ggml.c 607 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED(x) (void)(x)
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. #if defined(GGML_USE_ACCELERATE)
  188. #include <Accelerate/Accelerate.h>
  189. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  190. #include "ggml-opencl.h"
  191. #endif
  192. #elif defined(GGML_USE_OPENBLAS)
  193. #include <cblas.h>
  194. #elif defined(GGML_USE_CUBLAS)
  195. #include "ggml-cuda.h"
  196. #elif defined(GGML_USE_CLBLAST)
  197. #include "ggml-opencl.h"
  198. #endif
  199. #undef MIN
  200. #undef MAX
  201. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  202. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  203. // floating point type used to accumulate sums
  204. typedef double ggml_float;
  205. // 16-bit float
  206. // on Arm, we use __fp16
  207. // on x86, we use uint16_t
  208. #ifdef __ARM_NEON
  209. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  210. //
  211. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  212. //
  213. #include <arm_neon.h>
  214. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  215. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  216. #define GGML_FP16_TO_FP32(x) ((float) (x))
  217. #define GGML_FP32_TO_FP16(x) (x)
  218. #else
  219. #ifdef __wasm_simd128__
  220. #include <wasm_simd128.h>
  221. #else
  222. #ifdef __POWER9_VECTOR__
  223. #include <altivec.h>
  224. #undef bool
  225. #define bool _Bool
  226. #else
  227. #if defined(_MSC_VER) || defined(__MINGW32__)
  228. #include <intrin.h>
  229. #else
  230. #if !defined(__riscv)
  231. #include <immintrin.h>
  232. #endif
  233. #endif
  234. #endif
  235. #endif
  236. #ifdef __F16C__
  237. #ifdef _MSC_VER
  238. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  239. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  240. #else
  241. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  242. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  243. #endif
  244. #elif defined(__POWER9_VECTOR__)
  245. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  246. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  247. /* the inline asm below is about 12% faster than the lookup method */
  248. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  249. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  250. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  251. register float f;
  252. register double d;
  253. __asm__(
  254. "mtfprd %0,%2\n"
  255. "xscvhpdp %0,%0\n"
  256. "frsp %1,%0\n" :
  257. /* temp */ "=d"(d),
  258. /* out */ "=f"(f):
  259. /* in */ "r"(h));
  260. return f;
  261. }
  262. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  263. register double d;
  264. register ggml_fp16_t r;
  265. __asm__( /* xscvdphp can work on double or single precision */
  266. "xscvdphp %0,%2\n"
  267. "mffprd %1,%0\n" :
  268. /* temp */ "=d"(d),
  269. /* out */ "=r"(r):
  270. /* in */ "f"(f));
  271. return r;
  272. }
  273. #else
  274. // FP16 <-> FP32
  275. // ref: https://github.com/Maratyszcza/FP16
  276. static inline float fp32_from_bits(uint32_t w) {
  277. union {
  278. uint32_t as_bits;
  279. float as_value;
  280. } fp32;
  281. fp32.as_bits = w;
  282. return fp32.as_value;
  283. }
  284. static inline uint32_t fp32_to_bits(float f) {
  285. union {
  286. float as_value;
  287. uint32_t as_bits;
  288. } fp32;
  289. fp32.as_value = f;
  290. return fp32.as_bits;
  291. }
  292. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  293. const uint32_t w = (uint32_t) h << 16;
  294. const uint32_t sign = w & UINT32_C(0x80000000);
  295. const uint32_t two_w = w + w;
  296. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  297. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  298. const float exp_scale = 0x1.0p-112f;
  299. #else
  300. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  301. #endif
  302. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  303. const uint32_t magic_mask = UINT32_C(126) << 23;
  304. const float magic_bias = 0.5f;
  305. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  306. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  307. const uint32_t result = sign |
  308. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  309. return fp32_from_bits(result);
  310. }
  311. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  312. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  313. const float scale_to_inf = 0x1.0p+112f;
  314. const float scale_to_zero = 0x1.0p-110f;
  315. #else
  316. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  317. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  318. #endif
  319. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  320. const uint32_t w = fp32_to_bits(f);
  321. const uint32_t shl1_w = w + w;
  322. const uint32_t sign = w & UINT32_C(0x80000000);
  323. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  324. if (bias < UINT32_C(0x71000000)) {
  325. bias = UINT32_C(0x71000000);
  326. }
  327. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  328. const uint32_t bits = fp32_to_bits(base);
  329. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  330. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  331. const uint32_t nonsign = exp_bits + mantissa_bits;
  332. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  333. }
  334. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  335. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  336. #endif // __F16C__
  337. #endif // __ARM_NEON
  338. //
  339. // global data
  340. //
  341. // precomputed gelu table for f16 (128 KB)
  342. static ggml_fp16_t table_gelu_f16[1 << 16];
  343. // precomputed quick gelu table for f16 (128 KB)
  344. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  345. // precomputed silu table for f16 (128 KB)
  346. static ggml_fp16_t table_silu_f16[1 << 16];
  347. // precomputed exp table for f16 (128 KB)
  348. static ggml_fp16_t table_exp_f16[1 << 16];
  349. // precomputed f32 table for f16 (256 KB)
  350. static float table_f32_f16[1 << 16];
  351. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  352. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  353. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  354. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  355. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  356. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  357. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  358. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  359. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  360. // precomputed tables for expanding 8bits to 8 bytes:
  361. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  362. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  363. #endif
  364. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  365. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  366. // This is also true for POWER9.
  367. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  368. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  369. uint16_t s;
  370. memcpy(&s, &f, sizeof(uint16_t));
  371. return table_f32_f16[s];
  372. }
  373. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  374. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  375. #endif
  376. // note: do not use these inside ggml.c
  377. // these are meant to be used via the ggml.h API
  378. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  379. return (float) GGML_FP16_TO_FP32(x);
  380. }
  381. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  382. return GGML_FP32_TO_FP16(x);
  383. }
  384. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  385. for (size_t i = 0; i < n; i++) {
  386. y[i] = GGML_FP16_TO_FP32(x[i]);
  387. }
  388. }
  389. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  390. size_t i = 0;
  391. #if defined(__F16C__)
  392. for (; i + 7 < n; i += 8) {
  393. __m256 x_vec = _mm256_loadu_ps(x + i);
  394. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  395. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  396. }
  397. for(; i + 3 < n; i += 4) {
  398. __m128 x_vec = _mm_loadu_ps(x + i);
  399. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  400. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  401. }
  402. #endif
  403. for (; i < n; i++) {
  404. y[i] = GGML_FP32_TO_FP16(x[i]);
  405. }
  406. }
  407. //
  408. // timing
  409. //
  410. #if defined(_MSC_VER) || defined(__MINGW32__)
  411. static int64_t timer_freq, timer_start;
  412. void ggml_time_init(void) {
  413. LARGE_INTEGER t;
  414. QueryPerformanceFrequency(&t);
  415. timer_freq = t.QuadPart;
  416. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  417. // and the uptime is high enough.
  418. // We subtract the program start time to reduce the likelihood of that happening.
  419. QueryPerformanceCounter(&t);
  420. timer_start = t.QuadPart;
  421. }
  422. int64_t ggml_time_ms(void) {
  423. LARGE_INTEGER t;
  424. QueryPerformanceCounter(&t);
  425. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  426. }
  427. int64_t ggml_time_us(void) {
  428. LARGE_INTEGER t;
  429. QueryPerformanceCounter(&t);
  430. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  431. }
  432. #else
  433. void ggml_time_init(void) {}
  434. int64_t ggml_time_ms(void) {
  435. struct timespec ts;
  436. clock_gettime(CLOCK_MONOTONIC, &ts);
  437. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  438. }
  439. int64_t ggml_time_us(void) {
  440. struct timespec ts;
  441. clock_gettime(CLOCK_MONOTONIC, &ts);
  442. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  443. }
  444. #endif
  445. int64_t ggml_cycles(void) {
  446. return clock();
  447. }
  448. int64_t ggml_cycles_per_ms(void) {
  449. return CLOCKS_PER_SEC/1000;
  450. }
  451. #ifdef GGML_PERF
  452. #define ggml_perf_time_ms() ggml_time_ms()
  453. #define ggml_perf_time_us() ggml_time_us()
  454. #define ggml_perf_cycles() ggml_cycles()
  455. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  456. #else
  457. #define ggml_perf_time_ms() 0
  458. #define ggml_perf_time_us() 0
  459. #define ggml_perf_cycles() 0
  460. #define ggml_perf_cycles_per_ms() 0
  461. #endif
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. //
  476. // quantization
  477. //
  478. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  479. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  480. // multiply int8_t, add results pairwise twice
  481. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  482. // Get absolute values of x vectors
  483. const __m128i ax = _mm_sign_epi8(x, x);
  484. // Sign the values of the y vectors
  485. const __m128i sy = _mm_sign_epi8(y, x);
  486. // Perform multiplication and create 16-bit values
  487. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  488. const __m128i ones = _mm_set1_epi16(1);
  489. return _mm_madd_epi16(ones, dot);
  490. }
  491. #if __AVX__ || __AVX2__ || __AVX512F__
  492. // horizontally add 8 floats
  493. static inline float hsum_float_8(const __m256 x) {
  494. __m128 res = _mm256_extractf128_ps(x, 1);
  495. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  496. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  497. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  498. return _mm_cvtss_f32(res);
  499. }
  500. // horizontally add 8 int32_t
  501. static inline int hsum_i32_8(const __m256i a) {
  502. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  503. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  504. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  505. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  506. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  507. }
  508. // horizontally add 4 int32_t
  509. static inline int hsum_i32_4(const __m128i a) {
  510. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  511. const __m128i sum64 = _mm_add_epi32(hi64, a);
  512. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  513. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  514. }
  515. #if defined(__AVX2__) || defined(__AVX512F__)
  516. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  517. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  518. uint32_t x32;
  519. memcpy(&x32, x, sizeof(uint32_t));
  520. const __m256i shuf_mask = _mm256_set_epi64x(
  521. 0x0303030303030303, 0x0202020202020202,
  522. 0x0101010101010101, 0x0000000000000000);
  523. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  524. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  525. bytes = _mm256_or_si256(bytes, bit_mask);
  526. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  527. }
  528. // Unpack 32 4-bit fields into 32 bytes
  529. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  530. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  531. {
  532. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  533. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  534. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  535. return _mm256_and_si256(lowMask, bytes);
  536. }
  537. // add int16_t pairwise and return as float vector
  538. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  539. const __m256i ones = _mm256_set1_epi16(1);
  540. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  541. return _mm256_cvtepi32_ps(summed_pairs);
  542. }
  543. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  544. #if __AVXVNNI__
  545. const __m256i zero = _mm256_setzero_si256();
  546. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  547. return _mm256_cvtepi32_ps(summed_pairs);
  548. #else
  549. // Perform multiplication and create 16-bit values
  550. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  551. return sum_i16_pairs_float(dot);
  552. #endif
  553. }
  554. // multiply int8_t, add results pairwise twice and return as float vector
  555. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  556. #if __AVXVNNIINT8__
  557. const __m256i zero = _mm256_setzero_si256();
  558. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  559. return _mm256_cvtepi32_ps(summed_pairs);
  560. #else
  561. // Get absolute values of x vectors
  562. const __m256i ax = _mm256_sign_epi8(x, x);
  563. // Sign the values of the y vectors
  564. const __m256i sy = _mm256_sign_epi8(y, x);
  565. return mul_sum_us8_pairs_float(ax, sy);
  566. #endif
  567. }
  568. static inline __m128i packNibbles( __m256i bytes )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. #if __AVX512F__
  572. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  573. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  574. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  575. #else
  576. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  577. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  578. __m256i low = _mm256_and_si256( lowByte, bytes );
  579. high = _mm256_srli_epi16( high, 4 );
  580. bytes = _mm256_or_si256( low, high );
  581. // Compress uint16_t lanes into bytes
  582. __m128i r0 = _mm256_castsi256_si128( bytes );
  583. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  584. return _mm_packus_epi16( r0, r1 );
  585. #endif
  586. }
  587. #elif defined(__AVX__)
  588. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  589. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  590. uint32_t x32;
  591. memcpy(&x32, x, sizeof(uint32_t));
  592. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  593. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  594. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  595. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  596. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  597. bytesl = _mm_or_si128(bytesl, bit_mask);
  598. bytesh = _mm_or_si128(bytesh, bit_mask);
  599. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  600. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  601. return MM256_SET_M128I(bytesh, bytesl);
  602. }
  603. // Unpack 32 4-bit fields into 32 bytes
  604. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  605. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  606. {
  607. // Load 16 bytes from memory
  608. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  609. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  610. const __m128i lowMask = _mm_set1_epi8(0xF);
  611. tmpl = _mm_and_si128(lowMask, tmpl);
  612. tmph = _mm_and_si128(lowMask, tmph);
  613. return MM256_SET_M128I(tmph, tmpl);
  614. }
  615. // add int16_t pairwise and return as float vector
  616. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  617. const __m128i ones = _mm_set1_epi16(1);
  618. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  619. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  620. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  621. return _mm256_cvtepi32_ps(summed_pairs);
  622. }
  623. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  624. const __m128i axl = _mm256_castsi256_si128(ax);
  625. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  626. const __m128i syl = _mm256_castsi256_si128(sy);
  627. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  628. // Perform multiplication and create 16-bit values
  629. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  630. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  631. return sum_i16_pairs_float(doth, dotl);
  632. }
  633. // multiply int8_t, add results pairwise twice and return as float vector
  634. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  635. const __m128i xl = _mm256_castsi256_si128(x);
  636. const __m128i xh = _mm256_extractf128_si256(x, 1);
  637. const __m128i yl = _mm256_castsi256_si128(y);
  638. const __m128i yh = _mm256_extractf128_si256(y, 1);
  639. // Get absolute values of x vectors
  640. const __m128i axl = _mm_sign_epi8(xl, xl);
  641. const __m128i axh = _mm_sign_epi8(xh, xh);
  642. // Sign the values of the y vectors
  643. const __m128i syl = _mm_sign_epi8(yl, xl);
  644. const __m128i syh = _mm_sign_epi8(yh, xh);
  645. // Perform multiplication and create 16-bit values
  646. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  647. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  648. return sum_i16_pairs_float(doth, dotl);
  649. }
  650. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  651. {
  652. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  653. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  654. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  655. __m128i low = _mm_and_si128( lowByte, bytes1 );
  656. high = _mm_srli_epi16( high, 4 );
  657. bytes1 = _mm_or_si128( low, high );
  658. high = _mm_andnot_si128( lowByte, bytes2 );
  659. low = _mm_and_si128( lowByte, bytes2 );
  660. high = _mm_srli_epi16( high, 4 );
  661. bytes2 = _mm_or_si128( low, high );
  662. return _mm_packus_epi16( bytes1, bytes2);
  663. }
  664. #endif
  665. #elif defined(__SSSE3__)
  666. // horizontally add 4x4 floats
  667. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  668. __m128 res_0 =_mm_hadd_ps(a, b);
  669. __m128 res_1 =_mm_hadd_ps(c, d);
  670. __m128 res =_mm_hadd_ps(res_0, res_1);
  671. res =_mm_hadd_ps(res, res);
  672. res =_mm_hadd_ps(res, res);
  673. return _mm_cvtss_f32(res);
  674. }
  675. #endif // __AVX__ || __AVX2__ || __AVX512F__
  676. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  677. #if defined(__ARM_NEON)
  678. #if !defined(__aarch64__)
  679. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  680. return
  681. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  682. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  683. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  684. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  685. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  686. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  687. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  688. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  689. }
  690. inline static int16_t vaddvq_s8(int8x16_t v) {
  691. return
  692. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  693. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  694. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  695. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  696. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  697. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  698. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  699. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  700. }
  701. inline static int32_t vaddvq_s16(int16x8_t v) {
  702. return
  703. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  704. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  705. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  706. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  707. }
  708. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  709. return
  710. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  711. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  712. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  713. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  714. }
  715. inline static int32_t vaddvq_s32(int32x4_t v) {
  716. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  717. }
  718. inline static float vaddvq_f32(float32x4_t v) {
  719. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  720. }
  721. inline static float vminvq_f32(float32x4_t v) {
  722. return
  723. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  724. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  725. }
  726. inline static float vmaxvq_f32(float32x4_t v) {
  727. return
  728. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  729. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  730. }
  731. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  732. int32x4_t res;
  733. res[0] = roundf(vgetq_lane_f32(v, 0));
  734. res[1] = roundf(vgetq_lane_f32(v, 1));
  735. res[2] = roundf(vgetq_lane_f32(v, 2));
  736. res[3] = roundf(vgetq_lane_f32(v, 3));
  737. return res;
  738. }
  739. #endif
  740. #endif
  741. #define QK4_0 32
  742. typedef struct {
  743. ggml_fp16_t d; // delta
  744. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  745. } block_q4_0;
  746. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  747. #define QK4_1 32
  748. typedef struct {
  749. ggml_fp16_t d; // delta
  750. ggml_fp16_t m; // min
  751. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  752. } block_q4_1;
  753. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  754. #define QK5_0 32
  755. typedef struct {
  756. ggml_fp16_t d; // delta
  757. uint8_t qh[4]; // 5-th bit of quants
  758. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  759. } block_q5_0;
  760. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  761. #define QK5_1 32
  762. typedef struct {
  763. ggml_fp16_t d; // delta
  764. ggml_fp16_t m; // min
  765. uint8_t qh[4]; // 5-th bit of quants
  766. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  767. } block_q5_1;
  768. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  769. #define QK8_0 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. int8_t qs[QK8_0]; // quants
  773. } block_q8_0;
  774. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  775. #define QK8_1 32
  776. typedef struct {
  777. float d; // delta
  778. float s; // d * sum(qs[i])
  779. int8_t qs[QK8_1]; // quants
  780. } block_q8_1;
  781. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  782. // reference implementation for deterministic creation of model files
  783. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  784. static const int qk = QK4_0;
  785. assert(k % qk == 0);
  786. const int nb = k / qk;
  787. for (int i = 0; i < nb; i++) {
  788. float amax = 0.0f; // absolute max
  789. float max = 0.0f;
  790. for (int j = 0; j < qk; j++) {
  791. const float v = x[i*qk + j];
  792. if (amax < fabsf(v)) {
  793. amax = fabsf(v);
  794. max = v;
  795. }
  796. }
  797. const float d = max / -8;
  798. const float id = d ? 1.0f/d : 0.0f;
  799. y[i].d = GGML_FP32_TO_FP16(d);
  800. for (int j = 0; j < qk/2; ++j) {
  801. const float x0 = x[i*qk + 0 + j]*id;
  802. const float x1 = x[i*qk + qk/2 + j]*id;
  803. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  804. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  805. y[i].qs[j] = xi0;
  806. y[i].qs[j] |= xi1 << 4;
  807. }
  808. }
  809. }
  810. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  811. quantize_row_q4_0_reference(x, y, k);
  812. }
  813. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  814. const int qk = QK4_1;
  815. assert(k % qk == 0);
  816. const int nb = k / qk;
  817. for (int i = 0; i < nb; i++) {
  818. float min = FLT_MAX;
  819. float max = -FLT_MAX;
  820. for (int j = 0; j < qk; j++) {
  821. const float v = x[i*qk + j];
  822. if (v < min) min = v;
  823. if (v > max) max = v;
  824. }
  825. const float d = (max - min) / ((1 << 4) - 1);
  826. const float id = d ? 1.0f/d : 0.0f;
  827. y[i].d = GGML_FP32_TO_FP16(d);
  828. y[i].m = GGML_FP32_TO_FP16(min);
  829. for (int j = 0; j < qk/2; ++j) {
  830. const float x0 = (x[i*qk + 0 + j] - min)*id;
  831. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  832. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  833. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  834. y[i].qs[j] = xi0;
  835. y[i].qs[j] |= xi1 << 4;
  836. }
  837. }
  838. }
  839. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  840. quantize_row_q4_1_reference(x, y, k);
  841. }
  842. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  843. static const int qk = QK5_0;
  844. assert(k % qk == 0);
  845. const int nb = k / qk;
  846. for (int i = 0; i < nb; i++) {
  847. float amax = 0.0f; // absolute max
  848. float max = 0.0f;
  849. for (int j = 0; j < qk; j++) {
  850. const float v = x[i*qk + j];
  851. if (amax < fabsf(v)) {
  852. amax = fabsf(v);
  853. max = v;
  854. }
  855. }
  856. const float d = max / -16;
  857. const float id = d ? 1.0f/d : 0.0f;
  858. y[i].d = GGML_FP32_TO_FP16(d);
  859. uint32_t qh = 0;
  860. for (int j = 0; j < qk/2; ++j) {
  861. const float x0 = x[i*qk + 0 + j]*id;
  862. const float x1 = x[i*qk + qk/2 + j]*id;
  863. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  864. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  865. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  866. // get the 5-th bit and store it in qh at the right position
  867. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  868. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  869. }
  870. memcpy(&y[i].qh, &qh, sizeof(qh));
  871. }
  872. }
  873. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  874. quantize_row_q5_0_reference(x, y, k);
  875. }
  876. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  877. const int qk = QK5_1;
  878. assert(k % qk == 0);
  879. const int nb = k / qk;
  880. for (int i = 0; i < nb; i++) {
  881. float min = FLT_MAX;
  882. float max = -FLT_MAX;
  883. for (int j = 0; j < qk; j++) {
  884. const float v = x[i*qk + j];
  885. if (v < min) min = v;
  886. if (v > max) max = v;
  887. }
  888. const float d = (max - min) / ((1 << 5) - 1);
  889. const float id = d ? 1.0f/d : 0.0f;
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. y[i].m = GGML_FP32_TO_FP16(min);
  892. uint32_t qh = 0;
  893. for (int j = 0; j < qk/2; ++j) {
  894. const float x0 = (x[i*qk + 0 + j] - min)*id;
  895. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  896. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  897. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  898. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  899. // get the 5-th bit and store it in qh at the right position
  900. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  901. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  902. }
  903. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  904. }
  905. }
  906. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  907. quantize_row_q5_1_reference(x, y, k);
  908. }
  909. // reference implementation for deterministic creation of model files
  910. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  911. assert(k % QK8_0 == 0);
  912. const int nb = k / QK8_0;
  913. for (int i = 0; i < nb; i++) {
  914. float amax = 0.0f; // absolute max
  915. for (int j = 0; j < QK8_0; j++) {
  916. const float v = x[i*QK8_0 + j];
  917. amax = MAX(amax, fabsf(v));
  918. }
  919. const float d = amax / ((1 << 7) - 1);
  920. const float id = d ? 1.0f/d : 0.0f;
  921. y[i].d = GGML_FP32_TO_FP16(d);
  922. for (int j = 0; j < QK8_0; ++j) {
  923. const float x0 = x[i*QK8_0 + j]*id;
  924. y[i].qs[j] = roundf(x0);
  925. }
  926. }
  927. }
  928. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  929. assert(QK8_0 == 32);
  930. assert(k % QK8_0 == 0);
  931. const int nb = k / QK8_0;
  932. block_q8_0 * restrict y = vy;
  933. #if defined(__ARM_NEON)
  934. for (int i = 0; i < nb; i++) {
  935. float32x4_t srcv [8];
  936. float32x4_t asrcv[8];
  937. float32x4_t amaxv[8];
  938. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  939. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  940. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  941. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  942. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  943. const float amax = vmaxvq_f32(amaxv[0]);
  944. const float d = amax / ((1 << 7) - 1);
  945. const float id = d ? 1.0f/d : 0.0f;
  946. y[i].d = GGML_FP32_TO_FP16(d);
  947. for (int j = 0; j < 8; j++) {
  948. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  949. const int32x4_t vi = vcvtnq_s32_f32(v);
  950. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  951. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  952. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  953. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  954. }
  955. }
  956. #elif defined(__wasm_simd128__)
  957. for (int i = 0; i < nb; i++) {
  958. v128_t srcv [8];
  959. v128_t asrcv[8];
  960. v128_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  967. wasm_f32x4_extract_lane(amaxv[0], 1)),
  968. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  969. wasm_f32x4_extract_lane(amaxv[0], 3)));
  970. const float d = amax / ((1 << 7) - 1);
  971. const float id = d ? 1.0f/d : 0.0f;
  972. y[i].d = GGML_FP32_TO_FP16(d);
  973. for (int j = 0; j < 8; j++) {
  974. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  975. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  976. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  977. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  978. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  979. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  980. }
  981. }
  982. #elif defined(__AVX2__) || defined(__AVX__)
  983. for (int i = 0; i < nb; i++) {
  984. // Load elements into 4 AVX vectors
  985. __m256 v0 = _mm256_loadu_ps( x );
  986. __m256 v1 = _mm256_loadu_ps( x + 8 );
  987. __m256 v2 = _mm256_loadu_ps( x + 16 );
  988. __m256 v3 = _mm256_loadu_ps( x + 24 );
  989. x += 32;
  990. // Compute max(abs(e)) for the block
  991. const __m256 signBit = _mm256_set1_ps( -0.0f );
  992. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  993. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  994. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  995. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  996. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  997. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  998. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  999. const float maxScalar = _mm_cvtss_f32( max4 );
  1000. // Quantize these floats
  1001. const float d = maxScalar / 127.f;
  1002. y[i].d = GGML_FP32_TO_FP16(d);
  1003. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1004. const __m256 mul = _mm256_set1_ps( id );
  1005. // Apply the multiplier
  1006. v0 = _mm256_mul_ps( v0, mul );
  1007. v1 = _mm256_mul_ps( v1, mul );
  1008. v2 = _mm256_mul_ps( v2, mul );
  1009. v3 = _mm256_mul_ps( v3, mul );
  1010. // Round to nearest integer
  1011. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1012. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1013. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1014. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1015. // Convert floats to integers
  1016. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1017. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1018. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1019. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1020. #if defined(__AVX2__)
  1021. // Convert int32 to int16
  1022. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1023. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1024. // Convert int16 to int8
  1025. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1026. // We got our precious signed bytes, but the order is now wrong
  1027. // These AVX2 pack instructions process 16-byte pieces independently
  1028. // The following instruction is fixing the order
  1029. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1030. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1031. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1032. #else
  1033. // Since we don't have in AVX some necessary functions,
  1034. // we split the registers in half and call AVX2 analogs from SSE
  1035. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1036. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1037. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1038. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1039. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1040. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1041. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1042. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1043. // Convert int32 to int16
  1044. ni0 = _mm_packs_epi32( ni0, ni1 );
  1045. ni2 = _mm_packs_epi32( ni2, ni3 );
  1046. ni4 = _mm_packs_epi32( ni4, ni5 );
  1047. ni6 = _mm_packs_epi32( ni6, ni7 );
  1048. // Convert int16 to int8
  1049. ni0 = _mm_packs_epi16( ni0, ni2 );
  1050. ni4 = _mm_packs_epi16( ni4, ni6 );
  1051. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1052. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1053. #endif
  1054. }
  1055. #else
  1056. // scalar
  1057. quantize_row_q8_0_reference(x, y, k);
  1058. #endif
  1059. }
  1060. // reference implementation for deterministic creation of model files
  1061. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1062. assert(QK8_1 == 32);
  1063. assert(k % QK8_1 == 0);
  1064. const int nb = k / QK8_1;
  1065. for (int i = 0; i < nb; i++) {
  1066. float amax = 0.0f; // absolute max
  1067. for (int j = 0; j < QK8_1; j++) {
  1068. const float v = x[i*QK8_1 + j];
  1069. amax = MAX(amax, fabsf(v));
  1070. }
  1071. const float d = amax / ((1 << 7) - 1);
  1072. const float id = d ? 1.0f/d : 0.0f;
  1073. y[i].d = d;
  1074. int sum = 0;
  1075. for (int j = 0; j < QK8_1/2; ++j) {
  1076. const float v0 = x[i*QK8_1 + j]*id;
  1077. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1078. y[i].qs[ j] = roundf(v0);
  1079. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1080. sum += y[i].qs[ j];
  1081. sum += y[i].qs[QK8_1/2 + j];
  1082. }
  1083. y[i].s = sum*d;
  1084. }
  1085. }
  1086. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1087. assert(k % QK8_1 == 0);
  1088. const int nb = k / QK8_1;
  1089. block_q8_1 * restrict y = vy;
  1090. #if defined(__ARM_NEON)
  1091. for (int i = 0; i < nb; i++) {
  1092. float32x4_t srcv [8];
  1093. float32x4_t asrcv[8];
  1094. float32x4_t amaxv[8];
  1095. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1096. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1097. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1098. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1099. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1100. const float amax = vmaxvq_f32(amaxv[0]);
  1101. const float d = amax / ((1 << 7) - 1);
  1102. const float id = d ? 1.0f/d : 0.0f;
  1103. y[i].d = d;
  1104. int32x4_t accv = vdupq_n_s32(0);
  1105. for (int j = 0; j < 8; j++) {
  1106. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1107. const int32x4_t vi = vcvtnq_s32_f32(v);
  1108. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1109. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1110. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1111. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1112. accv = vaddq_s32(accv, vi);
  1113. }
  1114. y[i].s = d * vaddvq_s32(accv);
  1115. }
  1116. #elif defined(__wasm_simd128__)
  1117. for (int i = 0; i < nb; i++) {
  1118. v128_t srcv [8];
  1119. v128_t asrcv[8];
  1120. v128_t amaxv[8];
  1121. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1122. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1123. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1124. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1125. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1126. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1127. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1128. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1129. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1130. const float d = amax / ((1 << 7) - 1);
  1131. const float id = d ? 1.0f/d : 0.0f;
  1132. y[i].d = d;
  1133. v128_t accv = wasm_i32x4_splat(0);
  1134. for (int j = 0; j < 8; j++) {
  1135. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1136. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1137. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1138. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1139. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1140. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1141. accv = wasm_i32x4_add(accv, vi);
  1142. }
  1143. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1144. wasm_i32x4_extract_lane(accv, 1) +
  1145. wasm_i32x4_extract_lane(accv, 2) +
  1146. wasm_i32x4_extract_lane(accv, 3));
  1147. }
  1148. #elif defined(__AVX2__) || defined(__AVX__)
  1149. for (int i = 0; i < nb; i++) {
  1150. // Load elements into 4 AVX vectors
  1151. __m256 v0 = _mm256_loadu_ps( x );
  1152. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1153. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1154. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1155. x += 32;
  1156. // Compute max(abs(e)) for the block
  1157. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1158. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1159. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1160. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1161. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1162. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1163. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1164. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1165. const float maxScalar = _mm_cvtss_f32( max4 );
  1166. // Quantize these floats
  1167. const float d = maxScalar / 127.f;
  1168. y[i].d = d;
  1169. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1170. const __m256 mul = _mm256_set1_ps( id );
  1171. // Apply the multiplier
  1172. v0 = _mm256_mul_ps( v0, mul );
  1173. v1 = _mm256_mul_ps( v1, mul );
  1174. v2 = _mm256_mul_ps( v2, mul );
  1175. v3 = _mm256_mul_ps( v3, mul );
  1176. // Round to nearest integer
  1177. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1178. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1179. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1180. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1181. // Convert floats to integers
  1182. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1183. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1184. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1185. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1186. #if defined(__AVX2__)
  1187. // Compute the sum of the quants and set y[i].s
  1188. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1189. // Convert int32 to int16
  1190. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1191. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1192. // Convert int16 to int8
  1193. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1194. // We got our precious signed bytes, but the order is now wrong
  1195. // These AVX2 pack instructions process 16-byte pieces independently
  1196. // The following instruction is fixing the order
  1197. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1198. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1199. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1200. #else
  1201. // Since we don't have in AVX some necessary functions,
  1202. // we split the registers in half and call AVX2 analogs from SSE
  1203. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1204. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1205. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1206. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1207. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1208. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1209. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1210. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1211. // Compute the sum of the quants and set y[i].s
  1212. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1213. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1214. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1215. // Convert int32 to int16
  1216. ni0 = _mm_packs_epi32( ni0, ni1 );
  1217. ni2 = _mm_packs_epi32( ni2, ni3 );
  1218. ni4 = _mm_packs_epi32( ni4, ni5 );
  1219. ni6 = _mm_packs_epi32( ni6, ni7 );
  1220. // Convert int16 to int8
  1221. ni0 = _mm_packs_epi16( ni0, ni2 );
  1222. ni4 = _mm_packs_epi16( ni4, ni6 );
  1223. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1224. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1225. #endif
  1226. }
  1227. #else
  1228. // scalar
  1229. quantize_row_q8_1_reference(x, y, k);
  1230. #endif
  1231. }
  1232. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1233. static const int qk = QK4_0;
  1234. assert(k % qk == 0);
  1235. const int nb = k / qk;
  1236. for (int i = 0; i < nb; i++) {
  1237. const float d = GGML_FP16_TO_FP32(x[i].d);
  1238. for (int j = 0; j < qk/2; ++j) {
  1239. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1240. const int x1 = (x[i].qs[j] >> 4) - 8;
  1241. y[i*qk + j + 0 ] = x0*d;
  1242. y[i*qk + j + qk/2] = x1*d;
  1243. }
  1244. }
  1245. }
  1246. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1247. static const int qk = QK4_1;
  1248. assert(k % qk == 0);
  1249. const int nb = k / qk;
  1250. for (int i = 0; i < nb; i++) {
  1251. const float d = GGML_FP16_TO_FP32(x[i].d);
  1252. const float m = GGML_FP16_TO_FP32(x[i].m);
  1253. for (int j = 0; j < qk/2; ++j) {
  1254. const int x0 = (x[i].qs[j] & 0x0F);
  1255. const int x1 = (x[i].qs[j] >> 4);
  1256. y[i*qk + j + 0 ] = x0*d + m;
  1257. y[i*qk + j + qk/2] = x1*d + m;
  1258. }
  1259. }
  1260. }
  1261. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1262. static const int qk = QK5_0;
  1263. assert(k % qk == 0);
  1264. const int nb = k / qk;
  1265. for (int i = 0; i < nb; i++) {
  1266. const float d = GGML_FP16_TO_FP32(x[i].d);
  1267. uint32_t qh;
  1268. memcpy(&qh, x[i].qh, sizeof(qh));
  1269. for (int j = 0; j < qk/2; ++j) {
  1270. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1271. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1272. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1273. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1274. y[i*qk + j + 0 ] = x0*d;
  1275. y[i*qk + j + qk/2] = x1*d;
  1276. }
  1277. }
  1278. }
  1279. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1280. static const int qk = QK5_1;
  1281. assert(k % qk == 0);
  1282. const int nb = k / qk;
  1283. for (int i = 0; i < nb; i++) {
  1284. const float d = GGML_FP16_TO_FP32(x[i].d);
  1285. const float m = GGML_FP16_TO_FP32(x[i].m);
  1286. uint32_t qh;
  1287. memcpy(&qh, x[i].qh, sizeof(qh));
  1288. for (int j = 0; j < qk/2; ++j) {
  1289. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1290. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1291. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1292. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1293. y[i*qk + j + 0 ] = x0*d + m;
  1294. y[i*qk + j + qk/2] = x1*d + m;
  1295. }
  1296. }
  1297. }
  1298. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1299. static const int qk = QK8_0;
  1300. assert(k % qk == 0);
  1301. const int nb = k / qk;
  1302. const block_q8_0 * restrict x = vx;
  1303. for (int i = 0; i < nb; i++) {
  1304. const float d = GGML_FP16_TO_FP32(x[i].d);
  1305. for (int j = 0; j < qk; ++j) {
  1306. y[i*qk + j] = x[i].qs[j]*d;
  1307. }
  1308. }
  1309. }
  1310. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1311. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1312. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1313. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1314. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1315. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1316. [GGML_TYPE_Q4_0] = {
  1317. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1318. .quantize_row_q = quantize_row_q4_0,
  1319. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1320. .quantize_row_q_dot = quantize_row_q8_0,
  1321. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1322. .vec_dot_type = GGML_TYPE_Q8_0,
  1323. },
  1324. [GGML_TYPE_Q4_1] = {
  1325. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1326. .quantize_row_q = quantize_row_q4_1,
  1327. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1328. .quantize_row_q_dot = quantize_row_q8_1,
  1329. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1330. .vec_dot_type = GGML_TYPE_Q8_1,
  1331. },
  1332. [GGML_TYPE_Q5_0] = {
  1333. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1334. .quantize_row_q = quantize_row_q5_0,
  1335. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1336. .quantize_row_q_dot = quantize_row_q8_0,
  1337. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1338. .vec_dot_type = GGML_TYPE_Q8_0,
  1339. },
  1340. [GGML_TYPE_Q5_1] = {
  1341. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1342. .quantize_row_q = quantize_row_q5_1,
  1343. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1344. .quantize_row_q_dot = quantize_row_q8_1,
  1345. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1346. .vec_dot_type = GGML_TYPE_Q8_1,
  1347. },
  1348. [GGML_TYPE_Q8_0] = {
  1349. .dequantize_row_q = dequantize_row_q8_0,
  1350. .quantize_row_q = quantize_row_q8_0,
  1351. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1352. .quantize_row_q_dot = quantize_row_q8_0,
  1353. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1354. .vec_dot_type = GGML_TYPE_Q8_0,
  1355. },
  1356. [GGML_TYPE_Q8_1] = {
  1357. .dequantize_row_q = NULL, // TODO
  1358. .quantize_row_q = quantize_row_q8_1,
  1359. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1360. .quantize_row_q_dot = quantize_row_q8_1,
  1361. .vec_dot_q = NULL, // TODO
  1362. .vec_dot_type = GGML_TYPE_Q8_1,
  1363. },
  1364. #ifdef GGML_USE_K_QUANTS
  1365. [GGML_TYPE_Q2_K] = {
  1366. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1367. .quantize_row_q = quantize_row_q2_K,
  1368. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1369. .quantize_row_q_dot = quantize_row_q8_K,
  1370. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1371. .vec_dot_type = GGML_TYPE_Q8_K,
  1372. },
  1373. [GGML_TYPE_Q3_K] = {
  1374. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1375. .quantize_row_q = quantize_row_q3_K,
  1376. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1377. .quantize_row_q_dot = quantize_row_q8_K,
  1378. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1379. .vec_dot_type = GGML_TYPE_Q8_K,
  1380. },
  1381. [GGML_TYPE_Q4_K] = {
  1382. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1383. .quantize_row_q = quantize_row_q4_K,
  1384. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1385. .quantize_row_q_dot = quantize_row_q8_K,
  1386. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1387. .vec_dot_type = GGML_TYPE_Q8_K,
  1388. },
  1389. [GGML_TYPE_Q5_K] = {
  1390. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1391. .quantize_row_q = quantize_row_q5_K,
  1392. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1393. .quantize_row_q_dot = quantize_row_q8_K,
  1394. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1395. .vec_dot_type = GGML_TYPE_Q8_K,
  1396. },
  1397. [GGML_TYPE_Q6_K] = {
  1398. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1399. .quantize_row_q = quantize_row_q6_K,
  1400. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1401. .quantize_row_q_dot = quantize_row_q8_K,
  1402. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1403. .vec_dot_type = GGML_TYPE_Q8_K,
  1404. },
  1405. #endif
  1406. };
  1407. // For internal test use
  1408. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1409. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1410. return quantize_fns[i];
  1411. }
  1412. //
  1413. // simd mappings
  1414. //
  1415. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1416. // we then implement the fundamental computation operations below using only these macros
  1417. // adding support for new architectures requires to define the corresponding SIMD macros
  1418. //
  1419. // GGML_F32_STEP / GGML_F16_STEP
  1420. // number of elements to process in a single step
  1421. //
  1422. // GGML_F32_EPR / GGML_F16_EPR
  1423. // number of elements to fit in a single register
  1424. //
  1425. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1426. #define GGML_SIMD
  1427. // F32 NEON
  1428. #define GGML_F32_STEP 16
  1429. #define GGML_F32_EPR 4
  1430. #define GGML_F32x4 float32x4_t
  1431. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1432. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1433. #define GGML_F32x4_LOAD vld1q_f32
  1434. #define GGML_F32x4_STORE vst1q_f32
  1435. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1436. #define GGML_F32x4_ADD vaddq_f32
  1437. #define GGML_F32x4_MUL vmulq_f32
  1438. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1439. #define GGML_F32x4_REDUCE(res, x) \
  1440. { \
  1441. int offset = GGML_F32_ARR >> 1; \
  1442. for (int i = 0; i < offset; ++i) { \
  1443. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1444. } \
  1445. offset >>= 1; \
  1446. for (int i = 0; i < offset; ++i) { \
  1447. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1448. } \
  1449. offset >>= 1; \
  1450. for (int i = 0; i < offset; ++i) { \
  1451. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1452. } \
  1453. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1454. }
  1455. #define GGML_F32_VEC GGML_F32x4
  1456. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1457. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1458. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1459. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1460. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1461. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1462. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1463. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1464. // F16 NEON
  1465. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1466. #define GGML_F16_STEP 32
  1467. #define GGML_F16_EPR 8
  1468. #define GGML_F16x8 float16x8_t
  1469. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1470. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1471. #define GGML_F16x8_LOAD vld1q_f16
  1472. #define GGML_F16x8_STORE vst1q_f16
  1473. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1474. #define GGML_F16x8_ADD vaddq_f16
  1475. #define GGML_F16x8_MUL vmulq_f16
  1476. #define GGML_F16x8_REDUCE(res, x) \
  1477. { \
  1478. int offset = GGML_F16_ARR >> 1; \
  1479. for (int i = 0; i < offset; ++i) { \
  1480. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1481. } \
  1482. offset >>= 1; \
  1483. for (int i = 0; i < offset; ++i) { \
  1484. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1485. } \
  1486. offset >>= 1; \
  1487. for (int i = 0; i < offset; ++i) { \
  1488. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1489. } \
  1490. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1491. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1492. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1493. }
  1494. #define GGML_F16_VEC GGML_F16x8
  1495. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1496. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1497. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1498. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1499. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1500. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1501. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1502. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1503. #else
  1504. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1505. // and take advantage of the vcvt_ functions to convert to/from FP16
  1506. #define GGML_F16_STEP 16
  1507. #define GGML_F16_EPR 4
  1508. #define GGML_F32Cx4 float32x4_t
  1509. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1510. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1511. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1512. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1513. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1514. #define GGML_F32Cx4_ADD vaddq_f32
  1515. #define GGML_F32Cx4_MUL vmulq_f32
  1516. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1517. #define GGML_F16_VEC GGML_F32Cx4
  1518. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1519. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1520. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1521. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1522. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1523. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1524. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1525. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1526. #endif
  1527. #elif defined(__AVX__)
  1528. #define GGML_SIMD
  1529. // F32 AVX
  1530. #define GGML_F32_STEP 32
  1531. #define GGML_F32_EPR 8
  1532. #define GGML_F32x8 __m256
  1533. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1534. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1535. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1536. #define GGML_F32x8_STORE _mm256_storeu_ps
  1537. #if defined(__FMA__)
  1538. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1539. #else
  1540. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1541. #endif
  1542. #define GGML_F32x8_ADD _mm256_add_ps
  1543. #define GGML_F32x8_MUL _mm256_mul_ps
  1544. #define GGML_F32x8_REDUCE(res, x) \
  1545. { \
  1546. int offset = GGML_F32_ARR >> 1; \
  1547. for (int i = 0; i < offset; ++i) { \
  1548. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1549. } \
  1550. offset >>= 1; \
  1551. for (int i = 0; i < offset; ++i) { \
  1552. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1553. } \
  1554. offset >>= 1; \
  1555. for (int i = 0; i < offset; ++i) { \
  1556. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1557. } \
  1558. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1559. _mm256_extractf128_ps(x[0], 1)); \
  1560. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1561. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1562. }
  1563. // TODO: is this optimal ?
  1564. #define GGML_F32_VEC GGML_F32x8
  1565. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1566. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1567. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1568. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1569. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1570. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1571. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1572. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1573. // F16 AVX
  1574. #define GGML_F16_STEP 32
  1575. #define GGML_F16_EPR 8
  1576. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1577. #define GGML_F32Cx8 __m256
  1578. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1579. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1580. #if defined(__F16C__)
  1581. // the _mm256_cvt intrinsics require F16C
  1582. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1583. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1584. #else
  1585. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1586. float tmp[8];
  1587. for (int i = 0; i < 8; i++) {
  1588. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1589. }
  1590. return _mm256_loadu_ps(tmp);
  1591. }
  1592. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1593. float arr[8];
  1594. _mm256_storeu_ps(arr, y);
  1595. for (int i = 0; i < 8; i++)
  1596. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1597. }
  1598. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1599. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1600. #endif
  1601. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1602. #define GGML_F32Cx8_ADD _mm256_add_ps
  1603. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1604. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1605. #define GGML_F16_VEC GGML_F32Cx8
  1606. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1607. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1608. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1609. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1610. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1611. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1612. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1613. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1614. #elif defined(__POWER9_VECTOR__)
  1615. #define GGML_SIMD
  1616. // F32 POWER9
  1617. #define GGML_F32_STEP 32
  1618. #define GGML_F32_EPR 4
  1619. #define GGML_F32x4 vector float
  1620. #define GGML_F32x4_ZERO 0.0f
  1621. #define GGML_F32x4_SET1 vec_splats
  1622. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1623. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1624. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1625. #define GGML_F32x4_ADD vec_add
  1626. #define GGML_F32x4_MUL vec_mul
  1627. #define GGML_F32x4_REDUCE(res, x) \
  1628. { \
  1629. int offset = GGML_F32_ARR >> 1; \
  1630. for (int i = 0; i < offset; ++i) { \
  1631. x[i] = vec_add(x[i], x[offset+i]); \
  1632. } \
  1633. offset >>= 1; \
  1634. for (int i = 0; i < offset; ++i) { \
  1635. x[i] = vec_add(x[i], x[offset+i]); \
  1636. } \
  1637. offset >>= 1; \
  1638. for (int i = 0; i < offset; ++i) { \
  1639. x[i] = vec_add(x[i], x[offset+i]); \
  1640. } \
  1641. res = vec_extract(x[0], 0) + \
  1642. vec_extract(x[0], 1) + \
  1643. vec_extract(x[0], 2) + \
  1644. vec_extract(x[0], 3); \
  1645. }
  1646. #define GGML_F32_VEC GGML_F32x4
  1647. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1648. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1649. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1650. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1651. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1652. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1653. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1654. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1655. // F16 POWER9
  1656. #define GGML_F16_STEP GGML_F32_STEP
  1657. #define GGML_F16_EPR GGML_F32_EPR
  1658. #define GGML_F16_VEC GGML_F32x4
  1659. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1660. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1661. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1662. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1663. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1664. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1665. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1666. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1667. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1668. #define GGML_F16_VEC_STORE(p, r, i) \
  1669. if (i & 0x1) \
  1670. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1671. r[i - GGML_ENDIAN_BYTE(0)]), \
  1672. 0, p - GGML_F16_EPR)
  1673. #elif defined(__wasm_simd128__)
  1674. #define GGML_SIMD
  1675. // F32 WASM
  1676. #define GGML_F32_STEP 16
  1677. #define GGML_F32_EPR 4
  1678. #define GGML_F32x4 v128_t
  1679. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1680. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1681. #define GGML_F32x4_LOAD wasm_v128_load
  1682. #define GGML_F32x4_STORE wasm_v128_store
  1683. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1684. #define GGML_F32x4_ADD wasm_f32x4_add
  1685. #define GGML_F32x4_MUL wasm_f32x4_mul
  1686. #define GGML_F32x4_REDUCE(res, x) \
  1687. { \
  1688. int offset = GGML_F32_ARR >> 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1691. } \
  1692. offset >>= 1; \
  1693. for (int i = 0; i < offset; ++i) { \
  1694. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1695. } \
  1696. offset >>= 1; \
  1697. for (int i = 0; i < offset; ++i) { \
  1698. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1699. } \
  1700. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1701. wasm_f32x4_extract_lane(x[0], 1) + \
  1702. wasm_f32x4_extract_lane(x[0], 2) + \
  1703. wasm_f32x4_extract_lane(x[0], 3); \
  1704. }
  1705. #define GGML_F32_VEC GGML_F32x4
  1706. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1707. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1708. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1709. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1710. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1711. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1712. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1713. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // F16 WASM
  1715. #define GGML_F16_STEP 16
  1716. #define GGML_F16_EPR 4
  1717. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1718. float tmp[4];
  1719. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1720. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1721. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1722. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1723. return wasm_v128_load(tmp);
  1724. }
  1725. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1726. float tmp[4];
  1727. wasm_v128_store(tmp, x);
  1728. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1729. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1730. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1731. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1732. }
  1733. #define GGML_F16x4 v128_t
  1734. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1735. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1736. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1737. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1738. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1739. #define GGML_F16x4_ADD wasm_f32x4_add
  1740. #define GGML_F16x4_MUL wasm_f32x4_mul
  1741. #define GGML_F16x4_REDUCE(res, x) \
  1742. { \
  1743. int offset = GGML_F16_ARR >> 1; \
  1744. for (int i = 0; i < offset; ++i) { \
  1745. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1746. } \
  1747. offset >>= 1; \
  1748. for (int i = 0; i < offset; ++i) { \
  1749. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1750. } \
  1751. offset >>= 1; \
  1752. for (int i = 0; i < offset; ++i) { \
  1753. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1754. } \
  1755. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1756. wasm_f32x4_extract_lane(x[0], 1) + \
  1757. wasm_f32x4_extract_lane(x[0], 2) + \
  1758. wasm_f32x4_extract_lane(x[0], 3); \
  1759. }
  1760. #define GGML_F16_VEC GGML_F16x4
  1761. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1762. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1763. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1764. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1765. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1766. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1767. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1768. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1769. #elif defined(__SSE3__)
  1770. #define GGML_SIMD
  1771. // F32 SSE
  1772. #define GGML_F32_STEP 32
  1773. #define GGML_F32_EPR 4
  1774. #define GGML_F32x4 __m128
  1775. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1776. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1777. #define GGML_F32x4_LOAD _mm_loadu_ps
  1778. #define GGML_F32x4_STORE _mm_storeu_ps
  1779. #if defined(__FMA__)
  1780. // TODO: Does this work?
  1781. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1782. #else
  1783. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1784. #endif
  1785. #define GGML_F32x4_ADD _mm_add_ps
  1786. #define GGML_F32x4_MUL _mm_mul_ps
  1787. #define GGML_F32x4_REDUCE(res, x) \
  1788. { \
  1789. int offset = GGML_F32_ARR >> 1; \
  1790. for (int i = 0; i < offset; ++i) { \
  1791. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1792. } \
  1793. offset >>= 1; \
  1794. for (int i = 0; i < offset; ++i) { \
  1795. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1796. } \
  1797. offset >>= 1; \
  1798. for (int i = 0; i < offset; ++i) { \
  1799. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1800. } \
  1801. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1802. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1803. }
  1804. // TODO: is this optimal ?
