset = GGML_F16_ARR >> 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. offset >>= 1; \
  888. for (int i = 0; i < offset; ++i) { \
  889. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  890. } \
  891. res = wasm_f32x4_extract_lane(x[0], 0) + \
  892. wasm_f32x4_extract_lane(x[0], 1) + \
  893. wasm_f32x4_extract_lane(x[0], 2) + \
  894. wasm_f32x4_extract_lane(x[0], 3); \
  895. }
  896. #define GGML_F16_VEC GGML_F16x4
  897. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  898. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  899. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  900. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  901. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  902. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  903. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  904. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  905. #elif defined(__SSE3__)
  906. #define GGML_SIMD
  907. // F32 SSE
  908. #define GGML_F32_STEP 32
  909. #define GGML_F32_EPR 4
  910. #define GGML_F32x4 __m128
  911. #define GGML_F32x4_ZERO _mm_setzero_ps()
  912. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  913. #define GGML_F32x4_LOAD _mm_loadu_ps
  914. #define GGML_F32x4_STORE _mm_storeu_ps
  915. #if defined(__FMA__)
  916. // TODO: Does this work?
  917. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  918. #else
  919. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  920. #endif
  921. #define GGML_F32x4_ADD _mm_add_ps
  922. #define GGML_F32x4_MUL _mm_mul_ps
  923. #define GGML_F32x4_REDUCE(res, x) \
  924. { \
  925. int offset = GGML_F32_ARR >> 1; \
  926. for (int i = 0; i < offset; ++i) { \
  927. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  928. } \
  929. offset >>= 1; \
  930. for (int i = 0; i < offset; ++i) { \
  931. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  932. } \
  933. offset >>= 1; \
  934. for (int i = 0; i < offset; ++i) { \
  935. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  936. } \
  937. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  938. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  939. }
  940. // TODO: is this optimal ?
  941. #define GGML_F32_VEC GGML_F32x4
  942. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  943. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  944. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  945. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  946. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  947. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  948. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  949. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  950. // F16 SSE
  951. #define GGML_F16_STEP 32
  952. #define GGML_F16_EPR 4
  953. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  954. float tmp[4];
  955. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  956. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  957. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  958. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  959. return _mm_loadu_ps(tmp);
  960. }
  961. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  962. float arr[4];
  963. _mm_storeu_ps(arr, y);
  964. x[0] = GGML_FP32_TO_FP16(arr[0]);
  965. x[1] = GGML_FP32_TO_FP16(arr[1]);
  966. x[2] = GGML_FP32_TO_FP16(arr[2]);
  967. x[3] = GGML_FP32_TO_FP16(arr[3]);
  968. }
  969. #define GGML_F32Cx4 __m128
  970. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  971. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  972. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  973. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  974. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  975. #define GGML_F32Cx4_ADD _mm_add_ps
  976. #define GGML_F32Cx4_MUL _mm_mul_ps
  977. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  978. #define GGML_F16_VEC GGML_F32Cx4
  979. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  980. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  981. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  982. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  983. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  984. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  985. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  986. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  987. #endif
  988. // GGML_F32_ARR / GGML_F16_ARR
  989. // number of registers to use per step
  990. #ifdef GGML_SIMD
  991. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  992. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  993. #endif
  994. //
  995. // fundamental operations
  996. //
  997. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  998. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  999. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1000. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1001. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1002. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1003. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1004. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1005. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1006. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1008. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1009. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1010. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1011. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1012. #ifdef GGML_SIMD
  1013. float sumf = 0.0f;
  1014. const int np = (n & ~(GGML_F32_STEP - 1));
  1015. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1016. GGML_F32_VEC ax[GGML_F32_ARR];
  1017. GGML_F32_VEC ay[GGML_F32_ARR];
  1018. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1019. for (int j = 0; j < GGML_F32_ARR; j++) {
  1020. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1021. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1022. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1023. }
  1024. }
  1025. // reduce sum0..sum3 to sum0
  1026. GGML_F32_VEC_REDUCE(sumf, sum);
  1027. // leftovers
  1028. for (int i = np; i < n; ++i) {
  1029. sumf += x[i]*y[i];
  1030. }
  1031. #else
  1032. // scalar
  1033. ggml_float sumf = 0.0;
  1034. for (int i = 0; i < n; ++i) {
  1035. sumf += (ggml_float)(x[i]*y[i]);
  1036. }
  1037. #endif
  1038. *s = sumf;
  1039. }
  1040. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1041. ggml_float sumf = 0.0;
  1042. #if defined(GGML_SIMD)
  1043. const int np = (n & ~(GGML_F16_STEP - 1));
  1044. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1045. GGML_F16_VEC ax[GGML_F16_ARR];
  1046. GGML_F16_VEC ay[GGML_F16_ARR];
  1047. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1048. for (int j = 0; j < GGML_F16_ARR; j++) {
  1049. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1050. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1051. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1052. }
  1053. }
  1054. // reduce sum0..sum3 to sum0
  1055. GGML_F16_VEC_REDUCE(sumf, sum);
  1056. // leftovers
  1057. for (int i = np; i < n; ++i) {
  1058. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1059. }
  1060. #else
  1061. for (int i = 0; i < n; ++i) {
  1062. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1063. }
  1064. #endif
  1065. *s = sumf;
  1066. }
  1067. // compute GGML_VEC_DOT_UNROLL dot products at once
  1068. // xs - x row stride in bytes
  1069. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1070. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1071. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1072. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1073. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1074. }
  1075. #if defined(GGML_SIMD)
  1076. const int np = (n & ~(GGML_F16_STEP - 1));
  1077. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1078. GGML_F16_VEC ax[GGML_F16_ARR];
  1079. GGML_F16_VEC ay[GGML_F16_ARR];
  1080. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1081. for (int j = 0; j < GGML_F16_ARR; j++) {
  1082. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1083. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1084. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1085. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1086. }
  1087. }
  1088. }
  1089. // reduce sum0..sum3 to sum0
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1092. }
  1093. // leftovers
  1094. for (int i = np; i < n; ++i) {
  1095. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1096. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1097. }
  1098. }
  1099. #else
  1100. for (int i = 0; i < n; ++i) {
  1101. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1102. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1103. }
  1104. }
  1105. #endif
  1106. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1107. s[i] = sumf[i];
  1108. }
  1109. }
  1110. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1111. #if defined(GGML_SIMD)
  1112. const int np = (n & ~(GGML_F32_STEP - 1));
  1113. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1114. GGML_F32_VEC ax[GGML_F32_ARR];
  1115. GGML_F32_VEC ay[GGML_F32_ARR];
  1116. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1117. for (int j = 0; j < GGML_F32_ARR; j++) {
  1118. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1119. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1120. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1121. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1122. }
  1123. }
  1124. // leftovers
  1125. for (int i = np; i < n; ++i) {
  1126. y[i] += x[i]*v;
  1127. }
  1128. #else
  1129. // scalar
  1130. for (int i = 0; i < n; ++i) {
  1131. y[i] += x[i]*v;
  1132. }
  1133. #endif
  1134. }
  1135. // xs and vs are byte strides of x and v
  1136. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1137. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1138. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1139. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1140. x[i] = (const float *) ((const char *) xv + i*xs);
  1141. v[i] = (const float *) ((const char *) vv + i*vs);
  1142. }
  1143. #if defined(GGML_SIMD)
  1144. const int np = (n & ~(GGML_F32_STEP - 1));
  1145. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1146. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1147. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1148. }
  1149. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1150. GGML_F32_VEC ay[GGML_F32_ARR];
  1151. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1152. for (int j = 0; j < GGML_F32_ARR; j++) {
  1153. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1156. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1157. }
  1158. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1159. }
  1160. }
  1161. // leftovers
  1162. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1163. for (int i = np; i < n; ++i) {
  1164. y[i] += x[k][i]*v[k][0];
  1165. }
  1166. }
  1167. #else
  1168. // scalar
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = 0; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #endif
  1175. }
  1176. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1177. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1178. #if defined(GGML_USE_ACCELERATE)
  1179. vDSP_vsmul(y, 1, &v, y, 1, n);
  1180. #elif defined(GGML_SIMD)
  1181. const int np = (n & ~(GGML_F32_STEP - 1));
  1182. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1183. GGML_F32_VEC ay[GGML_F32_ARR];
  1184. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1185. for (int j = 0; j < GGML_F32_ARR; j++) {
  1186. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1187. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1188. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1189. }
  1190. }
  1191. // leftovers
  1192. for (int i = np; i < n; ++i) {
  1193. y[i] *= v;
  1194. }
  1195. #else
  1196. // scalar
  1197. for (int i = 0; i < n; ++i) {
  1198. y[i] *= v;
  1199. }
  1200. #endif
  1201. }
  1202. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1203. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1204. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1205. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1206. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1207. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1208. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1209. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1210. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1211. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1212. inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; }
  1213. static const float GELU_COEF_A = 0.044715f;
  1214. static const float GELU_QUICK_COEF = -1.702f;
  1215. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1216. inline static float ggml_gelu_f32(float x) {
  1217. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1218. }
  1219. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1220. const uint16_t * i16 = (const uint16_t *) x;
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_table_gelu_f16[i16[i]];
  1223. }
  1224. }
  1225. #ifdef GGML_GELU_FP16
  1226. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1227. uint16_t t;
  1228. for (int i = 0; i < n; ++i) {
  1229. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1230. memcpy(&t, &fp16, sizeof(uint16_t));
  1231. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1232. }
  1233. }
  1234. #else
  1235. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1236. for (int i = 0; i < n; ++i) {
  1237. y[i] = ggml_gelu_f32(x[i]);
  1238. }
  1239. }
  1240. #endif
  1241. inline static float ggml_gelu_quick_f32(float x) {
  1242. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1243. }
  1244. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1245. // const uint16_t * i16 = (const uint16_t *) x;
  1246. // for (int i = 0; i < n; ++i) {
  1247. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1248. // }
  1249. //}
  1250. #ifdef GGML_GELU_QUICK_FP16
  1251. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1252. uint16_t t;
  1253. for (int i = 0; i < n; ++i) {
  1254. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1255. memcpy(&t, &fp16, sizeof(uint16_t));
  1256. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1257. }
  1258. }
  1259. #else
  1260. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] = ggml_gelu_quick_f32(x[i]);
  1263. }
  1264. }
  1265. #endif
  1266. // Sigmoid Linear Unit (SiLU) function
  1267. inline static float ggml_silu_f32(float x) {
  1268. return x/(1.0f + expf(-x));
  1269. }
  1270. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1271. // const uint16_t * i16 = (const uint16_t *) x;
  1272. // for (int i = 0; i < n; ++i) {
  1273. // y[i] = ggml_table_silu_f16[i16[i]];
  1274. // }
  1275. //}
  1276. #ifdef GGML_SILU_FP16
  1277. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1278. uint16_t t;
  1279. for (int i = 0; i < n; ++i) {
  1280. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1281. memcpy(&t, &fp16, sizeof(uint16_t));
  1282. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1283. }
  1284. }
  1285. #else
  1286. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1287. for (int i = 0; i < n; ++i) {
  1288. y[i] = ggml_silu_f32(x[i]);
  1289. }
  1290. }
  1291. #endif
  1292. inline static float ggml_silu_backward_f32(float x, float dy) {
  1293. const float s = 1.0f/(1.0f + expf(-x));
  1294. return dy*s*(1.0f + x*(1.0f - s));
  1295. }
  1296. #ifdef GGML_SILU_FP16
  1297. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1298. for (int i = 0; i < n; ++i) {
  1299. // we did not use x[i] to compute forward silu but its f16 equivalent
  1300. // take derivative at f16 of x[i]:
  1301. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1302. float usedx = GGML_FP16_TO_FP32(fp16);
  1303. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1304. }
  1305. }
  1306. #else
  1307. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1308. for (int i = 0; i < n; ++i) {
  1309. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1310. }
  1311. }
  1312. #endif
  1313. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1314. #ifndef GGML_USE_ACCELERATE
  1315. ggml_float sum = 0.0;
  1316. for (int i = 0; i < n; ++i) {
  1317. sum += (ggml_float)x[i];
  1318. }
  1319. *s = sum;
  1320. #else
  1321. vDSP_sve(x, 1, s, n);
  1322. #endif
  1323. }
  1324. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1325. ggml_float sum = 0.0;
  1326. for (int i = 0; i < n; ++i) {
  1327. sum += (ggml_float)x[i];
  1328. }
  1329. *s = sum;
  1330. }
  1331. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1332. float sum = 0.0f;
  1333. for (int i = 0; i < n; ++i) {
  1334. sum += GGML_FP16_TO_FP32(x[i]);
  1335. }
  1336. *s = sum;
  1337. }
  1338. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1339. #ifndef GGML_USE_ACCELERATE
  1340. float max = -INFINITY;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. }
  1344. *s = max;
  1345. #else
  1346. vDSP_maxv(x, 1, s, n);
  1347. #endif
  1348. }
  1349. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1350. ggml_vec_norm_f32(n, s, x);
  1351. *s = 1.f/(*s);
  1352. }
  1353. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1354. float max = -INFINITY;
  1355. int idx = 0;
  1356. for (int i = 0; i < n; ++i) {
  1357. max = MAX(max, x[i]);
  1358. if (max == x[i]) { idx = i; }
  1359. }
  1360. *s = idx;
  1361. }
  1362. //
  1363. // data types
  1364. //
  1365. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1366. "NONE",
  1367. "DUP",
  1368. "ADD",
  1369. "ADD1",
  1370. "ACC",
  1371. "SUB",
  1372. "MUL",
  1373. "DIV",
  1374. "SQR",
  1375. "SQRT",
  1376. "LOG",
  1377. "SUM",
  1378. "SUM_ROWS",
  1379. "MEAN",
  1380. "ARGMAX",
  1381. "REPEAT",
  1382. "REPEAT_BACK",
  1383. "CONCAT",
  1384. "SILU_BACK",
  1385. "NORM",
  1386. "RMS_NORM",
  1387. "RMS_NORM_BACK",
  1388. "GROUP_NORM",
  1389. "MUL_MAT",
  1390. "OUT_PROD",
  1391. "SCALE",
  1392. "SET",
  1393. "CPY",
  1394. "CONT",
  1395. "RESHAPE",
  1396. "VIEW",
  1397. "PERMUTE",
  1398. "TRANSPOSE",
  1399. "GET_ROWS",
  1400. "GET_ROWS_BACK",
  1401. "DIAG",
  1402. "DIAG_MASK_INF",
  1403. "DIAG_MASK_ZERO",
  1404. "SOFT_MAX",
  1405. "SOFT_MAX_BACK",
  1406. "ROPE",
  1407. "ROPE_BACK",
  1408. "ALIBI",
  1409. "CLAMP",
  1410. "CONV_TRANSPOSE_1D",
  1411. "IM2COL",
  1412. "CONV_TRANSPOSE_2D",
  1413. "POOL_1D",
  1414. "POOL_2D",
  1415. "UPSCALE",
  1416. "FLASH_ATTN",
  1417. "FLASH_FF",
  1418. "FLASH_ATTN_BACK",
  1419. "WIN_PART",
  1420. "WIN_UNPART",
  1421. "GET_REL_POS",
  1422. "ADD_REL_POS",
  1423. "UNARY",
  1424. "MAP_UNARY",
  1425. "MAP_BINARY",
  1426. "MAP_CUSTOM1_F32",
  1427. "MAP_CUSTOM2_F32",
  1428. "MAP_CUSTOM3_F32",
  1429. "MAP_CUSTOM1",
  1430. "MAP_CUSTOM2",
  1431. "MAP_CUSTOM3",
  1432. "CROSS_ENTROPY_LOSS",
  1433. "CROSS_ENTROPY_LOSS_BACK",
  1434. };
  1435. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  1436. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1437. "none",
  1438. "x",
  1439. "x+y",
  1440. "x+y",
  1441. "view(x,nb,offset)+=y->x",
  1442. "x-y",
  1443. "x*y",
  1444. "x/y",
  1445. "x^2",
  1446. "√x",
  1447. "log(x)",
  1448. "Σx",
  1449. "Σx_k",
  1450. "Σx/n",
  1451. "argmax(x)",
  1452. "repeat(x)",
  1453. "repeat_back(x)",
  1454. "concat(x, y)",
  1455. "silu_back(x)",
  1456. "norm(x)",
  1457. "rms_norm(x)",
  1458. "rms_norm_back(x)",
  1459. "group_norm(x)",
  1460. "X*Y",
  1461. "X*Y",
  1462. "x*v",
  1463. "y-\\>view(x)",
  1464. "x-\\>y",
  1465. "cont(x)",
  1466. "reshape(x)",
  1467. "view(x)",
  1468. "permute(x)",
  1469. "transpose(x)",
  1470. "get_rows(x)",
  1471. "get_rows_back(x)",
  1472. "diag(x)",
  1473. "diag_mask_inf(x)",
  1474. "diag_mask_zero(x)",
  1475. "soft_max(x)",
  1476. "soft_max_back(x)",
  1477. "rope(x)",
  1478. "rope_back(x)",
  1479. "alibi(x)",
  1480. "clamp(x)",
  1481. "conv_transpose_1d(x)",
  1482. "im2col(x)",
  1483. "conv_transpose_2d(x)",
  1484. "pool_1d(x)",
  1485. "pool_2d(x)",
  1486. "upscale(x)",
  1487. "flash_attn(x)",
  1488. "flash_ff(x)",
  1489. "flash_attn_back(x)",
  1490. "win_part(x)",
  1491. "win_unpart(x)",
  1492. "get_rel_pos(x)",
  1493. "add_rel_pos(x)",
  1494. "unary(x)",
  1495. "f(x)",
  1496. "f(x,y)",
  1497. "custom_f32(x)",
  1498. "custom_f32(x,y)",
  1499. "custom_f32(x,y,z)",
  1500. "custom(x)",
  1501. "custom(x,y)",
  1502. "custom(x,y,z)",
  1503. "cross_entropy_loss(x,y)",
  1504. "cross_entropy_loss_back(x,y)",
  1505. };
  1506. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  1507. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1508. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1509. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1510. // WARN:
  1511. // Mis-confguration can lead to problem that's hard to reason about:
  1512. // * At best it crash or talks nosense.
  1513. // * At worst it talks slightly difference but hard to perceive.
  1514. //
  1515. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1516. // Take care about compile options (e.g., GGML_USE_xxx).
  1517. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1518. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1519. static void ggml_setup_op_has_task_pass(void) {
  1520. { // INIT
  1521. bool * p = GGML_OP_HAS_INIT;
  1522. p[GGML_OP_ACC ] = true;
  1523. p[GGML_OP_MUL_MAT ] = true;
  1524. p[GGML_OP_OUT_PROD ] = true;
  1525. p[GGML_OP_SET ] = true;
  1526. p[GGML_OP_GET_ROWS_BACK ] = true;
  1527. p[GGML_OP_DIAG_MASK_INF ] = true;
  1528. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1529. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1530. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1531. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1532. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1533. p[GGML_OP_ADD_REL_POS ] = true;
  1534. }
  1535. { // FINALIZE
  1536. bool * p = GGML_OP_HAS_FINALIZE;
  1537. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1538. }
  1539. }
  1540. //
  1541. // ggml context
  1542. //
  1543. struct ggml_context {
  1544. size_t mem_size;
  1545. void * mem_buffer;
  1546. bool mem_buffer_owned;
  1547. bool no_alloc;
  1548. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1549. int n_objects;
  1550. struct ggml_object * objects_begin;
  1551. struct ggml_object * objects_end;
  1552. struct ggml_scratch scratch;
  1553. struct ggml_scratch scratch_save;
  1554. };
  1555. struct ggml_context_container {
  1556. bool used;
  1557. struct ggml_context context;
  1558. };
  1559. //
  1560. // NUMA support
  1561. //
  1562. #define GGML_NUMA_MAX_NODES 8
  1563. #define GGML_NUMA_MAX_CPUS 512
  1564. struct ggml_numa_node {
  1565. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1566. uint32_t n_cpus;
  1567. };
  1568. struct ggml_numa_nodes {
  1569. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1570. uint32_t n_nodes;
  1571. uint32_t total_cpus; // hardware threads on system
  1572. };
  1573. //
  1574. // ggml state
  1575. //
  1576. struct ggml_state {
  1577. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1578. struct ggml_numa_nodes numa;
  1579. };
  1580. // global state
  1581. static struct ggml_state g_state;
  1582. static atomic_int g_state_barrier = 0;
  1583. // barrier via spin lock
  1584. inline static void ggml_critical_section_start(void) {
  1585. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1586. while (processing > 0) {
  1587. // wait for other threads to finish
  1588. atomic_fetch_sub(&g_state_barrier, 1);
  1589. sched_yield(); // TODO: reconsider this
  1590. processing = atomic_fetch_add(&g_state_barrier, 1);
  1591. }
  1592. }
  1593. // TODO: make this somehow automatically executed
  1594. // some sort of "sentry" mechanism
  1595. inline static void ggml_critical_section_end(void) {
  1596. atomic_fetch_sub(&g_state_barrier, 1);
  1597. }
  1598. void ggml_numa_init(void) {
  1599. if (g_state.numa.n_nodes > 0) {
  1600. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1601. return;
  1602. }
  1603. #ifdef __linux__
  1604. struct stat st;
  1605. char path[256];
  1606. int rv;
  1607. // enumerate nodes
  1608. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1609. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1610. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1611. if (stat(path, &st) != 0) { break; }
  1612. ++g_state.numa.n_nodes;
  1613. }
  1614. // enumerate CPUs
  1615. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.total_cpus;
  1620. }
  1621. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1622. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1623. g_state.numa.n_nodes = 0;
  1624. return;
  1625. }
  1626. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1627. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1628. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1629. node->n_cpus = 0;
  1630. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1631. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1632. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1633. if (stat(path, &st) == 0) {
  1634. node->cpus[node->n_cpus++] = c;
  1635. GGML_PRINT_DEBUG(" %u", c);
  1636. }
  1637. }
  1638. GGML_PRINT_DEBUG("\n");
  1639. }
  1640. if (ggml_is_numa()) {
  1641. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1642. if (fptr != NULL) {
  1643. char buf[42];
  1644. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1645. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1646. }
  1647. fclose(fptr);
  1648. }
  1649. }
  1650. #else
  1651. // TODO
  1652. #endif
  1653. }
  1654. bool ggml_is_numa(void) {
  1655. return g_state.numa.n_nodes > 1;
  1656. }
  1657. ////////////////////////////////////////////////////////////////////////////////
  1658. void ggml_print_object(const struct ggml_object * obj) {
  1659. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1660. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1661. }
  1662. void ggml_print_objects(const struct ggml_context * ctx) {
  1663. struct ggml_object * obj = ctx->objects_begin;
  1664. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1665. while (obj != NULL) {
  1666. ggml_print_object(obj);
  1667. obj = obj->next;
  1668. }
  1669. GGML_PRINT("%s: --- end ---\n", __func__);
  1670. }
  1671. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1672. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1673. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1674. }
  1675. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1676. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1677. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1678. }
  1679. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1680. size_t nbytes;
  1681. size_t blck_size = ggml_blck_size(tensor->type);
  1682. if (blck_size == 1) {
  1683. nbytes = ggml_type_size(tensor->type);
  1684. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1685. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1686. }
  1687. }
  1688. else {
  1689. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1690. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1691. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1692. }
  1693. }
  1694. return nbytes;
  1695. }
  1696. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1697. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1698. }
  1699. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1701. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1702. }
  1703. int ggml_blck_size(enum ggml_type type) {
  1704. return type_traits[type].blck_size;
  1705. }
  1706. size_t ggml_type_size(enum ggml_type type) {
  1707. return type_traits[type].type_size;
  1708. }
  1709. float ggml_type_sizef(enum ggml_type type) {
  1710. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1711. }
  1712. const char * ggml_type_name(enum ggml_type type) {
  1713. return type_traits[type].type_name;
  1714. }
  1715. bool ggml_is_quantized(enum ggml_type type) {
  1716. return type_traits[type].is_quantized;
  1717. }
  1718. const char * ggml_op_name(enum ggml_op op) {
  1719. return GGML_OP_NAME[op];
  1720. }
  1721. const char * ggml_op_symbol(enum ggml_op op) {
  1722. return GGML_OP_SYMBOL[op];
  1723. }
  1724. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1725. return ggml_type_size(tensor->type);
  1726. }
  1727. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1729. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1730. }
  1731. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1732. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1733. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1734. }
  1735. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1736. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1737. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1738. }
  1739. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1740. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1741. return (t0->ne[0] == t1->ne[0]) &&
  1742. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1743. (t1->ne[3]%t0->ne[3] == 0);
  1744. }
  1745. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1746. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1747. return (t0->ne[1] == t1->ne[1]) &&
  1748. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1749. (t1->ne[3]%t0->ne[3] == 0);
  1750. }
  1751. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1752. enum ggml_type wtype = GGML_TYPE_COUNT;
  1753. switch (ftype) {
  1754. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1755. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1756. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1757. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1758. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1759. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1760. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1761. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1762. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1763. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1764. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1765. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1766. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1767. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1768. }
  1769. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1770. return wtype;
  1771. }
  1772. size_t ggml_tensor_overhead(void) {
  1773. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1774. }
  1775. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1776. return tensor->nb[0] > tensor->nb[1];
  1777. }
  1778. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1779. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1780. return
  1781. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1782. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1783. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1784. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1785. }
  1786. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1787. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1788. return
  1789. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1790. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1791. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1792. }
  1793. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1795. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1796. }
  1797. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return
  1800. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1801. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1802. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1803. }
  1804. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1806. return
  1807. (t0->ne[0] == t1->ne[0] ) &&
  1808. (t0->ne[1] == t1->ne[1] ) &&
  1809. (t0->ne[2] == t1->ne[2] ) &&
  1810. (t0->ne[3] == t1->ne[3] );
  1811. }
  1812. // check if t1 can be represented as a repeatition of t0
  1813. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1815. return
  1816. (t1->ne[0]%t0->ne[0] == 0) &&
  1817. (t1->ne[1]%t0->ne[1] == 0) &&
  1818. (t1->ne[2]%t0->ne[2] == 0) &&
  1819. (t1->ne[3]%t0->ne[3] == 0);
  1820. }
  1821. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1824. }
  1825. static inline int ggml_up32(int n) {
  1826. return (n + 31) & ~31;
  1827. }
  1828. //static inline int ggml_up64(int n) {
  1829. // return (n + 63) & ~63;
  1830. //}
  1831. static inline int ggml_up(int n, int m) {
  1832. // assert m is a power of 2
  1833. GGML_ASSERT((m & (m - 1)) == 0);
  1834. return (n + m - 1) & ~(m - 1);
  1835. }
  1836. // assert that pointer is aligned to GGML_MEM_ALIGN
  1837. #define ggml_assert_aligned(ptr) \
  1838. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1839. ////////////////////////////////////////////////////////////////////////////////
  1840. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1841. // make this function thread safe
  1842. ggml_critical_section_start();
  1843. static bool is_first_call = true;
  1844. if (is_first_call) {
  1845. // initialize time system (required on Windows)
  1846. ggml_time_init();
  1847. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1848. {
  1849. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1850. ggml_fp16_t ii;
  1851. for (int i = 0; i < (1 << 16); ++i) {
  1852. uint16_t ui = i;
  1853. memcpy(&ii, &ui, sizeof(ii));
  1854. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1855. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1856. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1857. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1858. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1859. }
  1860. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1861. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1862. }
  1863. // initialize g_state
  1864. {
  1865. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1866. g_state = (struct ggml_state) {
  1867. /*.contexts =*/ { { 0 } },
  1868. /*.numa =*/ {
  1869. .n_nodes = 0,
  1870. .total_cpus = 0,
  1871. },
  1872. };
  1873. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1874. g_state.contexts[i].used = false;
  1875. }
  1876. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1877. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1878. }
  1879. #if defined(GGML_USE_CUBLAS)
  1880. ggml_init_cublas();
  1881. #elif defined(GGML_USE_CLBLAST)
  1882. ggml_cl_init();
  1883. #endif
  1884. ggml_setup_op_has_task_pass();
  1885. is_first_call = false;
  1886. }
  1887. // find non-used context in g_state
  1888. struct ggml_context * ctx = NULL;
  1889. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1890. if (!g_state.contexts[i].used) {
  1891. g_state.contexts[i].used = true;
  1892. ctx = &g_state.contexts[i].context;
  1893. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1894. break;
  1895. }
  1896. }
  1897. if (ctx == NULL) {
  1898. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1899. ggml_critical_section_end();
  1900. return NULL;
  1901. }
  1902. // allow to call ggml_init with 0 size
  1903. if (params.mem_size == 0) {
  1904. params.mem_size = GGML_MEM_ALIGN;
  1905. }
  1906. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1907. *ctx = (struct ggml_context) {
  1908. /*.mem_size =*/ mem_size,
  1909. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1910. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1911. /*.no_alloc =*/ params.no_alloc,
  1912. /*.no_alloc_save =*/ params.no_alloc,
  1913. /*.n_objects =*/ 0,
  1914. /*.objects_begin =*/ NULL,
  1915. /*.objects_end =*/ NULL,
  1916. /*.scratch =*/ { 0, 0, NULL, },
  1917. /*.scratch_save =*/ { 0, 0, NULL, },
  1918. };
  1919. GGML_ASSERT(ctx->mem_buffer != NULL);
  1920. ggml_assert_aligned(ctx->mem_buffer);
  1921. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1922. ggml_critical_section_end();
  1923. return ctx;
  1924. }
  1925. void ggml_free(struct ggml_context * ctx) {
  1926. // make this function thread safe
  1927. ggml_critical_section_start();
  1928. bool found = false;
  1929. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1930. if (&g_state.contexts[i].context == ctx) {
  1931. g_state.contexts[i].used = false;
  1932. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1933. __func__, i, ggml_used_mem(ctx));
  1934. if (ctx->mem_buffer_owned) {
  1935. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1936. }
  1937. found = true;
  1938. break;
  1939. }
  1940. }
  1941. if (!found) {
  1942. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1943. }
  1944. ggml_critical_section_end();
  1945. }
  1946. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1947. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1948. }
  1949. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1950. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1951. ctx->scratch = scratch;
  1952. return result;
  1953. }
  1954. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1955. return ctx->no_alloc;
  1956. }
  1957. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1958. ctx->no_alloc = no_alloc;
  1959. }
  1960. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1961. return ctx->mem_buffer;
  1962. }
  1963. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1964. return ctx->mem_size;
  1965. }
  1966. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1967. size_t max_size = 0;
  1968. struct ggml_object * obj = ctx->objects_begin;
  1969. while (obj != NULL) {
  1970. if (obj->type == GGML_OBJECT_TENSOR) {
  1971. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1972. const size_t size = ggml_nbytes(tensor);
  1973. if (max_size < size) {
  1974. max_size = size;
  1975. }
  1976. }
  1977. obj = obj->next;
  1978. }
  1979. return max_size;
  1980. }
  1981. // IMPORTANT:
  1982. // when creating "opt" tensors, always save and load the scratch buffer
  1983. // this is an error prone process, but it is necessary to support inplace
  1984. // operators when using scratch buffers
  1985. // TODO: implement a better way
  1986. static void ggml_scratch_save(struct ggml_context * ctx) {
  1987. // this is needed to allow opt tensors to store their data
  1988. // TODO: again, need to find a better way
  1989. ctx->no_alloc_save = ctx->no_alloc;
  1990. ctx->no_alloc = false;
  1991. ctx->scratch_save = ctx->scratch;
  1992. ctx->scratch.data = NULL;
  1993. }
  1994. static void ggml_scratch_load(struct ggml_context * ctx) {
  1995. ctx->no_alloc = ctx->no_alloc_save;
  1996. ctx->scratch = ctx->scratch_save;
  1997. }
  1998. ////////////////////////////////////////////////////////////////////////////////
  1999. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2000. // always insert objects at the end of the context's memory pool
  2001. struct ggml_object * obj_cur = ctx->objects_end;
  2002. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2003. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2004. const size_t cur_end = cur_offs + cur_size;
  2005. // align to GGML_MEM_ALIGN
  2006. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2007. char * const mem_buffer = ctx->mem_buffer;
  2008. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2009. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2010. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2011. __func__, cur_end + size_needed, ctx->mem_size);
  2012. assert(false);
  2013. return NULL;
  2014. }
  2015. *obj_new = (struct ggml_object) {
  2016. .offs = cur_end + GGML_OBJECT_SIZE,
  2017. .size = size_needed,
  2018. .next = NULL,
  2019. .type = type,
  2020. };
  2021. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2022. if (obj_cur != NULL) {
  2023. obj_cur->next = obj_new;
  2024. } else {
  2025. // this is the first object in this context
  2026. ctx->objects_begin = obj_new;
  2027. }
  2028. ctx->objects_end = obj_new;
  2029. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2030. return obj_new;
  2031. }
  2032. static struct ggml_tensor * ggml_new_tensor_impl(
  2033. struct ggml_context * ctx,
  2034. enum ggml_type type,
  2035. int n_dims,
  2036. const int64_t * ne,
  2037. struct ggml_tensor * view_src,
  2038. size_t view_offs) {
  2039. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2040. // find the base tensor and absolute offset
  2041. if (view_src != NULL && view_src->view_src != NULL) {
  2042. view_offs += view_src->view_offs;
  2043. view_src = view_src->view_src;
  2044. }
  2045. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2046. for (int i = 1; i < n_dims; i++) {
  2047. data_size *= ne[i];
  2048. }
  2049. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2050. void * data = view_src != NULL ? view_src->data : NULL;
  2051. if (data != NULL) {
  2052. data = (char *) data + view_offs;
  2053. }
  2054. size_t obj_alloc_size = 0;
  2055. if (view_src == NULL && !ctx->no_alloc) {
  2056. if (ctx->scratch.data != NULL) {
  2057. // allocate tensor data in the scratch buffer
  2058. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2059. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2060. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2061. assert(false);
  2062. return NULL;
  2063. }
  2064. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2065. ctx->scratch.offs += data_size;
  2066. } else {
  2067. // allocate tensor data in the context's memory pool
  2068. obj_alloc_size = data_size;
  2069. }
  2070. }
  2071. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2072. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2073. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2074. *result = (struct ggml_tensor) {
  2075. /*.type =*/ type,
  2076. /*.backend =*/ GGML_BACKEND_CPU,
  2077. /*.buffer =*/ NULL,
  2078. /*.n_dims =*/ n_dims,
  2079. /*.ne =*/ { 1, 1, 1, 1 },
  2080. /*.nb =*/ { 0, 0, 0, 0 },
  2081. /*.op =*/ GGML_OP_NONE,
  2082. /*.op_params =*/ { 0 },
  2083. /*.is_param =*/ false,
  2084. /*.grad =*/ NULL,
  2085. /*.src =*/ { NULL },
  2086. /*.perf_runs =*/ 0,
  2087. /*.perf_cycles =*/ 0,
  2088. /*.perf_time_us =*/ 0,
  2089. /*.view_src =*/ view_src,
  2090. /*.view_offs =*/ view_offs,
  2091. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2092. /*.name =*/ { 0 },
  2093. /*.extra =*/ NULL,
  2094. /*.padding =*/ { 0 },
  2095. };
  2096. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2097. //ggml_assert_aligned(result->data);
  2098. for (int i = 0; i < n_dims; i++) {
  2099. result->ne[i] = ne[i];
  2100. }
  2101. result->nb[0] = ggml_type_size(type);
  2102. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2103. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2104. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2105. }
  2106. ctx->n_objects++;
  2107. return result;
  2108. }
  2109. struct ggml_tensor * ggml_new_tensor(
  2110. struct ggml_context * ctx,
  2111. enum ggml_type type,
  2112. int n_dims,
  2113. const int64_t * ne) {
  2114. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2115. }
  2116. struct ggml_tensor * ggml_new_tensor_1d(
  2117. struct ggml_context * ctx,
  2118. enum ggml_type type,
  2119. int64_t ne0) {
  2120. return ggml_new_tensor(ctx, type, 1, &ne0);
  2121. }
  2122. struct ggml_tensor * ggml_new_tensor_2d(
  2123. struct ggml_context * ctx,
  2124. enum ggml_type type,
  2125. int64_t ne0,
  2126. int64_t ne1) {
  2127. const int64_t ne[2] = { ne0, ne1 };
  2128. return ggml_new_tensor(ctx, type, 2, ne);
  2129. }
  2130. struct ggml_tensor * ggml_new_tensor_3d(
  2131. struct ggml_context * ctx,
  2132. enum ggml_type type,
  2133. int64_t ne0,
  2134. int64_t ne1,
  2135. int64_t ne2) {
  2136. const int64_t ne[3] = { ne0, ne1, ne2 };
  2137. return ggml_new_tensor(ctx, type, 3, ne);
  2138. }
  2139. struct ggml_tensor * ggml_new_tensor_4d(
  2140. struct ggml_context * ctx,
  2141. enum ggml_type type,
  2142. int64_t ne0,
  2143. int64_t ne1,
  2144. int64_t ne2,
  2145. int64_t ne3) {
  2146. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2147. return ggml_new_tensor(ctx, type, 4, ne);
  2148. }
  2149. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2150. ggml_scratch_save(ctx);
  2151. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2152. ggml_scratch_load(ctx);
  2153. ggml_set_i32(result, value);
  2154. return result;
  2155. }
  2156. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2157. ggml_scratch_save(ctx);
  2158. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2159. ggml_scratch_load(ctx);
  2160. ggml_set_f32(result, value);
  2161. return result;
  2162. }
  2163. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2164. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2165. }
  2166. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2167. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2168. assert(params_size <= GGML_MAX_OP_PARAMS);
  2169. memcpy(tensor->op_params, params, params_size);
  2170. }
  2171. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2172. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2173. return ((const int32_t *)(tensor->op_params))[i];
  2174. }
  2175. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2176. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2177. ((int32_t *)(tensor->op_params))[i] = value;
  2178. }
  2179. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2180. memset(tensor->data, 0, ggml_nbytes(tensor));
  2181. return tensor;
  2182. }
  2183. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2184. const int n = ggml_nrows(tensor);
  2185. const int nc = tensor->ne[0];
  2186. const size_t n1 = tensor->nb[1];
  2187. char * const data = tensor->data;
  2188. switch (tensor->type) {
  2189. case GGML_TYPE_I8:
  2190. {
  2191. assert(tensor->nb[0] == sizeof(int8_t));
  2192. for (int i = 0; i < n; i++) {
  2193. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2194. }
  2195. } break;
  2196. case GGML_TYPE_I16:
  2197. {
  2198. assert(tensor->nb[0] == sizeof(int16_t));
  2199. for (int i = 0; i < n; i++) {
  2200. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2201. }
  2202. } break;
  2203. case GGML_TYPE_I32:
  2204. {
  2205. assert(tensor->nb[0] == sizeof(int32_t));
  2206. for (int i = 0; i < n; i++) {
  2207. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2208. }
  2209. } break;
  2210. case GGML_TYPE_F16:
  2211. {
  2212. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2213. for (int i = 0; i < n; i++) {
  2214. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2215. }
  2216. } break;
  2217. case GGML_TYPE_F32:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(float));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. default:
  2225. {
  2226. GGML_ASSERT(false);
  2227. } break;
  2228. }
  2229. return tensor;
  2230. }
  2231. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2232. const int n = ggml_nrows(tensor);
  2233. const int nc = tensor->ne[0];
  2234. const size_t n1 = tensor->nb[1];
  2235. char * const data = tensor->data;
  2236. switch (tensor->type) {
  2237. case GGML_TYPE_I8:
  2238. {
  2239. assert(tensor->nb[0] == sizeof(int8_t));
  2240. for (int i = 0; i < n; i++) {
  2241. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2242. }
  2243. } break;
  2244. case GGML_TYPE_I16:
  2245. {
  2246. assert(tensor->nb[0] == sizeof(int16_t));
  2247. for (int i = 0; i < n; i++) {
  2248. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2249. }
  2250. } break;
  2251. case GGML_TYPE_I32:
  2252. {
  2253. assert(tensor->nb[0] == sizeof(int32_t));
  2254. for (int i = 0; i < n; i++) {
  2255. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2256. }
  2257. } break;
  2258. case GGML_TYPE_F16:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2263. }
  2264. } break;
  2265. case GGML_TYPE_F32:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(float));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. default:
  2273. {
  2274. GGML_ASSERT(false);
  2275. } break;
  2276. }
  2277. return tensor;
  2278. }
  2279. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2280. const int64_t ne2 = tensor->ne[2];
  2281. const int64_t ne1 = tensor->ne[1];
  2282. const int64_t ne0 = tensor->ne[0];
  2283. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2284. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2285. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2286. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2287. if (i0) {
  2288. * i0 = i0_;
  2289. }
  2290. if (i1) {
  2291. * i1 = i1_;
  2292. }
  2293. if (i2) {
  2294. * i2 = i2_;
  2295. }
  2296. if (i3) {
  2297. * i3 = i3_;
  2298. }
  2299. }
  2300. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2301. if (!ggml_is_contiguous(tensor)) {
  2302. int64_t id[4] = { 0, 0, 0, 0 };
  2303. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2304. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2305. }
  2306. switch (tensor->type) {
  2307. case GGML_TYPE_I8:
  2308. {
  2309. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2310. return ((int8_t *)(tensor->data))[i];
  2311. }
  2312. case GGML_TYPE_I16:
  2313. {
  2314. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2315. return ((int16_t *)(tensor->data))[i];
  2316. }
  2317. case GGML_TYPE_I32:
  2318. {
  2319. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2320. return ((int32_t *)(tensor->data))[i];
  2321. }
  2322. case GGML_TYPE_F16:
  2323. {
  2324. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2325. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2326. }
  2327. case GGML_TYPE_F32:
  2328. {
  2329. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2330. return ((float *)(tensor->data))[i];
  2331. }
  2332. default:
  2333. {
  2334. GGML_ASSERT(false);
  2335. }
  2336. }
  2337. return 0.0f;
  2338. }
  2339. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2340. if (!ggml_is_contiguous(tensor)) {
  2341. int64_t id[4] = { 0, 0, 0, 0 };
  2342. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2343. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2344. return;
  2345. }
  2346. switch (tensor->type) {
  2347. case GGML_TYPE_I8:
  2348. {
  2349. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2350. ((int8_t *)(tensor->data))[i] = value;
  2351. } break;
  2352. case GGML_TYPE_I16:
  2353. {
  2354. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2355. ((int16_t *)(tensor->data))[i] = value;
  2356. } break;
  2357. case GGML_TYPE_I32:
  2358. {
  2359. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2360. ((int32_t *)(tensor->data))[i] = value;
  2361. } break;
  2362. case GGML_TYPE_F16:
  2363. {
  2364. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2365. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2366. } break;
  2367. case GGML_TYPE_F32:
  2368. {
  2369. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2370. ((float *)(tensor->data))[i] = value;
  2371. } break;
  2372. default:
  2373. {
  2374. GGML_ASSERT(false);
  2375. } break;
  2376. }
  2377. }
  2378. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2379. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2380. switch (tensor->type) {
  2381. case GGML_TYPE_I8:
  2382. return ((int8_t *) data)[0];
  2383. case GGML_TYPE_I16:
  2384. return ((int16_t *) data)[0];
  2385. case GGML_TYPE_I32:
  2386. return ((int32_t *) data)[0];
  2387. case GGML_TYPE_F16:
  2388. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2389. case GGML_TYPE_F32:
  2390. return ((float *) data)[0];
  2391. default:
  2392. GGML_ASSERT(false);
  2393. }
  2394. return 0.0f;
  2395. }
  2396. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2397. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. ((int8_t *)(data))[0] = value;
  2402. } break;
  2403. case GGML_TYPE_I16:
  2404. {
  2405. ((int16_t *)(data))[0] = value;
  2406. } break;
  2407. case GGML_TYPE_I32:
  2408. {
  2409. ((int32_t *)(data))[0] = value;
  2410. } break;
  2411. case GGML_TYPE_F16:
  2412. {
  2413. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2414. } break;
  2415. case GGML_TYPE_F32:
  2416. {
  2417. ((float *)(data))[0] = value;
  2418. } break;
  2419. default:
  2420. {
  2421. GGML_ASSERT(false);
  2422. } break;
  2423. }
  2424. }
  2425. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2426. if (!ggml_is_contiguous(tensor)) {
  2427. int64_t id[4] = { 0, 0, 0, 0 };
  2428. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2429. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2430. }
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2435. return ((int8_t *)(tensor->data))[i];
  2436. }
  2437. case GGML_TYPE_I16:
  2438. {
  2439. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2440. return ((int16_t *)(tensor->data))[i];
  2441. }
  2442. case GGML_TYPE_I32:
  2443. {
  2444. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2445. return ((int32_t *)(tensor->data))[i];
  2446. }
  2447. case GGML_TYPE_F16:
  2448. {
  2449. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2450. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2451. }
  2452. case GGML_TYPE_F32:
  2453. {
  2454. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2455. return ((float *)(tensor->data))[i];
  2456. }
  2457. default:
  2458. {
  2459. GGML_ASSERT(false);
  2460. }
  2461. }
  2462. return 0.0f;
  2463. }
  2464. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2465. if (!ggml_is_contiguous(tensor)) {
  2466. int64_t id[4] = { 0, 0, 0, 0 };
  2467. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2468. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2469. return;
  2470. }
  2471. switch (tensor->type) {
  2472. case GGML_TYPE_I8:
  2473. {
  2474. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2475. ((int8_t *)(tensor->data))[i] = value;
  2476. } break;
  2477. case GGML_TYPE_I16:
  2478. {
  2479. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2480. ((int16_t *)(tensor->data))[i] = value;
  2481. } break;
  2482. case GGML_TYPE_I32:
  2483. {
  2484. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2485. ((int32_t *)(tensor->data))[i] = value;
  2486. } break;
  2487. case GGML_TYPE_F16:
  2488. {
  2489. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2490. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2491. } break;
  2492. case GGML_TYPE_F32:
  2493. {
  2494. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2495. ((float *)(tensor->data))[i] = value;
  2496. } break;
  2497. default:
  2498. {
  2499. GGML_ASSERT(false);
  2500. } break;
  2501. }
  2502. }
  2503. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2504. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2505. switch (tensor->type) {
  2506. case GGML_TYPE_I8:
  2507. return ((int8_t *) data)[0];
  2508. case GGML_TYPE_I16:
  2509. return ((int16_t *) data)[0];
  2510. case GGML_TYPE_I32:
  2511. return ((int32_t *) data)[0];
  2512. case GGML_TYPE_F16:
  2513. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2514. case GGML_TYPE_F32:
  2515. return ((float *) data)[0];
  2516. default:
  2517. GGML_ASSERT(false);
  2518. }
  2519. return 0.0f;
  2520. }
  2521. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2522. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. {
  2526. ((int8_t *)(data))[0] = value;
  2527. } break;
  2528. case GGML_TYPE_I16:
  2529. {
  2530. ((int16_t *)(data))[0] = value;
  2531. } break;
  2532. case GGML_TYPE_I32:
  2533. {
  2534. ((int32_t *)(data))[0] = value;
  2535. } break;
  2536. case GGML_TYPE_F16:
  2537. {
  2538. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2539. } break;
  2540. case GGML_TYPE_F32:
  2541. {
  2542. ((float *)(data))[0] = value;
  2543. } break;
  2544. default:
  2545. {
  2546. GGML_ASSERT(false);
  2547. } break;
  2548. }
  2549. }
  2550. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2551. return tensor->data;
  2552. }
  2553. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2554. assert(tensor->type == GGML_TYPE_F32);
  2555. return (float *)(tensor->data);
  2556. }
  2557. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2558. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2559. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2560. }
  2561. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2562. return tensor->name;
  2563. }
  2564. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2565. strncpy(tensor->name, name, sizeof(tensor->name));
  2566. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2567. return tensor;
  2568. }
  2569. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2570. va_list args;
  2571. va_start(args, fmt);
  2572. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2573. va_end(args);
  2574. return tensor;
  2575. }
  2576. struct ggml_tensor * ggml_view_tensor(
  2577. struct ggml_context * ctx,
  2578. struct ggml_tensor * src) {
  2579. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2580. ggml_format_name(result, "%s (view)", src->name);
  2581. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2582. result->nb[i] = src->nb[i];
  2583. }
  2584. return result;
  2585. }
  2586. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2587. struct ggml_object * obj = ctx->objects_begin;
  2588. char * const mem_buffer = ctx->mem_buffer;
  2589. while (obj != NULL) {
  2590. if (obj->type == GGML_OBJECT_TENSOR) {
  2591. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2592. }
  2593. obj = obj->next;
  2594. }
  2595. return NULL;
  2596. }
  2597. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2598. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2599. obj = obj->next;
  2600. char * const mem_buffer = ctx->mem_buffer;
  2601. while (obj != NULL) {
  2602. if (obj->type == GGML_OBJECT_TENSOR) {
  2603. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2604. }
  2605. obj = obj->next;
  2606. }
  2607. return NULL;
  2608. }
  2609. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2610. struct ggml_object * obj = ctx->objects_begin;
  2611. char * const mem_buffer = ctx->mem_buffer;
  2612. while (obj != NULL) {
  2613. if (obj->type == GGML_OBJECT_TENSOR) {
  2614. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2615. if (strcmp(cur->name, name) == 0) {
  2616. return cur;
  2617. }
  2618. }
  2619. obj = obj->next;
  2620. }
  2621. return NULL;
  2622. }
  2623. ////////////////////////////////////////////////////////////////////////////////
  2624. // ggml_dup
  2625. static struct ggml_tensor * ggml_dup_impl(
  2626. struct ggml_context * ctx,
  2627. struct ggml_tensor * a,
  2628. bool inplace) {
  2629. bool is_node = false;
  2630. if (!inplace && (a->grad)) {
  2631. is_node = true;
  2632. }
  2633. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2634. result->op = GGML_OP_DUP;
  2635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2636. result->src[0] = a;
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_dup(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a) {
  2642. return ggml_dup_impl(ctx, a, false);
  2643. }
  2644. struct ggml_tensor * ggml_dup_inplace(
  2645. struct ggml_context * ctx,
  2646. struct ggml_tensor * a) {
  2647. return ggml_dup_impl(ctx, a, true);
  2648. }
  2649. // ggml_add
  2650. static struct ggml_tensor * ggml_add_impl(
  2651. struct ggml_context * ctx,
  2652. struct ggml_tensor * a,
  2653. struct ggml_tensor * b,
  2654. bool inplace) {
  2655. // TODO: support less-strict constraint
  2656. // GGML_ASSERT(ggml_can_repeat(b, a));
  2657. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2658. bool is_node = false;
  2659. if (!inplace && (a->grad || b->grad)) {
  2660. // TODO: support backward pass for broadcasting
  2661. GGML_ASSERT(ggml_are_same_shape(a, b));
  2662. is_node = true;
  2663. }
  2664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2665. result->op = GGML_OP_ADD;
  2666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2667. result->src[0] = a;
  2668. result->src[1] = b;
  2669. return result;
  2670. }
  2671. struct ggml_tensor * ggml_add(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b) {
  2675. return ggml_add_impl(ctx, a, b, false);
  2676. }
  2677. struct ggml_tensor * ggml_add_inplace(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a,
  2680. struct ggml_tensor * b) {
  2681. return ggml_add_impl(ctx, a, b, true);
  2682. }
  2683. // ggml_add_cast
  2684. static struct ggml_tensor * ggml_add_cast_impl(
  2685. struct ggml_context * ctx,
  2686. struct ggml_tensor * a,
  2687. struct ggml_tensor * b,
  2688. enum ggml_type type) {
  2689. // TODO: support less-strict constraint
  2690. // GGML_ASSERT(ggml_can_repeat(b, a));
  2691. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2692. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2693. bool is_node = false;
  2694. if (a->grad || b->grad) {
  2695. // TODO: support backward pass for broadcasting
  2696. GGML_ASSERT(ggml_are_same_shape(a, b));
  2697. is_node = true;
  2698. }
  2699. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2700. result->op = GGML_OP_ADD;
  2701. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2702. result->src[0] = a;
  2703. result->src[1] = b;
  2704. return result;
  2705. }
  2706. struct ggml_tensor * ggml_add_cast(
  2707. struct ggml_context * ctx,
  2708. struct ggml_tensor * a,
  2709. struct ggml_tensor * b,
  2710. enum ggml_type type) {
  2711. return ggml_add_cast_impl(ctx, a, b, type);
  2712. }
  2713. // ggml_add1
  2714. static struct ggml_tensor * ggml_add1_impl(
  2715. struct ggml_context * ctx,
  2716. struct ggml_tensor * a,
  2717. struct ggml_tensor * b,
  2718. bool inplace) {
  2719. GGML_ASSERT(ggml_is_scalar(b));
  2720. GGML_ASSERT(ggml_is_padded_1d(a));
  2721. bool is_node = false;
  2722. if (a->grad || b->grad) {
  2723. is_node = true;
  2724. }
  2725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2726. result->op = GGML_OP_ADD1;
  2727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2728. result->src[0] = a;
  2729. result->src[1] = b;
  2730. return result;
  2731. }
  2732. struct ggml_tensor * ggml_add1(
  2733. struct ggml_context * ctx,
  2734. struct ggml_tensor * a,
  2735. struct ggml_tensor * b) {
  2736. return ggml_add1_impl(ctx, a, b, false);
  2737. }
  2738. struct ggml_tensor * ggml_add1_inplace(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a,
  2741. struct ggml_tensor * b) {
  2742. return ggml_add1_impl(ctx, a, b, true);
  2743. }
  2744. // ggml_acc
  2745. static struct ggml_tensor * ggml_acc_impl(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b,
  2749. size_t nb1,
  2750. size_t nb2,
  2751. size_t nb3,
  2752. size_t offset,
  2753. bool inplace) {
  2754. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2755. GGML_ASSERT(ggml_is_contiguous(a));
  2756. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2757. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2758. bool is_node = false;
  2759. if (!inplace && (a->grad || b->grad)) {
  2760. is_node = true;
  2761. }
  2762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2763. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2764. ggml_set_op_params(result, params, sizeof(params));
  2765. result->op = GGML_OP_ACC;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src[0] = a;
  2768. result->src[1] = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_acc(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b,
  2775. size_t nb1,
  2776. size_t nb2,
  2777. size_t nb3,
  2778. size_t offset) {
  2779. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2780. }
  2781. struct ggml_tensor * ggml_acc_inplace(
  2782. struct ggml_context * ctx,
  2783. struct ggml_tensor * a,
  2784. struct ggml_tensor * b,
  2785. size_t nb1,
  2786. size_t nb2,
  2787. size_t nb3,
  2788. size_t offset) {
  2789. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2790. }
  2791. // ggml_sub
  2792. static struct ggml_tensor * ggml_sub_impl(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. struct ggml_tensor * b,
  2796. bool inplace) {
  2797. GGML_ASSERT(ggml_are_same_shape(a, b));
  2798. bool is_node = false;
  2799. if (!inplace && (a->grad || b->grad)) {
  2800. is_node = true;
  2801. }
  2802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2803. result->op = GGML_OP_SUB;
  2804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2805. result->src[0] = a;
  2806. result->src[1] = b;
  2807. return result;
  2808. }
  2809. struct ggml_tensor * ggml_sub(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a,
  2812. struct ggml_tensor * b) {
  2813. return ggml_sub_impl(ctx, a, b, false);
  2814. }
  2815. struct ggml_tensor * ggml_sub_inplace(
  2816. struct ggml_context * ctx,
  2817. struct ggml_tensor * a,
  2818. struct ggml_tensor * b) {
  2819. return ggml_sub_impl(ctx, a, b, true);
  2820. }
  2821. // ggml_mul
  2822. static struct ggml_tensor * ggml_mul_impl(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. struct ggml_tensor * b,
  2826. bool inplace) {
  2827. // TODO: support less-strict constraint
  2828. // GGML_ASSERT(ggml_can_repeat(b, a));
  2829. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2830. bool is_node = false;
  2831. if (!inplace && (a->grad || b->grad)) {
  2832. // TODO: support backward pass for broadcasting
  2833. GGML_ASSERT(ggml_are_same_shape(a, b));
  2834. is_node = true;
  2835. }
  2836. if (inplace) {
  2837. GGML_ASSERT(!is_node);
  2838. }
  2839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2840. result->op = GGML_OP_MUL;
  2841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2842. result->src[0] = a;
  2843. result->src[1] = b;
  2844. return result;
  2845. }
  2846. struct ggml_tensor * ggml_mul(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_mul_impl(ctx, a, b, false);
  2851. }
  2852. struct ggml_tensor * ggml_mul_inplace(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b) {
  2856. return ggml_mul_impl(ctx, a, b, true);
  2857. }
  2858. // ggml_div
  2859. static struct ggml_tensor * ggml_div_impl(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. struct ggml_tensor * b,
  2863. bool inplace) {
  2864. GGML_ASSERT(ggml_are_same_shape(a, b));
  2865. bool is_node = false;
  2866. if (!inplace && (a->grad || b->grad)) {
  2867. is_node = true;
  2868. }
  2869. if (inplace) {
  2870. GGML_ASSERT(!is_node);
  2871. }
  2872. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2873. result->op = GGML_OP_DIV;
  2874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2875. result->src[0] = a;
  2876. result->src[1] = b;
  2877. return result;
  2878. }
  2879. struct ggml_tensor * ggml_div(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. struct ggml_tensor * b) {
  2883. return ggml_div_impl(ctx, a, b, false);
  2884. }
  2885. struct ggml_tensor * ggml_div_inplace(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. struct ggml_tensor * b) {
  2889. return ggml_div_impl(ctx, a, b, true);
  2890. }
  2891. // ggml_sqr
  2892. static struct ggml_tensor * ggml_sqr_impl(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. bool inplace) {
  2896. bool is_node = false;
  2897. if (!inplace && (a->grad)) {
  2898. is_node = true;
  2899. }
  2900. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2901. result->op = GGML_OP_SQR;
  2902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2903. result->src[0] = a;
  2904. return result;
  2905. }
  2906. struct ggml_tensor * ggml_sqr(
  2907. struct ggml_context * ctx,
  2908. struct ggml_tensor * a) {
  2909. return ggml_sqr_impl(ctx, a, false);
  2910. }
  2911. struct ggml_tensor * ggml_sqr_inplace(
  2912. struct ggml_context * ctx,
  2913. struct ggml_tensor * a) {
  2914. return ggml_sqr_impl(ctx, a, true);
  2915. }
  2916. // ggml_sqrt
  2917. static struct ggml_tensor * ggml_sqrt_impl(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a,
  2920. bool inplace) {
  2921. bool is_node = false;
  2922. if (!inplace && (a->grad)) {
  2923. is_node = true;
  2924. }
  2925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2926. result->op = GGML_OP_SQRT;
  2927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2928. result->src[0] = a;
  2929. return result;
  2930. }
  2931. struct ggml_tensor * ggml_sqrt(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a) {
  2934. return ggml_sqrt_impl(ctx, a, false);
  2935. }
  2936. struct ggml_tensor * ggml_sqrt_inplace(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. return ggml_sqrt_impl(ctx, a, true);
  2940. }
  2941. // ggml_log
  2942. static struct ggml_tensor * ggml_log_impl(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. bool inplace) {
  2946. bool is_node = false;
  2947. if (!inplace && (a->grad)) {
  2948. is_node = true;
  2949. }
  2950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2951. result->op = GGML_OP_LOG;
  2952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2953. result->src[0] = a;
  2954. return result;
  2955. }
  2956. struct ggml_tensor * ggml_log(
  2957. struct ggml_context * ctx,
  2958. struct ggml_tensor * a) {
  2959. return ggml_log_impl(ctx, a, false);
  2960. }
  2961. struct ggml_tensor * ggml_log_inplace(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a) {
  2964. return ggml_log_impl(ctx, a, true);
  2965. }
  2966. // ggml_sum
  2967. struct ggml_tensor * ggml_sum(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. bool is_node = false;
  2971. if (a->grad) {
  2972. is_node = true;
  2973. }
  2974. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2975. result->op = GGML_OP_SUM;
  2976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2977. result->src[0] = a;
  2978. return result;
  2979. }
  2980. // ggml_sum_rows
  2981. struct ggml_tensor * ggml_sum_rows(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a) {
  2984. bool is_node = false;
  2985. if (a->grad) {
  2986. is_node = true;
  2987. }
  2988. int64_t ne[4] = {1,1,1,1};
  2989. for (int i=1; i<a->n_dims; ++i) {
  2990. ne[i] = a->ne[i];
  2991. }
  2992. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2993. result->op = GGML_OP_SUM_ROWS;
  2994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2995. result->src[0] = a;
  2996. return result;
  2997. }
  2998. // ggml_mean
  2999. struct ggml_tensor * ggml_mean(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a) {
  3002. bool is_node = false;
  3003. if (a->grad) {
  3004. GGML_ASSERT(false); // TODO: implement
  3005. is_node = true;
  3006. }
  3007. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3008. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3009. result->op = GGML_OP_MEAN;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. return result;
  3013. }
  3014. // ggml_argmax
  3015. struct ggml_tensor * ggml_argmax(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a) {
  3018. GGML_ASSERT(ggml_is_matrix(a));
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. GGML_ASSERT(false);
  3022. is_node = true;
  3023. }
  3024. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3025. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3026. result->op = GGML_OP_ARGMAX;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src[0] = a;
  3029. return result;
  3030. }
  3031. // ggml_repeat
  3032. struct ggml_tensor * ggml_repeat(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a,
  3035. struct ggml_tensor * b) {
  3036. GGML_ASSERT(ggml_can_repeat(a, b));
  3037. bool is_node = false;
  3038. if (a->grad) {
  3039. is_node = true;
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3042. result->op = GGML_OP_REPEAT;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_repeat_back
  3048. struct ggml_tensor * ggml_repeat_back(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. GGML_ASSERT(ggml_can_repeat(b, a));
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. if (ggml_are_same_shape(a, b) && !is_node) {
  3058. return a;
  3059. }
  3060. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3061. result->op = GGML_OP_REPEAT_BACK;
  3062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3063. result->src[0] = a;
  3064. return result;
  3065. }
  3066. // ggml_concat
  3067. struct ggml_tensor * ggml_concat(
  3068. struct ggml_context* ctx,
  3069. struct ggml_tensor* a,
  3070. struct ggml_tensor* b) {
  3071. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3072. bool is_node = false;
  3073. if (a->grad || b->grad) {
  3074. is_node = true;
  3075. }
  3076. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3077. result->op = GGML_OP_CONCAT;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src[0] = a;
  3080. result->src[1] = b;
  3081. return result;
  3082. }
  3083. // ggml_abs
  3084. struct ggml_tensor * ggml_abs(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a) {
  3087. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3088. }
  3089. struct ggml_tensor * ggml_abs_inplace(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3093. }
  3094. // ggml_sgn
  3095. struct ggml_tensor * ggml_sgn(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3099. }
  3100. struct ggml_tensor * ggml_sgn_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3104. }
  3105. // ggml_neg
  3106. struct ggml_tensor * ggml_neg(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3110. }
  3111. struct ggml_tensor * ggml_neg_inplace(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3115. }
  3116. // ggml_step
  3117. struct ggml_tensor * ggml_step(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3121. }
  3122. struct ggml_tensor * ggml_step_inplace(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3126. }
  3127. // ggml_tanh
  3128. struct ggml_tensor * ggml_tanh(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3132. }
  3133. struct ggml_tensor * ggml_tanh_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3137. }
  3138. // ggml_elu
  3139. struct ggml_tensor * ggml_elu(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3143. }
  3144. struct ggml_tensor * ggml_elu_inplace(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3148. }
  3149. // ggml_relu
  3150. struct ggml_tensor * ggml_relu(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3154. }
  3155. struct ggml_tensor * ggml_relu_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3159. }
  3160. // ggml_leaky
  3161. struct ggml_tensor * ggml_leaky(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY);
  3165. }
  3166. // ggml_gelu
  3167. struct ggml_tensor * ggml_gelu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3171. }
  3172. struct ggml_tensor * ggml_gelu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3176. }
  3177. // ggml_gelu_quick
  3178. struct ggml_tensor * ggml_gelu_quick(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3182. }
  3183. struct ggml_tensor * ggml_gelu_quick_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3187. }
  3188. // ggml_silu
  3189. struct ggml_tensor * ggml_silu(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3193. }
  3194. struct ggml_tensor * ggml_silu_inplace(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3198. }
  3199. // ggml_silu_back
  3200. struct ggml_tensor * ggml_silu_back(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. bool is_node = false;
  3205. if (a->grad || b->grad) {
  3206. // TODO: implement backward
  3207. is_node = true;
  3208. }
  3209. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3210. result->op = GGML_OP_SILU_BACK;
  3211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3212. result->src[0] = a;
  3213. result->src[1] = b;
  3214. return result;
  3215. }
  3216. // ggml_norm
  3217. static struct ggml_tensor * ggml_norm_impl(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a,
  3220. float eps,
  3221. bool inplace) {
  3222. bool is_node = false;
  3223. if (!inplace && (a->grad)) {
  3224. GGML_ASSERT(false); // TODO: implement backward
  3225. is_node = true;
  3226. }
  3227. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3228. ggml_set_op_params(result, &eps, sizeof(eps));
  3229. result->op = GGML_OP_NORM;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src[0] = a;
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_norm(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. float eps) {
  3238. return ggml_norm_impl(ctx, a, eps, false);
  3239. }
  3240. struct ggml_tensor * ggml_norm_inplace(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a,
  3243. float eps) {
  3244. return ggml_norm_impl(ctx, a, eps, true);
  3245. }
  3246. // ggml_rms_norm
  3247. static struct ggml_tensor * ggml_rms_norm_impl(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a,
  3250. float eps,
  3251. bool inplace) {
  3252. bool is_node = false;
  3253. if (!inplace && (a->grad)) {
  3254. is_node = true;
  3255. }
  3256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3257. ggml_set_op_params(result, &eps, sizeof(eps));
  3258. result->op = GGML_OP_RMS_NORM;
  3259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3260. result->src[0] = a;
  3261. return result;
  3262. }
  3263. struct ggml_tensor * ggml_rms_norm(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. float eps) {
  3267. return ggml_rms_norm_impl(ctx, a, eps, false);
  3268. }
  3269. struct ggml_tensor * ggml_rms_norm_inplace(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a,
  3272. float eps) {
  3273. return ggml_rms_norm_impl(ctx, a, eps, true);
  3274. }
  3275. // ggml_rms_norm_back
  3276. struct ggml_tensor * ggml_rms_norm_back(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a,
  3279. struct ggml_tensor * b,
  3280. float eps) {
  3281. bool is_node = false;
  3282. if (a->grad) {
  3283. // TODO: implement backward
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3287. ggml_set_op_params(result, &eps, sizeof(eps));
  3288. result->op = GGML_OP_RMS_NORM_BACK;
  3289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3290. result->src[0] = a;
  3291. result->src[1] = b;
  3292. return result;
  3293. }
  3294. // ggml_group_norm
  3295. static struct ggml_tensor * ggml_group_norm_impl(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a,
  3298. int n_groups,
  3299. bool inplace) {
  3300. bool is_node = false;
  3301. if (!inplace && (a->grad)) {
  3302. GGML_ASSERT(false); // TODO: implement backward
  3303. is_node = true;
  3304. }
  3305. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3306. result->op = GGML_OP_GROUP_NORM;
  3307. result->op_params[0] = n_groups;
  3308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3309. result->src[0] = a;
  3310. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3311. return result;
  3312. }
  3313. struct ggml_tensor * ggml_group_norm(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. int n_groups) {
  3317. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3318. }
  3319. struct ggml_tensor * ggml_group_norm_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. int n_groups) {
  3323. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3324. }
  3325. // ggml_mul_mat
  3326. struct ggml_tensor * ggml_mul_mat(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a,
  3329. struct ggml_tensor * b) {
  3330. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3331. GGML_ASSERT(!ggml_is_transposed(a));
  3332. bool is_node = false;
  3333. if (a->grad || b->grad) {
  3334. is_node = true;
  3335. }
  3336. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3338. result->op = GGML_OP_MUL_MAT;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. result->src[1] = b;
  3342. return result;
  3343. }
  3344. // ggml_out_prod
  3345. struct ggml_tensor * ggml_out_prod(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b) {
  3349. GGML_ASSERT(ggml_can_out_prod(a, b));
  3350. GGML_ASSERT(!ggml_is_transposed(a));
  3351. bool is_node = false;
  3352. if (a->grad || b->grad) {
  3353. is_node = true;
  3354. }
  3355. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3356. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3358. result->op = GGML_OP_OUT_PROD;
  3359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3360. result->src[0] = a;
  3361. result->src[1] = b;
  3362. return result;
  3363. }
  3364. // ggml_scale
  3365. static struct ggml_tensor * ggml_scale_impl(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. struct ggml_tensor * b,
  3369. bool inplace) {
  3370. GGML_ASSERT(ggml_is_scalar(b));
  3371. GGML_ASSERT(ggml_is_padded_1d(a));
  3372. bool is_node = false;
  3373. if (a->grad || b->grad) {
  3374. is_node = true;
  3375. }
  3376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3377. result->op = GGML_OP_SCALE;
  3378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3379. result->src[0] = a;
  3380. result->src[1] = b;
  3381. return result;
  3382. }
  3383. struct ggml_tensor * ggml_scale(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. struct ggml_tensor * b) {
  3387. return ggml_scale_impl(ctx, a, b, false);
  3388. }
  3389. struct ggml_tensor * ggml_scale_inplace(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a,
  3392. struct ggml_tensor * b) {
  3393. return ggml_scale_impl(ctx, a, b, true);
  3394. }
  3395. // ggml_set
  3396. static struct ggml_tensor * ggml_set_impl(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a,
  3399. struct ggml_tensor * b,
  3400. size_t nb1,
  3401. size_t nb2,
  3402. size_t nb3,
  3403. size_t offset,
  3404. bool inplace) {
  3405. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3406. bool is_node = false;
  3407. if (a->grad || b->grad) {
  3408. is_node = true;
  3409. }
  3410. // make a view of the destination
  3411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3412. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3413. ggml_set_op_params(result, params, sizeof(params));
  3414. result->op = GGML_OP_SET;
  3415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3416. result->src[0] = a;
  3417. result->src[1] = b;
  3418. return result;
  3419. }
  3420. struct ggml_tensor * ggml_set(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a,
  3423. struct ggml_tensor * b,
  3424. size_t nb1,
  3425. size_t nb2,
  3426. size_t nb3,
  3427. size_t offset) {
  3428. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3429. }
  3430. struct ggml_tensor * ggml_set_inplace(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b,
  3434. size_t nb1,
  3435. size_t nb2,
  3436. size_t nb3,
  3437. size_t offset) {
  3438. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3439. }
  3440. struct ggml_tensor * ggml_set_1d(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b,
  3444. size_t offset) {
  3445. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3446. }
  3447. struct ggml_tensor * ggml_set_1d_inplace(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. struct ggml_tensor * b,
  3451. size_t offset) {
  3452. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3453. }
  3454. struct ggml_tensor * ggml_set_2d(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b,
  3458. size_t nb1,
  3459. size_t offset) {
  3460. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3461. }
  3462. struct ggml_tensor * ggml_set_2d_inplace(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b,
  3466. size_t nb1,
  3467. size_t offset) {
  3468. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3469. }
  3470. // ggml_cpy
  3471. static struct ggml_tensor * ggml_cpy_impl(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. struct ggml_tensor * b,
  3475. bool inplace) {
  3476. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3477. bool is_node = false;
  3478. if (!inplace && (a->grad || b->grad)) {
  3479. is_node = true;
  3480. }
  3481. // make a view of the destination
  3482. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3483. if (strlen(b->name) > 0) {
  3484. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3485. } else {
  3486. ggml_format_name(result, "%s (copy)", a->name);
  3487. }
  3488. result->op = GGML_OP_CPY;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src[0] = a;
  3491. result->src[1] = b;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_cpy(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b) {
  3498. return ggml_cpy_impl(ctx, a, b, false);
  3499. }
  3500. struct ggml_tensor * ggml_cpy_inplace(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b) {
  3504. return ggml_cpy_impl(ctx, a, b, true);
  3505. }
  3506. // ggml_cont
  3507. static struct ggml_tensor * ggml_cont_impl(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. bool inplace) {
  3511. bool is_node = false;
  3512. if (!inplace && a->grad) {
  3513. is_node = true;
  3514. }
  3515. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3516. ggml_format_name(result, "%s (cont)", a->name);
  3517. result->op = GGML_OP_CONT;
  3518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3519. result->src[0] = a;
  3520. return result;
  3521. }
  3522. struct ggml_tensor * ggml_cont(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a) {
  3525. return ggml_cont_impl(ctx, a, false);
  3526. }
  3527. struct ggml_tensor * ggml_cont_inplace(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a) {
  3530. return ggml_cont_impl(ctx, a, true);
  3531. }
  3532. // make contiguous, with new shape
  3533. GGML_API struct ggml_tensor * ggml_cont_1d(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. int64_t ne0) {
  3537. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3538. }
  3539. GGML_API struct ggml_tensor * ggml_cont_2d(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. int64_t ne0,
  3543. int64_t ne1) {
  3544. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3545. }
  3546. GGML_API struct ggml_tensor * ggml_cont_3d(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. int64_t ne0,
  3550. int64_t ne1,
  3551. int64_t ne2) {
  3552. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3553. }
  3554. struct ggml_tensor * ggml_cont_4d(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int64_t ne0,
  3558. int64_t ne1,
  3559. int64_t ne2,
  3560. int64_t ne3) {
  3561. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3562. bool is_node = false;
  3563. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3564. ggml_format_name(result, "%s (cont)", a->name);
  3565. result->op = GGML_OP_CONT;
  3566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3567. result->src[0] = a;
  3568. return result;
  3569. }
  3570. // ggml_reshape
  3571. struct ggml_tensor * ggml_reshape(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. struct ggml_tensor * b) {
  3575. GGML_ASSERT(ggml_is_contiguous(a));
  3576. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3577. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3578. bool is_node = false;
  3579. if (a->grad) {
  3580. is_node = true;
  3581. }
  3582. if (b->grad) {
  3583. // gradient propagation is not supported
  3584. //GGML_ASSERT(false);
  3585. }
  3586. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3587. ggml_format_name(result, "%s (reshaped)", a->name);
  3588. result->op = GGML_OP_RESHAPE;
  3589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3590. result->src[0] = a;
  3591. return result;
  3592. }
  3593. struct ggml_tensor * ggml_reshape_1d(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. int64_t ne0) {
  3597. GGML_ASSERT(ggml_is_contiguous(a));
  3598. GGML_ASSERT(ggml_nelements(a) == ne0);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. is_node = true;
  3602. }
  3603. const int64_t ne[1] = { ne0 };
  3604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3605. ggml_format_name(result, "%s (reshaped)", a->name);
  3606. result->op = GGML_OP_RESHAPE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_reshape_2d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. int64_t ne0,
  3615. int64_t ne1) {
  3616. GGML_ASSERT(ggml_is_contiguous(a));
  3617. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3618. bool is_node = false;
  3619. if (a->grad) {
  3620. is_node = true;
  3621. }
  3622. const int64_t ne[2] = { ne0, ne1 };
  3623. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3624. ggml_format_name(result, "%s (reshaped)", a->name);
  3625. result->op = GGML_OP_RESHAPE;
  3626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3627. result->src[0] = a;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_reshape_3d(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. int64_t ne0,
  3634. int64_t ne1,
  3635. int64_t ne2) {
  3636. GGML_ASSERT(ggml_is_contiguous(a));
  3637. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. is_node = true;
  3641. }
  3642. const int64_t ne[3] = { ne0, ne1, ne2 };
  3643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3644. ggml_format_name(result, "%s (reshaped)", a->name);
  3645. result->op = GGML_OP_RESHAPE;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. return result;
  3649. }
  3650. struct ggml_tensor * ggml_reshape_4d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. int64_t ne2,
  3656. int64_t ne3) {
  3657. GGML_ASSERT(ggml_is_contiguous(a));
  3658. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3659. bool is_node = false;
  3660. if (a->grad) {
  3661. is_node = true;
  3662. }
  3663. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3664. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3665. ggml_format_name(result, "%s (reshaped)", a->name);
  3666. result->op = GGML_OP_RESHAPE;
  3667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3668. result->src[0] = a;
  3669. return result;
  3670. }
  3671. static struct ggml_tensor * ggml_view_impl(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a,
  3674. int n_dims,
  3675. const int64_t * ne,
  3676. size_t offset) {
  3677. bool is_node = false;
  3678. if (a->grad) {
  3679. is_node = true;
  3680. }
  3681. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3682. ggml_format_name(result, "%s (view)", a->name);
  3683. ggml_set_op_params(result, &offset, sizeof(offset));
  3684. result->op = GGML_OP_VIEW;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src[0] = a;
  3687. return result;
  3688. }
  3689. // ggml_view_1d
  3690. struct ggml_tensor * ggml_view_1d(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. int64_t ne0,
  3694. size_t offset) {
  3695. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3696. return result;
  3697. }
  3698. // ggml_view_2d
  3699. struct ggml_tensor * ggml_view_2d(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. int64_t ne0,
  3703. int64_t ne1,
  3704. size_t nb1,
  3705. size_t offset) {
  3706. const int64_t ne[2] = { ne0, ne1 };
  3707. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3708. result->nb[1] = nb1;
  3709. result->nb[2] = result->nb[1]*ne1;
  3710. result->nb[3] = result->nb[2];
  3711. return result;
  3712. }
  3713. // ggml_view_3d
  3714. struct ggml_tensor * ggml_view_3d(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. int64_t ne0,
  3718. int64_t ne1,
  3719. int64_t ne2,
  3720. size_t nb1,
  3721. size_t nb2,
  3722. size_t offset) {
  3723. const int64_t ne[3] = { ne0, ne1, ne2 };
  3724. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3725. result->nb[1] = nb1;
  3726. result->nb[2] = nb2;
  3727. result->nb[3] = result->nb[2]*ne2;
  3728. return result;
  3729. }
  3730. // ggml_view_4d
  3731. struct ggml_tensor * ggml_view_4d(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. int64_t ne0,
  3735. int64_t ne1,
  3736. int64_t ne2,
  3737. int64_t ne3,
  3738. size_t nb1,
  3739. size_t nb2,
  3740. size_t nb3,
  3741. size_t offset) {
  3742. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3743. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3744. result->nb[1] = nb1;
  3745. result->nb[2] = nb2;
  3746. result->nb[3] = nb3;
  3747. return result;
  3748. }
  3749. // ggml_permute
  3750. struct ggml_tensor * ggml_permute(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. int axis0,
  3754. int axis1,
  3755. int axis2,
  3756. int axis3) {
  3757. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3758. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3759. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3760. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3761. GGML_ASSERT(axis0 != axis1);
  3762. GGML_ASSERT(axis0 != axis2);
  3763. GGML_ASSERT(axis0 != axis3);
  3764. GGML_ASSERT(axis1 != axis2);
  3765. GGML_ASSERT(axis1 != axis3);
  3766. GGML_ASSERT(axis2 != axis3);
  3767. bool is_node = false;
  3768. if (a->grad) {
  3769. is_node = true;
  3770. }
  3771. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3772. ggml_format_name(result, "%s (permuted)", a->name);
  3773. int ne[GGML_MAX_DIMS];
  3774. int nb[GGML_MAX_DIMS];
  3775. ne[axis0] = a->ne[0];
  3776. ne[axis1] = a->ne[1];
  3777. ne[axis2] = a->ne[2];
  3778. ne[axis3] = a->ne[3];
  3779. nb[axis0] = a->nb[0];
  3780. nb[axis1] = a->nb[1];
  3781. nb[axis2] = a->nb[2];
  3782. nb[axis3] = a->nb[3];
  3783. result->ne[0] = ne[0];
  3784. result->ne[1] = ne[1];
  3785. result->ne[2] = ne[2];
  3786. result->ne[3] = ne[3];
  3787. result->nb[0] = nb[0];
  3788. result->nb[1] = nb[1];
  3789. result->nb[2] = nb[2];
  3790. result->nb[3] = nb[3];
  3791. result->op = GGML_OP_PERMUTE;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src[0] = a;
  3794. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3795. ggml_set_op_params(result, params, sizeof(params));
  3796. return result;
  3797. }
  3798. // ggml_transpose
  3799. struct ggml_tensor * ggml_transpose(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. bool is_node = false;
  3803. if (a->grad) {
  3804. is_node = true;
  3805. }
  3806. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3807. ggml_format_name(result, "%s (transposed)", a->name);
  3808. result->ne[0] = a->ne[1];
  3809. result->ne[1] = a->ne[0];
  3810. result->nb[0] = a->nb[1];
  3811. result->nb[1] = a->nb[0];
  3812. result->op = GGML_OP_TRANSPOSE;
  3813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3814. result->src[0] = a;
  3815. return result;
  3816. }
  3817. // ggml_get_rows
  3818. struct ggml_tensor * ggml_get_rows(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b) {
  3822. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3823. bool is_node = false;
  3824. if (a->grad || b->grad) {
  3825. is_node = true;
  3826. }
  3827. // TODO: implement non F32 return
  3828. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3829. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3830. result->op = GGML_OP_GET_ROWS;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. result->src[1] = b;
  3834. return result;
  3835. }
  3836. // ggml_get_rows_back
  3837. struct ggml_tensor * ggml_get_rows_back(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b,
  3841. struct ggml_tensor * c) {
  3842. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3843. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3844. bool is_node = false;
  3845. if (a->grad || b->grad) {
  3846. is_node = true;
  3847. }
  3848. // TODO: implement non F32 return
  3849. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3850. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3851. result->op = GGML_OP_GET_ROWS_BACK;
  3852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3853. result->src[0] = a;
  3854. result->src[1] = b;
  3855. return result;
  3856. }
  3857. // ggml_diag
  3858. struct ggml_tensor * ggml_diag(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. GGML_ASSERT(a->ne[1] == 1);
  3862. bool is_node = false;
  3863. if (a->grad) {
  3864. is_node = true;
  3865. }
  3866. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3867. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3868. result->op = GGML_OP_DIAG;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src[0] = a;
  3871. return result;
  3872. }
  3873. // ggml_diag_mask_inf
  3874. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a,
  3877. int n_past,
  3878. bool inplace) {
  3879. bool is_node = false;
  3880. if (a->grad) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. int32_t params[] = { n_past };
  3885. ggml_set_op_params(result, params, sizeof(params));
  3886. result->op = GGML_OP_DIAG_MASK_INF;
  3887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3888. result->src[0] = a;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_diag_mask_inf(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. int n_past) {
  3895. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3896. }
  3897. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. int n_past) {
  3901. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3902. }
  3903. // ggml_diag_mask_zero
  3904. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. int n_past,
  3908. bool inplace) {
  3909. bool is_node = false;
  3910. if (a->grad) {
  3911. is_node = true;
  3912. }
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. int32_t params[] = { n_past };
  3915. ggml_set_op_params(result, params, sizeof(params));
  3916. result->op = GGML_OP_DIAG_MASK_ZERO;
  3917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3918. result->src[0] = a;
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_diag_mask_zero(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. int n_past) {
  3925. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3926. }
  3927. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. int n_past) {
  3931. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3932. }
  3933. // ggml_soft_max
  3934. static struct ggml_tensor * ggml_soft_max_impl(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. bool inplace) {
  3938. bool is_node = false;
  3939. if (a->grad) {
  3940. is_node = true;
  3941. }
  3942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3943. result->op = GGML_OP_SOFT_MAX;
  3944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3945. result->src[0] = a;
  3946. return result;
  3947. }
  3948. struct ggml_tensor * ggml_soft_max(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a) {
  3951. return ggml_soft_max_impl(ctx, a, false);
  3952. }
  3953. struct ggml_tensor * ggml_soft_max_inplace(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a) {
  3956. return ggml_soft_max_impl(ctx, a, true);
  3957. }
  3958. // ggml_soft_max_back
  3959. static struct ggml_tensor * ggml_soft_max_back_impl(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b,
  3963. bool inplace) {
  3964. bool is_node = false;
  3965. if (a->grad || b->grad) {
  3966. is_node = true; // TODO : implement backward pass
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_SOFT_MAX_BACK;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. result->src[1] = b;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_soft_max_back(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_soft_max_back_impl(ctx, a, b, false);
  3980. }
  3981. struct ggml_tensor * ggml_soft_max_back_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b) {
  3985. return ggml_soft_max_back_impl(ctx, a, b, true);
  3986. }
  3987. // ggml_rope
  3988. static struct ggml_tensor * ggml_rope_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b,
  3992. int n_dims,
  3993. int mode,
  3994. int n_ctx,
  3995. int n_orig_ctx,
  3996. float freq_base,
  3997. float freq_scale,
  3998. float ext_factor,
  3999. float attn_factor,
  4000. float beta_fast,
  4001. float beta_slow,
  4002. float xpos_base,
  4003. bool xpos_down,
  4004. bool inplace) {
  4005. GGML_ASSERT(ggml_is_vector(b));
  4006. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4007. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4008. bool is_node = false;
  4009. if (a->grad) {
  4010. is_node = true;
  4011. }
  4012. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4013. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4014. memcpy(params + 5, &freq_base, sizeof(float));
  4015. memcpy(params + 6, &freq_scale, sizeof(float));
  4016. memcpy(params + 7, &ext_factor, sizeof(float));
  4017. memcpy(params + 8, &attn_factor, sizeof(float));
  4018. memcpy(params + 9, &beta_fast, sizeof(float));
  4019. memcpy(params + 10, &beta_slow, sizeof(float));
  4020. memcpy(params + 11, &xpos_base, sizeof(float));
  4021. memcpy(params + 12, &xpos_down, sizeof(bool));
  4022. ggml_set_op_params(result, params, sizeof(params));
  4023. result->op = GGML_OP_ROPE;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src[0] = a;
  4026. result->src[1] = b;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_rope(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. struct ggml_tensor * b,
  4033. int n_dims,
  4034. int mode,
  4035. int n_ctx) {
  4036. return ggml_rope_impl(
  4037. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4038. );
  4039. }
  4040. struct ggml_tensor * ggml_rope_inplace(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. struct ggml_tensor * b,
  4044. int n_dims,
  4045. int mode,
  4046. int n_ctx) {
  4047. return ggml_rope_impl(
  4048. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4049. );
  4050. }
  4051. struct ggml_tensor * ggml_rope_custom(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. int n_dims,
  4056. int mode,
  4057. int n_ctx,
  4058. int n_orig_ctx,
  4059. float freq_base,
  4060. float freq_scale,
  4061. float ext_factor,
  4062. float attn_factor,
  4063. float beta_fast,
  4064. float beta_slow) {
  4065. return ggml_rope_impl(
  4066. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4067. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4068. );
  4069. }
  4070. struct ggml_tensor * ggml_rope_custom_inplace(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. struct ggml_tensor * b,
  4074. int n_dims,
  4075. int mode,
  4076. int n_ctx,
  4077. int n_orig_ctx,
  4078. float freq_base,
  4079. float freq_scale,
  4080. float ext_factor,
  4081. float attn_factor,
  4082. float beta_fast,
  4083. float beta_slow) {
  4084. return ggml_rope_impl(
  4085. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4086. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4087. );
  4088. }
  4089. struct ggml_tensor * ggml_rope_xpos_inplace(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. struct ggml_tensor * b,
  4093. int n_dims,
  4094. float base,
  4095. bool down) {
  4096. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4097. }
  4098. // ggml_rope_back
  4099. struct ggml_tensor * ggml_rope_back(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b,
  4103. int n_dims,
  4104. int mode,
  4105. int n_ctx,
  4106. int n_orig_ctx,
  4107. float freq_base,
  4108. float freq_scale,
  4109. float ext_factor,
  4110. float attn_factor,
  4111. float beta_fast,
  4112. float beta_slow,
  4113. float xpos_base,
  4114. bool xpos_down) {
  4115. GGML_ASSERT(ggml_is_vector(b));
  4116. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4117. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4118. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4119. bool is_node = false;
  4120. if (a->grad) {
  4121. is_node = false; // TODO: implement backward
  4122. }
  4123. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4124. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4125. memcpy(params + 5, &freq_base, sizeof(float));
  4126. memcpy(params + 6, &freq_scale, sizeof(float));
  4127. memcpy(params + 7, &ext_factor, sizeof(float));
  4128. memcpy(params + 8, &attn_factor, sizeof(float));
  4129. memcpy(params + 9, &beta_fast, sizeof(float));
  4130. memcpy(params + 10, &beta_slow, sizeof(float));
  4131. memcpy(params + 11, &xpos_base, sizeof(float));
  4132. memcpy(params + 12, &xpos_down, sizeof(bool));
  4133. ggml_set_op_params(result, params, sizeof(params));
  4134. result->op = GGML_OP_ROPE_BACK;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. result->src[1] = b;
  4138. return result;
  4139. }
  4140. // ggml_alibi
  4141. struct ggml_tensor * ggml_alibi(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. int n_past,
  4145. int n_head,
  4146. float bias_max) {
  4147. GGML_ASSERT(n_past >= 0);
  4148. bool is_node = false;
  4149. if (a->grad) {
  4150. GGML_ASSERT(false); // TODO: implement backward
  4151. is_node = true;
  4152. }
  4153. // TODO: when implement backward, fix this:
  4154. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4155. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4156. int32_t op_params[3] = { n_past, n_head };
  4157. memcpy(op_params + 2, &bias_max, sizeof(float));
  4158. ggml_set_op_params(result, op_params, sizeof(op_params));
  4159. result->op = GGML_OP_ALIBI;
  4160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4161. result->src[0] = a;
  4162. return result;
  4163. }
  4164. // ggml_clamp
  4165. struct ggml_tensor * ggml_clamp(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. float min,
  4169. float max) {
  4170. bool is_node = false;
  4171. if (a->grad) {
  4172. GGML_ASSERT(false); // TODO: implement backward
  4173. is_node = true;
  4174. }
  4175. // TODO: when implement backward, fix this:
  4176. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4177. float params[] = { min, max };
  4178. ggml_set_op_params(result, params, sizeof(params));
  4179. result->op = GGML_OP_CLAMP;
  4180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4181. result->src[0] = a;
  4182. return result;
  4183. }
  4184. // ggml_conv_1d
  4185. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4186. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4187. }
  4188. GGML_API struct ggml_tensor * ggml_conv_1d(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b,
  4192. int s0,
  4193. int p0,
  4194. int d0) {
  4195. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4196. struct ggml_tensor * result =
  4197. ggml_mul_mat(ctx,
  4198. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4199. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4200. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4201. return result;
  4202. }
  4203. // ggml_conv_1d_ph
  4204. struct ggml_tensor* ggml_conv_1d_ph(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. struct ggml_tensor * b,
  4208. int s,
  4209. int d) {
  4210. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4211. }
  4212. // ggml_conv_transpose_1d
  4213. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4214. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4215. }
  4216. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. struct ggml_tensor * b,
  4220. int s0,
  4221. int p0,
  4222. int d0) {
  4223. GGML_ASSERT(ggml_is_matrix(b));
  4224. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4225. GGML_ASSERT(a->ne[3] == 1);
  4226. GGML_ASSERT(p0 == 0);
  4227. GGML_ASSERT(d0 == 1);
  4228. bool is_node = false;
  4229. if (a->grad || b->grad) {
  4230. GGML_ASSERT(false); // TODO: implement backward
  4231. is_node = true;
  4232. }
  4233. const int64_t ne[4] = {
  4234. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4235. a->ne[1], b->ne[2], 1,
  4236. };
  4237. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4238. int32_t params[] = { s0, p0, d0 };
  4239. ggml_set_op_params(result, params, sizeof(params));
  4240. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4242. result->src[0] = a;
  4243. result->src[1] = b;
  4244. return result;
  4245. }
  4246. // ggml_conv_2d
  4247. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4248. // a: [OC,IC, KH, KW]
  4249. // b: [N, IC, IH, IW]
  4250. // result: [N, OH, OW, IC*KH*KW]
  4251. struct ggml_tensor * ggml_im2col(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b,
  4255. int s0,
  4256. int s1,
  4257. int p0,
  4258. int p1,
  4259. int d0,
  4260. int d1,
  4261. bool is_2D) {
  4262. if(is_2D) {
  4263. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4264. } else {
  4265. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4266. }
  4267. bool is_node = false;
  4268. if (a->grad || b->grad) {
  4269. GGML_ASSERT(false); // TODO: implement backward
  4270. is_node = true;
  4271. }
  4272. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4273. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4274. const int64_t ne[4] = {
  4275. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4276. OW,
  4277. is_2D ? OH : b->ne[2],
  4278. is_2D ? b->ne[3] : 1,
  4279. };
  4280. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4281. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4282. ggml_set_op_params(result, params, sizeof(params));
  4283. result->op = GGML_OP_IM2COL;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. result->src[1] = b;
  4287. return result;
  4288. }
  4289. // a: [OC,IC, KH, KW]
  4290. // b: [N, IC, IH, IW]
  4291. // result: [N, OC, OH, OW]
  4292. struct ggml_tensor * ggml_conv_2d(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. int s0,
  4297. int s1,
  4298. int p0,
  4299. int p1,
  4300. int d0,
  4301. int d1) {
  4302. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4303. struct ggml_tensor * result =
  4304. ggml_mul_mat(ctx,
  4305. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4306. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4307. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4308. return result;
  4309. }
  4310. // ggml_conv_2d_sk_p0
  4311. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b) {
  4315. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4316. }
  4317. // ggml_conv_2d_s1_ph
  4318. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. struct ggml_tensor * b) {
  4322. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4323. }
  4324. // ggml_conv_transpose_2d_p0
  4325. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4326. return (ins - 1) * s - 2 * p + ks;
  4327. }
  4328. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b,
  4332. int stride) {
  4333. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4334. bool is_node = false;
  4335. if (a->grad || b->grad) {
  4336. GGML_ASSERT(false); // TODO: implement backward
  4337. is_node = true;
  4338. }
  4339. const int64_t ne[4] = {
  4340. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4341. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4342. a->ne[2], b->ne[3],
  4343. };
  4344. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4345. ggml_set_op_params_i32(result, 0, stride);
  4346. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src[0] = a;
  4349. result->src[1] = b;
  4350. return result;
  4351. }
  4352. // ggml_pool_*
  4353. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4354. return (ins + 2 * p - ks) / s + 1;
  4355. }
  4356. // ggml_pool_1d
  4357. struct ggml_tensor * ggml_pool_1d(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. enum ggml_op_pool op,
  4361. int k0,
  4362. int s0,
  4363. int p0) {
  4364. bool is_node = false;
  4365. if (a->grad) {
  4366. GGML_ASSERT(false); // TODO: implement backward
  4367. is_node = true;
  4368. }
  4369. const int64_t ne[3] = {
  4370. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4371. a->ne[1],
  4372. };
  4373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4374. int32_t params[] = { op, k0, s0, p0 };
  4375. ggml_set_op_params(result, params, sizeof(params));
  4376. result->op = GGML_OP_POOL_1D;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src[0] = a;
  4379. return result;
  4380. }
  4381. // ggml_pool_2d
  4382. struct ggml_tensor * ggml_pool_2d(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. enum ggml_op_pool op,
  4386. int k0,
  4387. int k1,
  4388. int s0,
  4389. int s1,
  4390. float p0,
  4391. float p1) {
  4392. bool is_node = false;
  4393. if (a->grad) {
  4394. GGML_ASSERT(false); // TODO: implement backward
  4395. is_node = true;
  4396. }
  4397. const int64_t ne[3] = {
  4398. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4399. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4400. a->ne[2],
  4401. };
  4402. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4403. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4404. ggml_set_op_params(result, params, sizeof(params));
  4405. result->op = GGML_OP_POOL_2D;
  4406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4407. result->src[0] = a;
  4408. return result;
  4409. }
  4410. // ggml_upscale
  4411. static struct ggml_tensor * ggml_upscale_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. int scale_factor) {
  4415. bool is_node = false;
  4416. if (a->grad) {
  4417. GGML_ASSERT(false); // TODO: implement backward
  4418. is_node = true;
  4419. }
  4420. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4421. a->ne[0] * scale_factor,
  4422. a->ne[1] * scale_factor,
  4423. a->ne[2], a->ne[3]);
  4424. result->op = GGML_OP_UPSCALE;
  4425. result->op_params[0] = scale_factor;
  4426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4427. result->src[0] = a;
  4428. result->src[1] = NULL;
  4429. return result;
  4430. }
  4431. struct ggml_tensor * ggml_upscale(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. int scale_factor) {
  4435. return ggml_upscale_impl(ctx, a, scale_factor);
  4436. }
  4437. // ggml_flash_attn
  4438. struct ggml_tensor * ggml_flash_attn(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * q,
  4441. struct ggml_tensor * k,
  4442. struct ggml_tensor * v,
  4443. bool masked) {
  4444. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4445. // TODO: check if vT can be multiplied by (k*qT)
  4446. bool is_node = false;
  4447. if (q->grad || k->grad || v->grad) {
  4448. is_node = true;
  4449. }
  4450. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4451. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4452. int32_t t = masked ? 1 : 0;
  4453. ggml_set_op_params(result, &t, sizeof(t));
  4454. result->op = GGML_OP_FLASH_ATTN;
  4455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4456. result->src[0] = q;
  4457. result->src[1] = k;
  4458. result->src[2] = v;
  4459. return result;
  4460. }
  4461. // ggml_flash_ff
  4462. struct ggml_tensor * ggml_flash_ff(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a,
  4465. struct ggml_tensor * b0,
  4466. struct ggml_tensor * b1,
  4467. struct ggml_tensor * c0,
  4468. struct ggml_tensor * c1) {
  4469. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4470. // TODO: more checks
  4471. bool is_node = false;
  4472. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4473. is_node = true;
  4474. }
  4475. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4476. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4477. result->op = GGML_OP_FLASH_FF;
  4478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4479. result->src[0] = a;
  4480. result->src[1] = b0;
  4481. result->src[2] = b1;
  4482. result->src[3] = c0;
  4483. result->src[4] = c1;
  4484. return result;
  4485. }
  4486. // ggml_flash_attn_back
  4487. struct ggml_tensor * ggml_flash_attn_back(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * q,
  4490. struct ggml_tensor * k,
  4491. struct ggml_tensor * v,
  4492. struct ggml_tensor * d,
  4493. bool masked) {
  4494. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4495. // TODO: check if vT can be multiplied by (k*qT)
  4496. // d shape [D,N,ne2,ne3]
  4497. // q shape [D,N,ne2,ne3]
  4498. // k shape [D,M,kvne2,ne3]
  4499. // v shape [M,D,kvne2,ne3]
  4500. const int64_t D = q->ne[0];
  4501. const int64_t N = q->ne[1];
  4502. const int64_t M = k->ne[1];
  4503. const int64_t ne2 = q->ne[2];
  4504. const int64_t ne3 = q->ne[3];
  4505. const int64_t kvne2 = k->ne[2];
  4506. GGML_ASSERT(k->ne[0] == D);
  4507. GGML_ASSERT(v->ne[0] == M);
  4508. GGML_ASSERT(v->ne[1] == D);
  4509. GGML_ASSERT(d->ne[0] == D);
  4510. GGML_ASSERT(d->ne[1] == N);
  4511. GGML_ASSERT(k->ne[2] == kvne2);
  4512. GGML_ASSERT(k->ne[3] == ne3);
  4513. GGML_ASSERT(v->ne[2] == kvne2);
  4514. GGML_ASSERT(v->ne[3] == ne3);
  4515. GGML_ASSERT(d->ne[2] == ne2);
  4516. GGML_ASSERT(d->ne[3] == ne3);
  4517. GGML_ASSERT(ne2 % kvne2 == 0);
  4518. bool is_node = false;
  4519. if (q->grad || k->grad || v->grad) {
  4520. // when using this operation (in backwards pass) these grads are set.
  4521. // we don't want to create (big) grad of our result, so is_node is false.
  4522. is_node = false;
  4523. }
  4524. // store gradients of q, k and v as continuous tensors concatenated in result.