  1805. #define GGML_F32_VEC GGML_F32x4
  1806. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1807. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1808. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1809. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1810. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1811. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1812. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1813. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1814. // F16 SSE
  1815. #define GGML_F16_STEP 32
  1816. #define GGML_F16_EPR 4
  1817. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1818. float tmp[4];
  1819. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1820. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1821. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1822. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1823. return _mm_loadu_ps(tmp);
  1824. }
  1825. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1826. float arr[4];
  1827. _mm_storeu_ps(arr, y);
  1828. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1829. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1830. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1831. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1832. }
  1833. #define GGML_F32Cx4 __m128
  1834. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1835. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1836. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1837. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1838. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1839. #define GGML_F32Cx4_ADD _mm_add_ps
  1840. #define GGML_F32Cx4_MUL _mm_mul_ps
  1841. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1842. #define GGML_F16_VEC GGML_F32Cx4
  1843. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1844. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1845. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1846. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1847. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1848. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1849. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1850. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1851. #endif
  1852. // GGML_F32_ARR / GGML_F16_ARR
  1853. // number of registers to use per step
  1854. #ifdef GGML_SIMD
  1855. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1856. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1857. #endif
  1858. //
  1859. // fundamental operations
  1860. //
  1861. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1862. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1863. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1864. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1865. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1866. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1867. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1868. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1869. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1870. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1871. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1872. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1873. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1874. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1875. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1876. #ifdef GGML_SIMD
  1877. float sumf = 0.0f;
  1878. const int np = (n & ~(GGML_F32_STEP - 1));
  1879. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1880. GGML_F32_VEC ax[GGML_F32_ARR];
  1881. GGML_F32_VEC ay[GGML_F32_ARR];
  1882. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1883. for (int j = 0; j < GGML_F32_ARR; j++) {
  1884. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1885. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1886. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1887. }
  1888. }
  1889. // reduce sum0..sum3 to sum0
  1890. GGML_F32_VEC_REDUCE(sumf, sum);
  1891. // leftovers
  1892. for (int i = np; i < n; ++i) {
  1893. sumf += x[i]*y[i];
  1894. }
  1895. #else
  1896. // scalar
  1897. ggml_float sumf = 0.0;
  1898. for (int i = 0; i < n; ++i) {
  1899. sumf += (ggml_float)(x[i]*y[i]);
  1900. }
  1901. #endif
  1902. *s = sumf;
  1903. }
  1904. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1905. ggml_float sumf = 0.0;
  1906. #if defined(GGML_SIMD)
  1907. const int np = (n & ~(GGML_F16_STEP - 1));
  1908. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1909. GGML_F16_VEC ax[GGML_F16_ARR];
  1910. GGML_F16_VEC ay[GGML_F16_ARR];
  1911. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1912. for (int j = 0; j < GGML_F16_ARR; j++) {
  1913. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1914. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1915. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1916. }
  1917. }
  1918. // reduce sum0..sum3 to sum0
  1919. GGML_F16_VEC_REDUCE(sumf, sum);
  1920. // leftovers
  1921. for (int i = np; i < n; ++i) {
  1922. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1923. }
  1924. #else
  1925. for (int i = 0; i < n; ++i) {
  1926. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1927. }
  1928. #endif
  1929. *s = sumf;
  1930. }
  1931. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1932. const int qk = QK8_0;
  1933. const int nb = n / qk;
  1934. assert(n % qk == 0);
  1935. assert(nb % 2 == 0);
  1936. const block_q4_0 * restrict x = vx;
  1937. const block_q8_0 * restrict y = vy;
  1938. #if defined(__ARM_NEON)
  1939. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1940. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1941. for (int i = 0; i < nb; i += 2) {
  1942. const block_q4_0 * restrict x0 = &x[i + 0];
  1943. const block_q4_0 * restrict x1 = &x[i + 1];
  1944. const block_q8_0 * restrict y0 = &y[i + 0];
  1945. const block_q8_0 * restrict y1 = &y[i + 1];
  1946. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1947. const int8x16_t s8b = vdupq_n_s8(0x8);
  1948. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1949. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1950. // 4-bit -> 8-bit
  1951. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1952. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1953. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1954. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1955. // sub 8
  1956. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1957. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1958. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1959. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1960. // load y
  1961. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1962. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1963. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1964. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1965. #if defined(__ARM_FEATURE_DOTPROD)
  1966. // dot product into int32x4_t
  1967. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1968. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1969. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1970. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1971. #else
  1972. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1973. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1974. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1975. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1976. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1977. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1978. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1979. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1980. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1981. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1982. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1983. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1984. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1985. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1986. #endif
  1987. }
  1988. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1989. #elif defined(__AVX2__)
  1990. // Initialize accumulator with zeros
  1991. __m256 acc = _mm256_setzero_ps();
  1992. // Main loop
  1993. for (int i = 0; i < nb; ++i) {
  1994. /* Compute combined scale for the block */
  1995. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1996. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1997. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1998. const __m256i off = _mm256_set1_epi8( 8 );
  1999. bx = _mm256_sub_epi8( bx, off );
  2000. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2001. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2002. /* Multiply q with scale and accumulate */
  2003. acc = _mm256_fmadd_ps( d, q, acc );
  2004. }
  2005. *s = hsum_float_8(acc);
  2006. #elif defined(__AVX__)
  2007. // Initialize accumulator with zeros
  2008. __m256 acc = _mm256_setzero_ps();
  2009. // Main loop
  2010. for (int i = 0; i < nb; ++i) {
  2011. // Compute combined scale for the block
  2012. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2013. const __m128i lowMask = _mm_set1_epi8(0xF);
  2014. const __m128i off = _mm_set1_epi8(8);
  2015. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2016. __m128i bx = _mm_and_si128(lowMask, tmp);
  2017. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2018. bx = _mm_sub_epi8(bx, off);
  2019. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2020. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2021. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2022. bx = _mm_sub_epi8(bx, off);
  2023. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2024. // Convert int32_t to float
  2025. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2026. // Apply the scale, and accumulate
  2027. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2028. }
  2029. *s = hsum_float_8(acc);
  2030. #elif defined(__SSSE3__)
  2031. // set constants
  2032. const __m128i lowMask = _mm_set1_epi8(0xF);
  2033. const __m128i off = _mm_set1_epi8(8);
  2034. // Initialize accumulator with zeros
  2035. __m128 acc_0 = _mm_setzero_ps();
  2036. __m128 acc_1 = _mm_setzero_ps();
  2037. __m128 acc_2 = _mm_setzero_ps();
  2038. __m128 acc_3 = _mm_setzero_ps();
  2039. // First round without accumulation
  2040. {
  2041. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2042. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2043. // Compute combined scale for the block 0 and 1
  2044. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2045. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2046. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2047. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2048. bx_0 = _mm_sub_epi8(bx_0, off);
  2049. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2050. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2051. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2052. bx_1 = _mm_sub_epi8(bx_1, off);
  2053. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2054. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2055. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2056. // Compute combined scale for the block 2 and 3
  2057. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2058. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2059. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2060. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2061. bx_2 = _mm_sub_epi8(bx_2, off);
  2062. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2063. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2064. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2065. bx_3 = _mm_sub_epi8(bx_3, off);
  2066. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2067. // Convert int32_t to float
  2068. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2069. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2070. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2071. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2072. // Apply the scale
  2073. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2074. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2075. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2076. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2077. }
  2078. // Main loop
  2079. for (int i = 2; i < nb; i+=2) {
  2080. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 0 and 1
  2083. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2084. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2085. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2086. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2087. bx_0 = _mm_sub_epi8(bx_0, off);
  2088. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2089. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2090. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2091. bx_1 = _mm_sub_epi8(bx_1, off);
  2092. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2093. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2094. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2095. // Compute combined scale for the block 2 and 3
  2096. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2097. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2098. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2099. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2100. bx_2 = _mm_sub_epi8(bx_2, off);
  2101. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2102. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2103. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2104. bx_3 = _mm_sub_epi8(bx_3, off);
  2105. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2106. // Convert int32_t to float
  2107. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2108. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2109. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2110. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2111. // Apply the scale
  2112. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2113. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2114. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2115. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2116. // Acummulate
  2117. acc_0 = _mm_add_ps(p0_d, acc_0);
  2118. acc_1 = _mm_add_ps(p1_d, acc_1);
  2119. acc_2 = _mm_add_ps(p2_d, acc_2);
  2120. acc_3 = _mm_add_ps(p3_d, acc_3);
  2121. }
  2122. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2123. #else
  2124. // scalar
  2125. float sumf = 0.0;
  2126. for (int i = 0; i < nb; i++) {
  2127. int sumi = 0;
  2128. for (int j = 0; j < qk/2; ++j) {
  2129. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2130. const int v1 = (x[i].qs[j] >> 4) - 8;
  2131. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2132. }
  2133. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2134. }
  2135. *s = sumf;
  2136. #endif
  2137. }
  2138. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2139. const int qk = QK8_1;
  2140. const int nb = n / qk;
  2141. assert(n % qk == 0);
  2142. assert(nb % 2 == 0);
  2143. const block_q4_1 * restrict x = vx;
  2144. const block_q8_1 * restrict y = vy;
  2145. // TODO: add WASM SIMD
  2146. #if defined(__ARM_NEON)
  2147. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2148. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2149. float summs = 0;
  2150. for (int i = 0; i < nb; i += 2) {
  2151. const block_q4_1 * restrict x0 = &x[i + 0];
  2152. const block_q4_1 * restrict x1 = &x[i + 1];
  2153. const block_q8_1 * restrict y0 = &y[i + 0];
  2154. const block_q8_1 * restrict y1 = &y[i + 1];
  2155. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2156. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2157. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2158. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2159. // 4-bit -> 8-bit
  2160. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2161. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2162. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2163. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2164. // load y
  2165. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2166. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2167. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2168. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2169. #if defined(__ARM_FEATURE_DOTPROD)
  2170. // dot product into int32x4_t
  2171. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2172. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2173. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2174. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2175. #else
  2176. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2177. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2178. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2179. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2180. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2181. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2182. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2183. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2184. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2185. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2186. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2187. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2188. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2189. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2190. #endif
  2191. }
  2192. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2193. #elif defined(__AVX2__) || defined(__AVX__)
  2194. // Initialize accumulator with zeros
  2195. __m256 acc = _mm256_setzero_ps();
  2196. float summs = 0;
  2197. // Main loop
  2198. for (int i = 0; i < nb; ++i) {
  2199. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2200. const float d1 = y[i].d;
  2201. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2202. const __m256 d0v = _mm256_set1_ps( d0 );
  2203. const __m256 d1v = _mm256_set1_ps( d1 );
  2204. // Compute combined scales
  2205. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2206. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2207. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2208. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2209. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2210. // Accumulate d0*d1*x*y
  2211. #if defined(__AVX2__)
  2212. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2213. #else
  2214. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2215. #endif
  2216. }
  2217. *s = hsum_float_8(acc) + summs;
  2218. #else
  2219. // scalar
  2220. float sumf = 0.0;
  2221. for (int i = 0; i < nb; i++) {
  2222. int sumi = 0;
  2223. for (int j = 0; j < qk/2; ++j) {
  2224. const int v0 = (x[i].qs[j] & 0x0F);
  2225. const int v1 = (x[i].qs[j] >> 4);
  2226. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2227. }
  2228. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2229. }
  2230. *s = sumf;
  2231. #endif
  2232. }
  2233. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2234. const int qk = QK8_0;
  2235. const int nb = n / qk;
  2236. assert(n % qk == 0);
  2237. assert(nb % 2 == 0);
  2238. assert(qk == QK5_0);
  2239. const block_q5_0 * restrict x = vx;
  2240. const block_q8_0 * restrict y = vy;
  2241. #if defined(__ARM_NEON)
  2242. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2243. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2244. uint32_t qh0;
  2245. uint32_t qh1;
  2246. uint64_t tmp0[4];
  2247. uint64_t tmp1[4];
  2248. for (int i = 0; i < nb; i += 2) {
  2249. const block_q5_0 * restrict x0 = &x[i];
  2250. const block_q5_0 * restrict x1 = &x[i + 1];
  2251. const block_q8_0 * restrict y0 = &y[i];
  2252. const block_q8_0 * restrict y1 = &y[i + 1];
  2253. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2254. // extract the 5th bit via lookup table ((!b) << 4)
  2255. memcpy(&qh0, x0->qh, sizeof(qh0));
  2256. memcpy(&qh1, x1->qh, sizeof(qh1));
  2257. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2258. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2259. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2260. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2261. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2262. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2263. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2264. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2265. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2266. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2267. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2268. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2269. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2270. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2271. // 4-bit -> 8-bit
  2272. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2273. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2274. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2275. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2276. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2277. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2278. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2279. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2280. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2281. // load y
  2282. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2283. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2284. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2285. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2286. #if defined(__ARM_FEATURE_DOTPROD)
  2287. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2288. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2289. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2290. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2291. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2292. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2293. #else
  2294. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2295. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2296. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2297. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2298. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2299. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2300. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2301. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2302. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2303. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2304. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2305. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2306. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2307. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2308. #endif
  2309. }
  2310. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2311. #elif defined(__wasm_simd128__)
  2312. v128_t sumv = wasm_f32x4_splat(0.0f);
  2313. uint32_t qh;
  2314. uint64_t tmp[4];
  2315. // TODO: check if unrolling this is better
  2316. for (int i = 0; i < nb; ++i) {
  2317. const block_q5_0 * restrict x0 = &x[i];
  2318. const block_q8_0 * restrict y0 = &y[i];
  2319. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2320. // extract the 5th bit
  2321. memcpy(&qh, x0->qh, sizeof(qh));
  2322. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2323. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2324. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2325. tmp[3] = table_b2b_1[(qh >> 24) ];
  2326. const v128_t qhl = wasm_v128_load(tmp + 0);
  2327. const v128_t qhh = wasm_v128_load(tmp + 2);
  2328. const v128_t v0 = wasm_v128_load(x0->qs);
  2329. // 4-bit -> 8-bit
  2330. const v128_t v0l = wasm_v128_and (v0, m4b);
  2331. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2332. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2333. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2334. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2335. // load y
  2336. const v128_t v1l = wasm_v128_load(y0->qs);
  2337. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2338. // int8x16 -> int16x8
  2339. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2340. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2341. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2342. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2343. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2344. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2345. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2346. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2347. // dot product
  2348. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2349. wasm_i32x4_add(
  2350. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2351. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2352. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2353. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2354. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2355. }
  2356. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2357. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2358. #elif defined(__AVX2__)
  2359. // Initialize accumulator with zeros
  2360. __m256 acc = _mm256_setzero_ps();
  2361. // Main loop
  2362. for (int i = 0; i < nb; i++) {
  2363. /* Compute combined scale for the block */
  2364. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2365. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2366. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2367. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2368. bx = _mm256_or_si256(bx, bxhi);
  2369. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2370. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2371. /* Multiply q with scale and accumulate */
  2372. acc = _mm256_fmadd_ps(d, q, acc);
  2373. }
  2374. *s = hsum_float_8(acc);
  2375. #elif defined(__AVX__)
  2376. // Initialize accumulator with zeros
  2377. __m256 acc = _mm256_setzero_ps();
  2378. __m128i mask = _mm_set1_epi8((char)0xF0);
  2379. // Main loop
  2380. for (int i = 0; i < nb; i++) {
  2381. /* Compute combined scale for the block */
  2382. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2383. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2384. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2385. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2386. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2387. bxhil = _mm_andnot_si128(bxhil, mask);
  2388. bxhih = _mm_andnot_si128(bxhih, mask);
  2389. __m128i bxl = _mm256_castsi256_si128(bx);
  2390. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2391. bxl = _mm_or_si128(bxl, bxhil);
  2392. bxh = _mm_or_si128(bxh, bxhih);
  2393. bx = MM256_SET_M128I(bxh, bxl);
  2394. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2395. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2396. /* Multiply q with scale and accumulate */
  2397. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2398. }
  2399. *s = hsum_float_8(acc);
  2400. #else
  2401. // scalar
  2402. float sumf = 0.0;
  2403. for (int i = 0; i < nb; i++) {
  2404. uint32_t qh;
  2405. memcpy(&qh, x[i].qh, sizeof(qh));
  2406. int sumi = 0;
  2407. for (int j = 0; j < qk/2; ++j) {
  2408. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2409. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2410. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2411. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2412. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2413. }
  2414. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2415. }
  2416. *s = sumf;
  2417. #endif
  2418. }
  2419. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2420. const int qk = QK8_1;
  2421. const int nb = n / qk;
  2422. assert(n % qk == 0);
  2423. assert(nb % 2 == 0);
  2424. assert(qk == QK5_1);
  2425. const block_q5_1 * restrict x = vx;
  2426. const block_q8_1 * restrict y = vy;
  2427. #if defined(__ARM_NEON)
  2428. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2429. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2430. float summs0 = 0.0f;
  2431. float summs1 = 0.0f;
  2432. uint32_t qh0;
  2433. uint32_t qh1;
  2434. uint64_t tmp0[4];
  2435. uint64_t tmp1[4];
  2436. for (int i = 0; i < nb; i += 2) {
  2437. const block_q5_1 * restrict x0 = &x[i];
  2438. const block_q5_1 * restrict x1 = &x[i + 1];
  2439. const block_q8_1 * restrict y0 = &y[i];
  2440. const block_q8_1 * restrict y1 = &y[i + 1];
  2441. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2442. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2443. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2444. // extract the 5th bit via lookup table ((b) << 4)
  2445. memcpy(&qh0, x0->qh, sizeof(qh0));
  2446. memcpy(&qh1, x1->qh, sizeof(qh1));
  2447. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2448. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2449. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2450. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2451. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2452. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2453. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2454. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2455. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2456. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2457. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2458. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2459. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2460. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2461. // 4-bit -> 8-bit
  2462. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2463. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2464. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2465. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2466. // add high bit
  2467. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2468. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2469. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2470. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2471. // load y
  2472. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2473. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2474. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2475. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2476. #if defined(__ARM_FEATURE_DOTPROD)
  2477. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2478. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2479. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2480. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2481. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2482. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2483. #else
  2484. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2485. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2486. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2487. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2488. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2489. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2490. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2491. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2492. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2493. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2494. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2495. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2496. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2497. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2498. #endif
  2499. }
  2500. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2501. #elif defined(__wasm_simd128__)
  2502. v128_t sumv = wasm_f32x4_splat(0.0f);
  2503. float summs = 0.0f;
  2504. uint32_t qh;
  2505. uint64_t tmp[4];
  2506. // TODO: check if unrolling this is better
  2507. for (int i = 0; i < nb; ++i) {
  2508. const block_q5_1 * restrict x0 = &x[i];
  2509. const block_q8_1 * restrict y0 = &y[i];
  2510. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2511. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2512. // extract the 5th bit
  2513. memcpy(&qh, x0->qh, sizeof(qh));
  2514. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2515. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2516. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2517. tmp[3] = table_b2b_0[(qh >> 24) ];
  2518. const v128_t qhl = wasm_v128_load(tmp + 0);
  2519. const v128_t qhh = wasm_v128_load(tmp + 2);
  2520. const v128_t v0 = wasm_v128_load(x0->qs);
  2521. // 4-bit -> 8-bit
  2522. const v128_t v0l = wasm_v128_and (v0, m4b);
  2523. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2524. // add high bit
  2525. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2526. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2527. // load y
  2528. const v128_t v1l = wasm_v128_load(y0->qs);
  2529. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2530. // int8x16 -> int16x8
  2531. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2532. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2533. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2534. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2535. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2536. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2537. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2538. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2539. // dot product
  2540. sumv = wasm_f32x4_add(sumv,
  2541. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2542. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2543. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2544. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2545. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2546. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2547. }
  2548. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2549. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2550. #elif defined(__AVX2__)
  2551. // Initialize accumulator with zeros
  2552. __m256 acc = _mm256_setzero_ps();
  2553. float summs = 0.0f;
  2554. // Main loop
  2555. for (int i = 0; i < nb; i++) {
  2556. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2557. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2558. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2559. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2560. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2561. bx = _mm256_or_si256(bx, bxhi);
  2562. const __m256 dy = _mm256_set1_ps(y[i].d);
  2563. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2564. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2565. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2566. }
  2567. *s = hsum_float_8(acc) + summs;
  2568. #elif defined(__AVX__)
  2569. // Initialize accumulator with zeros
  2570. __m256 acc = _mm256_setzero_ps();
  2571. __m128i mask = _mm_set1_epi8(0x10);
  2572. float summs = 0.0f;
  2573. // Main loop
  2574. for (int i = 0; i < nb; i++) {
  2575. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2576. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2577. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2578. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2579. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2580. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2581. bxhil = _mm_and_si128(bxhil, mask);
  2582. bxhih = _mm_and_si128(bxhih, mask);
  2583. __m128i bxl = _mm256_castsi256_si128(bx);
  2584. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2585. bxl = _mm_or_si128(bxl, bxhil);
  2586. bxh = _mm_or_si128(bxh, bxhih);
  2587. bx = MM256_SET_M128I(bxh, bxl);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #else
  2595. // scalar
  2596. float sumf = 0.0;
  2597. for (int i = 0; i < nb; i++) {
  2598. uint32_t qh;
  2599. memcpy(&qh, x[i].qh, sizeof(qh));
  2600. int sumi = 0;
  2601. for (int j = 0; j < qk/2; ++j) {
  2602. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2603. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2604. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2605. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2606. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2607. }
  2608. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2609. }
  2610. *s = sumf;
  2611. #endif
  2612. }
  2613. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2614. const int qk = QK8_0;
  2615. const int nb = n / qk;
  2616. assert(n % qk == 0);
  2617. assert(nb % 2 == 0);
  2618. const block_q8_0 * restrict x = vx;
  2619. const block_q8_0 * restrict y = vy;
  2620. #if defined(__ARM_NEON)
  2621. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2622. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2623. for (int i = 0; i < nb; i += 2) {
  2624. const block_q8_0 * restrict x0 = &x[i + 0];
  2625. const block_q8_0 * restrict x1 = &x[i + 1];
  2626. const block_q8_0 * restrict y0 = &y[i + 0];
  2627. const block_q8_0 * restrict y1 = &y[i + 1];
  2628. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2629. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2630. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2631. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2632. // load y
  2633. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2634. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2635. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2636. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2637. #if defined(__ARM_FEATURE_DOTPROD)
  2638. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2639. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2640. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2641. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2642. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2643. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2644. #else
  2645. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2646. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2647. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2648. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2649. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2650. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2651. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2652. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2653. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2654. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2655. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2656. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2657. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2658. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2659. #endif
  2660. }
  2661. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2662. #elif defined(__AVX2__) || defined(__AVX__)
  2663. // Initialize accumulator with zeros
  2664. __m256 acc = _mm256_setzero_ps();
  2665. // Main loop
  2666. for (int i = 0; i < nb; ++i) {
  2667. // Compute combined scale for the block
  2668. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2669. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2670. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2671. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2672. // Multiply q with scale and accumulate
  2673. #if defined(__AVX2__)
  2674. acc = _mm256_fmadd_ps( d, q, acc );
  2675. #else
  2676. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2677. #endif
  2678. }
  2679. *s = hsum_float_8(acc);
  2680. #else
  2681. // scalar
  2682. float sumf = 0.0;
  2683. for (int i = 0; i < nb; i++) {
  2684. int sumi = 0;
  2685. for (int j = 0; j < qk; j++) {
  2686. sumi += x[i].qs[j]*y[i].qs[j];
  2687. }
  2688. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2689. }
  2690. *s = sumf;
  2691. #endif
  2692. }
  2693. // compute GGML_VEC_DOT_UNROLL dot products at once
  2694. // xs - x row stride in bytes
  2695. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2696. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2697. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2698. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2699. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2700. }
  2701. #if defined(GGML_SIMD)
  2702. const int np = (n & ~(GGML_F16_STEP - 1));
  2703. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2704. GGML_F16_VEC ax[GGML_F16_ARR];
  2705. GGML_F16_VEC ay[GGML_F16_ARR];
  2706. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2707. for (int j = 0; j < GGML_F16_ARR; j++) {
  2708. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2709. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2710. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2711. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2712. }
  2713. }
  2714. }
  2715. // reduce sum0..sum3 to sum0
  2716. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2717. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2718. }
  2719. // leftovers
  2720. for (int i = np; i < n; ++i) {
  2721. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2722. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2723. }
  2724. }
  2725. #else
  2726. for (int i = 0; i < n; ++i) {
  2727. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2728. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2729. }
  2730. }
  2731. #endif
  2732. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2733. s[i] = sumf[i];
  2734. }
  2735. }
  2736. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2737. #if defined(GGML_SIMD)
  2738. const int np = (n & ~(GGML_F32_STEP - 1));
  2739. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2740. GGML_F32_VEC ax[GGML_F32_ARR];
  2741. GGML_F32_VEC ay[GGML_F32_ARR];
  2742. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2743. for (int j = 0; j < GGML_F32_ARR; j++) {
  2744. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2745. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2746. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2747. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2748. }
  2749. }
  2750. // leftovers
  2751. for (int i = np; i < n; ++i) {
  2752. y[i] += x[i]*v;
  2753. }
  2754. #else
  2755. // scalar
  2756. for (int i = 0; i < n; ++i) {
  2757. y[i] += x[i]*v;
  2758. }
  2759. #endif
  2760. }
  2761. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2762. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ay[GGML_F32_ARR];
  2767. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2768. for (int j = 0; j < GGML_F32_ARR; j++) {
  2769. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2770. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2771. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2772. }
  2773. }
  2774. // leftovers
  2775. for (int i = np; i < n; ++i) {
  2776. y[i] *= v;
  2777. }
  2778. #else
  2779. // scalar
  2780. for (int i = 0; i < n; ++i) {
  2781. y[i] *= v;
  2782. }
  2783. #endif
  2784. }
  2785. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2786. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2787. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2788. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2789. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2790. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2791. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2792. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2793. static const float GELU_COEF_A = 0.044715f;
  2794. static const float GELU_QUICK_COEF = -1.702f;
  2795. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2796. inline static float ggml_gelu_f32(float x) {
  2797. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2798. }
  2799. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2800. const uint16_t * i16 = (const uint16_t *) x;
  2801. for (int i = 0; i < n; ++i) {
  2802. y[i] = table_gelu_f16[i16[i]];
  2803. }
  2804. }
  2805. #ifdef GGML_GELU_FP16
  2806. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2807. uint16_t t;
  2808. for (int i = 0; i < n; ++i) {
  2809. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2810. memcpy(&t, &fp16, sizeof(uint16_t));
  2811. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2812. }
  2813. }
  2814. #else
  2815. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2816. for (int i = 0; i < n; ++i) {
  2817. y[i] = ggml_gelu_f32(x[i]);
  2818. }
  2819. }
  2820. #endif
  2821. inline static float ggml_gelu_quick_f32(float x) {
  2822. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2823. }
  2824. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2825. // const uint16_t * i16 = (const uint16_t *) x;
  2826. // for (int i = 0; i < n; ++i) {
  2827. // y[i] = table_gelu_quick_f16[i16[i]];
  2828. // }
  2829. //}
  2830. #ifdef GGML_GELU_QUICK_FP16
  2831. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2832. uint16_t t;
  2833. for (int i = 0; i < n; ++i) {
  2834. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2835. memcpy(&t, &fp16, sizeof(uint16_t));
  2836. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2837. }
  2838. }
  2839. #else
  2840. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2841. for (int i = 0; i < n; ++i) {
  2842. y[i] = ggml_gelu_quick_f32(x[i]);
  2843. }
  2844. }
  2845. #endif
  2846. // Sigmoid Linear Unit (SiLU) function
  2847. inline static float ggml_silu_f32(float x) {
  2848. return x/(1.0f + expf(-x));
  2849. }
  2850. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2851. // const uint16_t * i16 = (const uint16_t *) x;
  2852. // for (int i = 0; i < n; ++i) {
  2853. // y[i] = table_silu_f16[i16[i]];
  2854. // }
  2855. //}
  2856. #ifdef GGML_SILU_FP16
  2857. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2858. uint16_t t;
  2859. for (int i = 0; i < n; ++i) {
  2860. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2861. memcpy(&t, &fp16, sizeof(uint16_t));
  2862. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2863. }
  2864. }
  2865. #else
  2866. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2867. for (int i = 0; i < n; ++i) {
  2868. y[i] = ggml_silu_f32(x[i]);
  2869. }
  2870. }
  2871. #endif
  2872. inline static float ggml_silu_backward_f32(float x, float dy) {
  2873. const float s = 1.0f/(1.0f + expf(-x));
  2874. return dy*s*(1.0f + x*(1.0f - s));
  2875. }
  2876. #ifdef GGML_SILU_FP16
  2877. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2878. for (int i = 0; i < n; ++i) {
  2879. // we did not use x[i] to compute forward silu but its f16 equivalent
  2880. // take derivative at f16 of x[i]:
  2881. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2882. float usedx = GGML_FP16_TO_FP32(fp16);
  2883. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2884. }
  2885. }
  2886. #else
  2887. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2888. for (int i = 0; i < n; ++i) {
  2889. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2890. }
  2891. }
  2892. #endif
  2893. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2894. #ifndef GGML_USE_ACCELERATE
  2895. ggml_float sum = 0.0;
  2896. for (int i = 0; i < n; ++i) {
  2897. sum += (ggml_float)x[i];
  2898. }
  2899. *s = sum;
  2900. #else
  2901. vDSP_sve(x, 1, s, n);
  2902. #endif
  2903. }
  2904. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2905. ggml_float sum = 0.0;
  2906. for (int i = 0; i < n; ++i) {
  2907. sum += (ggml_float)x[i];
  2908. }
  2909. *s = sum;
  2910. }
  2911. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2912. #ifndef GGML_USE_ACCELERATE
  2913. float max = -INFINITY;
  2914. for (int i = 0; i < n; ++i) {
  2915. max = MAX(max, x[i]);
  2916. }
  2917. *s = max;
  2918. #else
  2919. vDSP_maxv(x, 1, s, n);
  2920. #endif
  2921. }
  2922. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2923. ggml_vec_norm_f32(n, s, x);
  2924. *s = 1.f/(*s);
  2925. }
  2926. //
  2927. // data types
  2928. //
  2929. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2930. [GGML_TYPE_F32] = 1,
  2931. [GGML_TYPE_F16] = 1,
  2932. [GGML_TYPE_Q4_0] = QK4_0,
  2933. [GGML_TYPE_Q4_1] = QK4_1,
  2934. [GGML_TYPE_Q5_0] = QK5_0,
  2935. [GGML_TYPE_Q5_1] = QK5_1,
  2936. [GGML_TYPE_Q8_0] = QK8_0,
  2937. [GGML_TYPE_Q8_1] = QK8_1,
  2938. #ifdef GGML_USE_K_QUANTS
  2939. [GGML_TYPE_Q2_K] = QK_K,
  2940. [GGML_TYPE_Q3_K] = QK_K,
  2941. [GGML_TYPE_Q4_K] = QK_K,
  2942. [GGML_TYPE_Q5_K] = QK_K,
  2943. [GGML_TYPE_Q6_K] = QK_K,
  2944. [GGML_TYPE_Q8_K] = QK_K,
  2945. #endif
  2946. [GGML_TYPE_I8] = 1,
  2947. [GGML_TYPE_I16] = 1,
  2948. [GGML_TYPE_I32] = 1,
  2949. };
  2950. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2951. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2952. [GGML_TYPE_F32] = sizeof(float),
  2953. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2954. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2955. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2956. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2957. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2958. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2959. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2960. #ifdef GGML_USE_K_QUANTS
  2961. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2962. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2963. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2964. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2965. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2966. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2967. #endif
  2968. [GGML_TYPE_I8] = sizeof(int8_t),
  2969. [GGML_TYPE_I16] = sizeof(int16_t),
  2970. [GGML_TYPE_I32] = sizeof(int32_t),
  2971. };
  2972. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2973. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2974. [GGML_TYPE_F32] = "f32",
  2975. [GGML_TYPE_F16] = "f16",
  2976. [GGML_TYPE_Q4_0] = "q4_0",
  2977. [GGML_TYPE_Q4_1] = "q4_1",
  2978. [GGML_TYPE_Q5_0] = "q5_0",
  2979. [GGML_TYPE_Q5_1] = "q5_1",
  2980. [GGML_TYPE_Q8_0] = "q8_0",
  2981. [GGML_TYPE_Q8_1] = "q8_1",
  2982. [GGML_TYPE_Q2_K] = "q2_K",
  2983. [GGML_TYPE_Q3_K] = "q3_K",
  2984. [GGML_TYPE_Q4_K] = "q4_K",
  2985. [GGML_TYPE_Q5_K] = "q5_K",
  2986. [GGML_TYPE_Q6_K] = "q6_K",
  2987. [GGML_TYPE_Q8_K] = "q8_K",
  2988. [GGML_TYPE_I8] = "i8",
  2989. [GGML_TYPE_I16] = "i16",
  2990. [GGML_TYPE_I32] = "i32",
  2991. };
  2992. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2993. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2994. [GGML_TYPE_F32] = false,
  2995. [GGML_TYPE_F16] = false,
  2996. [GGML_TYPE_Q4_0] = true,
  2997. [GGML_TYPE_Q4_1] = true,
  2998. [GGML_TYPE_Q5_0] = true,
  2999. [GGML_TYPE_Q5_1] = true,
  3000. [GGML_TYPE_Q8_0] = true,
  3001. [GGML_TYPE_Q8_1] = true,
  3002. [GGML_TYPE_Q2_K] = true,
  3003. [GGML_TYPE_Q3_K] = true,
  3004. [GGML_TYPE_Q4_K] = true,
  3005. [GGML_TYPE_Q5_K] = true,
  3006. [GGML_TYPE_Q6_K] = true,
  3007. [GGML_TYPE_Q8_K] = true,
  3008. [GGML_TYPE_I8] = false,
  3009. [GGML_TYPE_I16] = false,
  3010. [GGML_TYPE_I32] = false,
  3011. };
  3012. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3013. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3014. "NONE",
  3015. "DUP",
  3016. "ADD",
  3017. "ADD1",
  3018. "ACC",
  3019. "SUB",
  3020. "MUL",
  3021. "DIV",
  3022. "SQR",
  3023. "SQRT",
  3024. "LOG",
  3025. "SUM",
  3026. "SUM_ROWS",
  3027. "MEAN",
  3028. "REPEAT",
  3029. "REPEAT_BACK",
  3030. "ABS",
  3031. "SGN",
  3032. "NEG",
  3033. "STEP",
  3034. "RELU",
  3035. "GELU",
  3036. "GELU_QUICK",
  3037. "SILU",
  3038. "SILU_BACK",
  3039. "NORM",
  3040. "RMS_NORM",
  3041. "RMS_NORM_BACK",
  3042. "MUL_MAT",
  3043. "OUT_PROD",
  3044. "SCALE",
  3045. "SET",
  3046. "CPY",
  3047. "CONT",
  3048. "RESHAPE",
  3049. "VIEW",
  3050. "PERMUTE",
  3051. "TRANSPOSE",
  3052. "GET_ROWS",
  3053. "GET_ROWS_BACK",
  3054. "DIAG",
  3055. "DIAG_MASK_INF",
  3056. "DIAG_MASK_ZERO",
  3057. "SOFT_MAX",
  3058. "SOFT_MAX_BACK",
  3059. "ROPE",
  3060. "ROPE_BACK",
  3061. "ALIBI",
  3062. "CLAMP",
  3063. "CONV_1D_S1_PH",
  3064. "CONV_1D_S2_PH",
  3065. "CONV_2D_SK_P0",
  3066. "FLASH_ATTN",
  3067. "FLASH_FF",
  3068. "FLASH_ATTN_BACK",
  3069. "WIN_PART",
  3070. "WIN_UNPART",
  3071. "MAP_UNARY",
  3072. "MAP_BINARY",
  3073. "MAP_CUSTOM1",
  3074. "MAP_CUSTOM2",
  3075. "MAP_CUSTOM3",
  3076. "CROSS_ENTROPY_LOSS",
  3077. "CROSS_ENTROPY_LOSS_BACK",
  3078. };
  3079. static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64");
  3080. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3081. "none",
  3082. "x",
  3083. "x+y",
  3084. "x+y",
  3085. "view(x,nb,offset)+=y->x",
  3086. "x-y",
  3087. "x*y",
  3088. "x/y",
  3089. "x^2",
  3090. "√x",
  3091. "log(x)",
  3092. "Σx",
  3093. "Σx_k",
  3094. "Σx/n",
  3095. "repeat(x)",
  3096. "repeat_back(x)",
  3097. "abs(x)",
  3098. "sgn(x)",
  3099. "-x",
  3100. "step(x)",
  3101. "relu(x)",
  3102. "gelu(x)",
  3103. "gelu_quick(x)",
  3104. "silu(x)",
  3105. "silu_back(x)",
  3106. "norm(x)",
  3107. "rms_norm(x)",
  3108. "rms_norm_back(x)",
  3109. "X*Y",
  3110. "X*Y",
  3111. "x*v",
  3112. "y-\\>view(x)",
  3113. "x-\\>y",
  3114. "cont(x)",
  3115. "reshape(x)",
  3116. "view(x)",
  3117. "permute(x)",
  3118. "transpose(x)",
  3119. "get_rows(x)",
  3120. "get_rows_back(x)",
  3121. "diag(x)",
  3122. "diag_mask_inf(x)",
  3123. "diag_mask_zero(x)",
  3124. "soft_max(x)",
  3125. "soft_max_back(x)",
  3126. "rope(x)",
  3127. "rope_back(x)",
  3128. "alibi(x)",
  3129. "clamp(x)",
  3130. "conv_1d_s1_ph(x)",
  3131. "conv_1d_s2_ph(x)",
  3132. "conv_2d_sk_p0(x)",
  3133. "flash_attn(x)",
  3134. "flash_ff(x)",
  3135. "flash_attn_back(x)",
  3136. "win_part(x)",
  3137. "win_unpart(x)",
  3138. "f(x)",
  3139. "f(x,y)",
  3140. "custom(x)",
  3141. "custom(x,y)",
  3142. "custom(x,y,z)",
  3143. "cross_entropy_loss(x,y)",
  3144. "cross_entropy_loss_back(x,y)",
  3145. };
  3146. static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64");
  3147. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3148. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3149. //
  3150. // ggml context
  3151. //
  3152. struct ggml_context {
  3153. size_t mem_size;
  3154. void * mem_buffer;
  3155. bool mem_buffer_owned;
  3156. bool no_alloc;
  3157. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3158. int n_objects;
  3159. struct ggml_object * objects_begin;
  3160. struct ggml_object * objects_end;
  3161. struct ggml_scratch scratch;
  3162. struct ggml_scratch scratch_save;
  3163. };
  3164. struct ggml_context_container {
  3165. bool used;
  3166. struct ggml_context context;
  3167. };
  3168. //
  3169. // NUMA support
  3170. //
  3171. #define GGML_NUMA_MAX_NODES 8
  3172. #define GGML_NUMA_MAX_CPUS 512
  3173. struct ggml_numa_node {
  3174. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3175. uint32_t n_cpus;
  3176. };
  3177. struct ggml_numa_nodes {
  3178. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3179. uint32_t n_nodes;
  3180. uint32_t total_cpus; // hardware threads on system
  3181. };
  3182. //
  3183. // ggml state
  3184. //
  3185. struct ggml_state {
  3186. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3187. struct ggml_numa_nodes numa;
  3188. };
  3189. // global state
  3190. static struct ggml_state g_state;
  3191. static atomic_int g_state_barrier = 0;
  3192. // barrier via spin lock
  3193. inline static void ggml_critical_section_start(void) {
  3194. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3195. while (processing > 0) {
  3196. // wait for other threads to finish
  3197. atomic_fetch_sub(&g_state_barrier, 1);
  3198. sched_yield(); // TODO: reconsider this
  3199. processing = atomic_fetch_add(&g_state_barrier, 1);
  3200. }
  3201. }
  3202. // TODO: make this somehow automatically executed
  3203. // some sort of "sentry" mechanism
  3204. inline static void ggml_critical_section_end(void) {
  3205. atomic_fetch_sub(&g_state_barrier, 1);
  3206. }
  3207. void ggml_numa_init(void) {
  3208. if (g_state.numa.n_nodes > 0) {
  3209. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3210. return;
  3211. }
  3212. #ifdef __linux__
  3213. struct stat st;
  3214. char path[256];
  3215. int rv;
  3216. // enumerate nodes
  3217. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3218. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3219. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3220. if (stat(path, &st) != 0) { break; }
  3221. ++g_state.numa.n_nodes;
  3222. }
  3223. // enumerate CPUs
  3224. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3225. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3226. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3227. if (stat(path, &st) != 0) { break; }
  3228. ++g_state.numa.total_cpus;
  3229. }
  3230. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3231. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3232. g_state.numa.n_nodes = 0;
  3233. return;
  3234. }
  3235. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3236. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3237. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3238. node->n_cpus = 0;
  3239. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3240. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3241. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3242. if (stat(path, &st) == 0) {
  3243. node->cpus[node->n_cpus++] = c;
  3244. GGML_PRINT_DEBUG(" %u", c);
  3245. }
  3246. }
  3247. GGML_PRINT_DEBUG("\n");
  3248. }
  3249. if (ggml_is_numa()) {
  3250. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3251. if (fptr != NULL) {
  3252. char buf[42];
  3253. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3254. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3255. }
  3256. fclose(fptr);
  3257. }
  3258. }
  3259. #else
  3260. // TODO
  3261. #endif
  3262. }
  3263. bool ggml_is_numa(void) {
  3264. return g_state.numa.n_nodes > 1;
  3265. }
  3266. ////////////////////////////////////////////////////////////////////////////////
  3267. void ggml_print_object(const struct ggml_object * obj) {
  3268. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3269. obj->offs, obj->size, (const void *) obj->next);
  3270. }
  3271. void ggml_print_objects(const struct ggml_context * ctx) {
  3272. struct ggml_object * obj = ctx->objects_begin;
  3273. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3274. while (obj != NULL) {
  3275. ggml_print_object(obj);
  3276. obj = obj->next;
  3277. }
  3278. GGML_PRINT("%s: --- end ---\n", __func__);
  3279. }
  3280. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3281. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3282. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3283. }
  3284. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3285. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3286. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3287. }
  3288. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3289. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3290. // this should handle cases where the tensor is not contiguous in memory
  3291. // probaby just:
  3292. //
  3293. // return tensor->ne[3]*tensor->nb[3]
  3294. //
  3295. // is enough, but just in case, adding the second part
  3296. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3297. }
  3298. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3299. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3300. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3301. }
  3302. int ggml_blck_size(enum ggml_type type) {
  3303. return GGML_BLCK_SIZE[type];
  3304. }
  3305. size_t ggml_type_size(enum ggml_type type) {
  3306. return GGML_TYPE_SIZE[type];
  3307. }
  3308. float ggml_type_sizef(enum ggml_type type) {
  3309. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3310. }
  3311. const char * ggml_type_name(enum ggml_type type) {
  3312. return GGML_TYPE_NAME[type];
  3313. }
  3314. const char * ggml_op_name(enum ggml_op op) {
  3315. return GGML_OP_NAME[op];
  3316. }
  3317. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3318. return GGML_TYPE_SIZE[tensor->type];
  3319. }
  3320. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3321. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3322. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3323. }
  3324. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3325. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3326. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3327. }
  3328. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3329. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3330. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3331. }
  3332. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3333. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3334. return
  3335. (t0->ne[0] == t1->ne[0]) &&
  3336. (t0->ne[2] == t1->ne[2]) &&
  3337. (t0->ne[3] == t1->ne[3]);
  3338. }
  3339. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3340. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3341. return
  3342. (t0->ne[1] == t1->ne[1]) &&
  3343. (t0->ne[2] == t1->ne[2]) &&
  3344. (t0->ne[3] == t1->ne[3]);
  3345. }
  3346. bool ggml_is_quantized(enum ggml_type type) {
  3347. return GGML_IS_QUANTIZED[type];
  3348. }
  3349. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3350. enum ggml_type wtype = GGML_TYPE_COUNT;
  3351. switch (ftype) {
  3352. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3353. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3354. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3355. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3356. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3357. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3358. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3359. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3360. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3361. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3362. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3363. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3364. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3365. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3366. }
  3367. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3368. return wtype;
  3369. }
  3370. size_t ggml_tensor_overhead(void) {
  3371. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3372. }
  3373. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3374. return tensor->nb[0] > tensor->nb[1];
  3375. }
  3376. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3377. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3378. return
  3379. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3380. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3381. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3382. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3383. }
  3384. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3385. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3386. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3387. }
  3388. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3389. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3390. return
  3391. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3392. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3393. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3394. }
  3395. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return
  3398. (t0->ne[0] == t1->ne[0] ) &&
  3399. (t0->ne[1] == t1->ne[1] ) &&
  3400. (t0->ne[2] == t1->ne[2] ) &&
  3401. (t0->ne[3] == t1->ne[3] );
  3402. }
  3403. // check if t1 can be represented as a repeatition of t0
  3404. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3406. return
  3407. (t1->ne[0]%t0->ne[0] == 0) &&
  3408. (t1->ne[1]%t0->ne[1] == 0) &&
  3409. (t1->ne[2]%t0->ne[2] == 0) &&
  3410. (t1->ne[3]%t0->ne[3] == 0);
  3411. }
  3412. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3413. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3414. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3415. }
  3416. static inline int ggml_up32(int n) {
  3417. return (n + 31) & ~31;
  3418. }
  3419. //static inline int ggml_up64(int n) {
  3420. // return (n + 63) & ~63;
  3421. //}
  3422. static inline int ggml_up(int n, int m) {
  3423. // assert m is a power of 2
  3424. GGML_ASSERT((m & (m - 1)) == 0);
  3425. return (n + m - 1) & ~(m - 1);
  3426. }
  3427. // assert that pointer is aligned to GGML_MEM_ALIGN
  3428. #define ggml_assert_aligned(ptr) \
  3429. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3430. ////////////////////////////////////////////////////////////////////////////////
  3431. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3432. // make this function thread safe
  3433. ggml_critical_section_start();
  3434. static bool is_first_call = true;
  3435. if (is_first_call) {
  3436. // initialize time system (required on Windows)
  3437. ggml_time_init();
  3438. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3439. {
  3440. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3441. ggml_fp16_t ii;
  3442. for (int i = 0; i < (1 << 16); ++i) {
  3443. uint16_t ui = i;
  3444. memcpy(&ii, &ui, sizeof(ii));
  3445. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3446. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3447. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3448. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3449. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3450. }
  3451. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3452. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3453. }
  3454. // initialize g_state
  3455. {
  3456. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3457. g_state = (struct ggml_state) {
  3458. /*.contexts =*/ { { 0 } },
  3459. /*.numa =*/ {
  3460. .n_nodes = 0,
  3461. .total_cpus = 0,
  3462. },
  3463. };
  3464. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3465. g_state.contexts[i].used = false;
  3466. }
  3467. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3468. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3469. }
  3470. #if defined(GGML_USE_CUBLAS)
  3471. ggml_init_cublas();
  3472. #elif defined(GGML_USE_CLBLAST)
  3473. ggml_cl_init();
  3474. #endif
  3475. is_first_call = false;
  3476. }
  3477. // find non-used context in g_state
  3478. struct ggml_context * ctx = NULL;
  3479. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3480. if (!g_state.contexts[i].used) {
  3481. g_state.contexts[i].used = true;
  3482. ctx = &g_state.contexts[i].context;
  3483. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3484. break;
  3485. }
  3486. }
  3487. if (ctx == NULL) {
  3488. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3489. ggml_critical_section_end();
  3490. return NULL;
  3491. }
  3492. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3493. *ctx = (struct ggml_context) {
  3494. /*.mem_size =*/ mem_size,
  3495. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3496. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3497. /*.no_alloc =*/ params.no_alloc,
  3498. /*.no_alloc_save =*/ params.no_alloc,
  3499. /*.n_objects =*/ 0,
  3500. /*.objects_begin =*/ NULL,
  3501. /*.objects_end =*/ NULL,
  3502. /*.scratch =*/ { 0, 0, NULL, },
  3503. /*.scratch_save =*/ { 0, 0, NULL, },
  3504. };
  3505. GGML_ASSERT(ctx->mem_buffer != NULL);
  3506. ggml_assert_aligned(ctx->mem_buffer);
  3507. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3508. ggml_critical_section_end();
  3509. return ctx;
  3510. }
  3511. void ggml_free(struct ggml_context * ctx) {
  3512. // make this function thread safe
  3513. ggml_critical_section_start();
  3514. bool found = false;
  3515. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3516. if (&g_state.contexts[i].context == ctx) {
  3517. g_state.contexts[i].used = false;
  3518. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3519. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3520. if (ctx->mem_buffer_owned) {
  3521. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3522. }
  3523. found = true;
  3524. break;
  3525. }
  3526. }
  3527. if (!found) {
  3528. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3529. }