  4525. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4526. const int64_t elem_q = ggml_nelements(q);
  4527. const int64_t elem_k = ggml_nelements(k);
  4528. const int64_t elem_v = ggml_nelements(v);
  4529. enum ggml_type result_type = GGML_TYPE_F32;
  4530. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4531. const size_t tsize = ggml_type_size(result_type);
  4532. const size_t offs_q = 0;
  4533. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4534. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4535. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4536. const size_t nelements = (end + tsize - 1)/tsize;
  4537. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4538. int32_t masked_i = masked ? 1 : 0;
  4539. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4540. result->op = GGML_OP_FLASH_ATTN_BACK;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src[0] = q;
  4543. result->src[1] = k;
  4544. result->src[2] = v;
  4545. result->src[3] = d;
  4546. return result;
  4547. }
  4548. // ggml_win_part
  4549. struct ggml_tensor * ggml_win_part(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. int w) {
  4553. GGML_ASSERT(a->ne[3] == 1);
  4554. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4555. bool is_node = false;
  4556. if (a->grad) {
  4557. GGML_ASSERT(false); // TODO: implement backward
  4558. is_node = true;
  4559. }
  4560. // padding
  4561. const int px = (w - a->ne[1]%w)%w;
  4562. const int py = (w - a->ne[2]%w)%w;
  4563. const int npx = (px + a->ne[1])/w;
  4564. const int npy = (py + a->ne[2])/w;
  4565. const int np = npx*npy;
  4566. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4567. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4568. int32_t params[] = { npx, npy, w };
  4569. ggml_set_op_params(result, params, sizeof(params));
  4570. result->op = GGML_OP_WIN_PART;
  4571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4572. result->src[0] = a;
  4573. return result;
  4574. }
  4575. // ggml_win_unpart
  4576. struct ggml_tensor * ggml_win_unpart(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. int w0,
  4580. int h0,
  4581. int w) {
  4582. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4583. bool is_node = false;
  4584. if (a->grad) {
  4585. GGML_ASSERT(false); // TODO: implement backward
  4586. is_node = true;
  4587. }
  4588. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4589. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4590. int32_t params[] = { w };
  4591. ggml_set_op_params(result, params, sizeof(params));
  4592. result->op = GGML_OP_WIN_UNPART;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src[0] = a;
  4595. return result;
  4596. }
  4597. // ggml_get_rel_pos
  4598. struct ggml_tensor * ggml_get_rel_pos(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. int qh,
  4602. int kh) {
  4603. GGML_ASSERT(qh == kh);
  4604. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4605. bool is_node = false;
  4606. if (a->grad) {
  4607. GGML_ASSERT(false); // TODO: implement backward
  4608. is_node = true;
  4609. }
  4610. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4611. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4612. result->op = GGML_OP_GET_REL_POS;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src[0] = a;
  4615. result->src[1] = NULL;
  4616. return result;
  4617. }
  4618. // ggml_add_rel_pos
  4619. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * pw,
  4623. struct ggml_tensor * ph,
  4624. bool inplace) {
  4625. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4626. GGML_ASSERT(ggml_is_contiguous(a));
  4627. GGML_ASSERT(ggml_is_contiguous(pw));
  4628. GGML_ASSERT(ggml_is_contiguous(ph));
  4629. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4630. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4631. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4632. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4633. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4634. bool is_node = false;
  4635. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4636. is_node = true;
  4637. }
  4638. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4639. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4640. result->op = GGML_OP_ADD_REL_POS;
  4641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4642. result->src[0] = a;
  4643. result->src[1] = pw;
  4644. result->src[2] = ph;
  4645. return result;
  4646. }
  4647. struct ggml_tensor * ggml_add_rel_pos(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a,
  4650. struct ggml_tensor * pw,
  4651. struct ggml_tensor * ph) {
  4652. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4653. }
  4654. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. struct ggml_tensor * pw,
  4658. struct ggml_tensor * ph) {
  4659. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4660. }
  4661. // gmml_unary
  4662. static struct ggml_tensor * ggml_unary_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. enum ggml_unary_op op,
  4666. bool inplace) {
  4667. bool is_node = false;
  4668. if (!inplace && (a->grad)) {
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4672. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4673. result->op = GGML_OP_UNARY;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = a;
  4676. return result;
  4677. }
  4678. struct ggml_tensor * ggml_unary(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. enum ggml_unary_op op) {
  4682. return ggml_unary_impl(ctx, a, op, false);
  4683. }
  4684. struct ggml_tensor * ggml_unary_inplace(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * a,
  4687. enum ggml_unary_op op) {
  4688. return ggml_unary_impl(ctx, a, op, true);
  4689. }
  4690. // ggml_map_unary
  4691. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. const ggml_unary_op_f32_t fun,
  4695. bool inplace) {
  4696. bool is_node = false;
  4697. if (!inplace && a->grad) {
  4698. is_node = true;
  4699. }
  4700. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4701. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4702. result->op = GGML_OP_MAP_UNARY;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. return result;
  4706. }
  4707. struct ggml_tensor * ggml_map_unary_f32(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. const ggml_unary_op_f32_t fun) {
  4711. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4712. }
  4713. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. const ggml_unary_op_f32_t fun) {
  4717. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4718. }
  4719. // ggml_map_binary
  4720. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b,
  4724. const ggml_binary_op_f32_t fun,
  4725. bool inplace) {
  4726. GGML_ASSERT(ggml_are_same_shape(a, b));
  4727. bool is_node = false;
  4728. if (!inplace && (a->grad || b->grad)) {
  4729. is_node = true;
  4730. }
  4731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4732. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4733. result->op = GGML_OP_MAP_BINARY;
  4734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4735. result->src[0] = a;
  4736. result->src[1] = b;
  4737. return result;
  4738. }
  4739. struct ggml_tensor * ggml_map_binary_f32(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a,
  4742. struct ggml_tensor * b,
  4743. const ggml_binary_op_f32_t fun) {
  4744. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4745. }
  4746. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a,
  4749. struct ggml_tensor * b,
  4750. const ggml_binary_op_f32_t fun) {
  4751. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4752. }
  4753. // ggml_map_custom1_f32
  4754. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. const ggml_custom1_op_f32_t fun,
  4758. bool inplace) {
  4759. bool is_node = false;
  4760. if (!inplace && a->grad) {
  4761. is_node = true;
  4762. }
  4763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4764. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4765. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src[0] = a;
  4768. return result;
  4769. }
  4770. struct ggml_tensor * ggml_map_custom1_f32(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. const ggml_custom1_op_f32_t fun) {
  4774. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4775. }
  4776. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. const ggml_custom1_op_f32_t fun) {
  4780. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4781. }
  4782. // ggml_map_custom2_f32
  4783. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b,
  4787. const ggml_custom2_op_f32_t fun,
  4788. bool inplace) {
  4789. bool is_node = false;
  4790. if (!inplace && (a->grad || b->grad)) {
  4791. is_node = true;
  4792. }
  4793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4794. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4795. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4797. result->src[0] = a;
  4798. result->src[1] = b;
  4799. return result;
  4800. }
  4801. struct ggml_tensor * ggml_map_custom2_f32(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. struct ggml_tensor * b,
  4805. const ggml_custom2_op_f32_t fun) {
  4806. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4807. }
  4808. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. struct ggml_tensor * b,
  4812. const ggml_custom2_op_f32_t fun) {
  4813. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4814. }
  4815. // ggml_map_custom3_f32
  4816. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b,
  4820. struct ggml_tensor * c,
  4821. const ggml_custom3_op_f32_t fun,
  4822. bool inplace) {
  4823. bool is_node = false;
  4824. if (!inplace && (a->grad || b->grad || c->grad)) {
  4825. is_node = true;
  4826. }
  4827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4828. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4829. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4831. result->src[0] = a;
  4832. result->src[1] = b;
  4833. result->src[2] = c;
  4834. return result;
  4835. }
  4836. struct ggml_tensor * ggml_map_custom3_f32(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. struct ggml_tensor * c,
  4841. const ggml_custom3_op_f32_t fun) {
  4842. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4843. }
  4844. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b,
  4848. struct ggml_tensor * c,
  4849. const ggml_custom3_op_f32_t fun) {
  4850. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4851. }
  4852. // ggml_map_custom1
  4853. struct ggml_map_custom1_op_params {
  4854. ggml_custom1_op_t fun;
  4855. int n_tasks;
  4856. void * userdata;
  4857. };
  4858. static struct ggml_tensor * ggml_map_custom1_impl(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. const ggml_custom1_op_t fun,
  4862. int n_tasks,
  4863. void * userdata,
  4864. bool inplace) {
  4865. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4866. bool is_node = false;
  4867. if (!inplace && a->grad) {
  4868. is_node = true;
  4869. }
  4870. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4871. struct ggml_map_custom1_op_params params = {
  4872. /*.fun =*/ fun,
  4873. /*.n_tasks =*/ n_tasks,
  4874. /*.userdata =*/ userdata
  4875. };
  4876. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4877. result->op = GGML_OP_MAP_CUSTOM1;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_map_custom1(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. const ggml_custom1_op_t fun,
  4886. int n_tasks,
  4887. void * userdata) {
  4888. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4889. }
  4890. struct ggml_tensor * ggml_map_custom1_inplace(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. const ggml_custom1_op_t fun,
  4894. int n_tasks,
  4895. void * userdata) {
  4896. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4897. }
  4898. // ggml_map_custom2
  4899. struct ggml_map_custom2_op_params {
  4900. ggml_custom2_op_t fun;
  4901. int n_tasks;
  4902. void * userdata;
  4903. };
  4904. static struct ggml_tensor * ggml_map_custom2_impl(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b,
  4908. const ggml_custom2_op_t fun,
  4909. int n_tasks,
  4910. void * userdata,
  4911. bool inplace) {
  4912. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4913. bool is_node = false;
  4914. if (!inplace && (a->grad || b->grad)) {
  4915. is_node = true;
  4916. }
  4917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4918. struct ggml_map_custom2_op_params params = {
  4919. /*.fun =*/ fun,
  4920. /*.n_tasks =*/ n_tasks,
  4921. /*.userdata =*/ userdata
  4922. };
  4923. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4924. result->op = GGML_OP_MAP_CUSTOM2;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src[0] = a;
  4927. result->src[1] = b;
  4928. return result;
  4929. }
  4930. struct ggml_tensor * ggml_map_custom2(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. const ggml_custom2_op_t fun,
  4935. int n_tasks,
  4936. void * userdata) {
  4937. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  4938. }
  4939. struct ggml_tensor * ggml_map_custom2_inplace(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. struct ggml_tensor * b,
  4943. const ggml_custom2_op_t fun,
  4944. int n_tasks,
  4945. void * userdata) {
  4946. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  4947. }
  4948. // ggml_map_custom3
  4949. struct ggml_map_custom3_op_params {
  4950. ggml_custom3_op_t fun;
  4951. int n_tasks;
  4952. void * userdata;
  4953. };
  4954. static struct ggml_tensor * ggml_map_custom3_impl(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. struct ggml_tensor * c,
  4959. const ggml_custom3_op_t fun,
  4960. int n_tasks,
  4961. void * userdata,
  4962. bool inplace) {
  4963. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4964. bool is_node = false;
  4965. if (!inplace && (a->grad || b->grad || c->grad)) {
  4966. is_node = true;
  4967. }
  4968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4969. struct ggml_map_custom3_op_params params = {
  4970. /*.fun =*/ fun,
  4971. /*.n_tasks =*/ n_tasks,
  4972. /*.userdata =*/ userdata
  4973. };
  4974. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4975. result->op = GGML_OP_MAP_CUSTOM3;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src[0] = a;
  4978. result->src[1] = b;
  4979. result->src[2] = c;
  4980. return result;
  4981. }
  4982. struct ggml_tensor * ggml_map_custom3(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. struct ggml_tensor * c,
  4987. const ggml_custom3_op_t fun,
  4988. int n_tasks,
  4989. void * userdata) {
  4990. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  4991. }
  4992. struct ggml_tensor * ggml_map_custom3_inplace(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. struct ggml_tensor * c,
  4997. const ggml_custom3_op_t fun,
  4998. int n_tasks,
  4999. void * userdata) {
  5000. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5001. }
  5002. // ggml_cross_entropy_loss
  5003. struct ggml_tensor * ggml_cross_entropy_loss(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. struct ggml_tensor * b) {
  5007. GGML_ASSERT(ggml_are_same_shape(a, b));
  5008. bool is_node = false;
  5009. if (a->grad || b->grad) {
  5010. is_node = true;
  5011. }
  5012. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5013. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src[0] = a;
  5016. result->src[1] = b;
  5017. return result;
  5018. }
  5019. // ggml_cross_entropy_loss_back
  5020. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5021. struct ggml_context * ctx,
  5022. struct ggml_tensor * a,
  5023. struct ggml_tensor * b,
  5024. struct ggml_tensor * c) {
  5025. GGML_ASSERT(ggml_are_same_shape(a, b));
  5026. GGML_ASSERT(ggml_is_scalar(c));
  5027. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5028. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5029. result->grad = NULL;
  5030. result->src[0] = a;
  5031. result->src[1] = b;
  5032. result->src[2] = c;
  5033. return result;
  5034. }
  5035. ////////////////////////////////////////////////////////////////////////////////
  5036. void ggml_set_param(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * tensor) {
  5039. tensor->is_param = true;
  5040. GGML_ASSERT(tensor->grad == NULL);
  5041. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5042. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5043. }
  5044. // ggml_compute_forward_dup
  5045. static void ggml_compute_forward_dup_same_cont(
  5046. const struct ggml_compute_params * params,
  5047. const struct ggml_tensor * src0,
  5048. struct ggml_tensor * dst) {
  5049. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5050. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5051. GGML_ASSERT(src0->type == dst->type);
  5052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5053. return;
  5054. }
  5055. const size_t nb00 = src0->nb[0];
  5056. const size_t nb0 = dst->nb[0];
  5057. const int ith = params->ith; // thread index
  5058. const int nth = params->nth; // number of threads
  5059. // parallelize by elements
  5060. const int ne = ggml_nelements(dst);
  5061. const int dr = (ne + nth - 1) / nth;
  5062. const int ie0 = dr * ith;
  5063. const int ie1 = MIN(ie0 + dr, ne);
  5064. if (ie0 < ie1) {
  5065. memcpy(
  5066. ((char *) dst->data + ie0*nb0),
  5067. ((char *) src0->data + ie0*nb00),
  5068. (ie1 - ie0) * ggml_type_size(src0->type));
  5069. }
  5070. }
  5071. static void ggml_compute_forward_dup_f16(
  5072. const struct ggml_compute_params * params,
  5073. const struct ggml_tensor * src0,
  5074. struct ggml_tensor * dst) {
  5075. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5077. return;
  5078. }
  5079. GGML_TENSOR_UNARY_OP_LOCALS
  5080. const int ith = params->ith; // thread index
  5081. const int nth = params->nth; // number of threads
  5082. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5083. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5084. return;
  5085. }
  5086. // parallelize by rows
  5087. const int nr = ne01;
  5088. // number of rows per thread
  5089. const int dr = (nr + nth - 1) / nth;
  5090. // row range for this thread
  5091. const int ir0 = dr * ith;
  5092. const int ir1 = MIN(ir0 + dr, nr);
  5093. if (src0->type == dst->type &&
  5094. ne00 == ne0 &&
  5095. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5096. // copy by rows
  5097. const size_t rs = ne00*nb00;
  5098. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5100. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5101. memcpy(
  5102. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5103. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5104. rs);
  5105. }
  5106. }
  5107. }
  5108. return;
  5109. }
  5110. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5111. if (ggml_is_contiguous(dst)) {
  5112. if (nb00 == sizeof(ggml_fp16_t)) {
  5113. if (dst->type == GGML_TYPE_F16) {
  5114. size_t id = 0;
  5115. const size_t rs = ne00 * nb00;
  5116. char * dst_ptr = (char *) dst->data;
  5117. for (int i03 = 0; i03 < ne03; i03++) {
  5118. for (int i02 = 0; i02 < ne02; i02++) {
  5119. id += rs * ir0;
  5120. for (int i01 = ir0; i01 < ir1; i01++) {
  5121. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5122. memcpy(dst_ptr + id, src0_ptr, rs);
  5123. id += rs;
  5124. }
  5125. id += rs * (ne01 - ir1);
  5126. }
  5127. }
  5128. } else if (dst->type == GGML_TYPE_F32) {
  5129. size_t id = 0;
  5130. float * dst_ptr = (float *) dst->data;
  5131. for (int i03 = 0; i03 < ne03; i03++) {
  5132. for (int i02 = 0; i02 < ne02; i02++) {
  5133. id += ne00 * ir0;
  5134. for (int i01 = ir0; i01 < ir1; i01++) {
  5135. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5136. for (int i00 = 0; i00 < ne00; i00++) {
  5137. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5138. id++;
  5139. }
  5140. }
  5141. id += ne00 * (ne01 - ir1);
  5142. }
  5143. }
  5144. } else if (type_traits[dst->type].from_float) {
  5145. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5146. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5147. size_t id = 0;
  5148. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5149. char * dst_ptr = (char *) dst->data;
  5150. for (int i03 = 0; i03 < ne03; i03++) {
  5151. for (int i02 = 0; i02 < ne02; i02++) {
  5152. id += rs * ir0;
  5153. for (int i01 = ir0; i01 < ir1; i01++) {
  5154. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5155. for (int i00 = 0; i00 < ne00; i00++) {
  5156. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5157. }
  5158. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5159. id += rs;
  5160. }
  5161. id += rs * (ne01 - ir1);
  5162. }
  5163. }
  5164. } else {
  5165. GGML_ASSERT(false); // TODO: implement
  5166. }
  5167. } else {
  5168. //printf("%s: this is not optimal - fix me\n", __func__);
  5169. if (dst->type == GGML_TYPE_F32) {
  5170. size_t id = 0;
  5171. float * dst_ptr = (float *) dst->data;
  5172. for (int i03 = 0; i03 < ne03; i03++) {
  5173. for (int i02 = 0; i02 < ne02; i02++) {
  5174. id += ne00 * ir0;
  5175. for (int i01 = ir0; i01 < ir1; i01++) {
  5176. for (int i00 = 0; i00 < ne00; i00++) {
  5177. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5178. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5179. id++;
  5180. }
  5181. }
  5182. id += ne00 * (ne01 - ir1);
  5183. }
  5184. }
  5185. } else if (dst->type == GGML_TYPE_F16) {
  5186. size_t id = 0;
  5187. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5188. for (int i03 = 0; i03 < ne03; i03++) {
  5189. for (int i02 = 0; i02 < ne02; i02++) {
  5190. id += ne00 * ir0;
  5191. for (int i01 = ir0; i01 < ir1; i01++) {
  5192. for (int i00 = 0; i00 < ne00; i00++) {
  5193. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5194. dst_ptr[id] = *src0_ptr;
  5195. id++;
  5196. }
  5197. }
  5198. id += ne00 * (ne01 - ir1);
  5199. }
  5200. }
  5201. } else {
  5202. GGML_ASSERT(false); // TODO: implement
  5203. }
  5204. }
  5205. return;
  5206. }
  5207. // dst counters
  5208. int64_t i10 = 0;
  5209. int64_t i11 = 0;
  5210. int64_t i12 = 0;
  5211. int64_t i13 = 0;
  5212. if (dst->type == GGML_TYPE_F16) {
  5213. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5214. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5215. i10 += ne00 * ir0;
  5216. while (i10 >= ne0) {
  5217. i10 -= ne0;
  5218. if (++i11 == ne1) {
  5219. i11 = 0;
  5220. if (++i12 == ne2) {
  5221. i12 = 0;
  5222. if (++i13 == ne3) {
  5223. i13 = 0;
  5224. }
  5225. }
  5226. }
  5227. }
  5228. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5229. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5230. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5231. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5232. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5233. if (++i10 == ne00) {
  5234. i10 = 0;
  5235. if (++i11 == ne01) {
  5236. i11 = 0;
  5237. if (++i12 == ne02) {
  5238. i12 = 0;
  5239. if (++i13 == ne03) {
  5240. i13 = 0;
  5241. }
  5242. }
  5243. }
  5244. }
  5245. }
  5246. }
  5247. i10 += ne00 * (ne01 - ir1);
  5248. while (i10 >= ne0) {
  5249. i10 -= ne0;
  5250. if (++i11 == ne1) {
  5251. i11 = 0;
  5252. if (++i12 == ne2) {
  5253. i12 = 0;
  5254. if (++i13 == ne3) {
  5255. i13 = 0;
  5256. }
  5257. }
  5258. }
  5259. }
  5260. }
  5261. }
  5262. } else if (dst->type == GGML_TYPE_F32) {
  5263. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5264. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5265. i10 += ne00 * ir0;
  5266. while (i10 >= ne0) {
  5267. i10 -= ne0;
  5268. if (++i11 == ne1) {
  5269. i11 = 0;
  5270. if (++i12 == ne2) {
  5271. i12 = 0;
  5272. if (++i13 == ne3) {
  5273. i13 = 0;
  5274. }
  5275. }
  5276. }
  5277. }
  5278. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5279. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5280. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5281. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5282. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5283. if (++i10 == ne0) {
  5284. i10 = 0;
  5285. if (++i11 == ne1) {
  5286. i11 = 0;
  5287. if (++i12 == ne2) {
  5288. i12 = 0;
  5289. if (++i13 == ne3) {
  5290. i13 = 0;
  5291. }
  5292. }
  5293. }
  5294. }
  5295. }
  5296. }
  5297. i10 += ne00 * (ne01 - ir1);
  5298. while (i10 >= ne0) {
  5299. i10 -= ne0;
  5300. if (++i11 == ne1) {
  5301. i11 = 0;
  5302. if (++i12 == ne2) {
  5303. i12 = 0;
  5304. if (++i13 == ne3) {
  5305. i13 = 0;
  5306. }
  5307. }
  5308. }
  5309. }
  5310. }
  5311. }
  5312. } else {
  5313. GGML_ASSERT(false); // TODO: implement
  5314. }
  5315. }
  5316. static void ggml_compute_forward_dup_f32(
  5317. const struct ggml_compute_params * params,
  5318. const struct ggml_tensor * src0,
  5319. struct ggml_tensor * dst) {
  5320. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5322. return;
  5323. }
  5324. GGML_TENSOR_UNARY_OP_LOCALS
  5325. const int ith = params->ith; // thread index
  5326. const int nth = params->nth; // number of threads
  5327. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5328. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5329. return;
  5330. }
  5331. // parallelize by rows
  5332. const int nr = ne01;
  5333. // number of rows per thread
  5334. const int dr = (nr + nth - 1) / nth;
  5335. // row range for this thread
  5336. const int ir0 = dr * ith;
  5337. const int ir1 = MIN(ir0 + dr, nr);
  5338. if (src0->type == dst->type &&
  5339. ne00 == ne0 &&
  5340. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5341. // copy by rows
  5342. const size_t rs = ne00*nb00;
  5343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5345. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5346. memcpy(
  5347. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5348. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5349. rs);
  5350. }
  5351. }
  5352. }
  5353. return;
  5354. }
  5355. if (ggml_is_contiguous(dst)) {
  5356. // TODO: simplify
  5357. if (nb00 == sizeof(float)) {
  5358. if (dst->type == GGML_TYPE_F32) {
  5359. size_t id = 0;
  5360. const size_t rs = ne00 * nb00;
  5361. char * dst_ptr = (char *) dst->data;
  5362. for (int i03 = 0; i03 < ne03; i03++) {
  5363. for (int i02 = 0; i02 < ne02; i02++) {
  5364. id += rs * ir0;
  5365. for (int i01 = ir0; i01 < ir1; i01++) {
  5366. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5367. memcpy(dst_ptr + id, src0_ptr, rs);
  5368. id += rs;
  5369. }
  5370. id += rs * (ne01 - ir1);
  5371. }
  5372. }
  5373. } else if (type_traits[dst->type].from_float) {
  5374. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5375. size_t id = 0;
  5376. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5377. char * dst_ptr = (char *) dst->data;
  5378. for (int i03 = 0; i03 < ne03; i03++) {
  5379. for (int i02 = 0; i02 < ne02; i02++) {
  5380. id += rs * ir0;
  5381. for (int i01 = ir0; i01 < ir1; i01++) {
  5382. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5383. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5384. id += rs;
  5385. }
  5386. id += rs * (ne01 - ir1);
  5387. }
  5388. }
  5389. } else {
  5390. GGML_ASSERT(false); // TODO: implement
  5391. }
  5392. } else {
  5393. //printf("%s: this is not optimal - fix me\n", __func__);
  5394. if (dst->type == GGML_TYPE_F32) {
  5395. size_t id = 0;
  5396. float * dst_ptr = (float *) dst->data;
  5397. for (int i03 = 0; i03 < ne03; i03++) {
  5398. for (int i02 = 0; i02 < ne02; i02++) {
  5399. id += ne00 * ir0;
  5400. for (int i01 = ir0; i01 < ir1; i01++) {
  5401. for (int i00 = 0; i00 < ne00; i00++) {
  5402. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5403. dst_ptr[id] = *src0_ptr;
  5404. id++;
  5405. }
  5406. }
  5407. id += ne00 * (ne01 - ir1);
  5408. }
  5409. }
  5410. } else if (dst->type == GGML_TYPE_F16) {
  5411. size_t id = 0;
  5412. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5413. for (int i03 = 0; i03 < ne03; i03++) {
  5414. for (int i02 = 0; i02 < ne02; i02++) {
  5415. id += ne00 * ir0;
  5416. for (int i01 = ir0; i01 < ir1; i01++) {
  5417. for (int i00 = 0; i00 < ne00; i00++) {
  5418. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5419. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5420. id++;
  5421. }
  5422. }
  5423. id += ne00 * (ne01 - ir1);
  5424. }
  5425. }
  5426. } else {
  5427. GGML_ASSERT(false); // TODO: implement
  5428. }
  5429. }
  5430. return;
  5431. }
  5432. // dst counters
  5433. int64_t i10 = 0;
  5434. int64_t i11 = 0;
  5435. int64_t i12 = 0;
  5436. int64_t i13 = 0;
  5437. if (dst->type == GGML_TYPE_F32) {
  5438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5440. i10 += ne00 * ir0;
  5441. while (i10 >= ne0) {
  5442. i10 -= ne0;
  5443. if (++i11 == ne1) {
  5444. i11 = 0;
  5445. if (++i12 == ne2) {
  5446. i12 = 0;
  5447. if (++i13 == ne3) {
  5448. i13 = 0;
  5449. }
  5450. }
  5451. }
  5452. }
  5453. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5455. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5456. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5457. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5458. if (++i10 == ne0) {
  5459. i10 = 0;
  5460. if (++i11 == ne1) {
  5461. i11 = 0;
  5462. if (++i12 == ne2) {
  5463. i12 = 0;
  5464. if (++i13 == ne3) {
  5465. i13 = 0;
  5466. }
  5467. }
  5468. }
  5469. }
  5470. }
  5471. }
  5472. i10 += ne00 * (ne01 - ir1);
  5473. while (i10 >= ne0) {
  5474. i10 -= ne0;
  5475. if (++i11 == ne1) {
  5476. i11 = 0;
  5477. if (++i12 == ne2) {
  5478. i12 = 0;
  5479. if (++i13 == ne3) {
  5480. i13 = 0;
  5481. }
  5482. }
  5483. }
  5484. }
  5485. }
  5486. }
  5487. } else if (dst->type == GGML_TYPE_F16) {
  5488. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5489. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5490. i10 += ne00 * ir0;
  5491. while (i10 >= ne0) {
  5492. i10 -= ne0;
  5493. if (++i11 == ne1) {
  5494. i11 = 0;
  5495. if (++i12 == ne2) {
  5496. i12 = 0;
  5497. if (++i13 == ne3) {
  5498. i13 = 0;
  5499. }
  5500. }
  5501. }
  5502. }
  5503. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5505. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5506. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5507. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5508. if (++i10 == ne0) {
  5509. i10 = 0;
  5510. if (++i11 == ne1) {
  5511. i11 = 0;
  5512. if (++i12 == ne2) {
  5513. i12 = 0;
  5514. if (++i13 == ne3) {
  5515. i13 = 0;
  5516. }
  5517. }
  5518. }
  5519. }
  5520. }
  5521. }
  5522. i10 += ne00 * (ne01 - ir1);
  5523. while (i10 >= ne0) {
  5524. i10 -= ne0;
  5525. if (++i11 == ne1) {
  5526. i11 = 0;
  5527. if (++i12 == ne2) {
  5528. i12 = 0;
  5529. if (++i13 == ne3) {
  5530. i13 = 0;
  5531. }
  5532. }
  5533. }
  5534. }
  5535. }
  5536. }
  5537. } else {
  5538. GGML_ASSERT(false); // TODO: implement
  5539. }
  5540. }
  5541. static void ggml_compute_forward_dup(
  5542. const struct ggml_compute_params * params,
  5543. const struct ggml_tensor * src0,
  5544. struct ggml_tensor * dst) {
  5545. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5546. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5547. return;
  5548. }
  5549. switch (src0->type) {
  5550. case GGML_TYPE_F16:
  5551. {
  5552. ggml_compute_forward_dup_f16(params, src0, dst);
  5553. } break;
  5554. case GGML_TYPE_F32:
  5555. {
  5556. ggml_compute_forward_dup_f32(params, src0, dst);
  5557. } break;
  5558. default:
  5559. {
  5560. GGML_ASSERT(false);
  5561. } break;
  5562. }
  5563. }
  5564. // ggml_compute_forward_add
  5565. static void ggml_compute_forward_add_f32(
  5566. const struct ggml_compute_params * params,
  5567. const struct ggml_tensor * src0,
  5568. const struct ggml_tensor * src1,
  5569. struct ggml_tensor * dst) {
  5570. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5572. return;
  5573. }
  5574. const int ith = params->ith;
  5575. const int nth = params->nth;
  5576. const int nr = ggml_nrows(src0);
  5577. GGML_TENSOR_BINARY_OP_LOCALS
  5578. GGML_ASSERT( nb0 == sizeof(float));
  5579. GGML_ASSERT(nb00 == sizeof(float));
  5580. // rows per thread
  5581. const int dr = (nr + nth - 1)/nth;
  5582. // row range for this thread
  5583. const int ir0 = dr*ith;
  5584. const int ir1 = MIN(ir0 + dr, nr);
  5585. if (nb10 == sizeof(float)) {
  5586. for (int ir = ir0; ir < ir1; ++ir) {
  5587. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5588. const int64_t i03 = ir/(ne02*ne01);
  5589. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5590. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5591. const int64_t i13 = i03 % ne13;
  5592. const int64_t i12 = i02 % ne12;
  5593. const int64_t i11 = i01 % ne11;
  5594. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5595. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5596. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5597. #ifdef GGML_USE_ACCELERATE
  5598. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5599. #else
  5600. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5601. #endif
  5602. }
  5603. } else {
  5604. // src1 is not contiguous
  5605. for (int ir = ir0; ir < ir1; ++ir) {
  5606. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5607. const int64_t i03 = ir/(ne02*ne01);
  5608. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5609. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5610. const int64_t i13 = i03 % ne13;
  5611. const int64_t i12 = i02 % ne12;
  5612. const int64_t i11 = i01 % ne11;
  5613. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5614. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5615. for (int i0 = 0; i0 < ne0; i0++) {
  5616. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5617. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5618. }
  5619. }
  5620. }
  5621. }
  5622. static void ggml_compute_forward_add_f16_f32(
  5623. const struct ggml_compute_params * params,
  5624. const struct ggml_tensor * src0,
  5625. const struct ggml_tensor * src1,
  5626. struct ggml_tensor * dst) {
  5627. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5629. return;
  5630. }
  5631. const int ith = params->ith;
  5632. const int nth = params->nth;
  5633. const int nr = ggml_nrows(src0);
  5634. GGML_TENSOR_BINARY_OP_LOCALS
  5635. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5636. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5637. if (dst->type == GGML_TYPE_F32) {
  5638. GGML_ASSERT( nb0 == sizeof(float));
  5639. }
  5640. else {
  5641. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5642. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5643. }
  5644. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5645. // rows per thread
  5646. const int dr = (nr + nth - 1)/nth;
  5647. // row range for this thread
  5648. const int ir0 = dr*ith;
  5649. const int ir1 = MIN(ir0 + dr, nr);
  5650. if (nb10 == sizeof(float)) {
  5651. if (dst->type == GGML_TYPE_F16) {
  5652. for (int ir = ir0; ir < ir1; ++ir) {
  5653. // src0, src1 and dst are same shape => same indices
  5654. const int i3 = ir/(ne2*ne1);
  5655. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5656. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5657. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5658. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5659. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5660. for (int i = 0; i < ne0; i++) {
  5661. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5662. }
  5663. }
  5664. } else {
  5665. for (int ir = ir0; ir < ir1; ++ir) {
  5666. // src0, src1 and dst are same shape => same indices
  5667. const int i3 = ir/(ne2*ne1);
  5668. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5669. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5670. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5671. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5672. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5673. for (int i = 0; i < ne0; i++) {
  5674. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5675. }
  5676. }
  5677. }
  5678. }
  5679. else {
  5680. // src1 is not contiguous
  5681. GGML_ASSERT(false);
  5682. }
  5683. }
  5684. static void ggml_compute_forward_add_f16_f16(
  5685. const struct ggml_compute_params * params,
  5686. const struct ggml_tensor * src0,
  5687. const struct ggml_tensor * src1,
  5688. struct ggml_tensor * dst) {
  5689. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5691. return;
  5692. }
  5693. const int ith = params->ith;
  5694. const int nth = params->nth;
  5695. const int nr = ggml_nrows(src0);
  5696. GGML_TENSOR_BINARY_OP_LOCALS
  5697. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5698. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5699. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5700. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5701. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5702. // rows per thread
  5703. const int dr = (nr + nth - 1)/nth;
  5704. // row range for this thread
  5705. const int ir0 = dr*ith;
  5706. const int ir1 = MIN(ir0 + dr, nr);
  5707. if (nb10 == sizeof(ggml_fp16_t)) {
  5708. for (int ir = ir0; ir < ir1; ++ir) {
  5709. // src0, src1 and dst are same shape => same indices
  5710. const int i3 = ir/(ne2*ne1);
  5711. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5712. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5713. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5714. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5715. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5716. for (int i = 0; i < ne0; i++) {
  5717. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5718. }
  5719. }
  5720. }
  5721. else {
  5722. // src1 is not contiguous
  5723. GGML_ASSERT(false);
  5724. }
  5725. }
  5726. static void ggml_compute_forward_add_q_f32(
  5727. const struct ggml_compute_params * params,
  5728. const struct ggml_tensor * src0,
  5729. const struct ggml_tensor * src1,
  5730. struct ggml_tensor * dst) {
  5731. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5733. return;
  5734. }
  5735. const int nr = ggml_nrows(src0);
  5736. GGML_TENSOR_BINARY_OP_LOCALS
  5737. const int ith = params->ith;
  5738. const int nth = params->nth;
  5739. const enum ggml_type type = src0->type;
  5740. const enum ggml_type dtype = dst->type;
  5741. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5742. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5743. // we don't support permuted src0 or src1
  5744. GGML_ASSERT(nb00 == ggml_type_size(type));
  5745. GGML_ASSERT(nb10 == sizeof(float));
  5746. // dst cannot be transposed or permuted
  5747. GGML_ASSERT(nb0 <= nb1);
  5748. GGML_ASSERT(nb1 <= nb2);
  5749. GGML_ASSERT(nb2 <= nb3);
  5750. GGML_ASSERT(ggml_is_quantized(src0->type));
  5751. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5752. // rows per thread
  5753. const int dr = (nr + nth - 1)/nth;
  5754. // row range for this thread
  5755. const int ir0 = dr*ith;
  5756. const int ir1 = MIN(ir0 + dr, nr);
  5757. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5758. for (int ir = ir0; ir < ir1; ++ir) {
  5759. // src0 indices
  5760. const int i03 = ir/(ne02*ne01);
  5761. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5762. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5763. // src1 and dst are same shape as src0 => same indices
  5764. const int i13 = i03;
  5765. const int i12 = i02;
  5766. const int i11 = i01;
  5767. const int i3 = i03;
  5768. const int i2 = i02;
  5769. const int i1 = i01;
  5770. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5771. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5772. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5773. assert(ne00 % 32 == 0);
  5774. // unquantize row from src0 to temp buffer
  5775. dequantize_row_q(src0_row, wdata, ne00);
  5776. // add src1
  5777. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5778. // quantize row to dst
  5779. if (quantize_row_q != NULL) {
  5780. quantize_row_q(wdata, dst_row, ne00);
  5781. } else {
  5782. memcpy(dst_row, wdata, ne0*nb0);
  5783. }
  5784. }
  5785. }
  5786. static void ggml_compute_forward_add(
  5787. const struct ggml_compute_params * params,
  5788. const struct ggml_tensor * src0,
  5789. const struct ggml_tensor * src1,
  5790. struct ggml_tensor * dst) {
  5791. switch (src0->type) {
  5792. case GGML_TYPE_F32:
  5793. {
  5794. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5795. } break;
  5796. case GGML_TYPE_F16:
  5797. {
  5798. if (src1->type == GGML_TYPE_F16) {
  5799. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5800. }
  5801. else if (src1->type == GGML_TYPE_F32) {
  5802. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5803. }
  5804. else {
  5805. GGML_ASSERT(false);
  5806. }
  5807. } break;
  5808. case GGML_TYPE_Q4_0:
  5809. case GGML_TYPE_Q4_1:
  5810. case GGML_TYPE_Q5_0:
  5811. case GGML_TYPE_Q5_1:
  5812. case GGML_TYPE_Q8_0:
  5813. case GGML_TYPE_Q2_K:
  5814. case GGML_TYPE_Q3_K:
  5815. case GGML_TYPE_Q4_K:
  5816. case GGML_TYPE_Q5_K:
  5817. case GGML_TYPE_Q6_K:
  5818. {
  5819. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5820. } break;
  5821. default:
  5822. {
  5823. GGML_ASSERT(false);
  5824. } break;
  5825. }
  5826. }
  5827. // ggml_compute_forward_add1
  5828. static void ggml_compute_forward_add1_f32(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. const struct ggml_tensor * src1,
  5832. struct ggml_tensor * dst) {
  5833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5834. GGML_ASSERT(ggml_is_scalar(src1));
  5835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5836. return;
  5837. }
  5838. const int ith = params->ith;
  5839. const int nth = params->nth;
  5840. const int nr = ggml_nrows(src0);
  5841. GGML_TENSOR_UNARY_OP_LOCALS
  5842. GGML_ASSERT( nb0 == sizeof(float));
  5843. GGML_ASSERT(nb00 == sizeof(float));
  5844. // rows per thread
  5845. const int dr = (nr + nth - 1)/nth;
  5846. // row range for this thread
  5847. const int ir0 = dr*ith;
  5848. const int ir1 = MIN(ir0 + dr, nr);
  5849. for (int ir = ir0; ir < ir1; ++ir) {
  5850. // src0 and dst are same shape => same indices
  5851. const int i3 = ir/(ne2*ne1);
  5852. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5853. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5854. #ifdef GGML_USE_ACCELERATE
  5855. UNUSED(ggml_vec_add1_f32);
  5856. vDSP_vadd(
  5857. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5858. (float *) ((char *) src1->data), 0,
  5859. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5860. ne0);
  5861. #else
  5862. ggml_vec_add1_f32(ne0,
  5863. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5864. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5865. *(float *) src1->data);
  5866. #endif
  5867. }
  5868. }
  5869. static void ggml_compute_forward_add1_f16_f32(
  5870. const struct ggml_compute_params * params,
  5871. const struct ggml_tensor * src0,
  5872. const struct ggml_tensor * src1,
  5873. struct ggml_tensor * dst) {
  5874. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5875. GGML_ASSERT(ggml_is_scalar(src1));
  5876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5877. return;
  5878. }
  5879. // scalar to add
  5880. const float v = *(float *) src1->data;
  5881. const int ith = params->ith;
  5882. const int nth = params->nth;
  5883. const int nr = ggml_nrows(src0);
  5884. GGML_TENSOR_UNARY_OP_LOCALS
  5885. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5886. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5887. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5888. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5889. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5890. // rows per thread
  5891. const int dr = (nr + nth - 1)/nth;
  5892. // row range for this thread
  5893. const int ir0 = dr*ith;
  5894. const int ir1 = MIN(ir0 + dr, nr);
  5895. for (int ir = ir0; ir < ir1; ++ir) {
  5896. // src0 and dst are same shape => same indices
  5897. const int i3 = ir/(ne2*ne1);
  5898. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5899. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5900. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5901. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5902. for (int i = 0; i < ne0; i++) {
  5903. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5904. }
  5905. }
  5906. }
  5907. static void ggml_compute_forward_add1_f16_f16(
  5908. const struct ggml_compute_params * params,
  5909. const struct ggml_tensor * src0,
  5910. const struct ggml_tensor * src1,
  5911. struct ggml_tensor * dst) {
  5912. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5913. GGML_ASSERT(ggml_is_scalar(src1));
  5914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5915. return;
  5916. }
  5917. // scalar to add
  5918. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5919. const int ith = params->ith;
  5920. const int nth = params->nth;
  5921. const int nr = ggml_nrows(src0);
  5922. GGML_TENSOR_UNARY_OP_LOCALS
  5923. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5924. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5925. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5926. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5927. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5928. // rows per thread
  5929. const int dr = (nr + nth - 1)/nth;
  5930. // row range for this thread
  5931. const int ir0 = dr*ith;
  5932. const int ir1 = MIN(ir0 + dr, nr);
  5933. for (int ir = ir0; ir < ir1; ++ir) {
  5934. // src0 and dst are same shape => same indices
  5935. const int i3 = ir/(ne2*ne1);
  5936. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5937. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5938. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5939. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5940. for (int i = 0; i < ne0; i++) {
  5941. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5942. }
  5943. }
  5944. }
  5945. static void ggml_compute_forward_add1_q_f32(
  5946. const struct ggml_compute_params * params,
  5947. const struct ggml_tensor * src0,
  5948. const struct ggml_tensor * src1,
  5949. struct ggml_tensor * dst) {
  5950. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5951. GGML_ASSERT(ggml_is_scalar(src1));
  5952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5953. return;
  5954. }
  5955. // scalar to add
  5956. const float v = *(float *) src1->data;
  5957. const int ith = params->ith;
  5958. const int nth = params->nth;
  5959. const int nr = ggml_nrows(src0);
  5960. GGML_TENSOR_UNARY_OP_LOCALS
  5961. const enum ggml_type type = src0->type;
  5962. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5963. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  5964. // we don't support permuted src0
  5965. GGML_ASSERT(nb00 == ggml_type_size(type));
  5966. // dst cannot be transposed or permuted
  5967. GGML_ASSERT(nb0 <= nb1);
  5968. GGML_ASSERT(nb1 <= nb2);
  5969. GGML_ASSERT(nb2 <= nb3);
  5970. GGML_ASSERT(ggml_is_quantized(src0->type));
  5971. GGML_ASSERT(dst->type == src0->type);
  5972. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5973. // rows per thread
  5974. const int dr = (nr + nth - 1)/nth;
  5975. // row range for this thread
  5976. const int ir0 = dr*ith;
  5977. const int ir1 = MIN(ir0 + dr, nr);
  5978. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  5979. for (int ir = ir0; ir < ir1; ++ir) {
  5980. // src0 and dst are same shape => same indices
  5981. const int i3 = ir/(ne2*ne1);
  5982. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5983. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5984. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  5985. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  5986. assert(ne0 % 32 == 0);
  5987. // unquantize row from src0 to temp buffer
  5988. dequantize_row_q(src0_row, wdata, ne0);
  5989. // add src1
  5990. ggml_vec_acc1_f32(ne0, wdata, v);
  5991. // quantize row to dst
  5992. quantize_row_q(wdata, dst_row, ne0);
  5993. }
  5994. }
  5995. static void ggml_compute_forward_add1(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. const struct ggml_tensor * src1,
  5999. struct ggml_tensor * dst) {
  6000. switch (src0->type) {
  6001. case GGML_TYPE_F32:
  6002. {
  6003. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6004. } break;
  6005. case GGML_TYPE_F16:
  6006. {
  6007. if (src1->type == GGML_TYPE_F16) {
  6008. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6009. }
  6010. else if (src1->type == GGML_TYPE_F32) {
  6011. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6012. }
  6013. else {
  6014. GGML_ASSERT(false);
  6015. }
  6016. } break;
  6017. case GGML_TYPE_Q4_0:
  6018. case GGML_TYPE_Q4_1:
  6019. case GGML_TYPE_Q5_0:
  6020. case GGML_TYPE_Q5_1:
  6021. case GGML_TYPE_Q8_0:
  6022. case GGML_TYPE_Q8_1:
  6023. case GGML_TYPE_Q2_K:
  6024. case GGML_TYPE_Q3_K:
  6025. case GGML_TYPE_Q4_K:
  6026. case GGML_TYPE_Q5_K:
  6027. case GGML_TYPE_Q6_K:
  6028. {
  6029. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6030. } break;
  6031. default:
  6032. {
  6033. GGML_ASSERT(false);
  6034. } break;
  6035. }
  6036. }
  6037. // ggml_compute_forward_acc
  6038. static void ggml_compute_forward_acc_f32(
  6039. const struct ggml_compute_params * params,
  6040. const struct ggml_tensor * src0,
  6041. const struct ggml_tensor * src1,
  6042. struct ggml_tensor * dst) {
  6043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6044. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6045. // view src0 and dst with these strides and data offset inbytes during acc
  6046. // nb0 is implicitely element_size because src0 and dst are contiguous
  6047. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6048. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6049. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6050. size_t offset = ((int32_t *) dst->op_params)[3];
  6051. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6052. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6053. // memcpy needs to be synchronized across threads to avoid race conditions.
  6054. // => do it in INIT phase
  6055. memcpy(
  6056. ((char *) dst->data),
  6057. ((char *) src0->data),
  6058. ggml_nbytes(dst));
  6059. }
  6060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. const int ith = params->ith;
  6064. const int nth = params->nth;
  6065. const int nr = ggml_nrows(src1);
  6066. const int nc = src1->ne[0];
  6067. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6068. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6069. // src0 and dst as viewed during acc
  6070. const size_t nb0 = ggml_element_size(src0);
  6071. const size_t nb00 = nb0;
  6072. const size_t nb01 = nb1;
  6073. const size_t nb02 = nb2;
  6074. const size_t nb03 = nb3;
  6075. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6076. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6077. GGML_ASSERT(nb10 == sizeof(float));
  6078. // rows per thread
  6079. const int dr = (nr + nth - 1)/nth;
  6080. // row range for this thread
  6081. const int ir0 = dr*ith;
  6082. const int ir1 = MIN(ir0 + dr, nr);
  6083. for (int ir = ir0; ir < ir1; ++ir) {
  6084. // src0 and dst are viewed with shape of src1 and offset
  6085. // => same indices
  6086. const int i3 = ir/(ne12*ne11);
  6087. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6088. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6089. #ifdef GGML_USE_ACCELERATE
  6090. vDSP_vadd(
  6091. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6092. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6093. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6094. #else
  6095. ggml_vec_add_f32(nc,
  6096. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6097. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6098. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6099. #endif
  6100. }
  6101. }
  6102. static void ggml_compute_forward_acc(
  6103. const struct ggml_compute_params * params,
  6104. const struct ggml_tensor * src0,
  6105. const struct ggml_tensor * src1,
  6106. struct ggml_tensor * dst) {
  6107. switch (src0->type) {
  6108. case GGML_TYPE_F32:
  6109. {
  6110. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6111. } break;
  6112. case GGML_TYPE_F16:
  6113. case GGML_TYPE_Q4_0:
  6114. case GGML_TYPE_Q4_1:
  6115. case GGML_TYPE_Q5_0:
  6116. case GGML_TYPE_Q5_1:
  6117. case GGML_TYPE_Q8_0:
  6118. case GGML_TYPE_Q8_1:
  6119. case GGML_TYPE_Q2_K:
  6120. case GGML_TYPE_Q3_K:
  6121. case GGML_TYPE_Q4_K:
  6122. case GGML_TYPE_Q5_K:
  6123. case GGML_TYPE_Q6_K:
  6124. default:
  6125. {
  6126. GGML_ASSERT(false);
  6127. } break;
  6128. }
  6129. }
  6130. // ggml_compute_forward_sub
  6131. static void ggml_compute_forward_sub_f32(
  6132. const struct ggml_compute_params * params,
  6133. const struct ggml_tensor * src0,
  6134. const struct ggml_tensor * src1,
  6135. struct ggml_tensor * dst) {
  6136. assert(params->ith == 0);
  6137. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6138. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6139. return;
  6140. }
  6141. const int nr = ggml_nrows(src0);
  6142. GGML_TENSOR_BINARY_OP_LOCALS
  6143. GGML_ASSERT( nb0 == sizeof(float));
  6144. GGML_ASSERT(nb00 == sizeof(float));
  6145. if (nb10 == sizeof(float)) {
  6146. for (int ir = 0; ir < nr; ++ir) {
  6147. // src0, src1 and dst are same shape => same indices
  6148. const int i3 = ir/(ne2*ne1);
  6149. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6150. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6151. #ifdef GGML_USE_ACCELERATE
  6152. vDSP_vsub(
  6153. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6154. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6155. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6156. ne0);
  6157. #else
  6158. ggml_vec_sub_f32(ne0,
  6159. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6160. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6161. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6162. #endif
  6163. // }
  6164. // }
  6165. }
  6166. } else {
  6167. // src1 is not contiguous
  6168. for (int ir = 0; ir < nr; ++ir) {
  6169. // src0, src1 and dst are same shape => same indices
  6170. const int i3 = ir/(ne2*ne1);
  6171. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6172. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6173. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6174. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6175. for (int i0 = 0; i0 < ne0; i0++) {
  6176. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6177. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6178. }
  6179. }
  6180. }
  6181. }
  6182. static void ggml_compute_forward_sub(
  6183. const struct ggml_compute_params * params,
  6184. const struct ggml_tensor * src0,
  6185. const struct ggml_tensor * src1,
  6186. struct ggml_tensor * dst) {
  6187. switch (src0->type) {
  6188. case GGML_TYPE_F32:
  6189. {
  6190. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6191. } break;
  6192. default:
  6193. {
  6194. GGML_ASSERT(false);
  6195. } break;
  6196. }
  6197. }
  6198. // ggml_compute_forward_mul
  6199. static void ggml_compute_forward_mul_f32(
  6200. const struct ggml_compute_params * params,
  6201. const struct ggml_tensor * src0,
  6202. const struct ggml_tensor * src1,
  6203. struct ggml_tensor * dst) {
  6204. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6206. return;
  6207. }
  6208. const int ith = params->ith;
  6209. const int nth = params->nth;
  6210. #ifdef GGML_USE_CLBLAST
  6211. if (src1->backend == GGML_BACKEND_GPU) {
  6212. if (ith == 0) {
  6213. ggml_cl_mul(src0, src1, dst);
  6214. }
  6215. return;
  6216. }
  6217. #endif
  6218. const int64_t nr = ggml_nrows(src0);
  6219. GGML_TENSOR_BINARY_OP_LOCALS
  6220. GGML_ASSERT( nb0 == sizeof(float));
  6221. GGML_ASSERT(nb00 == sizeof(float));
  6222. GGML_ASSERT(ne00 == ne10);
  6223. if (nb10 == sizeof(float)) {
  6224. for (int64_t ir = ith; ir < nr; ir += nth) {
  6225. // src0 and dst are same shape => same indices
  6226. const int64_t i03 = ir/(ne02*ne01);
  6227. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6228. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6229. const int64_t i13 = i03 % ne13;
  6230. const int64_t i12 = i02 % ne12;
  6231. const int64_t i11 = i01 % ne11;
  6232. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6233. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6234. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6235. #ifdef GGML_USE_ACCELERATE
  6236. UNUSED(ggml_vec_mul_f32);
  6237. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6238. #else
  6239. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6240. #endif
  6241. // }
  6242. // }
  6243. }
  6244. } else {
  6245. // src1 is not contiguous
  6246. for (int64_t ir = ith; ir < nr; ir += nth) {
  6247. // src0 and dst are same shape => same indices
  6248. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6249. const int64_t i03 = ir/(ne02*ne01);
  6250. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6251. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6252. const int64_t i13 = i03 % ne13;
  6253. const int64_t i12 = i02 % ne12;
  6254. const int64_t i11 = i01 % ne11;
  6255. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6256. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6257. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6258. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6259. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6260. }
  6261. }
  6262. }
  6263. }
  6264. static void ggml_compute_forward_mul(
  6265. const struct ggml_compute_params * params,
  6266. const struct ggml_tensor * src0,
  6267. const struct ggml_tensor * src1,
  6268. struct ggml_tensor * dst) {
  6269. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6270. switch (src0->type) {
  6271. case GGML_TYPE_F32:
  6272. {
  6273. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6274. } break;
  6275. default:
  6276. {
  6277. GGML_ASSERT(false);
  6278. } break;
  6279. }
  6280. }
  6281. // ggml_compute_forward_div
  6282. static void ggml_compute_forward_div_f32(
  6283. const struct ggml_compute_params * params,
  6284. const struct ggml_tensor * src0,
  6285. const struct ggml_tensor * src1,
  6286. struct ggml_tensor * dst) {
  6287. assert(params->ith == 0);
  6288. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6290. return;
  6291. }
  6292. const int nr = ggml_nrows(src0);
  6293. GGML_TENSOR_BINARY_OP_LOCALS
  6294. GGML_ASSERT( nb0 == sizeof(float));
  6295. GGML_ASSERT(nb00 == sizeof(float));
  6296. if (nb10 == sizeof(float)) {
  6297. for (int ir = 0; ir < nr; ++ir) {
  6298. // src0, src1 and dst are same shape => same indices
  6299. const int i3 = ir/(ne2*ne1);
  6300. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6301. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6302. #ifdef GGML_USE_ACCELERATE
  6303. UNUSED(ggml_vec_div_f32);
  6304. vDSP_vdiv(
  6305. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6306. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6307. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6308. ne0);
  6309. #else
  6310. ggml_vec_div_f32(ne0,
  6311. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6312. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6313. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6314. #endif
  6315. // }
  6316. // }
  6317. }
  6318. } else {
  6319. // src1 is not contiguous
  6320. for (int ir = 0; ir < nr; ++ir) {
  6321. // src0, src1 and dst are same shape => same indices
  6322. const int i3 = ir/(ne2*ne1);
  6323. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6324. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6325. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6326. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6327. for (int i0 = 0; i0 < ne0; i0++) {
  6328. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6329. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6330. }
  6331. }
  6332. }
  6333. }
  6334. static void ggml_compute_forward_div(
  6335. const struct ggml_compute_params * params,
  6336. const struct ggml_tensor * src0,
  6337. const struct ggml_tensor * src1,
  6338. struct ggml_tensor * dst) {
  6339. switch (src0->type) {
  6340. case GGML_TYPE_F32:
  6341. {
  6342. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6343. } break;
  6344. default:
  6345. {
  6346. GGML_ASSERT(false);
  6347. } break;
  6348. }
  6349. }
  6350. // ggml_compute_forward_sqr
  6351. static void ggml_compute_forward_sqr_f32(
  6352. const struct ggml_compute_params * params,
  6353. const struct ggml_tensor * src0,
  6354. struct ggml_tensor * dst) {
  6355. assert(params->ith == 0);
  6356. assert(ggml_are_same_shape(src0, dst));
  6357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6358. return;
  6359. }
  6360. const int n = ggml_nrows(src0);
  6361. const int nc = src0->ne[0];
  6362. assert( dst->nb[0] == sizeof(float));
  6363. assert(src0->nb[0] == sizeof(float));
  6364. for (int i = 0; i < n; i++) {
  6365. ggml_vec_sqr_f32(nc,
  6366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6367. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6368. }
  6369. }
  6370. static void ggml_compute_forward_sqr(
  6371. const struct ggml_compute_params * params,
  6372. const struct ggml_tensor * src0,
  6373. struct ggml_tensor * dst) {
  6374. switch (src0->type) {
  6375. case GGML_TYPE_F32:
  6376. {
  6377. ggml_compute_forward_sqr_f32(params, src0, dst);
  6378. } break;
  6379. default:
  6380. {
  6381. GGML_ASSERT(false);
  6382. } break;
  6383. }
  6384. }
  6385. // ggml_compute_forward_sqrt
  6386. static void ggml_compute_forward_sqrt_f32(
  6387. const struct ggml_compute_params * params,
  6388. const struct ggml_tensor * src0,
  6389. struct ggml_tensor * dst) {
  6390. assert(params->ith == 0);
  6391. assert(ggml_are_same_shape(src0, dst));
  6392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6393. return;
  6394. }
  6395. const int n = ggml_nrows(src0);
  6396. const int nc = src0->ne[0];
  6397. assert( dst->nb[0] == sizeof(float));
  6398. assert(src0->nb[0] == sizeof(float));
  6399. for (int i = 0; i < n; i++) {
  6400. ggml_vec_sqrt_f32(nc,
  6401. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6402. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6403. }
  6404. }
  6405. static void ggml_compute_forward_sqrt(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. struct ggml_tensor * dst) {
  6409. switch (src0->type) {
  6410. case GGML_TYPE_F32:
  6411. {
  6412. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6413. } break;
  6414. default:
  6415. {
  6416. GGML_ASSERT(false);
  6417. } break;
  6418. }
  6419. }
  6420. // ggml_compute_forward_log
  6421. static void ggml_compute_forward_log_f32(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. struct ggml_tensor * dst) {
  6425. GGML_ASSERT(params->ith == 0);
  6426. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. const int n = ggml_nrows(src0);
  6431. const int nc = src0->ne[0];
  6432. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6433. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6434. for (int i = 0; i < n; i++) {
  6435. ggml_vec_log_f32(nc,
  6436. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6437. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6438. }
  6439. }
  6440. static void ggml_compute_forward_log(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * src0,
  6443. struct ggml_tensor * dst) {
  6444. switch (src0->type) {
  6445. case GGML_TYPE_F32:
  6446. {
  6447. ggml_compute_forward_log_f32(params, src0, dst);
  6448. } break;
  6449. default:
  6450. {
  6451. GGML_ASSERT(false);
  6452. } break;
  6453. }
  6454. }
  6455. // ggml_compute_forward_sum
  6456. static void ggml_compute_forward_sum_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. struct ggml_tensor * dst) {
  6460. assert(params->ith == 0);
  6461. assert(ggml_is_scalar(dst));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. assert(ggml_is_scalar(dst));
  6466. assert(src0->nb[0] == sizeof(float));
  6467. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6468. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6469. ggml_float sum = 0;
  6470. ggml_float row_sum = 0;
  6471. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6472. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6473. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6474. ggml_vec_sum_f32_ggf(ne00,
  6475. &row_sum,
  6476. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6477. sum += row_sum;
  6478. }
  6479. }
  6480. }
  6481. ((float *) dst->data)[0] = sum;
  6482. }
  6483. static void ggml_compute_forward_sum_f16(
  6484. const struct ggml_compute_params * params,
  6485. const struct ggml_tensor * src0,
  6486. struct ggml_tensor * dst) {
  6487. assert(params->ith == 0);
  6488. assert(ggml_is_scalar(dst));
  6489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6490. return;
  6491. }
  6492. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6493. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6494. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6495. float sum = 0;
  6496. float row_sum = 0;
  6497. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6498. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6499. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6500. ggml_vec_sum_f16_ggf(ne00,
  6501. &row_sum,
  6502. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6503. sum += row_sum;
  6504. }
  6505. }
  6506. }
  6507. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6508. }
  6509. static void ggml_compute_forward_sum(
  6510. const struct ggml_compute_params * params,
  6511. const struct ggml_tensor * src0,
  6512. struct ggml_tensor * dst) {
  6513. switch (src0->type) {
  6514. case GGML_TYPE_F32:
  6515. {
  6516. ggml_compute_forward_sum_f32(params, src0, dst);
  6517. } break;
  6518. case GGML_TYPE_F16:
  6519. {
  6520. ggml_compute_forward_sum_f16(params, src0, dst);
  6521. } break;
  6522. default:
  6523. {
  6524. GGML_ASSERT(false);
  6525. } break;
  6526. }
  6527. }
  6528. // ggml_compute_forward_sum_rows
  6529. static void ggml_compute_forward_sum_rows_f32(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. struct ggml_tensor * dst) {
  6533. GGML_ASSERT(params->ith == 0);
  6534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6535. return;
  6536. }
  6537. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6538. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6539. GGML_TENSOR_UNARY_OP_LOCALS
  6540. GGML_ASSERT(ne0 == 1);
  6541. GGML_ASSERT(ne1 == ne01);
  6542. GGML_ASSERT(ne2 == ne02);
  6543. GGML_ASSERT(ne3 == ne03);
  6544. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6545. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6546. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6547. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6548. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6549. float row_sum = 0;
  6550. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6551. dst_row[0] = row_sum;
  6552. }
  6553. }
  6554. }
  6555. }
  6556. static void ggml_compute_forward_sum_rows(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. struct ggml_tensor * dst) {
  6560. switch (src0->type) {
  6561. case GGML_TYPE_F32:
  6562. {
  6563. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6564. } break;
  6565. default:
  6566. {
  6567. GGML_ASSERT(false);
  6568. } break;
  6569. }
  6570. }
  6571. // ggml_compute_forward_mean
  6572. static void ggml_compute_forward_mean_f32(
  6573. const struct ggml_compute_params * params,
  6574. const struct ggml_tensor * src0,
  6575. struct ggml_tensor * dst) {
  6576. assert(params->ith == 0);
  6577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6578. return;
  6579. }
  6580. assert(src0->nb[0] == sizeof(float));
  6581. GGML_TENSOR_UNARY_OP_LOCALS
  6582. assert(ne0 == 1);
  6583. assert(ne1 == ne01);
  6584. assert(ne2 == ne02);
  6585. assert(ne3 == ne03);
  6586. UNUSED(ne0);
  6587. UNUSED(ne1);
  6588. UNUSED(ne2);
  6589. UNUSED(ne3);
  6590. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6591. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6592. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6593. ggml_vec_sum_f32(ne00,
  6594. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6595. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6596. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6597. }
  6598. }
  6599. }
  6600. }
  6601. static void ggml_compute_forward_mean(
  6602. const struct ggml_compute_params * params,
  6603. const struct ggml_tensor * src0,
  6604. struct ggml_tensor * dst) {
  6605. switch (src0->type) {
  6606. case GGML_TYPE_F32:
  6607. {
  6608. ggml_compute_forward_mean_f32(params, src0, dst);
  6609. } break;
  6610. default:
  6611. {
  6612. GGML_ASSERT(false);
  6613. } break;
  6614. }
  6615. }
  6616. // ggml_compute_forward_argmax
  6617. static void ggml_compute_forward_argmax_f32(
  6618. const struct ggml_compute_params * params,
  6619. const struct ggml_tensor * src0,
  6620. struct ggml_tensor * dst) {
  6621. assert(params->ith == 0);
  6622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6623. return;
  6624. }
  6625. assert(src0->nb[0] == sizeof(float));
  6626. assert(dst->nb[0] == sizeof(float));
  6627. const int64_t ne00 = src0->ne[0];
  6628. const int64_t ne01 = src0->ne[1];
  6629. const size_t nb01 = src0->nb[1];
  6630. const size_t nb0 = dst->nb[0];
  6631. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6632. float * src = (float *) ((char *) src0->data + i1*nb01);
  6633. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6634. int v = 0;
  6635. ggml_vec_argmax_f32(ne00, &v, src);
  6636. dst_[0] = v;
  6637. }
  6638. }
  6639. static void ggml_compute_forward_argmax(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. struct ggml_tensor * dst) {
  6643. switch (src0->type) {
  6644. case GGML_TYPE_F32:
  6645. {
  6646. ggml_compute_forward_argmax_f32(params, src0, dst);
  6647. } break;
  6648. default:
  6649. {
  6650. GGML_ASSERT(false);
  6651. } break;
  6652. }
  6653. }
  6654. // ggml_compute_forward_repeat
  6655. static void ggml_compute_forward_repeat_f32(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. struct ggml_tensor * dst) {
  6659. GGML_ASSERT(params->ith == 0);
  6660. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6662. return;
  6663. }
  6664. GGML_TENSOR_UNARY_OP_LOCALS
  6665. // guaranteed to be an integer due to the check in ggml_can_repeat
  6666. const int nr0 = (int)(ne0/ne00);
  6667. const int nr1 = (int)(ne1/ne01);
  6668. const int nr2 = (int)(ne2/ne02);
  6669. const int nr3 = (int)(ne3/ne03);
  6670. // TODO: support for transposed / permuted tensors
  6671. GGML_ASSERT(nb0 == sizeof(float));
  6672. GGML_ASSERT(nb00 == sizeof(float));
  6673. // TODO: maybe this is not optimal?
  6674. for (int i3 = 0; i3 < nr3; i3++) {
  6675. for (int k3 = 0; k3 < ne03; k3++) {
  6676. for (int i2 = 0; i2 < nr2; i2++) {
  6677. for (int k2 = 0; k2 < ne02; k2++) {
  6678. for (int i1 = 0; i1 < nr1; i1++) {
  6679. for (int k1 = 0; k1 < ne01; k1++) {
  6680. for (int i0 = 0; i0 < nr0; i0++) {
  6681. ggml_vec_cpy_f32(ne00,
  6682. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6683. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. }
  6690. }
  6691. }
  6692. static void ggml_compute_forward_repeat_f16(
  6693. const struct ggml_compute_params * params,
  6694. const struct ggml_tensor * src0,
  6695. struct ggml_tensor * dst) {
  6696. GGML_ASSERT(params->ith == 0);
  6697. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6699. return;
  6700. }
  6701. GGML_TENSOR_UNARY_OP_LOCALS;
  6702. // guaranteed to be an integer due to the check in ggml_can_repeat
  6703. const int nr0 = (int)(ne0/ne00);
  6704. const int nr1 = (int)(ne1/ne01);
  6705. const int nr2 = (int)(ne2/ne02);
  6706. const int nr3 = (int)(ne3/ne03);
  6707. // TODO: support for transposed / permuted tensors
  6708. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6709. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6710. // TODO: maybe this is not optimal?
  6711. for (int i3 = 0; i3 < nr3; i3++) {
  6712. for (int k3 = 0; k3 < ne03; k3++) {
  6713. for (int i2 = 0; i2 < nr2; i2++) {
  6714. for (int k2 = 0; k2 < ne02; k2++) {
  6715. for (int i1 = 0; i1 < nr1; i1++) {
  6716. for (int k1 = 0; k1 < ne01; k1++) {
  6717. for (int i0 = 0; i0 < nr0; i0++) {
  6718. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6719. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6720. // ggml_vec_cpy_f16(ne00, y, x)
  6721. for (int i = 0; i < ne00; ++i) {
  6722. y[i] = x[i];
  6723. }
  6724. }
  6725. }
  6726. }
  6727. }
  6728. }
  6729. }
  6730. }
  6731. }
  6732. static void ggml_compute_forward_repeat(
  6733. const struct ggml_compute_params * params,
  6734. const struct ggml_tensor * src0,
  6735. struct ggml_tensor * dst) {
  6736. switch (src0->type) {
  6737. case GGML_TYPE_F16:
  6738. {
  6739. ggml_compute_forward_repeat_f16(params, src0, dst);
  6740. } break;
  6741. case GGML_TYPE_F32:
  6742. {
  6743. ggml_compute_forward_repeat_f32(params, src0, dst);
  6744. } break;
  6745. default:
  6746. {
  6747. GGML_ASSERT(false);
  6748. } break;
  6749. }
  6750. }
  6751. // ggml_compute_forward_repeat_back
  6752. static void ggml_compute_forward_repeat_back_f32(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0,
  6755. struct ggml_tensor * dst) {
  6756. GGML_ASSERT(params->ith == 0);
  6757. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6759. return;
  6760. }
  6761. GGML_TENSOR_UNARY_OP_LOCALS
  6762. // guaranteed to be an integer due to the check in ggml_can_repeat
  6763. const int nr0 = (int)(ne00/ne0);
  6764. const int nr1 = (int)(ne01/ne1);
  6765. const int nr2 = (int)(ne02/ne2);
  6766. const int nr3 = (int)(ne03/ne3);
  6767. // TODO: support for transposed / permuted tensors
  6768. GGML_ASSERT(nb0 == sizeof(float));
  6769. GGML_ASSERT(nb00 == sizeof(float));
  6770. if (ggml_is_contiguous(dst)) {
  6771. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6772. } else {
  6773. for (int k3 = 0; k3 < ne3; k3++) {
  6774. for (int k2 = 0; k2 < ne2; k2++) {
  6775. for (int k1 = 0; k1 < ne1; k1++) {
  6776. ggml_vec_set_f32(ne0,
  6777. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6778. 0);
  6779. }
  6780. }
  6781. }
  6782. }
  6783. // TODO: maybe this is not optimal?
  6784. for (int i3 = 0; i3 < nr3; i3++) {
  6785. for (int k3 = 0; k3 < ne3; k3++) {
  6786. for (int i2 = 0; i2 < nr2; i2++) {
  6787. for (int k2 = 0; k2 < ne2; k2++) {
  6788. for (int i1 = 0; i1 < nr1; i1++) {
  6789. for (int k1 = 0; k1 < ne1; k1++) {
  6790. for (int i0 = 0; i0 < nr0; i0++) {
  6791. ggml_vec_acc_f32(ne0,
  6792. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6793. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6794. }
  6795. }
  6796. }
  6797. }
  6798. }
  6799. }
  6800. }
  6801. }
  6802. static void ggml_compute_forward_repeat_back(
  6803. const struct ggml_compute_params * params,
  6804. const struct ggml_tensor * src0,
  6805. struct ggml_tensor * dst) {
  6806. switch (src0->type) {
  6807. case GGML_TYPE_F32:
  6808. {
  6809. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6810. } break;
  6811. default:
  6812. {
  6813. GGML_ASSERT(false);
  6814. } break;
  6815. }
  6816. }
  6817. // ggml_compute_forward_concat
  6818. static void ggml_compute_forward_concat_f32(
  6819. const struct ggml_compute_params * params,
  6820. const struct ggml_tensor * src0,
  6821. const struct ggml_tensor * src1,
  6822. struct ggml_tensor * dst) {
  6823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6824. return;
  6825. }
  6826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6827. const int ith = params->ith;
  6828. GGML_TENSOR_BINARY_OP_LOCALS
  6829. // TODO: support for transposed / permuted tensors
  6830. GGML_ASSERT(nb0 == sizeof(float));
  6831. GGML_ASSERT(nb00 == sizeof(float));
  6832. GGML_ASSERT(nb10 == sizeof(float));
  6833. for (int i3 = 0; i3 < ne3; i3++) {
  6834. for (int i2 = ith; i2 < ne2; i2++) {
  6835. if (i2 < ne02) { // src0
  6836. for (int i1 = 0; i1 < ne1; i1++) {
  6837. for (int i0 = 0; i0 < ne0; i0++) {
  6838. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6839. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6840. *y = *x;
  6841. }
  6842. }
  6843. } // src1
  6844. else {
  6845. for (int i1 = 0; i1 < ne1; i1++) {
  6846. for (int i0 = 0; i0 < ne0; i0++) {
  6847. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6848. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6849. *y = *x;
  6850. }
  6851. }
  6852. }
  6853. }
  6854. }
  6855. }
  6856. static void ggml_compute_forward_concat(
  6857. const struct ggml_compute_params* params,
  6858. const struct ggml_tensor* src0,
  6859. const struct ggml_tensor* src1,
  6860. struct ggml_tensor* dst) {
  6861. switch (src0->type) {
  6862. case GGML_TYPE_F32:
  6863. {
  6864. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6865. } break;
  6866. default:
  6867. {
  6868. GGML_ASSERT(false);
  6869. } break;
  6870. }
  6871. }
  6872. // ggml_compute_forward_abs
  6873. static void ggml_compute_forward_abs_f32(
  6874. const struct ggml_compute_params * params,
  6875. const struct ggml_tensor * src0,
  6876. struct ggml_tensor * dst) {
  6877. assert(params->ith == 0);
  6878. assert(ggml_are_same_shape(src0, dst));
  6879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6880. return;
  6881. }
  6882. const int n = ggml_nrows(src0);
  6883. const int nc = src0->ne[0];
  6884. assert(dst->nb[0] == sizeof(float));
  6885. assert(src0->nb[0] == sizeof(float));
  6886. for (int i = 0; i < n; i++) {
  6887. ggml_vec_abs_f32(nc,
  6888. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6889. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6890. }
  6891. }
  6892. static void ggml_compute_forward_abs(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * src0,
  6895. struct ggml_tensor * dst) {
  6896. switch (src0->type) {
  6897. case GGML_TYPE_F32:
  6898. {
  6899. ggml_compute_forward_abs_f32(params, src0, dst);
  6900. } break;
  6901. default:
  6902. {
  6903. GGML_ASSERT(false);
  6904. } break;
  6905. }
  6906. }
  6907. // ggml_compute_forward_sgn
  6908. static void ggml_compute_forward_sgn_f32(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. struct ggml_tensor * dst) {
  6912. assert(params->ith == 0);
  6913. assert(ggml_are_same_shape(src0, dst));
  6914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6915. return;
  6916. }
  6917. const int n = ggml_nrows(src0);
  6918. const int nc = src0->ne[0];
  6919. assert(dst->nb[0] == sizeof(float));
  6920. assert(src0->nb[0] == sizeof(float));
  6921. for (int i = 0; i < n; i++) {
  6922. ggml_vec_sgn_f32(nc,
  6923. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6924. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6925. }
  6926. }
  6927. static void ggml_compute_forward_sgn(
  6928. const struct ggml_compute_params * params,
  6929. const struct ggml_tensor * src0,
  6930. struct ggml_tensor * dst) {
  6931. switch (src0->type) {
  6932. case GGML_TYPE_F32:
  6933. {
  6934. ggml_compute_forward_sgn_f32(params, src0, dst);
  6935. } break;
  6936. default:
  6937. {
  6938. GGML_ASSERT(false);
  6939. } break;
  6940. }
  6941. }
  6942. // ggml_compute_forward_neg
  6943. static void ggml_compute_forward_neg_f32(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. struct ggml_tensor * dst) {
  6947. assert(params->ith == 0);
  6948. assert(ggml_are_same_shape(src0, dst));
  6949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6950. return;
  6951. }
  6952. const int n = ggml_nrows(src0);
  6953. const int nc = src0->ne[0];
  6954. assert(dst->nb[0] == sizeof(float));
  6955. assert(src0->nb[0] == sizeof(float));
  6956. for (int i = 0; i < n; i++) {
  6957. ggml_vec_neg_f32(nc,
  6958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6959. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6960. }
  6961. }
  6962. static void ggml_compute_forward_neg(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * src0,
  6965. struct ggml_tensor * dst) {
  6966. switch (src0->type) {
  6967. case GGML_TYPE_F32:
  6968. {
  6969. ggml_compute_forward_neg_f32(params, src0, dst);
  6970. } break;
  6971. default:
  6972. {
  6973. GGML_ASSERT(false);
  6974. } break;
  6975. }
  6976. }
  6977. // ggml_compute_forward_step
  6978. static void ggml_compute_forward_step_f32(
  6979. const struct ggml_compute_params * params,
  6980. const struct ggml_tensor * src0,
  6981. struct ggml_tensor * dst) {
  6982. assert(params->ith == 0);
  6983. assert(ggml_are_same_shape(src0, dst));
  6984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6985. return;
  6986. }
  6987. const int n = ggml_nrows(src0);
  6988. const int nc = src0->ne[0];
  6989. assert(dst->nb[0] == sizeof(float));
  6990. assert(src0->nb[0] == sizeof(float));
  6991. for (int i = 0; i < n; i++) {
  6992. ggml_vec_step_f32(nc,
  6993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6995. }
  6996. }
  6997. static void ggml_compute_forward_step(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. struct ggml_tensor * dst) {
  7001. switch (src0->type) {
  7002. case GGML_TYPE_F32:
  7003. {
  7004. ggml_compute_forward_step_f32(params, src0, dst);
  7005. } break;
  7006. default:
  7007. {
  7008. GGML_ASSERT(false);
  7009. } break;
  7010. }
  7011. }
  7012. // ggml_compute_forward_tanh
  7013. static void ggml_compute_forward_tanh_f32(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * src0,
  7016. struct ggml_tensor * dst) {
  7017. assert(params->ith == 0);
  7018. assert(ggml_are_same_shape(src0, dst));
  7019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. const int n = ggml_nrows(src0);
  7023. const int nc = src0->ne[0];
  7024. assert(dst->nb[0] == sizeof(float));
  7025. assert(src0->nb[0] == sizeof(float));
  7026. for (int i = 0; i < n; i++) {
  7027. ggml_vec_tanh_f32(nc,
  7028. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7029. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7030. }
  7031. }
  7032. static void ggml_compute_forward_tanh(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. switch (src0->type) {
  7037. case GGML_TYPE_F32:
  7038. {
  7039. ggml_compute_forward_tanh_f32(params, src0, dst);
  7040. } break;
  7041. default:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. // ggml_compute_forward_elu
  7048. static void ggml_compute_forward_elu_f32(
  7049. const struct ggml_compute_params * params,
  7050. const struct ggml_tensor * src0,
  7051. struct ggml_tensor * dst) {
  7052. assert(params->ith == 0);
  7053. assert(ggml_are_same_shape(src0, dst));
  7054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. const int n = ggml_nrows(src0);
  7058. const int nc = src0->ne[0];
  7059. assert(dst->nb[0] == sizeof(float));
  7060. assert(src0->nb[0] == sizeof(float));
  7061. for (int i = 0; i < n; i++) {
  7062. ggml_vec_elu_f32(nc,
  7063. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7064. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7065. }
  7066. }
  7067. static void ggml_compute_forward_elu(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. switch (src0->type) {
  7072. case GGML_TYPE_F32:
  7073. {
  7074. ggml_compute_forward_elu_f32(params, src0, dst);
  7075. } break;
  7076. default:
  7077. {
  7078. GGML_ASSERT(false);
  7079. } break;
  7080. }
  7081. }
  7082. // ggml_compute_forward_relu
  7083. static void ggml_compute_forward_relu_f32(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. struct ggml_tensor * dst) {
  7087. assert(params->ith == 0);
  7088. assert(ggml_are_same_shape(src0, dst));
  7089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7090. return;
  7091. }
  7092. const int n = ggml_nrows(src0);
  7093. const int nc = src0->ne[0];
  7094. assert(dst->nb[0] == sizeof(float));
  7095. assert(src0->nb[0] == sizeof(float));
  7096. for (int i = 0; i < n; i++) {
  7097. ggml_vec_relu_f32(nc,
  7098. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7099. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7100. }
  7101. }
  7102. static void ggml_compute_forward_relu(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. switch (src0->type) {
  7107. case GGML_TYPE_F32:
  7108. {
  7109. ggml_compute_forward_relu_f32(params, src0, dst);
  7110. } break;
  7111. default:
  7112. {
  7113. GGML_ASSERT(false);
  7114. } break;
  7115. }
  7116. }
  7117. // ggml_compute_forward_gelu
  7118. static void ggml_compute_forward_gelu_f32(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7123. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7124. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7126. return;
  7127. }
  7128. const int ith = params->ith;
  7129. const int nth = params->nth;
  7130. const int nc = src0->ne[0];
  7131. const int nr = ggml_nrows(src0);
  7132. // rows per thread
  7133. const int dr = (nr + nth - 1)/nth;
  7134. // row range for this thread
  7135. const int ir0 = dr*ith;
  7136. const int ir1 = MIN(ir0 + dr, nr);
  7137. for (int i1 = ir0; i1 < ir1; i1++) {
  7138. ggml_vec_gelu_f32(nc,
  7139. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7140. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7141. #ifndef NDEBUG
  7142. for (int k = 0; k < nc; k++) {
  7143. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7144. UNUSED(x);
  7145. assert(!isnan(x));
  7146. assert(!isinf(x));
  7147. }
  7148. #endif
  7149. }
  7150. }
  7151. static void ggml_compute_forward_gelu(
  7152. const struct ggml_compute_params * params,
  7153. const struct ggml_tensor * src0,
  7154. struct ggml_tensor * dst) {
  7155. switch (src0->type) {
  7156. case GGML_TYPE_F32:
  7157. {
  7158. ggml_compute_forward_gelu_f32(params, src0, dst);
  7159. } break;
  7160. default:
  7161. {
  7162. GGML_ASSERT(false);
  7163. } break;
  7164. }
  7165. }
  7166. // ggml_compute_forward_gelu_quick
  7167. static void ggml_compute_forward_gelu_quick_f32(
  7168. const struct ggml_compute_params * params,
  7169. const struct ggml_tensor * src0,
  7170. struct ggml_tensor * dst) {
  7171. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7172. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7173. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7175. return;
  7176. }
  7177. const int ith = params->ith;
  7178. const int nth = params->nth;
  7179. const int nc = src0->ne[0];
  7180. const int nr = ggml_nrows(src0);
  7181. // rows per thread
  7182. const int dr = (nr + nth - 1)/nth;
  7183. // row range for this thread
  7184. const int ir0 = dr*ith;
  7185. const int ir1 = MIN(ir0 + dr, nr);
  7186. for (int i1 = ir0; i1 < ir1; i1++) {
  7187. ggml_vec_gelu_quick_f32(nc,
  7188. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7189. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7190. #ifndef NDEBUG
  7191. for (int k = 0; k < nc; k++) {
  7192. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7193. UNUSED(x);
  7194. assert(!isnan(x));
  7195. assert(!isinf(x));
  7196. }
  7197. #endif
  7198. }
  7199. }
  7200. static void ggml_compute_forward_gelu_quick(
  7201. const struct ggml_compute_params * params,
  7202. const struct ggml_tensor * src0,
  7203. struct ggml_tensor * dst) {
  7204. switch (src0->type) {
  7205. case GGML_TYPE_F32:
  7206. {
  7207. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7208. } break;
  7209. default:
  7210. {
  7211. GGML_ASSERT(false);
  7212. } break;
  7213. }
  7214. }
  7215. // ggml_compute_forward_silu
  7216. static void ggml_compute_forward_silu_f32(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. struct ggml_tensor * dst) {
  7220. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7221. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7222. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. const int ith = params->ith;
  7227. const int nth = params->nth;
  7228. const int nc = src0->ne[0];
  7229. const int nr = ggml_nrows(src0);
  7230. // rows per thread
  7231. const int dr = (nr + nth - 1)/nth;
  7232. // row range for this thread
  7233. const int ir0 = dr*ith;
  7234. const int ir1 = MIN(ir0 + dr, nr);
  7235. for (int i1 = ir0; i1 < ir1; i1++) {
  7236. ggml_vec_silu_f32(nc,
  7237. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7238. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7239. #ifndef NDEBUG
  7240. for (int k = 0; k < nc; k++) {
  7241. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7242. UNUSED(x);
  7243. assert(!isnan(x));
  7244. assert(!isinf(x));
  7245. }
  7246. #endif
  7247. }
  7248. }
  7249. static void ggml_compute_forward_silu(
  7250. const struct ggml_compute_params * params,
  7251. const struct ggml_tensor * src0,
  7252. struct ggml_tensor * dst) {
  7253. switch (src0->type) {
  7254. case GGML_TYPE_F32:
  7255. {
  7256. ggml_compute_forward_silu_f32(params, src0, dst);
  7257. } break;
  7258. default:
  7259. {
  7260. GGML_ASSERT(false);
  7261. } break;
  7262. }
  7263. }
  7264. // ggml_compute_forward_leaky
  7265. static void ggml_compute_forward_leaky_f32(
  7266. const struct ggml_compute_params * params,
  7267. const struct ggml_tensor * src0,
  7268. struct ggml_tensor * dst) {
  7269. assert(params->ith == 0);
  7270. assert(ggml_are_same_shape(src0, dst));
  7271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7272. return;
  7273. }
  7274. const int n = ggml_nrows(src0);
  7275. const int nc = src0->ne[0];
  7276. assert(dst->nb[0] == sizeof(float));
  7277. assert(src0->nb[0] == sizeof(float));
  7278. for (int i = 0; i < n; i++) {
  7279. ggml_vec_leaky_f32(nc,
  7280. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7281. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7282. }
  7283. }
  7284. static void ggml_compute_forward_leaky(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. struct ggml_tensor * dst) {
  7288. switch (src0->type) {
  7289. case GGML_TYPE_F32:
  7290. {
  7291. ggml_compute_forward_leaky_f32(params, src0, dst);
  7292. } break;
  7293. default:
  7294. {
  7295. GGML_ASSERT(false);
  7296. } break;
  7297. }
  7298. }
  7299. // ggml_compute_forward_silu_back
  7300. static void ggml_compute_forward_silu_back_f32(
  7301. const struct ggml_compute_params * params,
  7302. const struct ggml_tensor * src0,
  7303. const struct ggml_tensor * grad,
  7304. struct ggml_tensor * dst) {
  7305. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7306. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7307. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7308. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7309. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7311. return;
  7312. }
  7313. const int ith = params->ith;
  7314. const int nth = params->nth;
  7315. const int nc = src0->ne[0];
  7316. const int nr = ggml_nrows(src0);
  7317. // rows per thread
  7318. const int dr = (nr + nth - 1)/nth;
  7319. // row range for this thread
  7320. const int ir0 = dr*ith;
  7321. const int ir1 = MIN(ir0 + dr, nr);
  7322. for (int i1 = ir0; i1 < ir1; i1++) {
  7323. ggml_vec_silu_backward_f32(nc,
  7324. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7325. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7326. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7327. #ifndef NDEBUG
  7328. for (int k = 0; k < nc; k++) {
  7329. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7330. UNUSED(x);
  7331. assert(!isnan(x));
  7332. assert(!isinf(x));
  7333. }
  7334. #endif
  7335. }
  7336. }
  7337. static void ggml_compute_forward_silu_back(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * grad,
  7341. struct ggml_tensor * dst) {
  7342. switch (src0->type) {
  7343. case GGML_TYPE_F32:
  7344. {
  7345. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7346. } break;
  7347. default:
  7348. {
  7349. GGML_ASSERT(false);
  7350. } break;
  7351. }
  7352. }
  7353. // ggml_compute_forward_norm
  7354. static void ggml_compute_forward_norm_f32(
  7355. const struct ggml_compute_params * params,
  7356. const struct ggml_tensor * src0,
  7357. struct ggml_tensor * dst) {
  7358. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7360. return;
  7361. }
  7362. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7363. const int ith = params->ith;
  7364. const int nth = params->nth;
  7365. GGML_TENSOR_UNARY_OP_LOCALS
  7366. float eps;
  7367. memcpy(&eps, dst->op_params, sizeof(float));
  7368. // TODO: optimize
  7369. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7370. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7371. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7372. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7373. ggml_float sum = 0.0;
  7374. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7375. sum += (ggml_float)x[i00];
  7376. }
  7377. float mean = sum/ne00;
  7378. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7379. ggml_float sum2 = 0.0;
  7380. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7381. float v = x[i00] - mean;
  7382. y[i00] = v;
  7383. sum2 += (ggml_float)(v*v);
  7384. }
  7385. float variance = sum2/ne00;
  7386. const float scale = 1.0f/sqrtf(variance + eps);
  7387. ggml_vec_scale_f32(ne00, y, scale);
  7388. }
  7389. }
  7390. }
  7391. }
  7392. static void ggml_compute_forward_norm(
  7393. const struct ggml_compute_params * params,
  7394. const struct ggml_tensor * src0,
  7395. struct ggml_tensor * dst) {
  7396. switch (src0->type) {
  7397. case GGML_TYPE_F32:
  7398. {
  7399. ggml_compute_forward_norm_f32(params, src0, dst);
  7400. } break;
  7401. default:
  7402. {
  7403. GGML_ASSERT(false);
  7404. } break;
  7405. }
  7406. }
  7407. // ggml_compute_forward_group_rms_norm
  7408. static void ggml_compute_forward_rms_norm_f32(
  7409. const struct ggml_compute_params * params,
  7410. const struct ggml_tensor * src0,
  7411. struct ggml_tensor * dst) {
  7412. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7417. const int ith = params->ith;
  7418. const int nth = params->nth;
  7419. GGML_TENSOR_UNARY_OP_LOCALS
  7420. float eps;
  7421. memcpy(&eps, dst->op_params, sizeof(float));
  7422. // TODO: optimize
  7423. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7424. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7425. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7426. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7427. ggml_float sum = 0.0;
  7428. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7429. sum += (ggml_float)(x[i00] * x[i00]);
  7430. }
  7431. const float mean = sum/ne00;
  7432. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7433. memcpy(y, x, ne00 * sizeof(float));
  7434. // for (int i00 = 0; i00 < ne00; i00++) {
  7435. // y[i00] = x[i00];
  7436. // }
  7437. const float scale = 1.0f/sqrtf(mean + eps);
  7438. ggml_vec_scale_f32(ne00, y, scale);
  7439. }
  7440. }
  7441. }
  7442. }
  7443. static void ggml_compute_forward_rms_norm(
  7444. const struct ggml_compute_params * params,
  7445. const struct ggml_tensor * src0,
  7446. struct ggml_tensor * dst) {
  7447. switch (src0->type) {
  7448. case GGML_TYPE_F32:
  7449. {
  7450. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7451. } break;
  7452. default:
  7453. {
  7454. GGML_ASSERT(false);
  7455. } break;
  7456. }
  7457. }
  7458. static void ggml_compute_forward_rms_norm_back_f32(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. const struct ggml_tensor * src1,
  7462. struct ggml_tensor * dst) {
  7463. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7465. return;
  7466. }
  7467. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7468. const int ith = params->ith;
  7469. const int nth = params->nth;
  7470. GGML_TENSOR_BINARY_OP_LOCALS
  7471. float eps;
  7472. memcpy(&eps, dst->op_params, sizeof(float));
  7473. // TODO: optimize
  7474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7476. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7477. // src1 is same shape as src0 => same indices
  7478. const int64_t i11 = i01;
  7479. const int64_t i12 = i02;
  7480. const int64_t i13 = i03;
  7481. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7482. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7483. ggml_float sum_xx = 0.0;
  7484. ggml_float sum_xdz = 0.0;
  7485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7486. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7487. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7488. }
  7489. //const float mean = (float)(sum_xx)/ne00;
  7490. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7491. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7492. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7493. // we could cache rms from forward pass to improve performance.
  7494. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7495. //const float rms = sqrtf(mean_eps);
  7496. const float rrms = 1.0f / sqrtf(mean_eps);
  7497. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7498. {
  7499. // z = rms_norm(x)
  7500. //
  7501. // rms_norm(src0) =
  7502. // scale(
  7503. // src0,
  7504. // div(
  7505. // 1,
  7506. // sqrt(
  7507. // add(
  7508. // scale(
  7509. // sum(
  7510. // sqr(
  7511. // src0)),
  7512. // (1.0/N)),
  7513. // eps))));
  7514. // postorder:
  7515. // ## op args grad
  7516. // 00 param src0 grad[#00]
  7517. // 01 const 1
  7518. // 02 sqr (#00) grad[#02]
  7519. // 03 sum (#02) grad[#03]
  7520. // 04 const 1/N
  7521. // 05 scale (#03, #04) grad[#05]
  7522. // 06 const eps
  7523. // 07 add (#05, #06) grad[#07]
  7524. // 08 sqrt (#07) grad[#08]
  7525. // 09 div (#01,#08) grad[#09]
  7526. // 10 scale (#00,#09) grad[#10]
  7527. //
  7528. // backward pass, given grad[#10]
  7529. // #10: scale
  7530. // grad[#00] += scale(grad[#10],#09)
  7531. // grad[#09] += sum(mul(grad[#10],#00))
  7532. // #09: div
  7533. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7534. // #08: sqrt
  7535. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7536. // #07: add
  7537. // grad[#05] += grad[#07]
  7538. // #05: scale
  7539. // grad[#03] += scale(grad[#05],#04)
  7540. // #03: sum
  7541. // grad[#02] += repeat(grad[#03], #02)
  7542. // #02:
  7543. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7544. //
  7545. // substitute and simplify:
  7546. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7547. // grad[#02] = repeat(grad[#03], #02)
  7548. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7549. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7550. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7551. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7552. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7553. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7554. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7555. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7556. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7557. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7558. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7559. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7560. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7561. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7562. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7563. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7564. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7565. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7566. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7567. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7568. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7569. // a = b*c + d*e
  7570. // a = b*c*f/f + d*e*f/f
  7571. // a = (b*c*f + d*e*f)*(1/f)
  7572. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7573. // a = (b + d*e/c)*c
  7574. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7575. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7576. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7577. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7578. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7579. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7580. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7581. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7582. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7583. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7584. }
  7585. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7586. // post-order:
  7587. // dx := x
  7588. // dx := scale(dx,-mean_xdz/mean_eps)
  7589. // dx := add(dx, dz)
  7590. // dx := scale(dx, rrms)
  7591. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7592. ggml_vec_cpy_f32 (ne00, dx, x);
  7593. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7594. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7595. ggml_vec_acc_f32 (ne00, dx, dz);
  7596. ggml_vec_scale_f32(ne00, dx, rrms);
  7597. }
  7598. }
  7599. }
  7600. }
  7601. static void ggml_compute_forward_rms_norm_back(
  7602. const struct ggml_compute_params * params,
  7603. const struct ggml_tensor * src0,
  7604. const struct ggml_tensor * src1,
  7605. struct ggml_tensor * dst) {
  7606. switch (src0->type) {
  7607. case GGML_TYPE_F32:
  7608. {
  7609. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7610. } break;
  7611. default:
  7612. {
  7613. GGML_ASSERT(false);
  7614. } break;
  7615. }
  7616. }
  7617. // ggml_compute_forward_group_norm
  7618. static void ggml_compute_forward_group_norm_f32(
  7619. const struct ggml_compute_params * params,
  7620. const struct ggml_tensor * src0,
  7621. struct ggml_tensor * dst) {
  7622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7624. return;
  7625. }
  7626. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7627. const int ith = params->ith;
  7628. const int nth = params->nth;
  7629. GGML_TENSOR_UNARY_OP_LOCALS
  7630. const float eps = 1e-6f; // TODO: make this a parameter
  7631. // TODO: optimize
  7632. int n_channels = src0->ne[2];
  7633. int n_groups = dst->op_params[0];
  7634. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7635. for (int i = ith; i < n_groups; i+=nth) {
  7636. int start = i * n_channels_per_group;
  7637. int end = start + n_channels_per_group;
  7638. if (end > n_channels) {
  7639. end = n_channels;
  7640. }
  7641. int step = end - start;
  7642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7643. ggml_float sum = 0.0;
  7644. for (int64_t i02 = start; i02 < end; i02++) {
  7645. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7646. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7648. sum += (ggml_float)x[i00];
  7649. }
  7650. }
  7651. }
  7652. float mean = sum / (ne00 * ne01 * step);
  7653. ggml_float sum2 = 0.0;
  7654. for (int64_t i02 = start; i02 < end; i02++) {
  7655. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7656. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7657. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7658. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7659. float v = x[i00] - mean;
  7660. y[i00] = v;
  7661. sum2 += (ggml_float)(v * v);
  7662. }
  7663. }
  7664. }
  7665. float variance = sum2 / (ne00 * ne01 * step);
  7666. const float scale = 1.0f / sqrtf(variance + eps);
  7667. for (int64_t i02 = start; i02 < end; i02++) {
  7668. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7669. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7670. ggml_vec_scale_f32(ne00, y, scale);
  7671. }
  7672. }
  7673. }
  7674. }
  7675. }
  7676. static void ggml_compute_forward_group_norm(
  7677. const struct ggml_compute_params * params,
  7678. const struct ggml_tensor * src0,
  7679. struct ggml_tensor * dst) {
  7680. switch (src0->type) {
  7681. case GGML_TYPE_F32:
  7682. {
  7683. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7684. } break;
  7685. default:
  7686. {
  7687. GGML_ASSERT(false);
  7688. } break;
  7689. }
  7690. }
  7691. // ggml_compute_forward_mul_mat
  7692. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7693. // helper function to determine if it is better to use BLAS or not
  7694. // for large matrices, BLAS is faster
  7695. static bool ggml_compute_forward_mul_mat_use_blas(
  7696. const struct ggml_tensor * src0,
  7697. const struct ggml_tensor * src1,
  7698. struct ggml_tensor * dst) {
  7699. //const int64_t ne00 = src0->ne[0];
  7700. //const int64_t ne01 = src0->ne[1];
  7701. const int64_t ne10 = src1->ne[0];
  7702. const int64_t ne0 = dst->ne[0];
  7703. const int64_t ne1 = dst->ne[1];
  7704. // TODO: find the optimal values for these
  7705. if (ggml_is_contiguous(src0) &&
  7706. ggml_is_contiguous(src1) &&
  7707. src0->type == GGML_TYPE_F32 &&
  7708. src1->type == GGML_TYPE_F32 &&
  7709. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7710. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7711. return true;
  7712. }
  7713. return false;
  7714. }
  7715. #endif
  7716. static void ggml_compute_forward_mul_mat(
  7717. const struct ggml_compute_params * params,
  7718. const struct ggml_tensor * src0,
  7719. const struct ggml_tensor * src1,
  7720. struct ggml_tensor * dst) {
  7721. int64_t t0 = ggml_perf_time_us();
  7722. UNUSED(t0);
  7723. GGML_TENSOR_BINARY_OP_LOCALS
  7724. const int ith = params->ith;
  7725. const int nth = params->nth;
  7726. const enum ggml_type type = src0->type;
  7727. const bool src1_cont = ggml_is_contiguous(src1);
  7728. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7729. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7730. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7731. GGML_ASSERT(ne0 == ne01);
  7732. GGML_ASSERT(ne1 == ne11);
  7733. GGML_ASSERT(ne2 == ne12);
  7734. GGML_ASSERT(ne3 == ne13);
  7735. // we don't support permuted src0 or src1
  7736. GGML_ASSERT(nb00 == ggml_type_size(type));
  7737. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7738. // dst cannot be transposed or permuted
  7739. GGML_ASSERT(nb0 == sizeof(float));
  7740. GGML_ASSERT(nb0 <= nb1);
  7741. GGML_ASSERT(nb1 <= nb2);
  7742. GGML_ASSERT(nb2 <= nb3);
  7743. // broadcast factors
  7744. const int64_t r2 = ne12/ne02;
  7745. const int64_t r3 = ne13/ne03;
  7746. // nb01 >= nb00 - src0 is not transposed
  7747. // compute by src0 rows
  7748. #if defined(GGML_USE_CLBLAST)
  7749. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7750. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7751. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7752. }
  7753. return;
  7754. }
  7755. #endif
  7756. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7757. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7758. if (params->ith != 0) {
  7759. return;
  7760. }
  7761. if (params->type == GGML_TASK_INIT) {
  7762. return;
  7763. }
  7764. if (params->type == GGML_TASK_FINALIZE) {
  7765. return;
  7766. }
  7767. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7768. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7769. // broadcast src0 into src1 across 2nd,3rd dimension
  7770. const int64_t i03 = i13/r3;
  7771. const int64_t i02 = i12/r2;
  7772. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7773. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7774. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7775. if (type != GGML_TYPE_F32) {
  7776. float * const wdata = params->wdata;
  7777. ggml_to_float_t const to_float = type_traits[type].to_float;
  7778. size_t id = 0;
  7779. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7780. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7781. id += ne00;
  7782. }
  7783. assert(id*sizeof(float) <= params->wsize);
  7784. x = wdata;
  7785. }
  7786. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7787. ne11, ne01, ne10,
  7788. 1.0f, y, ne10,
  7789. x, ne00,
  7790. 0.0f, d, ne01);
  7791. }
  7792. }
  7793. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7794. return;
  7795. }
  7796. #endif
  7797. if (params->type == GGML_TASK_INIT) {
  7798. if (src1->type != vec_dot_type) {
  7799. char * wdata = params->wdata;
  7800. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7801. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7802. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7803. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7804. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7805. wdata += row_size;
  7806. }
  7807. }
  7808. }
  7809. }
  7810. return;
  7811. }
  7812. if (params->type == GGML_TASK_FINALIZE) {
  7813. return;
  7814. }
  7815. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7816. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7817. const int64_t nr0 = ne01; // src0 rows
  7818. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7819. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7820. // distribute the thread work across the inner or outer loop based on which one is larger
  7821. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7822. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7823. const int64_t ith0 = ith % nth0;
  7824. const int64_t ith1 = ith / nth0;
  7825. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7826. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7827. const int64_t ir010 = dr0*ith0;
  7828. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7829. const int64_t ir110 = dr1*ith1;
  7830. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7831. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7832. // threads with no work simply yield (not sure if it helps)
  7833. if (ir010 >= ir011 || ir110 >= ir111) {
  7834. sched_yield();
  7835. return;
  7836. }
  7837. assert(ne12 % ne02 == 0);
  7838. assert(ne13 % ne03 == 0);
  7839. // block-tiling attempt
  7840. const int64_t blck_0 = 16;
  7841. const int64_t blck_1 = 16;
  7842. // attempt to reduce false-sharing (does not seem to make a difference)
  7843. float tmp[16];
  7844. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7845. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7846. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7847. const int64_t i13 = (ir1/(ne12*ne11));
  7848. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7849. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7850. // broadcast src0 into src1
  7851. const int64_t i03 = i13/r3;
  7852. const int64_t i02 = i12/r2;
  7853. const int64_t i1 = i11;
  7854. const int64_t i2 = i12;
  7855. const int64_t i3 = i13;
  7856. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7857. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7858. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7859. // the original src1 data pointer, so we should index using the indices directly
  7860. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7861. const char * src1_col = (const char *) wdata +
  7862. (src1_cont || src1->type != vec_dot_type
  7863. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7864. : (i11*nb11 + i12*nb12 + i13*nb13));
  7865. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7866. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7867. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7868. //}
  7869. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7870. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7871. }
  7872. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7873. }
  7874. }
  7875. }
  7876. }
  7877. // ggml_compute_forward_out_prod
  7878. static void ggml_compute_forward_out_prod_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. const struct ggml_tensor * src1,
  7882. struct ggml_tensor * dst) {
  7883. // int64_t t0 = ggml_perf_time_us();
  7884. // UNUSED(t0);
  7885. GGML_TENSOR_BINARY_OP_LOCALS
  7886. const int ith = params->ith;
  7887. const int nth = params->nth;
  7888. GGML_ASSERT(ne02 == ne12);
  7889. GGML_ASSERT(ne03 == ne13);
  7890. GGML_ASSERT(ne2 == ne12);
  7891. GGML_ASSERT(ne3 == ne13);
  7892. // we don't support permuted src0 or src1
  7893. GGML_ASSERT(nb00 == sizeof(float));
  7894. // dst cannot be transposed or permuted
  7895. GGML_ASSERT(nb0 == sizeof(float));
  7896. // GGML_ASSERT(nb0 <= nb1);
  7897. // GGML_ASSERT(nb1 <= nb2);
  7898. // GGML_ASSERT(nb2 <= nb3);
  7899. GGML_ASSERT(ne0 == ne00);
  7900. GGML_ASSERT(ne1 == ne10);
  7901. GGML_ASSERT(ne2 == ne02);
  7902. GGML_ASSERT(ne3 == ne03);
  7903. // nb01 >= nb00 - src0 is not transposed
  7904. // compute by src0 rows
  7905. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7906. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7907. if (params->type == GGML_TASK_INIT) {
  7908. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7909. return;
  7910. }
  7911. if (params->type == GGML_TASK_FINALIZE) {
  7912. return;
  7913. }
  7914. // dst[:,:,:,:] = 0
  7915. // for i2,i3:
  7916. // for i1:
  7917. // for i01:
  7918. // for i0:
  7919. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7920. // parallelize by last three dimensions
  7921. // total rows in dst
  7922. const int64_t nr = ne1*ne2*ne3;
  7923. // rows per thread
  7924. const int64_t dr = (nr + nth - 1)/nth;
  7925. // row range for this thread
  7926. const int64_t ir0 = dr*ith;
  7927. const int64_t ir1 = MIN(ir0 + dr, nr);
  7928. // block-tiling attempt
  7929. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7930. const int64_t blck_1 = 16;
  7931. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7932. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7933. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7934. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  7935. for (int64_t ir = bir; ir < bir1; ++ir) {
  7936. // dst indices
  7937. const int64_t i3 = ir/(ne2*ne1);
  7938. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  7939. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7940. const int64_t i02 = i2;
  7941. const int64_t i03 = i3;
  7942. //const int64_t i10 = i1;
  7943. const int64_t i12 = i2;
  7944. const int64_t i13 = i3;
  7945. #if GGML_VEC_MAD_UNROLL > 2
  7946. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  7947. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  7948. const int64_t i11 = i01;
  7949. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7950. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7951. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7952. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  7953. }
  7954. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  7955. const int64_t i11 = i01;
  7956. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7957. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7958. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7959. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7960. }
  7961. #else
  7962. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  7963. const int64_t i11 = i01;
  7964. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7965. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7966. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7967. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7968. }
  7969. #endif
  7970. }
  7971. }
  7972. }
  7973. //int64_t t1 = ggml_perf_time_us();
  7974. //static int64_t acc = 0;
  7975. //acc += t1 - t0;
  7976. //if (t1 - t0 > 10) {
  7977. // printf("\n");
  7978. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7979. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7980. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7981. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7982. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7983. //}
  7984. }
  7985. static void ggml_compute_forward_out_prod_q_f32(
  7986. const struct ggml_compute_params * params,
  7987. const struct ggml_tensor * src0,
  7988. const struct ggml_tensor * src1,
  7989. struct ggml_tensor * dst) {
  7990. // int64_t t0 = ggml_perf_time_us();
  7991. // UNUSED(t0);
  7992. GGML_TENSOR_BINARY_OP_LOCALS;
  7993. const int ith = params->ith;
  7994. const int nth = params->nth;
  7995. const enum ggml_type type = src0->type;
  7996. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7997. GGML_ASSERT(ne02 == ne12);
  7998. GGML_ASSERT(ne03 == ne13);
  7999. GGML_ASSERT(ne2 == ne12);
  8000. GGML_ASSERT(ne3 == ne13);
  8001. // we don't support permuted src0 dim0
  8002. GGML_ASSERT(nb00 == ggml_type_size(type));
  8003. // dst dim0 cannot be transposed or permuted
  8004. GGML_ASSERT(nb0 == sizeof(float));
  8005. // GGML_ASSERT(nb0 <= nb1);
  8006. // GGML_ASSERT(nb1 <= nb2);
  8007. // GGML_ASSERT(nb2 <= nb3);
  8008. GGML_ASSERT(ne0 == ne00);
  8009. GGML_ASSERT(ne1 == ne10);
  8010. GGML_ASSERT(ne2 == ne02);
  8011. GGML_ASSERT(ne3 == ne03);
  8012. // nb01 >= nb00 - src0 is not transposed
  8013. // compute by src0 rows
  8014. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8015. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8016. if (params->type == GGML_TASK_INIT) {
  8017. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8018. return;
  8019. }
  8020. if (params->type == GGML_TASK_FINALIZE) {
  8021. return;
  8022. }
  8023. // parallelize by last three dimensions
  8024. // total rows in dst
  8025. const int64_t nr = ne1*ne2*ne3;
  8026. // rows per thread
  8027. const int64_t dr = (nr + nth - 1)/nth;
  8028. // row range for this thread
  8029. const int64_t ir0 = dr*ith;
  8030. const int64_t ir1 = MIN(ir0 + dr, nr);
  8031. // dst[:,:,:,:] = 0
  8032. // for i2,i3:
  8033. // for i1:
  8034. // for i01:
  8035. // for i0:
  8036. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8037. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8038. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8039. // dst indices
  8040. const int64_t i3 = ir/(ne2*ne1);
  8041. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8042. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8043. const int64_t i02 = i2;
  8044. const int64_t i03 = i3;
  8045. //const int64_t i10 = i1;
  8046. const int64_t i12 = i2;
  8047. const int64_t i13 = i3;
  8048. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8049. const int64_t i11 = i01;
  8050. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8051. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8052. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8053. dequantize_row_q(s0, wdata, ne0);
  8054. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8055. }
  8056. }
  8057. //int64_t t1 = ggml_perf_time_us();
  8058. //static int64_t acc = 0;
  8059. //acc += t1 - t0;
  8060. //if (t1 - t0 > 10) {
  8061. // printf("\n");
  8062. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8063. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8064. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8065. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8066. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8067. //}
  8068. }
  8069. static void ggml_compute_forward_out_prod(
  8070. const struct ggml_compute_params * params,
  8071. const struct ggml_tensor * src0,
  8072. const struct ggml_tensor * src1,
  8073. struct ggml_tensor * dst) {
  8074. switch (src0->type) {
  8075. case GGML_TYPE_Q4_0:
  8076. case GGML_TYPE_Q4_1:
  8077. case GGML_TYPE_Q5_0:
  8078. case GGML_TYPE_Q5_1:
  8079. case GGML_TYPE_Q8_0:
  8080. case GGML_TYPE_Q2_K:
  8081. case GGML_TYPE_Q3_K:
  8082. case GGML_TYPE_Q4_K:
  8083. case GGML_TYPE_Q5_K:
  8084. case GGML_TYPE_Q6_K:
  8085. {
  8086. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8087. } break;
  8088. case GGML_TYPE_F16:
  8089. {
  8090. GGML_ASSERT(false); // todo
  8091. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8092. } break;
  8093. case GGML_TYPE_F32:
  8094. {
  8095. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8096. } break;
  8097. default:
  8098. {
  8099. GGML_ASSERT(false);
  8100. } break;
  8101. }
  8102. }
  8103. // ggml_compute_forward_scale
  8104. static void ggml_compute_forward_scale_f32(
  8105. const struct ggml_compute_params * params,
  8106. const struct ggml_tensor * src0,
  8107. const struct ggml_tensor * src1,
  8108. struct ggml_tensor * dst) {
  8109. GGML_ASSERT(ggml_is_contiguous(src0));
  8110. GGML_ASSERT(ggml_is_contiguous(dst));
  8111. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8112. GGML_ASSERT(ggml_is_scalar(src1));
  8113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8114. return;
  8115. }
  8116. // scale factor
  8117. const float v = *(float *) src1->data;
  8118. const int ith = params->ith;
  8119. const int nth = params->nth;
  8120. const int nc = src0->ne[0];
  8121. const int nr = ggml_nrows(src0);
  8122. // rows per thread
  8123. const int dr = (nr + nth - 1)/nth;
  8124. // row range for this thread
  8125. const int ir0 = dr*ith;
  8126. const int ir1 = MIN(ir0 + dr, nr);
  8127. const size_t nb01 = src0->nb[1];
  8128. const size_t nb1 = dst->nb[1];
  8129. for (int i1 = ir0; i1 < ir1; i1++) {
  8130. if (dst->data != src0->data) {
  8131. // src0 is same shape as dst => same indices
  8132. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8133. }
  8134. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8135. }
  8136. }
  8137. static void ggml_compute_forward_scale(
  8138. const struct ggml_compute_params * params,
  8139. const struct ggml_tensor * src0,
  8140. const struct ggml_tensor * src1,
  8141. struct ggml_tensor * dst) {
  8142. switch (src0->type) {
  8143. case GGML_TYPE_F32:
  8144. {
  8145. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8146. } break;
  8147. default:
  8148. {
  8149. GGML_ASSERT(false);
  8150. } break;
  8151. }
  8152. }
  8153. // ggml_compute_forward_set
  8154. static void ggml_compute_forward_set_f32(
  8155. const struct ggml_compute_params * params,
  8156. const struct ggml_tensor * src0,
  8157. const struct ggml_tensor * src1,
  8158. struct ggml_tensor * dst) {
  8159. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8160. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8161. // view src0 and dst with these strides and data offset inbytes during set
  8162. // nb0 is implicitely element_size because src0 and dst are contiguous
  8163. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8164. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8165. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8166. size_t offset = ((int32_t *) dst->op_params)[3];
  8167. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8168. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8169. // memcpy needs to be synchronized across threads to avoid race conditions.
  8170. // => do it in INIT phase
  8171. memcpy(
  8172. ((char *) dst->data),
  8173. ((char *) src0->data),
  8174. ggml_nbytes(dst));
  8175. }
  8176. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8177. return;
  8178. }
  8179. const int ith = params->ith;
  8180. const int nth = params->nth;
  8181. const int nr = ggml_nrows(src1);
  8182. const int nc = src1->ne[0];
  8183. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8184. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8185. // src0 and dst as viewed during set
  8186. const size_t nb0 = ggml_element_size(src0);
  8187. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8188. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8189. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8190. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8191. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8192. GGML_ASSERT(nb10 == sizeof(float));
  8193. // rows per thread
  8194. const int dr = (nr + nth - 1)/nth;
  8195. // row range for this thread
  8196. const int ir0 = dr*ith;
  8197. const int ir1 = MIN(ir0 + dr, nr);
  8198. for (int ir = ir0; ir < ir1; ++ir) {
  8199. // src0 and dst are viewed with shape of src1 and offset
  8200. // => same indices
  8201. const int i3 = ir/(ne12*ne11);
  8202. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8203. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8204. ggml_vec_cpy_f32(nc,
  8205. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8206. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8207. }
  8208. }
  8209. static void ggml_compute_forward_set(
  8210. const struct ggml_compute_params * params,
  8211. const struct ggml_tensor * src0,
  8212. const struct ggml_tensor * src1,
  8213. struct ggml_tensor * dst) {
  8214. switch (src0->type) {
  8215. case GGML_TYPE_F32:
  8216. {
  8217. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8218. } break;
  8219. case GGML_TYPE_F16:
  8220. case GGML_TYPE_Q4_0:
  8221. case GGML_TYPE_Q4_1:
  8222. case GGML_TYPE_Q5_0:
  8223. case GGML_TYPE_Q5_1:
  8224. case GGML_TYPE_Q8_0:
  8225. case GGML_TYPE_Q8_1:
  8226. case GGML_TYPE_Q2_K:
  8227. case GGML_TYPE_Q3_K:
  8228. case GGML_TYPE_Q4_K:
  8229. case GGML_TYPE_Q5_K:
  8230. case GGML_TYPE_Q6_K:
  8231. default:
  8232. {
  8233. GGML_ASSERT(false);
  8234. } break;
  8235. }
  8236. }
  8237. // ggml_compute_forward_cpy
  8238. static void ggml_compute_forward_cpy(
  8239. const struct ggml_compute_params * params,
  8240. const struct ggml_tensor * src0,
  8241. struct ggml_tensor * dst) {
  8242. ggml_compute_forward_dup(params, src0, dst);
  8243. }
  8244. // ggml_compute_forward_cont
  8245. static void ggml_compute_forward_cont(
  8246. const struct ggml_compute_params * params,
  8247. const struct ggml_tensor * src0,
  8248. struct ggml_tensor * dst) {
  8249. ggml_compute_forward_dup(params, src0, dst);
  8250. }
  8251. // ggml_compute_forward_reshape
  8252. static void ggml_compute_forward_reshape(
  8253. const struct ggml_compute_params * params,
  8254. const struct ggml_tensor * src0,
  8255. struct ggml_tensor * dst) {
  8256. // NOP
  8257. UNUSED(params);
  8258. UNUSED(src0);
  8259. UNUSED(dst);
  8260. }
  8261. // ggml_compute_forward_view
  8262. static void ggml_compute_forward_view(
  8263. const struct ggml_compute_params * params,
  8264. const struct ggml_tensor * src0) {
  8265. // NOP
  8266. UNUSED(params);
  8267. UNUSED(src0);
  8268. }
  8269. // ggml_compute_forward_permute
  8270. static void ggml_compute_forward_permute(
  8271. const struct ggml_compute_params * params,
  8272. const struct ggml_tensor * src0) {
  8273. // NOP
  8274. UNUSED(params);
  8275. UNUSED(src0);
  8276. }
  8277. // ggml_compute_forward_transpose
  8278. static void ggml_compute_forward_transpose(
  8279. const struct ggml_compute_params * params,
  8280. const struct ggml_tensor * src0) {
  8281. // NOP
  8282. UNUSED(params);
  8283. UNUSED(src0);
  8284. }
  8285. // ggml_compute_forward_get_rows
  8286. static void ggml_compute_forward_get_rows_q(
  8287. const struct ggml_compute_params * params,
  8288. const struct ggml_tensor * src0,
  8289. const struct ggml_tensor * src1,
  8290. struct ggml_tensor * dst) {
  8291. assert(params->ith == 0);
  8292. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8293. return;
  8294. }
  8295. const int nc = src0->ne[0];
  8296. const int nr = ggml_nelements(src1);
  8297. const enum ggml_type type = src0->type;
  8298. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8299. assert( dst->ne[0] == nc);
  8300. assert( dst->ne[1] == nr);
  8301. assert(src0->nb[0] == ggml_type_size(type));
  8302. for (int i = 0; i < nr; ++i) {
  8303. const int r = ((int32_t *) src1->data)[i];
  8304. dequantize_row_q(
  8305. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8306. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8307. }
  8308. }
  8309. static void ggml_compute_forward_get_rows_f16(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. const struct ggml_tensor * src1,
  8313. struct ggml_tensor * dst) {
  8314. assert(params->ith == 0);
  8315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8316. return;
  8317. }
  8318. const int nc = src0->ne[0];
  8319. const int nr = ggml_nelements(src1);
  8320. assert( dst->ne[0] == nc);
  8321. assert( dst->ne[1] == nr);
  8322. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8323. for (int i = 0; i < nr; ++i) {
  8324. const int r = ((int32_t *) src1->data)[i];
  8325. for (int j = 0; j < nc; ++j) {
  8326. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8327. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8328. }
  8329. }
  8330. }
  8331. static void ggml_compute_forward_get_rows_f32(
  8332. const struct ggml_compute_params * params,
  8333. const struct ggml_tensor * src0,
  8334. const struct ggml_tensor * src1,
  8335. struct ggml_tensor * dst) {
  8336. assert(params->ith == 0);
  8337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8338. return;
  8339. }
  8340. const int nc = src0->ne[0];
  8341. const int nr = ggml_nelements(src1);
  8342. assert( dst->ne[0] == nc);
  8343. assert( dst->ne[1] == nr);
  8344. assert(src0->nb[0] == sizeof(float));
  8345. for (int i = 0; i < nr; ++i) {
  8346. const int r = ((int32_t *) src1->data)[i];
  8347. ggml_vec_cpy_f32(nc,
  8348. (float *) ((char *) dst->data + i*dst->nb[1]),
  8349. (float *) ((char *) src0->data + r*src0->nb[1]));
  8350. }
  8351. }
  8352. static void ggml_compute_forward_get_rows(
  8353. const struct ggml_compute_params * params,
  8354. const struct ggml_tensor * src0,
  8355. const struct ggml_tensor * src1,
  8356. struct ggml_tensor * dst) {
  8357. switch (src0->type) {
  8358. case GGML_TYPE_Q4_0:
  8359. case GGML_TYPE_Q4_1:
  8360. case GGML_TYPE_Q5_0:
  8361. case GGML_TYPE_Q5_1:
  8362. case GGML_TYPE_Q8_0:
  8363. case GGML_TYPE_Q8_1:
  8364. case GGML_TYPE_Q2_K:
  8365. case GGML_TYPE_Q3_K:
  8366. case GGML_TYPE_Q4_K:
  8367. case GGML_TYPE_Q5_K:
  8368. case GGML_TYPE_Q6_K:
  8369. {
  8370. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8371. } break;
  8372. case GGML_TYPE_F16:
  8373. {
  8374. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8375. } break;
  8376. case GGML_TYPE_F32:
  8377. {
  8378. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8379. } break;
  8380. default:
  8381. {
  8382. GGML_ASSERT(false);
  8383. } break;
  8384. }
  8385. //static bool first = true;
  8386. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8387. //if (first) {
  8388. // first = false;
  8389. //} else {
  8390. // for (int k = 0; k < dst->ne[1]; ++k) {
  8391. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8392. // for (int i = 0; i < 16; ++i) {
  8393. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8394. // }
  8395. // printf("\n");
  8396. // }
  8397. // printf("\n");
  8398. // }
  8399. // printf("\n");
  8400. // exit(0);
  8401. //}
  8402. }
  8403. // ggml_compute_forward_get_rows_back
  8404. static void ggml_compute_forward_get_rows_back_f32_f16(
  8405. const struct ggml_compute_params * params,
  8406. const struct ggml_tensor * src0,
  8407. const struct ggml_tensor * src1,
  8408. struct ggml_tensor * dst) {
  8409. GGML_ASSERT(params->ith == 0);
  8410. GGML_ASSERT(ggml_is_contiguous(dst));
  8411. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8412. if (params->type == GGML_TASK_INIT) {
  8413. memset(dst->data, 0, ggml_nbytes(dst));
  8414. }
  8415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8416. return;
  8417. }
  8418. const int nc = src0->ne[0];
  8419. const int nr = ggml_nelements(src1);
  8420. GGML_ASSERT( dst->ne[0] == nc);
  8421. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8422. for (int i = 0; i < nr; ++i) {
  8423. const int r = ((int32_t *) src1->data)[i];
  8424. for (int j = 0; j < nc; ++j) {
  8425. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8426. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8427. }
  8428. }
  8429. }
  8430. static void ggml_compute_forward_get_rows_back_f32(
  8431. const struct ggml_compute_params * params,
  8432. const struct ggml_tensor * src0,
  8433. const struct ggml_tensor * src1,
  8434. struct ggml_tensor * dst) {
  8435. GGML_ASSERT(params->ith == 0);
  8436. GGML_ASSERT(ggml_is_contiguous(dst));
  8437. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8438. if (params->type == GGML_TASK_INIT) {
  8439. memset(dst->data, 0, ggml_nbytes(dst));
  8440. }
  8441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8442. return;
  8443. }
  8444. const int nc = src0->ne[0];
  8445. const int nr = ggml_nelements(src1);
  8446. GGML_ASSERT( dst->ne[0] == nc);
  8447. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8448. for (int i = 0; i < nr; ++i) {
  8449. const int r = ((int32_t *) src1->data)[i];
  8450. ggml_vec_add_f32(nc,
  8451. (float *) ((char *) dst->data + r*dst->nb[1]),
  8452. (float *) ((char *) dst->data + r*dst->nb[1]),
  8453. (float *) ((char *) src0->data + i*src0->nb[1]));
  8454. }
  8455. }
  8456. static void ggml_compute_forward_get_rows_back(
  8457. const struct ggml_compute_params * params,
  8458. const struct ggml_tensor * src0,
  8459. const struct ggml_tensor * src1,
  8460. struct ggml_tensor * dst) {
  8461. switch (src0->type) {
  8462. case GGML_TYPE_F16:
  8463. {
  8464. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8465. } break;
  8466. case GGML_TYPE_F32:
  8467. {
  8468. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8469. } break;
  8470. default:
  8471. {
  8472. GGML_ASSERT(false);
  8473. } break;
  8474. }
  8475. //static bool first = true;
  8476. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8477. //if (first) {
  8478. // first = false;
  8479. //} else {
  8480. // for (int k = 0; k < dst->ne[1]; ++k) {
  8481. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8482. // for (int i = 0; i < 16; ++i) {
  8483. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8484. // }
  8485. // printf("\n");
  8486. // }
  8487. // printf("\n");
  8488. // }
  8489. // printf("\n");
  8490. // exit(0);
  8491. //}
  8492. }
  8493. // ggml_compute_forward_diag
  8494. static void ggml_compute_forward_diag_f32(
  8495. const struct ggml_compute_params * params,
  8496. const struct ggml_tensor * src0,
  8497. struct ggml_tensor * dst) {
  8498. GGML_ASSERT(params->ith == 0);
  8499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8500. return;
  8501. }
  8502. // TODO: handle transposed/permuted matrices
  8503. GGML_TENSOR_UNARY_OP_LOCALS
  8504. GGML_ASSERT(ne00 == ne0);
  8505. GGML_ASSERT(ne00 == ne1);
  8506. GGML_ASSERT(ne01 == 1);
  8507. GGML_ASSERT(ne02 == ne2);
  8508. GGML_ASSERT(ne03 == ne3);
  8509. GGML_ASSERT(nb00 == sizeof(float));
  8510. GGML_ASSERT(nb0 == sizeof(float));
  8511. for (int i3 = 0; i3 < ne3; i3++) {
  8512. for (int i2 = 0; i2 < ne2; i2++) {
  8513. for (int i1 = 0; i1 < ne1; i1++) {
  8514. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8515. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8516. for (int i0 = 0; i0 < i1; i0++) {
  8517. d[i0] = 0;
  8518. }
  8519. d[i1] = s[i1];
  8520. for (int i0 = i1+1; i0 < ne0; i0++) {
  8521. d[i0] = 0;
  8522. }
  8523. }
  8524. }
  8525. }
  8526. }
  8527. static void ggml_compute_forward_diag(
  8528. const struct ggml_compute_params * params,
  8529. const struct ggml_tensor * src0,
  8530. struct ggml_tensor * dst) {
  8531. switch (src0->type) {
  8532. case GGML_TYPE_F32:
  8533. {
  8534. ggml_compute_forward_diag_f32(params, src0, dst);
  8535. } break;
  8536. default:
  8537. {
  8538. GGML_ASSERT(false);
  8539. } break;
  8540. }
  8541. }
  8542. // ggml_compute_forward_diag_mask_inf
  8543. static void ggml_compute_forward_diag_mask_f32(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. struct ggml_tensor * dst,
  8547. const float value) {
  8548. const int ith = params->ith;
  8549. const int nth = params->nth;
  8550. const int n_past = ((int32_t *) dst->op_params)[0];
  8551. const bool inplace = src0->data == dst->data;
  8552. GGML_ASSERT(n_past >= 0);
  8553. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8554. // memcpy needs to be synchronized across threads to avoid race conditions.