  3530. ggml_critical_section_end();
  3531. }
  3532. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3533. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3534. }
  3535. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3536. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3537. ctx->scratch = scratch;
  3538. return result;
  3539. }
  3540. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3541. ctx->no_alloc = no_alloc;
  3542. }
  3543. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3544. return ctx->mem_buffer;
  3545. }
  3546. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3547. return ctx->mem_size;
  3548. }
  3549. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3550. size_t max_size = 0;
  3551. struct ggml_object * obj = ctx->objects_begin;
  3552. while (obj != NULL) {
  3553. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3554. const size_t size = ggml_nbytes(tensor);
  3555. if (max_size < size) {
  3556. max_size = size;
  3557. }
  3558. obj = obj->next;
  3559. }
  3560. return max_size;
  3561. }
  3562. // IMPORTANT:
  3563. // when creating "opt" tensors, always save and load the scratch buffer
  3564. // this is an error prone process, but it is necessary to support inplace
  3565. // operators when using scratch buffers
  3566. // TODO: implement a better way
  3567. void ggml_scratch_save(struct ggml_context * ctx) {
  3568. // this is needed to allow opt tensors to store their data
  3569. // TODO: again, need to find a better way
  3570. ctx->no_alloc_save = ctx->no_alloc;
  3571. ctx->no_alloc = false;
  3572. ctx->scratch_save = ctx->scratch;
  3573. ctx->scratch.data = NULL;
  3574. }
  3575. void ggml_scratch_load(struct ggml_context * ctx) {
  3576. ctx->no_alloc = ctx->no_alloc_save;
  3577. ctx->scratch = ctx->scratch_save;
  3578. }
  3579. ////////////////////////////////////////////////////////////////////////////////
  3580. struct ggml_tensor * ggml_new_tensor_impl(
  3581. struct ggml_context * ctx,
  3582. enum ggml_type type,
  3583. int n_dims,
  3584. const int64_t* ne,
  3585. void* data) {
  3586. // always insert objects at the end of the context's memory pool
  3587. struct ggml_object * obj_cur = ctx->objects_end;
  3588. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3589. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3590. const size_t cur_end = cur_offs + cur_size;
  3591. size_t size_needed = 0;
  3592. if (data == NULL && !ctx->no_alloc) {
  3593. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3594. for (int i = 1; i < n_dims; i++) {
  3595. size_needed *= ne[i];
  3596. }
  3597. // align to GGML_MEM_ALIGN
  3598. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3599. }
  3600. char * const mem_buffer = ctx->mem_buffer;
  3601. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3602. if (ctx->scratch.data == NULL || data != NULL) {
  3603. size_needed += GGML_TENSOR_SIZE;
  3604. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3605. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3606. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3607. assert(false);
  3608. return NULL;
  3609. }
  3610. *obj_new = (struct ggml_object) {
  3611. .offs = cur_end + GGML_OBJECT_SIZE,
  3612. .size = size_needed,
  3613. .next = NULL,
  3614. };
  3615. } else {
  3616. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3617. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3618. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3619. assert(false);
  3620. return NULL;
  3621. }
  3622. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3623. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3624. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3625. assert(false);
  3626. return NULL;
  3627. }
  3628. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3629. *obj_new = (struct ggml_object) {
  3630. .offs = cur_end + GGML_OBJECT_SIZE,
  3631. .size = GGML_TENSOR_SIZE,
  3632. .next = NULL,
  3633. };
  3634. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3635. ctx->scratch.offs += size_needed;
  3636. }
  3637. if (obj_cur != NULL) {
  3638. obj_cur->next = obj_new;
  3639. } else {
  3640. // this is the first object in this context
  3641. ctx->objects_begin = obj_new;
  3642. }
  3643. ctx->objects_end = obj_new;
  3644. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3645. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3646. ggml_assert_aligned(result);
  3647. *result = (struct ggml_tensor) {
  3648. /*.type =*/ type,
  3649. /*.backend =*/ GGML_BACKEND_CPU,
  3650. /*.n_dims =*/ n_dims,
  3651. /*.ne =*/ { 1, 1, 1, 1 },
  3652. /*.nb =*/ { 0, 0, 0, 0 },
  3653. /*.op =*/ GGML_OP_NONE,
  3654. /*.is_param =*/ false,
  3655. /*.grad =*/ NULL,
  3656. /*.src0 =*/ NULL,
  3657. /*.src1 =*/ NULL,
  3658. /*.opt =*/ { NULL },
  3659. /*.n_tasks =*/ 0,
  3660. /*.perf_runs =*/ 0,
  3661. /*.perf_cycles =*/ 0,
  3662. /*.perf_time_us =*/ 0,
  3663. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3664. /*.name =*/ { 0 },
  3665. /*.extra =*/ NULL,
  3666. /*.pad =*/ { 0 },
  3667. };
  3668. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3669. //ggml_assert_aligned(result->data);
  3670. for (int i = 0; i < n_dims; i++) {
  3671. result->ne[i] = ne[i];
  3672. }
  3673. result->nb[0] = GGML_TYPE_SIZE[type];
  3674. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3675. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3676. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3677. }
  3678. ctx->n_objects++;
  3679. return result;
  3680. }
  3681. struct ggml_tensor * ggml_new_tensor(
  3682. struct ggml_context * ctx,
  3683. enum ggml_type type,
  3684. int n_dims,
  3685. const int64_t * ne) {
  3686. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3687. }
  3688. struct ggml_tensor * ggml_new_tensor_1d(
  3689. struct ggml_context * ctx,
  3690. enum ggml_type type,
  3691. int64_t ne0) {
  3692. return ggml_new_tensor(ctx, type, 1, &ne0);
  3693. }
  3694. struct ggml_tensor * ggml_new_tensor_2d(
  3695. struct ggml_context * ctx,
  3696. enum ggml_type type,
  3697. int64_t ne0,
  3698. int64_t ne1) {
  3699. const int64_t ne[2] = { ne0, ne1 };
  3700. return ggml_new_tensor(ctx, type, 2, ne);
  3701. }
  3702. struct ggml_tensor * ggml_new_tensor_3d(
  3703. struct ggml_context * ctx,
  3704. enum ggml_type type,
  3705. int64_t ne0,
  3706. int64_t ne1,
  3707. int64_t ne2) {
  3708. const int64_t ne[3] = { ne0, ne1, ne2 };
  3709. return ggml_new_tensor(ctx, type, 3, ne);
  3710. }
  3711. struct ggml_tensor * ggml_new_tensor_4d(
  3712. struct ggml_context * ctx,
  3713. enum ggml_type type,
  3714. int64_t ne0,
  3715. int64_t ne1,
  3716. int64_t ne2,
  3717. int64_t ne3) {
  3718. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3719. return ggml_new_tensor(ctx, type, 4, ne);
  3720. }
  3721. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3722. ggml_scratch_save(ctx);
  3723. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3724. ggml_scratch_load(ctx);
  3725. ggml_set_i32(result, value);
  3726. return result;
  3727. }
  3728. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3729. ggml_scratch_save(ctx);
  3730. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3731. ggml_scratch_load(ctx);
  3732. ggml_set_f32(result, value);
  3733. return result;
  3734. }
  3735. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3736. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3737. }
  3738. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3739. memset(tensor->data, 0, ggml_nbytes(tensor));
  3740. return tensor;
  3741. }
  3742. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3743. const int n = ggml_nrows(tensor);
  3744. const int nc = tensor->ne[0];
  3745. const size_t n1 = tensor->nb[1];
  3746. char * const data = tensor->data;
  3747. switch (tensor->type) {
  3748. case GGML_TYPE_I8:
  3749. {
  3750. assert(tensor->nb[0] == sizeof(int8_t));
  3751. for (int i = 0; i < n; i++) {
  3752. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3753. }
  3754. } break;
  3755. case GGML_TYPE_I16:
  3756. {
  3757. assert(tensor->nb[0] == sizeof(int16_t));
  3758. for (int i = 0; i < n; i++) {
  3759. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3760. }
  3761. } break;
  3762. case GGML_TYPE_I32:
  3763. {
  3764. assert(tensor->nb[0] == sizeof(int32_t));
  3765. for (int i = 0; i < n; i++) {
  3766. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3767. }
  3768. } break;
  3769. case GGML_TYPE_F16:
  3770. {
  3771. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3772. for (int i = 0; i < n; i++) {
  3773. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3774. }
  3775. } break;
  3776. case GGML_TYPE_F32:
  3777. {
  3778. assert(tensor->nb[0] == sizeof(float));
  3779. for (int i = 0; i < n; i++) {
  3780. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3781. }
  3782. } break;
  3783. default:
  3784. {
  3785. GGML_ASSERT(false);
  3786. } break;
  3787. }
  3788. return tensor;
  3789. }
  3790. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3791. const int n = ggml_nrows(tensor);
  3792. const int nc = tensor->ne[0];
  3793. const size_t n1 = tensor->nb[1];
  3794. char * const data = tensor->data;
  3795. switch (tensor->type) {
  3796. case GGML_TYPE_I8:
  3797. {
  3798. assert(tensor->nb[0] == sizeof(int8_t));
  3799. for (int i = 0; i < n; i++) {
  3800. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3801. }
  3802. } break;
  3803. case GGML_TYPE_I16:
  3804. {
  3805. assert(tensor->nb[0] == sizeof(int16_t));
  3806. for (int i = 0; i < n; i++) {
  3807. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3808. }
  3809. } break;
  3810. case GGML_TYPE_I32:
  3811. {
  3812. assert(tensor->nb[0] == sizeof(int32_t));
  3813. for (int i = 0; i < n; i++) {
  3814. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3815. }
  3816. } break;
  3817. case GGML_TYPE_F16:
  3818. {
  3819. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3820. for (int i = 0; i < n; i++) {
  3821. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3822. }
  3823. } break;
  3824. case GGML_TYPE_F32:
  3825. {
  3826. assert(tensor->nb[0] == sizeof(float));
  3827. for (int i = 0; i < n; i++) {
  3828. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3829. }
  3830. } break;
  3831. default:
  3832. {
  3833. GGML_ASSERT(false);
  3834. } break;
  3835. }
  3836. return tensor;
  3837. }
  3838. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3839. switch (tensor->type) {
  3840. case GGML_TYPE_I8:
  3841. {
  3842. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3843. return ((int8_t *)(tensor->data))[i];
  3844. } break;
  3845. case GGML_TYPE_I16:
  3846. {
  3847. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3848. return ((int16_t *)(tensor->data))[i];
  3849. } break;
  3850. case GGML_TYPE_I32:
  3851. {
  3852. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3853. return ((int32_t *)(tensor->data))[i];
  3854. } break;
  3855. case GGML_TYPE_F16:
  3856. {
  3857. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3858. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3859. } break;
  3860. case GGML_TYPE_F32:
  3861. {
  3862. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3863. return ((float *)(tensor->data))[i];
  3864. } break;
  3865. default:
  3866. {
  3867. GGML_ASSERT(false);
  3868. } break;
  3869. }
  3870. return 0.0f;
  3871. }
  3872. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3873. switch (tensor->type) {
  3874. case GGML_TYPE_I8:
  3875. {
  3876. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3877. ((int8_t *)(tensor->data))[i] = value;
  3878. } break;
  3879. case GGML_TYPE_I16:
  3880. {
  3881. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3882. ((int16_t *)(tensor->data))[i] = value;
  3883. } break;
  3884. case GGML_TYPE_I32:
  3885. {
  3886. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3887. ((int32_t *)(tensor->data))[i] = value;
  3888. } break;
  3889. case GGML_TYPE_F16:
  3890. {
  3891. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3892. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3893. } break;
  3894. case GGML_TYPE_F32:
  3895. {
  3896. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3897. ((float *)(tensor->data))[i] = value;
  3898. } break;
  3899. default:
  3900. {
  3901. GGML_ASSERT(false);
  3902. } break;
  3903. }
  3904. }
  3905. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3906. switch (tensor->type) {
  3907. case GGML_TYPE_I8:
  3908. {
  3909. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3910. return ((int8_t *)(tensor->data))[i];
  3911. } break;
  3912. case GGML_TYPE_I16:
  3913. {
  3914. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3915. return ((int16_t *)(tensor->data))[i];
  3916. } break;
  3917. case GGML_TYPE_I32:
  3918. {
  3919. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3920. return ((int32_t *)(tensor->data))[i];
  3921. } break;
  3922. case GGML_TYPE_F16:
  3923. {
  3924. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3925. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3926. } break;
  3927. case GGML_TYPE_F32:
  3928. {
  3929. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3930. return ((float *)(tensor->data))[i];
  3931. } break;
  3932. default:
  3933. {
  3934. GGML_ASSERT(false);
  3935. } break;
  3936. }
  3937. return 0.0f;
  3938. }
  3939. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3940. switch (tensor->type) {
  3941. case GGML_TYPE_I8:
  3942. {
  3943. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3944. ((int8_t *)(tensor->data))[i] = value;
  3945. } break;
  3946. case GGML_TYPE_I16:
  3947. {
  3948. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3949. ((int16_t *)(tensor->data))[i] = value;
  3950. } break;
  3951. case GGML_TYPE_I32:
  3952. {
  3953. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3954. ((int32_t *)(tensor->data))[i] = value;
  3955. } break;
  3956. case GGML_TYPE_F16:
  3957. {
  3958. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3959. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3960. } break;
  3961. case GGML_TYPE_F32:
  3962. {
  3963. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3964. ((float *)(tensor->data))[i] = value;
  3965. } break;
  3966. default:
  3967. {
  3968. GGML_ASSERT(false);
  3969. } break;
  3970. }
  3971. }
  3972. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3973. return tensor->data;
  3974. }
  3975. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3976. assert(tensor->type == GGML_TYPE_F32);
  3977. return (float *)(tensor->data);
  3978. }
  3979. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3980. return tensor->name;
  3981. }
  3982. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3983. strncpy(tensor->name, name, sizeof(tensor->name));
  3984. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3985. return tensor;
  3986. }
  3987. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3988. va_list args;
  3989. va_start(args, fmt);
  3990. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3991. va_end(args);
  3992. return tensor;
  3993. }
  3994. struct ggml_tensor * ggml_view_tensor(
  3995. struct ggml_context * ctx,
  3996. const struct ggml_tensor * src) {
  3997. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3998. ggml_format_name(result, "%s (view)", src->name);
  3999. result->nb[0] = src->nb[0];
  4000. result->nb[1] = src->nb[1];
  4001. result->nb[2] = src->nb[2];
  4002. result->nb[3] = src->nb[3];
  4003. return result;
  4004. }
  4005. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4006. struct ggml_object * obj = ctx->objects_begin;
  4007. char * const mem_buffer = ctx->mem_buffer;
  4008. while (obj != NULL) {
  4009. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4010. if (strcmp(cur->name, name) == 0) {
  4011. return cur;
  4012. }
  4013. obj = obj->next;
  4014. }
  4015. return NULL;
  4016. }
  4017. ////////////////////////////////////////////////////////////////////////////////
  4018. // ggml_dup
  4019. struct ggml_tensor * ggml_dup_impl(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. bool inplace) {
  4023. bool is_node = false;
  4024. if (!inplace && (a->grad)) {
  4025. is_node = true;
  4026. }
  4027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4028. result->op = GGML_OP_DUP;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src0 = a;
  4031. result->src1 = NULL;
  4032. return result;
  4033. }
  4034. struct ggml_tensor * ggml_dup(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a) {
  4037. return ggml_dup_impl(ctx, a, false);
  4038. }
  4039. struct ggml_tensor * ggml_dup_inplace(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. return ggml_dup_impl(ctx, a, true);
  4043. }
  4044. // ggml_add
  4045. struct ggml_tensor * ggml_add_impl(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. struct ggml_tensor * b,
  4049. bool inplace) {
  4050. GGML_ASSERT(ggml_are_same_shape(a, b));
  4051. bool is_node = false;
  4052. if (a->grad || b->grad) {
  4053. is_node = true;
  4054. }
  4055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. result->op = GGML_OP_ADD;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = b;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_add(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. struct ggml_tensor * b) {
  4066. return ggml_add_impl(ctx, a, b, false);
  4067. }
  4068. struct ggml_tensor * ggml_add_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * b) {
  4072. return ggml_add_impl(ctx, a, b, true);
  4073. }
  4074. // ggml_add1
  4075. struct ggml_tensor * ggml_add1_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b,
  4079. bool inplace) {
  4080. GGML_ASSERT(ggml_is_scalar(b));
  4081. GGML_ASSERT(ggml_is_padded_1d(a));
  4082. bool is_node = false;
  4083. if (a->grad || b->grad) {
  4084. is_node = true;
  4085. }
  4086. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4087. result->op = GGML_OP_ADD1;
  4088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4089. result->src0 = a;
  4090. result->src1 = b;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_add1(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. struct ggml_tensor * b) {
  4097. return ggml_add1_impl(ctx, a, b, false);
  4098. }
  4099. struct ggml_tensor * ggml_add1_inplace(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b) {
  4103. return ggml_add1_impl(ctx, a, b, true);
  4104. }
  4105. // ggml_acc
  4106. struct ggml_tensor * ggml_acc_impl(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a,
  4109. struct ggml_tensor * b,
  4110. size_t nb1,
  4111. size_t nb2,
  4112. size_t nb3,
  4113. size_t offset,
  4114. bool inplace) {
  4115. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4116. GGML_ASSERT(ggml_is_contiguous(a));
  4117. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4118. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4119. bool is_node = false;
  4120. if (!inplace && (a->grad || b->grad)) {
  4121. is_node = true;
  4122. }
  4123. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4124. ggml_scratch_save(ctx);
  4125. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4126. ((int32_t *) c->data)[0] = nb1;
  4127. ((int32_t *) c->data)[1] = nb2;
  4128. ((int32_t *) c->data)[2] = nb3;
  4129. ((int32_t *) c->data)[3] = offset;
  4130. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4131. ggml_scratch_load(ctx);
  4132. result->op = GGML_OP_ACC;
  4133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4134. result->src0 = a;
  4135. result->src1 = b;
  4136. result->opt[0] = c;
  4137. return result;
  4138. }
  4139. struct ggml_tensor * ggml_acc(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. struct ggml_tensor * b,
  4143. size_t nb1,
  4144. size_t nb2,
  4145. size_t nb3,
  4146. size_t offset) {
  4147. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4148. }
  4149. struct ggml_tensor * ggml_acc_inplace(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. struct ggml_tensor * b,
  4153. size_t nb1,
  4154. size_t nb2,
  4155. size_t nb3,
  4156. size_t offset) {
  4157. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4158. }
  4159. // ggml_sub
  4160. struct ggml_tensor * ggml_sub_impl(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b,
  4164. bool inplace) {
  4165. GGML_ASSERT(ggml_are_same_shape(a, b));
  4166. bool is_node = false;
  4167. if (!inplace && (a->grad || b->grad)) {
  4168. is_node = true;
  4169. }
  4170. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4171. result->op = GGML_OP_SUB;
  4172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4173. result->src0 = a;
  4174. result->src1 = b;
  4175. return result;
  4176. }
  4177. struct ggml_tensor * ggml_sub(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. struct ggml_tensor * b) {
  4181. return ggml_sub_impl(ctx, a, b, false);
  4182. }
  4183. struct ggml_tensor * ggml_sub_inplace(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. struct ggml_tensor * b) {
  4187. return ggml_sub_impl(ctx, a, b, true);
  4188. }
  4189. // ggml_mul
  4190. struct ggml_tensor * ggml_mul_impl(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a,
  4193. struct ggml_tensor * b,
  4194. bool inplace) {
  4195. // TODO: support less-strict constraint
  4196. // GGML_ASSERT(ggml_can_repeat(b, a));
  4197. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4198. bool is_node = false;
  4199. if (!inplace && (a->grad || b->grad)) {
  4200. // TODO: support backward pass for broadcasting
  4201. GGML_ASSERT(ggml_are_same_shape(a, b));
  4202. is_node = true;
  4203. }
  4204. if (inplace) {
  4205. GGML_ASSERT(is_node == false);
  4206. }
  4207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. result->op = GGML_OP_MUL;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src0 = a;
  4211. result->src1 = b;
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_mul(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * b) {
  4218. return ggml_mul_impl(ctx, a, b, false);
  4219. }
  4220. struct ggml_tensor * ggml_mul_inplace(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. struct ggml_tensor * b) {
  4224. return ggml_mul_impl(ctx, a, b, true);
  4225. }
  4226. // ggml_div
  4227. struct ggml_tensor * ggml_div_impl(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. struct ggml_tensor * b,
  4231. bool inplace) {
  4232. GGML_ASSERT(ggml_are_same_shape(a, b));
  4233. bool is_node = false;
  4234. if (!inplace && (a->grad || b->grad)) {
  4235. is_node = true;
  4236. }
  4237. if (inplace) {
  4238. GGML_ASSERT(is_node == false);
  4239. }
  4240. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4241. result->op = GGML_OP_DIV;
  4242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4243. result->src0 = a;
  4244. result->src1 = b;
  4245. return result;
  4246. }
  4247. struct ggml_tensor * ggml_div(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b) {
  4251. return ggml_div_impl(ctx, a, b, false);
  4252. }
  4253. struct ggml_tensor * ggml_div_inplace(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b) {
  4257. return ggml_div_impl(ctx, a, b, true);
  4258. }
  4259. // ggml_sqr
  4260. struct ggml_tensor * ggml_sqr_impl(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a,
  4263. bool inplace) {
  4264. bool is_node = false;
  4265. if (!inplace && (a->grad)) {
  4266. is_node = true;
  4267. }
  4268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4269. result->op = GGML_OP_SQR;
  4270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4271. result->src0 = a;
  4272. result->src1 = NULL;
  4273. return result;
  4274. }
  4275. struct ggml_tensor * ggml_sqr(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a) {
  4278. return ggml_sqr_impl(ctx, a, false);
  4279. }
  4280. struct ggml_tensor * ggml_sqr_inplace(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a) {
  4283. return ggml_sqr_impl(ctx, a, true);
  4284. }
  4285. // ggml_sqrt
  4286. struct ggml_tensor * ggml_sqrt_impl(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a,
  4289. bool inplace) {
  4290. bool is_node = false;
  4291. if (!inplace && (a->grad)) {
  4292. is_node = true;
  4293. }
  4294. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4295. result->op = GGML_OP_SQRT;
  4296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4297. result->src0 = a;
  4298. result->src1 = NULL;
  4299. return result;
  4300. }
  4301. struct ggml_tensor * ggml_sqrt(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a) {
  4304. return ggml_sqrt_impl(ctx, a, false);
  4305. }
  4306. struct ggml_tensor * ggml_sqrt_inplace(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_sqrt_impl(ctx, a, true);
  4310. }
  4311. // ggml_log
  4312. struct ggml_tensor * ggml_log_impl(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a,
  4315. bool inplace) {
  4316. bool is_node = false;
  4317. if (!inplace && (a->grad)) {
  4318. is_node = true;
  4319. }
  4320. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4321. result->op = GGML_OP_LOG;
  4322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4323. result->src0 = a;
  4324. result->src1 = NULL;
  4325. return result;
  4326. }
  4327. struct ggml_tensor * ggml_log(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a) {
  4330. return ggml_log_impl(ctx, a, false);
  4331. }
  4332. struct ggml_tensor * ggml_log_inplace(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. return ggml_log_impl(ctx, a, true);
  4336. }
  4337. // ggml_sum
  4338. struct ggml_tensor * ggml_sum(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a) {
  4341. bool is_node = false;
  4342. if (a->grad) {
  4343. is_node = true;
  4344. }
  4345. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4346. result->op = GGML_OP_SUM;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src0 = a;
  4349. result->src1 = NULL;
  4350. return result;
  4351. }
  4352. // ggml_sum_rows
  4353. struct ggml_tensor * ggml_sum_rows(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a) {
  4356. bool is_node = false;
  4357. if (a->grad) {
  4358. is_node = true;
  4359. }
  4360. int64_t ne[4] = {1,1,1,1};
  4361. for (int i=1; i<a->n_dims; ++i) {
  4362. ne[i] = a->ne[i];
  4363. }
  4364. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4365. result->op = GGML_OP_SUM_ROWS;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src0 = a;
  4368. result->src1 = NULL;
  4369. return result;
  4370. }
  4371. // ggml_mean
  4372. struct ggml_tensor * ggml_mean(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a) {
  4375. bool is_node = false;
  4376. if (a->grad) {
  4377. GGML_ASSERT(false); // TODO: implement
  4378. is_node = true;
  4379. }
  4380. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4381. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4382. result->op = GGML_OP_MEAN;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src0 = a;
  4385. result->src1 = NULL;
  4386. return result;
  4387. }
  4388. // ggml_repeat
  4389. struct ggml_tensor * ggml_repeat(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. struct ggml_tensor * b) {
  4393. GGML_ASSERT(ggml_can_repeat(a, b));
  4394. bool is_node = false;
  4395. if (a->grad) {
  4396. is_node = true;
  4397. }
  4398. if (ggml_are_same_shape(a, b) && !is_node) {
  4399. return a;
  4400. }
  4401. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4402. result->op = GGML_OP_REPEAT;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src0 = a;
  4405. result->src1 = b;
  4406. return result;
  4407. }
  4408. // ggml_repeat_back
  4409. struct ggml_tensor * ggml_repeat_back(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a,
  4412. struct ggml_tensor * b) {
  4413. GGML_ASSERT(ggml_can_repeat(b, a));
  4414. bool is_node = false;
  4415. if (a->grad) {
  4416. is_node = true;
  4417. }
  4418. if (ggml_are_same_shape(a, b) && !is_node) {
  4419. return a;
  4420. }
  4421. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4422. result->op = GGML_OP_REPEAT_BACK;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src0 = a;
  4425. result->src1 = b;
  4426. return result;
  4427. }
  4428. // ggml_abs
  4429. struct ggml_tensor * ggml_abs_impl(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. bool inplace) {
  4433. bool is_node = false;
  4434. if (!inplace && (a->grad)) {
  4435. is_node = true;
  4436. }
  4437. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4438. result->op = GGML_OP_ABS;
  4439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4440. result->src0 = a;
  4441. result->src1 = NULL;
  4442. return result;
  4443. }
  4444. struct ggml_tensor * ggml_abs(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a) {
  4447. return ggml_abs_impl(ctx, a, false);
  4448. }
  4449. struct ggml_tensor * ggml_abs_inplace(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a) {
  4452. return ggml_abs_impl(ctx, a, true);
  4453. }
  4454. // ggml_sgn
  4455. struct ggml_tensor * ggml_sgn_impl(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. bool inplace) {
  4459. bool is_node = false;
  4460. if (!inplace && (a->grad)) {
  4461. is_node = true;
  4462. }
  4463. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4464. result->op = GGML_OP_SGN;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src0 = a;
  4467. result->src1 = NULL;
  4468. return result;
  4469. }
  4470. struct ggml_tensor * ggml_sgn(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a) {
  4473. return ggml_sgn_impl(ctx, a, false);
  4474. }
  4475. struct ggml_tensor * ggml_sgn_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a) {
  4478. return ggml_sgn_impl(ctx, a, true);
  4479. }
  4480. // ggml_neg
  4481. struct ggml_tensor * ggml_neg_impl(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. bool inplace) {
  4485. bool is_node = false;
  4486. if (!inplace && (a->grad)) {
  4487. is_node = true;
  4488. }
  4489. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4490. result->op = GGML_OP_NEG;
  4491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4492. result->src0 = a;
  4493. result->src1 = NULL;
  4494. return result;
  4495. }
  4496. struct ggml_tensor * ggml_neg(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a) {
  4499. return ggml_neg_impl(ctx, a, false);
  4500. }
  4501. struct ggml_tensor * ggml_neg_inplace(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a) {
  4504. return ggml_neg_impl(ctx, a, true);
  4505. }
  4506. // ggml_step
  4507. struct ggml_tensor * ggml_step_impl(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. bool inplace) {
  4511. bool is_node = false;
  4512. if (!inplace && (a->grad)) {
  4513. is_node = true;
  4514. }
  4515. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4516. result->op = GGML_OP_STEP;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src0 = a;
  4519. result->src1 = NULL;
  4520. return result;
  4521. }
  4522. struct ggml_tensor * ggml_step(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a) {
  4525. return ggml_step_impl(ctx, a, false);
  4526. }
  4527. struct ggml_tensor * ggml_step_inplace(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_step_impl(ctx, a, true);
  4531. }
  4532. // ggml_relu
  4533. struct ggml_tensor * ggml_relu_impl(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a,
  4536. bool inplace) {
  4537. bool is_node = false;
  4538. if (!inplace && (a->grad)) {
  4539. is_node = true;
  4540. }
  4541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4542. result->op = GGML_OP_RELU;
  4543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4544. result->src0 = a;
  4545. result->src1 = NULL;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_relu(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a) {
  4551. return ggml_relu_impl(ctx, a, false);
  4552. }
  4553. struct ggml_tensor * ggml_relu_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_relu_impl(ctx, a, true);
  4557. }
  4558. // ggml_gelu
  4559. struct ggml_tensor * ggml_gelu_impl(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a,
  4562. bool inplace) {
  4563. bool is_node = false;
  4564. if (!inplace && (a->grad)) {
  4565. is_node = true;
  4566. }
  4567. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4568. result->op = GGML_OP_GELU;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src0 = a;
  4571. result->src1 = NULL;
  4572. return result;
  4573. }
  4574. struct ggml_tensor * ggml_gelu(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a) {
  4577. return ggml_gelu_impl(ctx, a, false);
  4578. }
  4579. struct ggml_tensor * ggml_gelu_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_gelu_impl(ctx, a, true);
  4583. }
  4584. // ggml_gelu_quick
  4585. struct ggml_tensor * ggml_gelu_quick_impl(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. bool inplace) {
  4589. bool is_node = false;
  4590. if (!inplace && (a->grad)) {
  4591. is_node = true;
  4592. }
  4593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4594. result->op = GGML_OP_GELU_QUICK;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src0 = a;
  4597. result->src1 = NULL;
  4598. return result;
  4599. }
  4600. struct ggml_tensor * ggml_gelu_quick(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. return ggml_gelu_quick_impl(ctx, a, false);
  4604. }
  4605. struct ggml_tensor * ggml_gelu_quick_inplace(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a) {
  4608. return ggml_gelu_quick_impl(ctx, a, true);
  4609. }
  4610. // ggml_silu
  4611. struct ggml_tensor * ggml_silu_impl(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. bool inplace) {
  4615. bool is_node = false;
  4616. if (!inplace && (a->grad)) {
  4617. is_node = true;
  4618. }
  4619. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4620. result->op = GGML_OP_SILU;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src0 = a;
  4623. result->src1 = NULL;
  4624. return result;
  4625. }
  4626. struct ggml_tensor * ggml_silu(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a) {
  4629. return ggml_silu_impl(ctx, a, false);
  4630. }
  4631. struct ggml_tensor * ggml_silu_inplace(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_silu_impl(ctx, a, true);
  4635. }
  4636. // ggml_silu_back
  4637. struct ggml_tensor * ggml_silu_back(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * a,
  4640. struct ggml_tensor * b) {
  4641. bool is_node = false;
  4642. if (a->grad || b->grad) {
  4643. // TODO: implement backward
  4644. is_node = true;
  4645. }
  4646. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4647. result->op = GGML_OP_SILU_BACK;
  4648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4649. result->src0 = a;
  4650. result->src1 = b;
  4651. return result;
  4652. }
  4653. // ggml_norm
  4654. struct ggml_tensor * ggml_norm_impl(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. bool inplace) {
  4658. bool is_node = false;
  4659. if (!inplace && (a->grad)) {
  4660. GGML_ASSERT(false); // TODO: implement backward
  4661. is_node = true;
  4662. }
  4663. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4664. result->op = GGML_OP_NORM;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src0 = a;
  4667. result->src1 = NULL; // TODO: maybe store epsilon here?
  4668. return result;
  4669. }
  4670. struct ggml_tensor * ggml_norm(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a) {
  4673. return ggml_norm_impl(ctx, a, false);
  4674. }
  4675. struct ggml_tensor * ggml_norm_inplace(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a) {
  4678. return ggml_norm_impl(ctx, a, true);
  4679. }
  4680. struct ggml_tensor * ggml_rms_norm_impl(
  4681. struct ggml_context * ctx,
  4682. struct ggml_tensor * a,
  4683. bool inplace) {
  4684. bool is_node = false;
  4685. if (!inplace && (a->grad)) {
  4686. is_node = true;
  4687. }
  4688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4689. result->op = GGML_OP_RMS_NORM;
  4690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4691. result->src0 = a;
  4692. result->src1 = NULL; // TODO: maybe store epsilon here?
  4693. return result;
  4694. }
  4695. struct ggml_tensor * ggml_rms_norm(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a) {
  4698. return ggml_rms_norm_impl(ctx, a, false);
  4699. }
  4700. struct ggml_tensor * ggml_rms_norm_inplace(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a) {
  4703. return ggml_rms_norm_impl(ctx, a, true);
  4704. }
  4705. struct ggml_tensor * ggml_rms_norm_back(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. struct ggml_tensor * b) {
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. // TODO: implement backward
  4712. is_node = true;
  4713. }
  4714. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4715. result->op = GGML_OP_RMS_NORM_BACK;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src0 = a;
  4718. result->src1 = b;
  4719. return result;
  4720. }
  4721. // ggml_mul_mat
  4722. struct ggml_tensor * ggml_mul_mat(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b) {
  4726. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4727. GGML_ASSERT(!ggml_is_transposed(a));
  4728. bool is_node = false;
  4729. if (a->grad || b->grad) {
  4730. is_node = true;
  4731. }
  4732. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4733. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4734. result->op = GGML_OP_MUL_MAT;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src0 = a;
  4737. result->src1 = b;
  4738. return result;
  4739. }
  4740. // ggml_out_prod
  4741. struct ggml_tensor * ggml_out_prod(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b) {
  4745. GGML_ASSERT(ggml_can_out_prod(a, b));
  4746. GGML_ASSERT(!ggml_is_transposed(a));
  4747. bool is_node = false;
  4748. if (a->grad || b->grad) {
  4749. is_node = true;
  4750. }
  4751. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4752. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4753. result->op = GGML_OP_OUT_PROD;
  4754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4755. result->src0 = a;
  4756. result->src1 = b;
  4757. return result;
  4758. }
  4759. // ggml_scale
  4760. struct ggml_tensor * ggml_scale_impl(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a,
  4763. struct ggml_tensor * b,
  4764. bool inplace) {
  4765. GGML_ASSERT(ggml_is_scalar(b));
  4766. GGML_ASSERT(ggml_is_padded_1d(a));
  4767. bool is_node = false;
  4768. if (a->grad || b->grad) {
  4769. is_node = true;
  4770. }
  4771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4772. result->op = GGML_OP_SCALE;
  4773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4774. result->src0 = a;
  4775. result->src1 = b;
  4776. return result;
  4777. }
  4778. struct ggml_tensor * ggml_scale(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * b) {
  4782. return ggml_scale_impl(ctx, a, b, false);
  4783. }
  4784. struct ggml_tensor * ggml_scale_inplace(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. struct ggml_tensor * b) {
  4788. return ggml_scale_impl(ctx, a, b, true);
  4789. }
  4790. // ggml_set
  4791. struct ggml_tensor * ggml_set_impl(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a,
  4794. struct ggml_tensor * b,
  4795. size_t nb1,
  4796. size_t nb2,
  4797. size_t nb3,
  4798. size_t offset,
  4799. bool inplace) {
  4800. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4801. bool is_node = false;
  4802. if (a->grad || b->grad) {
  4803. is_node = true;
  4804. }
  4805. // make a view of the destination
  4806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4807. ggml_scratch_save(ctx);
  4808. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4809. (( int32_t * ) c->data)[0] = nb1;
  4810. (( int32_t * ) c->data)[1] = nb2;
  4811. (( int32_t * ) c->data)[2] = nb3;
  4812. (( int32_t * ) c->data)[3] = offset;
  4813. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4814. ggml_scratch_load(ctx);
  4815. result->op = GGML_OP_SET;
  4816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4817. result->src0 = a;
  4818. result->src1 = b;
  4819. result->opt[0] = c;
  4820. return result;
  4821. }
  4822. struct ggml_tensor * ggml_set(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. struct ggml_tensor * b,
  4826. size_t nb1,
  4827. size_t nb2,
  4828. size_t nb3,
  4829. size_t offset) {
  4830. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4831. }
  4832. struct ggml_tensor * ggml_set_inplace(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. struct ggml_tensor * b,
  4836. size_t nb1,
  4837. size_t nb2,
  4838. size_t nb3,
  4839. size_t offset) {
  4840. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4841. }
  4842. struct ggml_tensor * ggml_set_1d(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. struct ggml_tensor * b,
  4846. size_t offset) {
  4847. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4848. }
  4849. struct ggml_tensor * ggml_set_1d_inplace(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. struct ggml_tensor * b,
  4853. size_t offset) {
  4854. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4855. }
  4856. struct ggml_tensor * ggml_set_2d(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. struct ggml_tensor * b,
  4860. size_t nb1,
  4861. size_t offset) {
  4862. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4863. }
  4864. struct ggml_tensor * ggml_set_2d_inplace(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. struct ggml_tensor * b,
  4868. size_t nb1,
  4869. size_t offset) {
  4870. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4871. }
  4872. // ggml_cpy
  4873. struct ggml_tensor * ggml_cpy_impl(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b,
  4877. bool inplace) {
  4878. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4879. bool is_node = false;
  4880. if (!inplace && (a->grad || b->grad)) {
  4881. is_node = true;
  4882. }
  4883. // make a view of the destination
  4884. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4885. if (strlen(b->name) > 0) {
  4886. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4887. } else {
  4888. ggml_format_name(result, "%s (copy)", a->name);
  4889. }
  4890. result->op = GGML_OP_CPY;
  4891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4892. result->src0 = a;
  4893. result->src1 = b;
  4894. return result;
  4895. }
  4896. struct ggml_tensor * ggml_cpy(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. struct ggml_tensor * b) {
  4900. return ggml_cpy_impl(ctx, a, b, false);
  4901. }
  4902. struct ggml_tensor * ggml_cpy_inplace(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * b) {
  4906. return ggml_cpy_impl(ctx, a, b, true);
  4907. }
  4908. // ggml_cont
  4909. struct ggml_tensor * ggml_cont_impl(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. bool inplace) {
  4913. bool is_node = false;
  4914. if (!inplace && a->grad) {
  4915. is_node = true;
  4916. }
  4917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4918. ggml_format_name(result, "%s (cont)", a->name);
  4919. result->op = GGML_OP_CONT;
  4920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4921. result->src0 = a;
  4922. result->src1 = NULL;
  4923. return result;
  4924. }
  4925. struct ggml_tensor * ggml_cont(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a) {
  4928. return ggml_cont_impl(ctx, a, false);
  4929. }
  4930. struct ggml_tensor * ggml_cont_inplace(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a) {
  4933. return ggml_cont_impl(ctx, a, true);
  4934. }
  4935. // ggml_reshape
  4936. struct ggml_tensor * ggml_reshape(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. struct ggml_tensor * b) {
  4940. GGML_ASSERT(ggml_is_contiguous(a));
  4941. GGML_ASSERT(ggml_is_contiguous(b));
  4942. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4943. bool is_node = false;
  4944. if (a->grad) {
  4945. is_node = true;
  4946. }
  4947. if (b->grad) {
  4948. // gradient propagation is not supported
  4949. //GGML_ASSERT(false);
  4950. }
  4951. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4952. ggml_format_name(result, "%s (reshaped)", a->name);
  4953. result->op = GGML_OP_RESHAPE;
  4954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4955. result->src0 = a;
  4956. result->src1 = NULL;
  4957. return result;
  4958. }
  4959. struct ggml_tensor * ggml_reshape_1d(
  4960. struct ggml_context * ctx,
  4961. struct ggml_tensor * a,
  4962. int64_t ne0) {
  4963. GGML_ASSERT(ggml_is_contiguous(a));
  4964. GGML_ASSERT(ggml_nelements(a) == ne0);
  4965. bool is_node = false;
  4966. if (a->grad) {
  4967. is_node = true;
  4968. }
  4969. const int64_t ne[1] = { ne0 };
  4970. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4971. ggml_format_name(result, "%s (reshaped)", a->name);
  4972. result->op = GGML_OP_RESHAPE;
  4973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4974. result->src0 = a;
  4975. result->src1 = NULL;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_reshape_2d(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. int64_t ne0,
  4982. int64_t ne1) {
  4983. GGML_ASSERT(ggml_is_contiguous(a));
  4984. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4985. bool is_node = false;
  4986. if (a->grad) {
  4987. is_node = true;
  4988. }
  4989. const int64_t ne[2] = { ne0, ne1 };
  4990. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4991. ggml_format_name(result, "%s (reshaped)", a->name);
  4992. result->op = GGML_OP_RESHAPE;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src0 = a;
  4995. result->src1 = NULL;
  4996. return result;
  4997. }
  4998. struct ggml_tensor * ggml_reshape_3d(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. int64_t ne0,
  5002. int64_t ne1,
  5003. int64_t ne2) {
  5004. GGML_ASSERT(ggml_is_contiguous(a));
  5005. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5006. bool is_node = false;
  5007. if (a->grad) {
  5008. is_node = true;
  5009. }
  5010. const int64_t ne[3] = { ne0, ne1, ne2 };
  5011. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5012. ggml_format_name(result, "%s (reshaped)", a->name);
  5013. result->op = GGML_OP_RESHAPE;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src0 = a;
  5016. result->src1 = NULL;
  5017. return result;
  5018. }
  5019. struct ggml_tensor * ggml_reshape_4d(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a,
  5022. int64_t ne0,
  5023. int64_t ne1,
  5024. int64_t ne2,
  5025. int64_t ne3) {
  5026. GGML_ASSERT(ggml_is_contiguous(a));
  5027. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5028. bool is_node = false;
  5029. if (a->grad) {
  5030. is_node = true;
  5031. }
  5032. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5033. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5034. ggml_format_name(result, "%s (reshaped)", a->name);
  5035. result->op = GGML_OP_RESHAPE;
  5036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5037. result->src0 = a;
  5038. result->src1 = NULL;
  5039. return result;
  5040. }
  5041. // ggml_view_1d
  5042. struct ggml_tensor * ggml_view_1d(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. int64_t ne0,
  5046. size_t offset) {
  5047. bool is_node = false;
  5048. if (a->grad) {
  5049. is_node = true;
  5050. }
  5051. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5052. ggml_format_name(result, "%s (view)", a->name);
  5053. ggml_scratch_save(ctx);
  5054. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5055. ggml_set_name(offs, "offset");
  5056. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5057. ggml_scratch_load(ctx);
  5058. result->op = GGML_OP_VIEW;
  5059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5060. result->src0 = a;
  5061. result->src1 = NULL;
  5062. result->opt[0] = offs;
  5063. return result;
  5064. }
  5065. // ggml_view_2d
  5066. struct ggml_tensor * ggml_view_2d(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. int64_t ne0,
  5070. int64_t ne1,
  5071. size_t nb1,
  5072. size_t offset) {
  5073. bool is_node = false;
  5074. if (a->grad) {
  5075. is_node = true;
  5076. }
  5077. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5078. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5079. ggml_format_name(result, "%s (view)", a->name);
  5080. ggml_scratch_save(ctx);
  5081. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5082. ggml_set_name(offs, "offset");
  5083. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5084. ggml_scratch_load(ctx);
  5085. result->nb[1] = nb1;
  5086. result->nb[2] = result->nb[1]*ne1;
  5087. result->nb[3] = result->nb[2];
  5088. result->op = GGML_OP_VIEW;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src0 = a;
  5091. result->src1 = NULL;
  5092. result->opt[0] = offs;
  5093. return result;
  5094. }
  5095. // ggml_view_3d
  5096. struct ggml_tensor * ggml_view_3d(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. int64_t ne0,
  5100. int64_t ne1,
  5101. int64_t ne2,
  5102. size_t nb1,
  5103. size_t nb2,
  5104. size_t offset) {
  5105. bool is_node = false;
  5106. if (a->grad) {
  5107. is_node = true;
  5108. }
  5109. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5110. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5111. ggml_format_name(result, "%s (view)", a->name);
  5112. ggml_scratch_save(ctx);
  5113. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5114. ggml_set_name(offs, "offset");
  5115. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5116. ggml_scratch_load(ctx);
  5117. result->nb[1] = nb1;
  5118. result->nb[2] = nb2;
  5119. result->nb[3] = result->nb[2]*ne2;
  5120. result->op = GGML_OP_VIEW;
  5121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5122. result->src0 = a;
  5123. result->src1 = NULL;
  5124. result->opt[0] = offs;
  5125. return result;
  5126. }
  5127. // ggml_view_4d
  5128. struct ggml_tensor * ggml_view_4d(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. int64_t ne0,
  5132. int64_t ne1,
  5133. int64_t ne2,
  5134. int64_t ne3,
  5135. size_t nb1,
  5136. size_t nb2,
  5137. size_t nb3,
  5138. size_t offset) {
  5139. bool is_node = false;
  5140. if (a->grad) {
  5141. is_node = true;
  5142. }
  5143. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5144. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5145. ggml_format_name(result, "%s (view)", a->name);
  5146. ggml_scratch_save(ctx);
  5147. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5148. ggml_set_name(offs, "offset");
  5149. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5150. ggml_scratch_load(ctx);
  5151. result->nb[1] = nb1;
  5152. result->nb[2] = nb2;
  5153. result->nb[3] = nb3;
  5154. result->op = GGML_OP_VIEW;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src0 = a;
  5157. result->src1 = NULL;
  5158. result->opt[0] = offs;
  5159. return result;
  5160. }
  5161. // ggml_permute
  5162. struct ggml_tensor * ggml_permute(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. int axis0,
  5166. int axis1,
  5167. int axis2,
  5168. int axis3) {
  5169. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5170. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5171. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5172. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5173. GGML_ASSERT(axis0 != axis1);
  5174. GGML_ASSERT(axis0 != axis2);
  5175. GGML_ASSERT(axis0 != axis3);
  5176. GGML_ASSERT(axis1 != axis2);
  5177. GGML_ASSERT(axis1 != axis3);
  5178. GGML_ASSERT(axis2 != axis3);
  5179. bool is_node = false;
  5180. if (a->grad) {
  5181. is_node = true;
  5182. }
  5183. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5184. ggml_format_name(result, "%s (permuted)", a->name);
  5185. int ne[GGML_MAX_DIMS];
  5186. int nb[GGML_MAX_DIMS];
  5187. ne[axis0] = a->ne[0];
  5188. ne[axis1] = a->ne[1];
  5189. ne[axis2] = a->ne[2];
  5190. ne[axis3] = a->ne[3];
  5191. nb[axis0] = a->nb[0];
  5192. nb[axis1] = a->nb[1];
  5193. nb[axis2] = a->nb[2];
  5194. nb[axis3] = a->nb[3];
  5195. result->ne[0] = ne[0];
  5196. result->ne[1] = ne[1];
  5197. result->ne[2] = ne[2];
  5198. result->ne[3] = ne[3];
  5199. result->nb[0] = nb[0];
  5200. result->nb[1] = nb[1];
  5201. result->nb[2] = nb[2];
  5202. result->nb[3] = nb[3];
  5203. result->op = GGML_OP_PERMUTE;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src0 = a;
  5206. result->src1 = NULL;
  5207. if (is_node) {
  5208. ggml_scratch_save(ctx);
  5209. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5210. ((int32_t *) b->data)[0] = axis0;
  5211. ((int32_t *) b->data)[1] = axis1;
  5212. ((int32_t *) b->data)[2] = axis2;
  5213. ((int32_t *) b->data)[3] = axis3;
  5214. ggml_scratch_load(ctx);
  5215. result->opt[0] = b;
  5216. }
  5217. return result;
  5218. }
  5219. // ggml_transpose
  5220. struct ggml_tensor * ggml_transpose(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a) {
  5223. bool is_node = false;
  5224. if (a->grad) {
  5225. is_node = true;
  5226. }
  5227. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5228. ggml_format_name(result, "%s (transposed)", a->name);
  5229. result->ne[0] = a->ne[1];
  5230. result->ne[1] = a->ne[0];
  5231. result->nb[0] = a->nb[1];
  5232. result->nb[1] = a->nb[0];
  5233. result->op = GGML_OP_TRANSPOSE;
  5234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5235. result->src0 = a;
  5236. result->src1 = NULL;
  5237. return result;
  5238. }
  5239. // ggml_get_rows
  5240. struct ggml_tensor * ggml_get_rows(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. struct ggml_tensor * b) {
  5244. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5245. bool is_node = false;
  5246. if (a->grad || b->grad) {
  5247. is_node = true;
  5248. }
  5249. // TODO: implement non F32 return
  5250. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5251. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5252. result->op = GGML_OP_GET_ROWS;
  5253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5254. result->src0 = a;
  5255. result->src1 = b;
  5256. return result;
  5257. }
  5258. // ggml_get_rows_back
  5259. struct ggml_tensor * ggml_get_rows_back(
  5260. struct ggml_context * ctx,
  5261. struct ggml_tensor * a,
  5262. struct ggml_tensor * b,
  5263. struct ggml_tensor * c) {
  5264. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5265. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5266. bool is_node = false;
  5267. if (a->grad || b->grad) {
  5268. is_node = true;
  5269. }
  5270. // TODO: implement non F32 return
  5271. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5272. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5273. result->op = GGML_OP_GET_ROWS_BACK;
  5274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5275. result->src0 = a;
  5276. result->src1 = b;
  5277. result->opt[0] = c;
  5278. return result;
  5279. }
  5280. // ggml_diag
  5281. struct ggml_tensor * ggml_diag(
  5282. struct ggml_context * ctx,
  5283. struct ggml_tensor * a) {
  5284. GGML_ASSERT(a->ne[1] == 1);
  5285. bool is_node = false;
  5286. if (a->grad) {
  5287. is_node = true;
  5288. }
  5289. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5290. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5291. result->op = GGML_OP_DIAG;
  5292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5293. result->src0 = a;
  5294. result->src1 = NULL;
  5295. return result;
  5296. }
  5297. // ggml_diag_mask_inf
  5298. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. int n_past,
  5302. bool inplace) {
  5303. bool is_node = false;
  5304. if (a->grad) {
  5305. is_node = true;
  5306. }
  5307. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5308. ggml_scratch_save(ctx);
  5309. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5310. ((int32_t *) b->data)[0] = n_past;
  5311. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5312. ggml_scratch_load(ctx);
  5313. result->op = GGML_OP_DIAG_MASK_INF;
  5314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5315. result->src0 = a;
  5316. result->src1 = b;
  5317. return result;
  5318. }
  5319. struct ggml_tensor * ggml_diag_mask_inf(
  5320. struct ggml_context * ctx,
  5321. struct ggml_tensor * a,
  5322. int n_past) {
  5323. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5324. }
  5325. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. int n_past) {
  5329. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5330. }
  5331. // ggml_diag_mask_zero
  5332. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5333. struct ggml_context * ctx,
  5334. struct ggml_tensor * a,
  5335. int n_past,
  5336. bool inplace) {
  5337. bool is_node = false;
  5338. if (a->grad) {
  5339. is_node = true;
  5340. }
  5341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5342. ggml_scratch_save(ctx);
  5343. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5344. ggml_set_name(b, "n_past, inplace");
  5345. ((int32_t *) b->data)[0] = n_past;
  5346. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5347. ggml_scratch_load(ctx);
  5348. result->op = GGML_OP_DIAG_MASK_ZERO;
  5349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5350. result->src0 = a;
  5351. result->src1 = b;
  5352. return result;
  5353. }
  5354. struct ggml_tensor * ggml_diag_mask_zero(
  5355. struct ggml_context * ctx,
  5356. struct ggml_tensor * a,
  5357. int n_past) {
  5358. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5359. }
  5360. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. int n_past) {
  5364. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5365. }
  5366. // ggml_soft_max
  5367. struct ggml_tensor * ggml_soft_max_impl(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * a,
  5370. bool inplace) {
  5371. bool is_node = false;
  5372. if (a->grad) {
  5373. is_node = true;
  5374. }
  5375. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5376. result->op = GGML_OP_SOFT_MAX;
  5377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5378. result->src0 = a;
  5379. result->src1 = NULL;
  5380. return result;
  5381. }
  5382. struct ggml_tensor * ggml_soft_max(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a) {
  5385. return ggml_soft_max_impl(ctx, a, false);
  5386. }
  5387. struct ggml_tensor * ggml_soft_max_inplace(
  5388. struct ggml_context * ctx,
  5389. struct ggml_tensor * a) {
  5390. return ggml_soft_max_impl(ctx, a, true);
  5391. }
  5392. // ggml_soft_max_back
  5393. struct ggml_tensor * ggml_soft_max_back_impl(
  5394. struct ggml_context * ctx,
  5395. struct ggml_tensor * a,
  5396. struct ggml_tensor * b,
  5397. bool inplace) {
  5398. bool is_node = false;
  5399. if (a->grad || b->grad) {
  5400. is_node = true; // TODO : implement backward pass
  5401. }
  5402. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5403. result->op = GGML_OP_SOFT_MAX_BACK;
  5404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5405. result->src0 = a;
  5406. result->src1 = b;
  5407. return result;
  5408. }
  5409. struct ggml_tensor * ggml_soft_max_back(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. struct ggml_tensor * b) {
  5413. return ggml_soft_max_back_impl(ctx, a, b, false);
  5414. }
  5415. struct ggml_tensor * ggml_soft_max_back_inplace(
  5416. struct ggml_context * ctx,
  5417. struct ggml_tensor * a,
  5418. struct ggml_tensor * b) {
  5419. return ggml_soft_max_back_impl(ctx, a, b, true);
  5420. }
  5421. // ggml_rope
  5422. struct ggml_tensor * ggml_rope_impl(
  5423. struct ggml_context * ctx,
  5424. struct ggml_tensor * a,
  5425. int n_past,
  5426. int n_dims,
  5427. int mode,
  5428. bool inplace) {
  5429. GGML_ASSERT(n_past >= 0);
  5430. bool is_node = false;
  5431. if (a->grad) {
  5432. is_node = true;
  5433. }
  5434. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5435. ggml_scratch_save(ctx);
  5436. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5437. ((int32_t *) b->data)[0] = n_past;
  5438. ((int32_t *) b->data)[1] = n_dims;
  5439. ((int32_t *) b->data)[2] = mode;
  5440. ggml_scratch_load(ctx);
  5441. result->op = GGML_OP_ROPE;
  5442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5443. result->src0 = a;
  5444. result->src1 = b;
  5445. return result;
  5446. }
  5447. struct ggml_tensor * ggml_rope(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * a,
  5450. int n_past,
  5451. int n_dims,
  5452. int mode) {
  5453. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5454. }
  5455. struct ggml_tensor * ggml_rope_inplace(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. int n_past,
  5459. int n_dims,
  5460. int mode) {
  5461. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5462. }
  5463. // ggml_rope_back
  5464. struct ggml_tensor * ggml_rope_back(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past,
  5468. int n_dims,
  5469. int mode) {
  5470. GGML_ASSERT(n_past >= 0);
  5471. bool is_node = false;
  5472. if (a->grad) {
  5473. is_node = false; // TODO: implement backward
  5474. }
  5475. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5476. ggml_scratch_save(ctx);
  5477. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5478. ggml_set_name(b, "n_past, n_dims, mode");
  5479. ((int32_t *) b->data)[0] = n_past;
  5480. ((int32_t *) b->data)[1] = n_dims;
  5481. ((int32_t *) b->data)[2] = mode;
  5482. ggml_scratch_load(ctx);
  5483. result->op = GGML_OP_ROPE_BACK;
  5484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5485. result->src0 = a;
  5486. result->src1 = b;
  5487. return result;
  5488. }
  5489. // ggml_alibi
  5490. struct ggml_tensor * ggml_alibi(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. int n_past,
  5494. int n_head,
  5495. float bias_max) {
  5496. GGML_ASSERT(n_past >= 0);
  5497. bool is_node = false;
  5498. if (a->grad) {
  5499. GGML_ASSERT(false); // TODO: implement backward
  5500. is_node = true;
  5501. }
  5502. // TODO: when implement backward, fix this:
  5503. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5504. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5505. ggml_scratch_save(ctx);
  5506. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5507. ((int32_t *) b->data)[0] = n_past;
  5508. ((int32_t *) b->data)[1] = n_head;
  5509. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5510. (((float *) b->data)[2]) = bias_max;
  5511. ggml_scratch_load(ctx);
  5512. result->op = GGML_OP_ALIBI;
  5513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5514. result->src0 = a;
  5515. result->src1 = b;
  5516. return result;
  5517. }
  5518. // ggml_clamp
  5519. struct ggml_tensor * ggml_clamp(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a,
  5522. float min,
  5523. float max) {
  5524. bool is_node = false;
  5525. if (a->grad) {
  5526. GGML_ASSERT(false); // TODO: implement backward
  5527. is_node = true;
  5528. }
  5529. // TODO: when implement backward, fix this:
  5530. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5531. ggml_scratch_save(ctx);
  5532. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5533. ((float *) b->data)[0] = min;
  5534. ((float *) b->data)[1] = max;
  5535. ggml_scratch_load(ctx);
  5536. result->op = GGML_OP_CLAMP;
  5537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5538. result->src0 = a;
  5539. result->src1 = b;
  5540. return result;
  5541. }
  5542. // ggml_conv_1d_s1_ph
  5543. struct ggml_tensor * ggml_conv_1d_s1_ph(
  5544. struct ggml_context * ctx,
  5545. struct ggml_tensor * a,
  5546. struct ggml_tensor * b) {
  5547. GGML_ASSERT(ggml_is_matrix(b));
  5548. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5549. GGML_ASSERT(a->ne[3] == 1);
  5550. bool is_node = false;
  5551. if (a->grad || b->grad) {
  5552. GGML_ASSERT(false); // TODO: implement backward
  5553. is_node = true;
  5554. }
  5555. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5556. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5557. result->op = GGML_OP_CONV_1D_S1_PH;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src0 = a;
  5560. result->src1 = b;
  5561. return result;
  5562. }
  5563. // ggml_conv_1d_s2_ph
  5564. struct ggml_tensor * ggml_conv_1d_s2_ph(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b) {
  5568. GGML_ASSERT(ggml_is_matrix(b));
  5569. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5570. GGML_ASSERT(a->ne[3] == 1);
  5571. bool is_node = false;
  5572. if (a->grad || b->grad) {
  5573. GGML_ASSERT(false); // TODO: implement backward
  5574. is_node = true;
  5575. }
  5576. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5578. result->op = GGML_OP_CONV_1D_S2_PH;
  5579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5580. result->src0 = a;
  5581. result->src1 = b;
  5582. return result;
  5583. }
  5584. // ggml_conv_2d_sk_p0
  5585. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5586. struct ggml_context * ctx,
  5587. struct ggml_tensor * a,
  5588. struct ggml_tensor * b) {
  5589. GGML_ASSERT(b->ne[3] == 1);
  5590. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5591. GGML_ASSERT(b->ne[0] % a->ne[0] == 0);
  5592. GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
  5593. bool is_node = false;
  5594. if (a->grad || b->grad) {
  5595. GGML_ASSERT(false); // TODO: implement backward
  5596. is_node = true;
  5597. }
  5598. const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, };
  5599. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5600. result->op = GGML_OP_CONV_2D_SK_P0;
  5601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5602. result->src0 = a;
  5603. result->src1 = b;
  5604. return result;
  5605. }
  5606. // ggml_flash_attn
  5607. struct ggml_tensor * ggml_flash_attn(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * q,
  5610. struct ggml_tensor * k,
  5611. struct ggml_tensor * v,
  5612. bool masked) {
  5613. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5614. // TODO: check if vT can be multiplied by (k*qT)
  5615. bool is_node = false;
  5616. if (q->grad || k->grad || v->grad) {
  5617. is_node = true;
  5618. }
  5619. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5620. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5621. result->op = GGML_OP_FLASH_ATTN;
  5622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5623. result->src0 = q;
  5624. result->src1 = k;
  5625. result->opt[0] = v;
  5626. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5627. return result;
  5628. }
  5629. // ggml_flash_ff
  5630. struct ggml_tensor * ggml_flash_ff(
  5631. struct ggml_context * ctx,
  5632. struct ggml_tensor * a,
  5633. struct ggml_tensor * b0,
  5634. struct ggml_tensor * b1,
  5635. struct ggml_tensor * c0,
  5636. struct ggml_tensor * c1) {
  5637. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5638. // TODO: more checks
  5639. bool is_node = false;
  5640. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5641. is_node = true;
  5642. }
  5643. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5644. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5645. result->op = GGML_OP_FLASH_FF;
  5646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5647. result->src0 = a;
  5648. result->src1 = b0;
  5649. result->opt[0] = b1;
  5650. result->opt[1] = c0;
  5651. result->opt[2] = c1;
  5652. return result;
  5653. }
  5654. // ggml_flash_attn_back
  5655. struct ggml_tensor * ggml_flash_attn_back(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * q,
  5658. struct ggml_tensor * k,
  5659. struct ggml_tensor * v,
  5660. struct ggml_tensor * d,
  5661. bool masked) {
  5662. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5663. // TODO: check if vT can be multiplied by (k*qT)
  5664. // d shape [D,N,ne2,ne3]
  5665. // q shape [D,N,ne2,ne3]
  5666. // k shape [D,M,ne2,ne3]
  5667. // v shape [M,D,ne2,ne3]
  5668. const int64_t D = q->ne[0];
  5669. const int64_t N = q->ne[1];
  5670. const int64_t M = k->ne[1];
  5671. const int64_t ne2 = q->ne[2];
  5672. const int64_t ne3 = q->ne[3];
  5673. GGML_ASSERT(k->ne[0] == D);
  5674. GGML_ASSERT(v->ne[0] == M);
  5675. GGML_ASSERT(v->ne[1] == D);
  5676. GGML_ASSERT(d->ne[0] == D);
  5677. GGML_ASSERT(d->ne[1] == N);
  5678. GGML_ASSERT(k->ne[2] == ne2);
  5679. GGML_ASSERT(k->ne[3] == ne3);
  5680. GGML_ASSERT(v->ne[2] == ne2);
  5681. GGML_ASSERT(v->ne[3] == ne3);
  5682. GGML_ASSERT(d->ne[2] == ne2);
  5683. GGML_ASSERT(d->ne[3] == ne3);
  5684. bool is_node = false;
  5685. if (q->grad || k->grad || v->grad) {
  5686. // when using this operation (in backwards pass) these grads are set.