  8555. // => do it in INIT phase
  8556. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8557. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8558. memcpy(
  8559. ((char *) dst->data),
  8560. ((char *) src0->data),
  8561. ggml_nbytes(dst));
  8562. }
  8563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8564. return;
  8565. }
  8566. // TODO: handle transposed/permuted matrices
  8567. const int n = ggml_nrows(src0);
  8568. const int nc = src0->ne[0];
  8569. const int nr = src0->ne[1];
  8570. const int nz = n/nr;
  8571. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8572. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8573. for (int k = 0; k < nz; k++) {
  8574. for (int j = ith; j < nr; j += nth) {
  8575. for (int i = n_past; i < nc; i++) {
  8576. if (i > n_past + j) {
  8577. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8578. }
  8579. }
  8580. }
  8581. }
  8582. }
  8583. static void ggml_compute_forward_diag_mask_inf(
  8584. const struct ggml_compute_params * params,
  8585. const struct ggml_tensor * src0,
  8586. struct ggml_tensor * dst) {
  8587. switch (src0->type) {
  8588. case GGML_TYPE_F32:
  8589. {
  8590. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8591. } break;
  8592. default:
  8593. {
  8594. GGML_ASSERT(false);
  8595. } break;
  8596. }
  8597. }
  8598. static void ggml_compute_forward_diag_mask_zero(
  8599. const struct ggml_compute_params * params,
  8600. const struct ggml_tensor * src0,
  8601. struct ggml_tensor * dst) {
  8602. switch (src0->type) {
  8603. case GGML_TYPE_F32:
  8604. {
  8605. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8606. } break;
  8607. default:
  8608. {
  8609. GGML_ASSERT(false);
  8610. } break;
  8611. }
  8612. }
  8613. // ggml_compute_forward_soft_max
  8614. static void ggml_compute_forward_soft_max_f32(
  8615. const struct ggml_compute_params * params,
  8616. const struct ggml_tensor * src0,
  8617. struct ggml_tensor * dst) {
  8618. GGML_ASSERT(ggml_is_contiguous(src0));
  8619. GGML_ASSERT(ggml_is_contiguous(dst));
  8620. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8622. return;
  8623. }
  8624. // TODO: handle transposed/permuted matrices
  8625. const int ith = params->ith;
  8626. const int nth = params->nth;
  8627. const int nc = src0->ne[0];
  8628. const int nr = ggml_nrows(src0);
  8629. // rows per thread
  8630. const int dr = (nr + nth - 1)/nth;
  8631. // row range for this thread
  8632. const int ir0 = dr*ith;
  8633. const int ir1 = MIN(ir0 + dr, nr);
  8634. for (int i1 = ir0; i1 < ir1; i1++) {
  8635. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8636. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8637. #ifndef NDEBUG
  8638. for (int i = 0; i < nc; ++i) {
  8639. //printf("p[%d] = %f\n", i, p[i]);
  8640. assert(!isnan(sp[i]));
  8641. }
  8642. #endif
  8643. float max = -INFINITY;
  8644. ggml_vec_max_f32(nc, &max, sp);
  8645. ggml_float sum = 0.0;
  8646. uint16_t scvt;
  8647. for (int i = 0; i < nc; i++) {
  8648. if (sp[i] == -INFINITY) {
  8649. dp[i] = 0.0f;
  8650. } else {
  8651. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8652. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8653. memcpy(&scvt, &s, sizeof(scvt));
  8654. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8655. sum += (ggml_float)val;
  8656. dp[i] = val;
  8657. }
  8658. }
  8659. assert(sum > 0.0);
  8660. sum = 1.0/sum;
  8661. ggml_vec_scale_f32(nc, dp, sum);
  8662. #ifndef NDEBUG
  8663. for (int i = 0; i < nc; ++i) {
  8664. assert(!isnan(dp[i]));
  8665. assert(!isinf(dp[i]));
  8666. }
  8667. #endif
  8668. }
  8669. }
  8670. static void ggml_compute_forward_soft_max(
  8671. const struct ggml_compute_params * params,
  8672. const struct ggml_tensor * src0,
  8673. struct ggml_tensor * dst) {
  8674. switch (src0->type) {
  8675. case GGML_TYPE_F32:
  8676. {
  8677. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8678. } break;
  8679. default:
  8680. {
  8681. GGML_ASSERT(false);
  8682. } break;
  8683. }
  8684. }
  8685. // ggml_compute_forward_soft_max_back
  8686. static void ggml_compute_forward_soft_max_back_f32(
  8687. const struct ggml_compute_params * params,
  8688. const struct ggml_tensor * src0,
  8689. const struct ggml_tensor * src1,
  8690. struct ggml_tensor * dst) {
  8691. GGML_ASSERT(ggml_is_contiguous(src0));
  8692. GGML_ASSERT(ggml_is_contiguous(src1));
  8693. GGML_ASSERT(ggml_is_contiguous(dst));
  8694. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8695. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8697. return;
  8698. }
  8699. // TODO: handle transposed/permuted matrices
  8700. const int ith = params->ith;
  8701. const int nth = params->nth;
  8702. const int nc = src0->ne[0];
  8703. const int nr = ggml_nrows(src0);
  8704. // rows per thread
  8705. const int dr = (nr + nth - 1)/nth;
  8706. // row range for this thread
  8707. const int ir0 = dr*ith;
  8708. const int ir1 = MIN(ir0 + dr, nr);
  8709. for (int i1 = ir0; i1 < ir1; i1++) {
  8710. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8711. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8712. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8713. #ifndef NDEBUG
  8714. for (int i = 0; i < nc; ++i) {
  8715. //printf("p[%d] = %f\n", i, p[i]);
  8716. assert(!isnan(dy[i]));
  8717. assert(!isnan(y[i]));
  8718. }
  8719. #endif
  8720. // Jii = yi - yi*yi
  8721. // Jij = -yi*yj
  8722. // J = diag(y)-y.T*y
  8723. // dx = J * dy
  8724. // dxk = sum_i(Jki * dyi)
  8725. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8726. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8727. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8728. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8729. // dxk = -yk * dot(y, dy) + yk*dyk
  8730. // dxk = yk * (- dot(y, dy) + dyk)
  8731. // dxk = yk * (dyk - dot(y, dy))
  8732. //
  8733. // post-order:
  8734. // dot_y_dy := dot(y, dy)
  8735. // dx := dy
  8736. // dx := dx - dot_y_dy
  8737. // dx := dx * y
  8738. // linear runtime, no additional memory
  8739. float dot_y_dy = 0;
  8740. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8741. ggml_vec_cpy_f32 (nc, dx, dy);
  8742. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8743. ggml_vec_mul_f32 (nc, dx, dx, y);
  8744. #ifndef NDEBUG
  8745. for (int i = 0; i < nc; ++i) {
  8746. assert(!isnan(dx[i]));
  8747. assert(!isinf(dx[i]));
  8748. }
  8749. #endif
  8750. }
  8751. }
  8752. static void ggml_compute_forward_soft_max_back(
  8753. const struct ggml_compute_params * params,
  8754. const struct ggml_tensor * src0,
  8755. const struct ggml_tensor * src1,
  8756. struct ggml_tensor * dst) {
  8757. switch (src0->type) {
  8758. case GGML_TYPE_F32:
  8759. {
  8760. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8761. } break;
  8762. default:
  8763. {
  8764. GGML_ASSERT(false);
  8765. } break;
  8766. }
  8767. }
  8768. // ggml_compute_forward_alibi
  8769. static void ggml_compute_forward_alibi_f32(
  8770. const struct ggml_compute_params * params,
  8771. const struct ggml_tensor * src0,
  8772. struct ggml_tensor * dst) {
  8773. assert(params->ith == 0);
  8774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8775. return;
  8776. }
  8777. //const int n_past = ((int32_t *) dst->op_params)[0];
  8778. const int n_head = ((int32_t *) dst->op_params)[1];
  8779. float max_bias;
  8780. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8781. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8782. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8783. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8784. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8785. const int64_t n = ggml_nrows(src0);
  8786. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8787. const size_t nb0 = src0->nb[0];
  8788. const size_t nb1 = src0->nb[1];
  8789. const size_t nb2 = src0->nb[2];
  8790. //const int nb3 = src0->nb[3];
  8791. GGML_ASSERT(nb0 == sizeof(float));
  8792. GGML_ASSERT(n_head == ne2);
  8793. // add alibi to src0 (KQ_scaled)
  8794. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8795. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8796. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8797. for (int64_t i = 0; i < ne0; i++) {
  8798. for (int64_t j = 0; j < ne1; j++) {
  8799. for (int64_t k = 0; k < ne2_ne3; k++) {
  8800. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8801. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8802. // TODO: k*nb2 or k*nb3
  8803. float m_k;
  8804. if (k < n_heads_log2_floor) {
  8805. m_k = powf(m0, k + 1);
  8806. } else {
  8807. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8808. }
  8809. pdst[0] = i * m_k + src[0];
  8810. }
  8811. }
  8812. }
  8813. }
  8814. static void ggml_compute_forward_alibi_f16(
  8815. const struct ggml_compute_params * params,
  8816. const struct ggml_tensor * src0,
  8817. struct ggml_tensor * dst) {
  8818. assert(params->ith == 0);
  8819. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8820. return;
  8821. }
  8822. //const int n_past = ((int32_t *) dst->op_params)[0];
  8823. const int n_head = ((int32_t *) dst->op_params)[1];
  8824. float max_bias;
  8825. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8826. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8827. const int ne1 = src0->ne[1]; // seq_len_without_past
  8828. const int ne2 = src0->ne[2]; // n_head -> this is k
  8829. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8830. const int n = ggml_nrows(src0);
  8831. const int ne2_ne3 = n/ne1; // ne2*ne3
  8832. const int nb0 = src0->nb[0];
  8833. const int nb1 = src0->nb[1];
  8834. const int nb2 = src0->nb[2];
  8835. //const int nb3 = src0->nb[3];
  8836. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8837. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8838. GGML_ASSERT(n_head == ne2);
  8839. // add alibi to src0 (KQ_scaled)
  8840. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8841. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8842. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8843. for (int i = 0; i < ne0; i++) {
  8844. for (int j = 0; j < ne1; j++) {
  8845. for (int k = 0; k < ne2_ne3; k++) {
  8846. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8847. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8848. // TODO: k*nb2 or k*nb3
  8849. float m_k;
  8850. if (k < n_heads_log2_floor) {
  8851. m_k = powf(m0, k + 1);
  8852. } else {
  8853. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8854. }
  8855. // we return F32
  8856. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8857. }
  8858. }
  8859. }
  8860. }
  8861. static void ggml_compute_forward_alibi(
  8862. const struct ggml_compute_params * params,
  8863. const struct ggml_tensor * src0,
  8864. struct ggml_tensor * dst) {
  8865. switch (src0->type) {
  8866. case GGML_TYPE_F16:
  8867. {
  8868. ggml_compute_forward_alibi_f16(params, src0, dst);
  8869. } break;
  8870. case GGML_TYPE_F32:
  8871. {
  8872. ggml_compute_forward_alibi_f32(params, src0, dst);
  8873. } break;
  8874. case GGML_TYPE_Q4_0:
  8875. case GGML_TYPE_Q4_1:
  8876. case GGML_TYPE_Q5_0:
  8877. case GGML_TYPE_Q5_1:
  8878. case GGML_TYPE_Q8_0:
  8879. case GGML_TYPE_Q8_1:
  8880. case GGML_TYPE_Q2_K:
  8881. case GGML_TYPE_Q3_K:
  8882. case GGML_TYPE_Q4_K:
  8883. case GGML_TYPE_Q5_K:
  8884. case GGML_TYPE_Q6_K:
  8885. case GGML_TYPE_Q8_K:
  8886. case GGML_TYPE_I8:
  8887. case GGML_TYPE_I16:
  8888. case GGML_TYPE_I32:
  8889. case GGML_TYPE_COUNT:
  8890. {
  8891. GGML_ASSERT(false);
  8892. } break;
  8893. }
  8894. }
  8895. // ggml_compute_forward_clamp
  8896. static void ggml_compute_forward_clamp_f32(
  8897. const struct ggml_compute_params * params,
  8898. const struct ggml_tensor * src0,
  8899. struct ggml_tensor * dst) {
  8900. assert(params->ith == 0);
  8901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8902. return;
  8903. }
  8904. float min;
  8905. float max;
  8906. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8907. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8908. const int ith = params->ith;
  8909. const int nth = params->nth;
  8910. const int n = ggml_nrows(src0);
  8911. const int nc = src0->ne[0];
  8912. const size_t nb00 = src0->nb[0];
  8913. const size_t nb01 = src0->nb[1];
  8914. const size_t nb0 = dst->nb[0];
  8915. const size_t nb1 = dst->nb[1];
  8916. GGML_ASSERT( nb0 == sizeof(float));
  8917. GGML_ASSERT(nb00 == sizeof(float));
  8918. for (int j = ith; j < n; j += nth) {
  8919. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8920. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8921. for (int i = 0; i < nc; i++) {
  8922. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8923. }
  8924. }
  8925. }
  8926. static void ggml_compute_forward_clamp(
  8927. const struct ggml_compute_params * params,
  8928. const struct ggml_tensor * src0,
  8929. struct ggml_tensor * dst) {
  8930. switch (src0->type) {
  8931. case GGML_TYPE_F32:
  8932. {
  8933. ggml_compute_forward_clamp_f32(params, src0, dst);
  8934. } break;
  8935. case GGML_TYPE_F16:
  8936. case GGML_TYPE_Q4_0:
  8937. case GGML_TYPE_Q4_1:
  8938. case GGML_TYPE_Q5_0:
  8939. case GGML_TYPE_Q5_1:
  8940. case GGML_TYPE_Q8_0:
  8941. case GGML_TYPE_Q8_1:
  8942. case GGML_TYPE_Q2_K:
  8943. case GGML_TYPE_Q3_K:
  8944. case GGML_TYPE_Q4_K:
  8945. case GGML_TYPE_Q5_K:
  8946. case GGML_TYPE_Q6_K:
  8947. case GGML_TYPE_Q8_K:
  8948. case GGML_TYPE_I8:
  8949. case GGML_TYPE_I16:
  8950. case GGML_TYPE_I32:
  8951. case GGML_TYPE_COUNT:
  8952. {
  8953. GGML_ASSERT(false);
  8954. } break;
  8955. }
  8956. }
  8957. // ggml_compute_forward_rope
  8958. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  8959. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  8960. return 1 - MIN(1, MAX(0, y));
  8961. }
  8962. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  8963. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  8964. static void rope_yarn(
  8965. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  8966. float * cos_theta, float * sin_theta
  8967. ) {
  8968. // Get n-d rotational scaling corrected for extrapolation
  8969. float theta_interp = freq_scale * theta_extrap;
  8970. float theta = theta_interp;
  8971. if (ext_factor != 0.0f) {
  8972. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  8973. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  8974. // Get n-d magnitude scaling corrected for interpolation
  8975. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  8976. }
  8977. *cos_theta = cosf(theta) * mscale;
  8978. *sin_theta = sinf(theta) * mscale;
  8979. }
  8980. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  8981. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  8982. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  8983. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  8984. }
  8985. void ggml_rope_yarn_corr_dims(
  8986. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  8987. ) {
  8988. // start and end correction dims
  8989. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  8990. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  8991. }
  8992. static void ggml_compute_forward_rope_f32(
  8993. const struct ggml_compute_params * params,
  8994. const struct ggml_tensor * src0,
  8995. const struct ggml_tensor * src1,
  8996. struct ggml_tensor * dst,
  8997. const bool forward) {
  8998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8999. return;
  9000. }
  9001. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9002. // these two only relevant for xPos RoPE:
  9003. float xpos_base;
  9004. bool xpos_down;
  9005. //const int n_past = ((int32_t *) dst->op_params)[0];
  9006. const int n_dims = ((int32_t *) dst->op_params)[1];
  9007. const int mode = ((int32_t *) dst->op_params)[2];
  9008. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9009. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9010. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9011. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9012. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9013. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9014. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9015. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9016. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9017. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9018. GGML_TENSOR_UNARY_OP_LOCALS
  9019. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9020. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9021. GGML_ASSERT(nb00 == sizeof(float));
  9022. const int ith = params->ith;
  9023. const int nth = params->nth;
  9024. const int nr = ggml_nrows(dst);
  9025. GGML_ASSERT(n_dims <= ne0);
  9026. GGML_ASSERT(n_dims % 2 == 0);
  9027. // rows per thread
  9028. const int dr = (nr + nth - 1)/nth;
  9029. // row range for this thread
  9030. const int ir0 = dr*ith;
  9031. const int ir1 = MIN(ir0 + dr, nr);
  9032. // row index used to determine which thread to use
  9033. int ir = 0;
  9034. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9035. const float inv_ndims = -1.f/n_dims;
  9036. float corr_dims[2];
  9037. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9038. const bool is_neox = mode & 2;
  9039. const bool is_glm = mode & 4;
  9040. // backward process uses inverse rotation by cos and sin.
  9041. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9042. // this essentially just switches the sign of sin.
  9043. const float sin_sign = forward ? 1.0f : -1.0f;
  9044. const int32_t * pos = (const int32_t *) src1->data;
  9045. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9046. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9047. const int64_t p = pos[i2];
  9048. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9049. if (ir++ < ir0) continue;
  9050. if (ir > ir1) break;
  9051. float theta_base = (float)p;
  9052. if (is_glm) {
  9053. theta_base = MIN(p, n_ctx - 2);
  9054. float block_theta = MAX(p - (n_ctx - 2), 0);
  9055. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9056. const float cos_theta = cosf(theta_base);
  9057. const float sin_theta = sinf(theta_base) * sin_sign;
  9058. const float cos_block_theta = cosf(block_theta);
  9059. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9060. theta_base *= theta_scale;
  9061. block_theta *= theta_scale;
  9062. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9063. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9064. const float x0 = src[0];
  9065. const float x1 = src[n_dims/2];
  9066. const float x2 = src[n_dims];
  9067. const float x3 = src[n_dims/2*3];
  9068. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9069. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9070. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9071. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9072. }
  9073. } else if (!is_neox) {
  9074. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9075. float cos_theta, sin_theta;
  9076. rope_yarn(
  9077. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9078. );
  9079. sin_theta *= sin_sign;
  9080. // zeta scaling for xPos only:
  9081. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9082. if (xpos_down) zeta = 1.0f / zeta;
  9083. theta_base *= theta_scale;
  9084. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9085. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9086. const float x0 = src[0];
  9087. const float x1 = src[1];
  9088. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9089. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9090. }
  9091. } else {
  9092. // TODO: this might be wrong for ne0 != n_dims - need double check
  9093. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9094. theta_base *= freq_scale;
  9095. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9096. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9097. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9098. float cur_rot = inv_ndims * ic - ib;
  9099. float cos_theta, sin_theta;
  9100. rope_yarn(
  9101. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9102. &cos_theta, &sin_theta
  9103. );
  9104. sin_theta *= sin_sign;
  9105. theta_base *= theta_scale;
  9106. const int64_t i0 = ib*n_dims + ic/2;
  9107. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9108. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9109. const float x0 = src[0];
  9110. const float x1 = src[n_dims/2];
  9111. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9112. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9113. }
  9114. }
  9115. }
  9116. }
  9117. }
  9118. }
  9119. }
  9120. static void ggml_compute_forward_rope_f16(
  9121. const struct ggml_compute_params * params,
  9122. const struct ggml_tensor * src0,
  9123. const struct ggml_tensor * src1,
  9124. struct ggml_tensor * dst,
  9125. const bool forward) {
  9126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9127. return;
  9128. }
  9129. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9130. //const int n_past = ((int32_t *) dst->op_params)[0];
  9131. const int n_dims = ((int32_t *) dst->op_params)[1];
  9132. const int mode = ((int32_t *) dst->op_params)[2];
  9133. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9134. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9135. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9136. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9137. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9138. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9139. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9140. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9141. GGML_TENSOR_UNARY_OP_LOCALS
  9142. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9143. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9144. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9145. const int ith = params->ith;
  9146. const int nth = params->nth;
  9147. const int nr = ggml_nrows(dst);
  9148. GGML_ASSERT(n_dims <= ne0);
  9149. GGML_ASSERT(n_dims % 2 == 0);
  9150. // rows per thread
  9151. const int dr = (nr + nth - 1)/nth;
  9152. // row range for this thread
  9153. const int ir0 = dr*ith;
  9154. const int ir1 = MIN(ir0 + dr, nr);
  9155. // row index used to determine which thread to use
  9156. int ir = 0;
  9157. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9158. const float inv_ndims = -1.f/n_dims;
  9159. float corr_dims[2];
  9160. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9161. const bool is_neox = mode & 2;
  9162. const bool is_glm = mode & 4;
  9163. // backward process uses inverse rotation by cos and sin.
  9164. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9165. // this essentially just switches the sign of sin.
  9166. const float sin_sign = forward ? 1.0f : -1.0f;
  9167. const int32_t * pos = (const int32_t *) src1->data;
  9168. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9169. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9170. const int64_t p = pos[i2];
  9171. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9172. if (ir++ < ir0) continue;
  9173. if (ir > ir1) break;
  9174. float theta_base = (float)p;
  9175. if (is_glm) {
  9176. theta_base = MIN(p, n_ctx - 2);
  9177. float block_theta = MAX(p - (n_ctx - 2), 0);
  9178. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9179. const float cos_theta = cosf(theta_base);
  9180. const float sin_theta = sinf(theta_base) * sin_sign;
  9181. const float cos_block_theta = cosf(block_theta);
  9182. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9183. theta_base *= theta_scale;
  9184. block_theta *= theta_scale;
  9185. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9186. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9187. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9188. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9189. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9190. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9191. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9192. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9193. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9194. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9195. }
  9196. } else if (!is_neox) {
  9197. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9198. float cos_theta, sin_theta;
  9199. rope_yarn(
  9200. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9201. );
  9202. sin_theta *= sin_sign;
  9203. theta_base *= theta_scale;
  9204. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9205. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9206. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9207. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9208. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9209. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9210. }
  9211. } else {
  9212. // TODO: this might be wrong for ne0 != n_dims - need double check
  9213. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9214. theta_base *= freq_scale;
  9215. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9216. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9217. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9218. float cur_rot = inv_ndims * ic - ib;
  9219. float cos_theta, sin_theta;
  9220. rope_yarn(
  9221. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9222. &cos_theta, &sin_theta
  9223. );
  9224. sin_theta *= sin_sign;
  9225. theta_base *= theta_scale;
  9226. const int64_t i0 = ib*n_dims + ic/2;
  9227. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9228. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9229. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9230. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9231. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9232. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9233. }
  9234. }
  9235. }
  9236. }
  9237. }
  9238. }
  9239. }
  9240. static void ggml_compute_forward_rope(
  9241. const struct ggml_compute_params * params,
  9242. const struct ggml_tensor * src0,
  9243. const struct ggml_tensor * src1,
  9244. struct ggml_tensor * dst) {
  9245. switch (src0->type) {
  9246. case GGML_TYPE_F16:
  9247. {
  9248. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9249. } break;
  9250. case GGML_TYPE_F32:
  9251. {
  9252. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9253. } break;
  9254. default:
  9255. {
  9256. GGML_ASSERT(false);
  9257. } break;
  9258. }
  9259. }
  9260. // ggml_compute_forward_rope_back
  9261. static void ggml_compute_forward_rope_back(
  9262. const struct ggml_compute_params * params,
  9263. const struct ggml_tensor * src0,
  9264. const struct ggml_tensor * src1,
  9265. struct ggml_tensor * dst) {
  9266. switch (src0->type) {
  9267. case GGML_TYPE_F16:
  9268. {
  9269. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9270. } break;
  9271. case GGML_TYPE_F32:
  9272. {
  9273. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9274. } break;
  9275. default:
  9276. {
  9277. GGML_ASSERT(false);
  9278. } break;
  9279. }
  9280. }
  9281. // ggml_compute_forward_conv_transpose_1d
  9282. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9283. const struct ggml_compute_params * params,
  9284. const struct ggml_tensor * src0,
  9285. const struct ggml_tensor * src1,
  9286. struct ggml_tensor * dst) {
  9287. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9288. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9289. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9290. int64_t t0 = ggml_perf_time_us();
  9291. UNUSED(t0);
  9292. GGML_TENSOR_BINARY_OP_LOCALS
  9293. const int ith = params->ith;
  9294. const int nth = params->nth;
  9295. const int nk = ne00*ne01*ne02;
  9296. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9297. GGML_ASSERT(nb10 == sizeof(float));
  9298. if (params->type == GGML_TASK_INIT) {
  9299. memset(params->wdata, 0, params->wsize);
  9300. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9301. {
  9302. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9303. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9304. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9305. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9306. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9307. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9308. dst_data[i00*ne02 + i02] = src[i00];
  9309. }
  9310. }
  9311. }
  9312. }
  9313. // permute source data (src1) from (L x Cin) to (Cin x L)
  9314. {
  9315. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9316. ggml_fp16_t * dst_data = wdata;
  9317. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9318. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9319. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9320. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9321. }
  9322. }
  9323. }
  9324. // need to zero dst since we are accumulating into it
  9325. memset(dst->data, 0, ggml_nbytes(dst));
  9326. return;
  9327. }
  9328. if (params->type == GGML_TASK_FINALIZE) {
  9329. return;
  9330. }
  9331. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9332. // total rows in dst
  9333. const int nr = ne1;
  9334. // rows per thread
  9335. const int dr = (nr + nth - 1)/nth;
  9336. // row range for this thread
  9337. const int ir0 = dr*ith;
  9338. const int ir1 = MIN(ir0 + dr, nr);
  9339. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9340. ggml_fp16_t * const wdata_src = wdata + nk;
  9341. for (int i1 = ir0; i1 < ir1; i1++) {
  9342. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9343. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9344. for (int i10 = 0; i10 < ne10; i10++) {
  9345. const int i1n = i10*ne11;
  9346. for (int i00 = 0; i00 < ne00; i00++) {
  9347. float v = 0;
  9348. ggml_vec_dot_f16(ne02, &v,
  9349. (ggml_fp16_t *) wdata_src + i1n,
  9350. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9351. dst_data[i10*s0 + i00] += v;
  9352. }
  9353. }
  9354. }
  9355. }
  9356. static void ggml_compute_forward_conv_transpose_1d_f32(
  9357. const struct ggml_compute_params * params,
  9358. const struct ggml_tensor * src0,
  9359. const struct ggml_tensor * src1,
  9360. struct ggml_tensor * dst) {
  9361. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9362. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9363. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9364. int64_t t0 = ggml_perf_time_us();
  9365. UNUSED(t0);
  9366. GGML_TENSOR_BINARY_OP_LOCALS
  9367. const int ith = params->ith;
  9368. const int nth = params->nth;
  9369. const int nk = ne00*ne01*ne02;
  9370. GGML_ASSERT(nb00 == sizeof(float));
  9371. GGML_ASSERT(nb10 == sizeof(float));
  9372. if (params->type == GGML_TASK_INIT) {
  9373. memset(params->wdata, 0, params->wsize);
  9374. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9375. {
  9376. float * const wdata = (float *) params->wdata + 0;
  9377. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9378. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9379. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9380. float * dst_data = wdata + i01*ne00*ne02;
  9381. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9382. dst_data[i00*ne02 + i02] = src[i00];
  9383. }
  9384. }
  9385. }
  9386. }
  9387. // prepare source data (src1)
  9388. {
  9389. float * const wdata = (float *) params->wdata + nk;
  9390. float * dst_data = wdata;
  9391. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9392. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9393. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9394. dst_data[i10*ne11 + i11] = src[i10];
  9395. }
  9396. }
  9397. }
  9398. // need to zero dst since we are accumulating into it
  9399. memset(dst->data, 0, ggml_nbytes(dst));
  9400. return;
  9401. }
  9402. if (params->type == GGML_TASK_FINALIZE) {
  9403. return;
  9404. }
  9405. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9406. // total rows in dst
  9407. const int nr = ne1;
  9408. // rows per thread
  9409. const int dr = (nr + nth - 1)/nth;
  9410. // row range for this thread
  9411. const int ir0 = dr*ith;
  9412. const int ir1 = MIN(ir0 + dr, nr);
  9413. float * const wdata = (float *) params->wdata + 0;
  9414. float * const wdata_src = wdata + nk;
  9415. for (int i1 = ir0; i1 < ir1; i1++) {
  9416. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9417. float * wdata_kernel = wdata + i1*ne02*ne00;
  9418. for (int i10 = 0; i10 < ne10; i10++) {
  9419. const int i1n = i10*ne11;
  9420. for (int i00 = 0; i00 < ne00; i00++) {
  9421. float v = 0;
  9422. ggml_vec_dot_f32(ne02, &v,
  9423. wdata_src + i1n,
  9424. wdata_kernel + i00*ne02);
  9425. dst_data[i10*s0 + i00] += v;
  9426. }
  9427. }
  9428. }
  9429. }
  9430. static void ggml_compute_forward_conv_transpose_1d(
  9431. const struct ggml_compute_params * params,
  9432. const struct ggml_tensor * src0,
  9433. const struct ggml_tensor * src1,
  9434. struct ggml_tensor * dst) {
  9435. switch (src0->type) {
  9436. case GGML_TYPE_F16:
  9437. {
  9438. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9439. } break;
  9440. case GGML_TYPE_F32:
  9441. {
  9442. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9443. } break;
  9444. default:
  9445. {
  9446. GGML_ASSERT(false);
  9447. } break;
  9448. }
  9449. }
  9450. // src0: kernel [OC, IC, KH, KW]
  9451. // src1: image [N, IC, IH, IW]
  9452. // dst: result [N, OH, OW, IC*KH*KW]
  9453. static void ggml_compute_forward_im2col_f16(
  9454. const struct ggml_compute_params * params,
  9455. const struct ggml_tensor * src0,
  9456. const struct ggml_tensor * src1,
  9457. struct ggml_tensor * dst) {
  9458. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9459. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9460. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9461. int64_t t0 = ggml_perf_time_us();
  9462. UNUSED(t0);
  9463. GGML_TENSOR_BINARY_OP_LOCALS;
  9464. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9465. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9466. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9467. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9468. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9469. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9470. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9471. const int ith = params->ith;
  9472. const int nth = params->nth;
  9473. const int64_t N = is_2D ? ne13 : ne12;
  9474. const int64_t IC = is_2D ? ne12 : ne11;
  9475. const int64_t IH = is_2D ? ne11 : 1;
  9476. const int64_t IW = ne10;
  9477. const int64_t KH = is_2D ? ne01 : 1;
  9478. const int64_t KW = ne00;
  9479. const int64_t OH = is_2D ? ne2 : 1;
  9480. const int64_t OW = ne1;
  9481. int ofs0 = is_2D ? nb13 : nb12;
  9482. int ofs1 = is_2D ? nb12 : nb11;
  9483. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9484. GGML_ASSERT(nb10 == sizeof(float));
  9485. if (params->type == GGML_TASK_INIT) {
  9486. return;
  9487. }
  9488. if (params->type == GGML_TASK_FINALIZE) {
  9489. return;
  9490. }
  9491. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9492. {
  9493. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9494. for (int64_t in = 0; in < N; in++) {
  9495. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9496. for (int64_t iow = 0; iow < OW; iow++) {
  9497. for (int64_t iic = ith; iic < IC; iic += nth) {
  9498. // micro kernel
  9499. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9500. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9501. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9502. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9503. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9504. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9505. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9506. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9507. } else {
  9508. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9509. }
  9510. }
  9511. }
  9512. }
  9513. }
  9514. }
  9515. }
  9516. }
  9517. }
  9518. static void ggml_compute_forward_im2col(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * src0,
  9521. const struct ggml_tensor * src1,
  9522. struct ggml_tensor * dst) {
  9523. switch (src0->type) {
  9524. case GGML_TYPE_F16:
  9525. {
  9526. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9527. } break;
  9528. case GGML_TYPE_F32:
  9529. {
  9530. GGML_ASSERT(false);
  9531. } break;
  9532. default:
  9533. {
  9534. GGML_ASSERT(false);
  9535. } break;
  9536. }
  9537. }
  9538. // ggml_compute_forward_conv_transpose_2d
  9539. static void ggml_compute_forward_conv_transpose_2d(
  9540. const struct ggml_compute_params * params,
  9541. const struct ggml_tensor * src0,
  9542. const struct ggml_tensor * src1,
  9543. struct ggml_tensor * dst) {
  9544. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9545. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9546. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9547. int64_t t0 = ggml_perf_time_us();
  9548. UNUSED(t0);
  9549. GGML_TENSOR_BINARY_OP_LOCALS
  9550. const int ith = params->ith;
  9551. const int nth = params->nth;
  9552. const int nk = ne00*ne01*ne02*ne03;
  9553. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9554. GGML_ASSERT(nb10 == sizeof(float));
  9555. if (params->type == GGML_TASK_INIT) {
  9556. memset(params->wdata, 0, params->wsize);
  9557. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9558. {
  9559. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9560. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9561. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9562. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9563. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9564. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9565. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9566. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9567. }
  9568. }
  9569. }
  9570. }
  9571. }
  9572. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9573. {
  9574. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9575. for (int i12 = 0; i12 < ne12; i12++) {
  9576. for (int i11 = 0; i11 < ne11; i11++) {
  9577. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9578. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9579. for (int i10 = 0; i10 < ne10; i10++) {
  9580. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9581. }
  9582. }
  9583. }
  9584. }
  9585. memset(dst->data, 0, ggml_nbytes(dst));
  9586. return;
  9587. }
  9588. if (params->type == GGML_TASK_FINALIZE) {
  9589. return;
  9590. }
  9591. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9592. // total patches in dst
  9593. const int np = ne2;
  9594. // patches per thread
  9595. const int dp = (np + nth - 1)/nth;
  9596. // patch range for this thread
  9597. const int ip0 = dp*ith;
  9598. const int ip1 = MIN(ip0 + dp, np);
  9599. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9600. ggml_fp16_t * const wdata_src = wdata + nk;
  9601. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9602. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9603. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9604. for (int i11 = 0; i11 < ne11; i11++) {
  9605. for (int i10 = 0; i10 < ne10; i10++) {
  9606. const int i1n = i11*ne10*ne12 + i10*ne12;
  9607. for (int i01 = 0; i01 < ne01; i01++) {
  9608. for (int i00 = 0; i00 < ne00; i00++) {
  9609. float v = 0;
  9610. ggml_vec_dot_f16(ne03, &v,
  9611. wdata_src + i1n,
  9612. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9613. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9614. }
  9615. }
  9616. }
  9617. }
  9618. }
  9619. }
  9620. // ggml_compute_forward_pool_1d_sk_p0
  9621. static void ggml_compute_forward_pool_1d_sk_p0(
  9622. const struct ggml_compute_params * params,
  9623. const enum ggml_op_pool op,
  9624. const struct ggml_tensor * src,
  9625. const int k,
  9626. struct ggml_tensor * dst) {
  9627. assert(src->type == GGML_TYPE_F32);
  9628. assert(params->ith == 0);
  9629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9630. return;
  9631. }
  9632. const char * cdata = (const char *)src->data;
  9633. const char * const data_end = cdata + ggml_nbytes(src);
  9634. float * drow = (float *)dst->data;
  9635. const int64_t rs = dst->ne[0];
  9636. while (cdata < data_end) {
  9637. const float * const srow = (const float *)cdata;
  9638. int j = 0;
  9639. for (int64_t i = 0; i < rs; ++i) {
  9640. switch (op) {
  9641. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  9642. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  9643. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9644. }
  9645. for (int ki = 0; ki < k; ++ki) {
  9646. switch (op) {
  9647. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  9648. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  9649. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9650. }
  9651. ++j;
  9652. }
  9653. switch (op) {
  9654. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  9655. case GGML_OP_POOL_MAX: break;
  9656. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9657. }
  9658. }
  9659. cdata += src->nb[1];
  9660. drow += rs;
  9661. }
  9662. }
  9663. // ggml_compute_forward_pool_1d
  9664. static void ggml_compute_forward_pool_1d(
  9665. const struct ggml_compute_params * params,
  9666. const struct ggml_tensor * src0,
  9667. struct ggml_tensor * dst) {
  9668. const int32_t * opts = (const int32_t *)dst->op_params;
  9669. enum ggml_op_pool op = opts[0];
  9670. const int k0 = opts[1];
  9671. const int s0 = opts[2];
  9672. const int p0 = opts[3];
  9673. GGML_ASSERT(p0 == 0); // padding not supported
  9674. GGML_ASSERT(k0 == s0); // only s = k supported
  9675. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  9676. }
  9677. // ggml_compute_forward_pool_2d
  9678. static void ggml_compute_forward_pool_2d(
  9679. const struct ggml_compute_params * params,
  9680. const struct ggml_tensor * src,
  9681. struct ggml_tensor * dst) {
  9682. assert(src->type == GGML_TYPE_F32);
  9683. assert(params->ith == 0);
  9684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9685. return;
  9686. }
  9687. const int32_t * opts = (const int32_t *)dst->op_params;
  9688. enum ggml_op_pool op = opts[0];
  9689. const int k0 = opts[1];
  9690. const int k1 = opts[2];
  9691. const int s0 = opts[3];
  9692. const int s1 = opts[4];
  9693. const int p0 = opts[5];
  9694. const int p1 = opts[6];
  9695. const char * cdata = (const char*)src->data;
  9696. const char * const data_end = cdata + ggml_nbytes(src);
  9697. const int64_t px = dst->ne[0];
  9698. const int64_t py = dst->ne[1];
  9699. const int64_t pa = px * py;
  9700. float * dplane = (float *)dst->data;
  9701. const int ka = k0 * k1;
  9702. const int offset0 = -p0;
  9703. const int offset1 = -p1;
  9704. while (cdata < data_end) {
  9705. for (int oy = 0; oy < py; ++oy) {
  9706. float * const drow = dplane + oy * px;
  9707. for (int ox = 0; ox < px; ++ox) {
  9708. float * const out = drow + ox;
  9709. switch (op) {
  9710. case GGML_OP_POOL_AVG: *out = 0; break;
  9711. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  9712. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9713. }
  9714. const int ix = offset0 + ox * s0;
  9715. const int iy = offset1 + oy * s1;
  9716. for (int ky = 0; ky < k1; ++ky) {
  9717. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  9718. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  9719. for (int kx = 0; kx < k0; ++kx) {
  9720. int j = ix + kx;
  9721. if (j < 0 || j >= src->ne[0]) continue;
  9722. switch (op) {
  9723. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  9724. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  9725. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9726. }
  9727. }
  9728. }
  9729. switch (op) {
  9730. case GGML_OP_POOL_AVG: *out /= ka; break;
  9731. case GGML_OP_POOL_MAX: break;
  9732. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9733. }
  9734. }
  9735. }
  9736. cdata += src->nb[2];
  9737. dplane += pa;
  9738. }
  9739. }
  9740. // ggml_compute_forward_upscale
  9741. static void ggml_compute_forward_upscale_f32(
  9742. const struct ggml_compute_params * params,
  9743. const struct ggml_tensor * src0,
  9744. struct ggml_tensor * dst) {
  9745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9746. return;
  9747. }
  9748. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9749. const int ith = params->ith;
  9750. GGML_TENSOR_UNARY_OP_LOCALS
  9751. const int scale_factor = dst->op_params[0];
  9752. // TODO: optimize
  9753. for (int i03 = 0; i03 < ne03; i03++) {
  9754. for (int i02 = ith; i02 < ne02; i02++) {
  9755. for (int m = 0; m < dst->ne[1]; m++) {
  9756. int i01 = m / scale_factor;
  9757. for (int n = 0; n < dst->ne[0]; n++) {
  9758. int i00 = n / scale_factor;
  9759. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  9760. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  9761. *y = *x;
  9762. }
  9763. }
  9764. }
  9765. }
  9766. }
  9767. static void ggml_compute_forward_upscale(
  9768. const struct ggml_compute_params * params,
  9769. const struct ggml_tensor * src0,
  9770. struct ggml_tensor * dst) {
  9771. switch (src0->type) {
  9772. case GGML_TYPE_F32:
  9773. {
  9774. ggml_compute_forward_upscale_f32(params, src0, dst);
  9775. } break;
  9776. default:
  9777. {
  9778. GGML_ASSERT(false);
  9779. } break;
  9780. }
  9781. }
  9782. // ggml_compute_forward_flash_attn
  9783. static void ggml_compute_forward_flash_attn_f32(
  9784. const struct ggml_compute_params * params,
  9785. const struct ggml_tensor * q,
  9786. const struct ggml_tensor * k,
  9787. const struct ggml_tensor * v,
  9788. const bool masked,
  9789. struct ggml_tensor * dst) {
  9790. int64_t t0 = ggml_perf_time_us();
  9791. UNUSED(t0);
  9792. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  9793. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  9794. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  9795. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  9796. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  9797. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  9798. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9799. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  9800. const int ith = params->ith;
  9801. const int nth = params->nth;
  9802. const int64_t D = neq0;
  9803. const int64_t N = neq1;
  9804. const int64_t P = nek1 - N;
  9805. const int64_t M = P + N;
  9806. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9807. GGML_ASSERT(ne0 == D);
  9808. GGML_ASSERT(ne1 == N);
  9809. GGML_ASSERT(P >= 0);
  9810. GGML_ASSERT(nbq0 == sizeof(float));
  9811. GGML_ASSERT(nbk0 == sizeof(float));
  9812. GGML_ASSERT(nbv0 == sizeof(float));
  9813. GGML_ASSERT(neq0 == D);
  9814. GGML_ASSERT(nek0 == D);
  9815. GGML_ASSERT(nev1 == D);
  9816. GGML_ASSERT(neq1 == N);
  9817. GGML_ASSERT(nek1 == N + P);
  9818. GGML_ASSERT(nev1 == D);
  9819. // dst cannot be transposed or permuted
  9820. GGML_ASSERT(nb0 == sizeof(float));
  9821. GGML_ASSERT(nb0 <= nb1);
  9822. GGML_ASSERT(nb1 <= nb2);
  9823. GGML_ASSERT(nb2 <= nb3);
  9824. if (params->type == GGML_TASK_INIT) {
  9825. return;
  9826. }
  9827. if (params->type == GGML_TASK_FINALIZE) {
  9828. return;
  9829. }
  9830. // parallelize by q rows using ggml_vec_dot_f32
  9831. // total rows in q
  9832. const int nr = neq1*neq2*neq3;
  9833. // rows per thread
  9834. const int dr = (nr + nth - 1)/nth;
  9835. // row range for this thread
  9836. const int ir0 = dr*ith;
  9837. const int ir1 = MIN(ir0 + dr, nr);
  9838. const float scale = 1.0f/sqrtf(D);
  9839. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9840. for (int ir = ir0; ir < ir1; ++ir) {
  9841. // q indices
  9842. const int iq3 = ir/(neq2*neq1);
  9843. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9844. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9845. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9846. for (int i = M; i < Mup; ++i) {
  9847. S[i] = -INFINITY;
  9848. }
  9849. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  9850. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9851. // k indices
  9852. const int ik3 = iq3;
  9853. const int ik2 = iq2 % nek2;
  9854. const int ik1 = ic;
  9855. // S indices
  9856. const int i1 = ik1;
  9857. ggml_vec_dot_f32(neq0,
  9858. S + i1,
  9859. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9860. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9861. }
  9862. // scale
  9863. ggml_vec_scale_f32(masked_begin, S, scale);
  9864. for (int64_t i = masked_begin; i < M; i++) {
  9865. S[i] = -INFINITY;
  9866. }
  9867. // softmax
  9868. // exclude known -INF S[..] values from max and loop
  9869. // dont forget to set their SW values to zero
  9870. {
  9871. float max = -INFINITY;
  9872. ggml_vec_max_f32(masked_begin, &max, S);
  9873. ggml_float sum = 0.0;
  9874. {
  9875. #ifdef GGML_SOFT_MAX_ACCELERATE
  9876. max = -max;
  9877. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9878. vvexpf(S, S, &Mup);
  9879. ggml_vec_sum_f32(Mup, &sum, S);
  9880. #else
  9881. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  9882. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9883. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9884. if (i >= masked_begin) {
  9885. break;
  9886. }
  9887. float * SS = S + i;
  9888. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9889. if (i + j >= masked_begin) {
  9890. break;
  9891. } else if (SS[j] == -INFINITY) {
  9892. SS[j] = 0.0f;
  9893. } else {
  9894. #ifndef GGML_FLASH_ATTN_EXP_FP16
  9895. const float val = expf(SS[j] - max);
  9896. #else
  9897. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9898. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9899. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  9900. #endif
  9901. sump[j] += (ggml_float)val;
  9902. SS[j] = val;
  9903. }
  9904. }
  9905. }
  9906. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9907. sum += sump[i];
  9908. }
  9909. #endif
  9910. }
  9911. assert(sum > 0.0);
  9912. sum = 1.0/sum;
  9913. ggml_vec_scale_f32(masked_begin, S, sum);
  9914. #ifndef NDEBUG
  9915. for (int i = 0; i < masked_begin; ++i) {
  9916. assert(!isnan(S[i]));
  9917. assert(!isinf(S[i]));
  9918. }
  9919. #endif
  9920. }
  9921. for (int64_t ic = 0; ic < nev1; ++ic) {
  9922. // dst indices
  9923. const int i1 = iq1;
  9924. const int i2 = iq2;
  9925. const int i3 = iq3;
  9926. // v indices
  9927. const int iv2 = iq2 % nev2;
  9928. const int iv3 = iq3;
  9929. ggml_vec_dot_f32(masked_begin,
  9930. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9931. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  9932. S);
  9933. }
  9934. }
  9935. }
  9936. static void ggml_compute_forward_flash_attn_f16(
  9937. const struct ggml_compute_params * params,
  9938. const struct ggml_tensor * q,
  9939. const struct ggml_tensor * k,
  9940. const struct ggml_tensor * v,
  9941. const bool masked,
  9942. struct ggml_tensor * dst) {
  9943. int64_t t0 = ggml_perf_time_us();
  9944. UNUSED(t0);
  9945. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  9946. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  9947. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  9948. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  9949. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  9950. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  9951. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9952. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  9953. const int ith = params->ith;
  9954. const int nth = params->nth;
  9955. const int64_t D = neq0;
  9956. const int64_t N = neq1;
  9957. const int64_t P = nek1 - N;
  9958. const int64_t M = P + N;
  9959. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9960. GGML_ASSERT(ne0 == D);
  9961. GGML_ASSERT(ne1 == N);
  9962. GGML_ASSERT(P >= 0);
  9963. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9964. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9965. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9966. GGML_ASSERT(neq0 == D);
  9967. GGML_ASSERT(nek0 == D);
  9968. GGML_ASSERT(nev1 == D);
  9969. GGML_ASSERT(neq1 == N);
  9970. GGML_ASSERT(nek1 == N + P);
  9971. GGML_ASSERT(nev1 == D);
  9972. // dst cannot be transposed or permuted
  9973. GGML_ASSERT(nb0 == sizeof(float));
  9974. GGML_ASSERT(nb0 <= nb1);
  9975. GGML_ASSERT(nb1 <= nb2);
  9976. GGML_ASSERT(nb2 <= nb3);
  9977. if (params->type == GGML_TASK_INIT) {
  9978. return;
  9979. }
  9980. if (params->type == GGML_TASK_FINALIZE) {
  9981. return;
  9982. }
  9983. // parallelize by q rows using ggml_vec_dot_f32
  9984. // total rows in q
  9985. const int nr = neq1*neq2*neq3;
  9986. // rows per thread
  9987. const int dr = (nr + nth - 1)/nth;
  9988. // row range for this thread
  9989. const int ir0 = dr*ith;
  9990. const int ir1 = MIN(ir0 + dr, nr);
  9991. const float scale = 1.0f/sqrtf(D);
  9992. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9993. for (int ir = ir0; ir < ir1; ++ir) {
  9994. // q indices
  9995. const int iq3 = ir/(neq2*neq1);
  9996. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9997. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9998. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9999. for (int i = M; i < Mup; ++i) {
  10000. S[i] = -INFINITY;
  10001. }
  10002. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10003. for (int64_t ic = 0; ic < nek1; ++ic) {
  10004. // k indices
  10005. const int ik3 = iq3;
  10006. const int ik2 = iq2 % nek2;
  10007. const int ik1 = ic;
  10008. // S indices
  10009. const int i1 = ik1;
  10010. ggml_vec_dot_f16(neq0,
  10011. S + i1,
  10012. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10013. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10014. }
  10015. } else {
  10016. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10017. // k indices
  10018. const int ik3 = iq3;
  10019. const int ik2 = iq2 % nek2;
  10020. const int ik1 = ic;
  10021. // S indices
  10022. const int i1 = ik1;
  10023. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10024. S + i1,
  10025. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10026. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10027. }
  10028. }
  10029. // scale
  10030. ggml_vec_scale_f32(nek1, S, scale);
  10031. if (masked) {
  10032. for (int64_t i = P; i < M; i++) {
  10033. if (i > P + iq1) {
  10034. S[i] = -INFINITY;
  10035. }
  10036. }
  10037. }
  10038. // softmax
  10039. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10040. // dont forget to set their S values to zero
  10041. {
  10042. float max = -INFINITY;
  10043. ggml_vec_max_f32(M, &max, S);
  10044. ggml_float sum = 0.0;
  10045. {
  10046. #ifdef GGML_SOFT_MAX_ACCELERATE
  10047. max = -max;
  10048. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10049. vvexpf(S, S, &Mup);
  10050. ggml_vec_sum_f32(Mup, &sum, S);
  10051. #else
  10052. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10053. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10054. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10055. float * SS = S + i;
  10056. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10057. if (SS[j] == -INFINITY) {
  10058. SS[j] = 0.0f;
  10059. } else {
  10060. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10061. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10062. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10063. sump[j] += (ggml_float)val;
  10064. SS[j] = val;
  10065. }
  10066. }
  10067. }
  10068. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10069. sum += sump[i];
  10070. }
  10071. #endif
  10072. }
  10073. assert(sum > 0.0);
  10074. sum = 1.0/sum;
  10075. ggml_vec_scale_f32(M, S, sum);
  10076. #ifndef NDEBUG
  10077. for (int i = 0; i < M; ++i) {
  10078. assert(!isnan(S[i]));
  10079. assert(!isinf(S[i]));
  10080. }
  10081. #endif
  10082. }
  10083. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10084. for (int64_t i = 0; i < M; i++) {
  10085. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10086. }
  10087. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10088. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10089. for (int64_t ic = 0; ic < nev1; ++ic) {
  10090. // dst indices
  10091. const int i1 = iq1;
  10092. const int i2 = iq2;
  10093. const int i3 = iq3;
  10094. // v indices
  10095. const int iv2 = iq2 % nev2;
  10096. const int iv3 = iq3;
  10097. ggml_vec_dot_f16(nev0,
  10098. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10099. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10100. S16);
  10101. }
  10102. } else {
  10103. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10104. // dst indices
  10105. const int i1 = iq1;
  10106. const int i2 = iq2;
  10107. const int i3 = iq3;
  10108. // v indices
  10109. const int iv2 = iq2 % nev2;
  10110. const int iv3 = iq3;
  10111. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10112. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10113. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10114. S16);
  10115. }
  10116. }
  10117. }
  10118. }
  10119. static void ggml_compute_forward_flash_attn(
  10120. const struct ggml_compute_params * params,
  10121. const struct ggml_tensor * q,
  10122. const struct ggml_tensor * k,
  10123. const struct ggml_tensor * v,
  10124. const bool masked,
  10125. struct ggml_tensor * dst) {
  10126. switch (q->type) {
  10127. case GGML_TYPE_F16:
  10128. {
  10129. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10130. } break;
  10131. case GGML_TYPE_F32:
  10132. {
  10133. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10134. } break;
  10135. default:
  10136. {
  10137. GGML_ASSERT(false);
  10138. } break;
  10139. }
  10140. }
  10141. // ggml_compute_forward_flash_ff
  10142. static void ggml_compute_forward_flash_ff_f16(
  10143. const struct ggml_compute_params * params,
  10144. const struct ggml_tensor * a, // F16
  10145. const struct ggml_tensor * b0, // F16 fc_w
  10146. const struct ggml_tensor * b1, // F32 fc_b
  10147. const struct ggml_tensor * c0, // F16 proj_w
  10148. const struct ggml_tensor * c1, // F32 proj_b
  10149. struct ggml_tensor * dst) {
  10150. int64_t t0 = ggml_perf_time_us();
  10151. UNUSED(t0);
  10152. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10153. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10154. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10155. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10156. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10157. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10158. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10159. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10160. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10161. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10162. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10163. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10164. const int ith = params->ith;
  10165. const int nth = params->nth;
  10166. const int64_t D = nea0;
  10167. //const int64_t N = nea1;
  10168. const int64_t M = neb01;
  10169. GGML_ASSERT(ne0 == nea0);
  10170. GGML_ASSERT(ne1 == nea1);
  10171. GGML_ASSERT(ne2 == nea2);
  10172. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10173. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10174. GGML_ASSERT(nbb10 == sizeof(float));
  10175. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10176. GGML_ASSERT(nbc10 == sizeof(float));
  10177. GGML_ASSERT(neb00 == D);
  10178. GGML_ASSERT(neb01 == M);
  10179. GGML_ASSERT(neb10 == M);
  10180. GGML_ASSERT(neb11 == 1);
  10181. GGML_ASSERT(nec00 == M);
  10182. GGML_ASSERT(nec01 == D);
  10183. GGML_ASSERT(nec10 == D);
  10184. GGML_ASSERT(nec11 == 1);
  10185. // dst cannot be transposed or permuted
  10186. GGML_ASSERT(nb0 == sizeof(float));
  10187. GGML_ASSERT(nb0 <= nb1);
  10188. GGML_ASSERT(nb1 <= nb2);
  10189. GGML_ASSERT(nb2 <= nb3);
  10190. if (params->type == GGML_TASK_INIT) {
  10191. return;
  10192. }
  10193. if (params->type == GGML_TASK_FINALIZE) {
  10194. return;
  10195. }
  10196. // parallelize by a rows using ggml_vec_dot_f32
  10197. // total rows in a
  10198. const int nr = nea1*nea2*nea3;
  10199. // rows per thread
  10200. const int dr = (nr + nth - 1)/nth;
  10201. // row range for this thread
  10202. const int ir0 = dr*ith;
  10203. const int ir1 = MIN(ir0 + dr, nr);
  10204. for (int ir = ir0; ir < ir1; ++ir) {
  10205. // a indices
  10206. const int ia3 = ir/(nea2*nea1);
  10207. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10208. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10209. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10210. for (int64_t ic = 0; ic < neb01; ++ic) {
  10211. // b0 indices
  10212. const int ib03 = ia3;
  10213. const int ib02 = ia2;
  10214. const int ib01 = ic;
  10215. // S indices
  10216. const int i1 = ib01;
  10217. ggml_vec_dot_f16(nea0,
  10218. S + i1,
  10219. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10220. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10221. }
  10222. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10223. //ggml_vec_gelu_f32(neb01, S, S);
  10224. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10225. for (int64_t i = 0; i < M; i++) {
  10226. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10227. }
  10228. ggml_vec_gelu_f16(neb01, S16, S16);
  10229. {
  10230. // dst indices
  10231. const int i1 = ia1;
  10232. const int i2 = ia2;
  10233. const int i3 = ia3;
  10234. for (int64_t ic = 0; ic < nec01; ++ic) {
  10235. ggml_vec_dot_f16(neb01,
  10236. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10237. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10238. S16);
  10239. }
  10240. ggml_vec_add_f32(nec01,
  10241. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10242. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10243. (float *) c1->data);
  10244. }
  10245. }
  10246. }
  10247. static void ggml_compute_forward_flash_ff(
  10248. const struct ggml_compute_params * params,
  10249. const struct ggml_tensor * a,
  10250. const struct ggml_tensor * b0,
  10251. const struct ggml_tensor * b1,
  10252. const struct ggml_tensor * c0,
  10253. const struct ggml_tensor * c1,
  10254. struct ggml_tensor * dst) {
  10255. switch (b0->type) {
  10256. case GGML_TYPE_F16:
  10257. {
  10258. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10259. } break;
  10260. case GGML_TYPE_F32:
  10261. {
  10262. GGML_ASSERT(false); // TODO
  10263. } break;
  10264. default:
  10265. {
  10266. GGML_ASSERT(false);
  10267. } break;
  10268. }
  10269. }
  10270. // ggml_compute_forward_flash_attn_back
  10271. static void ggml_compute_forward_flash_attn_back_f32(
  10272. const struct ggml_compute_params * params,
  10273. const struct ggml_tensor * q,
  10274. const struct ggml_tensor * k,
  10275. const struct ggml_tensor * v,
  10276. const struct ggml_tensor * d,
  10277. const bool masked,
  10278. struct ggml_tensor * dst) {
  10279. int64_t t0 = ggml_perf_time_us();
  10280. UNUSED(t0);
  10281. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10282. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10283. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10284. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10285. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10286. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10287. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10288. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10289. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10290. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10291. const int ith = params->ith;
  10292. const int nth = params->nth;
  10293. const int64_t D = neq0;
  10294. const int64_t N = neq1;
  10295. const int64_t P = nek1 - N;
  10296. const int64_t M = P + N;
  10297. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10298. const int mxDM = MAX(D, Mup);
  10299. // GGML_ASSERT(ne0 == D);
  10300. // GGML_ASSERT(ne1 == N);
  10301. GGML_ASSERT(P >= 0);
  10302. GGML_ASSERT(nbq0 == sizeof(float));
  10303. GGML_ASSERT(nbk0 == sizeof(float));
  10304. GGML_ASSERT(nbv0 == sizeof(float));
  10305. GGML_ASSERT(neq0 == D);
  10306. GGML_ASSERT(nek0 == D);
  10307. GGML_ASSERT(nev1 == D);
  10308. GGML_ASSERT(ned0 == D);
  10309. GGML_ASSERT(neq1 == N);
  10310. GGML_ASSERT(nek1 == N + P);
  10311. GGML_ASSERT(nev1 == D);
  10312. GGML_ASSERT(ned1 == N);
  10313. // dst cannot be transposed or permuted
  10314. GGML_ASSERT(nb0 == sizeof(float));
  10315. GGML_ASSERT(nb0 <= nb1);
  10316. GGML_ASSERT(nb1 <= nb2);
  10317. GGML_ASSERT(nb2 <= nb3);
  10318. if (params->type == GGML_TASK_INIT) {
  10319. if (ith == 0) {
  10320. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10321. }
  10322. return;
  10323. }
  10324. if (params->type == GGML_TASK_FINALIZE) {
  10325. return;
  10326. }
  10327. const int64_t elem_q = ggml_nelements(q);
  10328. const int64_t elem_k = ggml_nelements(k);
  10329. enum ggml_type result_type = dst->type;
  10330. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10331. const size_t tsize = ggml_type_size(result_type);
  10332. const size_t offs_q = 0;
  10333. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10334. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10335. void * grad_q = (char *) dst->data;
  10336. void * grad_k = (char *) dst->data + offs_k;
  10337. void * grad_v = (char *) dst->data + offs_v;
  10338. const size_t nbgq1 = nb0*neq0;
  10339. const size_t nbgq2 = nb0*neq0*neq1;
  10340. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10341. const size_t nbgk1 = nb0*nek0;
  10342. const size_t nbgk2 = nb0*nek0*nek1;
  10343. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10344. const size_t nbgv1 = nb0*nev0;
  10345. const size_t nbgv2 = nb0*nev0*nev1;
  10346. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10347. // parallelize by k rows using ggml_vec_dot_f32
  10348. // total rows in k
  10349. const int nr = nek2*nek3;
  10350. // rows per thread
  10351. const int dr = (nr + nth - 1)/nth;
  10352. // row range for this thread
  10353. const int ir0 = dr*ith;
  10354. const int ir1 = MIN(ir0 + dr, nr);
  10355. const float scale = 1.0f/sqrtf(D);
  10356. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10357. // how often k2 (and v2) is repeated in q2
  10358. int nrep = neq2/nek2;
  10359. for (int ir = ir0; ir < ir1; ++ir) {
  10360. // q indices
  10361. const int ik3 = ir/(nek2);
  10362. const int ik2 = ir - ik3*nek2;
  10363. const int iq3 = ik3;
  10364. const int id3 = ik3;
  10365. const int iv3 = ik3;
  10366. const int iv2 = ik2;
  10367. for (int irep = 0; irep < nrep; ++irep) {
  10368. const int iq2 = ik2 + irep*nek2;
  10369. const int id2 = iq2;
  10370. // (ik2 + irep*nek2) % nek2 == ik2
  10371. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10372. const int id1 = iq1;
  10373. // not sure about CACHE_LINE_SIZE_F32..