  5687. // we don't want to create (big) grad of our result, so is_node is false.
  5688. is_node = false;
  5689. }
  5690. // store gradients of q, k and v as continuous tensors concatenated in result.
  5691. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5692. // gradq->data = result->data
  5693. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5694. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5695. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5696. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5697. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5698. result->op = GGML_OP_FLASH_ATTN_BACK;
  5699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5700. result->src0 = q;
  5701. result->src1 = k;
  5702. result->opt[0] = v;
  5703. result->opt[1] = d;
  5704. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5705. return result;
  5706. }
  5707. // ggml_win_part
  5708. struct ggml_tensor * ggml_win_part(
  5709. struct ggml_context * ctx,
  5710. struct ggml_tensor * a,
  5711. int w) {
  5712. GGML_ASSERT(a->ne[3] == 1);
  5713. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5714. bool is_node = false;
  5715. if (a->grad) {
  5716. GGML_ASSERT(false); // TODO: implement backward
  5717. is_node = true;
  5718. }
  5719. // padding
  5720. const int px = (w - a->ne[1]%w)%w;
  5721. const int py = (w - a->ne[2]%w)%w;
  5722. const int npx = (px + a->ne[1])/w;
  5723. const int npy = (py + a->ne[2])/w;
  5724. const int np = npx*npy;
  5725. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5726. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5727. ggml_scratch_save(ctx);
  5728. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5729. ((int32_t *) b->data)[0] = npx;
  5730. ((int32_t *) b->data)[1] = npy;
  5731. ((int32_t *) b->data)[2] = w;
  5732. ggml_scratch_load(ctx);
  5733. result->op = GGML_OP_WIN_PART;
  5734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5735. result->src0 = a;
  5736. result->src1 = NULL;
  5737. result->opt[0] = b;
  5738. return result;
  5739. }
  5740. // ggml_win_unpart
  5741. struct ggml_tensor * ggml_win_unpart(
  5742. struct ggml_context * ctx,
  5743. struct ggml_tensor * a,
  5744. int w0,
  5745. int h0,
  5746. int w) {
  5747. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5748. bool is_node = false;
  5749. if (a->grad) {
  5750. GGML_ASSERT(false); // TODO: implement backward
  5751. is_node = true;
  5752. }
  5753. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5754. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5755. ggml_scratch_save(ctx);
  5756. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5757. ((int32_t *) b->data)[0] = w;
  5758. ggml_scratch_load(ctx);
  5759. result->op = GGML_OP_WIN_UNPART;
  5760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5761. result->src0 = a;
  5762. result->src1 = NULL;
  5763. result->opt[0] = b;
  5764. return result;
  5765. }
  5766. // ggml_map_unary
  5767. struct ggml_tensor * ggml_map_unary_impl_f32(
  5768. struct ggml_context * ctx,
  5769. struct ggml_tensor * a,
  5770. const ggml_unary_op_f32_t fun,
  5771. bool inplace) {
  5772. bool is_node = false;
  5773. if (!inplace && a->grad) {
  5774. is_node = true;
  5775. }
  5776. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5777. ggml_scratch_save(ctx);
  5778. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5779. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5780. ggml_scratch_load(ctx);
  5781. result->op = GGML_OP_MAP_UNARY;
  5782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5783. result->src0 = a;
  5784. result->opt[0] = addr_tensor;
  5785. return result;
  5786. }
  5787. struct ggml_tensor * ggml_map_unary_f32(
  5788. struct ggml_context * ctx,
  5789. struct ggml_tensor * a,
  5790. const ggml_unary_op_f32_t fun) {
  5791. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5792. }
  5793. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. const ggml_unary_op_f32_t fun) {
  5797. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5798. }
  5799. // ggml_map_binary
  5800. struct ggml_tensor * ggml_map_binary_impl_f32(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b,
  5804. const ggml_binary_op_f32_t fun,
  5805. bool inplace) {
  5806. GGML_ASSERT(ggml_are_same_shape(a, b));
  5807. bool is_node = false;
  5808. if (!inplace && (a->grad || b->grad)) {
  5809. is_node = true;
  5810. }
  5811. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5812. ggml_scratch_save(ctx);
  5813. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5814. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5815. ggml_scratch_load(ctx);
  5816. result->op = GGML_OP_MAP_BINARY;
  5817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5818. result->src0 = a;
  5819. result->src1 = b;
  5820. result->opt[0] = addr_tensor;
  5821. return result;
  5822. }
  5823. struct ggml_tensor * ggml_map_binary_f32(
  5824. struct ggml_context * ctx,
  5825. struct ggml_tensor * a,
  5826. struct ggml_tensor * b,
  5827. const ggml_binary_op_f32_t fun) {
  5828. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5829. }
  5830. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5831. struct ggml_context * ctx,
  5832. struct ggml_tensor * a,
  5833. struct ggml_tensor * b,
  5834. const ggml_binary_op_f32_t fun) {
  5835. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5836. }
  5837. // ggml_map_custom1
  5838. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5839. struct ggml_context * ctx,
  5840. struct ggml_tensor * a,
  5841. const ggml_custom1_op_f32_t fun,
  5842. bool inplace) {
  5843. bool is_node = false;
  5844. if (!inplace && a->grad) {
  5845. is_node = true;
  5846. }
  5847. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5848. ggml_scratch_save(ctx);
  5849. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5850. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5851. ggml_scratch_load(ctx);
  5852. result->op = GGML_OP_MAP_CUSTOM1;
  5853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5854. result->src0 = a;
  5855. result->opt[0] = addr_tensor;
  5856. return result;
  5857. }
  5858. struct ggml_tensor * ggml_map_custom1_f32(
  5859. struct ggml_context * ctx,
  5860. struct ggml_tensor * a,
  5861. const ggml_custom1_op_f32_t fun) {
  5862. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5863. }
  5864. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5865. struct ggml_context * ctx,
  5866. struct ggml_tensor * a,
  5867. const ggml_custom1_op_f32_t fun) {
  5868. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5869. }
  5870. // ggml_map_custom2
  5871. struct ggml_tensor * ggml_map_custom2_impl_f32(
  5872. struct ggml_context * ctx,
  5873. struct ggml_tensor * a,
  5874. struct ggml_tensor * b,
  5875. const ggml_custom2_op_f32_t fun,
  5876. bool inplace) {
  5877. bool is_node = false;
  5878. if (!inplace && (a->grad || b->grad)) {
  5879. is_node = true;
  5880. }
  5881. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5882. ggml_scratch_save(ctx);
  5883. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5884. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5885. ggml_scratch_load(ctx);
  5886. result->op = GGML_OP_MAP_CUSTOM2;
  5887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5888. result->src0 = a;
  5889. result->src1 = b;
  5890. result->opt[0] = addr_tensor;
  5891. return result;
  5892. }
  5893. struct ggml_tensor * ggml_map_custom2_f32(
  5894. struct ggml_context * ctx,
  5895. struct ggml_tensor * a,
  5896. struct ggml_tensor * b,
  5897. const ggml_custom2_op_f32_t fun) {
  5898. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5899. }
  5900. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5901. struct ggml_context * ctx,
  5902. struct ggml_tensor * a,
  5903. struct ggml_tensor * b,
  5904. const ggml_custom2_op_f32_t fun) {
  5905. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5906. }
  5907. // ggml_map_custom3
  5908. struct ggml_tensor * ggml_map_custom3_impl_f32(
  5909. struct ggml_context * ctx,
  5910. struct ggml_tensor * a,
  5911. struct ggml_tensor * b,
  5912. struct ggml_tensor * c,
  5913. const ggml_custom3_op_f32_t fun,
  5914. bool inplace) {
  5915. bool is_node = false;
  5916. if (!inplace && (a->grad || b->grad || c->grad)) {
  5917. is_node = true;
  5918. }
  5919. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5920. ggml_scratch_save(ctx);
  5921. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5922. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5923. ggml_scratch_load(ctx);
  5924. result->op = GGML_OP_MAP_CUSTOM3;
  5925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5926. result->src0 = a;
  5927. result->src1 = b;
  5928. result->opt[0] = addr_tensor;
  5929. result->opt[1] = c;
  5930. return result;
  5931. }
  5932. struct ggml_tensor * ggml_map_custom3_f32(
  5933. struct ggml_context * ctx,
  5934. struct ggml_tensor * a,
  5935. struct ggml_tensor * b,
  5936. struct ggml_tensor * c,
  5937. const ggml_custom3_op_f32_t fun) {
  5938. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5939. }
  5940. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5941. struct ggml_context * ctx,
  5942. struct ggml_tensor * a,
  5943. struct ggml_tensor * b,
  5944. struct ggml_tensor * c,
  5945. const ggml_custom3_op_f32_t fun) {
  5946. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5947. }
  5948. // ggml_cross_entropy_loss
  5949. struct ggml_tensor * ggml_cross_entropy_loss(
  5950. struct ggml_context * ctx,
  5951. struct ggml_tensor * a,
  5952. struct ggml_tensor * b) {
  5953. GGML_ASSERT(ggml_are_same_shape(a, b));
  5954. bool is_node = false;
  5955. if (a->grad || b->grad) {
  5956. is_node = true;
  5957. }
  5958. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5959. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5961. result->src0 = a;
  5962. result->src1 = b;
  5963. return result;
  5964. }
  5965. // ggml_cross_entropy_loss_back
  5966. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5967. struct ggml_context * ctx,
  5968. struct ggml_tensor * a,
  5969. struct ggml_tensor * b,
  5970. struct ggml_tensor * c) {
  5971. GGML_ASSERT(ggml_are_same_shape(a, b));
  5972. GGML_ASSERT(ggml_is_scalar(c));
  5973. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5974. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5975. result->grad = NULL;
  5976. result->src0 = a;
  5977. result->src1 = b;
  5978. result->opt[0] = c;
  5979. return result;
  5980. }
  5981. ////////////////////////////////////////////////////////////////////////////////
  5982. void ggml_set_param(
  5983. struct ggml_context * ctx,
  5984. struct ggml_tensor * tensor) {
  5985. tensor->is_param = true;
  5986. GGML_ASSERT(tensor->grad == NULL);
  5987. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5988. }
  5989. // ggml_compute_forward_dup
  5990. static void ggml_compute_forward_dup_same_cont(
  5991. const struct ggml_compute_params * params,
  5992. const struct ggml_tensor * src0,
  5993. struct ggml_tensor * dst) {
  5994. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5995. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5996. GGML_ASSERT(src0->type == dst->type);
  5997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5998. return;
  5999. }
  6000. const size_t nb00 = src0->nb[0];
  6001. const size_t nb0 = dst->nb[0];
  6002. const int ith = params->ith; // thread index
  6003. const int nth = params->nth; // number of threads
  6004. // parallelize by elements
  6005. const int ne = ggml_nelements(dst);
  6006. const int dr = (ne + nth - 1) / nth;
  6007. const int ie0 = dr * ith;
  6008. const int ie1 = MIN(ie0 + dr, ne);
  6009. if (ie0 < ie1) {
  6010. memcpy(
  6011. ((char *) dst->data + ie0*nb0),
  6012. ((char *) src0->data + ie0*nb00),
  6013. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6014. }
  6015. }
  6016. static void ggml_compute_forward_dup_f16(
  6017. const struct ggml_compute_params * params,
  6018. const struct ggml_tensor * src0,
  6019. struct ggml_tensor * dst) {
  6020. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6022. return;
  6023. }
  6024. const int64_t ne00 = src0->ne[0];
  6025. const int64_t ne01 = src0->ne[1];
  6026. const int64_t ne02 = src0->ne[2];
  6027. const int64_t ne03 = src0->ne[3];
  6028. const int64_t ne0 = dst->ne[0];
  6029. const int64_t ne1 = dst->ne[1];
  6030. const int64_t ne2 = dst->ne[2];
  6031. const int64_t ne3 = dst->ne[3];
  6032. const size_t nb00 = src0->nb[0];
  6033. const size_t nb01 = src0->nb[1];
  6034. const size_t nb02 = src0->nb[2];
  6035. const size_t nb03 = src0->nb[3];
  6036. const size_t nb0 = dst->nb[0];
  6037. const size_t nb1 = dst->nb[1];
  6038. const size_t nb2 = dst->nb[2];
  6039. const size_t nb3 = dst->nb[3];
  6040. const int ith = params->ith; // thread index
  6041. const int nth = params->nth; // number of threads
  6042. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6043. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6044. return;
  6045. }
  6046. // parallelize by rows
  6047. const int nr = ne01;
  6048. // number of rows per thread
  6049. const int dr = (nr + nth - 1) / nth;
  6050. // row range for this thread
  6051. const int ir0 = dr * ith;
  6052. const int ir1 = MIN(ir0 + dr, nr);
  6053. if (src0->type == dst->type &&
  6054. ne00 == ne0 &&
  6055. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6056. // copy by rows
  6057. const size_t rs = ne00*nb00;
  6058. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6059. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6060. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6061. memcpy(
  6062. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6063. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6064. rs);
  6065. }
  6066. }
  6067. }
  6068. return;
  6069. }
  6070. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6071. if (ggml_is_contiguous(dst)) {
  6072. if (nb00 == sizeof(ggml_fp16_t)) {
  6073. if (dst->type == GGML_TYPE_F16) {
  6074. size_t id = 0;
  6075. const size_t rs = ne00 * nb00;
  6076. char * dst_ptr = (char *) dst->data;
  6077. for (int i03 = 0; i03 < ne03; i03++) {
  6078. for (int i02 = 0; i02 < ne02; i02++) {
  6079. id += rs * ir0;
  6080. for (int i01 = ir0; i01 < ir1; i01++) {
  6081. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6082. memcpy(dst_ptr + id, src0_ptr, rs);
  6083. id += rs;
  6084. }
  6085. id += rs * (ne01 - ir1);
  6086. }
  6087. }
  6088. } else if (dst->type == GGML_TYPE_F32) {
  6089. size_t id = 0;
  6090. float * dst_ptr = (float *) dst->data;
  6091. for (int i03 = 0; i03 < ne03; i03++) {
  6092. for (int i02 = 0; i02 < ne02; i02++) {
  6093. id += ne00 * ir0;
  6094. for (int i01 = ir0; i01 < ir1; i01++) {
  6095. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6096. for (int i00 = 0; i00 < ne00; i00++) {
  6097. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6098. id++;
  6099. }
  6100. }
  6101. id += ne00 * (ne01 - ir1);
  6102. }
  6103. }
  6104. } else if (ggml_is_quantized(dst->type)) {
  6105. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6106. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6107. size_t id = 0;
  6108. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6109. char * dst_ptr = (char *) dst->data;
  6110. for (int i03 = 0; i03 < ne03; i03++) {
  6111. for (int i02 = 0; i02 < ne02; i02++) {
  6112. id += rs * ir0;
  6113. for (int i01 = ir0; i01 < ir1; i01++) {
  6114. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6115. for (int i00 = 0; i00 < ne00; i00++) {
  6116. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6117. }
  6118. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6119. id += rs;
  6120. }
  6121. id += rs * (ne01 - ir1);
  6122. }
  6123. }
  6124. } else {
  6125. GGML_ASSERT(false); // TODO: implement
  6126. }
  6127. } else {
  6128. //printf("%s: this is not optimal - fix me\n", __func__);
  6129. if (dst->type == GGML_TYPE_F32) {
  6130. size_t id = 0;
  6131. float * dst_ptr = (float *) dst->data;
  6132. for (int i03 = 0; i03 < ne03; i03++) {
  6133. for (int i02 = 0; i02 < ne02; i02++) {
  6134. id += ne00 * ir0;
  6135. for (int i01 = ir0; i01 < ir1; i01++) {
  6136. for (int i00 = 0; i00 < ne00; i00++) {
  6137. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6138. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6139. id++;
  6140. }
  6141. }
  6142. id += ne00 * (ne01 - ir1);
  6143. }
  6144. }
  6145. } else if (dst->type == GGML_TYPE_F16) {
  6146. size_t id = 0;
  6147. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6148. for (int i03 = 0; i03 < ne03; i03++) {
  6149. for (int i02 = 0; i02 < ne02; i02++) {
  6150. id += ne00 * ir0;
  6151. for (int i01 = ir0; i01 < ir1; i01++) {
  6152. for (int i00 = 0; i00 < ne00; i00++) {
  6153. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6154. dst_ptr[id] = *src0_ptr;
  6155. id++;
  6156. }
  6157. }
  6158. id += ne00 * (ne01 - ir1);
  6159. }
  6160. }
  6161. } else {
  6162. GGML_ASSERT(false); // TODO: implement
  6163. }
  6164. }
  6165. return;
  6166. }
  6167. // dst counters
  6168. int64_t i10 = 0;
  6169. int64_t i11 = 0;
  6170. int64_t i12 = 0;
  6171. int64_t i13 = 0;
  6172. if (dst->type == GGML_TYPE_F16) {
  6173. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6174. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6175. i10 += ne00 * ir0;
  6176. while (i10 >= ne0) {
  6177. i10 -= ne0;
  6178. if (++i11 == ne1) {
  6179. i11 = 0;
  6180. if (++i12 == ne2) {
  6181. i12 = 0;
  6182. if (++i13 == ne3) {
  6183. i13 = 0;
  6184. }
  6185. }
  6186. }
  6187. }
  6188. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6189. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6190. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6191. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6192. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6193. if (++i10 == ne00) {
  6194. i10 = 0;
  6195. if (++i11 == ne01) {
  6196. i11 = 0;
  6197. if (++i12 == ne02) {
  6198. i12 = 0;
  6199. if (++i13 == ne03) {
  6200. i13 = 0;
  6201. }
  6202. }
  6203. }
  6204. }
  6205. }
  6206. }
  6207. i10 += ne00 * (ne01 - ir1);
  6208. while (i10 >= ne0) {
  6209. i10 -= ne0;
  6210. if (++i11 == ne1) {
  6211. i11 = 0;
  6212. if (++i12 == ne2) {
  6213. i12 = 0;
  6214. if (++i13 == ne3) {
  6215. i13 = 0;
  6216. }
  6217. }
  6218. }
  6219. }
  6220. }
  6221. }
  6222. } else if (dst->type == GGML_TYPE_F32) {
  6223. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6224. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6225. i10 += ne00 * ir0;
  6226. while (i10 >= ne0) {
  6227. i10 -= ne0;
  6228. if (++i11 == ne1) {
  6229. i11 = 0;
  6230. if (++i12 == ne2) {
  6231. i12 = 0;
  6232. if (++i13 == ne3) {
  6233. i13 = 0;
  6234. }
  6235. }
  6236. }
  6237. }
  6238. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6239. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6240. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6241. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6242. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6243. if (++i10 == ne0) {
  6244. i10 = 0;
  6245. if (++i11 == ne1) {
  6246. i11 = 0;
  6247. if (++i12 == ne2) {
  6248. i12 = 0;
  6249. if (++i13 == ne3) {
  6250. i13 = 0;
  6251. }
  6252. }
  6253. }
  6254. }
  6255. }
  6256. }
  6257. i10 += ne00 * (ne01 - ir1);
  6258. while (i10 >= ne0) {
  6259. i10 -= ne0;
  6260. if (++i11 == ne1) {
  6261. i11 = 0;
  6262. if (++i12 == ne2) {
  6263. i12 = 0;
  6264. if (++i13 == ne3) {
  6265. i13 = 0;
  6266. }
  6267. }
  6268. }
  6269. }
  6270. }
  6271. }
  6272. } else {
  6273. GGML_ASSERT(false); // TODO: implement
  6274. }
  6275. }
  6276. static void ggml_compute_forward_dup_f32(
  6277. const struct ggml_compute_params * params,
  6278. const struct ggml_tensor * src0,
  6279. struct ggml_tensor * dst) {
  6280. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6282. return;
  6283. }
  6284. const int64_t ne00 = src0->ne[0];
  6285. const int64_t ne01 = src0->ne[1];
  6286. const int64_t ne02 = src0->ne[2];
  6287. const int64_t ne03 = src0->ne[3];
  6288. const int64_t ne0 = dst->ne[0];
  6289. const int64_t ne1 = dst->ne[1];
  6290. const int64_t ne2 = dst->ne[2];
  6291. const int64_t ne3 = dst->ne[3];
  6292. const size_t nb00 = src0->nb[0];
  6293. const size_t nb01 = src0->nb[1];
  6294. const size_t nb02 = src0->nb[2];
  6295. const size_t nb03 = src0->nb[3];
  6296. const size_t nb0 = dst->nb[0];
  6297. const size_t nb1 = dst->nb[1];
  6298. const size_t nb2 = dst->nb[2];
  6299. const size_t nb3 = dst->nb[3];
  6300. const int ith = params->ith; // thread index
  6301. const int nth = params->nth; // number of threads
  6302. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6303. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6304. return;
  6305. }
  6306. // parallelize by rows
  6307. const int nr = ne01;
  6308. // number of rows per thread
  6309. const int dr = (nr + nth - 1) / nth;
  6310. // row range for this thread
  6311. const int ir0 = dr * ith;
  6312. const int ir1 = MIN(ir0 + dr, nr);
  6313. if (src0->type == dst->type &&
  6314. ne00 == ne0 &&
  6315. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6316. // copy by rows
  6317. const size_t rs = ne00*nb00;
  6318. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6319. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6320. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6321. memcpy(
  6322. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6323. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6324. rs);
  6325. }
  6326. }
  6327. }
  6328. return;
  6329. }
  6330. if (ggml_is_contiguous(dst)) {
  6331. // TODO: simplify
  6332. if (nb00 == sizeof(float)) {
  6333. if (dst->type == GGML_TYPE_F32) {
  6334. size_t id = 0;
  6335. const size_t rs = ne00 * nb00;
  6336. char * dst_ptr = (char *) dst->data;
  6337. for (int i03 = 0; i03 < ne03; i03++) {
  6338. for (int i02 = 0; i02 < ne02; i02++) {
  6339. id += rs * ir0;
  6340. for (int i01 = ir0; i01 < ir1; i01++) {
  6341. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6342. memcpy(dst_ptr + id, src0_ptr, rs);
  6343. id += rs;
  6344. }
  6345. id += rs * (ne01 - ir1);
  6346. }
  6347. }
  6348. } else if (dst->type == GGML_TYPE_F16) {
  6349. size_t id = 0;
  6350. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6351. for (int i03 = 0; i03 < ne03; i03++) {
  6352. for (int i02 = 0; i02 < ne02; i02++) {
  6353. id += ne00 * ir0;
  6354. for (int i01 = ir0; i01 < ir1; i01++) {
  6355. for (int i00 = 0; i00 < ne00; i00++) {
  6356. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6357. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6358. id++;
  6359. }
  6360. }
  6361. id += ne00 * (ne01 - ir1);
  6362. }
  6363. }
  6364. } else if (ggml_is_quantized(dst->type)) {
  6365. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6366. size_t id = 0;
  6367. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6368. char * dst_ptr = (char *) dst->data;
  6369. for (int i03 = 0; i03 < ne03; i03++) {
  6370. for (int i02 = 0; i02 < ne02; i02++) {
  6371. id += rs * ir0;
  6372. for (int i01 = ir0; i01 < ir1; i01++) {
  6373. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6374. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6375. id += rs;
  6376. }
  6377. id += rs * (ne01 - ir1);
  6378. }
  6379. }
  6380. } else {
  6381. GGML_ASSERT(false); // TODO: implement
  6382. }
  6383. } else {
  6384. //printf("%s: this is not optimal - fix me\n", __func__);
  6385. if (dst->type == GGML_TYPE_F32) {
  6386. size_t id = 0;
  6387. float * dst_ptr = (float *) dst->data;
  6388. for (int i03 = 0; i03 < ne03; i03++) {
  6389. for (int i02 = 0; i02 < ne02; i02++) {
  6390. id += ne00 * ir0;
  6391. for (int i01 = ir0; i01 < ir1; i01++) {
  6392. for (int i00 = 0; i00 < ne00; i00++) {
  6393. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6394. dst_ptr[id] = *src0_ptr;
  6395. id++;
  6396. }
  6397. }
  6398. id += ne00 * (ne01 - ir1);
  6399. }
  6400. }
  6401. } else if (dst->type == GGML_TYPE_F16) {
  6402. size_t id = 0;
  6403. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6404. for (int i03 = 0; i03 < ne03; i03++) {
  6405. for (int i02 = 0; i02 < ne02; i02++) {
  6406. id += ne00 * ir0;
  6407. for (int i01 = ir0; i01 < ir1; i01++) {
  6408. for (int i00 = 0; i00 < ne00; i00++) {
  6409. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6410. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6411. id++;
  6412. }
  6413. }
  6414. id += ne00 * (ne01 - ir1);
  6415. }
  6416. }
  6417. } else {
  6418. GGML_ASSERT(false); // TODO: implement
  6419. }
  6420. }
  6421. return;
  6422. }
  6423. // dst counters
  6424. int64_t i10 = 0;
  6425. int64_t i11 = 0;
  6426. int64_t i12 = 0;
  6427. int64_t i13 = 0;
  6428. if (dst->type == GGML_TYPE_F32) {
  6429. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6430. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6431. i10 += ne00 * ir0;
  6432. while (i10 >= ne0) {
  6433. i10 -= ne0;
  6434. if (++i11 == ne1) {
  6435. i11 = 0;
  6436. if (++i12 == ne2) {
  6437. i12 = 0;
  6438. if (++i13 == ne3) {
  6439. i13 = 0;
  6440. }
  6441. }
  6442. }
  6443. }
  6444. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6445. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6446. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6447. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6448. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6449. if (++i10 == ne0) {
  6450. i10 = 0;
  6451. if (++i11 == ne1) {
  6452. i11 = 0;
  6453. if (++i12 == ne2) {
  6454. i12 = 0;
  6455. if (++i13 == ne3) {
  6456. i13 = 0;
  6457. }
  6458. }
  6459. }
  6460. }
  6461. }
  6462. }
  6463. i10 += ne00 * (ne01 - ir1);
  6464. while (i10 >= ne0) {
  6465. i10 -= ne0;
  6466. if (++i11 == ne1) {
  6467. i11 = 0;
  6468. if (++i12 == ne2) {
  6469. i12 = 0;
  6470. if (++i13 == ne3) {
  6471. i13 = 0;
  6472. }
  6473. }
  6474. }
  6475. }
  6476. }
  6477. }
  6478. } else if (dst->type == GGML_TYPE_F16) {
  6479. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6480. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6481. i10 += ne00 * ir0;
  6482. while (i10 >= ne0) {
  6483. i10 -= ne0;
  6484. if (++i11 == ne1) {
  6485. i11 = 0;
  6486. if (++i12 == ne2) {
  6487. i12 = 0;
  6488. if (++i13 == ne3) {
  6489. i13 = 0;
  6490. }
  6491. }
  6492. }
  6493. }
  6494. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6495. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6496. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6497. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6498. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6499. if (++i10 == ne0) {
  6500. i10 = 0;
  6501. if (++i11 == ne1) {
  6502. i11 = 0;
  6503. if (++i12 == ne2) {
  6504. i12 = 0;
  6505. if (++i13 == ne3) {
  6506. i13 = 0;
  6507. }
  6508. }
  6509. }
  6510. }
  6511. }
  6512. }
  6513. i10 += ne00 * (ne01 - ir1);
  6514. while (i10 >= ne0) {
  6515. i10 -= ne0;
  6516. if (++i11 == ne1) {
  6517. i11 = 0;
  6518. if (++i12 == ne2) {
  6519. i12 = 0;
  6520. if (++i13 == ne3) {
  6521. i13 = 0;
  6522. }
  6523. }
  6524. }
  6525. }
  6526. }
  6527. }
  6528. } else {
  6529. GGML_ASSERT(false); // TODO: implement
  6530. }
  6531. }
  6532. static void ggml_compute_forward_dup(
  6533. const struct ggml_compute_params * params,
  6534. const struct ggml_tensor * src0,
  6535. struct ggml_tensor * dst) {
  6536. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6537. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6538. return;
  6539. }
  6540. switch (src0->type) {
  6541. case GGML_TYPE_F16:
  6542. {
  6543. ggml_compute_forward_dup_f16(params, src0, dst);
  6544. } break;
  6545. case GGML_TYPE_F32:
  6546. {
  6547. ggml_compute_forward_dup_f32(params, src0, dst);
  6548. } break;
  6549. default:
  6550. {
  6551. GGML_ASSERT(false);
  6552. } break;
  6553. }
  6554. }
  6555. // ggml_compute_forward_add
  6556. static void ggml_compute_forward_add_f32(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. const struct ggml_tensor * src1,
  6560. struct ggml_tensor * dst) {
  6561. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6563. return;
  6564. }
  6565. const int ith = params->ith;
  6566. const int nth = params->nth;
  6567. const int nr = ggml_nrows(src0);
  6568. const int64_t ne0 = src0->ne[0];
  6569. const int64_t ne1 = src0->ne[1];
  6570. const int64_t ne2 = src0->ne[2];
  6571. const size_t nb00 = src0->nb[0];
  6572. const size_t nb01 = src0->nb[1];
  6573. const size_t nb02 = src0->nb[2];
  6574. const size_t nb03 = src0->nb[3];
  6575. const size_t nb10 = src1->nb[0];
  6576. const size_t nb11 = src1->nb[1];
  6577. const size_t nb12 = src1->nb[2];
  6578. const size_t nb13 = src1->nb[3];
  6579. const size_t nb0 = dst->nb[0];
  6580. const size_t nb1 = dst->nb[1];
  6581. const size_t nb2 = dst->nb[2];
  6582. const size_t nb3 = dst->nb[3];
  6583. GGML_ASSERT( nb0 == sizeof(float));
  6584. GGML_ASSERT(nb00 == sizeof(float));
  6585. // rows per thread
  6586. const int dr = (nr + nth - 1)/nth;
  6587. // row range for this thread
  6588. const int ir0 = dr*ith;
  6589. const int ir1 = MIN(ir0 + dr, nr);
  6590. if (nb10 == sizeof(float)) {
  6591. for (int ir = ir0; ir < ir1; ++ir) {
  6592. // src0, src1 and dst are same shape => same indices
  6593. const int i3 = ir/(ne2*ne1);
  6594. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6595. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6596. #ifdef GGML_USE_ACCELERATE
  6597. vDSP_vadd(
  6598. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6599. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6600. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6601. ne0);
  6602. #else
  6603. ggml_vec_add_f32(ne0,
  6604. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6605. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6606. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6607. #endif
  6608. // }
  6609. // }
  6610. }
  6611. } else {
  6612. // src1 is not contiguous
  6613. for (int ir = ir0; ir < ir1; ++ir) {
  6614. // src0, src1 and dst are same shape => same indices
  6615. const int i3 = ir/(ne2*ne1);
  6616. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6617. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6618. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6619. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6620. for (int i0 = 0; i0 < ne0; i0++) {
  6621. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6622. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6623. }
  6624. }
  6625. }
  6626. }
  6627. static void ggml_compute_forward_add_f16_f32(
  6628. const struct ggml_compute_params * params,
  6629. const struct ggml_tensor * src0,
  6630. const struct ggml_tensor * src1,
  6631. struct ggml_tensor * dst) {
  6632. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6634. return;
  6635. }
  6636. const int ith = params->ith;
  6637. const int nth = params->nth;
  6638. const int nr = ggml_nrows(src0);
  6639. const int64_t ne0 = src0->ne[0];
  6640. const int64_t ne1 = src0->ne[1];
  6641. const int64_t ne2 = src0->ne[2];
  6642. const size_t nb00 = src0->nb[0];
  6643. const size_t nb01 = src0->nb[1];
  6644. const size_t nb02 = src0->nb[2];
  6645. const size_t nb03 = src0->nb[3];
  6646. const size_t nb10 = src1->nb[0];
  6647. const size_t nb11 = src1->nb[1];
  6648. const size_t nb12 = src1->nb[2];
  6649. const size_t nb13 = src1->nb[3];
  6650. const size_t nb0 = dst->nb[0];
  6651. const size_t nb1 = dst->nb[1];
  6652. const size_t nb2 = dst->nb[2];
  6653. const size_t nb3 = dst->nb[3];
  6654. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6655. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6656. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6657. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6658. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6659. // rows per thread
  6660. const int dr = (nr + nth - 1)/nth;
  6661. // row range for this thread
  6662. const int ir0 = dr*ith;
  6663. const int ir1 = MIN(ir0 + dr, nr);
  6664. if (nb10 == sizeof(float)) {
  6665. for (int ir = ir0; ir < ir1; ++ir) {
  6666. // src0, src1 and dst are same shape => same indices
  6667. const int i3 = ir/(ne2*ne1);
  6668. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6669. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6670. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6671. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6672. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6673. for (int i = 0; i < ne0; i++) {
  6674. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6675. }
  6676. }
  6677. }
  6678. else {
  6679. // src1 is not contiguous
  6680. GGML_ASSERT(false);
  6681. }
  6682. }
  6683. static void ggml_compute_forward_add_f16_f16(
  6684. const struct ggml_compute_params * params,
  6685. const struct ggml_tensor * src0,
  6686. const struct ggml_tensor * src1,
  6687. struct ggml_tensor * dst) {
  6688. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6689. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6690. return;
  6691. }
  6692. const int ith = params->ith;
  6693. const int nth = params->nth;
  6694. const int nr = ggml_nrows(src0);
  6695. const int64_t ne0 = src0->ne[0];
  6696. const int64_t ne1 = src0->ne[1];
  6697. const int64_t ne2 = src0->ne[2];
  6698. const size_t nb00 = src0->nb[0];
  6699. const size_t nb01 = src0->nb[1];
  6700. const size_t nb02 = src0->nb[2];
  6701. const size_t nb03 = src0->nb[3];
  6702. const size_t nb10 = src1->nb[0];
  6703. const size_t nb11 = src1->nb[1];
  6704. const size_t nb12 = src1->nb[2];
  6705. const size_t nb13 = src1->nb[3];
  6706. const size_t nb0 = dst->nb[0];
  6707. const size_t nb1 = dst->nb[1];
  6708. const size_t nb2 = dst->nb[2];
  6709. const size_t nb3 = dst->nb[3];
  6710. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6711. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6712. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6713. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6714. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6715. // rows per thread
  6716. const int dr = (nr + nth - 1)/nth;
  6717. // row range for this thread
  6718. const int ir0 = dr*ith;
  6719. const int ir1 = MIN(ir0 + dr, nr);
  6720. if (nb10 == sizeof(ggml_fp16_t)) {
  6721. for (int ir = ir0; ir < ir1; ++ir) {
  6722. // src0, src1 and dst are same shape => same indices
  6723. const int i3 = ir/(ne2*ne1);
  6724. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6725. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6726. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6727. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6728. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6729. for (int i = 0; i < ne0; i++) {
  6730. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6731. }
  6732. }
  6733. }
  6734. else {
  6735. // src1 is not contiguous
  6736. GGML_ASSERT(false);
  6737. }
  6738. }
  6739. static void ggml_compute_forward_add_q_f32(
  6740. const struct ggml_compute_params * params,
  6741. const struct ggml_tensor * src0,
  6742. const struct ggml_tensor * src1,
  6743. struct ggml_tensor * dst) {
  6744. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6746. return;
  6747. }
  6748. const int nr = ggml_nrows(src0);
  6749. const int64_t ne00 = src0->ne[0];
  6750. const int64_t ne01 = src0->ne[1];
  6751. const int64_t ne02 = src0->ne[2];
  6752. //const int64_t ne03 = src0->ne[3];
  6753. const size_t nb00 = src0->nb[0];
  6754. const size_t nb01 = src0->nb[1];
  6755. const size_t nb02 = src0->nb[2];
  6756. const size_t nb03 = src0->nb[3];
  6757. const size_t nb10 = src1->nb[0];
  6758. const size_t nb11 = src1->nb[1];
  6759. const size_t nb12 = src1->nb[2];
  6760. const size_t nb13 = src1->nb[3];
  6761. const size_t nb0 = dst->nb[0];
  6762. const size_t nb1 = dst->nb[1];
  6763. const size_t nb2 = dst->nb[2];
  6764. const size_t nb3 = dst->nb[3];
  6765. const int ith = params->ith;
  6766. const int nth = params->nth;
  6767. const enum ggml_type type = src0->type;
  6768. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6769. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6770. // we don't support permuted src0 or src1
  6771. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6772. GGML_ASSERT(nb10 == sizeof(float));
  6773. // dst cannot be transposed or permuted
  6774. GGML_ASSERT(nb0 <= nb1);
  6775. GGML_ASSERT(nb1 <= nb2);
  6776. GGML_ASSERT(nb2 <= nb3);
  6777. GGML_ASSERT(ggml_is_quantized(src0->type));
  6778. GGML_ASSERT(dst->type == src0->type);
  6779. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6780. // rows per thread
  6781. const int dr = (nr + nth - 1)/nth;
  6782. // row range for this thread
  6783. const int ir0 = dr*ith;
  6784. const int ir1 = MIN(ir0 + dr, nr);
  6785. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6786. for (int ir = ir0; ir < ir1; ++ir) {
  6787. // src0 indices
  6788. const int i03 = ir/(ne02*ne01);
  6789. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6790. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6791. // src1 and dst are same shape as src0 => same indices
  6792. const int i13 = i03;
  6793. const int i12 = i02;
  6794. const int i11 = i01;
  6795. const int i3 = i03;
  6796. const int i2 = i02;
  6797. const int i1 = i01;
  6798. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6799. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6800. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6801. assert(ne00 % 32 == 0);
  6802. // unquantize row from src0 to temp buffer
  6803. dequantize_row_q(src0_row, wdata, ne00);
  6804. // add src1
  6805. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6806. // quantize row to dst
  6807. quantize_row_q(wdata, dst_row, ne00);
  6808. }
  6809. }
  6810. static void ggml_compute_forward_add(
  6811. const struct ggml_compute_params * params,
  6812. const struct ggml_tensor * src0,
  6813. const struct ggml_tensor * src1,
  6814. struct ggml_tensor * dst) {
  6815. switch (src0->type) {
  6816. case GGML_TYPE_F32:
  6817. {
  6818. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6819. } break;
  6820. case GGML_TYPE_F16:
  6821. {
  6822. if (src1->type == GGML_TYPE_F16) {
  6823. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6824. }
  6825. else if (src1->type == GGML_TYPE_F32) {
  6826. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6827. }
  6828. else {
  6829. GGML_ASSERT(false);
  6830. }
  6831. } break;
  6832. case GGML_TYPE_Q4_0:
  6833. case GGML_TYPE_Q4_1:
  6834. case GGML_TYPE_Q5_0:
  6835. case GGML_TYPE_Q5_1:
  6836. case GGML_TYPE_Q8_0:
  6837. case GGML_TYPE_Q2_K:
  6838. case GGML_TYPE_Q3_K:
  6839. case GGML_TYPE_Q4_K:
  6840. case GGML_TYPE_Q5_K:
  6841. case GGML_TYPE_Q6_K:
  6842. {
  6843. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6844. } break;
  6845. default:
  6846. {
  6847. GGML_ASSERT(false);
  6848. } break;
  6849. }
  6850. }
  6851. // ggml_compute_forward_add1
  6852. static void ggml_compute_forward_add1_f32(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * src0,
  6855. const struct ggml_tensor * src1,
  6856. struct ggml_tensor * dst) {
  6857. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6858. GGML_ASSERT(ggml_is_scalar(src1));
  6859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6860. return;
  6861. }
  6862. const int ith = params->ith;
  6863. const int nth = params->nth;
  6864. const int nr = ggml_nrows(src0);
  6865. const int64_t ne0 = src0->ne[0];
  6866. const int64_t ne1 = src0->ne[1];
  6867. const int64_t ne2 = src0->ne[2];
  6868. const size_t nb00 = src0->nb[0];
  6869. const size_t nb01 = src0->nb[1];
  6870. const size_t nb02 = src0->nb[2];
  6871. const size_t nb03 = src0->nb[3];
  6872. const size_t nb0 = dst->nb[0];
  6873. const size_t nb1 = dst->nb[1];
  6874. const size_t nb2 = dst->nb[2];
  6875. const size_t nb3 = dst->nb[3];
  6876. GGML_ASSERT( nb0 == sizeof(float));
  6877. GGML_ASSERT(nb00 == sizeof(float));
  6878. // rows per thread
  6879. const int dr = (nr + nth - 1)/nth;
  6880. // row range for this thread
  6881. const int ir0 = dr*ith;
  6882. const int ir1 = MIN(ir0 + dr, nr);
  6883. for (int ir = ir0; ir < ir1; ++ir) {
  6884. // src0 and dst are same shape => same indices
  6885. const int i3 = ir/(ne2*ne1);
  6886. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6887. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6888. #ifdef GGML_USE_ACCELERATE
  6889. UNUSED(ggml_vec_add1_f32);
  6890. vDSP_vadd(
  6891. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6892. (float *) ((char *) src1->data), 0,
  6893. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6894. ne0);
  6895. #else
  6896. ggml_vec_add1_f32(ne0,
  6897. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6898. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6899. *(float *) src1->data);
  6900. #endif
  6901. }
  6902. }
  6903. static void ggml_compute_forward_add1_f16_f32(
  6904. const struct ggml_compute_params * params,
  6905. const struct ggml_tensor * src0,
  6906. const struct ggml_tensor * src1,
  6907. struct ggml_tensor * dst) {
  6908. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6909. GGML_ASSERT(ggml_is_scalar(src1));
  6910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6911. return;
  6912. }
  6913. // scalar to add
  6914. const float v = *(float *) src1->data;
  6915. const int ith = params->ith;
  6916. const int nth = params->nth;
  6917. const int nr = ggml_nrows(src0);
  6918. const int64_t ne0 = src0->ne[0];
  6919. const int64_t ne1 = src0->ne[1];
  6920. const int64_t ne2 = src0->ne[2];
  6921. const size_t nb00 = src0->nb[0];
  6922. const size_t nb01 = src0->nb[1];
  6923. const size_t nb02 = src0->nb[2];
  6924. const size_t nb03 = src0->nb[3];
  6925. const size_t nb0 = dst->nb[0];
  6926. const size_t nb1 = dst->nb[1];
  6927. const size_t nb2 = dst->nb[2];
  6928. const size_t nb3 = dst->nb[3];
  6929. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6930. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6931. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6932. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6933. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6934. // rows per thread
  6935. const int dr = (nr + nth - 1)/nth;
  6936. // row range for this thread
  6937. const int ir0 = dr*ith;
  6938. const int ir1 = MIN(ir0 + dr, nr);
  6939. for (int ir = ir0; ir < ir1; ++ir) {
  6940. // src0 and dst are same shape => same indices
  6941. const int i3 = ir/(ne2*ne1);
  6942. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6943. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6944. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6945. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6946. for (int i = 0; i < ne0; i++) {
  6947. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6948. }
  6949. }
  6950. }
  6951. static void ggml_compute_forward_add1_f16_f16(
  6952. const struct ggml_compute_params * params,
  6953. const struct ggml_tensor * src0,
  6954. const struct ggml_tensor * src1,
  6955. struct ggml_tensor * dst) {
  6956. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6957. GGML_ASSERT(ggml_is_scalar(src1));
  6958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6959. return;
  6960. }
  6961. // scalar to add
  6962. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6963. const int ith = params->ith;
  6964. const int nth = params->nth;
  6965. const int nr = ggml_nrows(src0);
  6966. const int64_t ne0 = src0->ne[0];
  6967. const int64_t ne1 = src0->ne[1];
  6968. const int64_t ne2 = src0->ne[2];
  6969. const size_t nb00 = src0->nb[0];
  6970. const size_t nb01 = src0->nb[1];
  6971. const size_t nb02 = src0->nb[2];
  6972. const size_t nb03 = src0->nb[3];
  6973. const size_t nb0 = dst->nb[0];
  6974. const size_t nb1 = dst->nb[1];
  6975. const size_t nb2 = dst->nb[2];
  6976. const size_t nb3 = dst->nb[3];
  6977. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6978. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6979. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6980. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6981. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6982. // rows per thread
  6983. const int dr = (nr + nth - 1)/nth;
  6984. // row range for this thread
  6985. const int ir0 = dr*ith;
  6986. const int ir1 = MIN(ir0 + dr, nr);
  6987. for (int ir = ir0; ir < ir1; ++ir) {
  6988. // src0 and dst are same shape => same indices
  6989. const int i3 = ir/(ne2*ne1);
  6990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6992. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6993. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6994. for (int i = 0; i < ne0; i++) {
  6995. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6996. }
  6997. }
  6998. }
  6999. static void ggml_compute_forward_add1_q_f32(
  7000. const struct ggml_compute_params * params,
  7001. const struct ggml_tensor * src0,
  7002. const struct ggml_tensor * src1,
  7003. struct ggml_tensor * dst) {
  7004. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7005. GGML_ASSERT(ggml_is_scalar(src1));
  7006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7007. return;
  7008. }
  7009. // scalar to add
  7010. const float v = *(float *) src1->data;
  7011. const int ith = params->ith;
  7012. const int nth = params->nth;
  7013. const int nr = ggml_nrows(src0);
  7014. const int64_t ne0 = src0->ne[0];
  7015. const int64_t ne1 = src0->ne[1];
  7016. const int64_t ne2 = src0->ne[2];
  7017. const size_t nb00 = src0->nb[0];
  7018. const size_t nb01 = src0->nb[1];
  7019. const size_t nb02 = src0->nb[2];
  7020. const size_t nb03 = src0->nb[3];
  7021. const size_t nb0 = dst->nb[0];
  7022. const size_t nb1 = dst->nb[1];
  7023. const size_t nb2 = dst->nb[2];
  7024. const size_t nb3 = dst->nb[3];
  7025. const enum ggml_type type = src0->type;
  7026. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7027. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  7028. // we don't support permuted src0
  7029. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7030. // dst cannot be transposed or permuted
  7031. GGML_ASSERT(nb0 <= nb1);
  7032. GGML_ASSERT(nb1 <= nb2);
  7033. GGML_ASSERT(nb2 <= nb3);
  7034. GGML_ASSERT(ggml_is_quantized(src0->type));
  7035. GGML_ASSERT(dst->type == src0->type);
  7036. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7037. // rows per thread
  7038. const int dr = (nr + nth - 1)/nth;
  7039. // row range for this thread
  7040. const int ir0 = dr*ith;
  7041. const int ir1 = MIN(ir0 + dr, nr);
  7042. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7043. for (int ir = ir0; ir < ir1; ++ir) {
  7044. // src0 and dst are same shape => same indices
  7045. const int i3 = ir/(ne2*ne1);
  7046. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7047. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7048. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7049. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7050. assert(ne0 % 32 == 0);
  7051. // unquantize row from src0 to temp buffer
  7052. dequantize_row_q(src0_row, wdata, ne0);
  7053. // add src1
  7054. ggml_vec_acc1_f32(ne0, wdata, v);
  7055. // quantize row to dst
  7056. quantize_row_q(wdata, dst_row, ne0);
  7057. }
  7058. }
  7059. static void ggml_compute_forward_add1(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. const struct ggml_tensor * src1,
  7063. struct ggml_tensor * dst) {
  7064. switch (src0->type) {
  7065. case GGML_TYPE_F32:
  7066. {
  7067. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7068. } break;
  7069. case GGML_TYPE_F16:
  7070. {
  7071. if (src1->type == GGML_TYPE_F16) {
  7072. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7073. }
  7074. else if (src1->type == GGML_TYPE_F32) {
  7075. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7076. }
  7077. else {
  7078. GGML_ASSERT(false);
  7079. }
  7080. } break;
  7081. case GGML_TYPE_Q4_0:
  7082. case GGML_TYPE_Q4_1:
  7083. case GGML_TYPE_Q5_0:
  7084. case GGML_TYPE_Q5_1:
  7085. case GGML_TYPE_Q8_0:
  7086. case GGML_TYPE_Q8_1:
  7087. case GGML_TYPE_Q2_K:
  7088. case GGML_TYPE_Q3_K:
  7089. case GGML_TYPE_Q4_K:
  7090. case GGML_TYPE_Q5_K:
  7091. case GGML_TYPE_Q6_K:
  7092. {
  7093. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_acc
  7102. static void ggml_compute_forward_acc_f32(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. const struct ggml_tensor * src1,
  7106. const struct ggml_tensor * opt0,
  7107. struct ggml_tensor * dst) {
  7108. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7109. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7110. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7111. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7112. // view src0 and dst with these strides and data offset inbytes during acc
  7113. // nb0 is implicitely element_size because src0 and dst are contiguous
  7114. size_t nb1 = ((int32_t *) opt0->data)[0];
  7115. size_t nb2 = ((int32_t *) opt0->data)[1];
  7116. size_t nb3 = ((int32_t *) opt0->data)[2];
  7117. size_t offset = ((int32_t *) opt0->data)[3];
  7118. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7119. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7120. // memcpy needs to be synchronized across threads to avoid race conditions.