  10374. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10375. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10376. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10377. for (int i = M; i < Mup; ++i) {
  10378. S[i] = -INFINITY;
  10379. }
  10380. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10381. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10382. // k indices
  10383. const int ik1 = ic;
  10384. // S indices
  10385. const int i1 = ik1;
  10386. ggml_vec_dot_f32(neq0,
  10387. S + i1,
  10388. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10389. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10390. }
  10391. // scale
  10392. ggml_vec_scale_f32(masked_begin, S, scale);
  10393. for (int64_t i = masked_begin; i < M; i++) {
  10394. S[i] = -INFINITY;
  10395. }
  10396. // softmax
  10397. // exclude known -INF S[..] values from max and loop
  10398. // dont forget to set their SM values to zero
  10399. {
  10400. float max = -INFINITY;
  10401. ggml_vec_max_f32(masked_begin, &max, S);
  10402. ggml_float sum = 0.0;
  10403. {
  10404. #ifdef GGML_SOFT_MAX_ACCELERATE
  10405. max = -max;
  10406. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10407. vvexpf(SM, SM, &Mup);
  10408. ggml_vec_sum_f32(Mup, &sum, SM);
  10409. #else
  10410. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10411. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10412. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10413. if (i >= masked_begin) {
  10414. break;
  10415. }
  10416. float * SR = S + i;
  10417. float * SW = SM + i;
  10418. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10419. if (i + j >= masked_begin) {
  10420. break;
  10421. } else if (SR[j] == -INFINITY) {
  10422. SW[j] = 0.0f;
  10423. } else {
  10424. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10425. const float val = expf(SR[j] - max);
  10426. #else
  10427. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10428. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10429. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10430. #endif
  10431. sump[j] += (ggml_float)val;
  10432. SW[j] = val;
  10433. }
  10434. }
  10435. }
  10436. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10437. sum += sump[i];
  10438. }
  10439. #endif
  10440. }
  10441. assert(sum > 0.0);
  10442. sum = 1.0/sum;
  10443. ggml_vec_scale_f32(masked_begin, SM, sum);
  10444. }
  10445. // step-by-step explanation
  10446. {
  10447. // forward-process shape grads from backward process
  10448. // parallel_for ik2,ik3:
  10449. // for irep:
  10450. // iq2 = ik2 + irep*nek2
  10451. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10452. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10453. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10454. // for iq1:
  10455. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10456. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10457. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10458. // S0 = -Inf [D,1,1,1]
  10459. // ~S1[i] = dot(kcur[:D,i], qcur)
  10460. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10461. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10462. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10463. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10464. // ~S5[i] = dot(vcur[:,i], S4)
  10465. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10466. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10467. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10468. // dst backward-/ grad[dst] = d
  10469. //
  10470. // output gradients with their dependencies:
  10471. //
  10472. // grad[kcur] = grad[S1].T @ qcur
  10473. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10474. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10475. // grad[S4] = grad[S5] @ vcur
  10476. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10477. // grad[qcur] = grad[S1] @ kcur
  10478. // grad[vcur] = grad[S5].T @ S4
  10479. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10480. //
  10481. // in post-order:
  10482. //
  10483. // S1 = qcur @ kcur.T
  10484. // S2 = S1 * scale
  10485. // S3 = diag_mask_inf(S2, P)
  10486. // S4 = softmax(S3)
  10487. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10488. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10489. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10490. // grad[qcur] = grad[S1] @ kcur
  10491. // grad[kcur] = grad[S1].T @ qcur
  10492. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10493. //
  10494. // using less variables (SM=S4):
  10495. //
  10496. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10497. // SM = softmax(S)
  10498. // S = d[:D,iq1,iq2,iq3] @ vcur
  10499. // dot_SM_gradSM = dot(SM, S)
  10500. // S = SM * (S - dot(SM, S))
  10501. // S = diag_mask_zero(S, P) * scale
  10502. //
  10503. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10504. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10505. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10506. }
  10507. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10508. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10509. // for ic:
  10510. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10511. // exclude known future zero S[..] values from operation
  10512. ggml_vec_set_f32(masked_begin, S, 0);
  10513. for (int64_t ic = 0; ic < D; ++ic) {
  10514. ggml_vec_mad_f32(masked_begin,
  10515. S,
  10516. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10517. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10518. }
  10519. // S = SM * (S - dot(SM, S))
  10520. float dot_SM_gradSM = 0;
  10521. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  10522. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  10523. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  10524. // S = diag_mask_zero(S, P) * scale
  10525. // already done by above ggml_vec_set_f32
  10526. // exclude known zero S[..] values from operation
  10527. ggml_vec_scale_f32(masked_begin, S, scale);
  10528. // S shape [M,1]
  10529. // SM shape [M,1]
  10530. // kcur shape [D,M]
  10531. // qcur shape [D,1]
  10532. // vcur shape [M,D]
  10533. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10534. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  10535. // for ic:
  10536. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  10537. // exclude known zero S[..] values from loop
  10538. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10539. ggml_vec_mad_f32(D,
  10540. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  10541. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10542. S[ic]);
  10543. }
  10544. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  10545. // for ic:
  10546. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  10547. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  10548. // exclude known zero S[..] values from loop
  10549. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10550. ggml_vec_mad_f32(D,
  10551. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  10552. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  10553. S[ic]);
  10554. }
  10555. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10556. // for ic:
  10557. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  10558. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  10559. // exclude known zero SM[..] values from mad
  10560. for (int64_t ic = 0; ic < D; ++ic) {
  10561. ggml_vec_mad_f32(masked_begin,
  10562. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  10563. SM,
  10564. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10565. }
  10566. }
  10567. }
  10568. }
  10569. }
  10570. static void ggml_compute_forward_flash_attn_back(
  10571. const struct ggml_compute_params * params,
  10572. const struct ggml_tensor * q,
  10573. const struct ggml_tensor * k,
  10574. const struct ggml_tensor * v,
  10575. const struct ggml_tensor * d,
  10576. const bool masked,
  10577. struct ggml_tensor * dst) {
  10578. switch (q->type) {
  10579. case GGML_TYPE_F32:
  10580. {
  10581. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  10582. } break;
  10583. default:
  10584. {
  10585. GGML_ASSERT(false);
  10586. } break;
  10587. }
  10588. }
  10589. // ggml_compute_forward_win_part
  10590. static void ggml_compute_forward_win_part_f32(
  10591. const struct ggml_compute_params * params,
  10592. const struct ggml_tensor * src0,
  10593. struct ggml_tensor * dst) {
  10594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10595. return;
  10596. }
  10597. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10598. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10599. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  10600. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  10601. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  10602. assert(ne00 == ne0);
  10603. assert(ne3 == nep0*nep1);
  10604. // TODO: optimize / multi-thread
  10605. for (int py = 0; py < nep1; ++py) {
  10606. for (int px = 0; px < nep0; ++px) {
  10607. const int64_t i3 = py*nep0 + px;
  10608. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10609. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10610. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10611. const int64_t i02 = py*w + i2;
  10612. const int64_t i01 = px*w + i1;
  10613. const int64_t i00 = i0;
  10614. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  10615. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  10616. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  10617. ((float *) dst->data)[i] = 0.0f;
  10618. } else {
  10619. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  10620. }
  10621. }
  10622. }
  10623. }
  10624. }
  10625. }
  10626. }
  10627. static void ggml_compute_forward_win_part(
  10628. const struct ggml_compute_params * params,
  10629. const struct ggml_tensor * src0,
  10630. struct ggml_tensor * dst) {
  10631. switch (src0->type) {
  10632. case GGML_TYPE_F32:
  10633. {
  10634. ggml_compute_forward_win_part_f32(params, src0, dst);
  10635. } break;
  10636. default:
  10637. {
  10638. GGML_ASSERT(false);
  10639. } break;
  10640. }
  10641. }
  10642. // ggml_compute_forward_win_unpart
  10643. static void ggml_compute_forward_win_unpart_f32(
  10644. const struct ggml_compute_params * params,
  10645. const struct ggml_tensor * src0,
  10646. struct ggml_tensor * dst) {
  10647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10648. return;
  10649. }
  10650. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10651. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10652. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  10653. // padding
  10654. const int px = (w - ne1%w)%w;
  10655. //const int py = (w - ne2%w)%w;
  10656. const int npx = (px + ne1)/w;
  10657. //const int npy = (py + ne2)/w;
  10658. assert(ne0 == ne00);
  10659. // TODO: optimize / multi-thread
  10660. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10661. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10662. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10663. const int ip2 = i2/w;
  10664. const int ip1 = i1/w;
  10665. const int64_t i02 = i2%w;
  10666. const int64_t i01 = i1%w;
  10667. const int64_t i00 = i0;
  10668. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  10669. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  10670. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  10671. }
  10672. }
  10673. }
  10674. }
  10675. static void ggml_compute_forward_win_unpart(
  10676. const struct ggml_compute_params * params,
  10677. const struct ggml_tensor * src0,
  10678. struct ggml_tensor * dst) {
  10679. switch (src0->type) {
  10680. case GGML_TYPE_F32:
  10681. {
  10682. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  10683. } break;
  10684. default:
  10685. {
  10686. GGML_ASSERT(false);
  10687. } break;
  10688. }
  10689. }
  10690. //gmml_compute_forward_unary
  10691. static void ggml_compute_forward_unary(
  10692. const struct ggml_compute_params * params,
  10693. const struct ggml_tensor * src0,
  10694. struct ggml_tensor * dst) {
  10695. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  10696. switch (op) {
  10697. case GGML_UNARY_OP_ABS:
  10698. {
  10699. ggml_compute_forward_abs(params, src0, dst);
  10700. } break;
  10701. case GGML_UNARY_OP_SGN:
  10702. {
  10703. ggml_compute_forward_sgn(params, src0, dst);
  10704. } break;
  10705. case GGML_UNARY_OP_NEG:
  10706. {
  10707. ggml_compute_forward_neg(params, src0, dst);
  10708. } break;
  10709. case GGML_UNARY_OP_STEP:
  10710. {
  10711. ggml_compute_forward_step(params, src0, dst);
  10712. } break;
  10713. case GGML_UNARY_OP_TANH:
  10714. {
  10715. ggml_compute_forward_tanh(params, src0, dst);
  10716. } break;
  10717. case GGML_UNARY_OP_ELU:
  10718. {
  10719. ggml_compute_forward_elu(params, src0, dst);
  10720. } break;
  10721. case GGML_UNARY_OP_RELU:
  10722. {
  10723. ggml_compute_forward_relu(params, src0, dst);
  10724. } break;
  10725. case GGML_UNARY_OP_GELU:
  10726. {
  10727. ggml_compute_forward_gelu(params, src0, dst);
  10728. } break;
  10729. case GGML_UNARY_OP_GELU_QUICK:
  10730. {
  10731. ggml_compute_forward_gelu_quick(params, src0, dst);
  10732. } break;
  10733. case GGML_UNARY_OP_SILU:
  10734. {
  10735. ggml_compute_forward_silu(params, src0, dst);
  10736. } break;
  10737. case GGML_UNARY_OP_LEAKY:
  10738. {
  10739. ggml_compute_forward_leaky(params, src0, dst);
  10740. } break;
  10741. default:
  10742. {
  10743. GGML_ASSERT(false);
  10744. } break;
  10745. }
  10746. }
  10747. // ggml_compute_forward_get_rel_pos
  10748. static void ggml_compute_forward_get_rel_pos_f16(
  10749. const struct ggml_compute_params * params,
  10750. const struct ggml_tensor * src0,
  10751. struct ggml_tensor * dst) {
  10752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10753. return;
  10754. }
  10755. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  10756. GGML_TENSOR_UNARY_OP_LOCALS
  10757. const int64_t w = ne1;
  10758. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  10759. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  10760. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10761. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10762. const int64_t pos = (w - i1 - 1) + i2;
  10763. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10764. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  10765. }
  10766. }
  10767. }
  10768. }
  10769. static void ggml_compute_forward_get_rel_pos(
  10770. const struct ggml_compute_params * params,
  10771. const struct ggml_tensor * src0,
  10772. struct ggml_tensor * dst) {
  10773. switch (src0->type) {
  10774. case GGML_TYPE_F16:
  10775. {
  10776. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  10777. } break;
  10778. default:
  10779. {
  10780. GGML_ASSERT(false);
  10781. } break;
  10782. }
  10783. }
  10784. // ggml_compute_forward_add_rel_pos
  10785. static void ggml_compute_forward_add_rel_pos_f32(
  10786. const struct ggml_compute_params * params,
  10787. const struct ggml_tensor * src0,
  10788. const struct ggml_tensor * src1,
  10789. const struct ggml_tensor * src2,
  10790. struct ggml_tensor * dst) {
  10791. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  10792. if (!inplace && params->type == GGML_TASK_INIT) {
  10793. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  10794. return;
  10795. }
  10796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10797. return;
  10798. }
  10799. int64_t t0 = ggml_perf_time_us();
  10800. UNUSED(t0);
  10801. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  10802. float * src1_data = (float *) src1->data;
  10803. float * src2_data = (float *) src2->data;
  10804. float * dst_data = (float *) dst->data;
  10805. const int64_t ne10 = src1->ne[0];
  10806. const int64_t ne11 = src1->ne[1];
  10807. const int64_t ne12 = src1->ne[2];
  10808. const int64_t ne13 = src1->ne[3];
  10809. const int ith = params->ith;
  10810. const int nth = params->nth;
  10811. // total patches in dst
  10812. const int np = ne13;
  10813. // patches per thread
  10814. const int dp = (np + nth - 1)/nth;
  10815. // patch range for this thread
  10816. const int ip0 = dp*ith;
  10817. const int ip1 = MIN(ip0 + dp, np);
  10818. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  10819. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10820. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10821. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  10822. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  10823. const int64_t jp0 = jp1 + i10;
  10824. const float src1_e = src1_data[jp0];
  10825. const float src2_e = src2_data[jp0];
  10826. const int64_t jdh = jp0 * ne10;
  10827. const int64_t jdw = jdh - (ne10 - 1) * i10;
  10828. for (int64_t j = 0; j < ne10; ++j) {
  10829. dst_data[jdh + j ] += src2_e;
  10830. dst_data[jdw + j*ne10] += src1_e;
  10831. }
  10832. }
  10833. }
  10834. }
  10835. }
  10836. }
  10837. static void ggml_compute_forward_add_rel_pos(
  10838. const struct ggml_compute_params * params,
  10839. const struct ggml_tensor * src0,
  10840. const struct ggml_tensor * src1,
  10841. const struct ggml_tensor * src2,
  10842. struct ggml_tensor * dst) {
  10843. switch (src0->type) {
  10844. case GGML_TYPE_F32:
  10845. {
  10846. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  10847. } break;
  10848. default:
  10849. {
  10850. GGML_ASSERT(false);
  10851. } break;
  10852. }
  10853. }
  10854. // ggml_compute_forward_map_unary
  10855. static void ggml_compute_forward_map_unary_f32(
  10856. const struct ggml_compute_params * params,
  10857. const struct ggml_tensor * src0,
  10858. struct ggml_tensor * dst,
  10859. const ggml_unary_op_f32_t fun) {
  10860. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10862. return;
  10863. }
  10864. const int n = ggml_nrows(src0);
  10865. const int nc = src0->ne[0];
  10866. assert( dst->nb[0] == sizeof(float));
  10867. assert(src0->nb[0] == sizeof(float));
  10868. for (int i = 0; i < n; i++) {
  10869. fun(nc,
  10870. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10871. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10872. }
  10873. }
  10874. static void ggml_compute_forward_map_unary(
  10875. const struct ggml_compute_params * params,
  10876. const struct ggml_tensor * src0,
  10877. struct ggml_tensor * dst,
  10878. const ggml_unary_op_f32_t fun) {
  10879. switch (src0->type) {
  10880. case GGML_TYPE_F32:
  10881. {
  10882. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10883. } break;
  10884. default:
  10885. {
  10886. GGML_ASSERT(false);
  10887. } break;
  10888. }
  10889. }
  10890. // ggml_compute_forward_map_binary
  10891. static void ggml_compute_forward_map_binary_f32(
  10892. const struct ggml_compute_params * params,
  10893. const struct ggml_tensor * src0,
  10894. const struct ggml_tensor * src1,
  10895. struct ggml_tensor * dst,
  10896. const ggml_binary_op_f32_t fun) {
  10897. assert(params->ith == 0);
  10898. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10900. return;
  10901. }
  10902. const int n = ggml_nrows(src0);
  10903. const int nc = src0->ne[0];
  10904. assert( dst->nb[0] == sizeof(float));
  10905. assert(src0->nb[0] == sizeof(float));
  10906. assert(src1->nb[0] == sizeof(float));
  10907. for (int i = 0; i < n; i++) {
  10908. fun(nc,
  10909. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10910. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10911. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10912. }
  10913. }
  10914. static void ggml_compute_forward_map_binary(
  10915. const struct ggml_compute_params * params,
  10916. const struct ggml_tensor * src0,
  10917. const struct ggml_tensor * src1,
  10918. struct ggml_tensor * dst,
  10919. const ggml_binary_op_f32_t fun) {
  10920. switch (src0->type) {
  10921. case GGML_TYPE_F32:
  10922. {
  10923. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10924. } break;
  10925. default:
  10926. {
  10927. GGML_ASSERT(false);
  10928. } break;
  10929. }
  10930. }
  10931. // ggml_compute_forward_map_custom1
  10932. static void ggml_compute_forward_map_custom1_f32(
  10933. const struct ggml_compute_params * params,
  10934. const struct ggml_tensor * a,
  10935. struct ggml_tensor * dst,
  10936. const ggml_custom1_op_f32_t fun) {
  10937. assert(params->ith == 0);
  10938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10939. return;
  10940. }
  10941. fun(dst, a);
  10942. }
  10943. // ggml_compute_forward_map_custom2
  10944. static void ggml_compute_forward_map_custom2_f32(
  10945. const struct ggml_compute_params * params,
  10946. const struct ggml_tensor * a,
  10947. const struct ggml_tensor * b,
  10948. struct ggml_tensor * dst,
  10949. const ggml_custom2_op_f32_t fun) {
  10950. assert(params->ith == 0);
  10951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10952. return;
  10953. }
  10954. fun(dst, a, b);
  10955. }
  10956. // ggml_compute_forward_map_custom3
  10957. static void ggml_compute_forward_map_custom3_f32(
  10958. const struct ggml_compute_params * params,
  10959. const struct ggml_tensor * a,
  10960. const struct ggml_tensor * b,
  10961. const struct ggml_tensor * c,
  10962. struct ggml_tensor * dst,
  10963. const ggml_custom3_op_f32_t fun) {
  10964. assert(params->ith == 0);
  10965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10966. return;
  10967. }
  10968. fun(dst, a, b, c);
  10969. }
  10970. // ggml_compute_forward_map_custom1
  10971. static void ggml_compute_forward_map_custom1(
  10972. const struct ggml_compute_params * params,
  10973. const struct ggml_tensor * a,
  10974. struct ggml_tensor * dst) {
  10975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10976. return;
  10977. }
  10978. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  10979. p->fun(dst, a, params->ith, params->nth, p->userdata);
  10980. }
  10981. // ggml_compute_forward_map_custom2
  10982. static void ggml_compute_forward_map_custom2(
  10983. const struct ggml_compute_params * params,
  10984. const struct ggml_tensor * a,
  10985. const struct ggml_tensor * b,
  10986. struct ggml_tensor * dst) {
  10987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10988. return;
  10989. }
  10990. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  10991. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  10992. }
  10993. // ggml_compute_forward_map_custom3
  10994. static void ggml_compute_forward_map_custom3(
  10995. const struct ggml_compute_params * params,
  10996. const struct ggml_tensor * a,
  10997. const struct ggml_tensor * b,
  10998. const struct ggml_tensor * c,
  10999. struct ggml_tensor * dst) {
  11000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11001. return;
  11002. }
  11003. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11004. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11005. }
  11006. // ggml_compute_forward_cross_entropy_loss
  11007. static void ggml_compute_forward_cross_entropy_loss_f32(
  11008. const struct ggml_compute_params * params,
  11009. const struct ggml_tensor * src0,
  11010. const struct ggml_tensor * src1,
  11011. struct ggml_tensor * dst) {
  11012. GGML_ASSERT(ggml_is_contiguous(src0));
  11013. GGML_ASSERT(ggml_is_contiguous(src1));
  11014. GGML_ASSERT(ggml_is_scalar(dst));
  11015. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11016. const int ith = params->ith;
  11017. const int nth = params->nth;
  11018. float * sums = (float *) params->wdata;
  11019. // TODO: handle transposed/permuted matrices
  11020. const int nc = src0->ne[0];
  11021. const int nr = ggml_nrows(src0);
  11022. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11023. if (params->type == GGML_TASK_INIT) {
  11024. if (ith == 0) {
  11025. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11026. }
  11027. return;
  11028. }
  11029. if (params->type == GGML_TASK_FINALIZE) {
  11030. if (ith == 0) {
  11031. float * dp = (float *) dst->data;
  11032. ggml_vec_sum_f32(nth, dp, sums);
  11033. dp[0] *= -1.0f / (float) nr;
  11034. }
  11035. return;
  11036. }
  11037. const double eps = 1e-9;
  11038. // rows per thread
  11039. const int dr = (nr + nth - 1)/nth;
  11040. // row range for this thread
  11041. const int ir0 = dr*ith;
  11042. const int ir1 = MIN(ir0 + dr, nr);
  11043. for (int i1 = ir0; i1 < ir1; i1++) {
  11044. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11045. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11046. float * st = ((float *) params->wdata) + nth + ith*nc;
  11047. #ifndef NDEBUG
  11048. for (int i = 0; i < nc; ++i) {
  11049. //printf("p[%d] = %f\n", i, p[i]);
  11050. assert(!isnan(s0[i]));
  11051. assert(!isnan(s1[i]));
  11052. }
  11053. #endif
  11054. // soft_max
  11055. ggml_float sum = 0.0;
  11056. {
  11057. float max = -INFINITY;
  11058. ggml_vec_max_f32(nc, &max, s0);
  11059. uint16_t scvt; UNUSED(scvt);
  11060. for (int i = 0; i < nc; i++) {
  11061. if (s0[i] == -INFINITY) {
  11062. st[i] = 0.0f;
  11063. } else {
  11064. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11065. const float s = s0[i] - max;
  11066. const float val = expf(s);
  11067. #else
  11068. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11069. memcpy(&scvt, &s, sizeof(scvt));
  11070. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11071. #endif
  11072. sum += (ggml_float)val;
  11073. st[i] = val;
  11074. }
  11075. }
  11076. assert(sum > 0.0);
  11077. // sum = 1.0/sum;
  11078. }
  11079. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11080. sum = (1.0 - eps) / sum;
  11081. ggml_vec_scale_f32(nc, st, sum);
  11082. ggml_vec_add1_f32(nc, st, st, eps);
  11083. ggml_vec_log_f32(nc, st, st);
  11084. ggml_vec_mul_f32(nc, st, st, s1);
  11085. float st_sum = 0;
  11086. ggml_vec_sum_f32(nc, &st_sum, st);
  11087. sums[ith] += st_sum;
  11088. #ifndef NDEBUG
  11089. for (int i = 0; i < nc; ++i) {
  11090. assert(!isnan(st[i]));
  11091. assert(!isinf(st[i]));
  11092. }
  11093. #endif
  11094. }
  11095. }
  11096. static void ggml_compute_forward_cross_entropy_loss(
  11097. const struct ggml_compute_params * params,
  11098. const struct ggml_tensor * src0,
  11099. const struct ggml_tensor * src1,
  11100. struct ggml_tensor * dst) {
  11101. switch (src0->type) {
  11102. case GGML_TYPE_F32:
  11103. {
  11104. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11105. } break;
  11106. default:
  11107. {
  11108. GGML_ASSERT(false);
  11109. } break;
  11110. }
  11111. }
  11112. // ggml_compute_forward_cross_entropy_loss_back
  11113. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11114. const struct ggml_compute_params * params,
  11115. const struct ggml_tensor * src0,
  11116. const struct ggml_tensor * src1,
  11117. const struct ggml_tensor * opt0,
  11118. struct ggml_tensor * dst) {
  11119. GGML_ASSERT(ggml_is_contiguous(dst));
  11120. GGML_ASSERT(ggml_is_contiguous(src0));
  11121. GGML_ASSERT(ggml_is_contiguous(src1));
  11122. GGML_ASSERT(ggml_is_contiguous(opt0));
  11123. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11124. const int64_t ith = params->ith;
  11125. const int64_t nth = params->nth;
  11126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11127. return;
  11128. }
  11129. const double eps = 1e-9;
  11130. // TODO: handle transposed/permuted matrices
  11131. const int64_t nc = src0->ne[0];
  11132. const int64_t nr = ggml_nrows(src0);
  11133. // rows per thread
  11134. const int64_t dr = (nr + nth - 1)/nth;
  11135. // row range for this thread
  11136. const int64_t ir0 = dr*ith;
  11137. const int64_t ir1 = MIN(ir0 + dr, nr);
  11138. float * d = (float *) opt0->data;
  11139. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11140. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11141. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11142. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11143. #ifndef NDEBUG
  11144. for (int i = 0; i < nc; ++i) {
  11145. //printf("p[%d] = %f\n", i, p[i]);
  11146. assert(!isnan(s0[i]));
  11147. assert(!isnan(s1[i]));
  11148. }
  11149. #endif
  11150. // soft_max
  11151. ggml_float sum = 0.0;
  11152. {
  11153. float max = -INFINITY;
  11154. ggml_vec_max_f32(nc, &max, s0);
  11155. uint16_t scvt; UNUSED(scvt);
  11156. for (int i = 0; i < nc; i++) {
  11157. if (s0[i] == -INFINITY) {
  11158. ds0[i] = 0.0f;
  11159. } else {
  11160. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11161. const float s = s0[i] - max;
  11162. const float val = expf(s);
  11163. #else
  11164. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11165. memcpy(&scvt, &s, sizeof(scvt));
  11166. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11167. #endif
  11168. sum += (ggml_float)val;
  11169. ds0[i] = val;
  11170. }
  11171. }
  11172. assert(sum > 0.0);
  11173. sum = (1.0 - eps)/sum;
  11174. }
  11175. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11176. ggml_vec_scale_f32(nc, ds0, sum);
  11177. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11178. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11179. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11180. #ifndef NDEBUG
  11181. for (int i = 0; i < nc; ++i) {
  11182. assert(!isnan(ds0[i]));
  11183. assert(!isinf(ds0[i]));
  11184. }
  11185. #endif
  11186. }
  11187. }
  11188. static void ggml_compute_forward_cross_entropy_loss_back(
  11189. const struct ggml_compute_params * params,
  11190. const struct ggml_tensor * src0,
  11191. const struct ggml_tensor * src1,
  11192. const struct ggml_tensor * opt0,
  11193. struct ggml_tensor * dst) {
  11194. switch (src0->type) {
  11195. case GGML_TYPE_F32:
  11196. {
  11197. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11198. } break;
  11199. default:
  11200. {
  11201. GGML_ASSERT(false);
  11202. } break;
  11203. }
  11204. }
  11205. /////////////////////////////////
  11206. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11207. GGML_ASSERT(params);
  11208. if (tensor->op == GGML_OP_NONE) {
  11209. return;
  11210. }
  11211. #ifdef GGML_USE_CUBLAS
  11212. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11213. if (skip_cpu) {
  11214. return;
  11215. }
  11216. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11217. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11218. #endif // GGML_USE_CUBLAS
  11219. switch (tensor->op) {
  11220. case GGML_OP_DUP:
  11221. {
  11222. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11223. } break;
  11224. case GGML_OP_ADD:
  11225. {
  11226. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11227. } break;
  11228. case GGML_OP_ADD1:
  11229. {
  11230. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11231. } break;
  11232. case GGML_OP_ACC:
  11233. {
  11234. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11235. } break;
  11236. case GGML_OP_SUB:
  11237. {
  11238. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11239. } break;
  11240. case GGML_OP_MUL:
  11241. {
  11242. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11243. } break;
  11244. case GGML_OP_DIV:
  11245. {
  11246. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11247. } break;
  11248. case GGML_OP_SQR:
  11249. {
  11250. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11251. } break;
  11252. case GGML_OP_SQRT:
  11253. {
  11254. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11255. } break;
  11256. case GGML_OP_LOG:
  11257. {
  11258. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11259. } break;
  11260. case GGML_OP_SUM:
  11261. {
  11262. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11263. } break;
  11264. case GGML_OP_SUM_ROWS:
  11265. {
  11266. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11267. } break;
  11268. case GGML_OP_MEAN:
  11269. {
  11270. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11271. } break;
  11272. case GGML_OP_ARGMAX:
  11273. {
  11274. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11275. } break;
  11276. case GGML_OP_REPEAT:
  11277. {
  11278. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11279. } break;
  11280. case GGML_OP_REPEAT_BACK:
  11281. {
  11282. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11283. } break;
  11284. case GGML_OP_CONCAT:
  11285. {
  11286. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11287. } break;
  11288. case GGML_OP_SILU_BACK:
  11289. {
  11290. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11291. } break;
  11292. case GGML_OP_NORM:
  11293. {
  11294. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11295. } break;
  11296. case GGML_OP_RMS_NORM:
  11297. {
  11298. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11299. } break;
  11300. case GGML_OP_RMS_NORM_BACK:
  11301. {
  11302. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11303. } break;
  11304. case GGML_OP_GROUP_NORM:
  11305. {
  11306. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11307. } break;
  11308. case GGML_OP_MUL_MAT:
  11309. {
  11310. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11311. } break;
  11312. case GGML_OP_OUT_PROD:
  11313. {
  11314. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11315. } break;
  11316. case GGML_OP_SCALE:
  11317. {
  11318. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11319. } break;
  11320. case GGML_OP_SET:
  11321. {
  11322. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11323. } break;
  11324. case GGML_OP_CPY:
  11325. {
  11326. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11327. } break;
  11328. case GGML_OP_CONT:
  11329. {
  11330. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11331. } break;
  11332. case GGML_OP_RESHAPE:
  11333. {
  11334. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11335. } break;
  11336. case GGML_OP_VIEW:
  11337. {
  11338. ggml_compute_forward_view(params, tensor->src[0]);
  11339. } break;
  11340. case GGML_OP_PERMUTE:
  11341. {
  11342. ggml_compute_forward_permute(params, tensor->src[0]);
  11343. } break;
  11344. case GGML_OP_TRANSPOSE:
  11345. {
  11346. ggml_compute_forward_transpose(params, tensor->src[0]);
  11347. } break;
  11348. case GGML_OP_GET_ROWS:
  11349. {
  11350. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11351. } break;
  11352. case GGML_OP_GET_ROWS_BACK:
  11353. {
  11354. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11355. } break;
  11356. case GGML_OP_DIAG:
  11357. {
  11358. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11359. } break;
  11360. case GGML_OP_DIAG_MASK_INF:
  11361. {
  11362. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11363. } break;
  11364. case GGML_OP_DIAG_MASK_ZERO:
  11365. {
  11366. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11367. } break;
  11368. case GGML_OP_SOFT_MAX:
  11369. {
  11370. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  11371. } break;
  11372. case GGML_OP_SOFT_MAX_BACK:
  11373. {
  11374. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11375. } break;
  11376. case GGML_OP_ROPE:
  11377. {
  11378. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11379. } break;
  11380. case GGML_OP_ROPE_BACK:
  11381. {
  11382. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11383. } break;
  11384. case GGML_OP_ALIBI:
  11385. {
  11386. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11387. } break;
  11388. case GGML_OP_CLAMP:
  11389. {
  11390. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11391. } break;
  11392. case GGML_OP_CONV_TRANSPOSE_1D:
  11393. {
  11394. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11395. } break;
  11396. case GGML_OP_IM2COL:
  11397. {
  11398. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11399. } break;
  11400. case GGML_OP_CONV_TRANSPOSE_2D:
  11401. {
  11402. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11403. } break;
  11404. case GGML_OP_POOL_1D:
  11405. {
  11406. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11407. } break;
  11408. case GGML_OP_POOL_2D:
  11409. {
  11410. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11411. } break;
  11412. case GGML_OP_UPSCALE:
  11413. {
  11414. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11415. } break;
  11416. case GGML_OP_FLASH_ATTN:
  11417. {
  11418. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11419. GGML_ASSERT(t == 0 || t == 1);
  11420. const bool masked = t != 0;
  11421. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11422. } break;
  11423. case GGML_OP_FLASH_FF:
  11424. {
  11425. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11426. } break;
  11427. case GGML_OP_FLASH_ATTN_BACK:
  11428. {
  11429. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11430. GGML_ASSERT(t == 0 || t == 1);
  11431. bool masked = t != 0;
  11432. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11433. } break;
  11434. case GGML_OP_WIN_PART:
  11435. {
  11436. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11437. } break;
  11438. case GGML_OP_WIN_UNPART:
  11439. {
  11440. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11441. } break;
  11442. case GGML_OP_UNARY:
  11443. {
  11444. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11445. } break;
  11446. case GGML_OP_GET_REL_POS:
  11447. {
  11448. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11449. } break;
  11450. case GGML_OP_ADD_REL_POS:
  11451. {
  11452. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11453. } break;
  11454. case GGML_OP_MAP_UNARY:
  11455. {
  11456. ggml_unary_op_f32_t fun;
  11457. memcpy(&fun, tensor->op_params, sizeof(fun));
  11458. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11459. }
  11460. break;
  11461. case GGML_OP_MAP_BINARY:
  11462. {
  11463. ggml_binary_op_f32_t fun;
  11464. memcpy(&fun, tensor->op_params, sizeof(fun));
  11465. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11466. }
  11467. break;
  11468. case GGML_OP_MAP_CUSTOM1_F32:
  11469. {
  11470. ggml_custom1_op_f32_t fun;
  11471. memcpy(&fun, tensor->op_params, sizeof(fun));
  11472. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11473. }
  11474. break;
  11475. case GGML_OP_MAP_CUSTOM2_F32:
  11476. {
  11477. ggml_custom2_op_f32_t fun;
  11478. memcpy(&fun, tensor->op_params, sizeof(fun));
  11479. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11480. }
  11481. break;
  11482. case GGML_OP_MAP_CUSTOM3_F32:
  11483. {
  11484. ggml_custom3_op_f32_t fun;
  11485. memcpy(&fun, tensor->op_params, sizeof(fun));
  11486. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11487. }
  11488. break;
  11489. case GGML_OP_MAP_CUSTOM1:
  11490. {
  11491. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11492. }
  11493. break;
  11494. case GGML_OP_MAP_CUSTOM2:
  11495. {
  11496. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11497. }
  11498. break;
  11499. case GGML_OP_MAP_CUSTOM3:
  11500. {
  11501. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11502. }
  11503. break;
  11504. case GGML_OP_CROSS_ENTROPY_LOSS:
  11505. {
  11506. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  11507. }
  11508. break;
  11509. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11510. {
  11511. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11512. }
  11513. break;
  11514. case GGML_OP_NONE:
  11515. {
  11516. // nop
  11517. } break;
  11518. case GGML_OP_COUNT:
  11519. {
  11520. GGML_ASSERT(false);
  11521. } break;
  11522. }
  11523. }
  11524. ////////////////////////////////////////////////////////////////////////////////
  11525. static size_t ggml_hash_size(size_t min_sz) {
  11526. // next primes after powers of two
  11527. static const size_t primes[] = {
  11528. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  11529. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  11530. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  11531. 16777259, 33554467, 67108879, 134217757, 268435459,
  11532. 536870923, 1073741827, 2147483659
  11533. };
  11534. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  11535. // find the smallest prime that is larger or equal to min_sz
  11536. size_t l = 0;
  11537. size_t r = n_primes;
  11538. while (l < r) {
  11539. size_t m = (l + r)/2;
  11540. if (primes[m] < min_sz) {
  11541. l = m + 1;
  11542. } else {
  11543. r = m;
  11544. }
  11545. }
  11546. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  11547. return sz;
  11548. }
  11549. static size_t ggml_hash(const void * p) {
  11550. return (size_t)p;
  11551. }
  11552. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11553. size_t h = ggml_hash(key) % hash_set.size;
  11554. // linear probing
  11555. size_t i = h;
  11556. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  11557. i = (i + 1) % hash_set.size;
  11558. if (i == h) {
  11559. // visited all hash table entries -> not found
  11560. return GGML_HASHTABLE_FULL;
  11561. }
  11562. }
  11563. return i;
  11564. }
  11565. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11566. size_t i = ggml_hash_find(hash_set, key);
  11567. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  11568. }
  11569. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11570. size_t i = ggml_hash_find(hash_set, key);
  11571. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11572. if (hash_set.keys[i] == key) {
  11573. return GGML_HASHTABLE_ALREADY_EXISTS;
  11574. }
  11575. // insert
  11576. GGML_ASSERT(hash_set.keys[i] == NULL);
  11577. hash_set.keys[i] = key;
  11578. return i;
  11579. }
  11580. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11581. size_t i = ggml_hash_find(hash_set, key);
  11582. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11583. hash_set.keys[i] = key;
  11584. return i;
  11585. }
  11586. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  11587. size = ggml_hash_size(size);
  11588. struct ggml_hash_set result;
  11589. result.size = size;
  11590. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  11591. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  11592. return result;
  11593. }
  11594. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  11595. free(hash_set.keys);
  11596. }
  11597. struct hash_map {
  11598. struct ggml_hash_set set;
  11599. struct ggml_tensor ** vals;
  11600. };
  11601. static struct hash_map * ggml_new_hash_map(size_t size) {
  11602. struct hash_map * result = malloc(sizeof(struct hash_map));
  11603. result->set = ggml_hash_set_new(size);
  11604. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  11605. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  11606. return result;
  11607. }
  11608. static void ggml_hash_map_free(struct hash_map * map) {
  11609. ggml_hash_set_free(map->set);
  11610. free(map->vals);
  11611. free(map);
  11612. }
  11613. // gradient checkpointing
  11614. static struct ggml_tensor * ggml_recompute_graph_node(
  11615. struct ggml_context * ctx,
  11616. struct ggml_cgraph * graph,
  11617. struct hash_map * replacements,
  11618. struct ggml_tensor * node) {
  11619. if (node == NULL) {
  11620. return NULL;
  11621. }
  11622. if (node->is_param) {
  11623. return node;
  11624. }
  11625. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  11626. return node;
  11627. }
  11628. int count_children = 0;
  11629. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11630. if (node->src[k]) {
  11631. ++count_children;
  11632. }
  11633. }
  11634. if (count_children == 0) {
  11635. return node;
  11636. }
  11637. size_t i = ggml_hash_find(replacements->set, node);
  11638. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  11639. if (replacements->set.keys[i] == node) {
  11640. return replacements->vals[i];
  11641. }
  11642. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  11643. // insert clone into replacements
  11644. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  11645. replacements->set.keys[i] = node;
  11646. replacements->vals[i] = clone;
  11647. clone->op = node->op;
  11648. clone->grad = node->grad;
  11649. clone->is_param = node->is_param;
  11650. clone->extra = node->extra;
  11651. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  11652. clone->nb[k] = node->nb[k];
  11653. }
  11654. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11655. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  11656. }
  11657. if (node->view_src != NULL) {
  11658. clone->data = (node->view_src->data == NULL)
  11659. ? NULL // view_src not yet allocated
  11660. : (char *) node->view_src->data // view_src already allocated
  11661. + node->view_offs;
  11662. clone->view_src = node->view_src;
  11663. clone->view_offs = node->view_offs;
  11664. }
  11665. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  11666. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  11667. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  11668. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  11669. return clone;
  11670. }
  11671. void ggml_build_backward_gradient_checkpointing(
  11672. struct ggml_context * ctx,
  11673. struct ggml_cgraph * gf,
  11674. struct ggml_cgraph * gb,
  11675. struct ggml_cgraph * gb_tmp,
  11676. struct ggml_tensor * * checkpoints,
  11677. int n_checkpoints) {
  11678. ggml_graph_cpy(gf, gb_tmp);
  11679. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  11680. if (n_checkpoints <= 0) {
  11681. ggml_graph_cpy(gb_tmp, gb);
  11682. return;
  11683. }
  11684. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  11685. // insert checkpoints in replacements
  11686. for (int i = 0; i < n_checkpoints; ++i) {
  11687. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  11688. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  11689. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  11690. replacements->set.keys[k] = checkpoints[i];
  11691. replacements->vals[k] = checkpoints[i];
  11692. }
  11693. ggml_graph_cpy(gf, gb);
  11694. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  11695. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  11696. // by recomputing them from checkpoints
  11697. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  11698. struct ggml_tensor * node = gb_tmp->nodes[i];
  11699. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11700. // insert new tensors recomputing src, reusing already made replacements,
  11701. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  11702. // recurse for input tensors,
  11703. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  11704. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  11705. }
  11706. // insert rewritten backward node with replacements made into resulting backward graph gb
  11707. ggml_build_forward_expand(gb, node);
  11708. }
  11709. ggml_hash_map_free(replacements);
  11710. }
  11711. // functions to change gradients considering the case that input a might be initial gradient with zero value
  11712. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11713. if (ggml_hash_contains(zero_table, a)) {
  11714. return b;
  11715. } else {
  11716. return ggml_add_impl(ctx, a, b, false);
  11717. }
  11718. }
  11719. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  11720. if (ggml_hash_contains(zero_table, a)) {
  11721. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  11722. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  11723. } else {
  11724. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  11725. }
  11726. }
  11727. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11728. if (ggml_hash_contains(zero_table, a)) {
  11729. return ggml_repeat(ctx, b, a);
  11730. } else {
  11731. return ggml_add1_impl(ctx, a, b, false);
  11732. }
  11733. }
  11734. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11735. if (ggml_hash_contains(zero_table, a)) {
  11736. return ggml_neg(ctx, b);
  11737. } else {
  11738. return ggml_sub_impl(ctx, a, b, false);
  11739. }
  11740. }
  11741. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  11742. struct ggml_tensor * src0 = tensor->src[0];
  11743. struct ggml_tensor * src1 = tensor->src[1];
  11744. switch (tensor->op) {
  11745. case GGML_OP_DUP:
  11746. {
  11747. if (src0->grad) {
  11748. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11749. }
  11750. } break;
  11751. case GGML_OP_ADD:
  11752. {
  11753. if (src0->grad) {
  11754. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11755. }
  11756. if (src1->grad) {
  11757. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11758. }
  11759. } break;
  11760. case GGML_OP_ADD1:
  11761. {
  11762. if (src0->grad) {
  11763. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11764. }
  11765. if (src1->grad) {
  11766. src1->grad = ggml_add_or_set(ctx,
  11767. src1->grad,
  11768. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11769. zero_table);
  11770. }
  11771. } break;
  11772. case GGML_OP_ACC:
  11773. {
  11774. if (src0->grad) {
  11775. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11776. }
  11777. if (src1->grad) {
  11778. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  11779. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  11780. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  11781. const size_t offset = ((int32_t *) tensor->op_params)[3];
  11782. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  11783. tensor->grad,
  11784. src1->grad->ne[0],
  11785. src1->grad->ne[1],
  11786. src1->grad->ne[2],
  11787. src1->grad->ne[3],
  11788. nb1, nb2, nb3, offset);
  11789. src1->grad =
  11790. ggml_add_or_set(ctx,
  11791. src1->grad,
  11792. ggml_reshape(ctx,
  11793. ggml_cont(ctx, tensor_grad_view),
  11794. src1->grad),
  11795. zero_table);
  11796. }
  11797. } break;
  11798. case GGML_OP_SUB:
  11799. {
  11800. if (src0->grad) {
  11801. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11802. }
  11803. if (src1->grad) {
  11804. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11805. }
  11806. } break;
  11807. case GGML_OP_MUL:
  11808. {
  11809. if (src0->grad) {
  11810. src0->grad =
  11811. ggml_add_or_set(ctx,
  11812. src0->grad,
  11813. ggml_mul(ctx, src1, tensor->grad),
  11814. zero_table);
  11815. }
  11816. if (src1->grad) {
  11817. src1->grad =
  11818. ggml_add_or_set(ctx,
  11819. src1->grad,
  11820. ggml_mul(ctx, src0, tensor->grad),
  11821. zero_table);
  11822. }
  11823. } break;
  11824. case GGML_OP_DIV:
  11825. {
  11826. if (src0->grad) {
  11827. src0->grad =
  11828. ggml_add_or_set(ctx,
  11829. src0->grad,
  11830. ggml_div(ctx, tensor->grad, src1),
  11831. zero_table);
  11832. }
  11833. if (src1->grad) {
  11834. src1->grad =
  11835. ggml_sub_or_set(ctx,
  11836. src1->grad,
  11837. ggml_mul(ctx,
  11838. tensor->grad,
  11839. ggml_div(ctx, tensor, src1)),
  11840. zero_table);
  11841. }
  11842. } break;
  11843. case GGML_OP_SQR:
  11844. {
  11845. if (src0->grad) {
  11846. src0->grad =
  11847. ggml_add_or_set(ctx,
  11848. src0->grad,
  11849. ggml_scale(ctx,
  11850. ggml_mul(ctx, src0, tensor->grad),
  11851. ggml_new_f32(ctx, 2.0f)),
  11852. zero_table);
  11853. }
  11854. } break;
  11855. case GGML_OP_SQRT:
  11856. {
  11857. if (src0->grad) {
  11858. src0->grad =
  11859. ggml_add_or_set(ctx,
  11860. src0->grad,
  11861. ggml_scale(ctx,
  11862. ggml_div(ctx,
  11863. tensor->grad,
  11864. tensor),
  11865. ggml_new_f32(ctx, 0.5f)),
  11866. zero_table);
  11867. }
  11868. } break;
  11869. case GGML_OP_LOG:
  11870. {
  11871. if (src0->grad) {
  11872. src0->grad =
  11873. ggml_add_or_set(ctx,
  11874. src0->grad,
  11875. ggml_div(ctx,
  11876. tensor->grad,
  11877. src0),
  11878. zero_table);
  11879. }
  11880. } break;
  11881. case GGML_OP_SUM:
  11882. {
  11883. if (src0->grad) {
  11884. src0->grad =
  11885. ggml_add1_or_set(ctx,
  11886. src0->grad,
  11887. tensor->grad,
  11888. zero_table);
  11889. }
  11890. } break;
  11891. case GGML_OP_SUM_ROWS:
  11892. {
  11893. if (src0->grad) {
  11894. src0->grad =
  11895. ggml_add_or_set(ctx,
  11896. src0->grad,
  11897. ggml_repeat(ctx,
  11898. tensor->grad,
  11899. src0->grad),
  11900. zero_table);
  11901. }
  11902. } break;
  11903. case GGML_OP_MEAN:
  11904. case GGML_OP_ARGMAX:
  11905. {
  11906. GGML_ASSERT(false); // TODO: implement
  11907. } break;
  11908. case GGML_OP_REPEAT:
  11909. {
  11910. // necessary for llama
  11911. if (src0->grad) {
  11912. src0->grad = ggml_add_or_set(ctx,
  11913. src0->grad,
  11914. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  11915. zero_table);
  11916. }
  11917. } break;
  11918. case GGML_OP_REPEAT_BACK:
  11919. {
  11920. if (src0->grad) {
  11921. // TODO: test this
  11922. src0->grad = ggml_add_or_set(ctx,
  11923. src0->grad,
  11924. ggml_repeat(ctx, tensor->grad, src0->grad),
  11925. zero_table);
  11926. }
  11927. } break;
  11928. case GGML_OP_CONCAT:
  11929. {
  11930. GGML_ASSERT(false); // TODO: implement
  11931. } break;
  11932. case GGML_OP_SILU_BACK:
  11933. {
  11934. GGML_ASSERT(false); // TODO: not implemented
  11935. } break;
  11936. case GGML_OP_NORM:
  11937. {
  11938. GGML_ASSERT(false); // TODO: not implemented
  11939. } break;
  11940. case GGML_OP_RMS_NORM:
  11941. {
  11942. // necessary for llama
  11943. if (src0->grad) {
  11944. float eps;
  11945. memcpy(&eps, tensor->op_params, sizeof(float));
  11946. src0->grad = ggml_add_or_set(ctx,
  11947. src0->grad,
  11948. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  11949. zero_table);
  11950. }
  11951. } break;
  11952. case GGML_OP_RMS_NORM_BACK:
  11953. {
  11954. GGML_ASSERT(false); // TODO: not implemented
  11955. } break;
  11956. case GGML_OP_GROUP_NORM:
  11957. {
  11958. GGML_ASSERT(false); // TODO: not implemented
  11959. } break;
  11960. case GGML_OP_MUL_MAT:
  11961. {
  11962. // https://cs231n.github.io/optimization-2/#staged
  11963. // # forward pass
  11964. // s0 = np.random.randn(5, 10)
  11965. // s1 = np.random.randn(10, 3)
  11966. // t = s0.dot(s1)
  11967. // # now suppose we had the gradient on t from above in the circuit
  11968. // dt = np.random.randn(*t.shape) # same shape as t
  11969. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11970. // ds1 = t.T.dot(dt)
  11971. // tensor.shape [m,p,qq,rr]
  11972. // src0.shape [n,m,q1,r1]
  11973. // src1.shape [n,p,qq,rr]
  11974. // necessary for llama
  11975. if (src0->grad) {
  11976. struct ggml_tensor * s1_tg =
  11977. ggml_out_prod(ctx, // [n,m,qq,rr]
  11978. src1, // [n,p,qq,rr]
  11979. tensor->grad); // [m,p,qq,rr]
  11980. const int64_t qq = s1_tg->ne[2];
  11981. const int64_t rr = s1_tg->ne[3];
  11982. const int64_t q1 = src0->ne[2];
  11983. const int64_t r1 = src0->ne[3];
  11984. const bool ne2_broadcasted = qq > q1;
  11985. const bool ne3_broadcasted = rr > r1;
  11986. if (ne2_broadcasted || ne3_broadcasted) {
  11987. // sum broadcast repetitions of s1_tg into shape of src0
  11988. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  11989. }
  11990. src0->grad =
  11991. ggml_add_or_set(ctx,
  11992. src0->grad, // [n,m,q1,r1]
  11993. s1_tg, // [n,m,q1,r1]
  11994. zero_table);
  11995. }
  11996. if (src1->grad) {
  11997. src1->grad =
  11998. ggml_add_or_set(ctx,
  11999. src1->grad, // [n,p,qq,rr]
  12000. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12001. // ggml_cont(ctx, // [m,n,q1,r1]
  12002. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12003. // tensor->grad), // [m,p,qq,rr]
  12004. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12005. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12006. // // and then use ggml_out_prod
  12007. ggml_out_prod(ctx, // [n,p,qq,rr]
  12008. src0, // [n,m,q1,r1]
  12009. ggml_transpose(ctx, // [p,m,qq,rr]
  12010. tensor->grad)), // [m,p,qq,rr]
  12011. zero_table);
  12012. }
  12013. } break;
  12014. case GGML_OP_OUT_PROD:
  12015. {
  12016. GGML_ASSERT(false); // TODO: not implemented
  12017. } break;
  12018. case GGML_OP_SCALE:
  12019. {
  12020. // necessary for llama
  12021. if (src0->grad) {
  12022. src0->grad =
  12023. ggml_add_or_set(ctx,
  12024. src0->grad,
  12025. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12026. zero_table);
  12027. }
  12028. if (src1->grad) {
  12029. src1->grad =
  12030. ggml_add_or_set(ctx,
  12031. src1->grad,
  12032. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12033. zero_table);
  12034. }
  12035. } break;
  12036. case GGML_OP_SET:
  12037. {
  12038. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12039. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12040. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12041. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12042. struct ggml_tensor * tensor_grad_view = NULL;
  12043. if (src0->grad || src1->grad) {
  12044. GGML_ASSERT(src0->type == tensor->type);
  12045. GGML_ASSERT(tensor->grad->type == tensor->type);
  12046. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12047. tensor_grad_view = ggml_view_4d(ctx,
  12048. tensor->grad,
  12049. src1->grad->ne[0],
  12050. src1->grad->ne[1],
  12051. src1->grad->ne[2],
  12052. src1->grad->ne[3],
  12053. nb1, nb2, nb3, offset);
  12054. }
  12055. if (src0->grad) {
  12056. src0->grad = ggml_add_or_set(ctx,
  12057. src0->grad,
  12058. ggml_acc_impl(ctx,
  12059. tensor->grad,
  12060. ggml_neg(ctx, tensor_grad_view),
  12061. nb1, nb2, nb3, offset, false),
  12062. zero_table);
  12063. }
  12064. if (src1->grad) {
  12065. src1->grad =
  12066. ggml_add_or_set(ctx,
  12067. src1->grad,
  12068. ggml_reshape(ctx,
  12069. ggml_cont(ctx, tensor_grad_view),
  12070. src1->grad),
  12071. zero_table);
  12072. }
  12073. } break;
  12074. case GGML_OP_CPY:
  12075. {
  12076. // necessary for llama
  12077. // cpy overwrites value of src1 by src0 and returns view(src1)
  12078. // the overwriting is mathematically equivalent to:
  12079. // tensor = src0 * 1 + src1 * 0
  12080. if (src0->grad) {
  12081. // dsrc0 = dtensor * 1
  12082. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12083. }
  12084. if (src1->grad) {
  12085. // dsrc1 = dtensor * 0 -> noop
  12086. }
  12087. } break;
  12088. case GGML_OP_CONT:
  12089. {
  12090. // same as cpy
  12091. if (src0->grad) {
  12092. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12093. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12094. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12095. }
  12096. } break;
  12097. case GGML_OP_RESHAPE:
  12098. {
  12099. // necessary for llama
  12100. if (src0->grad) {
  12101. src0->grad =
  12102. ggml_add_or_set(ctx, src0->grad,
  12103. ggml_reshape(ctx,
  12104. ggml_is_contiguous(tensor->grad)
  12105. ? tensor->grad
  12106. : ggml_cont(ctx, tensor->grad),
  12107. src0->grad),
  12108. zero_table);
  12109. }
  12110. } break;
  12111. case GGML_OP_VIEW:
  12112. {
  12113. // necessary for llama
  12114. if (src0->grad) {
  12115. size_t offset;
  12116. memcpy(&offset, tensor->op_params, sizeof(offset));
  12117. size_t nb1 = tensor->nb[1];
  12118. size_t nb2 = tensor->nb[2];
  12119. size_t nb3 = tensor->nb[3];
  12120. if (src0->type != src0->grad->type) {
  12121. // gradient is typically F32, but src0 could be other type
  12122. size_t ng = ggml_element_size(src0->grad);
  12123. size_t n0 = ggml_element_size(src0);
  12124. GGML_ASSERT(offset % n0 == 0);
  12125. GGML_ASSERT(nb1 % n0 == 0);
  12126. GGML_ASSERT(nb2 % n0 == 0);
  12127. GGML_ASSERT(nb3 % n0 == 0);
  12128. offset = (offset / n0) * ng;
  12129. nb1 = (nb1 / n0) * ng;
  12130. nb2 = (nb2 / n0) * ng;
  12131. nb3 = (nb3 / n0) * ng;
  12132. }
  12133. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12134. }
  12135. } break;
  12136. case GGML_OP_PERMUTE:
  12137. {
  12138. // necessary for llama
  12139. if (src0->grad) {
  12140. int32_t * axes = (int32_t *) tensor->op_params;
  12141. int axis0 = axes[0] & 0x3;
  12142. int axis1 = axes[1] & 0x3;
  12143. int axis2 = axes[2] & 0x3;
  12144. int axis3 = axes[3] & 0x3;
  12145. int axes_backward[4] = {0,0,0,0};
  12146. axes_backward[axis0] = 0;
  12147. axes_backward[axis1] = 1;
  12148. axes_backward[axis2] = 2;
  12149. axes_backward[axis3] = 3;
  12150. src0->grad =
  12151. ggml_add_or_set(ctx, src0->grad,
  12152. ggml_permute(ctx,
  12153. tensor->grad,
  12154. axes_backward[0],
  12155. axes_backward[1],
  12156. axes_backward[2],
  12157. axes_backward[3]),
  12158. zero_table);
  12159. }
  12160. } break;
  12161. case GGML_OP_TRANSPOSE:
  12162. {
  12163. // necessary for llama
  12164. if (src0->grad) {
  12165. src0->grad =
  12166. ggml_add_or_set(ctx, src0->grad,
  12167. ggml_transpose(ctx, tensor->grad),
  12168. zero_table);
  12169. }
  12170. } break;
  12171. case GGML_OP_GET_ROWS:
  12172. {
  12173. // necessary for llama (only for tokenizer)
  12174. if (src0->grad) {
  12175. src0->grad =
  12176. ggml_add_or_set(ctx, src0->grad,
  12177. // last ggml_get_rows_back argument src0->grad is only
  12178. // necessary to setup correct output shape
  12179. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12180. zero_table);
  12181. }
  12182. if (src1->grad) {
  12183. // noop
  12184. }
  12185. } break;
  12186. case GGML_OP_GET_ROWS_BACK:
  12187. {
  12188. GGML_ASSERT(false); // TODO: not implemented
  12189. } break;
  12190. case GGML_OP_DIAG:
  12191. {
  12192. GGML_ASSERT(false); // TODO: not implemented
  12193. } break;
  12194. case GGML_OP_DIAG_MASK_INF:
  12195. {
  12196. // necessary for llama
  12197. if (src0->grad) {
  12198. const int n_past = ((int32_t *) tensor->op_params)[0];
  12199. src0->grad =
  12200. ggml_add_or_set(ctx, src0->grad,
  12201. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12202. zero_table);
  12203. }
  12204. } break;
  12205. case GGML_OP_DIAG_MASK_ZERO:
  12206. {
  12207. // necessary for llama
  12208. if (src0->grad) {
  12209. const int n_past = ((int32_t *) tensor->op_params)[0];
  12210. src0->grad =
  12211. ggml_add_or_set(ctx, src0->grad,
  12212. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12213. zero_table);
  12214. }
  12215. } break;
  12216. case GGML_OP_SOFT_MAX:
  12217. {
  12218. // necessary for llama
  12219. if (src0->grad) {
  12220. src0->grad =
  12221. ggml_add_or_set(ctx, src0->grad,
  12222. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12223. zero_table);
  12224. }
  12225. } break;
  12226. case GGML_OP_SOFT_MAX_BACK:
  12227. {
  12228. GGML_ASSERT(false); // TODO: not implemented
  12229. } break;
  12230. case GGML_OP_ROPE:
  12231. {
  12232. // necessary for llama
  12233. if (src0->grad) {
  12234. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12235. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12236. const int mode = ((int32_t *) tensor->op_params)[2];
  12237. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12238. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12239. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12240. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12241. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12242. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12243. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12244. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12245. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12246. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12247. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12248. src0->grad = ggml_add_or_set(ctx,
  12249. src0->grad,
  12250. ggml_rope_back(ctx,
  12251. tensor->grad,
  12252. src1,
  12253. n_dims,
  12254. mode,
  12255. n_ctx,
  12256. n_orig_ctx,
  12257. freq_base,
  12258. freq_scale,
  12259. ext_factor,
  12260. attn_factor,
  12261. beta_fast,
  12262. beta_slow,
  12263. xpos_base,
  12264. xpos_down),
  12265. zero_table);
  12266. }
  12267. } break;
  12268. case GGML_OP_ROPE_BACK:
  12269. {
  12270. if (src0->grad) {
  12271. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12272. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12273. const int mode = ((int32_t *) tensor->op_params)[2];
  12274. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12275. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12276. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12277. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12278. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12279. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12280. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12281. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12282. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12283. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12284. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12285. src0->grad = ggml_add_or_set(ctx,
  12286. src0->grad,
  12287. ggml_rope_impl(ctx,
  12288. tensor->grad,
  12289. src1,
  12290. n_dims,
  12291. mode,
  12292. n_ctx,
  12293. n_orig_ctx,
  12294. freq_base,
  12295. freq_scale,
  12296. ext_factor,
  12297. attn_factor,
  12298. beta_fast,
  12299. beta_slow,
  12300. xpos_base,
  12301. xpos_down,
  12302. false),
  12303. zero_table);
  12304. }
  12305. } break;
  12306. case GGML_OP_ALIBI:
  12307. {
  12308. GGML_ASSERT(false); // TODO: not implemented
  12309. } break;
  12310. case GGML_OP_CLAMP:
  12311. {
  12312. GGML_ASSERT(false); // TODO: not implemented
  12313. } break;
  12314. case GGML_OP_CONV_TRANSPOSE_1D:
  12315. {
  12316. GGML_ASSERT(false); // TODO: not implemented
  12317. } break;
  12318. case GGML_OP_IM2COL:
  12319. {
  12320. GGML_ASSERT(false); // TODO: not implemented
  12321. } break;
  12322. case GGML_OP_CONV_TRANSPOSE_2D:
  12323. {
  12324. GGML_ASSERT(false); // TODO: not implemented
  12325. } break;
  12326. case GGML_OP_POOL_1D:
  12327. {
  12328. GGML_ASSERT(false); // TODO: not implemented
  12329. } break;
  12330. case GGML_OP_POOL_2D:
  12331. {
  12332. GGML_ASSERT(false); // TODO: not implemented
  12333. } break;
  12334. case GGML_OP_UPSCALE:
  12335. {
  12336. GGML_ASSERT(false); // TODO: not implemented
  12337. } break;
  12338. case GGML_OP_FLASH_ATTN:
  12339. {
  12340. struct ggml_tensor * flash_grad = NULL;
  12341. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12342. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12343. GGML_ASSERT(t == 0 || t == 1);
  12344. bool masked = t != 0;
  12345. flash_grad =
  12346. ggml_flash_attn_back(ctx,
  12347. src0,
  12348. src1,
  12349. tensor->src[2],
  12350. tensor->grad,
  12351. masked);
  12352. }
  12353. struct ggml_tensor * src2 = tensor->src[2];
  12354. const int64_t elem_q = ggml_nelements(src0);
  12355. const int64_t elem_k = ggml_nelements(src1);
  12356. const int64_t elem_v = ggml_nelements(src2);
  12357. enum ggml_type result_type = flash_grad->type;
  12358. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12359. const size_t tsize = ggml_type_size(result_type);
  12360. const size_t offs_q = 0;
  12361. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12362. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12363. if (src0->grad) {
  12364. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12365. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12366. src0->grad = ggml_add_or_set(ctx,
  12367. src0->grad,
  12368. grad_q,
  12369. zero_table);
  12370. }
  12371. if (src1->grad) {
  12372. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12373. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12374. src1->grad = ggml_add_or_set(ctx,
  12375. src1->grad,
  12376. grad_k,
  12377. zero_table);
  12378. }
  12379. if (src2->grad) {
  12380. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12381. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12382. src2->grad = ggml_add_or_set(ctx,
  12383. src2->grad,
  12384. grad_v,
  12385. zero_table);
  12386. }
  12387. } break;
  12388. case GGML_OP_FLASH_FF:
  12389. {
  12390. GGML_ASSERT(false); // not supported
  12391. } break;
  12392. case GGML_OP_FLASH_ATTN_BACK:
  12393. {
  12394. GGML_ASSERT(false); // not supported
  12395. } break;
  12396. case GGML_OP_WIN_PART:
  12397. case GGML_OP_WIN_UNPART:
  12398. case GGML_OP_UNARY:
  12399. {
  12400. switch (ggml_get_unary_op(tensor)) {
  12401. case GGML_UNARY_OP_ABS:
  12402. {
  12403. if (src0->grad) {
  12404. src0->grad =
  12405. ggml_add_or_set(ctx,
  12406. src0->grad,
  12407. ggml_mul(ctx,
  12408. ggml_sgn(ctx, src0),
  12409. tensor->grad),
  12410. zero_table);
  12411. }
  12412. } break;
  12413. case GGML_UNARY_OP_SGN:
  12414. {
  12415. if (src0->grad) {
  12416. // noop
  12417. }
  12418. } break;
  12419. case GGML_UNARY_OP_NEG:
  12420. {
  12421. if (src0->grad) {
  12422. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12423. }
  12424. } break;
  12425. case GGML_UNARY_OP_STEP:
  12426. {
  12427. if (src0->grad) {
  12428. // noop
  12429. }
  12430. } break;
  12431. case GGML_UNARY_OP_TANH:
  12432. {
  12433. GGML_ASSERT(false); // TODO: not implemented
  12434. } break;
  12435. case GGML_UNARY_OP_ELU:
  12436. {
  12437. GGML_ASSERT(false); // TODO: not implemented
  12438. } break;
  12439. case GGML_UNARY_OP_RELU:
  12440. {
  12441. if (src0->grad) {
  12442. src0->grad = ggml_add_or_set(ctx,
  12443. src0->grad,
  12444. ggml_mul(ctx,
  12445. ggml_step(ctx, src0),
  12446. tensor->grad),
  12447. zero_table);
  12448. }
  12449. } break;
  12450. case GGML_UNARY_OP_GELU:
  12451. {
  12452. GGML_ASSERT(false); // TODO: not implemented
  12453. } break;
  12454. case GGML_UNARY_OP_GELU_QUICK:
  12455. {
  12456. GGML_ASSERT(false); // TODO: not implemented
  12457. } break;
  12458. case GGML_UNARY_OP_SILU:
  12459. {
  12460. // necessary for llama
  12461. if (src0->grad) {
  12462. src0->grad = ggml_add_or_set(ctx,
  12463. src0->grad,
  12464. ggml_silu_back(ctx, src0, tensor->grad),
  12465. zero_table);
  12466. }
  12467. } break;
  12468. default:
  12469. GGML_ASSERT(false);
  12470. }
  12471. } break;
  12472. case GGML_OP_GET_REL_POS:
  12473. case GGML_OP_ADD_REL_POS:
  12474. case GGML_OP_MAP_UNARY:
  12475. case GGML_OP_MAP_BINARY:
  12476. case GGML_OP_MAP_CUSTOM1_F32:
  12477. case GGML_OP_MAP_CUSTOM2_F32:
  12478. case GGML_OP_MAP_CUSTOM3_F32:
  12479. case GGML_OP_MAP_CUSTOM1:
  12480. case GGML_OP_MAP_CUSTOM2:
  12481. case GGML_OP_MAP_CUSTOM3:
  12482. {
  12483. GGML_ASSERT(false); // not supported
  12484. } break;
  12485. case GGML_OP_CROSS_ENTROPY_LOSS:
  12486. {