  7121. // => do it in INIT phase
  7122. memcpy(
  7123. ((char *) dst->data),
  7124. ((char *) src0->data),
  7125. ggml_nbytes(dst));
  7126. }
  7127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7128. return;
  7129. }
  7130. const int ith = params->ith;
  7131. const int nth = params->nth;
  7132. const int nr = ggml_nrows(src1);
  7133. const int nc = src1->ne[0];
  7134. const int64_t ne10 = src1->ne[0];
  7135. const int64_t ne11 = src1->ne[1];
  7136. const int64_t ne12 = src1->ne[2];
  7137. const int64_t ne13 = src1->ne[3];
  7138. const size_t nb10 = src1->nb[0];
  7139. const size_t nb11 = src1->nb[1];
  7140. const size_t nb12 = src1->nb[2];
  7141. const size_t nb13 = src1->nb[3];
  7142. // src0 and dst as viewed during acc
  7143. const size_t nb0 = ggml_element_size(src0);
  7144. const size_t nb00 = nb0;
  7145. const size_t nb01 = nb1;
  7146. const size_t nb02 = nb2;
  7147. const size_t nb03 = nb3;
  7148. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7149. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7150. GGML_ASSERT(nb10 == sizeof(float));
  7151. // rows per thread
  7152. const int dr = (nr + nth - 1)/nth;
  7153. // row range for this thread
  7154. const int ir0 = dr*ith;
  7155. const int ir1 = MIN(ir0 + dr, nr);
  7156. for (int ir = ir0; ir < ir1; ++ir) {
  7157. // src0 and dst are viewed with shape of src1 and offset
  7158. // => same indices
  7159. const int i3 = ir/(ne12*ne11);
  7160. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7161. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7162. #ifdef GGML_USE_ACCELERATE
  7163. vDSP_vadd(
  7164. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7165. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7166. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7167. #else
  7168. ggml_vec_add_f32(nc,
  7169. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7170. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7171. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7172. #endif
  7173. }
  7174. }
  7175. static void ggml_compute_forward_acc(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. const struct ggml_tensor * src1,
  7179. const struct ggml_tensor * opt0,
  7180. struct ggml_tensor * dst) {
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F32:
  7183. {
  7184. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7185. } break;
  7186. case GGML_TYPE_F16:
  7187. case GGML_TYPE_Q4_0:
  7188. case GGML_TYPE_Q4_1:
  7189. case GGML_TYPE_Q5_0:
  7190. case GGML_TYPE_Q5_1:
  7191. case GGML_TYPE_Q8_0:
  7192. case GGML_TYPE_Q8_1:
  7193. case GGML_TYPE_Q2_K:
  7194. case GGML_TYPE_Q3_K:
  7195. case GGML_TYPE_Q4_K:
  7196. case GGML_TYPE_Q5_K:
  7197. case GGML_TYPE_Q6_K:
  7198. default:
  7199. {
  7200. GGML_ASSERT(false);
  7201. } break;
  7202. }
  7203. }
  7204. // ggml_compute_forward_sub
  7205. static void ggml_compute_forward_sub_f32(
  7206. const struct ggml_compute_params * params,
  7207. const struct ggml_tensor * src0,
  7208. const struct ggml_tensor * src1,
  7209. struct ggml_tensor * dst) {
  7210. assert(params->ith == 0);
  7211. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7212. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7213. return;
  7214. }
  7215. const int nr = ggml_nrows(src0);
  7216. const int64_t ne0 = src0->ne[0];
  7217. const int64_t ne1 = src0->ne[1];
  7218. const int64_t ne2 = src0->ne[2];
  7219. const size_t nb00 = src0->nb[0];
  7220. const size_t nb01 = src0->nb[1];
  7221. const size_t nb02 = src0->nb[2];
  7222. const size_t nb03 = src0->nb[3];
  7223. const size_t nb10 = src1->nb[0];
  7224. const size_t nb11 = src1->nb[1];
  7225. const size_t nb12 = src1->nb[2];
  7226. const size_t nb13 = src1->nb[3];
  7227. const size_t nb0 = dst->nb[0];
  7228. const size_t nb1 = dst->nb[1];
  7229. const size_t nb2 = dst->nb[2];
  7230. const size_t nb3 = dst->nb[3];
  7231. GGML_ASSERT( nb0 == sizeof(float));
  7232. GGML_ASSERT(nb00 == sizeof(float));
  7233. if (nb10 == sizeof(float)) {
  7234. for (int ir = 0; ir < nr; ++ir) {
  7235. // src0, src1 and dst are same shape => same indices
  7236. const int i3 = ir/(ne2*ne1);
  7237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7239. #ifdef GGML_USE_ACCELERATE
  7240. vDSP_vsub(
  7241. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7242. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7243. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7244. ne0);
  7245. #else
  7246. ggml_vec_sub_f32(ne0,
  7247. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7248. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7249. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7250. #endif
  7251. // }
  7252. // }
  7253. }
  7254. } else {
  7255. // src1 is not contiguous
  7256. for (int ir = 0; ir < nr; ++ir) {
  7257. // src0, src1 and dst are same shape => same indices
  7258. const int i3 = ir/(ne2*ne1);
  7259. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7260. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7261. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7262. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7263. for (int i0 = 0; i0 < ne0; i0++) {
  7264. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7265. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7266. }
  7267. }
  7268. }
  7269. }
  7270. static void ggml_compute_forward_sub(
  7271. const struct ggml_compute_params * params,
  7272. const struct ggml_tensor * src0,
  7273. const struct ggml_tensor * src1,
  7274. struct ggml_tensor * dst) {
  7275. switch (src0->type) {
  7276. case GGML_TYPE_F32:
  7277. {
  7278. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7279. } break;
  7280. default:
  7281. {
  7282. GGML_ASSERT(false);
  7283. } break;
  7284. }
  7285. }
  7286. // ggml_compute_forward_mul
  7287. static void ggml_compute_forward_mul_f32(
  7288. const struct ggml_compute_params * params,
  7289. const struct ggml_tensor * src0,
  7290. const struct ggml_tensor * src1,
  7291. struct ggml_tensor * dst) {
  7292. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7294. return;
  7295. }
  7296. const int ith = params->ith;
  7297. const int nth = params->nth;
  7298. #ifdef GGML_USE_CLBLAST
  7299. if (src1->backend == GGML_BACKEND_GPU) {
  7300. if (ith == 0) {
  7301. ggml_cl_mul(src0, src1, dst);
  7302. }
  7303. return;
  7304. }
  7305. #endif
  7306. const int64_t nr = ggml_nrows(src0);
  7307. const int64_t ne00 = src0->ne[0];
  7308. const int64_t ne01 = src0->ne[1];
  7309. const int64_t ne02 = src0->ne[2];
  7310. const int64_t ne10 = src1->ne[0];
  7311. const int64_t ne11 = src1->ne[1];
  7312. const int64_t ne12 = src1->ne[2];
  7313. const int64_t ne13 = src1->ne[3];
  7314. const size_t nb00 = src0->nb[0];
  7315. const size_t nb01 = src0->nb[1];
  7316. const size_t nb02 = src0->nb[2];
  7317. const size_t nb03 = src0->nb[3];
  7318. const size_t nb10 = src1->nb[0];
  7319. const size_t nb11 = src1->nb[1];
  7320. const size_t nb12 = src1->nb[2];
  7321. const size_t nb13 = src1->nb[3];
  7322. const size_t nb0 = dst->nb[0];
  7323. const size_t nb1 = dst->nb[1];
  7324. const size_t nb2 = dst->nb[2];
  7325. const size_t nb3 = dst->nb[3];
  7326. GGML_ASSERT( nb0 == sizeof(float));
  7327. GGML_ASSERT(nb00 == sizeof(float));
  7328. GGML_ASSERT(ne00 == ne10);
  7329. if (nb10 == sizeof(float)) {
  7330. for (int64_t ir = ith; ir < nr; ir += nth) {
  7331. // src0 and dst are same shape => same indices
  7332. const int64_t i03 = ir/(ne02*ne01);
  7333. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7334. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7335. const int64_t i13 = i03 % ne13;
  7336. const int64_t i12 = i02 % ne12;
  7337. const int64_t i11 = i01 % ne11;
  7338. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7339. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7340. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7341. #ifdef GGML_USE_ACCELERATE
  7342. UNUSED(ggml_vec_mul_f32);
  7343. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7344. #else
  7345. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7346. #endif
  7347. // }
  7348. // }
  7349. }
  7350. } else {
  7351. // src1 is not contiguous
  7352. for (int64_t ir = ith; ir < nr; ir += nth) {
  7353. // src0 and dst are same shape => same indices
  7354. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7355. const int64_t i03 = ir/(ne02*ne01);
  7356. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7357. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7358. const int64_t i13 = i03 % ne13;
  7359. const int64_t i12 = i02 % ne12;
  7360. const int64_t i11 = i01 % ne11;
  7361. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7362. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7363. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7364. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7365. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7366. }
  7367. }
  7368. }
  7369. }
  7370. static void ggml_compute_forward_mul(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. const struct ggml_tensor * src1,
  7374. struct ggml_tensor * dst) {
  7375. switch (src0->type) {
  7376. case GGML_TYPE_F32:
  7377. {
  7378. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7379. } break;
  7380. default:
  7381. {
  7382. GGML_ASSERT(false);
  7383. } break;
  7384. }
  7385. }
  7386. // ggml_compute_forward_div
  7387. static void ggml_compute_forward_div_f32(
  7388. const struct ggml_compute_params * params,
  7389. const struct ggml_tensor * src0,
  7390. const struct ggml_tensor * src1,
  7391. struct ggml_tensor * dst) {
  7392. assert(params->ith == 0);
  7393. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7395. return;
  7396. }
  7397. const int nr = ggml_nrows(src0);
  7398. const int64_t ne0 = src0->ne[0];
  7399. const int64_t ne1 = src0->ne[1];
  7400. const int64_t ne2 = src0->ne[2];
  7401. const size_t nb00 = src0->nb[0];
  7402. const size_t nb01 = src0->nb[1];
  7403. const size_t nb02 = src0->nb[2];
  7404. const size_t nb03 = src0->nb[3];
  7405. const size_t nb10 = src1->nb[0];
  7406. const size_t nb11 = src1->nb[1];
  7407. const size_t nb12 = src1->nb[2];
  7408. const size_t nb13 = src1->nb[3];
  7409. const size_t nb0 = dst->nb[0];
  7410. const size_t nb1 = dst->nb[1];
  7411. const size_t nb2 = dst->nb[2];
  7412. const size_t nb3 = dst->nb[3];
  7413. GGML_ASSERT( nb0 == sizeof(float));
  7414. GGML_ASSERT(nb00 == sizeof(float));
  7415. if (nb10 == sizeof(float)) {
  7416. for (int ir = 0; ir < nr; ++ir) {
  7417. // src0, src1 and dst are same shape => same indices
  7418. const int i3 = ir/(ne2*ne1);
  7419. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7420. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7421. #ifdef GGML_USE_ACCELERATE
  7422. vDSP_vdiv(
  7423. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7424. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7425. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7426. ne0);
  7427. #else
  7428. ggml_vec_div_f32(ne0,
  7429. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7430. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7431. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7432. #endif
  7433. // }
  7434. // }
  7435. }
  7436. } else {
  7437. // src1 is not contiguous
  7438. for (int ir = 0; ir < nr; ++ir) {
  7439. // src0, src1 and dst are same shape => same indices
  7440. const int i3 = ir/(ne2*ne1);
  7441. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7442. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7443. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7444. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7445. for (int i0 = 0; i0 < ne0; i0++) {
  7446. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7447. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7448. }
  7449. }
  7450. }
  7451. }
  7452. static void ggml_compute_forward_div(
  7453. const struct ggml_compute_params * params,
  7454. const struct ggml_tensor * src0,
  7455. const struct ggml_tensor * src1,
  7456. struct ggml_tensor * dst) {
  7457. switch (src0->type) {
  7458. case GGML_TYPE_F32:
  7459. {
  7460. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7461. } break;
  7462. default:
  7463. {
  7464. GGML_ASSERT(false);
  7465. } break;
  7466. }
  7467. }
  7468. // ggml_compute_forward_sqr
  7469. static void ggml_compute_forward_sqr_f32(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. struct ggml_tensor * dst) {
  7473. assert(params->ith == 0);
  7474. assert(ggml_are_same_shape(src0, dst));
  7475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7476. return;
  7477. }
  7478. const int n = ggml_nrows(src0);
  7479. const int nc = src0->ne[0];
  7480. assert( dst->nb[0] == sizeof(float));
  7481. assert(src0->nb[0] == sizeof(float));
  7482. for (int i = 0; i < n; i++) {
  7483. ggml_vec_sqr_f32(nc,
  7484. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7485. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7486. }
  7487. }
  7488. static void ggml_compute_forward_sqr(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. struct ggml_tensor * dst) {
  7492. switch (src0->type) {
  7493. case GGML_TYPE_F32:
  7494. {
  7495. ggml_compute_forward_sqr_f32(params, src0, dst);
  7496. } break;
  7497. default:
  7498. {
  7499. GGML_ASSERT(false);
  7500. } break;
  7501. }
  7502. }
  7503. // ggml_compute_forward_sqrt
  7504. static void ggml_compute_forward_sqrt_f32(
  7505. const struct ggml_compute_params * params,
  7506. const struct ggml_tensor * src0,
  7507. struct ggml_tensor * dst) {
  7508. assert(params->ith == 0);
  7509. assert(ggml_are_same_shape(src0, dst));
  7510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7511. return;
  7512. }
  7513. const int n = ggml_nrows(src0);
  7514. const int nc = src0->ne[0];
  7515. assert( dst->nb[0] == sizeof(float));
  7516. assert(src0->nb[0] == sizeof(float));
  7517. for (int i = 0; i < n; i++) {
  7518. ggml_vec_sqrt_f32(nc,
  7519. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7520. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7521. }
  7522. }
  7523. static void ggml_compute_forward_sqrt(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. switch (src0->type) {
  7528. case GGML_TYPE_F32:
  7529. {
  7530. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7531. } break;
  7532. default:
  7533. {
  7534. GGML_ASSERT(false);
  7535. } break;
  7536. }
  7537. }
  7538. // ggml_compute_forward_log
  7539. static void ggml_compute_forward_log_f32(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. struct ggml_tensor * dst) {
  7543. GGML_ASSERT(params->ith == 0);
  7544. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7546. return;
  7547. }
  7548. const int n = ggml_nrows(src0);
  7549. const int nc = src0->ne[0];
  7550. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7551. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7552. for (int i = 0; i < n; i++) {
  7553. ggml_vec_log_f32(nc,
  7554. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7555. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7556. }
  7557. }
  7558. static void ggml_compute_forward_log(
  7559. const struct ggml_compute_params * params,
  7560. const struct ggml_tensor * src0,
  7561. struct ggml_tensor * dst) {
  7562. switch (src0->type) {
  7563. case GGML_TYPE_F32:
  7564. {
  7565. ggml_compute_forward_log_f32(params, src0, dst);
  7566. } break;
  7567. default:
  7568. {
  7569. GGML_ASSERT(false);
  7570. } break;
  7571. }
  7572. }
  7573. // ggml_compute_forward_sum
  7574. static void ggml_compute_forward_sum_f32(
  7575. const struct ggml_compute_params * params,
  7576. const struct ggml_tensor * src0,
  7577. struct ggml_tensor * dst) {
  7578. assert(params->ith == 0);
  7579. assert(ggml_is_scalar(dst));
  7580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7581. return;
  7582. }
  7583. assert(ggml_is_scalar(dst));
  7584. assert(src0->nb[0] == sizeof(float));
  7585. const int64_t ne00 = src0->ne[0];
  7586. const int64_t ne01 = src0->ne[1];
  7587. const int64_t ne02 = src0->ne[2];
  7588. const int64_t ne03 = src0->ne[3];
  7589. const size_t nb01 = src0->nb[1];
  7590. const size_t nb02 = src0->nb[2];
  7591. const size_t nb03 = src0->nb[3];
  7592. ggml_float sum = 0;
  7593. ggml_float row_sum = 0;
  7594. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7595. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7596. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7597. ggml_vec_sum_ggf(ne00,
  7598. &row_sum,
  7599. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7600. sum += row_sum;
  7601. }
  7602. }
  7603. }
  7604. ((float *) dst->data)[0] = sum;
  7605. }
  7606. static void ggml_compute_forward_sum(
  7607. const struct ggml_compute_params * params,
  7608. const struct ggml_tensor * src0,
  7609. struct ggml_tensor * dst) {
  7610. switch (src0->type) {
  7611. case GGML_TYPE_F32:
  7612. {
  7613. ggml_compute_forward_sum_f32(params, src0, dst);
  7614. } break;
  7615. default:
  7616. {
  7617. GGML_ASSERT(false);
  7618. } break;
  7619. }
  7620. }
  7621. // ggml_compute_forward_sum_rows
  7622. static void ggml_compute_forward_sum_rows_f32(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * src0,
  7625. struct ggml_tensor * dst) {
  7626. GGML_ASSERT(params->ith == 0);
  7627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7628. return;
  7629. }
  7630. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7631. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7632. const int64_t ne00 = src0->ne[0];
  7633. const int64_t ne01 = src0->ne[1];
  7634. const int64_t ne02 = src0->ne[2];
  7635. const int64_t ne03 = src0->ne[3];
  7636. const int64_t ne0 = dst->ne[0];
  7637. const int64_t ne1 = dst->ne[1];
  7638. const int64_t ne2 = dst->ne[2];
  7639. const int64_t ne3 = dst->ne[3];
  7640. GGML_ASSERT(ne0 == 1);
  7641. GGML_ASSERT(ne1 == ne01);
  7642. GGML_ASSERT(ne2 == ne02);
  7643. GGML_ASSERT(ne3 == ne03);
  7644. const size_t nb01 = src0->nb[1];
  7645. const size_t nb02 = src0->nb[2];
  7646. const size_t nb03 = src0->nb[3];
  7647. const size_t nb1 = dst->nb[1];
  7648. const size_t nb2 = dst->nb[2];
  7649. const size_t nb3 = dst->nb[3];
  7650. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7651. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7652. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7653. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7654. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7655. float row_sum = 0;
  7656. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7657. dst_row[0] = row_sum;
  7658. }
  7659. }
  7660. }
  7661. }
  7662. static void ggml_compute_forward_sum_rows(
  7663. const struct ggml_compute_params * params,
  7664. const struct ggml_tensor * src0,
  7665. struct ggml_tensor * dst) {
  7666. switch (src0->type) {
  7667. case GGML_TYPE_F32:
  7668. {
  7669. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7670. } break;
  7671. default:
  7672. {
  7673. GGML_ASSERT(false);
  7674. } break;
  7675. }
  7676. }
  7677. // ggml_compute_forward_mean
  7678. static void ggml_compute_forward_mean_f32(
  7679. const struct ggml_compute_params * params,
  7680. const struct ggml_tensor * src0,
  7681. struct ggml_tensor * dst) {
  7682. assert(params->ith == 0);
  7683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7684. return;
  7685. }
  7686. assert(src0->nb[0] == sizeof(float));
  7687. const int64_t ne00 = src0->ne[0];
  7688. const int64_t ne01 = src0->ne[1];
  7689. const int64_t ne02 = src0->ne[2];
  7690. const int64_t ne03 = src0->ne[3];
  7691. const size_t nb01 = src0->nb[1];
  7692. const size_t nb02 = src0->nb[2];
  7693. const size_t nb03 = src0->nb[3];
  7694. const int64_t ne0 = dst->ne[0];
  7695. const int64_t ne1 = dst->ne[1];
  7696. const int64_t ne2 = dst->ne[2];
  7697. const int64_t ne3 = dst->ne[3];
  7698. assert(ne0 == 1);
  7699. assert(ne1 == ne01);
  7700. assert(ne2 == ne02);
  7701. assert(ne3 == ne03);
  7702. UNUSED(ne0);
  7703. UNUSED(ne1);
  7704. UNUSED(ne2);
  7705. UNUSED(ne3);
  7706. const size_t nb1 = dst->nb[1];
  7707. const size_t nb2 = dst->nb[2];
  7708. const size_t nb3 = dst->nb[3];
  7709. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7710. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7711. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7712. ggml_vec_sum_f32(ne00,
  7713. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7714. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7715. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7716. }
  7717. }
  7718. }
  7719. }
  7720. static void ggml_compute_forward_mean(
  7721. const struct ggml_compute_params * params,
  7722. const struct ggml_tensor * src0,
  7723. struct ggml_tensor * dst) {
  7724. switch (src0->type) {
  7725. case GGML_TYPE_F32:
  7726. {
  7727. ggml_compute_forward_mean_f32(params, src0, dst);
  7728. } break;
  7729. default:
  7730. {
  7731. GGML_ASSERT(false);
  7732. } break;
  7733. }
  7734. }
  7735. // ggml_compute_forward_repeat
  7736. static void ggml_compute_forward_repeat_f32(
  7737. const struct ggml_compute_params * params,
  7738. const struct ggml_tensor * src0,
  7739. struct ggml_tensor * dst) {
  7740. GGML_ASSERT(params->ith == 0);
  7741. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7743. return;
  7744. }
  7745. const int64_t ne0 = dst->ne[0];
  7746. const int64_t ne1 = dst->ne[1];
  7747. const int64_t ne2 = dst->ne[2];
  7748. const int64_t ne3 = dst->ne[3];
  7749. const int64_t ne00 = src0->ne[0];
  7750. const int64_t ne01 = src0->ne[1];
  7751. const int64_t ne02 = src0->ne[2];
  7752. const int64_t ne03 = src0->ne[3];
  7753. const size_t nb0 = dst->nb[0];
  7754. const size_t nb1 = dst->nb[1];
  7755. const size_t nb2 = dst->nb[2];
  7756. const size_t nb3 = dst->nb[3];
  7757. const size_t nb00 = src0->nb[0];
  7758. const size_t nb01 = src0->nb[1];
  7759. const size_t nb02 = src0->nb[2];
  7760. const size_t nb03 = src0->nb[3];
  7761. // guaranteed to be an integer due to the check in ggml_can_repeat
  7762. const int nr0 = (int)(ne0/ne00);
  7763. const int nr1 = (int)(ne1/ne01);
  7764. const int nr2 = (int)(ne2/ne02);
  7765. const int nr3 = (int)(ne3/ne03);
  7766. // TODO: support for transposed / permuted tensors
  7767. GGML_ASSERT(nb0 == sizeof(float));
  7768. GGML_ASSERT(nb00 == sizeof(float));
  7769. // TODO: maybe this is not optimal?
  7770. for (int i3 = 0; i3 < nr3; i3++) {
  7771. for (int k3 = 0; k3 < ne03; k3++) {
  7772. for (int i2 = 0; i2 < nr2; i2++) {
  7773. for (int k2 = 0; k2 < ne02; k2++) {
  7774. for (int i1 = 0; i1 < nr1; i1++) {
  7775. for (int k1 = 0; k1 < ne01; k1++) {
  7776. for (int i0 = 0; i0 < nr0; i0++) {
  7777. ggml_vec_cpy_f32(ne00,
  7778. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7779. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7780. }
  7781. }
  7782. }
  7783. }
  7784. }
  7785. }
  7786. }
  7787. }
  7788. static void ggml_compute_forward_repeat(
  7789. const struct ggml_compute_params * params,
  7790. const struct ggml_tensor * src0,
  7791. struct ggml_tensor * dst) {
  7792. switch (src0->type) {
  7793. case GGML_TYPE_F32:
  7794. {
  7795. ggml_compute_forward_repeat_f32(params, src0, dst);
  7796. } break;
  7797. default:
  7798. {
  7799. GGML_ASSERT(false);
  7800. } break;
  7801. }
  7802. }
  7803. // ggml_compute_forward_repeat_back
  7804. static void ggml_compute_forward_repeat_back_f32(
  7805. const struct ggml_compute_params * params,
  7806. const struct ggml_tensor * src0,
  7807. struct ggml_tensor * dst) {
  7808. GGML_ASSERT(params->ith == 0);
  7809. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7811. return;
  7812. }
  7813. const int64_t ne0 = dst->ne[0];
  7814. const int64_t ne1 = dst->ne[1];
  7815. const int64_t ne2 = dst->ne[2];
  7816. const int64_t ne3 = dst->ne[3];
  7817. const int64_t ne00 = src0->ne[0];
  7818. const int64_t ne01 = src0->ne[1];
  7819. const int64_t ne02 = src0->ne[2];
  7820. const int64_t ne03 = src0->ne[3];
  7821. const size_t nb0 = dst->nb[0];
  7822. const size_t nb1 = dst->nb[1];
  7823. const size_t nb2 = dst->nb[2];
  7824. const size_t nb3 = dst->nb[3];
  7825. const size_t nb00 = src0->nb[0];
  7826. const size_t nb01 = src0->nb[1];
  7827. const size_t nb02 = src0->nb[2];
  7828. const size_t nb03 = src0->nb[3];
  7829. // guaranteed to be an integer due to the check in ggml_can_repeat
  7830. const int nr0 = (int)(ne00/ne0);
  7831. const int nr1 = (int)(ne01/ne1);
  7832. const int nr2 = (int)(ne02/ne2);
  7833. const int nr3 = (int)(ne03/ne3);
  7834. // TODO: support for transposed / permuted tensors
  7835. GGML_ASSERT(nb0 == sizeof(float));
  7836. GGML_ASSERT(nb00 == sizeof(float));
  7837. if (ggml_is_contiguous(dst)) {
  7838. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7839. } else {
  7840. for (int k3 = 0; k3 < ne3; k3++) {
  7841. for (int k2 = 0; k2 < ne2; k2++) {
  7842. for (int k1 = 0; k1 < ne1; k1++) {
  7843. ggml_vec_set_f32(ne0,
  7844. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7845. 0);
  7846. }
  7847. }
  7848. }
  7849. }
  7850. // TODO: maybe this is not optimal?
  7851. for (int i3 = 0; i3 < nr3; i3++) {
  7852. for (int k3 = 0; k3 < ne3; k3++) {
  7853. for (int i2 = 0; i2 < nr2; i2++) {
  7854. for (int k2 = 0; k2 < ne2; k2++) {
  7855. for (int i1 = 0; i1 < nr1; i1++) {
  7856. for (int k1 = 0; k1 < ne1; k1++) {
  7857. for (int i0 = 0; i0 < nr0; i0++) {
  7858. ggml_vec_acc_f32(ne0,
  7859. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7860. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7861. }
  7862. }
  7863. }
  7864. }
  7865. }
  7866. }
  7867. }
  7868. }
  7869. static void ggml_compute_forward_repeat_back(
  7870. const struct ggml_compute_params * params,
  7871. const struct ggml_tensor * src0,
  7872. struct ggml_tensor * dst) {
  7873. switch (src0->type) {
  7874. case GGML_TYPE_F32:
  7875. {
  7876. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7877. } break;
  7878. default:
  7879. {
  7880. GGML_ASSERT(false);
  7881. } break;
  7882. }
  7883. }
  7884. // ggml_compute_forward_abs
  7885. static void ggml_compute_forward_abs_f32(
  7886. const struct ggml_compute_params * params,
  7887. const struct ggml_tensor * src0,
  7888. struct ggml_tensor * dst) {
  7889. assert(params->ith == 0);
  7890. assert(ggml_are_same_shape(src0, dst));
  7891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7892. return;
  7893. }
  7894. const int n = ggml_nrows(src0);
  7895. const int nc = src0->ne[0];
  7896. assert(dst->nb[0] == sizeof(float));
  7897. assert(src0->nb[0] == sizeof(float));
  7898. for (int i = 0; i < n; i++) {
  7899. ggml_vec_abs_f32(nc,
  7900. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7901. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7902. }
  7903. }
  7904. static void ggml_compute_forward_abs(
  7905. const struct ggml_compute_params * params,
  7906. const struct ggml_tensor * src0,
  7907. struct ggml_tensor * dst) {
  7908. switch (src0->type) {
  7909. case GGML_TYPE_F32:
  7910. {
  7911. ggml_compute_forward_abs_f32(params, src0, dst);
  7912. } break;
  7913. default:
  7914. {
  7915. GGML_ASSERT(false);
  7916. } break;
  7917. }
  7918. }
  7919. // ggml_compute_forward_sgn
  7920. static void ggml_compute_forward_sgn_f32(
  7921. const struct ggml_compute_params * params,
  7922. const struct ggml_tensor * src0,
  7923. struct ggml_tensor * dst) {
  7924. assert(params->ith == 0);
  7925. assert(ggml_are_same_shape(src0, dst));
  7926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7927. return;
  7928. }
  7929. const int n = ggml_nrows(src0);
  7930. const int nc = src0->ne[0];
  7931. assert(dst->nb[0] == sizeof(float));
  7932. assert(src0->nb[0] == sizeof(float));
  7933. for (int i = 0; i < n; i++) {
  7934. ggml_vec_sgn_f32(nc,
  7935. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7936. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7937. }
  7938. }
  7939. static void ggml_compute_forward_sgn(
  7940. const struct ggml_compute_params * params,
  7941. const struct ggml_tensor * src0,
  7942. struct ggml_tensor * dst) {
  7943. switch (src0->type) {
  7944. case GGML_TYPE_F32:
  7945. {
  7946. ggml_compute_forward_sgn_f32(params, src0, dst);
  7947. } break;
  7948. default:
  7949. {
  7950. GGML_ASSERT(false);
  7951. } break;
  7952. }
  7953. }
  7954. // ggml_compute_forward_neg
  7955. static void ggml_compute_forward_neg_f32(
  7956. const struct ggml_compute_params * params,
  7957. const struct ggml_tensor * src0,
  7958. struct ggml_tensor * dst) {
  7959. assert(params->ith == 0);
  7960. assert(ggml_are_same_shape(src0, dst));
  7961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7962. return;
  7963. }
  7964. const int n = ggml_nrows(src0);
  7965. const int nc = src0->ne[0];
  7966. assert(dst->nb[0] == sizeof(float));
  7967. assert(src0->nb[0] == sizeof(float));
  7968. for (int i = 0; i < n; i++) {
  7969. ggml_vec_neg_f32(nc,
  7970. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7971. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7972. }
  7973. }
  7974. static void ggml_compute_forward_neg(
  7975. const struct ggml_compute_params * params,
  7976. const struct ggml_tensor * src0,
  7977. struct ggml_tensor * dst) {
  7978. switch (src0->type) {
  7979. case GGML_TYPE_F32:
  7980. {
  7981. ggml_compute_forward_neg_f32(params, src0, dst);
  7982. } break;
  7983. default:
  7984. {
  7985. GGML_ASSERT(false);
  7986. } break;
  7987. }
  7988. }
  7989. // ggml_compute_forward_step
  7990. static void ggml_compute_forward_step_f32(
  7991. const struct ggml_compute_params * params,
  7992. const struct ggml_tensor * src0,
  7993. struct ggml_tensor * dst) {
  7994. assert(params->ith == 0);
  7995. assert(ggml_are_same_shape(src0, dst));
  7996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7997. return;
  7998. }
  7999. const int n = ggml_nrows(src0);
  8000. const int nc = src0->ne[0];
  8001. assert(dst->nb[0] == sizeof(float));
  8002. assert(src0->nb[0] == sizeof(float));
  8003. for (int i = 0; i < n; i++) {
  8004. ggml_vec_step_f32(nc,
  8005. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8006. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8007. }
  8008. }
  8009. static void ggml_compute_forward_step(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. struct ggml_tensor * dst) {
  8013. switch (src0->type) {
  8014. case GGML_TYPE_F32:
  8015. {
  8016. ggml_compute_forward_step_f32(params, src0, dst);
  8017. } break;
  8018. default:
  8019. {
  8020. GGML_ASSERT(false);
  8021. } break;
  8022. }
  8023. }
  8024. // ggml_compute_forward_relu
  8025. static void ggml_compute_forward_relu_f32(
  8026. const struct ggml_compute_params * params,
  8027. const struct ggml_tensor * src0,
  8028. struct ggml_tensor * dst) {
  8029. assert(params->ith == 0);
  8030. assert(ggml_are_same_shape(src0, dst));
  8031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8032. return;
  8033. }
  8034. const int n = ggml_nrows(src0);
  8035. const int nc = src0->ne[0];
  8036. assert(dst->nb[0] == sizeof(float));
  8037. assert(src0->nb[0] == sizeof(float));
  8038. for (int i = 0; i < n; i++) {
  8039. ggml_vec_relu_f32(nc,
  8040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8042. }
  8043. }
  8044. static void ggml_compute_forward_relu(
  8045. const struct ggml_compute_params * params,
  8046. const struct ggml_tensor * src0,
  8047. struct ggml_tensor * dst) {
  8048. switch (src0->type) {
  8049. case GGML_TYPE_F32:
  8050. {
  8051. ggml_compute_forward_relu_f32(params, src0, dst);
  8052. } break;
  8053. default:
  8054. {
  8055. GGML_ASSERT(false);
  8056. } break;
  8057. }
  8058. }
  8059. // ggml_compute_forward_gelu
  8060. static void ggml_compute_forward_gelu_f32(
  8061. const struct ggml_compute_params * params,
  8062. const struct ggml_tensor * src0,
  8063. struct ggml_tensor * dst) {
  8064. GGML_ASSERT(ggml_is_contiguous(src0));
  8065. GGML_ASSERT(ggml_is_contiguous(dst));
  8066. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8068. return;
  8069. }
  8070. const int ith = params->ith;
  8071. const int nth = params->nth;
  8072. const int nc = src0->ne[0];
  8073. const int nr = ggml_nrows(src0);
  8074. // rows per thread
  8075. const int dr = (nr + nth - 1)/nth;
  8076. // row range for this thread
  8077. const int ir0 = dr*ith;
  8078. const int ir1 = MIN(ir0 + dr, nr);
  8079. for (int i1 = ir0; i1 < ir1; i1++) {
  8080. ggml_vec_gelu_f32(nc,
  8081. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8082. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8083. #ifndef NDEBUG
  8084. for (int k = 0; k < nc; k++) {
  8085. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8086. UNUSED(x);
  8087. assert(!isnan(x));
  8088. assert(!isinf(x));
  8089. }
  8090. #endif
  8091. }
  8092. }
  8093. static void ggml_compute_forward_gelu(
  8094. const struct ggml_compute_params * params,
  8095. const struct ggml_tensor * src0,
  8096. struct ggml_tensor * dst) {
  8097. switch (src0->type) {
  8098. case GGML_TYPE_F32:
  8099. {
  8100. ggml_compute_forward_gelu_f32(params, src0, dst);
  8101. } break;
  8102. default:
  8103. {
  8104. GGML_ASSERT(false);
  8105. } break;
  8106. }
  8107. }
  8108. // ggml_compute_forward_gelu_quick
  8109. static void ggml_compute_forward_gelu_quick_f32(
  8110. const struct ggml_compute_params * params,
  8111. const struct ggml_tensor * src0,
  8112. struct ggml_tensor * dst) {
  8113. GGML_ASSERT(ggml_is_contiguous(src0));
  8114. GGML_ASSERT(ggml_is_contiguous(dst));
  8115. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8117. return;
  8118. }
  8119. const int ith = params->ith;
  8120. const int nth = params->nth;
  8121. const int nc = src0->ne[0];
  8122. const int nr = ggml_nrows(src0);
  8123. // rows per thread
  8124. const int dr = (nr + nth - 1)/nth;
  8125. // row range for this thread
  8126. const int ir0 = dr*ith;
  8127. const int ir1 = MIN(ir0 + dr, nr);
  8128. for (int i1 = ir0; i1 < ir1; i1++) {
  8129. ggml_vec_gelu_quick_f32(nc,
  8130. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8131. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8132. #ifndef NDEBUG
  8133. for (int k = 0; k < nc; k++) {
  8134. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8135. UNUSED(x);
  8136. assert(!isnan(x));
  8137. assert(!isinf(x));
  8138. }
  8139. #endif
  8140. }
  8141. }
  8142. static void ggml_compute_forward_gelu_quick(
  8143. const struct ggml_compute_params * params,
  8144. const struct ggml_tensor * src0,
  8145. struct ggml_tensor * dst) {
  8146. switch (src0->type) {
  8147. case GGML_TYPE_F32:
  8148. {
  8149. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8150. } break;
  8151. default:
  8152. {
  8153. GGML_ASSERT(false);
  8154. } break;
  8155. }
  8156. }
  8157. // ggml_compute_forward_silu
  8158. static void ggml_compute_forward_silu_f32(
  8159. const struct ggml_compute_params * params,
  8160. const struct ggml_tensor * src0,
  8161. struct ggml_tensor * dst) {
  8162. GGML_ASSERT(ggml_is_contiguous(src0));
  8163. GGML_ASSERT(ggml_is_contiguous(dst));
  8164. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8166. return;
  8167. }
  8168. const int ith = params->ith;
  8169. const int nth = params->nth;
  8170. const int nc = src0->ne[0];
  8171. const int nr = ggml_nrows(src0);
  8172. // rows per thread
  8173. const int dr = (nr + nth - 1)/nth;
  8174. // row range for this thread
  8175. const int ir0 = dr*ith;
  8176. const int ir1 = MIN(ir0 + dr, nr);
  8177. for (int i1 = ir0; i1 < ir1; i1++) {
  8178. ggml_vec_silu_f32(nc,
  8179. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8180. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8181. #ifndef NDEBUG
  8182. for (int k = 0; k < nc; k++) {
  8183. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8184. UNUSED(x);
  8185. assert(!isnan(x));
  8186. assert(!isinf(x));
  8187. }
  8188. #endif
  8189. }
  8190. }
  8191. static void ggml_compute_forward_silu(
  8192. const struct ggml_compute_params * params,
  8193. const struct ggml_tensor * src0,
  8194. struct ggml_tensor * dst) {
  8195. switch (src0->type) {
  8196. case GGML_TYPE_F32:
  8197. {
  8198. ggml_compute_forward_silu_f32(params, src0, dst);
  8199. } break;
  8200. default:
  8201. {
  8202. GGML_ASSERT(false);
  8203. } break;
  8204. }
  8205. }
  8206. // ggml_compute_forward_silu_back
  8207. static void ggml_compute_forward_silu_back_f32(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. const struct ggml_tensor * grad,
  8211. struct ggml_tensor * dst) {
  8212. GGML_ASSERT(ggml_is_contiguous(grad));
  8213. GGML_ASSERT(ggml_is_contiguous(src0));
  8214. GGML_ASSERT(ggml_is_contiguous(dst));
  8215. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8216. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8218. return;
  8219. }
  8220. const int ith = params->ith;
  8221. const int nth = params->nth;
  8222. const int nc = src0->ne[0];
  8223. const int nr = ggml_nrows(src0);
  8224. // rows per thread
  8225. const int dr = (nr + nth - 1)/nth;
  8226. // row range for this thread
  8227. const int ir0 = dr*ith;
  8228. const int ir1 = MIN(ir0 + dr, nr);
  8229. for (int i1 = ir0; i1 < ir1; i1++) {
  8230. ggml_vec_silu_backward_f32(nc,
  8231. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8232. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8233. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8234. #ifndef NDEBUG
  8235. for (int k = 0; k < nc; k++) {
  8236. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8237. UNUSED(x);
  8238. assert(!isnan(x));
  8239. assert(!isinf(x));
  8240. }
  8241. #endif
  8242. }
  8243. }
  8244. static void ggml_compute_forward_silu_back(
  8245. const struct ggml_compute_params * params,
  8246. const struct ggml_tensor * src0,
  8247. const struct ggml_tensor * grad,
  8248. struct ggml_tensor * dst) {
  8249. switch (src0->type) {
  8250. case GGML_TYPE_F32:
  8251. {
  8252. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8253. } break;
  8254. default:
  8255. {
  8256. GGML_ASSERT(false);
  8257. } break;
  8258. }
  8259. }
  8260. // ggml_compute_forward_norm
  8261. static void ggml_compute_forward_norm_f32(
  8262. const struct ggml_compute_params * params,
  8263. const struct ggml_tensor * src0,
  8264. struct ggml_tensor * dst) {
  8265. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8266. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8267. return;
  8268. }
  8269. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8270. const int ith = params->ith;
  8271. const int nth = params->nth;
  8272. const int64_t ne00 = src0->ne[0];
  8273. const int64_t ne01 = src0->ne[1];
  8274. const int64_t ne02 = src0->ne[2];
  8275. const int64_t ne03 = src0->ne[3];
  8276. const size_t nb01 = src0->nb[1];
  8277. const size_t nb02 = src0->nb[2];
  8278. const size_t nb03 = src0->nb[3];
  8279. const size_t nb1 = dst->nb[1];
  8280. const size_t nb2 = dst->nb[2];
  8281. const size_t nb3 = dst->nb[3];
  8282. const float eps = 1e-5f; // TODO: make this a parameter
  8283. // TODO: optimize
  8284. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8285. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8286. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8287. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8288. ggml_float sum = 0.0;
  8289. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8290. sum += (ggml_float)x[i00];
  8291. }
  8292. float mean = sum/ne00;
  8293. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8294. ggml_float sum2 = 0.0;
  8295. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8296. float v = x[i00] - mean;
  8297. y[i00] = v;
  8298. sum2 += (ggml_float)(v*v);
  8299. }
  8300. float variance = sum2/ne00;
  8301. const float scale = 1.0f/sqrtf(variance + eps);
  8302. ggml_vec_scale_f32(ne00, y, scale);
  8303. }
  8304. }
  8305. }
  8306. }
  8307. static void ggml_compute_forward_norm(
  8308. const struct ggml_compute_params * params,
  8309. const struct ggml_tensor * src0,
  8310. struct ggml_tensor * dst) {
  8311. switch (src0->type) {
  8312. case GGML_TYPE_F32:
  8313. {
  8314. ggml_compute_forward_norm_f32(params, src0, dst);
  8315. } break;
  8316. default:
  8317. {
  8318. GGML_ASSERT(false);
  8319. } break;
  8320. }
  8321. }
  8322. static void ggml_compute_forward_rms_norm_f32(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. struct ggml_tensor * dst) {
  8326. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8328. return;
  8329. }
  8330. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8331. const int ith = params->ith;
  8332. const int nth = params->nth;
  8333. const int64_t ne00 = src0->ne[0];
  8334. const int64_t ne01 = src0->ne[1];
  8335. const int64_t ne02 = src0->ne[2];
  8336. const int64_t ne03 = src0->ne[3];
  8337. const size_t nb01 = src0->nb[1];
  8338. const size_t nb02 = src0->nb[2];
  8339. const size_t nb03 = src0->nb[3];
  8340. const size_t nb1 = dst->nb[1];
  8341. const size_t nb2 = dst->nb[2];
  8342. const size_t nb3 = dst->nb[3];
  8343. const float eps = 1e-6f; // TODO: make this a parameter
  8344. // TODO: optimize
  8345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8347. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8348. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8349. ggml_float sum = 0.0;
  8350. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8351. sum += (ggml_float)(x[i00] * x[i00]);
  8352. }
  8353. const float mean = sum/ne00;
  8354. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8355. memcpy(y, x, ne00 * sizeof(float));
  8356. // for (int i00 = 0; i00 < ne00; i00++) {
  8357. // y[i00] = x[i00];
  8358. // }
  8359. const float scale = 1.0f/sqrtf(mean + eps);
  8360. ggml_vec_scale_f32(ne00, y, scale);
  8361. }
  8362. }
  8363. }
  8364. }
  8365. static void ggml_compute_forward_rms_norm(
  8366. const struct ggml_compute_params * params,
  8367. const struct ggml_tensor * src0,
  8368. struct ggml_tensor * dst) {
  8369. switch (src0->type) {
  8370. case GGML_TYPE_F32:
  8371. {
  8372. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8373. } break;
  8374. default:
  8375. {
  8376. GGML_ASSERT(false);
  8377. } break;
  8378. }
  8379. }
  8380. static void ggml_compute_forward_rms_norm_back_f32(
  8381. const struct ggml_compute_params * params,
  8382. const struct ggml_tensor * src0,
  8383. const struct ggml_tensor * src1,
  8384. struct ggml_tensor * dst) {
  8385. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8387. return;
  8388. }
  8389. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8390. const int ith = params->ith;
  8391. const int nth = params->nth;
  8392. const int64_t ne00 = src0->ne[0];
  8393. const int64_t ne01 = src0->ne[1];
  8394. const int64_t ne02 = src0->ne[2];
  8395. const int64_t ne03 = src0->ne[3];
  8396. const size_t nb01 = src0->nb[1];
  8397. const size_t nb02 = src0->nb[2];
  8398. const size_t nb03 = src0->nb[3];
  8399. const size_t nb11 = src1->nb[1];
  8400. const size_t nb12 = src1->nb[2];
  8401. const size_t nb13 = src1->nb[3];
  8402. const size_t nb1 = dst->nb[1];
  8403. const size_t nb2 = dst->nb[2];
  8404. const size_t nb3 = dst->nb[3];
  8405. const float eps = 1e-6f; // TODO: make this a parameter
  8406. // TODO: optimize
  8407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8409. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8410. // src1 is same shape as src0 => same indices
  8411. const int64_t i11 = i01;
  8412. const int64_t i12 = i02;
  8413. const int64_t i13 = i03;
  8414. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8415. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8416. ggml_float sum_xx = 0.0;
  8417. ggml_float sum_xdz = 0.0;
  8418. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8419. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8420. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8421. }
  8422. //const float mean = (float)(sum_xx)/ne00;
  8423. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8424. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8425. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8426. // we could cache rms from forward pass to improve performance.
  8427. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8428. //const float rms = sqrtf(mean_eps);
  8429. const float rrms = 1.0f / sqrtf(mean_eps);
  8430. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8431. {
  8432. // z = rms_norm(x)
  8433. //
  8434. // rms_norm(src0) =
  8435. // scale(
  8436. // src0,
  8437. // div(
  8438. // 1,
  8439. // sqrt(
  8440. // add(
  8441. // scale(
  8442. // sum(
  8443. // sqr(
  8444. // src0)),
  8445. // (1.0/N)),
  8446. // eps))));
  8447. // postorder:
  8448. // ## op args grad
  8449. // 00 param src0 grad[#00]
  8450. // 01 const 1
  8451. // 02 sqr (#00) grad[#02]
  8452. // 03 sum (#02) grad[#03]
  8453. // 04 const 1/N
  8454. // 05 scale (#03, #04) grad[#05]
  8455. // 06 const eps
  8456. // 07 add (#05, #06) grad[#07]
  8457. // 08 sqrt (#07) grad[#08]
  8458. // 09 div (#01,#08) grad[#09]
  8459. // 10 scale (#00,#09) grad[#10]
  8460. //
  8461. // backward pass, given grad[#10]
  8462. // #10: scale
  8463. // grad[#00] += scale(grad[#10],#09)
  8464. // grad[#09] += sum(mul(grad[#10],#00))
  8465. // #09: div
  8466. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8467. // #08: sqrt
  8468. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8469. // #07: add
  8470. // grad[#05] += grad[#07]
  8471. // #05: scale
  8472. // grad[#03] += scale(grad[#05],#04)
  8473. // #03: sum
  8474. // grad[#02] += repeat(grad[#03], #02)
  8475. // #02:
  8476. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8477. //
  8478. // substitute and simplify:
  8479. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8480. // grad[#02] = repeat(grad[#03], #02)
  8481. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8482. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8483. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8484. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8485. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8486. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8487. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8488. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8489. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8490. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8491. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8492. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8493. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8494. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8495. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8496. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8497. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8498. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8499. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8500. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8501. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8502. // a = b*c + d*e
  8503. // a = b*c*f/f + d*e*f/f
  8504. // a = (b*c*f + d*e*f)*(1/f)
  8505. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8506. // a = (b + d*e/c)*c
  8507. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8508. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8509. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8510. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8511. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8512. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8513. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8514. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8515. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8516. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8517. }
  8518. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8519. // post-order:
  8520. // dx := x
  8521. // dx := scale(dx,-mean_xdz/mean_eps)
  8522. // dx := add(dx, dz)
  8523. // dx := scale(dx, rrms)
  8524. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8525. ggml_vec_cpy_f32 (ne00, dx, x);
  8526. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8527. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8528. ggml_vec_acc_f32 (ne00, dx, dz);
  8529. ggml_vec_scale_f32(ne00, dx, rrms);
  8530. }
  8531. }
  8532. }
  8533. }
  8534. static void ggml_compute_forward_rms_norm_back(
  8535. const struct ggml_compute_params * params,
  8536. const struct ggml_tensor * src0,
  8537. const struct ggml_tensor * src1,
  8538. struct ggml_tensor * dst) {
  8539. switch (src0->type) {
  8540. case GGML_TYPE_F32:
  8541. {
  8542. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8543. } break;
  8544. default:
  8545. {
  8546. GGML_ASSERT(false);
  8547. } break;
  8548. }
  8549. }
  8550. // ggml_compute_forward_mul_mat
  8551. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8552. // helper function to determine if it is better to use BLAS or not
  8553. // for large matrices, BLAS is faster
  8554. static bool ggml_compute_forward_mul_mat_use_blas(
  8555. const struct ggml_tensor * src0,
  8556. const struct ggml_tensor * src1,
  8557. struct ggml_tensor * dst) {
  8558. //const int64_t ne00 = src0->ne[0];
  8559. //const int64_t ne01 = src0->ne[1];
  8560. const int64_t ne10 = src1->ne[0];
  8561. const int64_t ne0 = dst->ne[0];
  8562. const int64_t ne1 = dst->ne[1];
  8563. // TODO: find the optimal values for these
  8564. if (ggml_is_contiguous(src0) &&
  8565. ggml_is_contiguous(src1) &&
  8566. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8567. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8568. return true;
  8569. }
  8570. return false;
  8571. }
  8572. #endif
  8573. static void ggml_compute_forward_mul_mat_f32(
  8574. const struct ggml_compute_params * params,
  8575. const struct ggml_tensor * src0,
  8576. const struct ggml_tensor * src1,
  8577. struct ggml_tensor * dst) {
  8578. int64_t t0 = ggml_perf_time_us();
  8579. UNUSED(t0);
  8580. const int64_t ne00 = src0->ne[0];
  8581. const int64_t ne01 = src0->ne[1];
  8582. const int64_t ne02 = src0->ne[2];
  8583. const int64_t ne03 = src0->ne[3];
  8584. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8585. const int64_t ne10 = src1->ne[0];
  8586. #endif
  8587. const int64_t ne11 = src1->ne[1];
  8588. #ifndef NDEBUG
  8589. const int64_t ne12 = src1->ne[2];
  8590. const int64_t ne13 = src1->ne[3];
  8591. const int64_t ne0 = dst->ne[0];
  8592. const int64_t ne1 = dst->ne[1];
  8593. const int64_t ne2 = dst->ne[2];
  8594. const int64_t ne3 = dst->ne[3];
  8595. const int nb00 = src0->nb[0];
  8596. #endif
  8597. const int nb01 = src0->nb[1];
  8598. const int nb02 = src0->nb[2];
  8599. const int nb03 = src0->nb[3];
  8600. #ifndef NDEBUG
  8601. const int nb10 = src1->nb[0];
  8602. #endif
  8603. const int nb11 = src1->nb[1];
  8604. const int nb12 = src1->nb[2];
  8605. const int nb13 = src1->nb[3];
  8606. const int nb0 = dst->nb[0];
  8607. const int nb1 = dst->nb[1];
  8608. const int nb2 = dst->nb[2];
  8609. const int nb3 = dst->nb[3];
  8610. const int ith = params->ith;
  8611. const int nth = params->nth;
  8612. assert(ne02 == ne12);
  8613. assert(ne03 == ne13);
  8614. assert(ne2 == ne12);
  8615. assert(ne3 == ne13);
  8616. // we don't support permuted src0 or src1
  8617. assert(nb00 == sizeof(float));
  8618. assert(nb10 == sizeof(float));
  8619. // dst cannot be transposed or permuted
  8620. assert(nb0 == sizeof(float));
  8621. assert(nb0 <= nb1);
  8622. assert(nb1 <= nb2);
  8623. assert(nb2 <= nb3);
  8624. assert(ne0 == ne01);
  8625. assert(ne1 == ne11);
  8626. assert(ne2 == ne02);
  8627. assert(ne3 == ne03);
  8628. // nb01 >= nb00 - src0 is not transposed
  8629. // compute by src0 rows
  8630. #if defined(GGML_USE_CLBLAST)
  8631. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8632. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8633. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8634. }
  8635. return;
  8636. }
  8637. #endif
  8638. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8639. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8640. if (params->ith != 0) {
  8641. return;
  8642. }
  8643. if (params->type == GGML_TASK_INIT) {
  8644. return;
  8645. }
  8646. if (params->type == GGML_TASK_FINALIZE) {
  8647. return;
  8648. }
  8649. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8650. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8651. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8652. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8653. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8654. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8655. ne11, ne01, ne10,
  8656. 1.0f, y, ne10,
  8657. x, ne00,
  8658. 0.0f, d, ne01);
  8659. }
  8660. }
  8661. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8662. return;
  8663. }
  8664. #endif
  8665. if (params->type == GGML_TASK_INIT) {
  8666. return;
  8667. }
  8668. if (params->type == GGML_TASK_FINALIZE) {
  8669. return;
  8670. }
  8671. // parallelize by src0 rows using ggml_vec_dot_f32
  8672. // total rows in src0
  8673. const int nr = ne01*ne02*ne03;
  8674. // rows per thread
  8675. const int dr = (nr + nth - 1)/nth;
  8676. // row range for this thread
  8677. const int ir0 = dr*ith;
  8678. const int ir1 = MIN(ir0 + dr, nr);
  8679. for (int ir = ir0; ir < ir1; ++ir) {
  8680. // src0 indices
  8681. const int i03 = ir/(ne02*ne01);
  8682. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8683. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8684. for (int64_t ic = 0; ic < ne11; ++ic) {
  8685. // src1 indices
  8686. const int i13 = i03;
  8687. const int i12 = i02;
  8688. const int i11 = ic;
  8689. // dst indices
  8690. const int i0 = i01;
  8691. const int i1 = i11;
  8692. const int i2 = i02;
  8693. const int i3 = i03;
  8694. ggml_vec_dot_f32(ne00,
  8695. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8696. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8697. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8698. }
  8699. }
  8700. //int64_t t1 = ggml_perf_time_us();
  8701. //static int64_t acc = 0;
  8702. //acc += t1 - t0;
  8703. //if (t1 - t0 > 10) {
  8704. // printf("\n");
  8705. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8706. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8707. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8708. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8709. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8710. //}
  8711. }
  8712. static void ggml_compute_forward_mul_mat_f16_f32(
  8713. const struct ggml_compute_params * params,
  8714. const struct ggml_tensor * src0,
  8715. const struct ggml_tensor * src1,
  8716. struct ggml_tensor * dst) {
  8717. int64_t t0 = ggml_perf_time_us();
  8718. UNUSED(t0);
  8719. const int64_t ne00 = src0->ne[0];
  8720. const int64_t ne01 = src0->ne[1];
  8721. const int64_t ne02 = src0->ne[2];
  8722. const int64_t ne03 = src0->ne[3];
  8723. const int64_t ne10 = src1->ne[0];
  8724. const int64_t ne11 = src1->ne[1];
  8725. const int64_t ne12 = src1->ne[2];
  8726. const int64_t ne13 = src1->ne[3];
  8727. const int64_t ne0 = dst->ne[0];
  8728. const int64_t ne1 = dst->ne[1];
  8729. const int64_t ne2 = dst->ne[2];
  8730. const int64_t ne3 = dst->ne[3];
  8731. //const int64_t ne = ne0*ne1*ne2*ne3;
  8732. const int nb00 = src0->nb[0];
  8733. const int nb01 = src0->nb[1];
  8734. const int nb02 = src0->nb[2];
  8735. const int nb03 = src0->nb[3];
  8736. const int nb10 = src1->nb[0];
  8737. const int nb11 = src1->nb[1];
  8738. const int nb12 = src1->nb[2];
  8739. const int nb13 = src1->nb[3];
  8740. const int nb0 = dst->nb[0];
  8741. const int nb1 = dst->nb[1];
  8742. const int nb2 = dst->nb[2];
  8743. const int nb3 = dst->nb[3];
  8744. const int ith = params->ith;
  8745. const int nth = params->nth;
  8746. GGML_ASSERT(ne02 == ne12);
  8747. GGML_ASSERT(ne03 == ne13);
  8748. GGML_ASSERT(ne2 == ne12);
  8749. GGML_ASSERT(ne3 == ne13);
  8750. // TODO: we don't support permuted src0
  8751. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8752. // dst cannot be transposed or permuted
  8753. GGML_ASSERT(nb0 == sizeof(float));
  8754. GGML_ASSERT(nb0 <= nb1);
  8755. GGML_ASSERT(nb1 <= nb2);
  8756. GGML_ASSERT(nb2 <= nb3);
  8757. GGML_ASSERT(ne0 == ne01);
  8758. GGML_ASSERT(ne1 == ne11);
  8759. GGML_ASSERT(ne2 == ne02);
  8760. GGML_ASSERT(ne3 == ne03);
  8761. // nb01 >= nb00 - src0 is not transposed
  8762. // compute by src0 rows
  8763. #if defined(GGML_USE_CLBLAST)
  8764. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8765. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8766. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8767. }
  8768. return;
  8769. }
  8770. #endif
  8771. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8772. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8773. GGML_ASSERT(nb10 == sizeof(float));
  8774. if (params->ith != 0) {
  8775. return;
  8776. }
  8777. if (params->type == GGML_TASK_INIT) {
  8778. return;
  8779. }
  8780. if (params->type == GGML_TASK_FINALIZE) {
  8781. return;
  8782. }
  8783. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8784. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8785. float * const wdata = params->wdata;
  8786. {
  8787. size_t id = 0;
  8788. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8789. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8790. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8791. }
  8792. }
  8793. assert(id*sizeof(float) <= params->wsize);
  8794. }
  8795. const float * x = wdata;
  8796. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8797. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8798. // zT = y * xT
  8799. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8800. ne11, ne01, ne10,
  8801. 1.0f, y, ne10,
  8802. x, ne00,
  8803. 0.0f, d, ne01);
  8804. }
  8805. }
  8806. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8807. return;
  8808. }
  8809. #endif
  8810. if (params->type == GGML_TASK_INIT) {
  8811. ggml_fp16_t * const wdata = params->wdata;
  8812. size_t id = 0;
  8813. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8814. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8815. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8816. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8817. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8818. }
  8819. }
  8820. }
  8821. }
  8822. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8823. return;
  8824. }
  8825. if (params->type == GGML_TASK_FINALIZE) {
  8826. return;
  8827. }
  8828. // fp16 -> half the size, so divide by 2
  8829. // TODO: do not support transposed src1
  8830. assert(nb10/2 == sizeof(ggml_fp16_t));
  8831. // parallelize by src0 rows using ggml_vec_dot_f16
  8832. // total rows in src0
  8833. const int nr = ne01*ne02*ne03;
  8834. // rows per thread
  8835. const int dr = (nr + nth - 1)/nth;
  8836. // row range for this thread
  8837. const int ir0 = dr*ith;
  8838. const int ir1 = MIN(ir0 + dr, nr);
  8839. ggml_fp16_t * wdata = params->wdata;
  8840. for (int ir = ir0; ir < ir1; ++ir) {
  8841. // src0 indices
  8842. const int i03 = ir/(ne02*ne01);
  8843. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8844. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8845. const int i13 = i03;
  8846. const int i12 = i02;
  8847. const int i0 = i01;
  8848. const int i2 = i02;
  8849. const int i3 = i03;
  8850. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8851. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8852. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8853. for (int64_t ic = 0; ic < ne11; ++ic) {
  8854. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8855. }
  8856. }
  8857. //int64_t t1 = ggml_time_us();
  8858. //static int64_t acc = 0;
  8859. //acc += t1 - t0;
  8860. //if (t1 - t0 > 10) {
  8861. // printf("\n");
  8862. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8863. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8864. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8865. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8866. //}
  8867. }
  8868. static void ggml_compute_forward_mul_mat_q_f32(
  8869. const struct ggml_compute_params * params,
  8870. const struct ggml_tensor * src0,
  8871. const struct ggml_tensor * src1,
  8872. struct ggml_tensor * dst) {
  8873. int64_t t0 = ggml_perf_time_us();
  8874. UNUSED(t0);
  8875. const int64_t ne00 = src0->ne[0];
  8876. const int64_t ne01 = src0->ne[1];
  8877. const int64_t ne02 = src0->ne[2];
  8878. const int64_t ne03 = src0->ne[3];
  8879. const int64_t ne10 = src1->ne[0];
  8880. const int64_t ne11 = src1->ne[1];
  8881. const int64_t ne12 = src1->ne[2];
  8882. const int64_t ne13 = src1->ne[3];
  8883. const int64_t ne0 = dst->ne[0];
  8884. const int64_t ne1 = dst->ne[1];
  8885. const int64_t ne2 = dst->ne[2];
  8886. const int64_t ne3 = dst->ne[3];
  8887. const int nb00 = src0->nb[0];
  8888. const int nb01 = src0->nb[1];
  8889. const int nb02 = src0->nb[2];
  8890. const int nb03 = src0->nb[3];
  8891. const int nb10 = src1->nb[0];
  8892. const int nb11 = src1->nb[1];
  8893. const int nb12 = src1->nb[2];
  8894. const int nb13 = src1->nb[3];
  8895. const int nb0 = dst->nb[0];
  8896. const int nb1 = dst->nb[1];
  8897. const int nb2 = dst->nb[2];
  8898. const int nb3 = dst->nb[3];
  8899. const int ith = params->ith;
  8900. const int nth = params->nth;
  8901. GGML_ASSERT(ne02 == ne12);
  8902. GGML_ASSERT(ne03 == ne13);
  8903. GGML_ASSERT(ne2 == ne12);
  8904. GGML_ASSERT(ne3 == ne13);
  8905. const enum ggml_type type = src0->type;
  8906. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8907. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8908. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8909. // we don't support permuted src0 or src1
  8910. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8911. GGML_ASSERT(nb10 == sizeof(float));
  8912. // dst cannot be transposed or permuted
  8913. GGML_ASSERT(nb0 == sizeof(float));
  8914. GGML_ASSERT(nb0 <= nb1);
  8915. GGML_ASSERT(nb1 <= nb2);
  8916. GGML_ASSERT(nb2 <= nb3);
  8917. GGML_ASSERT(ne0 == ne01);
  8918. GGML_ASSERT(ne1 == ne11);
  8919. GGML_ASSERT(ne2 == ne02);
  8920. GGML_ASSERT(ne3 == ne03);
  8921. // nb01 >= nb00 - src0 is not transposed
  8922. // compute by src0 rows
  8923. #if defined(GGML_USE_CLBLAST)
  8924. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8925. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8926. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8927. }
  8928. return;
  8929. }
  8930. #endif
  8931. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8932. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8933. if (params->ith != 0) {
  8934. return;
  8935. }
  8936. if (params->type == GGML_TASK_INIT) {
  8937. return;
  8938. }
  8939. if (params->type == GGML_TASK_FINALIZE) {
  8940. return;
  8941. }
  8942. float * const wdata = params->wdata;
  8943. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8945. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8946. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8947. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8948. {
  8949. size_t id = 0;
  8950. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8951. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8952. id += ne00;
  8953. }
  8954. assert(id*sizeof(float) <= params->wsize);
  8955. }
  8956. const float * x = wdata;
  8957. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8958. ne11, ne01, ne10,
  8959. 1.0f, y, ne10,
  8960. x, ne00,
  8961. 0.0f, d, ne01);
  8962. }
  8963. }
  8964. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8965. return;
  8966. }
  8967. #endif
  8968. if (params->type == GGML_TASK_INIT) {
  8969. char * wdata = params->wdata;
  8970. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8971. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8972. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8973. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8974. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8975. wdata += row_size;
  8976. }
  8977. }
  8978. }
  8979. return;
  8980. }
  8981. if (params->type == GGML_TASK_FINALIZE) {
  8982. return;
  8983. }
  8984. // parallelize by src0 rows using ggml_vec_dot_q
  8985. // total rows in src0
  8986. const int nr = ne01*ne02*ne03;
  8987. // rows per thread
  8988. const int dr = (nr + nth - 1)/nth;
  8989. // row range for this thread
  8990. const int ir0 = dr*ith;
  8991. const int ir1 = MIN(ir0 + dr, nr);
  8992. void * wdata = params->wdata;
  8993. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8994. for (int ir = ir0; ir < ir1; ++ir) {
  8995. // src0 indices
  8996. const int i03 = ir/(ne02*ne01);
  8997. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8998. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8999. const int i13 = i03;
  9000. const int i12 = i02;
  9001. const int i0 = i01;
  9002. const int i2 = i02;
  9003. const int i3 = i03;
  9004. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  9005. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  9006. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  9007. assert(ne00 % 32 == 0);
  9008. for (int64_t ic = 0; ic < ne11; ++ic) {
  9009. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  9010. }
  9011. }
  9012. //int64_t t1 = ggml_time_us();
  9013. //static int64_t acc = 0;
  9014. //acc += t1 - t0;
  9015. //if (t1 - t0 > 10) {
  9016. // printf("\n");
  9017. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9018. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9019. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9020. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9021. //}
  9022. }
  9023. static void ggml_compute_forward_mul_mat(
  9024. const struct ggml_compute_params * params,
  9025. const struct ggml_tensor * src0,
  9026. const struct ggml_tensor * src1,
  9027. struct ggml_tensor * dst) {
  9028. switch (src0->type) {
  9029. case GGML_TYPE_Q4_0:
  9030. case GGML_TYPE_Q4_1:
  9031. case GGML_TYPE_Q5_0:
  9032. case GGML_TYPE_Q5_1:
  9033. case GGML_TYPE_Q8_0:
  9034. case GGML_TYPE_Q8_1:
  9035. case GGML_TYPE_Q2_K:
  9036. case GGML_TYPE_Q3_K:
  9037. case GGML_TYPE_Q4_K:
  9038. case GGML_TYPE_Q5_K:
  9039. case GGML_TYPE_Q6_K:
  9040. {
  9041. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  9042. } break;
  9043. case GGML_TYPE_F16:
  9044. {
  9045. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  9046. } break;
  9047. case GGML_TYPE_F32:
  9048. {
  9049. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  9050. } break;
  9051. default:
  9052. {
  9053. GGML_ASSERT(false);
  9054. } break;
  9055. }
  9056. }
  9057. // ggml_compute_forward_out_prod
  9058. static void ggml_compute_forward_out_prod_f32(
  9059. const struct ggml_compute_params * params,
  9060. const struct ggml_tensor * src0,
  9061. const struct ggml_tensor * src1,
  9062. struct ggml_tensor * dst) {
  9063. int64_t t0 = ggml_perf_time_us();
  9064. UNUSED(t0);
  9065. const int64_t ne00 = src0->ne[0];
  9066. const int64_t ne01 = src0->ne[1];
  9067. const int64_t ne02 = src0->ne[2];
  9068. const int64_t ne03 = src0->ne[3];
  9069. const int64_t ne10 = src1->ne[0];
  9070. //const int64_t ne11 = src1->ne[1];
  9071. const int64_t ne12 = src1->ne[2];
  9072. const int64_t ne13 = src1->ne[3];
  9073. const int64_t ne0 = dst->ne[0];
  9074. const int64_t ne1 = dst->ne[1];
  9075. const int64_t ne2 = dst->ne[2];
  9076. const int64_t ne3 = dst->ne[3];
  9077. const int nb00 = src0->nb[0];
  9078. const int nb01 = src0->nb[1];
  9079. const int nb02 = src0->nb[2];
  9080. const int nb03 = src0->nb[3];
  9081. const int nb10 = src1->nb[0];
  9082. const int nb11 = src1->nb[1];
  9083. const int nb12 = src1->nb[2];
  9084. const int nb13 = src1->nb[3];
  9085. const int nb0 = dst->nb[0];
  9086. const int nb1 = dst->nb[1];
  9087. const int nb2 = dst->nb[2];
  9088. const int nb3 = dst->nb[3];
  9089. const int ith = params->ith;
  9090. const int nth = params->nth;
  9091. GGML_ASSERT(ne02 == ne12);
  9092. GGML_ASSERT(ne03 == ne13);
  9093. GGML_ASSERT(ne2 == ne12);
  9094. GGML_ASSERT(ne3 == ne13);
  9095. // we don't support permuted src0 or src1
  9096. GGML_ASSERT(nb00 == sizeof(float));
  9097. // dst cannot be transposed or permuted
  9098. GGML_ASSERT(nb0 == sizeof(float));
  9099. // GGML_ASSERT(nb0 <= nb1);
  9100. // GGML_ASSERT(nb1 <= nb2);
  9101. // GGML_ASSERT(nb2 <= nb3);
  9102. GGML_ASSERT(ne0 == ne00);
  9103. GGML_ASSERT(ne1 == ne10);
  9104. GGML_ASSERT(ne2 == ne02);
  9105. GGML_ASSERT(ne3 == ne03);
  9106. // nb01 >= nb00 - src0 is not transposed
  9107. // compute by src0 rows
  9108. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9109. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9110. if (params->type == GGML_TASK_INIT) {
  9111. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9112. return;
  9113. }
  9114. if (params->type == GGML_TASK_FINALIZE) {
  9115. return;
  9116. }
  9117. // parallelize by last three dimensions
  9118. // total rows in dst
  9119. const int64_t nr = ne1*ne2*ne3;
  9120. // rows per thread
  9121. const int64_t dr = (nr + nth - 1)/nth;
  9122. // row range for this thread
  9123. const int64_t ir0 = dr*ith;
  9124. const int64_t ir1 = MIN(ir0 + dr, nr);
  9125. // dst[:,:,:,:] = 0
  9126. // for i2,i3:
  9127. // for i1:
  9128. // for i01:
  9129. // for i0:
  9130. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9131. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9132. // dst indices
  9133. const int64_t i3 = ir/(ne2*ne1);
  9134. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9135. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9136. const int64_t i02 = i2;
  9137. const int64_t i03 = i3;
  9138. //const int64_t i10 = i1;
  9139. const int64_t i12 = i2;
  9140. const int64_t i13 = i3;
  9141. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9142. const int64_t i11 = i01;
  9143. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9144. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9145. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9146. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9147. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9148. // d[i0] += s0[i0] * s1[i1];
  9149. // }
  9150. }
  9151. }
  9152. //int64_t t1 = ggml_perf_time_us();
  9153. //static int64_t acc = 0;
  9154. //acc += t1 - t0;
  9155. //if (t1 - t0 > 10) {
  9156. // printf("\n");
  9157. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9158. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9159. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9160. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9161. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9162. //}
  9163. }
  9164. static void ggml_compute_forward_out_prod(
  9165. const struct ggml_compute_params * params,
  9166. const struct ggml_tensor * src0,
  9167. const struct ggml_tensor * src1,
  9168. struct ggml_tensor * dst) {
  9169. switch (src0->type) {
  9170. case GGML_TYPE_Q4_0:
  9171. case GGML_TYPE_Q4_1:
  9172. case GGML_TYPE_Q5_0:
  9173. case GGML_TYPE_Q5_1:
  9174. case GGML_TYPE_Q8_0:
  9175. case GGML_TYPE_Q8_1:
  9176. {
  9177. GGML_ASSERT(false); // todo
  9178. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9179. } break;
  9180. case GGML_TYPE_F16:
  9181. {
  9182. GGML_ASSERT(false); // todo
  9183. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9184. } break;
  9185. case GGML_TYPE_F32:
  9186. {
  9187. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9188. } break;
  9189. default:
  9190. {
  9191. GGML_ASSERT(false);
  9192. } break;
  9193. }
  9194. }
  9195. // ggml_compute_forward_scale
  9196. static void ggml_compute_forward_scale_f32(
  9197. const struct ggml_compute_params * params,
  9198. const struct ggml_tensor * src0,
  9199. const struct ggml_tensor * src1,
  9200. struct ggml_tensor * dst) {
  9201. GGML_ASSERT(ggml_is_contiguous(src0));
  9202. GGML_ASSERT(ggml_is_contiguous(dst));
  9203. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9204. GGML_ASSERT(ggml_is_scalar(src1));
  9205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9206. return;
  9207. }
  9208. // scale factor
  9209. const float v = *(float *) src1->data;
  9210. const int ith = params->ith;
  9211. const int nth = params->nth;
  9212. const int nc = src0->ne[0];
  9213. const int nr = ggml_nrows(src0);
  9214. // rows per thread
  9215. const int dr = (nr + nth - 1)/nth;
  9216. // row range for this thread
  9217. const int ir0 = dr*ith;
  9218. const int ir1 = MIN(ir0 + dr, nr);
  9219. const size_t nb01 = src0->nb[1];
  9220. const size_t nb1 = dst->nb[1];
  9221. for (int i1 = ir0; i1 < ir1; i1++) {
  9222. if (dst->data != src0->data) {
  9223. // src0 is same shape as dst => same indices
  9224. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9225. }
  9226. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9227. }
  9228. }
  9229. static void ggml_compute_forward_scale(
  9230. const struct ggml_compute_params * params,
  9231. const struct ggml_tensor * src0,
  9232. const struct ggml_tensor * src1,
  9233. struct ggml_tensor * dst) {
  9234. switch (src0->type) {
  9235. case GGML_TYPE_F32:
  9236. {
  9237. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9238. } break;
  9239. default:
  9240. {
  9241. GGML_ASSERT(false);
  9242. } break;
  9243. }
  9244. }
  9245. // ggml_compute_forward_set
  9246. static void ggml_compute_forward_set_f32(
  9247. const struct ggml_compute_params * params,
  9248. const struct ggml_tensor * src0,
  9249. const struct ggml_tensor * src1,
  9250. const struct ggml_tensor * opt0,
  9251. struct ggml_tensor * dst) {
  9252. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9253. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9254. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  9255. GGML_ASSERT(ggml_nelements(opt0) == 5);
  9256. // view src0 and dst with these strides and data offset inbytes during set
  9257. // nb0 is implicitely element_size because src0 and dst are contiguous
  9258. size_t nb1 = ((int32_t *) opt0->data)[0];
  9259. size_t nb2 = ((int32_t *) opt0->data)[1];
  9260. size_t nb3 = ((int32_t *) opt0->data)[2];
  9261. size_t offset = ((int32_t *) opt0->data)[3];
  9262. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  9263. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9264. // memcpy needs to be synchronized across threads to avoid race conditions.
  9265. // => do it in INIT phase
  9266. memcpy(
  9267. ((char *) dst->data),
  9268. ((char *) src0->data),
  9269. ggml_nbytes(dst));
  9270. }
  9271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9272. return;
  9273. }
  9274. const int ith = params->ith;
  9275. const int nth = params->nth;
  9276. const int nr = ggml_nrows(src1);
  9277. const int nc = src1->ne[0];
  9278. const int64_t ne10 = src1->ne[0];
  9279. const int64_t ne11 = src1->ne[1];
  9280. const int64_t ne12 = src1->ne[2];
  9281. const int64_t ne13 = src1->ne[3];
  9282. const size_t nb10 = src1->nb[0];
  9283. const size_t nb11 = src1->nb[1];
  9284. const size_t nb12 = src1->nb[2];
  9285. const size_t nb13 = src1->nb[3];
  9286. // src0 and dst as viewed during set
  9287. const size_t nb0 = ggml_element_size(src0);
  9288. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9289. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9290. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9291. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9292. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9293. GGML_ASSERT(nb10 == sizeof(float));
  9294. // rows per thread
  9295. const int dr = (nr + nth - 1)/nth;
  9296. // row range for this thread
  9297. const int ir0 = dr*ith;
  9298. const int ir1 = MIN(ir0 + dr, nr);
  9299. for (int ir = ir0; ir < ir1; ++ir) {
  9300. // src0 and dst are viewed with shape of src1 and offset
  9301. // => same indices
  9302. const int i3 = ir/(ne12*ne11);
  9303. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9304. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9305. ggml_vec_cpy_f32(nc,
  9306. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9307. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9308. }
  9309. }
  9310. static void ggml_compute_forward_set(
  9311. const struct ggml_compute_params * params,
  9312. const struct ggml_tensor * src0,
  9313. const struct ggml_tensor * src1,
  9314. const struct ggml_tensor * opt0,
  9315. struct ggml_tensor * dst) {
  9316. switch (src0->type) {
  9317. case GGML_TYPE_F32:
  9318. {
  9319. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9320. } break;
  9321. case GGML_TYPE_F16:
  9322. case GGML_TYPE_Q4_0:
  9323. case GGML_TYPE_Q4_1:
  9324. case GGML_TYPE_Q5_0:
  9325. case GGML_TYPE_Q5_1:
  9326. case GGML_TYPE_Q8_0:
  9327. case GGML_TYPE_Q8_1:
  9328. case GGML_TYPE_Q2_K:
  9329. case GGML_TYPE_Q3_K:
  9330. case GGML_TYPE_Q4_K:
  9331. case GGML_TYPE_Q5_K:
  9332. case GGML_TYPE_Q6_K:
  9333. default:
  9334. {
  9335. GGML_ASSERT(false);
  9336. } break;
  9337. }
  9338. }
  9339. // ggml_compute_forward_cpy
  9340. static void ggml_compute_forward_cpy(
  9341. const struct ggml_compute_params * params,
  9342. const struct ggml_tensor * src0,
  9343. struct ggml_tensor * dst) {
  9344. ggml_compute_forward_dup(params, src0, dst);
  9345. }
  9346. // ggml_compute_forward_cont
  9347. static void ggml_compute_forward_cont(
  9348. const struct ggml_compute_params * params,
  9349. const struct ggml_tensor * src0,
  9350. struct ggml_tensor * dst) {
  9351. ggml_compute_forward_dup(params, src0, dst);
  9352. }
  9353. // ggml_compute_forward_reshape
  9354. static void ggml_compute_forward_reshape(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * src0,
  9357. struct ggml_tensor * dst) {
  9358. // NOP
  9359. UNUSED(params);
  9360. UNUSED(src0);
  9361. UNUSED(dst);
  9362. }
  9363. // ggml_compute_forward_view
  9364. static void ggml_compute_forward_view(
  9365. const struct ggml_compute_params * params,
  9366. const struct ggml_tensor * src0) {
  9367. // NOP
  9368. UNUSED(params);
  9369. UNUSED(src0);
  9370. }
  9371. // ggml_compute_forward_permute
  9372. static void ggml_compute_forward_permute(
  9373. const struct ggml_compute_params * params,
  9374. const struct ggml_tensor * src0) {
  9375. // NOP
  9376. UNUSED(params);
  9377. UNUSED(src0);
  9378. }
  9379. // ggml_compute_forward_transpose
  9380. static void ggml_compute_forward_transpose(
  9381. const struct ggml_compute_params * params,
  9382. const struct ggml_tensor * src0) {
  9383. // NOP
  9384. UNUSED(params);
  9385. UNUSED(src0);
  9386. }
  9387. // ggml_compute_forward_get_rows
  9388. static void ggml_compute_forward_get_rows_q(
  9389. const struct ggml_compute_params * params,
  9390. const struct ggml_tensor * src0,
  9391. const struct ggml_tensor * src1,
  9392. struct ggml_tensor * dst) {
  9393. assert(params->ith == 0);
  9394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9395. return;
  9396. }
  9397. const int nc = src0->ne[0];
  9398. const int nr = ggml_nelements(src1);
  9399. const enum ggml_type type = src0->type;
  9400. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  9401. assert( dst->ne[0] == nc);
  9402. assert( dst->ne[1] == nr);
  9403. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9404. for (int i = 0; i < nr; ++i) {
  9405. const int r = ((int32_t *) src1->data)[i];
  9406. dequantize_row_q(
  9407. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9408. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9409. }
  9410. }
  9411. static void ggml_compute_forward_get_rows_f16(
  9412. const struct ggml_compute_params * params,
  9413. const struct ggml_tensor * src0,
  9414. const struct ggml_tensor * src1,
  9415. struct ggml_tensor * dst) {
  9416. assert(params->ith == 0);
  9417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9418. return;
  9419. }
  9420. const int nc = src0->ne[0];
  9421. const int nr = ggml_nelements(src1);
  9422. assert( dst->ne[0] == nc);
  9423. assert( dst->ne[1] == nr);
  9424. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9425. for (int i = 0; i < nr; ++i) {
  9426. const int r = ((int32_t *) src1->data)[i];
  9427. for (int j = 0; j < nc; ++j) {
  9428. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9429. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9430. }
  9431. }
  9432. }
  9433. static void ggml_compute_forward_get_rows_f32(
  9434. const struct ggml_compute_params * params,
  9435. const struct ggml_tensor * src0,
  9436. const struct ggml_tensor * src1,
  9437. struct ggml_tensor * dst) {
  9438. assert(params->ith == 0);
  9439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9440. return;
  9441. }
  9442. const int nc = src0->ne[0];
  9443. const int nr = ggml_nelements(src1);
  9444. assert( dst->ne[0] == nc);
  9445. assert( dst->ne[1] == nr);
  9446. assert(src0->nb[0] == sizeof(float));
  9447. for (int i = 0; i < nr; ++i) {
  9448. const int r = ((int32_t *) src1->data)[i];
  9449. ggml_vec_cpy_f32(nc,
  9450. (float *) ((char *) dst->data + i*dst->nb[1]),
  9451. (float *) ((char *) src0->data + r*src0->nb[1]));
  9452. }
  9453. }
  9454. static void ggml_compute_forward_get_rows(
  9455. const struct ggml_compute_params * params,
  9456. const struct ggml_tensor * src0,
  9457. const struct ggml_tensor * src1,
  9458. struct ggml_tensor * dst) {
  9459. switch (src0->type) {
  9460. case GGML_TYPE_Q4_0:
  9461. case GGML_TYPE_Q4_1:
  9462. case GGML_TYPE_Q5_0:
  9463. case GGML_TYPE_Q5_1:
  9464. case GGML_TYPE_Q8_0:
  9465. case GGML_TYPE_Q8_1:
  9466. case GGML_TYPE_Q2_K:
  9467. case GGML_TYPE_Q3_K:
  9468. case GGML_TYPE_Q4_K:
  9469. case GGML_TYPE_Q5_K:
  9470. case GGML_TYPE_Q6_K:
  9471. {
  9472. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9473. } break;
  9474. case GGML_TYPE_F16:
  9475. {
  9476. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9477. } break;
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. //static bool first = true;
  9488. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9489. //if (first) {
  9490. // first = false;
  9491. //} else {
  9492. // for (int k = 0; k < dst->ne[1]; ++k) {
  9493. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9494. // for (int i = 0; i < 16; ++i) {
  9495. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9496. // }
  9497. // printf("\n");
  9498. // }
  9499. // printf("\n");
  9500. // }
  9501. // printf("\n");
  9502. // exit(0);
  9503. //}
  9504. }
  9505. // ggml_compute_forward_get_rows_back
  9506. static void ggml_compute_forward_get_rows_back_f32_f16(
  9507. const struct ggml_compute_params * params,
  9508. const struct ggml_tensor * src0,
  9509. const struct ggml_tensor * src1,
  9510. const struct ggml_tensor * opt0,
  9511. struct ggml_tensor * dst) {
  9512. GGML_ASSERT(params->ith == 0);
  9513. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9514. GGML_ASSERT(ggml_is_contiguous(opt0));
  9515. GGML_ASSERT(ggml_is_contiguous(dst));
  9516. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9518. return;
  9519. }
  9520. const int nc = src0->ne[0];
  9521. const int nr = ggml_nelements(src1);
  9522. GGML_ASSERT( dst->ne[0] == nc);
  9523. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9524. for (int i = 0; i < nr; ++i) {
  9525. const int r = ((int32_t *) src1->data)[i];
  9526. for (int j = 0; j < nc; ++j) {
  9527. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9528. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9529. }
  9530. }
  9531. }
  9532. static void ggml_compute_forward_get_rows_back_f32(
  9533. const struct ggml_compute_params * params,
  9534. const struct ggml_tensor * src0,
  9535. const struct ggml_tensor * src1,
  9536. const struct ggml_tensor * opt0,
  9537. struct ggml_tensor * dst) {
  9538. GGML_ASSERT(params->ith == 0);
  9539. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9540. GGML_ASSERT(ggml_is_contiguous(opt0));
  9541. GGML_ASSERT(ggml_is_contiguous(dst));
  9542. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9543. if (params->type == GGML_TASK_INIT) {
  9544. memset(dst->data, 0, ggml_nbytes(dst));
  9545. }
  9546. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9547. return;
  9548. }
  9549. const int nc = src0->ne[0];
  9550. const int nr = ggml_nelements(src1);
  9551. GGML_ASSERT( dst->ne[0] == nc);
  9552. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9553. for (int i = 0; i < nr; ++i) {
  9554. const int r = ((int32_t *) src1->data)[i];
  9555. ggml_vec_add_f32(nc,
  9556. (float *) ((char *) dst->data + r*dst->nb[1]),
  9557. (float *) ((char *) dst->data + r*dst->nb[1]),
  9558. (float *) ((char *) src0->data + i*src0->nb[1]));
  9559. }
  9560. }
  9561. static void ggml_compute_forward_get_rows_back(
  9562. const struct ggml_compute_params * params,
  9563. const struct ggml_tensor * src0,
  9564. const struct ggml_tensor * src1,
  9565. const struct ggml_tensor * opt0,
  9566. struct ggml_tensor * dst) {
  9567. switch (src0->type) {
  9568. case GGML_TYPE_F16:
  9569. {
  9570. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9571. } break;
  9572. case GGML_TYPE_F32:
  9573. {
  9574. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9575. } break;
  9576. default:
  9577. {
  9578. GGML_ASSERT(false);
  9579. } break;
  9580. }
  9581. //static bool first = true;
  9582. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9583. //if (first) {
  9584. // first = false;
  9585. //} else {
  9586. // for (int k = 0; k < dst->ne[1]; ++k) {
  9587. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9588. // for (int i = 0; i < 16; ++i) {
  9589. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9590. // }
  9591. // printf("\n");
  9592. // }
  9593. // printf("\n");
  9594. // }
  9595. // printf("\n");
  9596. // exit(0);
  9597. //}
  9598. }
  9599. // ggml_compute_forward_diag
  9600. static void ggml_compute_forward_diag_f32(
  9601. const struct ggml_compute_params * params,
  9602. const struct ggml_tensor * src0,
  9603. struct ggml_tensor * dst) {
  9604. GGML_ASSERT(params->ith == 0);
  9605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9606. return;
  9607. }
  9608. // TODO: handle transposed/permuted matrices
  9609. const int ne00 = src0->ne[0];
  9610. const int ne01 = src0->ne[1];
  9611. const int ne02 = src0->ne[2];
  9612. const int ne03 = src0->ne[3];
  9613. const int ne0 = dst->ne[0];
  9614. const int ne1 = dst->ne[1];
  9615. const int ne2 = dst->ne[2];
  9616. const int ne3 = dst->ne[3];
  9617. GGML_ASSERT(ne00 == ne0);
  9618. GGML_ASSERT(ne00 == ne1);
  9619. GGML_ASSERT(ne01 == 1);
  9620. GGML_ASSERT(ne02 == ne2);
  9621. GGML_ASSERT(ne03 == ne3);
  9622. const int nb00 = src0->nb[0];
  9623. //const int nb01 = src0->nb[1];
  9624. const int nb02 = src0->nb[2];
  9625. const int nb03 = src0->nb[3];
  9626. const int nb0 = dst->nb[0];
  9627. const int nb1 = dst->nb[1];
  9628. const int nb2 = dst->nb[2];
  9629. const int nb3 = dst->nb[3];
  9630. GGML_ASSERT(nb00 == sizeof(float));
  9631. GGML_ASSERT(nb0 == sizeof(float));
  9632. for (int i3 = 0; i3 < ne3; i3++) {
  9633. for (int i2 = 0; i2 < ne2; i2++) {
  9634. for (int i1 = 0; i1 < ne1; i1++) {
  9635. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9636. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9637. for (int i0 = 0; i0 < i1; i0++) {
  9638. d[i0] = 0;
  9639. }
  9640. d[i1] = s[i1];
  9641. for (int i0 = i1+1; i0 < ne0; i0++) {
  9642. d[i0] = 0;
  9643. }
  9644. }
  9645. }
  9646. }
  9647. }
  9648. static void ggml_compute_forward_diag(
  9649. const struct ggml_compute_params * params,
  9650. const struct ggml_tensor * src0,
  9651. struct ggml_tensor * dst) {
  9652. switch (src0->type) {
  9653. case GGML_TYPE_F32:
  9654. {
  9655. ggml_compute_forward_diag_f32(params, src0, dst);
  9656. } break;
  9657. default:
  9658. {
  9659. GGML_ASSERT(false);
  9660. } break;
  9661. }
  9662. }
  9663. // ggml_compute_forward_diag_mask_inf
  9664. static void ggml_compute_forward_diag_mask_f32(
  9665. const struct ggml_compute_params * params,
  9666. const struct ggml_tensor * src0,
  9667. const struct ggml_tensor * src1,
  9668. struct ggml_tensor * dst,
  9669. const float value) {
  9670. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9671. GGML_ASSERT(ggml_nelements(src1) == 2);
  9672. const int ith = params->ith;
  9673. const int nth = params->nth;
  9674. const int n_past = ((int32_t *) src1->data)[0];
  9675. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9676. GGML_ASSERT(n_past >= 0);
  9677. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9678. // memcpy needs to be synchronized across threads to avoid race conditions.
  9679. // => do it in INIT phase
  9680. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9681. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9682. memcpy(
  9683. ((char *) dst->data),
  9684. ((char *) src0->data),
  9685. ggml_nbytes(dst));
  9686. }
  9687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9688. return;
  9689. }
  9690. // TODO: handle transposed/permuted matrices
  9691. const int n = ggml_nrows(src0);
  9692. const int nc = src0->ne[0];
  9693. const int nr = src0->ne[1];
  9694. const int nz = n/nr;
  9695. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9697. for (int k = 0; k < nz; k++) {
  9698. for (int j = ith; j < nr; j += nth) {
  9699. for (int i = n_past; i < nc; i++) {
  9700. if (i > n_past + j) {
  9701. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9702. }
  9703. }
  9704. }
  9705. }
  9706. }
  9707. static void ggml_compute_forward_diag_mask_inf(
  9708. const struct ggml_compute_params * params,
  9709. const struct ggml_tensor * src0,
  9710. const struct ggml_tensor * src1,
  9711. struct ggml_tensor * dst) {
  9712. switch (src0->type) {
  9713. case GGML_TYPE_F32:
  9714. {
  9715. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9716. } break;
  9717. default:
  9718. {
  9719. GGML_ASSERT(false);
  9720. } break;
  9721. }
  9722. }
  9723. static void ggml_compute_forward_diag_mask_zero(
  9724. const struct ggml_compute_params * params,
  9725. const struct ggml_tensor * src0,
  9726. const struct ggml_tensor * src1,
  9727. struct ggml_tensor * dst) {
  9728. switch (src0->type) {
  9729. case GGML_TYPE_F32:
  9730. {
  9731. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9732. } break;
  9733. default:
  9734. {
  9735. GGML_ASSERT(false);
  9736. } break;
  9737. }
  9738. }
  9739. // ggml_compute_forward_soft_max
  9740. static void ggml_compute_forward_soft_max_f32(
  9741. const struct ggml_compute_params * params,
  9742. const struct ggml_tensor * src0,
  9743. struct ggml_tensor * dst) {
  9744. GGML_ASSERT(ggml_is_contiguous(src0));
  9745. GGML_ASSERT(ggml_is_contiguous(dst));
  9746. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9748. return;
  9749. }
  9750. // TODO: handle transposed/permuted matrices
  9751. const int ith = params->ith;
  9752. const int nth = params->nth;
  9753. const int nc = src0->ne[0];
  9754. const int nr = ggml_nrows(src0);
  9755. // rows per thread
  9756. const int dr = (nr + nth - 1)/nth;
  9757. // row range for this thread
  9758. const int ir0 = dr*ith;
  9759. const int ir1 = MIN(ir0 + dr, nr);
  9760. for (int i1 = ir0; i1 < ir1; i1++) {
  9761. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9762. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9763. #ifndef NDEBUG
  9764. for (int i = 0; i < nc; ++i) {
  9765. //printf("p[%d] = %f\n", i, p[i]);
  9766. assert(!isnan(sp[i]));
  9767. }
  9768. #endif
  9769. float max = -INFINITY;
  9770. ggml_vec_max_f32(nc, &max, sp);
  9771. ggml_float sum = 0.0;
  9772. uint16_t scvt;
  9773. for (int i = 0; i < nc; i++) {
  9774. if (sp[i] == -INFINITY) {
  9775. dp[i] = 0.0f;
  9776. } else {
  9777. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9778. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9779. memcpy(&scvt, &s, sizeof(scvt));
  9780. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9781. sum += (ggml_float)val;
  9782. dp[i] = val;
  9783. }
  9784. }
  9785. assert(sum > 0.0);
  9786. sum = 1.0/sum;
  9787. ggml_vec_scale_f32(nc, dp, sum);
  9788. #ifndef NDEBUG
  9789. for (int i = 0; i < nc; ++i) {
  9790. assert(!isnan(dp[i]));
  9791. assert(!isinf(dp[i]));
  9792. }
  9793. #endif
  9794. }
  9795. }
  9796. static void ggml_compute_forward_soft_max(
  9797. const struct ggml_compute_params * params,
  9798. const struct ggml_tensor * src0,
  9799. struct ggml_tensor * dst) {
  9800. switch (src0->type) {
  9801. case GGML_TYPE_F32:
  9802. {
  9803. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9804. } break;
  9805. default:
  9806. {
  9807. GGML_ASSERT(false);
  9808. } break;
  9809. }
  9810. }
  9811. // ggml_compute_forward_soft_max_back
  9812. static void ggml_compute_forward_soft_max_back_f32(
  9813. const struct ggml_compute_params * params,
  9814. const struct ggml_tensor * src0,
  9815. const struct ggml_tensor * src1,
  9816. struct ggml_tensor * dst) {
  9817. GGML_ASSERT(ggml_is_contiguous(src0));
  9818. GGML_ASSERT(ggml_is_contiguous(src1));
  9819. GGML_ASSERT(ggml_is_contiguous(dst));
  9820. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9821. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9823. return;
  9824. }
  9825. // TODO: handle transposed/permuted matrices
  9826. const int ith = params->ith;
  9827. const int nth = params->nth;
  9828. const int nc = src0->ne[0];
  9829. const int nr = ggml_nrows(src0);
  9830. // rows per thread
  9831. const int dr = (nr + nth - 1)/nth;
  9832. // row range for this thread
  9833. const int ir0 = dr*ith;
  9834. const int ir1 = MIN(ir0 + dr, nr);
  9835. for (int i1 = ir0; i1 < ir1; i1++) {
  9836. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9837. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9838. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9839. #ifndef NDEBUG
  9840. for (int i = 0; i < nc; ++i) {
  9841. //printf("p[%d] = %f\n", i, p[i]);
  9842. assert(!isnan(dy[i]));
  9843. assert(!isnan(y[i]));
  9844. }
  9845. #endif
  9846. // Jii = yi - yi*yi
  9847. // Jij = -yi*yj
  9848. // J = diag(y)-y.T*y
  9849. // dx = J * dy
  9850. // dxk = sum_i(Jki * dyi)
  9851. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9852. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9853. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9854. // dxk = -yk * dot(y, dy) + yk*dyk
  9855. // dxk = yk * (- dot(y, dy) + dyk)
  9856. // dxk = yk * (dyk - dot(y, dy))
  9857. //
  9858. // post-order:
  9859. // dot_y_dy := dot(y, dy)
  9860. // dx := dy
  9861. // dx := dx - dot_y_dy
  9862. // dx := dx * y
  9863. // linear runtime, no additional memory
  9864. float dot_y_dy = 0;
  9865. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9866. ggml_vec_cpy_f32 (nc, dx, dy);
  9867. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9868. ggml_vec_mul_f32 (nc, dx, dx, y);
  9869. #ifndef NDEBUG
  9870. for (int i = 0; i < nc; ++i) {
  9871. assert(!isnan(dx[i]));
  9872. assert(!isinf(dx[i]));
  9873. }
  9874. #endif
  9875. }
  9876. }
  9877. static void ggml_compute_forward_soft_max_back(
  9878. const struct ggml_compute_params * params,
  9879. const struct ggml_tensor * src0,
  9880. const struct ggml_tensor * src1,
  9881. struct ggml_tensor * dst) {
  9882. switch (src0->type) {
  9883. case GGML_TYPE_F32:
  9884. {
  9885. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9886. } break;
  9887. default:
  9888. {
  9889. GGML_ASSERT(false);
  9890. } break;
  9891. }
  9892. }
  9893. // ggml_compute_forward_alibi
  9894. static void ggml_compute_forward_alibi_f32(
  9895. const struct ggml_compute_params * params,
  9896. const struct ggml_tensor * src0,
  9897. const struct ggml_tensor * src1,
  9898. struct ggml_tensor * dst) {
  9899. assert(params->ith == 0);
  9900. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9901. GGML_ASSERT(ggml_nelements(src1) == 3);
  9902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9903. return;
  9904. }
  9905. const int n_past = ((int32_t *) src1->data)[0];
  9906. const int n_head = ((int32_t *) src1->data)[1];
  9907. const float max_bias = ((float *) src1->data)[2];
  9908. assert(n_past >= 0);
  9909. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9910. const int ne1 = src0->ne[1]; // seq_len_without_past
  9911. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9912. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9913. const int n = ggml_nrows(src0);
  9914. const int ne2_ne3 = n/ne1; // ne2*ne3
  9915. const int nb0 = src0->nb[0];
  9916. const int nb1 = src0->nb[1];
  9917. const int nb2 = src0->nb[2];
  9918. //const int nb3 = src0->nb[3];
  9919. assert(nb0 == sizeof(float));
  9920. assert(ne1 + n_past == ne0); (void) n_past;
  9921. // add alibi to src0 (KQ_scaled)
  9922. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9923. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9924. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9925. for (int i = 0; i < ne0; i++) {
  9926. for (int j = 0; j < ne1; j++) {
  9927. for (int k = 0; k < ne2_ne3; k++) {
  9928. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9929. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9930. // TODO: k*nb2 or k*nb3
  9931. float m_k;
  9932. if (k < n_heads_log2_floor) {
  9933. m_k = powf(m0, k + 1);
  9934. } else {
  9935. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9936. }
  9937. pdst[0] = (i-ne0+1) * m_k + src[0];
  9938. }
  9939. }
  9940. }
  9941. }
  9942. static void ggml_compute_forward_alibi_f16(
  9943. const struct ggml_compute_params * params,
  9944. const struct ggml_tensor * src0,
  9945. const struct ggml_tensor * src1,
  9946. struct ggml_tensor * dst) {
  9947. assert(params->ith == 0);
  9948. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9949. GGML_ASSERT(ggml_nelements(src1) == 3);
  9950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9951. return;
  9952. }
  9953. const int n_past = ((int32_t *) src1->data)[0];
  9954. const int n_head = ((int32_t *) src1->data)[1];
  9955. const float max_bias = ((float *) src1->data)[2];
  9956. assert(n_past >= 0);
  9957. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9958. const int ne1 = src0->ne[1]; // seq_len_without_past
  9959. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9960. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9961. const int n = ggml_nrows(src0);
  9962. const int ne2_ne3 = n/ne1; // ne2*ne3
  9963. const int nb0 = src0->nb[0];
  9964. const int nb1 = src0->nb[1];
  9965. const int nb2 = src0->nb[2];
  9966. //const int nb3 = src0->nb[3];
  9967. assert(nb0 == sizeof(ggml_fp16_t));
  9968. assert(ne1 + n_past == ne0); (void) n_past;
  9969. // add alibi to src0 (KQ_scaled)
  9970. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9971. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9972. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9973. for (int i = 0; i < ne0; i++) {
  9974. for (int j = 0; j < ne1; j++) {
  9975. for (int k = 0; k < ne2_ne3; k++) {
  9976. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9977. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9978. // TODO: k*nb2 or k*nb3
  9979. float m_k;
  9980. if (k < n_heads_log2_floor) {
  9981. m_k = powf(m0, k + 1);
  9982. } else {
  9983. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9984. }
  9985. // we return F32
  9986. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9987. }
  9988. }
  9989. }
  9990. }
  9991. static void ggml_compute_forward_alibi(
  9992. const struct ggml_compute_params * params,
  9993. const struct ggml_tensor * src0,
  9994. const struct ggml_tensor * src1,
  9995. struct ggml_tensor * dst) {
  9996. switch (src0->type) {
  9997. case GGML_TYPE_F16:
  9998. {
  9999. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  10000. } break;
  10001. case GGML_TYPE_F32:
  10002. {
  10003. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  10004. } break;
  10005. case GGML_TYPE_Q4_0:
  10006. case GGML_TYPE_Q4_1:
  10007. case GGML_TYPE_Q5_0:
  10008. case GGML_TYPE_Q5_1:
  10009. case GGML_TYPE_Q8_0:
  10010. case GGML_TYPE_Q8_1:
  10011. case GGML_TYPE_Q2_K:
  10012. case GGML_TYPE_Q3_K:
  10013. case GGML_TYPE_Q4_K:
  10014. case GGML_TYPE_Q5_K:
  10015. case GGML_TYPE_Q6_K:
  10016. case GGML_TYPE_Q8_K:
  10017. case GGML_TYPE_I8:
  10018. case GGML_TYPE_I16:
  10019. case GGML_TYPE_I32:
  10020. case GGML_TYPE_COUNT:
  10021. {
  10022. GGML_ASSERT(false);
  10023. } break;
  10024. }
  10025. }
  10026. // ggml_compute_forward_clamp
  10027. static void ggml_compute_forward_clamp_f32(
  10028. const struct ggml_compute_params * params,
  10029. const struct ggml_tensor * src0,
  10030. const struct ggml_tensor * src1,
  10031. struct ggml_tensor * dst) {
  10032. assert(params->ith == 0);
  10033. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10034. GGML_ASSERT(ggml_nelements(src1) == 2);
  10035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10036. return;
  10037. }
  10038. const float min = ((float *) src1->data)[0];
  10039. const float max = ((float *) src1->data)[1];
  10040. const int ith = params->ith;
  10041. const int nth = params->nth;
  10042. const int n = ggml_nrows(src0);
  10043. const int nc = src0->ne[0];
  10044. const size_t nb00 = src0->nb[0];
  10045. const size_t nb01 = src0->nb[1];
  10046. const size_t nb0 = dst->nb[0];
  10047. const size_t nb1 = dst->nb[1];
  10048. GGML_ASSERT( nb0 == sizeof(float));
  10049. GGML_ASSERT(nb00 == sizeof(float));
  10050. for (int j = ith; j < n; j += nth) {
  10051. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10052. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10053. for (int i = 0; i < nc; i++) {
  10054. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10055. }
  10056. }
  10057. }
  10058. static void ggml_compute_forward_clamp(
  10059. const struct ggml_compute_params * params,
  10060. const struct ggml_tensor * src0,
  10061. const struct ggml_tensor * src1,
  10062. struct ggml_tensor * dst) {
  10063. switch (src0->type) {
  10064. case GGML_TYPE_F32:
  10065. {
  10066. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  10067. } break;
  10068. case GGML_TYPE_F16:
  10069. case GGML_TYPE_Q4_0:
  10070. case GGML_TYPE_Q4_1:
  10071. case GGML_TYPE_Q5_0:
  10072. case GGML_TYPE_Q5_1:
  10073. case GGML_TYPE_Q8_0:
  10074. case GGML_TYPE_Q8_1:
  10075. case GGML_TYPE_Q2_K:
  10076. case GGML_TYPE_Q3_K:
  10077. case GGML_TYPE_Q4_K:
  10078. case GGML_TYPE_Q5_K:
  10079. case GGML_TYPE_Q6_K:
  10080. case GGML_TYPE_Q8_K:
  10081. case GGML_TYPE_I8:
  10082. case GGML_TYPE_I16:
  10083. case GGML_TYPE_I32:
  10084. case GGML_TYPE_COUNT:
  10085. {
  10086. GGML_ASSERT(false);
  10087. } break;
  10088. }
  10089. }
  10090. // ggml_compute_forward_rope
  10091. static void ggml_compute_forward_rope_f32(
  10092. const struct ggml_compute_params * params,
  10093. const struct ggml_tensor * src0,
  10094. const struct ggml_tensor * src1,
  10095. struct ggml_tensor * dst) {
  10096. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  10097. GGML_ASSERT(ggml_nelements(src1) == 3);
  10098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10099. return;
  10100. }
  10101. const int n_past = ((int32_t *) src1->data)[0];
  10102. const int n_dims = ((int32_t *) src1->data)[1];
  10103. const int mode = ((int32_t *) src1->data)[2];
  10104. assert(n_past >= 0);
  10105. const size_t nb00 = src0->nb[0];
  10106. const size_t nb01 = src0->nb[1];
  10107. const size_t nb02 = src0->nb[2];
  10108. const size_t nb03 = src0->nb[3];
  10109. const int64_t ne0 = dst->ne[0];
  10110. const int64_t ne1 = dst->ne[1];
  10111. const int64_t ne2 = dst->ne[2];
  10112. const int64_t ne3 = dst->ne[3];
  10113. const size_t nb0 = dst->nb[0];
  10114. const size_t nb1 = dst->nb[1];
  10115. const size_t nb2 = dst->nb[2];
  10116. const size_t nb3 = dst->nb[3];
  10117. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10118. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10119. GGML_ASSERT(nb00 == sizeof(float));
  10120. const int ith = params->ith;
  10121. const int nth = params->nth;
  10122. const int nr = ggml_nrows(dst);
  10123. GGML_ASSERT(n_dims <= ne0);
  10124. GGML_ASSERT(n_dims % 2 == 0);
  10125. // rows per thread
  10126. const int dr = (nr + nth - 1)/nth;
  10127. // row range for this thread
  10128. const int ir0 = dr*ith;
  10129. const int ir1 = MIN(ir0 + dr, nr);
  10130. // row index used to determine which thread to use
  10131. int ir = 0;
  10132. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10133. const bool is_neox = mode & 2;
  10134. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10135. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10136. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10137. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10138. if (ir++ < ir0) continue;
  10139. if (ir > ir1) break;
  10140. float theta = (float)p;
  10141. if (!is_neox) {
  10142. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10143. const float cos_theta = cosf(theta);
  10144. const float sin_theta = sinf(theta);
  10145. theta *= theta_scale;
  10146. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10147. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10148. const float x0 = src[0];
  10149. const float x1 = src[1];
  10150. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10151. dst_data[1] = x0*sin_theta + x1*cos_theta;
  10152. }
  10153. } else {
  10154. // TODO: this is probably wrong, but I can't figure it out ..