  12487. if (src0->grad) {
  12488. src0->grad = ggml_add_or_set(ctx,
  12489. src0->grad,
  12490. ggml_cross_entropy_loss_back(ctx,
  12491. src0,
  12492. src1,
  12493. tensor->grad),
  12494. zero_table);
  12495. }
  12496. } break;
  12497. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12498. {
  12499. GGML_ASSERT(false); // not supported
  12500. } break;
  12501. case GGML_OP_NONE:
  12502. {
  12503. // nop
  12504. } break;
  12505. case GGML_OP_COUNT:
  12506. {
  12507. GGML_ASSERT(false);
  12508. } break;
  12509. }
  12510. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12511. if (tensor->src[i] && tensor->src[i]->grad) {
  12512. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  12513. }
  12514. }
  12515. }
  12516. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12517. if (node->grad == NULL) {
  12518. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12519. // it can also happen during forward pass, if the user performs computations with constants
  12520. if (node->op != GGML_OP_NONE) {
  12521. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12522. }
  12523. }
  12524. // check if already visited
  12525. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  12526. return;
  12527. }
  12528. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12529. const int k =
  12530. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  12531. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  12532. /* unknown order, just fall back to using i*/ i;
  12533. if (node->src[k]) {
  12534. ggml_visit_parents(cgraph, node->src[k]);
  12535. }
  12536. }
  12537. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12538. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12539. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  12540. if (strlen(node->name) == 0) {
  12541. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12542. }
  12543. cgraph->leafs[cgraph->n_leafs] = node;
  12544. cgraph->n_leafs++;
  12545. } else {
  12546. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  12547. if (strlen(node->name) == 0) {
  12548. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12549. }
  12550. cgraph->nodes[cgraph->n_nodes] = node;
  12551. if (cgraph->grads) {
  12552. cgraph->grads[cgraph->n_nodes] = node->grad;
  12553. }
  12554. cgraph->n_nodes++;
  12555. }
  12556. }
  12557. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12558. if (!expand) {
  12559. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  12560. ggml_graph_clear(cgraph);
  12561. }
  12562. const int n0 = cgraph->n_nodes;
  12563. UNUSED(n0);
  12564. ggml_visit_parents(cgraph, tensor);
  12565. const int n_new = cgraph->n_nodes - n0;
  12566. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12567. if (n_new > 0) {
  12568. // the last added node should always be starting point
  12569. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12570. }
  12571. }
  12572. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12573. ggml_build_forward_impl(cgraph, tensor, true);
  12574. }
  12575. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  12576. GGML_ASSERT(gf->n_nodes > 0);
  12577. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12578. if (keep) {
  12579. for (int i = 0; i < gf->n_nodes; i++) {
  12580. struct ggml_tensor * node = gf->nodes[i];
  12581. if (node->grad) {
  12582. node->grad = ggml_dup_tensor(ctx, node);
  12583. gf->grads[i] = node->grad;
  12584. }
  12585. }
  12586. }
  12587. // remember original gradients which start with zero values
  12588. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  12589. for (int i = 0; i < gf->n_nodes; i++) {
  12590. if (gf->grads[i]) {
  12591. ggml_hash_insert(zero_table, gf->grads[i]);
  12592. }
  12593. }
  12594. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12595. struct ggml_tensor * node = gf->nodes[i];
  12596. // inplace operations to add gradients are not created by ggml_compute_backward
  12597. // use allocator to automatically make inplace operations
  12598. if (node->grad) {
  12599. ggml_compute_backward(ctx, node, zero_table);
  12600. }
  12601. }
  12602. for (int i = 0; i < gf->n_nodes; i++) {
  12603. struct ggml_tensor * node = gf->nodes[i];
  12604. if (node->is_param) {
  12605. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12606. ggml_build_forward_expand(gb, node->grad);
  12607. }
  12608. }
  12609. ggml_hash_set_free(zero_table);
  12610. }
  12611. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  12612. size_t nbytes = sizeof(struct ggml_cgraph);
  12613. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  12614. if (grads) {
  12615. nbytes += size * sizeof(struct ggml_tensor *); // grads
  12616. }
  12617. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  12618. return nbytes;
  12619. }
  12620. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  12621. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  12622. }
  12623. size_t ggml_graph_overhead(void) {
  12624. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  12625. }
  12626. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  12627. const size_t obj_size = ggml_graph_nbytes(size, grads);
  12628. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12629. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12630. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  12631. size_t hash_size = ggml_hash_size(size * 2);
  12632. struct ggml_tensor ** nodes_ptr = data_start;
  12633. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  12634. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  12635. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  12636. // check that we allocated the correct amount of memory
  12637. assert(obj_size == (size_t) (
  12638. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  12639. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  12640. *cgraph = (struct ggml_cgraph) {
  12641. /*.size =*/ size,
  12642. /*.n_nodes =*/ 0,
  12643. /*.n_leafs =*/ 0,
  12644. /*.nodes =*/ nodes_ptr,
  12645. /*.grads =*/ grads_ptr,
  12646. /*.leafs =*/ leafs_ptr,
  12647. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  12648. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  12649. /*.perf_runs =*/ 0,
  12650. /*.perf_cycles =*/ 0,
  12651. /*.perf_time_us =*/ 0,
  12652. };
  12653. return cgraph;
  12654. }
  12655. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  12656. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  12657. }
  12658. struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgraph * cgraph0, int i0, int i1) {
  12659. const size_t obj_size = sizeof(struct ggml_cgraph);
  12660. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12661. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12662. *cgraph = (struct ggml_cgraph) {
  12663. /*.size =*/ 0,
  12664. /*.n_nodes =*/ i1 - i0,
  12665. /*.n_leafs =*/ 0,
  12666. /*.nodes =*/ cgraph0->nodes + i0,
  12667. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  12668. /*.leafs =*/ NULL,
  12669. /*.hash_table =*/ { 0, NULL },
  12670. /*.order =*/ cgraph0->order,
  12671. /*.perf_runs =*/ 0,
  12672. /*.perf_cycles =*/ 0,
  12673. /*.perf_time_us =*/ 0,
  12674. };
  12675. return cgraph;
  12676. }
  12677. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  12678. GGML_ASSERT(dst->size >= src->n_leafs);
  12679. GGML_ASSERT(dst->size >= src->n_nodes);
  12680. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  12681. dst->n_leafs = src->n_leafs;
  12682. dst->n_nodes = src->n_nodes;
  12683. dst->order = src->order;
  12684. for (int i = 0; i < src->n_leafs; ++i) {
  12685. dst->leafs[i] = src->leafs[i];
  12686. }
  12687. for (int i = 0; i < src->n_nodes; ++i) {
  12688. dst->nodes[i] = src->nodes[i];
  12689. }
  12690. if (src->grads) {
  12691. GGML_ASSERT(dst->grads != NULL);
  12692. for (int i = 0; i < src->n_nodes; ++i) {
  12693. dst->grads[i] = src->grads[i];
  12694. }
  12695. }
  12696. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  12697. if (src->visited_hash_table.keys[i]) {
  12698. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  12699. }
  12700. }
  12701. }
  12702. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12703. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  12704. ggml_graph_cpy(cgraph, result);
  12705. return result;
  12706. }
  12707. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12708. GGML_ASSERT(cgraph->grads != NULL);
  12709. for (int i = 0; i < cgraph->n_nodes; i++) {
  12710. struct ggml_tensor * grad = cgraph->grads[i];
  12711. if (grad) {
  12712. ggml_set_zero(grad);
  12713. }
  12714. }
  12715. }
  12716. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  12717. cgraph->n_leafs = 0;
  12718. cgraph->n_nodes = 0;
  12719. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  12720. }
  12721. //
  12722. // thread data
  12723. //
  12724. // synchronization is done via busy loops
  12725. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12726. //
  12727. #ifdef __APPLE__
  12728. //#include <os/lock.h>
  12729. //
  12730. //typedef os_unfair_lock ggml_lock_t;
  12731. //
  12732. //#define ggml_lock_init(x) UNUSED(x)
  12733. //#define ggml_lock_destroy(x) UNUSED(x)
  12734. //#define ggml_lock_lock os_unfair_lock_lock
  12735. //#define ggml_lock_unlock os_unfair_lock_unlock
  12736. //
  12737. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12738. typedef int ggml_lock_t;
  12739. #define ggml_lock_init(x) UNUSED(x)
  12740. #define ggml_lock_destroy(x) UNUSED(x)
  12741. #define ggml_lock_lock(x) UNUSED(x)
  12742. #define ggml_lock_unlock(x) UNUSED(x)
  12743. #define GGML_LOCK_INITIALIZER 0
  12744. typedef pthread_t ggml_thread_t;
  12745. #define ggml_thread_create pthread_create
  12746. #define ggml_thread_join pthread_join
  12747. #else
  12748. //typedef pthread_spinlock_t ggml_lock_t;
  12749. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12750. //#define ggml_lock_destroy pthread_spin_destroy
  12751. //#define ggml_lock_lock pthread_spin_lock
  12752. //#define ggml_lock_unlock pthread_spin_unlock
  12753. typedef int ggml_lock_t;
  12754. #define ggml_lock_init(x) UNUSED(x)
  12755. #define ggml_lock_destroy(x) UNUSED(x)
  12756. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12757. #define ggml_lock_lock(x) _mm_pause()
  12758. #else
  12759. #define ggml_lock_lock(x) UNUSED(x)
  12760. #endif
  12761. #define ggml_lock_unlock(x) UNUSED(x)
  12762. #define GGML_LOCK_INITIALIZER 0
  12763. typedef pthread_t ggml_thread_t;
  12764. #define ggml_thread_create pthread_create
  12765. #define ggml_thread_join pthread_join
  12766. #endif
  12767. // Android's libc implementation "bionic" does not support setting affinity
  12768. #if defined(__linux__) && !defined(__BIONIC__)
  12769. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  12770. if (!ggml_is_numa()) {
  12771. return;
  12772. }
  12773. // run thread on node_num thread_n / (threads per node)
  12774. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  12775. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  12776. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  12777. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  12778. CPU_ZERO_S(setsize, cpus);
  12779. for (size_t i = 0; i < node->n_cpus; ++i) {
  12780. CPU_SET_S(node->cpus[i], setsize, cpus);
  12781. }
  12782. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  12783. if (rv) {
  12784. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  12785. strerror(rv));
  12786. }
  12787. CPU_FREE(cpus);
  12788. }
  12789. static void clear_numa_thread_affinity(void) {
  12790. if (!ggml_is_numa()) {
  12791. return;
  12792. }
  12793. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  12794. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  12795. CPU_ZERO_S(setsize, cpus);
  12796. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  12797. CPU_SET_S(i, setsize, cpus);
  12798. }
  12799. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  12800. if (rv) {
  12801. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  12802. strerror(rv));
  12803. }
  12804. CPU_FREE(cpus);
  12805. }
  12806. #else
  12807. // TODO: Windows etc.
  12808. // (the linux implementation may also work on BSD, someone should test)
  12809. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  12810. static void clear_numa_thread_affinity(void) {}
  12811. #endif
  12812. struct ggml_compute_state_shared {
  12813. const struct ggml_cgraph * cgraph;
  12814. const struct ggml_cplan * cplan;
  12815. int64_t perf_node_start_cycles;
  12816. int64_t perf_node_start_time_us;
  12817. const int n_threads;
  12818. // synchronization primitives
  12819. atomic_int n_active; // num active threads
  12820. atomic_int node_n; // active graph node
  12821. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  12822. void * abort_callback_data;
  12823. };
  12824. struct ggml_compute_state {
  12825. ggml_thread_t thrd;
  12826. int ith;
  12827. struct ggml_compute_state_shared * shared;
  12828. };
  12829. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  12830. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  12831. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  12832. node->perf_runs++;
  12833. node->perf_cycles += cycles_cur;
  12834. node->perf_time_us += time_us_cur;
  12835. }
  12836. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  12837. int n_tasks = 0;
  12838. switch (node->op) {
  12839. case GGML_OP_CPY:
  12840. case GGML_OP_DUP:
  12841. case GGML_OP_ADD:
  12842. case GGML_OP_ADD1:
  12843. case GGML_OP_ACC:
  12844. {
  12845. n_tasks = n_threads;
  12846. } break;
  12847. case GGML_OP_SUB:
  12848. case GGML_OP_DIV:
  12849. case GGML_OP_SQR:
  12850. case GGML_OP_SQRT:
  12851. case GGML_OP_LOG:
  12852. case GGML_OP_SUM:
  12853. case GGML_OP_SUM_ROWS:
  12854. case GGML_OP_MEAN:
  12855. case GGML_OP_ARGMAX:
  12856. case GGML_OP_REPEAT:
  12857. case GGML_OP_REPEAT_BACK:
  12858. {
  12859. n_tasks = 1;
  12860. } break;
  12861. case GGML_OP_UNARY:
  12862. switch (ggml_get_unary_op(node)) {
  12863. case GGML_UNARY_OP_ABS:
  12864. case GGML_UNARY_OP_SGN:
  12865. case GGML_UNARY_OP_NEG:
  12866. case GGML_UNARY_OP_STEP:
  12867. case GGML_UNARY_OP_TANH:
  12868. case GGML_UNARY_OP_ELU:
  12869. case GGML_UNARY_OP_RELU:
  12870. case GGML_UNARY_OP_LEAKY:
  12871. {
  12872. n_tasks = 1;
  12873. } break;
  12874. case GGML_UNARY_OP_GELU:
  12875. case GGML_UNARY_OP_GELU_QUICK:
  12876. case GGML_UNARY_OP_SILU:
  12877. {
  12878. n_tasks = n_threads;
  12879. } break;
  12880. }
  12881. break;
  12882. case GGML_OP_SILU_BACK:
  12883. case GGML_OP_MUL:
  12884. case GGML_OP_NORM:
  12885. case GGML_OP_RMS_NORM:
  12886. case GGML_OP_RMS_NORM_BACK:
  12887. case GGML_OP_GROUP_NORM:
  12888. case GGML_OP_CONCAT:
  12889. {
  12890. n_tasks = n_threads;
  12891. } break;
  12892. case GGML_OP_MUL_MAT:
  12893. {
  12894. n_tasks = n_threads;
  12895. // TODO: use different scheduling for different matrix sizes
  12896. //const int nr0 = ggml_nrows(node->src[0]);
  12897. //const int nr1 = ggml_nrows(node->src[1]);
  12898. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  12899. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  12900. #if defined(GGML_USE_CUBLAS)
  12901. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  12902. n_tasks = 1; // TODO: this actually is doing nothing
  12903. // the threads are still spinning
  12904. }
  12905. #elif defined(GGML_USE_CLBLAST)
  12906. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  12907. n_tasks = 1; // TODO: this actually is doing nothing
  12908. // the threads are still spinning
  12909. }
  12910. #endif
  12911. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12912. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  12913. n_tasks = 1; // TODO: this actually is doing nothing
  12914. // the threads are still spinning
  12915. }
  12916. #endif
  12917. } break;
  12918. case GGML_OP_OUT_PROD:
  12919. {
  12920. n_tasks = n_threads;
  12921. } break;
  12922. case GGML_OP_SCALE:
  12923. case GGML_OP_SET:
  12924. case GGML_OP_CONT:
  12925. case GGML_OP_RESHAPE:
  12926. case GGML_OP_VIEW:
  12927. case GGML_OP_PERMUTE:
  12928. case GGML_OP_TRANSPOSE:
  12929. case GGML_OP_GET_ROWS:
  12930. case GGML_OP_GET_ROWS_BACK:
  12931. case GGML_OP_DIAG:
  12932. {
  12933. n_tasks = 1;
  12934. } break;
  12935. case GGML_OP_DIAG_MASK_ZERO:
  12936. case GGML_OP_DIAG_MASK_INF:
  12937. case GGML_OP_SOFT_MAX:
  12938. case GGML_OP_SOFT_MAX_BACK:
  12939. case GGML_OP_ROPE:
  12940. case GGML_OP_ROPE_BACK:
  12941. case GGML_OP_ADD_REL_POS:
  12942. {
  12943. n_tasks = n_threads;
  12944. } break;
  12945. case GGML_OP_ALIBI:
  12946. {
  12947. n_tasks = 1; //TODO
  12948. } break;
  12949. case GGML_OP_CLAMP:
  12950. {
  12951. n_tasks = 1; //TODO
  12952. } break;
  12953. case GGML_OP_CONV_TRANSPOSE_1D:
  12954. {
  12955. n_tasks = n_threads;
  12956. } break;
  12957. case GGML_OP_IM2COL:
  12958. {
  12959. n_tasks = n_threads;
  12960. } break;
  12961. case GGML_OP_CONV_TRANSPOSE_2D:
  12962. {
  12963. n_tasks = n_threads;
  12964. } break;
  12965. case GGML_OP_POOL_1D:
  12966. case GGML_OP_POOL_2D:
  12967. {
  12968. n_tasks = 1;
  12969. } break;
  12970. case GGML_OP_UPSCALE:
  12971. {
  12972. n_tasks = n_threads;
  12973. } break;
  12974. case GGML_OP_FLASH_ATTN:
  12975. {
  12976. n_tasks = n_threads;
  12977. } break;
  12978. case GGML_OP_FLASH_FF:
  12979. {
  12980. n_tasks = n_threads;
  12981. } break;
  12982. case GGML_OP_FLASH_ATTN_BACK:
  12983. {
  12984. n_tasks = n_threads;
  12985. } break;
  12986. case GGML_OP_WIN_PART:
  12987. case GGML_OP_WIN_UNPART:
  12988. case GGML_OP_GET_REL_POS:
  12989. case GGML_OP_MAP_UNARY:
  12990. case GGML_OP_MAP_BINARY:
  12991. case GGML_OP_MAP_CUSTOM1_F32:
  12992. case GGML_OP_MAP_CUSTOM2_F32:
  12993. case GGML_OP_MAP_CUSTOM3_F32:
  12994. {
  12995. n_tasks = 1;
  12996. } break;
  12997. case GGML_OP_MAP_CUSTOM1:
  12998. {
  12999. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13000. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13001. n_tasks = n_threads;
  13002. } else {
  13003. n_tasks = MIN(p->n_tasks, n_threads);
  13004. }
  13005. } break;
  13006. case GGML_OP_MAP_CUSTOM2:
  13007. {
  13008. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13009. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13010. n_tasks = n_threads;
  13011. } else {
  13012. n_tasks = MIN(p->n_tasks, n_threads);
  13013. }
  13014. } break;
  13015. case GGML_OP_MAP_CUSTOM3:
  13016. {
  13017. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13018. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13019. n_tasks = n_threads;
  13020. } else {
  13021. n_tasks = MIN(p->n_tasks, n_threads);
  13022. }
  13023. } break;
  13024. case GGML_OP_CROSS_ENTROPY_LOSS:
  13025. {
  13026. n_tasks = n_threads;
  13027. } break;
  13028. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13029. {
  13030. n_tasks = n_threads;
  13031. } break;
  13032. case GGML_OP_NONE:
  13033. {
  13034. n_tasks = 1;
  13035. } break;
  13036. case GGML_OP_COUNT:
  13037. {
  13038. GGML_ASSERT(false);
  13039. } break;
  13040. default:
  13041. {
  13042. printf("%s: op %s not implemented\n", __func__, ggml_op_name(node->op));
  13043. GGML_ASSERT(false);
  13044. } break;
  13045. }
  13046. assert(n_tasks > 0);
  13047. return n_tasks;
  13048. }
  13049. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13050. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13051. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13052. const struct ggml_cplan * cplan = state->shared->cplan;
  13053. const int n_threads = state->shared->n_threads;
  13054. set_numa_thread_affinity(state->ith, n_threads);
  13055. int node_n = -1;
  13056. while (true) {
  13057. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13058. state->shared->node_n += 1;
  13059. return (thread_ret_t) GGML_EXIT_ABORTED;
  13060. }
  13061. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13062. // all other threads are finished and spinning
  13063. // do finalize and init here so we don't have synchronize again
  13064. struct ggml_compute_params params = {
  13065. /*.type =*/ GGML_TASK_FINALIZE,
  13066. /*.ith =*/ 0,
  13067. /*.nth =*/ 0,
  13068. /*.wsize =*/ cplan->work_size,
  13069. /*.wdata =*/ cplan->work_data,
  13070. };
  13071. if (node_n != -1) {
  13072. /* FINALIZE */
  13073. struct ggml_tensor * node = cgraph->nodes[node_n];
  13074. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13075. params.nth = ggml_get_n_tasks(node, n_threads);
  13076. ggml_compute_forward(&params, node);
  13077. }
  13078. ggml_graph_compute_perf_stats_node(node, state->shared);
  13079. }
  13080. // distribute new work or execute it direct if 1T
  13081. while (++node_n < cgraph->n_nodes) {
  13082. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13083. struct ggml_tensor * node = cgraph->nodes[node_n];
  13084. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13085. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13086. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13087. params.nth = n_tasks;
  13088. /* INIT */
  13089. if (GGML_OP_HAS_INIT[node->op]) {
  13090. params.type = GGML_TASK_INIT;
  13091. ggml_compute_forward(&params, node);
  13092. }
  13093. if (n_tasks == 1) {
  13094. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13095. // they do something more efficient than spinning (?)
  13096. params.type = GGML_TASK_COMPUTE;
  13097. ggml_compute_forward(&params, node);
  13098. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13099. params.type = GGML_TASK_FINALIZE;
  13100. ggml_compute_forward(&params, node);
  13101. }
  13102. ggml_graph_compute_perf_stats_node(node, state->shared);
  13103. } else {
  13104. break;
  13105. }
  13106. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13107. break;
  13108. }
  13109. }
  13110. atomic_store(&state->shared->n_active, n_threads);
  13111. atomic_store(&state->shared->node_n, node_n);
  13112. } else {
  13113. // wait for other threads to finish
  13114. const int last = node_n;
  13115. while (true) {
  13116. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13117. // depending on the workload and the operating system.
  13118. // since it is not clear what is the best approach, it should potentially become user-configurable
  13119. // ref: https://github.com/ggerganov/ggml/issues/291
  13120. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13121. sched_yield();
  13122. #endif
  13123. node_n = atomic_load(&state->shared->node_n);
  13124. if (node_n != last) break;
  13125. };
  13126. }
  13127. // check if we should stop
  13128. if (node_n >= cgraph->n_nodes) break;
  13129. /* COMPUTE */
  13130. struct ggml_tensor * node = cgraph->nodes[node_n];
  13131. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13132. struct ggml_compute_params params = {
  13133. /*.type =*/ GGML_TASK_COMPUTE,
  13134. /*.ith =*/ state->ith,
  13135. /*.nth =*/ n_tasks,
  13136. /*.wsize =*/ cplan->work_size,
  13137. /*.wdata =*/ cplan->work_data,
  13138. };
  13139. if (state->ith < n_tasks) {
  13140. ggml_compute_forward(&params, node);
  13141. }
  13142. }
  13143. return GGML_EXIT_SUCCESS;
  13144. }
  13145. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13146. if (n_threads <= 0) {
  13147. n_threads = GGML_DEFAULT_N_THREADS;
  13148. }
  13149. size_t work_size = 0;
  13150. struct ggml_cplan cplan;
  13151. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13152. // thread scheduling for the different operations + work buffer size estimation
  13153. for (int i = 0; i < cgraph->n_nodes; i++) {
  13154. int n_tasks = 1;
  13155. struct ggml_tensor * node = cgraph->nodes[i];
  13156. size_t cur = 0;
  13157. switch (node->op) {
  13158. case GGML_OP_CPY:
  13159. case GGML_OP_DUP:
  13160. {
  13161. n_tasks = n_threads;
  13162. if (ggml_is_quantized(node->type)) {
  13163. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13164. }
  13165. } break;
  13166. case GGML_OP_ADD:
  13167. case GGML_OP_ADD1:
  13168. {
  13169. n_tasks = n_threads;
  13170. if (ggml_is_quantized(node->src[0]->type)) {
  13171. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13172. }
  13173. } break;
  13174. case GGML_OP_ACC:
  13175. {
  13176. n_tasks = n_threads;
  13177. if (ggml_is_quantized(node->src[0]->type)) {
  13178. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13179. }
  13180. } break;
  13181. case GGML_OP_MUL_MAT:
  13182. {
  13183. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13184. #if defined(GGML_USE_CLBLAST)
  13185. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13186. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13187. } else
  13188. #endif
  13189. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13190. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13191. if (node->src[0]->type != GGML_TYPE_F32) {
  13192. // here we need memory just for single 2D matrix from src0
  13193. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13194. }
  13195. } else
  13196. #endif
  13197. if (node->src[1]->type != vec_dot_type) {
  13198. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13199. }
  13200. } break;
  13201. case GGML_OP_OUT_PROD:
  13202. {
  13203. n_tasks = n_threads;
  13204. if (ggml_is_quantized(node->src[0]->type)) {
  13205. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13206. }
  13207. } break;
  13208. case GGML_OP_CONV_TRANSPOSE_1D:
  13209. {
  13210. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13211. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13212. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13213. const int64_t ne00 = node->src[0]->ne[0]; // K
  13214. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13215. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13216. const int64_t ne10 = node->src[1]->ne[0]; // L
  13217. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13218. if (node->src[0]->type == GGML_TYPE_F16 &&
  13219. node->src[1]->type == GGML_TYPE_F32) {
  13220. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13221. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13222. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13223. node->src[1]->type == GGML_TYPE_F32) {
  13224. cur += sizeof(float)*ne00*ne01*ne02;
  13225. cur += sizeof(float)*ne10*ne11;
  13226. } else {
  13227. GGML_ASSERT(false);
  13228. }
  13229. } break;
  13230. case GGML_OP_IM2COL:
  13231. {
  13232. n_tasks = n_threads;
  13233. } break;
  13234. case GGML_OP_CONV_TRANSPOSE_2D:
  13235. {
  13236. const int64_t ne00 = node->src[0]->ne[0]; // W
  13237. const int64_t ne01 = node->src[0]->ne[1]; // H
  13238. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13239. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13240. const int64_t ne10 = node->src[1]->ne[0]; // W
  13241. const int64_t ne11 = node->src[1]->ne[1]; // H
  13242. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13243. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13244. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13245. } break;
  13246. case GGML_OP_FLASH_ATTN:
  13247. {
  13248. n_tasks = n_threads;
  13249. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13250. if (node->src[1]->type == GGML_TYPE_F32) {
  13251. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13252. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13253. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13254. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13255. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13256. }
  13257. } break;
  13258. case GGML_OP_FLASH_FF:
  13259. {
  13260. n_tasks = n_threads;
  13261. if (node->src[1]->type == GGML_TYPE_F32) {
  13262. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13263. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13264. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13265. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13266. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13267. }
  13268. } break;
  13269. case GGML_OP_FLASH_ATTN_BACK:
  13270. {
  13271. n_tasks = n_threads;
  13272. const int64_t D = node->src[0]->ne[0];
  13273. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13274. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13275. if (node->src[1]->type == GGML_TYPE_F32) {
  13276. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13277. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13278. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13279. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13280. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13281. }
  13282. } break;
  13283. case GGML_OP_CROSS_ENTROPY_LOSS:
  13284. {
  13285. n_tasks = n_threads;
  13286. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13287. } break;
  13288. case GGML_OP_COUNT:
  13289. {
  13290. GGML_ASSERT(false);
  13291. } break;
  13292. default:
  13293. break;
  13294. }
  13295. work_size = MAX(work_size, cur);
  13296. }
  13297. if (work_size > 0) {
  13298. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13299. }
  13300. cplan.n_threads = n_threads;
  13301. cplan.work_size = work_size;
  13302. cplan.work_data = NULL;
  13303. return cplan;
  13304. }
  13305. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13306. {
  13307. GGML_ASSERT(cplan);
  13308. GGML_ASSERT(cplan->n_threads > 0);
  13309. if (cplan->work_size > 0) {
  13310. GGML_ASSERT(cplan->work_data);
  13311. }
  13312. }
  13313. const int n_threads = cplan->n_threads;
  13314. struct ggml_compute_state_shared state_shared = {
  13315. /*.cgraph =*/ cgraph,
  13316. /*.cgraph_plan =*/ cplan,
  13317. /*.perf_node_start_cycles =*/ 0,
  13318. /*.perf_node_start_time_us =*/ 0,
  13319. /*.n_threads =*/ n_threads,
  13320. /*.n_active =*/ n_threads,
  13321. /*.node_n =*/ -1,
  13322. /*.abort_callback =*/ NULL,
  13323. /*.abort_callback_data =*/ NULL,
  13324. };
  13325. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13326. // create thread pool
  13327. if (n_threads > 1) {
  13328. for (int j = 1; j < n_threads; ++j) {
  13329. workers[j] = (struct ggml_compute_state) {
  13330. .thrd = 0,
  13331. .ith = j,
  13332. .shared = &state_shared,
  13333. };
  13334. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13335. GGML_ASSERT(rc == 0);
  13336. UNUSED(rc);
  13337. }
  13338. }
  13339. workers[0].ith = 0;
  13340. workers[0].shared = &state_shared;
  13341. const int64_t perf_start_cycles = ggml_perf_cycles();
  13342. const int64_t perf_start_time_us = ggml_perf_time_us();
  13343. // this is a work thread too
  13344. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13345. // don't leave affinity set on the main thread
  13346. clear_numa_thread_affinity();
  13347. // join or kill thread pool
  13348. if (n_threads > 1) {
  13349. for (int j = 1; j < n_threads; j++) {
  13350. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13351. GGML_ASSERT(rc == 0);
  13352. }
  13353. }
  13354. // performance stats (graph)
  13355. {
  13356. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13357. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13358. cgraph->perf_runs++;
  13359. cgraph->perf_cycles += perf_cycles_cur;
  13360. cgraph->perf_time_us += perf_time_us_cur;
  13361. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13362. __func__, cgraph->perf_runs,
  13363. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13364. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13365. (double) perf_time_us_cur / 1000.0,
  13366. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13367. }
  13368. return compute_status;
  13369. }
  13370. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13371. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13372. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13373. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13374. ggml_graph_compute(cgraph, &cplan);
  13375. }
  13376. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13377. for (int i = 0; i < cgraph->n_leafs; i++) {
  13378. struct ggml_tensor * leaf = cgraph->leafs[i];
  13379. if (strcmp(leaf->name, name) == 0) {
  13380. return leaf;
  13381. }
  13382. }
  13383. for (int i = 0; i < cgraph->n_nodes; i++) {
  13384. struct ggml_tensor * node = cgraph->nodes[i];
  13385. if (strcmp(node->name, name) == 0) {
  13386. return node;
  13387. }
  13388. }
  13389. return NULL;
  13390. }
  13391. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13392. const int64_t * ne = tensor->ne;
  13393. const size_t * nb = tensor->nb;
  13394. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13395. ggml_type_name(tensor->type),
  13396. ggml_op_name (tensor->op),
  13397. tensor->n_dims,
  13398. ne[0], ne[1], ne[2], ne[3],
  13399. nb[0], nb[1], nb[2], nb[3],
  13400. tensor->data,
  13401. tensor->name);
  13402. }
  13403. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13404. const int64_t * ne = tensor->ne;
  13405. const size_t * nb = tensor->nb;
  13406. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13407. arg,
  13408. ggml_type_name(tensor->type),
  13409. ggml_op_name (tensor->op),
  13410. tensor->n_dims,
  13411. ne[0], ne[1], ne[2], ne[3],
  13412. nb[0], nb[1], nb[2], nb[3],
  13413. tensor->data,
  13414. tensor->name);
  13415. }
  13416. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13417. uint64_t size_eval = 0;
  13418. // compute size of intermediate results
  13419. // TODO: does not take into account scratch buffers !!!!
  13420. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13421. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13422. }
  13423. // print
  13424. {
  13425. FILE * fout = stdout;
  13426. fprintf(fout, "\n");
  13427. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13428. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13429. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13430. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13431. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13432. // header
  13433. fprintf(fout, "\n");
  13434. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13435. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13436. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13437. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13438. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13439. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13440. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13441. }
  13442. // header
  13443. fprintf(fout, "\n");
  13444. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13445. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13446. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13447. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13448. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13449. if (cgraph->nodes[i]->src[j]) {
  13450. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13451. }
  13452. }
  13453. fprintf(fout, "\n");
  13454. }
  13455. fprintf(fout, "\n");
  13456. }
  13457. // write binary data
  13458. {
  13459. FILE * fout = fopen(fname, "wb");
  13460. if (!fout) {
  13461. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13462. return;
  13463. }
  13464. // header
  13465. {
  13466. const uint32_t magic = GGML_FILE_MAGIC;
  13467. const uint32_t version = GGML_FILE_VERSION;
  13468. const uint32_t n_leafs = cgraph->n_leafs;
  13469. const uint32_t n_nodes = cgraph->n_nodes;
  13470. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13471. fwrite(&version, sizeof(uint32_t), 1, fout);
  13472. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13473. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  13474. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13475. }
  13476. // leafs
  13477. {
  13478. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13479. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13480. const uint32_t type = tensor->type;
  13481. const uint32_t op = tensor->op;
  13482. const uint32_t n_dims = tensor->n_dims;
  13483. fwrite(&type, sizeof(uint32_t), 1, fout);
  13484. fwrite(&op, sizeof(uint32_t), 1, fout);
  13485. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13486. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13487. const uint64_t ne = tensor->ne[j];
  13488. const uint64_t nb = tensor->nb[j];
  13489. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13490. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13491. }
  13492. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13493. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13494. // dump the data
  13495. // TODO: pad this to 32 byte boundary
  13496. {
  13497. const size_t size = ggml_nbytes(tensor);
  13498. fwrite(tensor->data, sizeof(char), size, fout);
  13499. }
  13500. }
  13501. }
  13502. // nodes
  13503. {
  13504. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13505. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13506. const uint32_t type = tensor->type;
  13507. const uint32_t op = tensor->op;
  13508. const uint32_t n_dims = tensor->n_dims;
  13509. fwrite(&type, sizeof(uint32_t), 1, fout);
  13510. fwrite(&op, sizeof(uint32_t), 1, fout);
  13511. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13512. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13513. const uint64_t ne = tensor->ne[j];
  13514. const uint64_t nb = tensor->nb[j];
  13515. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13516. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13517. }
  13518. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13519. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13520. // output the op arguments
  13521. {
  13522. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13523. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13524. args[j] = tensor->src[j];
  13525. }
  13526. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13527. if (args[j]) {
  13528. int32_t idx = -1;
  13529. // check if leaf
  13530. {
  13531. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13532. if (args[j] == cgraph->leafs[k]) {
  13533. idx = k;
  13534. break;
  13535. }
  13536. }
  13537. }
  13538. // check if node
  13539. if (idx == -1) {
  13540. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13541. if (args[j] == cgraph->nodes[k]) {
  13542. idx = cgraph->n_leafs + k;
  13543. break;
  13544. }
  13545. }
  13546. }
  13547. if (idx == -1) {
  13548. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13549. fclose(fout);
  13550. return;
  13551. }
  13552. fwrite(&idx, sizeof(int32_t), 1, fout);
  13553. } else {
  13554. const int32_t nul = -1;
  13555. fwrite(&nul, sizeof(int32_t), 1, fout);
  13556. }
  13557. }
  13558. }
  13559. }
  13560. }
  13561. fclose(fout);
  13562. }
  13563. }
  13564. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13565. assert(*ctx_data == NULL);
  13566. assert(*ctx_eval == NULL);
  13567. struct ggml_cgraph * result = NULL;
  13568. struct ggml_tensor * data = NULL;
  13569. // read file into data
  13570. {
  13571. FILE * fin = fopen(fname, "rb");
  13572. if (!fin) {
  13573. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13574. return result;
  13575. }
  13576. size_t fsize = 0;
  13577. fseek(fin, 0, SEEK_END);
  13578. fsize = ftell(fin);
  13579. fseek(fin, 0, SEEK_SET);
  13580. // create the data context
  13581. {
  13582. const size_t overhead = 1*ggml_tensor_overhead();
  13583. struct ggml_init_params params = {
  13584. .mem_size = fsize + overhead,
  13585. .mem_buffer = NULL,
  13586. .no_alloc = false,
  13587. };
  13588. *ctx_data = ggml_init(params);
  13589. if (!*ctx_data) {
  13590. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13591. fclose(fin);
  13592. return result;
  13593. }
  13594. }
  13595. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13596. {
  13597. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13598. if (ret != fsize) {
  13599. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13600. fclose(fin);
  13601. return result;
  13602. }
  13603. }
  13604. fclose(fin);
  13605. }
  13606. // populate result
  13607. {
  13608. char * ptr = (char *) data->data;
  13609. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13610. if (magic != GGML_FILE_MAGIC) {
  13611. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13612. return result;
  13613. }
  13614. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13615. if (version != GGML_FILE_VERSION) {
  13616. fprintf(stderr, "%s: invalid version number\n", __func__);
  13617. return result;
  13618. }
  13619. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13620. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13621. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13622. const int graph_size = MAX(n_leafs, n_nodes);
  13623. // create the data context
  13624. {
  13625. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  13626. struct ggml_init_params params = {
  13627. .mem_size = size_eval + overhead,
  13628. .mem_buffer = NULL,
  13629. .no_alloc = true,
  13630. };
  13631. *ctx_eval = ggml_init(params);
  13632. if (!*ctx_eval) {
  13633. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13634. return result;
  13635. }
  13636. }
  13637. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  13638. result->n_leafs = n_leafs;
  13639. result->n_nodes = n_nodes;
  13640. // leafs
  13641. {
  13642. uint32_t type;
  13643. uint32_t op;
  13644. uint32_t n_dims;
  13645. for (uint32_t i = 0; i < n_leafs; ++i) {
  13646. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13647. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13648. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13649. int64_t ne[GGML_MAX_DIMS];
  13650. size_t nb[GGML_MAX_DIMS];
  13651. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13652. uint64_t ne_cur;
  13653. uint64_t nb_cur;
  13654. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13655. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13656. ne[j] = ne_cur;
  13657. nb[j] = nb_cur;
  13658. }
  13659. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13660. tensor->op = (enum ggml_op) op;
  13661. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13662. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13663. tensor->data = (void *) ptr;
  13664. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13665. tensor->nb[j] = nb[j];
  13666. }
  13667. result->leafs[i] = tensor;
  13668. ptr += ggml_nbytes(tensor);
  13669. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13670. }
  13671. }
  13672. ggml_set_no_alloc(*ctx_eval, false);
  13673. // nodes
  13674. {
  13675. uint32_t type;
  13676. uint32_t op;
  13677. uint32_t n_dims;
  13678. for (uint32_t i = 0; i < n_nodes; ++i) {
  13679. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13680. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13681. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13682. enum ggml_op eop = (enum ggml_op) op;
  13683. int64_t ne[GGML_MAX_DIMS];
  13684. size_t nb[GGML_MAX_DIMS];
  13685. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13686. uint64_t ne_cur;
  13687. uint64_t nb_cur;
  13688. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13689. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13690. ne[j] = ne_cur;
  13691. nb[j] = nb_cur;
  13692. }
  13693. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13694. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13695. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13696. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13697. // parse args
  13698. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13699. const int32_t arg_idx = ptr_arg_idx[j];
  13700. if (arg_idx == -1) {
  13701. continue;
  13702. }
  13703. if (arg_idx < result->n_leafs) {
  13704. args[j] = result->leafs[arg_idx];
  13705. } else {
  13706. args[j] = result->nodes[arg_idx - result->n_leafs];
  13707. }
  13708. }
  13709. // create the tensor
  13710. // "view" operations are handled differently
  13711. // TODO: handle inplace ops - currently a copy is always made
  13712. struct ggml_tensor * tensor = NULL;
  13713. switch (eop) {
  13714. // TODO: implement other view ops
  13715. case GGML_OP_RESHAPE:
  13716. {
  13717. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13718. } break;
  13719. case GGML_OP_VIEW:
  13720. {
  13721. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13722. size_t offs;
  13723. memcpy(&offs, ptr_op_params, sizeof(offs));
  13724. tensor->data = ((char *) tensor->data) + offs;
  13725. } break;
  13726. case GGML_OP_TRANSPOSE:
  13727. {
  13728. tensor = ggml_transpose(*ctx_eval, args[0]);
  13729. } break;
  13730. case GGML_OP_PERMUTE:
  13731. {
  13732. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13733. } break;
  13734. default:
  13735. {
  13736. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13737. tensor->op = eop;
  13738. } break;
  13739. }
  13740. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13741. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  13742. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13743. tensor->nb[j] = nb[j];
  13744. }
  13745. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13746. tensor->src[j] = args[j];
  13747. }
  13748. result->nodes[i] = tensor;
  13749. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13750. }
  13751. }
  13752. }
  13753. return result;
  13754. }
  13755. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13756. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13757. GGML_PRINT("=== GRAPH ===\n");
  13758. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13759. for (int i = 0; i < cgraph->n_nodes; i++) {
  13760. struct ggml_tensor * node = cgraph->nodes[i];
  13761. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13762. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13763. i,
  13764. node->ne[0], node->ne[1], node->ne[2],
  13765. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13766. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13767. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13768. (double) node->perf_time_us / 1000.0,
  13769. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13770. }
  13771. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13772. for (int i = 0; i < cgraph->n_leafs; i++) {
  13773. struct ggml_tensor * node = cgraph->leafs[i];
  13774. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  13775. i,
  13776. node->ne[0], node->ne[1],
  13777. ggml_op_name(node->op),
  13778. ggml_get_name(node));
  13779. }
  13780. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13781. if (perf_total_per_op_us[i] == 0) {
  13782. continue;
  13783. }
  13784. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  13785. }
  13786. GGML_PRINT("========================================\n");
  13787. }
  13788. // check if node is part of the graph
  13789. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13790. if (cgraph == NULL) {
  13791. return true;
  13792. }
  13793. for (int i = 0; i < cgraph->n_nodes; i++) {
  13794. if (cgraph->nodes[i] == node) {
  13795. return true;
  13796. }
  13797. }
  13798. return false;
  13799. }
  13800. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13801. for (int i = 0; i < cgraph->n_nodes; i++) {
  13802. struct ggml_tensor * parent = cgraph->nodes[i];
  13803. if (parent->grad == node) {
  13804. return parent;
  13805. }
  13806. }
  13807. return NULL;
  13808. }
  13809. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13810. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  13811. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  13812. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  13813. gparent0 ? (void *) gparent0 : (void *) parent,
  13814. gparent0 ? "g" : "x",
  13815. gparent ? (void *) gparent : (void *) node,
  13816. gparent ? "g" : "x",
  13817. gparent ? "empty" : "vee",
  13818. gparent ? "dashed" : "solid",
  13819. label);
  13820. }
  13821. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13822. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  13823. (void *) parent, "x",
  13824. (void *) node, "x",
  13825. label);
  13826. }
  13827. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  13828. char color[16];
  13829. FILE * fp = fopen(filename, "w");
  13830. GGML_ASSERT(fp);
  13831. fprintf(fp, "digraph G {\n");
  13832. fprintf(fp, " newrank = true;\n");
  13833. fprintf(fp, " rankdir = LR;\n");
  13834. for (int i = 0; i < gb->n_nodes; i++) {
  13835. struct ggml_tensor * node = gb->nodes[i];
  13836. if (ggml_graph_get_parent(gb, node) != NULL) {
  13837. continue;
  13838. }
  13839. if (node->is_param) {
  13840. snprintf(color, sizeof(color), "yellow");
  13841. } else if (node->grad) {
  13842. if (ggml_graph_find(gf, node)) {
  13843. snprintf(color, sizeof(color), "green");
  13844. } else {
  13845. snprintf(color, sizeof(color), "lightblue");
  13846. }
  13847. } else {
  13848. snprintf(color, sizeof(color), "white");
  13849. }
  13850. fprintf(fp, " \"%p\" [ "
  13851. "style = filled; fillcolor = %s; shape = record; "
  13852. "label=\"",
  13853. (void *) node, color);
  13854. if (strlen(node->name) > 0) {
  13855. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  13856. } else {
  13857. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  13858. }
  13859. if (node->n_dims == 2) {
  13860. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  13861. } else {
  13862. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  13863. }
  13864. if (node->grad) {
  13865. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  13866. } else {
  13867. fprintf(fp, "\"; ]\n");
  13868. }
  13869. }
  13870. for (int i = 0; i < gb->n_leafs; i++) {
  13871. struct ggml_tensor * node = gb->leafs[i];
  13872. snprintf(color, sizeof(color), "pink");
  13873. fprintf(fp, " \"%p\" [ "
  13874. "style = filled; fillcolor = %s; shape = record; "
  13875. "label=\"<x>",
  13876. (void *) node, color);
  13877. if (strlen(node->name) > 0) {
  13878. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  13879. } else {
  13880. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  13881. }
  13882. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  13883. if (ggml_nelements(node) < 5) {
  13884. fprintf(fp, " | (");
  13885. for (int j = 0; j < ggml_nelements(node); j++) {
  13886. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  13887. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  13888. }
  13889. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  13890. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  13891. }
  13892. else {
  13893. fprintf(fp, "#");
  13894. }
  13895. if (j < ggml_nelements(node) - 1) {
  13896. fprintf(fp, ", ");
  13897. }
  13898. }
  13899. fprintf(fp, ")");
  13900. }
  13901. fprintf(fp, "\"; ]\n");
  13902. }
  13903. for (int i = 0; i < gb->n_nodes; i++) {
  13904. struct ggml_tensor * node = gb->nodes[i];
  13905. for (int j = 0; j < GGML_MAX_SRC; j++) {
  13906. if (node->src[j]) {
  13907. char label[16];
  13908. snprintf(label, sizeof(label), "src %d", j);
  13909. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  13910. }
  13911. }
  13912. }
  13913. for (int i = 0; i < gb->n_leafs; i++) {
  13914. struct ggml_tensor * node = gb->leafs[i];
  13915. for (int j = 0; j < GGML_MAX_SRC; j++) {
  13916. if (node->src[j]) {
  13917. char label[16];
  13918. snprintf(label, sizeof(label), "src %d", j);
  13919. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  13920. }
  13921. }
  13922. }
  13923. fprintf(fp, "}\n");
  13924. fclose(fp);
  13925. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  13926. }
  13927. ////////////////////////////////////////////////////////////////////////////////
  13928. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  13929. int i = 0;
  13930. for (int p = 0; p < np; ++p) {
  13931. const int64_t ne = ggml_nelements(ps[p]) ;
  13932. // TODO: add function to set tensor from array
  13933. for (int64_t j = 0; j < ne; ++j) {
  13934. ggml_set_f32_1d(ps[p], j, x[i++]);
  13935. }
  13936. }
  13937. }
  13938. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  13939. int i = 0;
  13940. for (int p = 0; p < np; ++p) {
  13941. const int64_t ne = ggml_nelements(ps[p]) ;
  13942. // TODO: add function to get all elements at once
  13943. for (int64_t j = 0; j < ne; ++j) {
  13944. x[i++] = ggml_get_f32_1d(ps[p], j);
  13945. }
  13946. }
  13947. }
  13948. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  13949. int64_t i = 0;
  13950. for (int p = 0; p < np; ++p) {
  13951. const int64_t ne = ggml_nelements(ps[p]) ;
  13952. // TODO: add function to get all elements at once
  13953. for (int64_t j = 0; j < ne; ++j) {
  13954. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  13955. }
  13956. }
  13957. }
  13958. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  13959. int64_t i = 0;
  13960. for (int p = 0; p < np; ++p) {
  13961. const int64_t ne = ggml_nelements(ps[p]) ;
  13962. // TODO: add function to get all elements at once
  13963. for (int64_t j = 0; j < ne; ++j) {
  13964. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  13965. }
  13966. }
  13967. }
  13968. //
  13969. // ADAM
  13970. //
  13971. // ref: https://arxiv.org/pdf/1412.6980.pdf
  13972. //
  13973. static enum ggml_opt_result ggml_opt_adam(
  13974. struct ggml_context * ctx,
  13975. struct ggml_opt_context * opt,
  13976. struct ggml_opt_params params,
  13977. struct ggml_tensor * f,
  13978. struct ggml_cgraph * gf,
  13979. struct ggml_cgraph * gb,
  13980. ggml_opt_callback callback,
  13981. void * callback_data) {
  13982. GGML_ASSERT(ggml_is_scalar(f));
  13983. // these will store the parameters we want to optimize
  13984. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  13985. int np = 0;
  13986. int64_t nx = 0;
  13987. for (int i = 0; i < gf->n_nodes; ++i) {
  13988. if (gf->nodes[i]->is_param) {
  13989. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  13990. GGML_ASSERT(np < GGML_MAX_PARAMS);
  13991. ps[np++] = gf->nodes[i];
  13992. nx += ggml_nelements(gf->nodes[i]);
  13993. }
  13994. }
  13995. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  13996. int iter = opt->iter;
  13997. ggml_opt_init(opt->ctx, opt, params, nx);
  13998. opt->iter = iter;
  13999. }
  14000. // constants
  14001. float sched = params.adam.sched;
  14002. const float alpha = params.adam.alpha;
  14003. const float decay = params.adam.decay * alpha;
  14004. const float beta1 = params.adam.beta1;
  14005. const float beta2 = params.adam.beta2;
  14006. const float eps = params.adam.eps;
  14007. const float gclip = params.adam.gclip;
  14008. const int decay_min_ndim = params.adam.decay_min_ndim;
  14009. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14010. const float accum_norm = 1.0f / (float) n_accum;
  14011. float * g = opt->adam.g->data; // gradients
  14012. float * m = opt->adam.m->data; // first moment
  14013. float * v = opt->adam.v->data; // second moment
  14014. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14015. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14016. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14017. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14018. bool cancel = false;
  14019. // compute the function value
  14020. float fx = 0;
  14021. ggml_set_zero(opt->adam.g);
  14022. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14023. if (callback) {
  14024. callback(callback_data, accum_step, &sched, &cancel);
  14025. if (cancel) {
  14026. return GGML_OPT_CANCEL;
  14027. }
  14028. }
  14029. // ggml_graph_reset (gf);
  14030. ggml_set_f32 (f->grad, 1.0f);
  14031. ggml_graph_compute(gb, &cplan);
  14032. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14033. fx += ggml_get_f32_1d(f, 0);
  14034. }
  14035. fx *= accum_norm;
  14036. opt->adam.fx_prev = fx;
  14037. opt->adam.fx_best = opt->adam.fx_prev;
  14038. if (pf) {
  14039. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14040. }
  14041. opt->loss_before = opt->adam.fx_prev;
  14042. opt->loss_after = opt->adam.fx_prev;
  14043. // initialize
  14044. if (opt->just_initialized) {
  14045. opt->adam.n_no_improvement = 0;
  14046. opt->just_initialized = false;
  14047. }
  14048. float * fx_best = &opt->adam.fx_best;
  14049. float * fx_prev = &opt->adam.fx_prev;
  14050. int * n_no_improvement = &opt->adam.n_no_improvement;
  14051. int iter0 = opt->iter;
  14052. // run the optimizer
  14053. for (int t = 0; t < params.adam.n_iter; ++t) {
  14054. opt->iter = iter0 + t + 1;
  14055. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14056. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14057. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14058. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14059. for (int i = 0; i < np; ++i) {
  14060. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14061. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14062. }
  14063. const int64_t t_start_wall = ggml_time_us();
  14064. const int64_t t_start_cpu = ggml_cycles();
  14065. UNUSED(t_start_wall);
  14066. UNUSED(t_start_cpu);
  14067. {
  14068. float gnorm = 1.0f;
  14069. if (gclip > 0.0f) {
  14070. // gradient clipping
  14071. ggml_float sum = 0.0;
  14072. for (int64_t i = 0; i < nx; ++i) {
  14073. sum += (ggml_float)(g[i]*g[i]);
  14074. }
  14075. ggml_float norm = sqrt(sum);
  14076. if (norm > (ggml_float) gclip) {
  14077. gnorm = (float) ((ggml_float) gclip / norm);
  14078. }
  14079. }
  14080. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14081. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14082. int64_t i = 0;
  14083. for (int p = 0; p < np; ++p) {
  14084. const int64_t ne = ggml_nelements(ps[p]);
  14085. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14086. for (int64_t j = 0; j < ne; ++j) {
  14087. float x = ggml_get_f32_1d(ps[p], j);
  14088. float g_ = g[i]*gnorm;
  14089. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14090. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14091. float mh = m[i]*beta1h;
  14092. float vh = v[i]*beta2h;
  14093. vh = sqrtf(vh) + eps;
  14094. x = x*(1.0f - p_decay) - mh/vh;
  14095. ggml_set_f32_1d(ps[p], j, x);
  14096. ++i;
  14097. }
  14098. }
  14099. }
  14100. fx = 0;
  14101. ggml_set_zero(opt->adam.g);
  14102. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14103. if (callback) {
  14104. callback(callback_data, accum_step, &sched, &cancel);
  14105. if (cancel) {
  14106. return GGML_OPT_CANCEL;;
  14107. }
  14108. }
  14109. // ggml_graph_reset (gf);
  14110. ggml_set_f32 (f->grad, 1.0f);
  14111. ggml_graph_compute(gb, &cplan);
  14112. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14113. fx += ggml_get_f32_1d(f, 0);
  14114. }
  14115. fx *= accum_norm;
  14116. opt->loss_after = fx;
  14117. // check convergence
  14118. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14119. GGML_PRINT_DEBUG("converged\n");
  14120. return GGML_OPT_OK;
  14121. }
  14122. // delta-based convergence test
  14123. if (pf != NULL) {
  14124. // need at least params.past iterations to start checking for convergence
  14125. if (params.past <= iter0 + t) {
  14126. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14127. if (fabsf(rate) < params.delta) {
  14128. return GGML_OPT_OK;
  14129. }
  14130. }
  14131. pf[(iter0 + t)%params.past] = fx;
  14132. }
  14133. // check for improvement
  14134. if (params.max_no_improvement > 0) {
  14135. if (fx_best[0] > fx) {
  14136. fx_best[0] = fx;
  14137. n_no_improvement[0] = 0;
  14138. } else {
  14139. ++n_no_improvement[0];
  14140. if (n_no_improvement[0] >= params.max_no_improvement) {
  14141. return GGML_OPT_OK;
  14142. }
  14143. }
  14144. }
  14145. fx_prev[0] = fx;
  14146. {
  14147. const int64_t t_end_cpu = ggml_cycles();
  14148. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14149. UNUSED(t_end_cpu);
  14150. const int64_t t_end_wall = ggml_time_us();
  14151. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14152. UNUSED(t_end_wall);
  14153. }
  14154. }
  14155. return GGML_OPT_DID_NOT_CONVERGE;
  14156. }
  14157. //
  14158. // L-BFGS
  14159. //
  14160. // the L-BFGS implementation below is based on the following implementation:
  14161. //
  14162. // https://github.com/chokkan/liblbfgs
  14163. //
  14164. struct ggml_lbfgs_iteration_data {
  14165. float alpha;
  14166. float ys;
  14167. float * s;
  14168. float * y;
  14169. };
  14170. static enum ggml_opt_result linesearch_backtracking(
  14171. const struct ggml_opt_params * params,
  14172. int nx,
  14173. float * x,
  14174. float * fx,
  14175. float * g,
  14176. float * d,
  14177. float * step,
  14178. const float * xp,
  14179. struct ggml_tensor * f,
  14180. struct ggml_cgraph * gb,
  14181. struct ggml_cplan * cplan,
  14182. const int np,
  14183. struct ggml_tensor * ps[],
  14184. bool * cancel,
  14185. ggml_opt_callback callback,
  14186. void * callback_data) {
  14187. int count = 0;
  14188. float width = 0.0f;
  14189. float dg = 0.0f;
  14190. float finit = 0.0f;
  14191. float dginit = 0.0f;
  14192. float dgtest = 0.0f;
  14193. const float dec = 0.5f;
  14194. const float inc = 2.1f;
  14195. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14196. const float accum_norm = 1.0f / (float) n_accum;
  14197. if (*step <= 0.f) {
  14198. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14199. }
  14200. // compute the initial gradient in the search direction
  14201. ggml_vec_dot_f32(nx, &dginit, g, d);
  14202. // make sure that d points to a descent direction
  14203. if (0 < dginit) {
  14204. return GGML_LINESEARCH_FAIL;
  14205. }
  14206. // initialize local variables
  14207. finit = *fx;
  14208. dgtest = params->lbfgs.ftol*dginit;
  14209. while (true) {
  14210. ggml_vec_cpy_f32(nx, x, xp);
  14211. ggml_vec_mad_f32(nx, x, d, *step);
  14212. // evaluate the function and gradient values
  14213. {
  14214. ggml_opt_set_params(np, ps, x);
  14215. *fx = 0;
  14216. memset(g, 0, sizeof(float)*nx);
  14217. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14218. if (callback) {
  14219. // LBFG-S does not support learning rate -> ignore learning schedule
  14220. float sched = 0;
  14221. callback(callback_data, accum_step, &sched, cancel);
  14222. if (*cancel) {
  14223. return GGML_OPT_CANCEL;
  14224. }
  14225. }
  14226. // ggml_graph_reset (gf);
  14227. ggml_set_f32 (f->grad, 1.0f);
  14228. ggml_graph_compute(gb, cplan);
  14229. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14230. *fx += ggml_get_f32_1d(f, 0);
  14231. }
  14232. *fx *= accum_norm;
  14233. }
  14234. ++count;
  14235. if (*fx > finit + (*step)*dgtest) {
  14236. width = dec;
  14237. } else {
  14238. // Armijo condition is satisfied
  14239. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14240. return count;
  14241. }
  14242. ggml_vec_dot_f32(nx, &dg, g, d);
  14243. // check the Wolfe condition
  14244. if (dg < params->lbfgs.wolfe * dginit) {
  14245. width = inc;
  14246. } else {
  14247. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14248. // regular Wolfe conditions
  14249. return count;
  14250. }
  14251. if(dg > -params->lbfgs.wolfe*dginit) {
  14252. width = dec;
  14253. } else {
  14254. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14255. return count;
  14256. }
  14257. }
  14258. }
  14259. if (*step < params->lbfgs.min_step) {
  14260. return GGML_LINESEARCH_MINIMUM_STEP;
  14261. }
  14262. if (*step > params->lbfgs.max_step) {
  14263. return GGML_LINESEARCH_MAXIMUM_STEP;
  14264. }
  14265. if (params->lbfgs.max_linesearch <= count) {
  14266. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14267. }
  14268. (*step) *= width;
  14269. }
  14270. GGML_UNREACHABLE();
  14271. }
  14272. static enum ggml_opt_result ggml_opt_lbfgs(
  14273. struct ggml_context * ctx,
  14274. struct ggml_opt_context * opt,
  14275. struct ggml_opt_params params,
  14276. struct ggml_tensor * f,
  14277. struct ggml_cgraph * gf,
  14278. struct ggml_cgraph * gb,
  14279. ggml_opt_callback callback,
  14280. void * callback_data) {
  14281. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14282. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14283. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14284. return GGML_OPT_INVALID_WOLFE;
  14285. }
  14286. }
  14287. const int m = params.lbfgs.m;
  14288. // these will store the parameters we want to optimize
  14289. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14290. int np = 0;
  14291. int nx = 0;
  14292. for (int i = 0; i < gf->n_nodes; ++i) {
  14293. if (gf->nodes[i]->is_param) {
  14294. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14295. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14296. ps[np++] = gf->nodes[i];
  14297. nx += ggml_nelements(gf->nodes[i]);
  14298. }
  14299. }
  14300. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14301. int iter = opt->iter;
  14302. ggml_opt_init(ctx, opt, params, nx);
  14303. opt->iter = iter;
  14304. }
  14305. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14306. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14307. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14308. float * x = opt->lbfgs.x->data; // current parameters
  14309. float * xp = opt->lbfgs.xp->data; // previous parameters
  14310. float * g = opt->lbfgs.g->data; // current gradient
  14311. float * gp = opt->lbfgs.gp->data; // previous gradient
  14312. float * d = opt->lbfgs.d->data; // search direction
  14313. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14314. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14315. const float accum_norm = 1.0f / (float) n_accum;
  14316. float fx = 0.0f; // cost function value
  14317. float xnorm = 0.0f; // ||x||
  14318. float gnorm = 0.0f; // ||g||
  14319. // initialize x from the graph nodes
  14320. ggml_opt_get_params(np, ps, x);
  14321. // the L-BFGS memory
  14322. float * lm_alpha = opt->lbfgs.lmal->data;
  14323. float * lm_ys = opt->lbfgs.lmys->data;
  14324. float * lm_s = opt->lbfgs.lms->data;
  14325. float * lm_y = opt->lbfgs.lmy->data;
  14326. bool cancel = false;
  14327. // evaluate the function value and its gradient
  14328. {
  14329. ggml_opt_set_params(np, ps, x);
  14330. fx = 0;
  14331. memset(g, 0, sizeof(float)*nx);
  14332. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14333. if (callback) {
  14334. // LBFG-S does not support learning rate -> ignore learning schedule
  14335. float sched = 0;
  14336. callback(callback_data, accum_step, &sched, &cancel);
  14337. if (cancel) {
  14338. return GGML_OPT_CANCEL;
  14339. }
  14340. }
  14341. // ggml_graph_reset (gf);
  14342. ggml_set_f32 (f->grad, 1.0f);
  14343. ggml_graph_compute(gb, &cplan);
  14344. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14345. fx += ggml_get_f32_1d(f, 0);
  14346. }
  14347. fx *= accum_norm;
  14348. opt->loss_before = fx;
  14349. opt->loss_after = fx;
  14350. }
  14351. // search direction = -gradient
  14352. ggml_vec_neg_f32(nx, d, g);
  14353. // ||x||, ||g||
  14354. ggml_vec_norm_f32(nx, &xnorm, x);
  14355. ggml_vec_norm_f32(nx, &gnorm, g);
  14356. if (xnorm < 1.0f) {
  14357. xnorm = 1.0f;
  14358. }
  14359. // already optimized
  14360. if (gnorm/xnorm <= params.lbfgs.eps) {
  14361. return GGML_OPT_OK;
  14362. }
  14363. if (opt->just_initialized) {
  14364. if (pf) {
  14365. pf[0] = fx;
  14366. }
  14367. opt->lbfgs.fx_best = fx;
  14368. // initial step
  14369. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14370. opt->lbfgs.j = 0;
  14371. opt->lbfgs.k = 1;
  14372. opt->lbfgs.end = 0;
  14373. opt->lbfgs.n_no_improvement = 0;
  14374. opt->just_initialized = false;
  14375. }
  14376. float * fx_best = &opt->lbfgs.fx_best;
  14377. float * step = &opt->lbfgs.step;
  14378. int * j = &opt->lbfgs.j;
  14379. int * k = &opt->lbfgs.k;
  14380. int * end = &opt->lbfgs.end;
  14381. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14382. int ls = 0;
  14383. int bound = 0;
  14384. float ys = 0.0f;
  14385. float yy = 0.0f;
  14386. float beta = 0.0f;
  14387. int it = 0;
  14388. while (true) {
  14389. // store the current position and gradient vectors
  14390. ggml_vec_cpy_f32(nx, xp, x);
  14391. ggml_vec_cpy_f32(nx, gp, g);
  14392. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14393. // to determine if the optimization should be cancelled
  14394. // this is a simple change, but not doing this atm, since I don't have a nice
  14395. // way to test and don't want to break something with so many changes lined up
  14396. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14397. if (cancel) {
  14398. return GGML_OPT_CANCEL;
  14399. }
  14400. if (ls < 0) {
  14401. // linesearch failed - go back to the previous point and return
  14402. ggml_vec_cpy_f32(nx, x, xp);
  14403. ggml_vec_cpy_f32(nx, g, gp);
  14404. return ls;
  14405. }
  14406. opt->loss_after = fx;
  14407. ggml_vec_norm_f32(nx, &xnorm, x);
  14408. ggml_vec_norm_f32(nx, &gnorm, g);
  14409. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14410. if (xnorm < 1.0f) {
  14411. xnorm = 1.0f;
  14412. }
  14413. if (gnorm/xnorm <= params.lbfgs.eps) {
  14414. // converged
  14415. return GGML_OPT_OK;
  14416. }
  14417. // delta-based convergence test
  14418. if (pf != NULL) {
  14419. // need at least params.past iterations to start checking for convergence
  14420. if (params.past <= k[0]) {
  14421. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14422. if (fabsf(rate) < params.delta) {
  14423. return GGML_OPT_OK;
  14424. }
  14425. }
  14426. pf[k[0]%params.past] = fx;
  14427. }
  14428. // check for improvement
  14429. if (params.max_no_improvement > 0) {
  14430. if (fx < fx_best[0]) {
  14431. fx_best[0] = fx;
  14432. n_no_improvement[0] = 0;
  14433. } else {
  14434. n_no_improvement[0]++;
  14435. if (n_no_improvement[0] >= params.max_no_improvement) {
  14436. return GGML_OPT_OK;
  14437. }
  14438. }
  14439. }
  14440. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14441. // reached the maximum number of iterations
  14442. return GGML_OPT_DID_NOT_CONVERGE;
  14443. }
  14444. // update vectors s and y:
  14445. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14446. // y_{k+1} = g_{k+1} - g_{k}.