  10155. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10156. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10157. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10158. const float cos_theta = cosf(theta);
  10159. const float sin_theta = sinf(theta);
  10160. theta *= theta_scale;
  10161. const int64_t i0 = ib*n_dims + ic/2;
  10162. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10163. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10164. const float x0 = src[0];
  10165. const float x1 = src[n_dims/2];
  10166. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10167. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10168. }
  10169. }
  10170. }
  10171. }
  10172. }
  10173. }
  10174. }
  10175. static void ggml_compute_forward_rope_f16(
  10176. const struct ggml_compute_params * params,
  10177. const struct ggml_tensor * src0,
  10178. const struct ggml_tensor * src1,
  10179. struct ggml_tensor * dst) {
  10180. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  10181. GGML_ASSERT(ggml_nelements(src1) == 3);
  10182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10183. return;
  10184. }
  10185. const int n_past = ((int32_t *) src1->data)[0];
  10186. const int n_dims = ((int32_t *) src1->data)[1];
  10187. const int mode = ((int32_t *) src1->data)[2];
  10188. assert(n_past >= 0);
  10189. const size_t nb00 = src0->nb[0];
  10190. const size_t nb01 = src0->nb[1];
  10191. const size_t nb02 = src0->nb[2];
  10192. const size_t nb03 = src0->nb[3];
  10193. const int64_t ne0 = dst->ne[0];
  10194. const int64_t ne1 = dst->ne[1];
  10195. const int64_t ne2 = dst->ne[2];
  10196. const int64_t ne3 = dst->ne[3];
  10197. const size_t nb0 = dst->nb[0];
  10198. const size_t nb1 = dst->nb[1];
  10199. const size_t nb2 = dst->nb[2];
  10200. const size_t nb3 = dst->nb[3];
  10201. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10202. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10203. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10204. const int ith = params->ith;
  10205. const int nth = params->nth;
  10206. const int nr = ggml_nrows(dst);
  10207. GGML_ASSERT(n_dims <= ne0);
  10208. GGML_ASSERT(n_dims % 2 == 0);
  10209. // rows per thread
  10210. const int dr = (nr + nth - 1)/nth;
  10211. // row range for this thread
  10212. const int ir0 = dr*ith;
  10213. const int ir1 = MIN(ir0 + dr, nr);
  10214. // row index used to determine which thread to use
  10215. int ir = 0;
  10216. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10217. const bool is_neox = mode & 2;
  10218. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10219. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10220. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10221. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10222. if (ir++ < ir0) continue;
  10223. if (ir > ir1) break;
  10224. float theta = (float)p;
  10225. if (!is_neox) {
  10226. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10227. const float cos_theta = cosf(theta);
  10228. const float sin_theta = sinf(theta);
  10229. theta *= theta_scale;
  10230. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10231. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10232. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10233. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10234. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10235. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10236. }
  10237. } else {
  10238. // TODO: this is probably wrong, but I can't figure it out ..
  10239. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10240. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10241. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10242. const float cos_theta = cosf(theta);
  10243. const float sin_theta = sinf(theta);
  10244. theta *= theta_scale;
  10245. const int64_t i0 = ib*n_dims + ic/2;
  10246. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10247. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10248. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10249. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10250. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10251. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10252. }
  10253. }
  10254. }
  10255. }
  10256. }
  10257. }
  10258. }
  10259. static void ggml_compute_forward_rope(
  10260. const struct ggml_compute_params * params,
  10261. const struct ggml_tensor * src0,
  10262. const struct ggml_tensor * src1,
  10263. struct ggml_tensor * dst) {
  10264. switch (src0->type) {
  10265. case GGML_TYPE_F16:
  10266. {
  10267. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10268. } break;
  10269. case GGML_TYPE_F32:
  10270. {
  10271. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10272. } break;
  10273. default:
  10274. {
  10275. GGML_ASSERT(false);
  10276. } break;
  10277. }
  10278. }
  10279. // ggml_compute_forward_rope_back
  10280. static void ggml_compute_forward_rope_back_f32(
  10281. const struct ggml_compute_params * params,
  10282. const struct ggml_tensor * src0,
  10283. const struct ggml_tensor * src1,
  10284. struct ggml_tensor * dst) {
  10285. assert(src1->type == GGML_TYPE_I32);
  10286. assert(ggml_nelements(src1) == 3);
  10287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10288. return;
  10289. }
  10290. // y = rope(x, src1)
  10291. // dx = rope_back(dy, src1)
  10292. // src0 is dy, src1 contains options
  10293. const int n_past = ((int32_t *) src1->data)[0];
  10294. const int n_dims = ((int32_t *) src1->data)[1];
  10295. const int mode = ((int32_t *) src1->data)[2];
  10296. assert(n_past >= 0);
  10297. const size_t nb00 = src0->nb[0];
  10298. const size_t nb01 = src0->nb[1];
  10299. const size_t nb02 = src0->nb[2];
  10300. const size_t nb03 = src0->nb[3];
  10301. const int64_t ne0 = dst->ne[0];
  10302. const int64_t ne1 = dst->ne[1];
  10303. const int64_t ne2 = dst->ne[2];
  10304. const int64_t ne3 = dst->ne[3];
  10305. const size_t nb0 = dst->nb[0];
  10306. const size_t nb1 = dst->nb[1];
  10307. const size_t nb2 = dst->nb[2];
  10308. const size_t nb3 = dst->nb[3];
  10309. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10310. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10311. assert(nb0 == sizeof(float));
  10312. const int ith = params->ith;
  10313. const int nth = params->nth;
  10314. const int nr = ggml_nrows(dst);
  10315. // rows per thread
  10316. const int dr = (nr + nth - 1)/nth;
  10317. // row range for this thread
  10318. const int ir0 = dr*ith;
  10319. const int ir1 = MIN(ir0 + dr, nr);
  10320. // row index used to determine which thread to use
  10321. int ir = 0;
  10322. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10323. const bool is_neox = mode & 2;
  10324. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10325. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10326. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10327. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10328. if (ir++ < ir0) continue;
  10329. if (ir > ir1) break;
  10330. float theta = (float)p;
  10331. if (!is_neox) {
  10332. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10333. const float cos_theta = cosf(theta);
  10334. const float sin_theta = sinf(theta);
  10335. theta *= theta_scale;
  10336. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10337. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10338. const float dy0 = dy[0];
  10339. const float dy1 = dy[1];
  10340. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10341. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10342. }
  10343. } else {
  10344. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10345. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10346. const float cos_theta = cosf(theta);
  10347. const float sin_theta = sinf(theta);
  10348. theta *= theta_scale;
  10349. const int64_t i0 = ib*n_dims + ic/2;
  10350. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10351. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10352. const float dy0 = dy[0];
  10353. const float dy1 = dy[n_dims/2];
  10354. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10355. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10356. }
  10357. }
  10358. }
  10359. }
  10360. }
  10361. }
  10362. }
  10363. static void ggml_compute_forward_rope_back_f16(
  10364. const struct ggml_compute_params * params,
  10365. const struct ggml_tensor * src0,
  10366. const struct ggml_tensor * src1,
  10367. struct ggml_tensor * dst) {
  10368. assert(src1->type == GGML_TYPE_I32);
  10369. assert(ggml_nelements(src1) == 3);
  10370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10371. return;
  10372. }
  10373. // y = rope(x, src1)
  10374. // dx = rope_back(dy, src1)
  10375. // src0 is dy, src1 contains options
  10376. const int n_past = ((int32_t *) src1->data)[0];
  10377. const int n_dims = ((int32_t *) src1->data)[1];
  10378. const int mode = ((int32_t *) src1->data)[2];
  10379. assert(n_past >= 0);
  10380. const size_t nb00 = src0->nb[0];
  10381. const size_t nb01 = src0->nb[1];
  10382. const size_t nb02 = src0->nb[2];
  10383. const size_t nb03 = src0->nb[3];
  10384. const int64_t ne0 = dst->ne[0];
  10385. const int64_t ne1 = dst->ne[1];
  10386. const int64_t ne2 = dst->ne[2];
  10387. const int64_t ne3 = dst->ne[3];
  10388. const size_t nb0 = dst->nb[0];
  10389. const size_t nb1 = dst->nb[1];
  10390. const size_t nb2 = dst->nb[2];
  10391. const size_t nb3 = dst->nb[3];
  10392. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10393. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10394. assert(nb0 == sizeof(ggml_fp16_t));
  10395. const int ith = params->ith;
  10396. const int nth = params->nth;
  10397. const int nr = ggml_nrows(dst);
  10398. // rows per thread
  10399. const int dr = (nr + nth - 1)/nth;
  10400. // row range for this thread
  10401. const int ir0 = dr*ith;
  10402. const int ir1 = MIN(ir0 + dr, nr);
  10403. // row index used to determine which thread to use
  10404. int ir = 0;
  10405. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10406. const bool is_neox = mode & 2;
  10407. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10408. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10409. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10410. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10411. if (ir++ < ir0) continue;
  10412. if (ir > ir1) break;
  10413. float theta = (float)p;
  10414. if (!is_neox) {
  10415. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10416. const float cos_theta = cosf(theta);
  10417. const float sin_theta = sinf(theta);
  10418. theta *= theta_scale;
  10419. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10420. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10421. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10422. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10423. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10424. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10425. }
  10426. } else {
  10427. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10428. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10429. const float cos_theta = cosf(theta);
  10430. const float sin_theta = sinf(theta);
  10431. theta *= theta_scale;
  10432. const int64_t i0 = ib*n_dims + ic/2;
  10433. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10434. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10435. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10436. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10437. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10438. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10439. }
  10440. }
  10441. }
  10442. }
  10443. }
  10444. }
  10445. }
  10446. static void ggml_compute_forward_rope_back(
  10447. const struct ggml_compute_params * params,
  10448. const struct ggml_tensor * src0,
  10449. const struct ggml_tensor * src1,
  10450. struct ggml_tensor * dst) {
  10451. switch (src0->type) {
  10452. case GGML_TYPE_F16:
  10453. {
  10454. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10455. } break;
  10456. case GGML_TYPE_F32:
  10457. {
  10458. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10459. } break;
  10460. default:
  10461. {
  10462. GGML_ASSERT(false);
  10463. } break;
  10464. }
  10465. }
  10466. // ggml_compute_forward_conv_1d_s1_ph
  10467. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10468. const struct ggml_compute_params * params,
  10469. const struct ggml_tensor * src0,
  10470. const struct ggml_tensor * src1,
  10471. struct ggml_tensor * dst) {
  10472. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10473. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10474. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10475. int64_t t0 = ggml_perf_time_us();
  10476. UNUSED(t0);
  10477. const int64_t ne00 = src0->ne[0];
  10478. const int64_t ne01 = src0->ne[1];
  10479. const int64_t ne02 = src0->ne[2];
  10480. //const int64_t ne03 = src0->ne[3];
  10481. const int64_t ne10 = src1->ne[0];
  10482. const int64_t ne11 = src1->ne[1];
  10483. //const int64_t ne12 = src1->ne[2];
  10484. //const int64_t ne13 = src1->ne[3];
  10485. //const int64_t ne0 = dst->ne[0];
  10486. //const int64_t ne1 = dst->ne[1];
  10487. //const int64_t ne2 = dst->ne[2];
  10488. //const int64_t ne3 = dst->ne[3];
  10489. //const int64_t ne = ne0*ne1*ne2*ne3;
  10490. const int nb00 = src0->nb[0];
  10491. const int nb01 = src0->nb[1];
  10492. const int nb02 = src0->nb[2];
  10493. //const int nb03 = src0->nb[3];
  10494. const int nb10 = src1->nb[0];
  10495. const int nb11 = src1->nb[1];
  10496. //const int nb12 = src1->nb[2];
  10497. //const int nb13 = src1->nb[3];
  10498. //const int nb0 = dst->nb[0];
  10499. const int nb1 = dst->nb[1];
  10500. //const int nb2 = dst->nb[2];
  10501. //const int nb3 = dst->nb[3];
  10502. const int ith = params->ith;
  10503. const int nth = params->nth;
  10504. const int nk = ne00;
  10505. const int nh = nk/2;
  10506. const int ew0 = ggml_up32(ne01);
  10507. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10508. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10509. GGML_ASSERT(nb10 == sizeof(float));
  10510. if (params->type == GGML_TASK_INIT) {
  10511. // TODO: fix this memset (wsize is overestimated)
  10512. memset(params->wdata, 0, params->wsize);
  10513. // prepare kernel data (src0)
  10514. {
  10515. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10516. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10517. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10518. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10519. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10520. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10521. dst_data[i00*ew0 + i01] = src[i00];
  10522. }
  10523. }
  10524. }
  10525. }
  10526. // prepare source data (src1)
  10527. {
  10528. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10529. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10530. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10531. ggml_fp16_t * dst_data = wdata;
  10532. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10533. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10534. }
  10535. }
  10536. }
  10537. return;
  10538. }
  10539. if (params->type == GGML_TASK_FINALIZE) {
  10540. return;
  10541. }
  10542. // total rows in dst
  10543. const int nr = ne02;
  10544. // rows per thread
  10545. const int dr = (nr + nth - 1)/nth;
  10546. // row range for this thread
  10547. const int ir0 = dr*ith;
  10548. const int ir1 = MIN(ir0 + dr, nr);
  10549. for (int i1 = ir0; i1 < ir1; i1++) {
  10550. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10551. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10552. dst_data[i0] = 0;
  10553. for (int k = -nh; k <= nh; k++) {
  10554. float v = 0.0f;
  10555. ggml_vec_dot_f16(ew0, &v,
  10556. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10557. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10558. dst_data[i0] += v;
  10559. }
  10560. }
  10561. }
  10562. }
  10563. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10564. const struct ggml_compute_params * params,
  10565. const struct ggml_tensor * src0,
  10566. const struct ggml_tensor * src1,
  10567. struct ggml_tensor * dst) {
  10568. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10569. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10570. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10571. int64_t t0 = ggml_perf_time_us();
  10572. UNUSED(t0);
  10573. const int64_t ne00 = src0->ne[0];
  10574. const int64_t ne01 = src0->ne[1];
  10575. const int64_t ne02 = src0->ne[2];
  10576. //const int64_t ne03 = src0->ne[3];
  10577. const int64_t ne10 = src1->ne[0];
  10578. const int64_t ne11 = src1->ne[1];
  10579. //const int64_t ne12 = src1->ne[2];
  10580. //const int64_t ne13 = src1->ne[3];
  10581. //const int64_t ne0 = dst->ne[0];
  10582. //const int64_t ne1 = dst->ne[1];
  10583. //const int64_t ne2 = dst->ne[2];
  10584. //const int64_t ne3 = dst->ne[3];
  10585. //const int64_t ne = ne0*ne1*ne2*ne3;
  10586. const int nb00 = src0->nb[0];
  10587. const int nb01 = src0->nb[1];
  10588. const int nb02 = src0->nb[2];
  10589. //const int nb03 = src0->nb[3];
  10590. const int nb10 = src1->nb[0];
  10591. const int nb11 = src1->nb[1];
  10592. //const int nb12 = src1->nb[2];
  10593. //const int nb13 = src1->nb[3];
  10594. //const int nb0 = dst->nb[0];
  10595. const int nb1 = dst->nb[1];
  10596. //const int nb2 = dst->nb[2];
  10597. //const int nb3 = dst->nb[3];
  10598. const int ith = params->ith;
  10599. const int nth = params->nth;
  10600. const int nk = ne00;
  10601. const int nh = nk/2;
  10602. const int ew0 = ggml_up32(ne01);
  10603. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10604. GGML_ASSERT(nb00 == sizeof(float));
  10605. GGML_ASSERT(nb10 == sizeof(float));
  10606. if (params->type == GGML_TASK_INIT) {
  10607. // TODO: fix this memset (wsize is overestimated)
  10608. memset(params->wdata, 0, params->wsize);
  10609. // prepare kernel data (src0)
  10610. {
  10611. float * const wdata = (float *) params->wdata + 0;
  10612. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10613. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10614. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10615. float * dst_data = wdata + i02*ew0*ne00;
  10616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10617. dst_data[i00*ew0 + i01] = src[i00];
  10618. }
  10619. }
  10620. }
  10621. }
  10622. // prepare source data (src1)
  10623. {
  10624. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10625. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10626. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10627. float * dst_data = wdata;
  10628. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10629. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10630. }
  10631. }
  10632. }
  10633. return;
  10634. }
  10635. if (params->type == GGML_TASK_FINALIZE) {
  10636. return;
  10637. }
  10638. // total rows in dst
  10639. const int nr = ne02;
  10640. // rows per thread
  10641. const int dr = (nr + nth - 1)/nth;
  10642. // row range for this thread
  10643. const int ir0 = dr*ith;
  10644. const int ir1 = MIN(ir0 + dr, nr);
  10645. for (int i1 = ir0; i1 < ir1; i1++) {
  10646. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10647. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10648. dst_data[i0] = 0;
  10649. for (int k = -nh; k <= nh; k++) {
  10650. float v = 0.0f;
  10651. ggml_vec_dot_f32(ew0, &v,
  10652. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10653. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10654. dst_data[i0] += v;
  10655. }
  10656. }
  10657. }
  10658. }
  10659. static void ggml_compute_forward_conv_1d_s1_ph(
  10660. const struct ggml_compute_params * params,
  10661. const struct ggml_tensor * src0,
  10662. const struct ggml_tensor * src1,
  10663. struct ggml_tensor * dst) {
  10664. switch (src0->type) {
  10665. case GGML_TYPE_F16:
  10666. {
  10667. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10668. } break;
  10669. case GGML_TYPE_F32:
  10670. {
  10671. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10672. } break;
  10673. default:
  10674. {
  10675. GGML_ASSERT(false);
  10676. } break;
  10677. }
  10678. }
  10679. // ggml_compute_forward_conv_1d_s2_ph
  10680. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10681. const struct ggml_compute_params * params,
  10682. const struct ggml_tensor * src0,
  10683. const struct ggml_tensor * src1,
  10684. struct ggml_tensor * dst) {
  10685. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10686. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10687. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10688. int64_t t0 = ggml_perf_time_us();
  10689. UNUSED(t0);
  10690. const int64_t ne00 = src0->ne[0];
  10691. const int64_t ne01 = src0->ne[1];
  10692. const int64_t ne02 = src0->ne[2];
  10693. //const int64_t ne03 = src0->ne[3];
  10694. const int64_t ne10 = src1->ne[0];
  10695. const int64_t ne11 = src1->ne[1];
  10696. //const int64_t ne12 = src1->ne[2];
  10697. //const int64_t ne13 = src1->ne[3];
  10698. //const int64_t ne0 = dst->ne[0];
  10699. //const int64_t ne1 = dst->ne[1];
  10700. //const int64_t ne2 = dst->ne[2];
  10701. //const int64_t ne3 = dst->ne[3];
  10702. //const int64_t ne = ne0*ne1*ne2*ne3;
  10703. const int nb00 = src0->nb[0];
  10704. const int nb01 = src0->nb[1];
  10705. const int nb02 = src0->nb[2];
  10706. //const int nb03 = src0->nb[3];
  10707. const int nb10 = src1->nb[0];
  10708. const int nb11 = src1->nb[1];
  10709. //const int nb12 = src1->nb[2];
  10710. //const int nb13 = src1->nb[3];
  10711. //const int nb0 = dst->nb[0];
  10712. const int nb1 = dst->nb[1];
  10713. //const int nb2 = dst->nb[2];
  10714. //const int nb3 = dst->nb[3];
  10715. const int ith = params->ith;
  10716. const int nth = params->nth;
  10717. const int nk = ne00;
  10718. const int nh = nk/2;
  10719. const int ew0 = ggml_up32(ne01);
  10720. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10721. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10722. GGML_ASSERT(nb10 == sizeof(float));
  10723. if (params->type == GGML_TASK_INIT) {
  10724. // TODO: fix this memset (wsize is overestimated)
  10725. memset(params->wdata, 0, params->wsize);
  10726. // prepare kernel data (src0)
  10727. {
  10728. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10729. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10730. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10731. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10732. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10733. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10734. dst_data[i00*ew0 + i01] = src[i00];
  10735. }
  10736. }
  10737. }
  10738. }
  10739. // prepare source data (src1)
  10740. {
  10741. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10742. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10743. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10744. ggml_fp16_t * dst_data = wdata;
  10745. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10746. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10747. }
  10748. }
  10749. }
  10750. return;
  10751. }
  10752. if (params->type == GGML_TASK_FINALIZE) {
  10753. return;
  10754. }
  10755. // total rows in dst
  10756. const int nr = ne02;
  10757. // rows per thread
  10758. const int dr = (nr + nth - 1)/nth;
  10759. // row range for this thread
  10760. const int ir0 = dr*ith;
  10761. const int ir1 = MIN(ir0 + dr, nr);
  10762. for (int i1 = ir0; i1 < ir1; i1++) {
  10763. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10764. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10765. dst_data[i0/2] = 0;
  10766. for (int k = -nh; k <= nh; k++) {
  10767. float v = 0.0f;
  10768. ggml_vec_dot_f16(ew0, &v,
  10769. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10770. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10771. dst_data[i0/2] += v;
  10772. }
  10773. }
  10774. }
  10775. }
  10776. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10777. const struct ggml_compute_params * params,
  10778. const struct ggml_tensor * src0,
  10779. const struct ggml_tensor * src1,
  10780. struct ggml_tensor * dst) {
  10781. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10782. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10783. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10784. int64_t t0 = ggml_perf_time_us();
  10785. UNUSED(t0);
  10786. const int64_t ne00 = src0->ne[0];
  10787. const int64_t ne01 = src0->ne[1];
  10788. const int64_t ne02 = src0->ne[2];
  10789. //const int64_t ne03 = src0->ne[3];
  10790. const int64_t ne10 = src1->ne[0];
  10791. const int64_t ne11 = src1->ne[1];
  10792. //const int64_t ne12 = src1->ne[2];
  10793. //const int64_t ne13 = src1->ne[3];
  10794. //const int64_t ne0 = dst->ne[0];
  10795. //const int64_t ne1 = dst->ne[1];
  10796. //const int64_t ne2 = dst->ne[2];
  10797. //const int64_t ne3 = dst->ne[3];
  10798. //const int64_t ne = ne0*ne1*ne2*ne3;
  10799. const int nb00 = src0->nb[0];
  10800. const int nb01 = src0->nb[1];
  10801. const int nb02 = src0->nb[2];
  10802. //const int nb03 = src0->nb[3];
  10803. const int nb10 = src1->nb[0];
  10804. const int nb11 = src1->nb[1];
  10805. //const int nb12 = src1->nb[2];
  10806. //const int nb13 = src1->nb[3];
  10807. //const int nb0 = dst->nb[0];
  10808. const int nb1 = dst->nb[1];
  10809. //const int nb2 = dst->nb[2];
  10810. //const int nb3 = dst->nb[3];
  10811. const int ith = params->ith;
  10812. const int nth = params->nth;
  10813. const int nk = ne00;
  10814. const int nh = nk/2;
  10815. const int ew0 = ggml_up32(ne01);
  10816. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10817. GGML_ASSERT(nb00 == sizeof(float));
  10818. GGML_ASSERT(nb10 == sizeof(float));
  10819. if (params->type == GGML_TASK_INIT) {
  10820. // TODO: fix this memset (wsize is overestimated)
  10821. memset(params->wdata, 0, params->wsize);
  10822. // prepare kernel data (src0)
  10823. {
  10824. float * const wdata = (float *) params->wdata + 0;
  10825. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10826. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10827. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10828. float * dst_data = wdata + i02*ew0*ne00;
  10829. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10830. dst_data[i00*ew0 + i01] = src[i00];
  10831. }
  10832. }
  10833. }
  10834. }
  10835. // prepare source data (src1)
  10836. {
  10837. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10838. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10839. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10840. float * dst_data = wdata;
  10841. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10842. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10843. }
  10844. }
  10845. }
  10846. return;
  10847. }
  10848. if (params->type == GGML_TASK_FINALIZE) {
  10849. return;
  10850. }
  10851. // total rows in dst
  10852. const int nr = ne02;
  10853. // rows per thread
  10854. const int dr = (nr + nth - 1)/nth;
  10855. // row range for this thread
  10856. const int ir0 = dr*ith;
  10857. const int ir1 = MIN(ir0 + dr, nr);
  10858. for (int i1 = ir0; i1 < ir1; i1++) {
  10859. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10860. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10861. dst_data[i0/2] = 0;
  10862. for (int k = -nh; k <= nh; k++) {
  10863. float v = 0.0f;
  10864. ggml_vec_dot_f32(ew0, &v,
  10865. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10866. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10867. dst_data[i0/2] += v;
  10868. }
  10869. }
  10870. }
  10871. }
  10872. static void ggml_compute_forward_conv_1d_s2_ph(
  10873. const struct ggml_compute_params * params,
  10874. const struct ggml_tensor * src0,
  10875. const struct ggml_tensor * src1,
  10876. struct ggml_tensor * dst) {
  10877. switch (src0->type) {
  10878. case GGML_TYPE_F16:
  10879. {
  10880. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10881. } break;
  10882. case GGML_TYPE_F32:
  10883. {
  10884. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10885. } break;
  10886. default:
  10887. {
  10888. GGML_ASSERT(false);
  10889. } break;
  10890. }
  10891. }
  10892. // ggml_compute_forward_conv_2d_sk_p0
  10893. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10894. const struct ggml_compute_params * params,
  10895. const struct ggml_tensor * src0,
  10896. const struct ggml_tensor * src1,
  10897. struct ggml_tensor * dst) {
  10898. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10899. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10900. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10901. int64_t t0 = ggml_perf_time_us();
  10902. UNUSED(t0);
  10903. const int ne00 = src0->ne[0];
  10904. const int ne01 = src0->ne[1];
  10905. const int ne02 = src0->ne[2];
  10906. //const int ne03 = src0->ne[3];
  10907. const int ne10 = src1->ne[0];
  10908. //const int ne11 = src1->ne[1];
  10909. const int ne12 = src1->ne[2];
  10910. //const int ne13 = src1->ne[3];
  10911. const int ne0 = dst->ne[0];
  10912. const int ne1 = dst->ne[1];
  10913. const int ne2 = dst->ne[2];
  10914. //const int ne3 = dst->ne[3];
  10915. //const int ne = ne0*ne1*ne2*ne3;
  10916. const int nb00 = src0->nb[0];
  10917. //const int nb01 = src0->nb[1];
  10918. //const int nb02 = src0->nb[2];
  10919. const int nb03 = src0->nb[3];
  10920. const int nb10 = src1->nb[0];
  10921. //const int nb11 = src1->nb[1];
  10922. const int nb12 = src1->nb[2];
  10923. //const int nb13 = src1->nb[3];
  10924. //const int nb0 = dst->nb[0];
  10925. //const int nb1 = dst->nb[1];
  10926. const int nb2 = dst->nb[2];
  10927. //const int nb3 = dst->nb[3];
  10928. const int ith = params->ith;
  10929. const int nth = params->nth;
  10930. const int nk0 = ne00;
  10931. const int nk1 = ne01;
  10932. // size of the convolution row - the kernel size unrolled across all channels
  10933. // round-up so it is more suitable for SIMD
  10934. const int ew0 = ggml_up32(nk0*nk1*ne02);
  10935. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10936. GGML_ASSERT(nb10 == sizeof(float));
  10937. if (params->type == GGML_TASK_INIT) {
  10938. // TODO: fix this memset (wsize is overestimated)
  10939. memset(params->wdata, 0, params->wsize);
  10940. // prepare source data (src1)
  10941. {
  10942. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10943. for (int i12 = 0; i12 < ne12; i12++) {
  10944. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10945. ggml_fp16_t * dst_data = wdata;
  10946. for (int i1 = 0; i1 < ne1; i1++) {
  10947. for (int i0 = 0; i0 < ne0; i0++) {
  10948. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10949. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10950. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10951. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10952. }
  10953. }
  10954. }
  10955. }
  10956. }
  10957. }
  10958. return;
  10959. }
  10960. if (params->type == GGML_TASK_FINALIZE) {
  10961. return;
  10962. }
  10963. // total patches in dst
  10964. const int np = ne2;
  10965. // patches per thread
  10966. const int dp = (np + nth - 1)/nth;
  10967. // patch range for this thread
  10968. const int ip0 = dp*ith;
  10969. const int ip1 = MIN(ip0 + dp, np);
  10970. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10971. for (int i2 = ip0; i2 < ip1; i2++) {
  10972. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10973. for (int i1 = 0; i1 < ne1; ++i1) {
  10974. for (int i0 = 0; i0 < ne0; ++i0) {
  10975. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10976. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10977. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10978. }
  10979. }
  10980. }
  10981. }
  10982. static void ggml_compute_forward_conv_2d_sk_p0(
  10983. const struct ggml_compute_params * params,
  10984. const struct ggml_tensor * src0,
  10985. const struct ggml_tensor * src1,
  10986. struct ggml_tensor * dst) {
  10987. switch (src0->type) {
  10988. case GGML_TYPE_F16:
  10989. {
  10990. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10991. } break;
  10992. case GGML_TYPE_F32:
  10993. {
  10994. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10995. GGML_ASSERT(false);
  10996. } break;
  10997. default:
  10998. {
  10999. GGML_ASSERT(false);
  11000. } break;
  11001. }
  11002. }
  11003. // ggml_compute_forward_flash_attn
  11004. static void ggml_compute_forward_flash_attn_f32(
  11005. const struct ggml_compute_params * params,
  11006. const struct ggml_tensor * q,
  11007. const struct ggml_tensor * k,
  11008. const struct ggml_tensor * v,
  11009. const bool masked,
  11010. struct ggml_tensor * dst) {
  11011. int64_t t0 = ggml_perf_time_us();
  11012. UNUSED(t0);
  11013. const int64_t neq0 = q->ne[0];
  11014. const int64_t neq1 = q->ne[1];
  11015. const int64_t neq2 = q->ne[2];
  11016. const int64_t neq3 = q->ne[3];
  11017. const int64_t nek0 = k->ne[0];
  11018. const int64_t nek1 = k->ne[1];
  11019. //const int64_t nek2 = k->ne[2];
  11020. //const int64_t nek3 = k->ne[3];
  11021. //const int64_t nev0 = v->ne[0];
  11022. const int64_t nev1 = v->ne[1];
  11023. //const int64_t nev2 = v->ne[2];
  11024. //const int64_t nev3 = v->ne[3];
  11025. const int64_t ne0 = dst->ne[0];
  11026. const int64_t ne1 = dst->ne[1];
  11027. //const int64_t ne2 = dst->ne[2];
  11028. //const int64_t ne3 = dst->ne[3];
  11029. const int nbk0 = k->nb[0];
  11030. const int nbk1 = k->nb[1];
  11031. const int nbk2 = k->nb[2];
  11032. const int nbk3 = k->nb[3];
  11033. const int nbq0 = q->nb[0];
  11034. const int nbq1 = q->nb[1];
  11035. const int nbq2 = q->nb[2];
  11036. const int nbq3 = q->nb[3];
  11037. const int nbv0 = v->nb[0];
  11038. const int nbv1 = v->nb[1];
  11039. const int nbv2 = v->nb[2];
  11040. const int nbv3 = v->nb[3];
  11041. const int nb0 = dst->nb[0];
  11042. const int nb1 = dst->nb[1];
  11043. const int nb2 = dst->nb[2];
  11044. const int nb3 = dst->nb[3];
  11045. const int ith = params->ith;
  11046. const int nth = params->nth;
  11047. const int64_t D = neq0;
  11048. const int64_t N = neq1;
  11049. const int64_t P = nek1 - N;
  11050. const int64_t M = P + N;
  11051. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11052. GGML_ASSERT(ne0 == D);
  11053. GGML_ASSERT(ne1 == N);
  11054. GGML_ASSERT(P >= 0);
  11055. GGML_ASSERT(nbq0 == sizeof(float));
  11056. GGML_ASSERT(nbk0 == sizeof(float));
  11057. GGML_ASSERT(nbv0 == sizeof(float));
  11058. GGML_ASSERT(neq0 == D);
  11059. GGML_ASSERT(nek0 == D);
  11060. GGML_ASSERT(nev1 == D);
  11061. GGML_ASSERT(neq1 == N);
  11062. GGML_ASSERT(nek1 == N + P);
  11063. GGML_ASSERT(nev1 == D);
  11064. // dst cannot be transposed or permuted
  11065. GGML_ASSERT(nb0 == sizeof(float));
  11066. GGML_ASSERT(nb0 <= nb1);
  11067. GGML_ASSERT(nb1 <= nb2);
  11068. GGML_ASSERT(nb2 <= nb3);
  11069. if (params->type == GGML_TASK_INIT) {
  11070. return;
  11071. }
  11072. if (params->type == GGML_TASK_FINALIZE) {
  11073. return;
  11074. }
  11075. // parallelize by q rows using ggml_vec_dot_f32
  11076. // total rows in q
  11077. const int nr = neq1*neq2*neq3;
  11078. // rows per thread
  11079. const int dr = (nr + nth - 1)/nth;
  11080. // row range for this thread
  11081. const int ir0 = dr*ith;
  11082. const int ir1 = MIN(ir0 + dr, nr);
  11083. const float scale = 1.0f/sqrtf(D);
  11084. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11085. for (int ir = ir0; ir < ir1; ++ir) {
  11086. // q indices
  11087. const int iq3 = ir/(neq2*neq1);
  11088. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11089. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11090. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11091. for (int i = M; i < Mup; ++i) {
  11092. S[i] = -INFINITY;
  11093. }
  11094. for (int64_t ic = 0; ic < nek1; ++ic) {
  11095. // k indices
  11096. const int ik3 = iq3;
  11097. const int ik2 = iq2;
  11098. const int ik1 = ic;
  11099. // S indices
  11100. const int i1 = ik1;
  11101. ggml_vec_dot_f32(neq0,
  11102. S + i1,
  11103. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11104. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11105. }
  11106. // scale
  11107. ggml_vec_scale_f32(nek1, S, scale);
  11108. if (masked) {
  11109. for (int64_t i = P; i < M; i++) {
  11110. if (i > P + iq1) {
  11111. S[i] = -INFINITY;
  11112. }
  11113. }
  11114. }
  11115. // softmax
  11116. {
  11117. float max = -INFINITY;
  11118. ggml_vec_max_f32(M, &max, S);
  11119. ggml_float sum = 0.0;
  11120. {
  11121. #ifdef GGML_SOFT_MAX_ACCELERATE
  11122. max = -max;
  11123. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11124. vvexpf(S, S, &Mup);
  11125. ggml_vec_sum_f32(Mup, &sum, S);
  11126. #else
  11127. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11128. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11129. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11130. float * SS = S + i;
  11131. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11132. if (SS[j] == -INFINITY) {
  11133. SS[j] = 0.0f;
  11134. } else {
  11135. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11136. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11137. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11138. sump[j] += (ggml_float)val;
  11139. SS[j] = val;
  11140. }
  11141. }
  11142. }
  11143. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11144. sum += sump[i];
  11145. }
  11146. #endif
  11147. }
  11148. assert(sum > 0.0);
  11149. sum = 1.0/sum;
  11150. ggml_vec_scale_f32(M, S, sum);
  11151. #ifndef NDEBUG
  11152. for (int i = 0; i < M; ++i) {
  11153. assert(!isnan(S[i]));
  11154. assert(!isinf(S[i]));
  11155. }
  11156. #endif
  11157. }
  11158. for (int64_t ic = 0; ic < nev1; ++ic) {
  11159. // dst indices
  11160. const int i1 = iq1;
  11161. const int i2 = iq2;
  11162. const int i3 = iq3;
  11163. ggml_vec_dot_f32(nek1,
  11164. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11165. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11166. S);
  11167. }
  11168. }
  11169. }
  11170. static void ggml_compute_forward_flash_attn_f16(
  11171. const struct ggml_compute_params * params,
  11172. const struct ggml_tensor * q,
  11173. const struct ggml_tensor * k,
  11174. const struct ggml_tensor * v,
  11175. const bool masked,
  11176. struct ggml_tensor * dst) {
  11177. int64_t t0 = ggml_perf_time_us();
  11178. UNUSED(t0);
  11179. const int64_t neq0 = q->ne[0];
  11180. const int64_t neq1 = q->ne[1];
  11181. const int64_t neq2 = q->ne[2];
  11182. const int64_t neq3 = q->ne[3];
  11183. const int64_t nek0 = k->ne[0];
  11184. const int64_t nek1 = k->ne[1];
  11185. //const int64_t nek2 = k->ne[2];
  11186. //const int64_t nek3 = k->ne[3];
  11187. //const int64_t nev0 = v->ne[0];
  11188. const int64_t nev1 = v->ne[1];
  11189. //const int64_t nev2 = v->ne[2];
  11190. //const int64_t nev3 = v->ne[3];
  11191. const int64_t ne0 = dst->ne[0];
  11192. const int64_t ne1 = dst->ne[1];
  11193. //const int64_t ne2 = dst->ne[2];
  11194. //const int64_t ne3 = dst->ne[3];
  11195. const int nbk0 = k->nb[0];
  11196. const int nbk1 = k->nb[1];
  11197. const int nbk2 = k->nb[2];
  11198. const int nbk3 = k->nb[3];
  11199. const int nbq0 = q->nb[0];
  11200. const int nbq1 = q->nb[1];
  11201. const int nbq2 = q->nb[2];
  11202. const int nbq3 = q->nb[3];
  11203. const int nbv0 = v->nb[0];
  11204. const int nbv1 = v->nb[1];
  11205. const int nbv2 = v->nb[2];
  11206. const int nbv3 = v->nb[3];
  11207. const int nb0 = dst->nb[0];
  11208. const int nb1 = dst->nb[1];
  11209. const int nb2 = dst->nb[2];
  11210. const int nb3 = dst->nb[3];
  11211. const int ith = params->ith;
  11212. const int nth = params->nth;
  11213. const int64_t D = neq0;
  11214. const int64_t N = neq1;
  11215. const int64_t P = nek1 - N;
  11216. const int64_t M = P + N;
  11217. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11218. GGML_ASSERT(ne0 == D);
  11219. GGML_ASSERT(ne1 == N);
  11220. GGML_ASSERT(P >= 0);
  11221. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11222. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11223. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11224. GGML_ASSERT(neq0 == D);
  11225. GGML_ASSERT(nek0 == D);
  11226. GGML_ASSERT(nev1 == D);
  11227. GGML_ASSERT(neq1 == N);
  11228. GGML_ASSERT(nek1 == N + P);
  11229. GGML_ASSERT(nev1 == D);
  11230. // dst cannot be transposed or permuted
  11231. GGML_ASSERT(nb0 == sizeof(float));
  11232. GGML_ASSERT(nb0 <= nb1);
  11233. GGML_ASSERT(nb1 <= nb2);
  11234. GGML_ASSERT(nb2 <= nb3);
  11235. if (params->type == GGML_TASK_INIT) {
  11236. return;
  11237. }
  11238. if (params->type == GGML_TASK_FINALIZE) {
  11239. return;
  11240. }
  11241. // parallelize by q rows using ggml_vec_dot_f32
  11242. // total rows in q
  11243. const int nr = neq1*neq2*neq3;
  11244. // rows per thread
  11245. const int dr = (nr + nth - 1)/nth;
  11246. // row range for this thread
  11247. const int ir0 = dr*ith;
  11248. const int ir1 = MIN(ir0 + dr, nr);
  11249. const float scale = 1.0f/sqrtf(D);
  11250. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11251. for (int ir = ir0; ir < ir1; ++ir) {
  11252. // q indices
  11253. const int iq3 = ir/(neq2*neq1);
  11254. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11255. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11256. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11257. for (int i = M; i < Mup; ++i) {
  11258. S[i] = -INFINITY;
  11259. }
  11260. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11261. for (int64_t ic = 0; ic < nek1; ++ic) {
  11262. // k indices
  11263. const int ik3 = iq3;
  11264. const int ik2 = iq2;
  11265. const int ik1 = ic;
  11266. // S indices
  11267. const int i1 = ik1;
  11268. ggml_vec_dot_f16(neq0,
  11269. S + i1,
  11270. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11271. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11272. }
  11273. } else {
  11274. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11275. // k indices
  11276. const int ik3 = iq3;
  11277. const int ik2 = iq2;
  11278. const int ik1 = ic;
  11279. // S indices
  11280. const int i1 = ik1;
  11281. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11282. S + i1,
  11283. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11284. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11285. }
  11286. }
  11287. // scale
  11288. ggml_vec_scale_f32(nek1, S, scale);
  11289. if (masked) {
  11290. for (int64_t i = P; i < M; i++) {
  11291. if (i > P + iq1) {
  11292. S[i] = -INFINITY;
  11293. }
  11294. }
  11295. }
  11296. // softmax
  11297. {
  11298. float max = -INFINITY;
  11299. ggml_vec_max_f32(M, &max, S);
  11300. ggml_float sum = 0.0;
  11301. {
  11302. #ifdef GGML_SOFT_MAX_ACCELERATE
  11303. max = -max;
  11304. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11305. vvexpf(S, S, &Mup);
  11306. ggml_vec_sum_f32(Mup, &sum, S);
  11307. #else
  11308. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11309. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11310. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11311. float * SS = S + i;
  11312. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11313. if (SS[j] == -INFINITY) {
  11314. SS[j] = 0.0f;
  11315. } else {
  11316. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11317. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11318. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11319. sump[j] += (ggml_float)val;
  11320. SS[j] = val;
  11321. }
  11322. }
  11323. }
  11324. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11325. sum += sump[i];
  11326. }
  11327. #endif
  11328. }
  11329. assert(sum > 0.0);
  11330. sum = 1.0/sum;
  11331. ggml_vec_scale_f32(M, S, sum);
  11332. #ifndef NDEBUG
  11333. for (int i = 0; i < M; ++i) {
  11334. assert(!isnan(S[i]));
  11335. assert(!isinf(S[i]));
  11336. }
  11337. #endif
  11338. }
  11339. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11340. for (int64_t i = 0; i < M; i++) {
  11341. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11342. }
  11343. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11344. for (int64_t ic = 0; ic < nev1; ++ic) {
  11345. // dst indices
  11346. const int i1 = iq1;
  11347. const int i2 = iq2;
  11348. const int i3 = iq3;
  11349. ggml_vec_dot_f16(nek1,
  11350. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11351. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11352. S16);
  11353. }
  11354. } else {
  11355. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11356. // dst indices
  11357. const int i1 = iq1;
  11358. const int i2 = iq2;
  11359. const int i3 = iq3;
  11360. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11361. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11362. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11363. S16);
  11364. }
  11365. }
  11366. }
  11367. }
  11368. static void ggml_compute_forward_flash_attn(
  11369. const struct ggml_compute_params * params,
  11370. const struct ggml_tensor * q,
  11371. const struct ggml_tensor * k,
  11372. const struct ggml_tensor * v,
  11373. const bool masked,
  11374. struct ggml_tensor * dst) {
  11375. switch (q->type) {
  11376. case GGML_TYPE_F16:
  11377. {
  11378. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11379. } break;
  11380. case GGML_TYPE_F32:
  11381. {
  11382. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11383. } break;
  11384. default:
  11385. {
  11386. GGML_ASSERT(false);
  11387. } break;
  11388. }
  11389. }
  11390. // ggml_compute_forward_flash_ff
  11391. static void ggml_compute_forward_flash_ff_f16(
  11392. const struct ggml_compute_params * params,
  11393. const struct ggml_tensor * a, // F16
  11394. const struct ggml_tensor * b0, // F16 fc_w
  11395. const struct ggml_tensor * b1, // F32 fc_b
  11396. const struct ggml_tensor * c0, // F16 proj_w
  11397. const struct ggml_tensor * c1, // F32 proj_b
  11398. struct ggml_tensor * dst) {
  11399. int64_t t0 = ggml_perf_time_us();
  11400. UNUSED(t0);
  11401. const int64_t nea0 = a->ne[0];
  11402. const int64_t nea1 = a->ne[1];
  11403. const int64_t nea2 = a->ne[2];
  11404. const int64_t nea3 = a->ne[3];
  11405. const int64_t neb00 = b0->ne[0];
  11406. const int64_t neb01 = b0->ne[1];
  11407. //const int64_t neb02 = b0->ne[2];
  11408. //const int64_t neb03 = b0->ne[3];
  11409. const int64_t neb10 = b1->ne[0];
  11410. const int64_t neb11 = b1->ne[1];
  11411. //const int64_t neb12 = b1->ne[2];
  11412. //const int64_t neb13 = b1->ne[3];
  11413. const int64_t nec00 = c0->ne[0];
  11414. const int64_t nec01 = c0->ne[1];
  11415. //const int64_t nec02 = c0->ne[2];
  11416. //const int64_t nec03 = c0->ne[3];
  11417. const int64_t nec10 = c1->ne[0];
  11418. const int64_t nec11 = c1->ne[1];
  11419. //const int64_t nec12 = c1->ne[2];
  11420. //const int64_t nec13 = c1->ne[3];
  11421. const int64_t ne0 = dst->ne[0];
  11422. const int64_t ne1 = dst->ne[1];
  11423. const int64_t ne2 = dst->ne[2];
  11424. //const int64_t ne3 = dst->ne[3];
  11425. const int nba0 = a->nb[0];
  11426. const int nba1 = a->nb[1];
  11427. const int nba2 = a->nb[2];
  11428. const int nba3 = a->nb[3];
  11429. const int nbb00 = b0->nb[0];
  11430. const int nbb01 = b0->nb[1];
  11431. const int nbb02 = b0->nb[2];
  11432. const int nbb03 = b0->nb[3];
  11433. const int nbb10 = b1->nb[0];
  11434. //const int nbb11 = b1->nb[1];
  11435. //const int nbb12 = b1->nb[2];
  11436. //const int nbb13 = b1->nb[3];
  11437. const int nbc00 = c0->nb[0];
  11438. const int nbc01 = c0->nb[1];
  11439. const int nbc02 = c0->nb[2];
  11440. const int nbc03 = c0->nb[3];
  11441. const int nbc10 = c1->nb[0];
  11442. //const int nbc11 = c1->nb[1];
  11443. //const int nbc12 = c1->nb[2];
  11444. //const int nbc13 = c1->nb[3];
  11445. const int nb0 = dst->nb[0];
  11446. const int nb1 = dst->nb[1];
  11447. const int nb2 = dst->nb[2];
  11448. const int nb3 = dst->nb[3];
  11449. const int ith = params->ith;
  11450. const int nth = params->nth;
  11451. const int64_t D = nea0;
  11452. //const int64_t N = nea1;
  11453. const int64_t M = neb01;
  11454. GGML_ASSERT(ne0 == nea0);
  11455. GGML_ASSERT(ne1 == nea1);
  11456. GGML_ASSERT(ne2 == nea2);
  11457. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11458. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11459. GGML_ASSERT(nbb10 == sizeof(float));
  11460. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11461. GGML_ASSERT(nbc10 == sizeof(float));
  11462. GGML_ASSERT(neb00 == D);
  11463. GGML_ASSERT(neb01 == M);
  11464. GGML_ASSERT(neb10 == M);
  11465. GGML_ASSERT(neb11 == 1);
  11466. GGML_ASSERT(nec00 == M);
  11467. GGML_ASSERT(nec01 == D);
  11468. GGML_ASSERT(nec10 == D);
  11469. GGML_ASSERT(nec11 == 1);
  11470. // dst cannot be transposed or permuted
  11471. GGML_ASSERT(nb0 == sizeof(float));
  11472. GGML_ASSERT(nb0 <= nb1);
  11473. GGML_ASSERT(nb1 <= nb2);
  11474. GGML_ASSERT(nb2 <= nb3);
  11475. if (params->type == GGML_TASK_INIT) {
  11476. return;
  11477. }
  11478. if (params->type == GGML_TASK_FINALIZE) {
  11479. return;
  11480. }
  11481. // parallelize by a rows using ggml_vec_dot_f32
  11482. // total rows in a
  11483. const int nr = nea1*nea2*nea3;
  11484. // rows per thread
  11485. const int dr = (nr + nth - 1)/nth;
  11486. // row range for this thread
  11487. const int ir0 = dr*ith;
  11488. const int ir1 = MIN(ir0 + dr, nr);
  11489. for (int ir = ir0; ir < ir1; ++ir) {
  11490. // a indices
  11491. const int ia3 = ir/(nea2*nea1);
  11492. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11493. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11494. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11495. for (int64_t ic = 0; ic < neb01; ++ic) {
  11496. // b0 indices
  11497. const int ib03 = ia3;
  11498. const int ib02 = ia2;
  11499. const int ib01 = ic;
  11500. // S indices
  11501. const int i1 = ib01;
  11502. ggml_vec_dot_f16(nea0,
  11503. S + i1,
  11504. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11505. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11506. }
  11507. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11508. //ggml_vec_gelu_f32(neb01, S, S);
  11509. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11510. for (int64_t i = 0; i < M; i++) {
  11511. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11512. }
  11513. ggml_vec_gelu_f16(neb01, S16, S16);
  11514. {
  11515. // dst indices
  11516. const int i1 = ia1;
  11517. const int i2 = ia2;
  11518. const int i3 = ia3;
  11519. for (int64_t ic = 0; ic < nec01; ++ic) {
  11520. ggml_vec_dot_f16(neb01,
  11521. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11522. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11523. S16);
  11524. }
  11525. ggml_vec_add_f32(nec01,
  11526. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11527. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11528. (float *) c1->data);
  11529. }
  11530. }
  11531. }
  11532. static void ggml_compute_forward_flash_ff(
  11533. const struct ggml_compute_params * params,
  11534. const struct ggml_tensor * a,
  11535. const struct ggml_tensor * b0,
  11536. const struct ggml_tensor * b1,
  11537. const struct ggml_tensor * c0,
  11538. const struct ggml_tensor * c1,
  11539. struct ggml_tensor * dst) {
  11540. switch (b0->type) {
  11541. case GGML_TYPE_F16:
  11542. {
  11543. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11544. } break;
  11545. case GGML_TYPE_F32:
  11546. {
  11547. GGML_ASSERT(false); // TODO
  11548. } break;
  11549. default:
  11550. {
  11551. GGML_ASSERT(false);
  11552. } break;
  11553. }
  11554. }
  11555. // ggml_compute_forward_flash_attn_back
  11556. static void ggml_compute_forward_flash_attn_back_f32(
  11557. const struct ggml_compute_params * params,
  11558. const struct ggml_tensor * q,
  11559. const struct ggml_tensor * k,
  11560. const struct ggml_tensor * v,
  11561. const struct ggml_tensor * d,
  11562. const bool masked,
  11563. struct ggml_tensor * dst) {
  11564. int64_t t0 = ggml_perf_time_us();
  11565. UNUSED(t0);
  11566. const int64_t neq0 = q->ne[0];
  11567. const int64_t neq1 = q->ne[1];
  11568. const int64_t neq2 = q->ne[2];
  11569. const int64_t neq3 = q->ne[3];
  11570. const int64_t nek0 = k->ne[0];
  11571. const int64_t nek1 = k->ne[1];
  11572. //const int64_t nek2 = k->ne[2];
  11573. //const int64_t nek3 = k->ne[3];
  11574. const int64_t nev0 = v->ne[0];
  11575. const int64_t nev1 = v->ne[1];
  11576. //const int64_t nev2 = v->ne[2];
  11577. //const int64_t nev3 = v->ne[3];
  11578. const int64_t ned0 = d->ne[0];
  11579. const int64_t ned1 = d->ne[1];
  11580. //const int64_t ned2 = d->ne[2];
  11581. //const int64_t ned3 = d->ne[3];
  11582. const int64_t ne0 = dst->ne[0];
  11583. const int64_t ne1 = dst->ne[1];
  11584. const int64_t ne2 = dst->ne[2];
  11585. const int64_t ne3 = dst->ne[3];
  11586. const int nbk0 = k->nb[0];
  11587. const int nbk1 = k->nb[1];
  11588. const int nbk2 = k->nb[2];
  11589. const int nbk3 = k->nb[3];
  11590. const int nbq0 = q->nb[0];
  11591. const int nbq1 = q->nb[1];
  11592. const int nbq2 = q->nb[2];
  11593. const int nbq3 = q->nb[3];
  11594. const int nbv0 = v->nb[0];
  11595. const int nbv1 = v->nb[1];
  11596. const int nbv2 = v->nb[2];
  11597. const int nbv3 = v->nb[3];
  11598. const int nbd0 = d->nb[0];
  11599. const int nbd1 = d->nb[1];
  11600. const int nbd2 = d->nb[2];
  11601. const int nbd3 = d->nb[3];
  11602. const int nb0 = dst->nb[0];
  11603. const int nb1 = dst->nb[1];
  11604. const int nb2 = dst->nb[2];
  11605. const int nb3 = dst->nb[3];
  11606. const int ith = params->ith;
  11607. const int nth = params->nth;
  11608. const int64_t D = neq0;
  11609. const int64_t N = neq1;
  11610. const int64_t P = nek1 - N;
  11611. const int64_t M = P + N;
  11612. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11613. const int mxDM = MAX(D, Mup);
  11614. // GGML_ASSERT(ne0 == D);
  11615. // GGML_ASSERT(ne1 == N);
  11616. GGML_ASSERT(P >= 0);
  11617. GGML_ASSERT(nbq0 == sizeof(float));
  11618. GGML_ASSERT(nbk0 == sizeof(float));
  11619. GGML_ASSERT(nbv0 == sizeof(float));
  11620. GGML_ASSERT(neq0 == D);
  11621. GGML_ASSERT(nek0 == D);
  11622. GGML_ASSERT(nev1 == D);
  11623. GGML_ASSERT(ned0 == D);
  11624. GGML_ASSERT(neq1 == N);
  11625. GGML_ASSERT(nek1 == N + P);
  11626. GGML_ASSERT(nev1 == D);
  11627. GGML_ASSERT(ned1 == N);
  11628. // dst cannot be transposed or permuted
  11629. GGML_ASSERT(nb0 == sizeof(float));
  11630. GGML_ASSERT(nb0 <= nb1);
  11631. GGML_ASSERT(nb1 <= nb2);
  11632. GGML_ASSERT(nb2 <= nb3);
  11633. if (params->type == GGML_TASK_INIT) {
  11634. if (ith == 0) {
  11635. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11636. }
  11637. return;
  11638. }
  11639. if (params->type == GGML_TASK_FINALIZE) {
  11640. return;
  11641. }
  11642. // parallelize by q rows using ggml_vec_dot_f32
  11643. // total rows in q
  11644. const int nr = neq2*neq3;
  11645. // rows per thread
  11646. const int dr = (nr + nth - 1)/nth;
  11647. // row range for this thread
  11648. const int ir0 = dr*ith;
  11649. const int ir1 = MIN(ir0 + dr, nr);
  11650. const float scale = 1.0f/sqrtf(D);
  11651. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11652. for (int ir = ir0; ir < ir1; ++ir) {
  11653. // q indices
  11654. const int iq3 = ir/(neq2);
  11655. const int iq2 = ir - iq3*neq2;
  11656. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11657. // not sure about CACHE_LINE_SIZE_F32..