  14447. //
  14448. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14449. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14450. // compute scalars ys and yy:
  14451. // ys = y^t \cdot s -> 1 / \rho.
  14452. // yy = y^t \cdot y.
  14453. //
  14454. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14455. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14456. lm_ys[end[0]] = ys;
  14457. // find new search direction
  14458. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14459. bound = (m <= k[0]) ? m : k[0];
  14460. k[0]++;
  14461. it++;
  14462. end[0] = (end[0] + 1)%m;
  14463. // initialize search direction with -g
  14464. ggml_vec_neg_f32(nx, d, g);
  14465. j[0] = end[0];
  14466. for (int i = 0; i < bound; ++i) {
  14467. j[0] = (j[0] + m - 1) % m;
  14468. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14469. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14470. lm_alpha[j[0]] /= lm_ys[j[0]];
  14471. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14472. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14473. }
  14474. ggml_vec_scale_f32(nx, d, ys/yy);
  14475. for (int i = 0; i < bound; ++i) {
  14476. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14477. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14478. beta /= lm_ys[j[0]];
  14479. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14480. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14481. j[0] = (j[0] + 1)%m;
  14482. }
  14483. step[0] = 1.0;
  14484. }
  14485. GGML_UNREACHABLE();
  14486. }
  14487. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14488. struct ggml_opt_params result;
  14489. switch (type) {
  14490. case GGML_OPT_ADAM:
  14491. {
  14492. result = (struct ggml_opt_params) {
  14493. .type = GGML_OPT_ADAM,
  14494. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14495. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  14496. .past = 0,
  14497. .delta = 1e-5f,
  14498. .max_no_improvement = 100,
  14499. .print_forward_graph = true,
  14500. .print_backward_graph = true,
  14501. .n_gradient_accumulation = 1,
  14502. .adam = {
  14503. .n_iter = 10000,
  14504. .sched = 1.000f,
  14505. .decay = 0.0f,
  14506. .decay_min_ndim = 2,
  14507. .alpha = 0.001f,
  14508. .beta1 = 0.9f,
  14509. .beta2 = 0.999f,
  14510. .eps = 1e-8f,
  14511. .eps_f = 1e-5f,
  14512. .eps_g = 1e-3f,
  14513. .gclip = 0.0f,
  14514. },
  14515. };
  14516. } break;
  14517. case GGML_OPT_LBFGS:
  14518. {
  14519. result = (struct ggml_opt_params) {
  14520. .type = GGML_OPT_LBFGS,
  14521. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14522. .n_threads = 1,
  14523. .past = 0,
  14524. .delta = 1e-5f,
  14525. .max_no_improvement = 0,
  14526. .print_forward_graph = true,
  14527. .print_backward_graph = true,
  14528. .n_gradient_accumulation = 1,
  14529. .lbfgs = {
  14530. .m = 6,
  14531. .n_iter = 100,
  14532. .max_linesearch = 20,
  14533. .eps = 1e-5f,
  14534. .ftol = 1e-4f,
  14535. .wolfe = 0.9f,
  14536. .min_step = 1e-20f,
  14537. .max_step = 1e+20f,
  14538. .linesearch = GGML_LINESEARCH_DEFAULT,
  14539. },
  14540. };
  14541. } break;
  14542. }
  14543. return result;
  14544. }
  14545. GGML_API void ggml_opt_init(
  14546. struct ggml_context * ctx,
  14547. struct ggml_opt_context * opt,
  14548. struct ggml_opt_params params,
  14549. int64_t nx) {
  14550. opt->ctx = ctx;
  14551. opt->params = params;
  14552. opt->iter = 0;
  14553. opt->nx = nx;
  14554. opt->just_initialized = true;
  14555. if (opt->ctx == NULL) {
  14556. struct ggml_init_params ctx_opt_params;
  14557. if (opt->params.type == GGML_OPT_ADAM) {
  14558. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  14559. if (opt->params.past > 0) {
  14560. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14561. }
  14562. } else if (opt->params.type == GGML_OPT_LBFGS) {
  14563. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  14564. if (opt->params.past > 0) {
  14565. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14566. }
  14567. }
  14568. ctx_opt_params.mem_buffer = NULL;
  14569. ctx_opt_params.no_alloc = false;
  14570. opt->ctx = ggml_init(ctx_opt_params);
  14571. }
  14572. switch (opt->params.type) {
  14573. case GGML_OPT_ADAM:
  14574. {
  14575. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14576. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14577. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14578. opt->adam.pf = params.past > 0
  14579. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14580. : NULL;
  14581. ggml_set_zero(opt->adam.m);
  14582. ggml_set_zero(opt->adam.v);
  14583. if (opt->adam.pf) {
  14584. ggml_set_zero(opt->adam.pf);
  14585. }
  14586. } break;
  14587. case GGML_OPT_LBFGS:
  14588. {
  14589. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14590. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14591. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14592. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14593. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14594. opt->lbfgs.pf = params.past > 0
  14595. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14596. : NULL;
  14597. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14598. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14599. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14600. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14601. ggml_set_zero(opt->lbfgs.x);
  14602. ggml_set_zero(opt->lbfgs.xp);
  14603. ggml_set_zero(opt->lbfgs.g);
  14604. ggml_set_zero(opt->lbfgs.gp);
  14605. ggml_set_zero(opt->lbfgs.d);
  14606. if (opt->lbfgs.pf) {
  14607. ggml_set_zero(opt->lbfgs.pf);
  14608. }
  14609. ggml_set_zero(opt->lbfgs.lmal);
  14610. ggml_set_zero(opt->lbfgs.lmys);
  14611. ggml_set_zero(opt->lbfgs.lms);
  14612. ggml_set_zero(opt->lbfgs.lmy);
  14613. } break;
  14614. }
  14615. }
  14616. enum ggml_opt_result ggml_opt(
  14617. struct ggml_context * ctx,
  14618. struct ggml_opt_params params,
  14619. struct ggml_tensor * f) {
  14620. bool free_ctx = false;
  14621. if (ctx == NULL) {
  14622. struct ggml_init_params params_ctx = {
  14623. .mem_size = 16*1024*1024,
  14624. .mem_buffer = NULL,
  14625. .no_alloc = false,
  14626. };
  14627. ctx = ggml_init(params_ctx);
  14628. if (ctx == NULL) {
  14629. return GGML_OPT_NO_CONTEXT;
  14630. }
  14631. free_ctx = true;
  14632. }
  14633. enum ggml_opt_result result = GGML_OPT_OK;
  14634. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14635. ggml_opt_init(ctx, opt, params, 0);
  14636. result = ggml_opt_resume(ctx, opt, f);
  14637. if (free_ctx) {
  14638. ggml_free(ctx);
  14639. }
  14640. return result;
  14641. }
  14642. enum ggml_opt_result ggml_opt_resume(
  14643. struct ggml_context * ctx,
  14644. struct ggml_opt_context * opt,
  14645. struct ggml_tensor * f) {
  14646. // build forward + backward compute graphs
  14647. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  14648. ggml_build_forward_expand(gf, f);
  14649. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  14650. ggml_build_backward_expand(ctx, gf, gb, true);
  14651. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  14652. }
  14653. enum ggml_opt_result ggml_opt_resume_g(
  14654. struct ggml_context * ctx,
  14655. struct ggml_opt_context * opt,
  14656. struct ggml_tensor * f,
  14657. struct ggml_cgraph * gf,
  14658. struct ggml_cgraph * gb,
  14659. ggml_opt_callback callback,
  14660. void * callback_data) {
  14661. // build forward + backward compute graphs
  14662. enum ggml_opt_result result = GGML_OPT_OK;
  14663. switch (opt->params.type) {
  14664. case GGML_OPT_ADAM:
  14665. {
  14666. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14667. } break;
  14668. case GGML_OPT_LBFGS:
  14669. {
  14670. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14671. } break;
  14672. }
  14673. if (opt->params.print_forward_graph) {
  14674. ggml_graph_print (gf);
  14675. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14676. }
  14677. if (opt->params.print_backward_graph) {
  14678. ggml_graph_print (gb);
  14679. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14680. }
  14681. return result;
  14682. }
  14683. ////////////////////////////////////////////////////////////////////////////////
  14684. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14685. assert(k % QK4_0 == 0);
  14686. const int nb = k / QK4_0;
  14687. for (int b = 0; b < n; b += k) {
  14688. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14689. quantize_row_q4_0_reference(src + b, y, k);
  14690. for (int i = 0; i < nb; i++) {
  14691. for (int j = 0; j < QK4_0; j += 2) {
  14692. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14693. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14694. hist[vi0]++;
  14695. hist[vi1]++;
  14696. }
  14697. }
  14698. }
  14699. return (n/QK4_0*sizeof(block_q4_0));
  14700. }
  14701. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14702. assert(k % QK4_1 == 0);
  14703. const int nb = k / QK4_1;
  14704. for (int b = 0; b < n; b += k) {
  14705. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14706. quantize_row_q4_1_reference(src + b, y, k);
  14707. for (int i = 0; i < nb; i++) {
  14708. for (int j = 0; j < QK4_1; j += 2) {
  14709. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14710. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14711. hist[vi0]++;
  14712. hist[vi1]++;
  14713. }
  14714. }
  14715. }
  14716. return (n/QK4_1*sizeof(block_q4_1));
  14717. }
  14718. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14719. assert(k % QK5_0 == 0);
  14720. const int nb = k / QK5_0;
  14721. for (int b = 0; b < n; b += k) {
  14722. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14723. quantize_row_q5_0_reference(src + b, y, k);
  14724. for (int i = 0; i < nb; i++) {
  14725. uint32_t qh;
  14726. memcpy(&qh, &y[i].qh, sizeof(qh));
  14727. for (int j = 0; j < QK5_0; j += 2) {
  14728. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14729. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14730. // cast to 16 bins
  14731. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14732. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14733. hist[vi0]++;
  14734. hist[vi1]++;
  14735. }
  14736. }
  14737. }
  14738. return (n/QK5_0*sizeof(block_q5_0));
  14739. }
  14740. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14741. assert(k % QK5_1 == 0);
  14742. const int nb = k / QK5_1;
  14743. for (int b = 0; b < n; b += k) {
  14744. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14745. quantize_row_q5_1_reference(src + b, y, k);
  14746. for (int i = 0; i < nb; i++) {
  14747. uint32_t qh;
  14748. memcpy(&qh, &y[i].qh, sizeof(qh));
  14749. for (int j = 0; j < QK5_1; j += 2) {
  14750. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14751. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14752. // cast to 16 bins
  14753. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14754. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14755. hist[vi0]++;
  14756. hist[vi1]++;
  14757. }
  14758. }
  14759. }
  14760. return (n/QK5_1*sizeof(block_q5_1));
  14761. }
  14762. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14763. assert(k % QK8_0 == 0);
  14764. const int nb = k / QK8_0;
  14765. for (int b = 0; b < n; b += k) {
  14766. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14767. quantize_row_q8_0_reference(src + b, y, k);
  14768. for (int i = 0; i < nb; i++) {
  14769. for (int j = 0; j < QK8_0; ++j) {
  14770. const int8_t vi = y[i].qs[j];
  14771. hist[vi/16 + 8]++;
  14772. }
  14773. }
  14774. }
  14775. return (n/QK8_0*sizeof(block_q8_0));
  14776. }
  14777. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14778. size_t result = 0;
  14779. switch (type) {
  14780. case GGML_TYPE_Q4_0:
  14781. {
  14782. GGML_ASSERT(start % QK4_0 == 0);
  14783. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14784. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14785. } break;
  14786. case GGML_TYPE_Q4_1:
  14787. {
  14788. GGML_ASSERT(start % QK4_1 == 0);
  14789. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14790. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14791. } break;
  14792. case GGML_TYPE_Q5_0:
  14793. {
  14794. GGML_ASSERT(start % QK5_0 == 0);
  14795. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14796. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14797. } break;
  14798. case GGML_TYPE_Q5_1:
  14799. {
  14800. GGML_ASSERT(start % QK5_1 == 0);
  14801. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14802. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14803. } break;
  14804. case GGML_TYPE_Q8_0:
  14805. {
  14806. GGML_ASSERT(start % QK8_0 == 0);
  14807. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14808. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14809. } break;
  14810. case GGML_TYPE_Q2_K:
  14811. {
  14812. GGML_ASSERT(start % QK_K == 0);
  14813. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14814. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14815. } break;
  14816. case GGML_TYPE_Q3_K:
  14817. {
  14818. GGML_ASSERT(start % QK_K == 0);
  14819. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14820. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14821. } break;
  14822. case GGML_TYPE_Q4_K:
  14823. {
  14824. GGML_ASSERT(start % QK_K == 0);
  14825. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14826. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14827. } break;
  14828. case GGML_TYPE_Q5_K:
  14829. {
  14830. GGML_ASSERT(start % QK_K == 0);
  14831. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14832. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14833. } break;
  14834. case GGML_TYPE_Q6_K:
  14835. {
  14836. GGML_ASSERT(start % QK_K == 0);
  14837. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14838. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14839. } break;
  14840. case GGML_TYPE_F16:
  14841. {
  14842. int elemsize = sizeof(ggml_fp16_t);
  14843. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14844. result = n * elemsize;
  14845. } break;
  14846. case GGML_TYPE_F32:
  14847. {
  14848. int elemsize = sizeof(float);
  14849. result = n * elemsize;
  14850. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14851. } break;
  14852. default:
  14853. assert(false);
  14854. }
  14855. return result;
  14856. }
  14857. ////////////////////////////////////////////////////////////////////////////////
  14858. struct gguf_str {
  14859. uint64_t n; // GGUFv2
  14860. char * data;
  14861. };
  14862. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  14863. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  14864. [GGUF_TYPE_INT8] = sizeof(int8_t),
  14865. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  14866. [GGUF_TYPE_INT16] = sizeof(int16_t),
  14867. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  14868. [GGUF_TYPE_INT32] = sizeof(int32_t),
  14869. [GGUF_TYPE_FLOAT32] = sizeof(float),
  14870. [GGUF_TYPE_BOOL] = sizeof(bool),
  14871. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  14872. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  14873. [GGUF_TYPE_INT64] = sizeof(int64_t),
  14874. [GGUF_TYPE_FLOAT64] = sizeof(double),
  14875. [GGUF_TYPE_ARRAY] = 0, // undefined
  14876. };
  14877. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  14878. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  14879. [GGUF_TYPE_UINT8] = "u8",
  14880. [GGUF_TYPE_INT8] = "i8",
  14881. [GGUF_TYPE_UINT16] = "u16",
  14882. [GGUF_TYPE_INT16] = "i16",
  14883. [GGUF_TYPE_UINT32] = "u32",
  14884. [GGUF_TYPE_INT32] = "i32",
  14885. [GGUF_TYPE_FLOAT32] = "f32",
  14886. [GGUF_TYPE_BOOL] = "bool",
  14887. [GGUF_TYPE_STRING] = "str",
  14888. [GGUF_TYPE_ARRAY] = "arr",
  14889. [GGUF_TYPE_UINT64] = "u64",
  14890. [GGUF_TYPE_INT64] = "i64",
  14891. [GGUF_TYPE_FLOAT64] = "f64",
  14892. };
  14893. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  14894. union gguf_value {
  14895. uint8_t uint8;
  14896. int8_t int8;
  14897. uint16_t uint16;
  14898. int16_t int16;
  14899. uint32_t uint32;
  14900. int32_t int32;
  14901. float float32;
  14902. uint64_t uint64;
  14903. int64_t int64;
  14904. double float64;
  14905. bool bool_;
  14906. struct gguf_str str;
  14907. struct {
  14908. enum gguf_type type;
  14909. uint64_t n; // GGUFv2
  14910. void * data;
  14911. } arr;
  14912. };
  14913. struct gguf_kv {
  14914. struct gguf_str key;
  14915. enum gguf_type type;
  14916. union gguf_value value;
  14917. };
  14918. struct gguf_header {
  14919. char magic[4];
  14920. uint32_t version;
  14921. uint64_t n_tensors; // GGUFv2
  14922. uint64_t n_kv; // GGUFv2
  14923. };
  14924. struct gguf_tensor_info {
  14925. struct gguf_str name;
  14926. uint32_t n_dims;
  14927. uint64_t ne[GGML_MAX_DIMS];
  14928. enum ggml_type type;
  14929. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  14930. // for writing API
  14931. const void * data;
  14932. size_t size;
  14933. };
  14934. struct gguf_context {
  14935. struct gguf_header header;
  14936. struct gguf_kv * kv;
  14937. struct gguf_tensor_info * infos;
  14938. size_t alignment;
  14939. size_t offset; // offset of `data` from beginning of file
  14940. size_t size; // size of `data` in bytes
  14941. //uint8_t * padding;
  14942. void * data;
  14943. };
  14944. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  14945. const size_t n = fread(dst, 1, size, file);
  14946. *offset += n;
  14947. return n == size;
  14948. }
  14949. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  14950. p->n = 0;
  14951. p->data = NULL;
  14952. bool ok = true;
  14953. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  14954. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  14955. return ok;
  14956. }
  14957. struct gguf_context * gguf_init_empty(void) {
  14958. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  14959. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  14960. ctx->header.version = GGUF_VERSION;
  14961. ctx->header.n_tensors = 0;
  14962. ctx->header.n_kv = 0;
  14963. ctx->kv = NULL;
  14964. ctx->infos = NULL;
  14965. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  14966. ctx->offset = 0;
  14967. ctx->size = 0;
  14968. ctx->data = NULL;
  14969. return ctx;
  14970. }
  14971. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  14972. FILE * file = fopen(fname, "rb");
  14973. if (!file) {
  14974. return NULL;
  14975. }
  14976. // offset from start of file
  14977. size_t offset = 0;
  14978. char magic[4];
  14979. // check the magic before making allocations
  14980. {
  14981. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  14982. for (uint32_t i = 0; i < sizeof(magic); i++) {
  14983. if (magic[i] != GGUF_MAGIC[i]) {
  14984. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  14985. fclose(file);
  14986. return NULL;
  14987. }
  14988. }
  14989. }
  14990. bool ok = true;
  14991. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  14992. // read the header
  14993. {
  14994. strncpy(ctx->header.magic, magic, 4);
  14995. ctx->kv = NULL;
  14996. ctx->infos = NULL;
  14997. ctx->data = NULL;
  14998. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  14999. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15000. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15001. if (ctx->header.version == 1) {
  15002. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15003. fclose(file);
  15004. gguf_free(ctx);
  15005. return NULL;
  15006. }
  15007. if (!ok) {
  15008. fprintf(stderr, "%s: failed to read header\n", __func__);
  15009. fclose(file);
  15010. gguf_free(ctx);
  15011. return NULL;
  15012. }
  15013. }
  15014. // read the kv pairs
  15015. {
  15016. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15017. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15018. struct gguf_kv * kv = &ctx->kv[i];
  15019. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15020. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15021. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15022. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15023. switch (kv->type) {
  15024. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15025. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15026. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15027. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15028. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15029. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15030. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15031. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15032. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15033. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15034. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15035. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15036. case GGUF_TYPE_ARRAY:
  15037. {
  15038. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15039. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15040. switch (kv->value.arr.type) {
  15041. case GGUF_TYPE_UINT8:
  15042. case GGUF_TYPE_INT8:
  15043. case GGUF_TYPE_UINT16:
  15044. case GGUF_TYPE_INT16:
  15045. case GGUF_TYPE_UINT32:
  15046. case GGUF_TYPE_INT32:
  15047. case GGUF_TYPE_FLOAT32:
  15048. case GGUF_TYPE_UINT64:
  15049. case GGUF_TYPE_INT64:
  15050. case GGUF_TYPE_FLOAT64:
  15051. case GGUF_TYPE_BOOL:
  15052. {
  15053. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15054. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15055. } break;
  15056. case GGUF_TYPE_STRING:
  15057. {
  15058. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15059. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15060. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15061. }
  15062. } break;
  15063. case GGUF_TYPE_ARRAY:
  15064. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15065. }
  15066. } break;
  15067. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15068. }
  15069. if (!ok) {
  15070. break;
  15071. }
  15072. }
  15073. if (!ok) {
  15074. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15075. fclose(file);
  15076. gguf_free(ctx);
  15077. return NULL;
  15078. }
  15079. }
  15080. // read the tensor infos
  15081. {
  15082. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15083. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15084. struct gguf_tensor_info * info = &ctx->infos[i];
  15085. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15086. info->ne[j] = 1;
  15087. }
  15088. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15089. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15090. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15091. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15092. }
  15093. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15094. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15095. if (!ok) {
  15096. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15097. fclose(file);
  15098. gguf_free(ctx);
  15099. return NULL;
  15100. }
  15101. }
  15102. }
  15103. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15104. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15105. if (alignment_idx != -1) {
  15106. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15107. }
  15108. // we require the data section to be aligned, so take into account any padding
  15109. {
  15110. const size_t offset_pad = offset % ctx->alignment;
  15111. if (offset_pad != 0) {
  15112. offset += ctx->alignment - offset_pad;
  15113. fseek(file, offset, SEEK_SET);
  15114. }
  15115. }
  15116. // store the current file offset - this is where the data section starts
  15117. ctx->offset = offset;
  15118. // compute the total size of the data section, taking into account the alignment
  15119. {
  15120. ctx->size = 0;
  15121. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15122. struct gguf_tensor_info * info = &ctx->infos[i];
  15123. const int64_t ne =
  15124. (int64_t) info->ne[0] *
  15125. (int64_t) info->ne[1] *
  15126. (int64_t) info->ne[2] *
  15127. (int64_t) info->ne[3];
  15128. if (ne % ggml_blck_size(info->type) != 0) {
  15129. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15130. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15131. fclose(file);
  15132. gguf_free(ctx);
  15133. return NULL;
  15134. }
  15135. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15136. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15137. }
  15138. }
  15139. // load the tensor data only if requested
  15140. if (params.ctx != NULL) {
  15141. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15142. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15143. // the ggml_tensor structs to the appropriate locations in the binary blob
  15144. // compute the exact size needed for the new ggml_context
  15145. const size_t mem_size =
  15146. params.no_alloc ?
  15147. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15148. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15149. struct ggml_init_params pdata = {
  15150. .mem_size = mem_size,
  15151. .mem_buffer = NULL,
  15152. .no_alloc = params.no_alloc,
  15153. };
  15154. *params.ctx = ggml_init(pdata);
  15155. struct ggml_context * ctx_data = *params.ctx;
  15156. struct ggml_tensor * data = NULL;
  15157. if (!params.no_alloc) {
  15158. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15159. ok = ok && data != NULL;
  15160. // read the binary blob with the tensor data
  15161. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15162. if (!ok) {
  15163. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15164. fclose(file);
  15165. ggml_free(ctx_data);
  15166. gguf_free(ctx);
  15167. return NULL;
  15168. }
  15169. ctx->data = data->data;
  15170. }
  15171. ggml_set_no_alloc(ctx_data, true);
  15172. // create the tensors
  15173. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15174. const int64_t ne[GGML_MAX_DIMS] = {
  15175. ctx->infos[i].ne[0],
  15176. ctx->infos[i].ne[1],
  15177. ctx->infos[i].ne[2],
  15178. ctx->infos[i].ne[3],
  15179. };
  15180. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15181. ok = ok && cur != NULL;
  15182. ggml_set_name(cur, ctx->infos[i].name.data);
  15183. if (!ok) {
  15184. break;
  15185. }
  15186. // point the data member to the appropriate location in the binary blob using the tensor infos
  15187. if (!params.no_alloc) {
  15188. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15189. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15190. }
  15191. }
  15192. if (!ok) {
  15193. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15194. fclose(file);
  15195. ggml_free(ctx_data);
  15196. gguf_free(ctx);
  15197. return NULL;
  15198. }
  15199. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15200. }
  15201. fclose(file);
  15202. return ctx;
  15203. }
  15204. void gguf_free(struct gguf_context * ctx) {
  15205. if (ctx == NULL) {
  15206. return;
  15207. }
  15208. if (ctx->kv) {
  15209. // free string memory - not great..
  15210. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15211. struct gguf_kv * kv = &ctx->kv[i];
  15212. if (kv->key.data) {
  15213. free(kv->key.data);
  15214. }
  15215. if (kv->type == GGUF_TYPE_STRING) {
  15216. if (kv->value.str.data) {
  15217. free(kv->value.str.data);
  15218. }
  15219. }
  15220. if (kv->type == GGUF_TYPE_ARRAY) {
  15221. if (kv->value.arr.data) {
  15222. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15223. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15224. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15225. if (str->data) {
  15226. free(str->data);
  15227. }
  15228. }
  15229. }
  15230. free(kv->value.arr.data);
  15231. }
  15232. }
  15233. }
  15234. free(ctx->kv);
  15235. }
  15236. if (ctx->infos) {
  15237. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15238. struct gguf_tensor_info * info = &ctx->infos[i];
  15239. if (info->name.data) {
  15240. free(info->name.data);
  15241. }
  15242. }
  15243. free(ctx->infos);
  15244. }
  15245. GGML_ALIGNED_FREE(ctx);
  15246. }
  15247. const char * gguf_type_name(enum gguf_type type) {
  15248. return GGUF_TYPE_NAME[type];
  15249. }
  15250. int gguf_get_version(const struct gguf_context * ctx) {
  15251. return ctx->header.version;
  15252. }
  15253. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15254. return ctx->alignment;
  15255. }
  15256. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15257. return ctx->offset;
  15258. }
  15259. void * gguf_get_data(const struct gguf_context * ctx) {
  15260. return ctx->data;
  15261. }
  15262. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15263. return ctx->header.n_kv;
  15264. }
  15265. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15266. // return -1 if key not found
  15267. int keyfound = -1;
  15268. const int n_kv = gguf_get_n_kv(ctx);
  15269. for (int i = 0; i < n_kv; ++i) {
  15270. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15271. keyfound = i;
  15272. break;
  15273. }
  15274. }
  15275. return keyfound;
  15276. }
  15277. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15278. return ctx->kv[key_id].key.data;
  15279. }
  15280. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15281. return ctx->kv[key_id].type;
  15282. }
  15283. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15284. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15285. return ctx->kv[key_id].value.arr.type;
  15286. }
  15287. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15288. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15289. return ctx->kv[key_id].value.arr.data;
  15290. }
  15291. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15293. struct gguf_kv * kv = &ctx->kv[key_id];
  15294. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15295. return str->data;
  15296. }
  15297. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15298. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15299. return ctx->kv[key_id].value.arr.n;
  15300. }
  15301. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15303. return ctx->kv[key_id].value.uint8;
  15304. }
  15305. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15306. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15307. return ctx->kv[key_id].value.int8;
  15308. }
  15309. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15310. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15311. return ctx->kv[key_id].value.uint16;
  15312. }
  15313. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15314. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15315. return ctx->kv[key_id].value.int16;
  15316. }
  15317. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15318. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15319. return ctx->kv[key_id].value.uint32;
  15320. }
  15321. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15322. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15323. return ctx->kv[key_id].value.int32;
  15324. }
  15325. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15326. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15327. return ctx->kv[key_id].value.float32;
  15328. }
  15329. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15330. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15331. return ctx->kv[key_id].value.uint64;
  15332. }
  15333. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15334. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15335. return ctx->kv[key_id].value.int64;
  15336. }
  15337. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15338. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15339. return ctx->kv[key_id].value.float64;
  15340. }
  15341. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15342. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15343. return ctx->kv[key_id].value.bool_;
  15344. }
  15345. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15346. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15347. return ctx->kv[key_id].value.str.data;
  15348. }
  15349. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15350. return ctx->header.n_tensors;
  15351. }
  15352. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15353. // return -1 if tensor not found
  15354. int tensorfound = -1;
  15355. const int n_tensors = gguf_get_n_tensors(ctx);
  15356. for (int i = 0; i < n_tensors; ++i) {
  15357. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15358. tensorfound = i;
  15359. break;
  15360. }
  15361. }
  15362. return tensorfound;
  15363. }
  15364. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15365. return ctx->infos[i].offset;
  15366. }
  15367. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15368. return ctx->infos[i].name.data;
  15369. }
  15370. // returns the index
  15371. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15372. const int idx = gguf_find_key(ctx, key);
  15373. if (idx >= 0) {
  15374. return idx;
  15375. }
  15376. const int n_kv = gguf_get_n_kv(ctx);
  15377. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15378. ctx->kv[n_kv].key.n = strlen(key);
  15379. ctx->kv[n_kv].key.data = strdup(key);
  15380. ctx->header.n_kv++;
  15381. return n_kv;
  15382. }
  15383. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15384. const int idx = gguf_get_or_add_key(ctx, key);
  15385. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15386. ctx->kv[idx].value.uint8 = val;
  15387. }
  15388. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15389. const int idx = gguf_get_or_add_key(ctx, key);
  15390. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15391. ctx->kv[idx].value.int8 = val;
  15392. }
  15393. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15394. const int idx = gguf_get_or_add_key(ctx, key);
  15395. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15396. ctx->kv[idx].value.uint16 = val;
  15397. }
  15398. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15399. const int idx = gguf_get_or_add_key(ctx, key);
  15400. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15401. ctx->kv[idx].value.int16 = val;
  15402. }
  15403. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15404. const int idx = gguf_get_or_add_key(ctx, key);
  15405. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15406. ctx->kv[idx].value.uint32 = val;
  15407. }
  15408. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15409. const int idx = gguf_get_or_add_key(ctx, key);
  15410. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15411. ctx->kv[idx].value.int32 = val;
  15412. }
  15413. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15414. const int idx = gguf_get_or_add_key(ctx, key);
  15415. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15416. ctx->kv[idx].value.float32 = val;
  15417. }
  15418. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15419. const int idx = gguf_get_or_add_key(ctx, key);
  15420. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15421. ctx->kv[idx].value.uint64 = val;
  15422. }
  15423. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15424. const int idx = gguf_get_or_add_key(ctx, key);
  15425. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15426. ctx->kv[idx].value.int64 = val;
  15427. }
  15428. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15429. const int idx = gguf_get_or_add_key(ctx, key);
  15430. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15431. ctx->kv[idx].value.float64 = val;
  15432. }
  15433. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15434. const int idx = gguf_get_or_add_key(ctx, key);
  15435. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15436. ctx->kv[idx].value.bool_ = val;
  15437. }
  15438. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15439. const int idx = gguf_get_or_add_key(ctx, key);
  15440. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15441. ctx->kv[idx].value.str.n = strlen(val);
  15442. ctx->kv[idx].value.str.data = strdup(val);
  15443. }
  15444. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15445. const int idx = gguf_get_or_add_key(ctx, key);
  15446. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15447. ctx->kv[idx].value.arr.type = type;
  15448. ctx->kv[idx].value.arr.n = n;
  15449. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15450. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15451. }
  15452. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15453. const int idx = gguf_get_or_add_key(ctx, key);
  15454. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15455. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15456. ctx->kv[idx].value.arr.n = n;
  15457. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15458. for (int i = 0; i < n; i++) {
  15459. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15460. str->n = strlen(data[i]);
  15461. str->data = strdup(data[i]);
  15462. }
  15463. }
  15464. // set or add KV pairs from another context
  15465. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15466. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15467. switch (src->kv[i].type) {
  15468. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15469. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15470. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15471. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15472. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15473. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15474. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15475. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15476. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15477. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15478. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15479. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15480. case GGUF_TYPE_ARRAY:
  15481. {
  15482. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15483. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15484. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15485. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15486. }
  15487. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15488. free(data);
  15489. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15490. GGML_ASSERT(false && "nested arrays not supported");
  15491. } else {
  15492. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15493. }
  15494. } break;
  15495. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15496. }
  15497. }
  15498. }
  15499. void gguf_add_tensor(
  15500. struct gguf_context * ctx,
  15501. const struct ggml_tensor * tensor) {
  15502. const int idx = ctx->header.n_tensors;
  15503. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15504. ctx->infos[idx].name.n = strlen(tensor->name);
  15505. ctx->infos[idx].name.data = strdup(tensor->name);
  15506. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15507. ctx->infos[idx].ne[i] = 1;
  15508. }
  15509. ctx->infos[idx].n_dims = tensor->n_dims;
  15510. for (int i = 0; i < tensor->n_dims; i++) {
  15511. ctx->infos[idx].ne[i] = tensor->ne[i];
  15512. }
  15513. ctx->infos[idx].type = tensor->type;
  15514. ctx->infos[idx].offset = 0;
  15515. ctx->infos[idx].data = tensor->data;
  15516. ctx->infos[idx].size = ggml_nbytes(tensor);
  15517. if (ctx->header.n_tensors > 0) {
  15518. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15519. }
  15520. ctx->header.n_tensors++;
  15521. }
  15522. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15523. const int idx = gguf_find_tensor(ctx, name);
  15524. if (idx < 0) {
  15525. GGML_ASSERT(false && "tensor not found");
  15526. }
  15527. ctx->infos[idx].type = type;
  15528. }
  15529. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15530. const int idx = gguf_find_tensor(ctx, name);
  15531. if (idx < 0) {
  15532. GGML_ASSERT(false && "tensor not found");
  15533. }
  15534. ctx->infos[idx].data = data;
  15535. ctx->infos[idx].size = size;
  15536. // update offsets
  15537. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15538. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15539. }
  15540. }
  15541. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15542. // fwrite(&val->n, sizeof(val->n), 1, file);
  15543. // fwrite(val->data, sizeof(char), val->n, file);
  15544. //}
  15545. //
  15546. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15547. // fwrite(val, sizeof(char), size, file);
  15548. //}
  15549. struct gguf_buf {
  15550. void * data;
  15551. size_t size;
  15552. size_t offset;
  15553. };
  15554. static struct gguf_buf gguf_buf_init(size_t size) {
  15555. struct gguf_buf buf = {
  15556. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15557. /*buf.size =*/ size,
  15558. /*buf.offset =*/ 0,
  15559. };
  15560. return buf;
  15561. }
  15562. static void gguf_buf_free(struct gguf_buf buf) {
  15563. if (buf.data) {
  15564. free(buf.data);
  15565. }
  15566. }
  15567. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  15568. if (buf->offset + size > buf->size) {
  15569. buf->size = 1.5*(buf->offset + size);
  15570. if (buf->data) {
  15571. buf->data = realloc(buf->data, buf->size);
  15572. }
  15573. }
  15574. }
  15575. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  15576. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  15577. if (buf->data) {
  15578. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  15579. }
  15580. buf->offset += sizeof(val->n);
  15581. if (buf->data) {
  15582. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  15583. }
  15584. buf->offset += val->n;
  15585. }
  15586. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  15587. gguf_buf_grow(buf, el_size);
  15588. if (buf->data) {
  15589. memcpy((char *) buf->data + buf->offset, val, el_size);
  15590. }
  15591. buf->offset += el_size;
  15592. }
  15593. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  15594. // write header
  15595. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  15596. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  15597. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  15598. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  15599. // write key-value pairs
  15600. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15601. struct gguf_kv * kv = &ctx->kv[i];
  15602. gguf_bwrite_str(buf, &kv->key);
  15603. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  15604. switch (kv->type) {
  15605. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  15606. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  15607. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  15608. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  15609. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  15610. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  15611. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  15612. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  15613. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  15614. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  15615. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  15616. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  15617. case GGUF_TYPE_ARRAY:
  15618. {
  15619. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  15620. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  15621. switch (kv->value.arr.type) {
  15622. case GGUF_TYPE_UINT8:
  15623. case GGUF_TYPE_INT8:
  15624. case GGUF_TYPE_UINT16:
  15625. case GGUF_TYPE_INT16:
  15626. case GGUF_TYPE_UINT32:
  15627. case GGUF_TYPE_INT32:
  15628. case GGUF_TYPE_FLOAT32:
  15629. case GGUF_TYPE_UINT64:
  15630. case GGUF_TYPE_INT64:
  15631. case GGUF_TYPE_FLOAT64:
  15632. case GGUF_TYPE_BOOL:
  15633. {
  15634. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15635. } break;
  15636. case GGUF_TYPE_STRING:
  15637. {
  15638. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15639. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  15640. }
  15641. } break;
  15642. case GGUF_TYPE_ARRAY:
  15643. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15644. }
  15645. } break;
  15646. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15647. }
  15648. }
  15649. // write tensor infos
  15650. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15651. struct gguf_tensor_info * info = &ctx->infos[i];
  15652. gguf_bwrite_str(buf, &info->name);
  15653. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  15654. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15655. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  15656. }
  15657. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  15658. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  15659. }
  15660. // we require the data section to be aligned, so take into account any padding
  15661. {
  15662. const size_t offset = buf->offset;
  15663. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  15664. if (offset_pad != offset) {
  15665. uint8_t pad = 0;
  15666. for (size_t i = 0; i < offset_pad - offset; ++i) {
  15667. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15668. }
  15669. }
  15670. }
  15671. if (only_meta) {
  15672. return;
  15673. }
  15674. size_t offset = 0;
  15675. // write tensor data
  15676. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15677. struct gguf_tensor_info * info = &ctx->infos[i];
  15678. const size_t size = info->size;
  15679. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  15680. gguf_bwrite_el(buf, info->data, size);
  15681. if (size_pad != size) {
  15682. uint8_t pad = 0;
  15683. for (size_t j = 0; j < size_pad - size; ++j) {
  15684. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15685. }
  15686. }
  15687. GGML_ASSERT(offset == info->offset);
  15688. offset += size_pad;
  15689. }
  15690. }
  15691. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  15692. FILE * file = fopen(fname, "wb");
  15693. if (!file) {
  15694. GGML_ASSERT(false && "failed to open file for writing");
  15695. }
  15696. struct gguf_buf buf = gguf_buf_init(16*1024);
  15697. gguf_write_to_buf(ctx, &buf, only_meta);
  15698. fwrite(buf.data, 1, buf.offset, file);
  15699. gguf_buf_free(buf);
  15700. fclose(file);
  15701. }
  15702. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  15703. // no allocs - only compute size
  15704. struct gguf_buf buf = gguf_buf_init(0);
  15705. gguf_write_to_buf(ctx, &buf, true);
  15706. return buf.offset;
  15707. }
  15708. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  15709. struct gguf_buf buf = gguf_buf_init(16*1024);
  15710. gguf_write_to_buf(ctx, &buf, true);
  15711. memcpy(data, buf.data, buf.offset);
  15712. gguf_buf_free(buf);
  15713. }
  15714. ////////////////////////////////////////////////////////////////////////////////
  15715. int ggml_cpu_has_avx(void) {
  15716. #if defined(__AVX__)
  15717. return 1;
  15718. #else
  15719. return 0;
  15720. #endif
  15721. }
  15722. int ggml_cpu_has_avx2(void) {
  15723. #if defined(__AVX2__)
  15724. return 1;
  15725. #else
  15726. return 0;
  15727. #endif
  15728. }
  15729. int ggml_cpu_has_avx512(void) {
  15730. #if defined(__AVX512F__)
  15731. return 1;
  15732. #else
  15733. return 0;
  15734. #endif
  15735. }
  15736. int ggml_cpu_has_avx512_vbmi(void) {
  15737. #if defined(__AVX512VBMI__)
  15738. return 1;
  15739. #else
  15740. return 0;
  15741. #endif
  15742. }
  15743. int ggml_cpu_has_avx512_vnni(void) {
  15744. #if defined(__AVX512VNNI__)
  15745. return 1;
  15746. #else
  15747. return 0;
  15748. #endif
  15749. }
  15750. int ggml_cpu_has_fma(void) {
  15751. #if defined(__FMA__)
  15752. return 1;
  15753. #else
  15754. return 0;
  15755. #endif
  15756. }
  15757. int ggml_cpu_has_neon(void) {
  15758. #if defined(__ARM_NEON)
  15759. return 1;
  15760. #else
  15761. return 0;
  15762. #endif
  15763. }
  15764. int ggml_cpu_has_arm_fma(void) {
  15765. #if defined(__ARM_FEATURE_FMA)
  15766. return 1;
  15767. #else
  15768. return 0;
  15769. #endif
  15770. }
  15771. int ggml_cpu_has_metal(void) {
  15772. #if defined(GGML_USE_METAL)
  15773. return 1;
  15774. #else
  15775. return 0;
  15776. #endif
  15777. }
  15778. int ggml_cpu_has_f16c(void) {
  15779. #if defined(__F16C__)
  15780. return 1;
  15781. #else
  15782. return 0;
  15783. #endif
  15784. }
  15785. int ggml_cpu_has_fp16_va(void) {
  15786. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15787. return 1;
  15788. #else
  15789. return 0;
  15790. #endif
  15791. }
  15792. int ggml_cpu_has_wasm_simd(void) {
  15793. #if defined(__wasm_simd128__)
  15794. return 1;
  15795. #else
  15796. return 0;
  15797. #endif
  15798. }
  15799. int ggml_cpu_has_blas(void) {
  15800. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15801. return 1;
  15802. #else
  15803. return 0;
  15804. #endif
  15805. }
  15806. int ggml_cpu_has_cublas(void) {
  15807. #if defined(GGML_USE_CUBLAS)
  15808. return 1;
  15809. #else
  15810. return 0;
  15811. #endif
  15812. }
  15813. int ggml_cpu_has_clblast(void) {
  15814. #if defined(GGML_USE_CLBLAST)
  15815. return 1;
  15816. #else
  15817. return 0;
  15818. #endif
  15819. }
  15820. int ggml_cpu_has_gpublas(void) {
  15821. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15822. }
  15823. int ggml_cpu_has_sse3(void) {
  15824. #if defined(__SSE3__)
  15825. return 1;
  15826. #else
  15827. return 0;
  15828. #endif
  15829. }
  15830. int ggml_cpu_has_ssse3(void) {
  15831. #if defined(__SSSE3__)
  15832. return 1;
  15833. #else
  15834. return 0;
  15835. #endif
  15836. }
  15837. int ggml_cpu_has_vsx(void) {
  15838. #if defined(__POWER9_VECTOR__)
  15839. return 1;
  15840. #else
  15841. return 0;
  15842. #endif
  15843. }
  15844. ////////////////////////////////////////////////////////////////////////////////