  11658. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11659. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11660. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11661. for (int i = M; i < Mup; ++i) {
  11662. S[i] = -INFINITY;
  11663. }
  11664. for (int64_t ic = 0; ic < nek1; ++ic) {
  11665. // k indices
  11666. const int ik3 = iq3;
  11667. const int ik2 = iq2;
  11668. const int ik1 = ic;
  11669. // S indices
  11670. const int i1 = ik1;
  11671. ggml_vec_dot_f32(neq0,
  11672. S + i1,
  11673. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11674. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11675. }
  11676. // scale
  11677. ggml_vec_scale_f32(nek1, S, scale);
  11678. if (masked) {
  11679. for (int64_t i = P; i < M; i++) {
  11680. if (i > P + iq1) {
  11681. S[i] = -INFINITY;
  11682. }
  11683. }
  11684. }
  11685. // softmax
  11686. {
  11687. float max = -INFINITY;
  11688. ggml_vec_max_f32(M, &max, S);
  11689. ggml_float sum = 0.0;
  11690. {
  11691. #ifdef GGML_SOFT_MAX_ACCELERATE
  11692. max = -max;
  11693. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11694. vvexpf(SM, SM, &Mup);
  11695. ggml_vec_sum_f32(Mup, &sum, SM);
  11696. #else
  11697. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11698. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11699. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11700. float * SR = S + i;
  11701. float * SW = SM + i;
  11702. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11703. if (SR[j] == -INFINITY) {
  11704. SW[j] = 0.0f;
  11705. } else {
  11706. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11707. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11708. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11709. sump[j] += (ggml_float)val;
  11710. SW[j] = val;
  11711. }
  11712. }
  11713. }
  11714. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11715. sum += sump[i];
  11716. }
  11717. #endif
  11718. }
  11719. assert(sum > 0.0);
  11720. sum = 1.0/sum;
  11721. ggml_vec_scale_f32(M, SM, sum);
  11722. }
  11723. // step-by-step explanation
  11724. {
  11725. // forward-process shape grads from backward process
  11726. // parallel_for iq2,iq3:
  11727. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11728. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11729. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11730. // for iq1:
  11731. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11732. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11733. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11734. // S0 = -Inf [D,1,1,1]
  11735. // ~S1[i] = dot(kcur[:D,i], qcur)
  11736. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11737. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11738. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11739. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11740. // ~S5[i] = dot(vcur[:,i], S4)
  11741. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11742. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11743. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11744. // dst backward-/ grad[dst] = d
  11745. //
  11746. // output gradients with their dependencies:
  11747. //
  11748. // grad[kcur] = grad[S1].T @ qcur
  11749. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11750. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11751. // grad[S4] = grad[S5] @ vcur
  11752. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11753. // grad[qcur] = grad[S1] @ kcur
  11754. // grad[vcur] = grad[S5].T @ S4
  11755. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11756. //
  11757. // in post-order:
  11758. //
  11759. // S1 = qcur @ kcur.T
  11760. // S2 = S1 * scale
  11761. // S3 = diag_mask_inf(S2, P)
  11762. // S4 = softmax(S3)
  11763. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11764. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11765. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11766. // grad[qcur] = grad[S1] @ kcur
  11767. // grad[kcur] = grad[S1].T @ qcur
  11768. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11769. //
  11770. // using less variables (SM=S4):
  11771. //
  11772. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11773. // SM = softmax(S)
  11774. // S = d[:D,iq1,iq2,iq3] @ vcur
  11775. // dot_SM_gradSM = dot(SM, S)
  11776. // S = SM * (S - dot(SM, S))
  11777. // S = diag_mask_zero(S, P) * scale
  11778. //
  11779. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11780. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11781. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11782. }
  11783. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11784. // S = d[:D,iq1,iq2,iq3] @ vcur
  11785. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11786. ggml_vec_set_f32(M, S, 0);
  11787. for (int64_t ic = 0; ic < D; ++ic) {
  11788. // dst indices
  11789. const int i1 = iq1;
  11790. const int i2 = iq2;
  11791. const int i3 = iq3;
  11792. ggml_vec_mad_f32(M,
  11793. S,
  11794. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11795. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11796. }
  11797. // S = SM * (S - dot(SM, S))
  11798. float dot_SM_gradSM = 0;
  11799. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11800. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11801. ggml_vec_mul_f32 (M, S, S, SM);
  11802. // S = diag_mask_zero(S, P) * scale
  11803. if (masked) {
  11804. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11805. // S[i] = 0;
  11806. // }
  11807. for (int64_t i = P; i < M; i++) {
  11808. if (i > P + iq1) {
  11809. S[i] = 0;
  11810. }
  11811. }
  11812. }
  11813. ggml_vec_scale_f32(M, S, scale);
  11814. void * grad_q = (char *) dst->data;
  11815. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11816. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11817. const size_t nbgq1 = nb0*neq0;
  11818. const size_t nbgq2 = nb0*neq0*neq1;
  11819. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11820. const size_t nbgk1 = nb0*nek0;
  11821. const size_t nbgk2 = nb0*nek0*nek1;
  11822. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11823. const size_t nbgv1 = nb0*nev0;
  11824. const size_t nbgv2 = nb0*nev0*nev1;
  11825. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11826. // S shape [M,1]
  11827. // SM shape [M,1]
  11828. // kcur shape [D,M]
  11829. // qcur shape [D,1]
  11830. // vcur shape [M,D]
  11831. //
  11832. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11833. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11834. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11835. //
  11836. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11837. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11838. for (int64_t ic = 0; ic < M; ++ic) {
  11839. // dst indices
  11840. const int i1 = iq1;
  11841. const int i2 = iq2;
  11842. const int i3 = iq3;
  11843. ggml_vec_mad_f32(D,
  11844. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11845. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11846. S[ic]);
  11847. }
  11848. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11849. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11850. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11851. for (int64_t ic = 0; ic < M; ++ic) {
  11852. // dst indices
  11853. const int i1 = iq1;
  11854. const int i2 = iq2;
  11855. const int i3 = iq3;
  11856. // ggml_vec_set_f32(D,
  11857. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11858. // 0);
  11859. ggml_vec_mad_f32(D,
  11860. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11861. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11862. S[ic]);
  11863. }
  11864. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11865. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11866. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11867. for (int64_t ic = 0; ic < D; ++ic) {
  11868. // dst indices
  11869. const int i1 = iq1;
  11870. const int i2 = iq2;
  11871. const int i3 = iq3;
  11872. // ggml_vec_set_f32(M,
  11873. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11874. // 0);
  11875. ggml_vec_mad_f32(M,
  11876. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11877. SM,
  11878. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11879. }
  11880. }
  11881. }
  11882. }
  11883. static void ggml_compute_forward_flash_attn_back(
  11884. const struct ggml_compute_params * params,
  11885. const struct ggml_tensor * q,
  11886. const struct ggml_tensor * k,
  11887. const struct ggml_tensor * v,
  11888. const struct ggml_tensor * d,
  11889. const bool masked,
  11890. struct ggml_tensor * dst) {
  11891. switch (q->type) {
  11892. case GGML_TYPE_F32:
  11893. {
  11894. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11895. } break;
  11896. default:
  11897. {
  11898. GGML_ASSERT(false);
  11899. } break;
  11900. }
  11901. }
  11902. // ggml_compute_forward_win_part
  11903. static void ggml_compute_forward_win_part_f32(
  11904. const struct ggml_compute_params * params,
  11905. const struct ggml_tensor * src0,
  11906. const struct ggml_tensor * opt0,
  11907. struct ggml_tensor * dst) {
  11908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11909. return;
  11910. }
  11911. const int64_t ne00 = src0->ne[0]; UNUSED(ne00);
  11912. const int64_t ne01 = src0->ne[1];
  11913. const int64_t ne02 = src0->ne[2];
  11914. const int64_t ne03 = src0->ne[3]; UNUSED(ne03);
  11915. const int64_t ne0 = dst->ne[0];
  11916. const int64_t ne1 = dst->ne[1];
  11917. const int64_t ne2 = dst->ne[2];
  11918. const int64_t ne3 = dst->ne[3]; UNUSED(ne3);
  11919. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11920. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11921. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11922. assert(ne00 == ne0);
  11923. assert(ne3 == nep0*nep1);
  11924. // TODO: optimize / multi-thread
  11925. for (int py = 0; py < nep1; ++py) {
  11926. for (int px = 0; px < nep0; ++px) {
  11927. const int64_t i3 = py*nep0 + px;
  11928. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11929. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11930. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11931. const int64_t i02 = py*w + i2;
  11932. const int64_t i01 = px*w + i1;
  11933. const int64_t i00 = i0;
  11934. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11935. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11936. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11937. ((float *) dst->data)[i] = 0.0f;
  11938. } else {
  11939. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11940. }
  11941. }
  11942. }
  11943. }
  11944. }
  11945. }
  11946. }
  11947. static void ggml_compute_forward_win_part(
  11948. const struct ggml_compute_params * params,
  11949. const struct ggml_tensor * src0,
  11950. const struct ggml_tensor * opt0,
  11951. struct ggml_tensor * dst) {
  11952. switch (src0->type) {
  11953. case GGML_TYPE_F32:
  11954. {
  11955. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11956. } break;
  11957. default:
  11958. {
  11959. GGML_ASSERT(false);
  11960. } break;
  11961. }
  11962. }
  11963. // ggml_compute_forward_win_unpart
  11964. static void ggml_compute_forward_win_unpart_f32(
  11965. const struct ggml_compute_params * params,
  11966. const struct ggml_tensor * src0,
  11967. const struct ggml_tensor * opt0,
  11968. struct ggml_tensor * dst) {
  11969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11970. return;
  11971. }
  11972. const int64_t ne00 = src0->ne[0];
  11973. const int64_t ne01 = src0->ne[1];
  11974. const int64_t ne02 = src0->ne[2];
  11975. //const int64_t ne03 = src0->ne[3];
  11976. const int64_t ne0 = dst->ne[0];
  11977. const int64_t ne1 = dst->ne[1];
  11978. const int64_t ne2 = dst->ne[2];
  11979. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11980. // padding
  11981. const int px = (w - ne1%w)%w;
  11982. //const int py = (w - ne2%w)%w;
  11983. const int npx = (px + ne1)/w;
  11984. //const int npy = (py + ne2)/w;
  11985. assert(ne0 == ne00);
  11986. // TODO: optimize / multi-thread
  11987. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11988. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11989. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11990. const int ip2 = i2/w;
  11991. const int ip1 = i1/w;
  11992. const int64_t i02 = i2%w;
  11993. const int64_t i01 = i1%w;
  11994. const int64_t i00 = i0;
  11995. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11996. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11997. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11998. }
  11999. }
  12000. }
  12001. }
  12002. static void ggml_compute_forward_win_unpart(
  12003. const struct ggml_compute_params * params,
  12004. const struct ggml_tensor * src0,
  12005. const struct ggml_tensor * opt0,
  12006. struct ggml_tensor * dst) {
  12007. switch (src0->type) {
  12008. case GGML_TYPE_F32:
  12009. {
  12010. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  12011. } break;
  12012. default:
  12013. {
  12014. GGML_ASSERT(false);
  12015. } break;
  12016. }
  12017. }
  12018. // ggml_compute_forward_map_unary
  12019. static void ggml_compute_forward_map_unary_f32(
  12020. const struct ggml_compute_params * params,
  12021. const struct ggml_tensor * src0,
  12022. struct ggml_tensor * dst,
  12023. const ggml_unary_op_f32_t fun) {
  12024. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12025. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12026. return;
  12027. }
  12028. const int n = ggml_nrows(src0);
  12029. const int nc = src0->ne[0];
  12030. assert( dst->nb[0] == sizeof(float));
  12031. assert(src0->nb[0] == sizeof(float));
  12032. for (int i = 0; i < n; i++) {
  12033. fun(nc,
  12034. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12035. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12036. }
  12037. }
  12038. static void ggml_compute_forward_map_unary(
  12039. const struct ggml_compute_params * params,
  12040. const struct ggml_tensor * src0,
  12041. struct ggml_tensor * dst,
  12042. const ggml_unary_op_f32_t fun) {
  12043. switch (src0->type) {
  12044. case GGML_TYPE_F32:
  12045. {
  12046. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12047. } break;
  12048. default:
  12049. {
  12050. GGML_ASSERT(false);
  12051. } break;
  12052. }
  12053. }
  12054. // ggml_compute_forward_map_binary
  12055. static void ggml_compute_forward_map_binary_f32(
  12056. const struct ggml_compute_params * params,
  12057. const struct ggml_tensor * src0,
  12058. const struct ggml_tensor * src1,
  12059. struct ggml_tensor * dst,
  12060. const ggml_binary_op_f32_t fun) {
  12061. assert(params->ith == 0);
  12062. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12064. return;
  12065. }
  12066. const int n = ggml_nrows(src0);
  12067. const int nc = src0->ne[0];
  12068. assert( dst->nb[0] == sizeof(float));
  12069. assert(src0->nb[0] == sizeof(float));
  12070. assert(src1->nb[0] == sizeof(float));
  12071. for (int i = 0; i < n; i++) {
  12072. fun(nc,
  12073. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12074. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12075. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12076. }
  12077. }
  12078. static void ggml_compute_forward_map_binary(
  12079. const struct ggml_compute_params * params,
  12080. const struct ggml_tensor * src0,
  12081. const struct ggml_tensor * src1,
  12082. struct ggml_tensor * dst,
  12083. const ggml_binary_op_f32_t fun) {
  12084. switch (src0->type) {
  12085. case GGML_TYPE_F32:
  12086. {
  12087. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12088. } break;
  12089. default:
  12090. {
  12091. GGML_ASSERT(false);
  12092. } break;
  12093. }
  12094. }
  12095. // ggml_compute_forward_map_custom1
  12096. static void ggml_compute_forward_map_custom1_f32(
  12097. const struct ggml_compute_params * params,
  12098. const struct ggml_tensor * a,
  12099. struct ggml_tensor * dst,
  12100. const ggml_custom1_op_f32_t fun) {
  12101. assert(params->ith == 0);
  12102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12103. return;
  12104. }
  12105. fun(dst, a);
  12106. }
  12107. static void ggml_compute_forward_map_custom1(
  12108. const struct ggml_compute_params * params,
  12109. const struct ggml_tensor * a,
  12110. struct ggml_tensor * dst,
  12111. const ggml_custom1_op_f32_t fun) {
  12112. switch (a->type) {
  12113. case GGML_TYPE_F32:
  12114. {
  12115. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  12116. } break;
  12117. default:
  12118. {
  12119. GGML_ASSERT(false);
  12120. } break;
  12121. }
  12122. }
  12123. // ggml_compute_forward_map_custom2
  12124. static void ggml_compute_forward_map_custom2_f32(
  12125. const struct ggml_compute_params * params,
  12126. const struct ggml_tensor * a,
  12127. const struct ggml_tensor * b,
  12128. struct ggml_tensor * dst,
  12129. const ggml_custom2_op_f32_t fun) {
  12130. assert(params->ith == 0);
  12131. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12132. return;
  12133. }
  12134. fun(dst, a, b);
  12135. }
  12136. static void ggml_compute_forward_map_custom2(
  12137. const struct ggml_compute_params * params,
  12138. const struct ggml_tensor * a,
  12139. const struct ggml_tensor * b,
  12140. struct ggml_tensor * dst,
  12141. const ggml_custom2_op_f32_t fun) {
  12142. switch (a->type) {
  12143. case GGML_TYPE_F32:
  12144. {
  12145. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  12146. } break;
  12147. default:
  12148. {
  12149. GGML_ASSERT(false);
  12150. } break;
  12151. }
  12152. }
  12153. // ggml_compute_forward_map_custom3
  12154. static void ggml_compute_forward_map_custom3_f32(
  12155. const struct ggml_compute_params * params,
  12156. const struct ggml_tensor * a,
  12157. const struct ggml_tensor * b,
  12158. const struct ggml_tensor * c,
  12159. struct ggml_tensor * dst,
  12160. const ggml_custom3_op_f32_t fun) {
  12161. assert(params->ith == 0);
  12162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12163. return;
  12164. }
  12165. fun(dst, a, b, c);
  12166. }
  12167. static void ggml_compute_forward_map_custom3(
  12168. const struct ggml_compute_params * params,
  12169. const struct ggml_tensor * a,
  12170. const struct ggml_tensor * b,
  12171. const struct ggml_tensor * c,
  12172. struct ggml_tensor * dst,
  12173. const ggml_custom3_op_f32_t fun) {
  12174. switch (a->type) {
  12175. case GGML_TYPE_F32:
  12176. {
  12177. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  12178. } break;
  12179. default:
  12180. {
  12181. GGML_ASSERT(false);
  12182. } break;
  12183. }
  12184. }
  12185. // ggml_compute_forward_cross_entropy_loss
  12186. static void ggml_compute_forward_cross_entropy_loss_f32(
  12187. const struct ggml_compute_params * params,
  12188. const struct ggml_tensor * src0,
  12189. const struct ggml_tensor * src1,
  12190. struct ggml_tensor * dst) {
  12191. GGML_ASSERT(ggml_is_contiguous(src0));
  12192. GGML_ASSERT(ggml_is_contiguous(src1));
  12193. GGML_ASSERT(ggml_is_scalar(dst));
  12194. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12195. const int ith = params->ith;
  12196. const int nth = params->nth;
  12197. float * sums = (float *) params->wdata;
  12198. // TODO: handle transposed/permuted matrices
  12199. const int nc = src0->ne[0];
  12200. const int nr = ggml_nrows(src0);
  12201. if (params->type == GGML_TASK_INIT) {
  12202. if (ith == 0) {
  12203. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12204. }
  12205. return;
  12206. }
  12207. if (params->type == GGML_TASK_FINALIZE) {
  12208. if (ith == 0) {
  12209. float * dp = (float *) dst->data;
  12210. ggml_vec_sum_f32(nth, dp, sums);
  12211. dp[0] *= -1.0f;
  12212. }
  12213. return;
  12214. }
  12215. const double eps = 1e-9;
  12216. // rows per thread
  12217. const int dr = (nr + nth - 1)/nth;
  12218. // row range for this thread
  12219. const int ir0 = dr*ith;
  12220. const int ir1 = MIN(ir0 + dr, nr);
  12221. for (int i1 = ir0; i1 < ir1; i1++) {
  12222. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12223. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12224. float * st = (float *) params->wdata + nth + ith*nc;
  12225. #ifndef NDEBUG
  12226. for (int i = 0; i < nc; ++i) {
  12227. //printf("p[%d] = %f\n", i, p[i]);
  12228. assert(!isnan(s0[i]));
  12229. assert(!isnan(s1[i]));
  12230. }
  12231. #endif
  12232. // soft_max
  12233. ggml_float sum = 0.0;
  12234. {
  12235. float max = -INFINITY;
  12236. ggml_vec_max_f32(nc, &max, s0);
  12237. uint16_t scvt;
  12238. for (int i = 0; i < nc; i++) {
  12239. if (s0[i] == -INFINITY) {
  12240. st[i] = 0.0f;
  12241. } else {
  12242. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12243. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12244. memcpy(&scvt, &s, sizeof(scvt));
  12245. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12246. sum += (ggml_float)val;
  12247. st[i] = val;
  12248. }
  12249. }
  12250. assert(sum > 0.0);
  12251. // sum = 1.0/sum;
  12252. }
  12253. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12254. sum = (1.0 - eps) / sum;
  12255. ggml_vec_scale_f32(nc, st, sum);
  12256. ggml_vec_add1_f32(nc, st, st, eps);
  12257. ggml_vec_log_f32(nc, st, st);
  12258. ggml_vec_mul_f32(nc, st, st, s1);
  12259. ggml_vec_sum_f32(nc, sums + ith, st);
  12260. #ifndef NDEBUG
  12261. for (int i = 0; i < nc; ++i) {
  12262. assert(!isnan(st[i]));
  12263. assert(!isinf(st[i]));
  12264. }
  12265. #endif
  12266. }
  12267. }
  12268. static void ggml_compute_forward_cross_entropy_loss(
  12269. const struct ggml_compute_params * params,
  12270. const struct ggml_tensor * src0,
  12271. const struct ggml_tensor * src1,
  12272. struct ggml_tensor * dst) {
  12273. switch (src0->type) {
  12274. case GGML_TYPE_F32:
  12275. {
  12276. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12277. } break;
  12278. default:
  12279. {
  12280. GGML_ASSERT(false);
  12281. } break;
  12282. }
  12283. }
  12284. // ggml_compute_forward_cross_entropy_loss_back
  12285. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12286. const struct ggml_compute_params * params,
  12287. const struct ggml_tensor * src0,
  12288. const struct ggml_tensor * src1,
  12289. const struct ggml_tensor * opt0,
  12290. struct ggml_tensor * dst) {
  12291. GGML_ASSERT(ggml_is_contiguous(dst));
  12292. GGML_ASSERT(ggml_is_contiguous(src0));
  12293. GGML_ASSERT(ggml_is_contiguous(src1));
  12294. GGML_ASSERT(ggml_is_contiguous(opt0));
  12295. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12296. const int64_t ith = params->ith;
  12297. const int64_t nth = params->nth;
  12298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12299. return;
  12300. }
  12301. const float eps = 1e-9f;
  12302. // TODO: handle transposed/permuted matrices
  12303. const int64_t nc = src0->ne[0];
  12304. const int64_t nr = ggml_nrows(src0);
  12305. // rows per thread
  12306. const int64_t dr = (nr + nth - 1)/nth;
  12307. // row range for this thread
  12308. const int64_t ir0 = dr*ith;
  12309. const int64_t ir1 = MIN(ir0 + dr, nr);
  12310. float * d = (float *) opt0->data;
  12311. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12312. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12313. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12314. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12315. float * sm = (float *) params->wdata + ith*nc;
  12316. #ifndef NDEBUG
  12317. for (int i = 0; i < nc; ++i) {
  12318. //printf("p[%d] = %f\n", i, p[i]);
  12319. assert(!isnan(s0[i]));
  12320. assert(!isnan(s1[i]));
  12321. }
  12322. #endif
  12323. // step by step explanation:
  12324. {
  12325. //float * sums = (float *) params->wdata;
  12326. // forward pass with annotated gradients from backward pass
  12327. // (built by going in reverse operation order, adding to gradients of current operation args)
  12328. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12329. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12330. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12331. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12332. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12333. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12334. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12335. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12336. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12337. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12338. // postorder:
  12339. // grad[st1] := softmax(s0)
  12340. // grad[st1] := grad[st1]*(1.0 - eps)
  12341. // grad[st1] := grad[st1] + eps
  12342. // grad[st1] := s1 / grad[st1]
  12343. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12344. // src0 gradients by going through softmax_back
  12345. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12346. // from softmax_back:
  12347. // dxk = yk * (dyk - dot(y, dy))
  12348. // dot_y_dy := dot(y, dy)
  12349. // dx := dy
  12350. // dx := dx - dot_y_dy
  12351. // dx := dx * y
  12352. // postorder:
  12353. // dot_st1_dst1 := dot(st1, grad[st1])
  12354. // grad[s0] := grad[st1]
  12355. // grad[s0] := grad[s0] - dot_st1_dst1
  12356. // grad[s0] := grad[s0] * st1
  12357. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12358. // sm := softmax(s0)
  12359. // grad[s0] := sm*(1.0 - eps)
  12360. // grad[s0] := grad[s0] + eps
  12361. // grad[s0] := s1 / grad[s0]
  12362. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12363. // dot_st1_dst1 := dot(sm, grad[s0])
  12364. // grad[s0] := grad[s0] - dot_st1_dst1
  12365. // grad[s0] := grad[s0] * sm
  12366. }
  12367. // soft_max
  12368. ggml_float sum = 0.0;
  12369. {
  12370. float max = -INFINITY;
  12371. ggml_vec_max_f32(nc, &max, s0);
  12372. uint16_t scvt;
  12373. for (int i = 0; i < nc; i++) {
  12374. if (s0[i] == -INFINITY) {
  12375. sm[i] = 0.0f;
  12376. } else {
  12377. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12378. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12379. memcpy(&scvt, &s, sizeof(scvt));
  12380. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12381. sum += (ggml_float)val;
  12382. sm[i] = val;
  12383. }
  12384. }
  12385. assert(sum > 0.0);
  12386. sum = 1.0/sum;
  12387. }
  12388. float dot_st1_dst1 = 0;
  12389. ggml_vec_scale_f32(nc, sm, sum);
  12390. ggml_vec_cpy_f32 (nc, ds0, sm);
  12391. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12392. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12393. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12394. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12395. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12396. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12397. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12398. #ifndef NDEBUG
  12399. for (int i = 0; i < nc; ++i) {
  12400. assert(!isnan(sm[i]));
  12401. assert(!isinf(sm[i]));
  12402. assert(!isnan(ds0[i]));
  12403. assert(!isinf(ds0[i]));
  12404. }
  12405. #endif
  12406. }
  12407. }
  12408. static void ggml_compute_forward_cross_entropy_loss_back(
  12409. const struct ggml_compute_params * params,
  12410. const struct ggml_tensor * src0,
  12411. const struct ggml_tensor * src1,
  12412. const struct ggml_tensor * opt0,
  12413. struct ggml_tensor * dst) {
  12414. switch (src0->type) {
  12415. case GGML_TYPE_F32:
  12416. {
  12417. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12418. } break;
  12419. default:
  12420. {
  12421. GGML_ASSERT(false);
  12422. } break;
  12423. }
  12424. }
  12425. /////////////////////////////////
  12426. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12427. GGML_ASSERT(params);
  12428. #ifdef GGML_USE_CUBLAS
  12429. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12430. if (skip_cpu) {
  12431. return;
  12432. }
  12433. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  12434. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  12435. #endif // GGML_USE_CUBLAS
  12436. switch (tensor->op) {
  12437. case GGML_OP_DUP:
  12438. {
  12439. ggml_compute_forward_dup(params, tensor->src0, tensor);
  12440. } break;
  12441. case GGML_OP_ADD:
  12442. {
  12443. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  12444. } break;
  12445. case GGML_OP_ADD1:
  12446. {
  12447. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  12448. } break;
  12449. case GGML_OP_ACC:
  12450. {
  12451. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12452. } break;
  12453. case GGML_OP_SUB:
  12454. {
  12455. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  12456. } break;
  12457. case GGML_OP_MUL:
  12458. {
  12459. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  12460. } break;
  12461. case GGML_OP_DIV:
  12462. {
  12463. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  12464. } break;
  12465. case GGML_OP_SQR:
  12466. {
  12467. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  12468. } break;
  12469. case GGML_OP_SQRT:
  12470. {
  12471. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  12472. } break;
  12473. case GGML_OP_LOG:
  12474. {
  12475. ggml_compute_forward_log(params, tensor->src0, tensor);
  12476. } break;
  12477. case GGML_OP_SUM:
  12478. {
  12479. ggml_compute_forward_sum(params, tensor->src0, tensor);
  12480. } break;
  12481. case GGML_OP_SUM_ROWS:
  12482. {
  12483. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  12484. } break;
  12485. case GGML_OP_MEAN:
  12486. {
  12487. ggml_compute_forward_mean(params, tensor->src0, tensor);
  12488. } break;
  12489. case GGML_OP_REPEAT:
  12490. {
  12491. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  12492. } break;
  12493. case GGML_OP_REPEAT_BACK:
  12494. {
  12495. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  12496. } break;
  12497. case GGML_OP_ABS:
  12498. {
  12499. ggml_compute_forward_abs(params, tensor->src0, tensor);
  12500. } break;
  12501. case GGML_OP_SGN:
  12502. {
  12503. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  12504. } break;
  12505. case GGML_OP_NEG:
  12506. {
  12507. ggml_compute_forward_neg(params, tensor->src0, tensor);
  12508. } break;
  12509. case GGML_OP_STEP:
  12510. {
  12511. ggml_compute_forward_step(params, tensor->src0, tensor);
  12512. } break;
  12513. case GGML_OP_RELU:
  12514. {
  12515. ggml_compute_forward_relu(params, tensor->src0, tensor);
  12516. } break;
  12517. case GGML_OP_GELU:
  12518. {
  12519. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  12520. } break;
  12521. case GGML_OP_GELU_QUICK:
  12522. {
  12523. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  12524. } break;
  12525. case GGML_OP_SILU:
  12526. {
  12527. ggml_compute_forward_silu(params, tensor->src0, tensor);
  12528. } break;
  12529. case GGML_OP_SILU_BACK:
  12530. {
  12531. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  12532. } break;
  12533. case GGML_OP_NORM:
  12534. {
  12535. ggml_compute_forward_norm(params, tensor->src0, tensor);
  12536. } break;
  12537. case GGML_OP_RMS_NORM:
  12538. {
  12539. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  12540. } break;
  12541. case GGML_OP_RMS_NORM_BACK:
  12542. {
  12543. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  12544. } break;
  12545. case GGML_OP_MUL_MAT:
  12546. {
  12547. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  12548. } break;
  12549. case GGML_OP_OUT_PROD:
  12550. {
  12551. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  12552. } break;
  12553. case GGML_OP_SCALE:
  12554. {
  12555. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  12556. } break;
  12557. case GGML_OP_SET:
  12558. {
  12559. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12560. } break;
  12561. case GGML_OP_CPY:
  12562. {
  12563. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  12564. } break;
  12565. case GGML_OP_CONT:
  12566. {
  12567. ggml_compute_forward_cont(params, tensor->src0, tensor);
  12568. } break;
  12569. case GGML_OP_RESHAPE:
  12570. {
  12571. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  12572. } break;
  12573. case GGML_OP_VIEW:
  12574. {
  12575. ggml_compute_forward_view(params, tensor->src0);
  12576. } break;
  12577. case GGML_OP_PERMUTE:
  12578. {
  12579. ggml_compute_forward_permute(params, tensor->src0);
  12580. } break;
  12581. case GGML_OP_TRANSPOSE:
  12582. {
  12583. ggml_compute_forward_transpose(params, tensor->src0);
  12584. } break;
  12585. case GGML_OP_GET_ROWS:
  12586. {
  12587. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  12588. } break;
  12589. case GGML_OP_GET_ROWS_BACK:
  12590. {
  12591. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12592. } break;
  12593. case GGML_OP_DIAG:
  12594. {
  12595. ggml_compute_forward_diag(params, tensor->src0, tensor);
  12596. } break;
  12597. case GGML_OP_DIAG_MASK_INF:
  12598. {
  12599. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12600. } break;
  12601. case GGML_OP_DIAG_MASK_ZERO:
  12602. {
  12603. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12604. } break;
  12605. case GGML_OP_SOFT_MAX:
  12606. {
  12607. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12608. } break;
  12609. case GGML_OP_SOFT_MAX_BACK:
  12610. {
  12611. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12612. } break;
  12613. case GGML_OP_ROPE:
  12614. {
  12615. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12616. } break;
  12617. case GGML_OP_ROPE_BACK:
  12618. {
  12619. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12620. } break;
  12621. case GGML_OP_ALIBI:
  12622. {
  12623. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12624. } break;
  12625. case GGML_OP_CLAMP:
  12626. {
  12627. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12628. } break;
  12629. case GGML_OP_CONV_1D_S1_PH:
  12630. {
  12631. ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor);
  12632. } break;
  12633. case GGML_OP_CONV_1D_S2_PH:
  12634. {
  12635. ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor);
  12636. } break;
  12637. case GGML_OP_CONV_2D_SK_P0:
  12638. {
  12639. ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor);
  12640. } break;
  12641. case GGML_OP_FLASH_ATTN:
  12642. {
  12643. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12644. GGML_ASSERT(t == 0 || t == 1);
  12645. const bool masked = t != 0;
  12646. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12647. } break;
  12648. case GGML_OP_FLASH_FF:
  12649. {
  12650. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12651. } break;
  12652. case GGML_OP_FLASH_ATTN_BACK:
  12653. {
  12654. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12655. GGML_ASSERT(t == 0 || t == 1);
  12656. bool masked = t != 0;
  12657. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12658. } break;
  12659. case GGML_OP_WIN_PART:
  12660. {
  12661. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12662. } break;
  12663. case GGML_OP_WIN_UNPART:
  12664. {
  12665. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12666. } break;
  12667. case GGML_OP_MAP_UNARY:
  12668. {
  12669. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12670. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12671. }
  12672. break;
  12673. case GGML_OP_MAP_BINARY:
  12674. {
  12675. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12676. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12677. }
  12678. break;
  12679. case GGML_OP_MAP_CUSTOM1:
  12680. {
  12681. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12682. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12683. }
  12684. break;
  12685. case GGML_OP_MAP_CUSTOM2:
  12686. {
  12687. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12688. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12689. }
  12690. break;
  12691. case GGML_OP_MAP_CUSTOM3:
  12692. {
  12693. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12694. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12695. }
  12696. break;
  12697. case GGML_OP_CROSS_ENTROPY_LOSS:
  12698. {
  12699. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12700. }
  12701. break;
  12702. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12703. {
  12704. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12705. }
  12706. break;
  12707. case GGML_OP_NONE:
  12708. {
  12709. // nop
  12710. } break;
  12711. case GGML_OP_COUNT:
  12712. {
  12713. GGML_ASSERT(false);
  12714. } break;
  12715. }
  12716. }
  12717. ////////////////////////////////////////////////////////////////////////////////
  12718. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12719. struct ggml_tensor * src0 = tensor->src0;
  12720. struct ggml_tensor * src1 = tensor->src1;
  12721. switch (tensor->op) {
  12722. case GGML_OP_DUP:
  12723. {
  12724. if (src0->grad) {
  12725. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12726. }
  12727. } break;
  12728. case GGML_OP_ADD:
  12729. {
  12730. if (src0->grad) {
  12731. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12732. }
  12733. if (src1->grad) {
  12734. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12735. }
  12736. } break;
  12737. case GGML_OP_ADD1:
  12738. {
  12739. if (src0->grad) {
  12740. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12741. }
  12742. if (src1->grad) {
  12743. src1->grad = ggml_add_impl(ctx,
  12744. src1->grad,
  12745. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12746. inplace);
  12747. }
  12748. } break;
  12749. case GGML_OP_ACC:
  12750. {
  12751. if (src0->grad) {
  12752. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12753. }
  12754. if (src1->grad) {
  12755. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12756. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12757. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12758. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12759. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12760. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12761. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12762. tensor->grad,
  12763. src1->grad->ne[0],
  12764. src1->grad->ne[1],
  12765. src1->grad->ne[2],
  12766. src1->grad->ne[3],
  12767. nb1, nb2, nb3, offset);
  12768. src1->grad =
  12769. ggml_add_impl(ctx,
  12770. src1->grad,
  12771. ggml_reshape(ctx,
  12772. ggml_cont(ctx, tensor_grad_view),
  12773. src1->grad),
  12774. inplace);
  12775. }
  12776. } break;
  12777. case GGML_OP_SUB:
  12778. {
  12779. if (src0->grad) {
  12780. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12781. }
  12782. if (src1->grad) {
  12783. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12784. }
  12785. } break;
  12786. case GGML_OP_MUL:
  12787. {
  12788. if (src0->grad) {
  12789. src0->grad =
  12790. ggml_add_impl(ctx,
  12791. src0->grad,
  12792. ggml_mul(ctx, src1, tensor->grad),
  12793. inplace);
  12794. }
  12795. if (src1->grad) {
  12796. src1->grad =
  12797. ggml_add_impl(ctx,
  12798. src1->grad,
  12799. ggml_mul(ctx, src0, tensor->grad),
  12800. inplace);
  12801. }
  12802. } break;
  12803. case GGML_OP_DIV:
  12804. {
  12805. if (src0->grad) {
  12806. src0->grad =
  12807. ggml_add_impl(ctx,
  12808. src0->grad,
  12809. ggml_div(ctx, tensor->grad, src1),
  12810. inplace);
  12811. }
  12812. if (src1->grad) {
  12813. src1->grad =
  12814. ggml_sub_impl(ctx,
  12815. src1->grad,
  12816. ggml_mul(ctx,
  12817. tensor->grad,
  12818. ggml_div(ctx, tensor, src1)),
  12819. inplace);
  12820. }
  12821. } break;
  12822. case GGML_OP_SQR:
  12823. {
  12824. if (src0->grad) {
  12825. src0->grad =
  12826. ggml_add_impl(ctx,
  12827. src0->grad,
  12828. ggml_scale(ctx,
  12829. ggml_mul(ctx, src0, tensor->grad),
  12830. ggml_new_f32(ctx, 2.0f)),
  12831. inplace);
  12832. }
  12833. } break;
  12834. case GGML_OP_SQRT:
  12835. {
  12836. if (src0->grad) {
  12837. src0->grad =
  12838. ggml_add_impl(ctx,
  12839. src0->grad,
  12840. ggml_scale(ctx,
  12841. ggml_div(ctx,
  12842. tensor->grad,
  12843. tensor),
  12844. ggml_new_f32(ctx, 0.5f)),
  12845. inplace);
  12846. }
  12847. } break;
  12848. case GGML_OP_LOG:
  12849. {
  12850. if (src0->grad) {
  12851. src0->grad =
  12852. ggml_add_impl(ctx,
  12853. src0->grad,
  12854. ggml_div(ctx,
  12855. tensor->grad,
  12856. src0),
  12857. inplace);
  12858. }
  12859. } break;
  12860. case GGML_OP_SUM:
  12861. {
  12862. if (src0->grad) {
  12863. src0->grad =
  12864. ggml_add1_impl(ctx,
  12865. src0->grad,
  12866. tensor->grad,
  12867. inplace);
  12868. }
  12869. } break;
  12870. case GGML_OP_SUM_ROWS:
  12871. {
  12872. if (src0->grad) {
  12873. src0->grad =
  12874. ggml_add_impl(ctx,
  12875. src0->grad,
  12876. ggml_repeat(ctx,
  12877. tensor->grad,
  12878. src0->grad),
  12879. inplace);
  12880. }
  12881. } break;
  12882. case GGML_OP_MEAN:
  12883. {
  12884. GGML_ASSERT(false); // TODO: implement
  12885. } break;
  12886. case GGML_OP_REPEAT:
  12887. {
  12888. // necessary for llama
  12889. if (src0->grad) {
  12890. src0->grad = ggml_add_impl(ctx,
  12891. src0->grad,
  12892. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12893. inplace);
  12894. }
  12895. } break;
  12896. case GGML_OP_REPEAT_BACK:
  12897. {
  12898. if (src0->grad) {
  12899. // TODO: test this
  12900. src0->grad = ggml_add_impl(ctx,
  12901. src0->grad,
  12902. ggml_repeat(ctx, tensor->grad, src0->grad),
  12903. inplace);
  12904. }
  12905. } break;
  12906. case GGML_OP_ABS:
  12907. {
  12908. if (src0->grad) {
  12909. src0->grad =
  12910. ggml_add_impl(ctx,
  12911. src0->grad,
  12912. ggml_mul(ctx,
  12913. ggml_sgn(ctx, src0),
  12914. tensor->grad),
  12915. inplace);
  12916. }
  12917. } break;
  12918. case GGML_OP_SGN:
  12919. {
  12920. if (src0->grad) {
  12921. // noop
  12922. }
  12923. } break;
  12924. case GGML_OP_NEG:
  12925. {
  12926. if (src0->grad) {
  12927. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12928. }
  12929. } break;
  12930. case GGML_OP_STEP:
  12931. {
  12932. if (src0->grad) {
  12933. // noop
  12934. }
  12935. } break;
  12936. case GGML_OP_RELU:
  12937. {
  12938. if (src0->grad) {
  12939. src0->grad = ggml_sub_impl(ctx,
  12940. src0->grad,
  12941. ggml_mul(ctx,
  12942. ggml_step(ctx, src0),
  12943. tensor->grad),
  12944. inplace);
  12945. }
  12946. } break;
  12947. case GGML_OP_GELU:
  12948. {
  12949. GGML_ASSERT(false); // TODO: not implemented
  12950. } break;
  12951. case GGML_OP_GELU_QUICK:
  12952. {
  12953. GGML_ASSERT(false); // TODO: not implemented
  12954. } break;
  12955. case GGML_OP_ALIBI:
  12956. {
  12957. GGML_ASSERT(false); // TODO: not implemented
  12958. } break;
  12959. case GGML_OP_CLAMP:
  12960. {
  12961. GGML_ASSERT(false); // TODO: not implemented
  12962. } break;
  12963. case GGML_OP_SILU:
  12964. {
  12965. // necessary for llama
  12966. if (src0->grad) {
  12967. src0->grad = ggml_add_impl(ctx,
  12968. src0->grad,
  12969. ggml_silu_back(ctx, src0, tensor->grad),
  12970. inplace);
  12971. }
  12972. } break;
  12973. case GGML_OP_SILU_BACK:
  12974. {
  12975. GGML_ASSERT(false); // TODO: not implemented
  12976. } break;
  12977. case GGML_OP_NORM:
  12978. {
  12979. GGML_ASSERT(false); // TODO: not implemented
  12980. } break;
  12981. case GGML_OP_RMS_NORM:
  12982. {
  12983. // necessary for llama
  12984. if (src0->grad) {
  12985. src0->grad = ggml_add_impl(ctx,
  12986. src0->grad,
  12987. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12988. inplace);
  12989. }
  12990. } break;
  12991. case GGML_OP_RMS_NORM_BACK:
  12992. {
  12993. GGML_ASSERT(false); // TODO: not implemented
  12994. } break;
  12995. case GGML_OP_MUL_MAT:
  12996. {
  12997. // https://cs231n.github.io/optimization-2/#staged
  12998. // # forward pass
  12999. // s0 = np.random.randn(5, 10)
  13000. // s1 = np.random.randn(10, 3)
  13001. // t = s0.dot(s1)
  13002. // # now suppose we had the gradient on t from above in the circuit
  13003. // dt = np.random.randn(*t.shape) # same shape as t
  13004. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13005. // ds1 = t.T.dot(dt)
  13006. // tensor.shape [m,p]
  13007. // src0.shape [n,m]
  13008. // src1.shape [n,p]
  13009. // necessary for llama
  13010. if (src0->grad) {
  13011. src0->grad =
  13012. ggml_add_impl(ctx,
  13013. src0->grad,
  13014. ggml_out_prod(ctx, // [n,m]
  13015. src1, // [n,p]
  13016. tensor->grad), // [m,p]
  13017. inplace);
  13018. }
  13019. if (src1->grad) {
  13020. src1->grad =
  13021. ggml_add_impl(ctx,
  13022. src1->grad,
  13023. // ggml_mul_mat(ctx, // [n,p]
  13024. // ggml_cont(ctx, // [m,n]
  13025. // ggml_transpose(ctx, src0)), // [m,n]
  13026. // tensor->grad), // [m,p]
  13027. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13028. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13029. // // and then use ggml_out_prod
  13030. ggml_out_prod(ctx, // [n,p]
  13031. src0, // [n,m]
  13032. ggml_transpose(ctx, // [p,m]
  13033. tensor->grad)), // [m,p]
  13034. inplace);
  13035. }
  13036. } break;
  13037. case GGML_OP_OUT_PROD:
  13038. {
  13039. GGML_ASSERT(false); // TODO: not implemented
  13040. } break;
  13041. case GGML_OP_SCALE:
  13042. {
  13043. // necessary for llama
  13044. if (src0->grad) {
  13045. src0->grad =
  13046. ggml_add_impl(ctx,
  13047. src0->grad,
  13048. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13049. inplace);
  13050. }
  13051. if (src1->grad) {
  13052. src1->grad =
  13053. ggml_add_impl(ctx,
  13054. src1->grad,
  13055. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13056. inplace);
  13057. }
  13058. } break;
  13059. case GGML_OP_SET:
  13060. {
  13061. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  13062. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  13063. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  13064. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  13065. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  13066. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  13067. struct ggml_tensor * tensor_grad_view = NULL;
  13068. if (src0->grad || src1->grad) {
  13069. GGML_ASSERT(src0->type == tensor->type);
  13070. GGML_ASSERT(tensor->grad->type == tensor->type);
  13071. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13072. tensor_grad_view = ggml_view_4d(ctx,
  13073. tensor->grad,
  13074. src1->grad->ne[0],
  13075. src1->grad->ne[1],
  13076. src1->grad->ne[2],
  13077. src1->grad->ne[3],
  13078. nb1, nb2, nb3, offset);
  13079. }
  13080. if (src0->grad) {
  13081. src0->grad = ggml_add_impl(ctx,
  13082. src0->grad,
  13083. ggml_acc_impl(ctx,
  13084. tensor->grad,
  13085. ggml_neg(ctx, tensor_grad_view),
  13086. nb1, nb2, nb3, offset, false),
  13087. inplace);
  13088. }
  13089. if (src1->grad) {
  13090. src1->grad =
  13091. ggml_add_impl(ctx,
  13092. src1->grad,
  13093. ggml_reshape(ctx,
  13094. ggml_cont(ctx, tensor_grad_view),
  13095. src1->grad),
  13096. inplace);
  13097. }
  13098. } break;
  13099. case GGML_OP_CPY:
  13100. {
  13101. // necessary for llama
  13102. // cpy overwrites value of src1 by src0 and returns view(src1)
  13103. // the overwriting is mathematically equivalent to:
  13104. // tensor = src0 * 1 + src1 * 0
  13105. if (src0->grad) {
  13106. // dsrc0 = dtensor * 1
  13107. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13108. }
  13109. if (src1->grad) {
  13110. // dsrc1 = dtensor * 0 -> noop
  13111. }
  13112. } break;
  13113. case GGML_OP_CONT:
  13114. {
  13115. // same as cpy
  13116. if (src0->grad) {
  13117. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13118. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13119. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13120. }
  13121. } break;
  13122. case GGML_OP_RESHAPE:
  13123. {
  13124. // necessary for llama
  13125. if (src0->grad) {
  13126. src0->grad =
  13127. ggml_add_impl(ctx, src0->grad,
  13128. ggml_reshape(ctx, tensor->grad, src0->grad),
  13129. inplace);
  13130. }
  13131. } break;
  13132. case GGML_OP_VIEW:
  13133. {
  13134. // necessary for llama
  13135. if (src0->grad) {
  13136. size_t offset;
  13137. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  13138. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  13139. size_t nb1 = tensor->nb[1];
  13140. size_t nb2 = tensor->nb[2];
  13141. size_t nb3 = tensor->nb[3];
  13142. if (src0->type != src0->grad->type) {
  13143. // gradient is typically F32, but src0 could be other type
  13144. size_t ng = ggml_element_size(src0->grad);
  13145. size_t n0 = ggml_element_size(src0);
  13146. GGML_ASSERT(offset % n0 == 0);
  13147. GGML_ASSERT(nb1 % n0 == 0);
  13148. GGML_ASSERT(nb2 % n0 == 0);
  13149. GGML_ASSERT(nb3 % n0 == 0);
  13150. offset = (offset / n0) * ng;
  13151. nb1 = (nb1 / n0) * ng;
  13152. nb2 = (nb2 / n0) * ng;
  13153. nb3 = (nb3 / n0) * ng;
  13154. }
  13155. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13156. }
  13157. } break;
  13158. case GGML_OP_PERMUTE:
  13159. {
  13160. // necessary for llama
  13161. if (src0->grad) {
  13162. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  13163. int axis0 = axes[0] & 0x3;
  13164. int axis1 = axes[1] & 0x3;
  13165. int axis2 = axes[2] & 0x3;
  13166. int axis3 = axes[3] & 0x3;
  13167. int axes_backward[4] = {0,0,0,0};
  13168. axes_backward[axis0] = 0;
  13169. axes_backward[axis1] = 1;
  13170. axes_backward[axis2] = 2;
  13171. axes_backward[axis3] = 3;
  13172. src0->grad =
  13173. ggml_add_impl(ctx, src0->grad,
  13174. ggml_permute(ctx,
  13175. tensor->grad,
  13176. axes_backward[0],
  13177. axes_backward[1],
  13178. axes_backward[2],
  13179. axes_backward[3]),
  13180. inplace);
  13181. }
  13182. } break;
  13183. case GGML_OP_TRANSPOSE:
  13184. {
  13185. // necessary for llama
  13186. if (src0->grad) {
  13187. src0->grad =
  13188. ggml_add_impl(ctx, src0->grad,
  13189. ggml_transpose(ctx, tensor->grad),
  13190. inplace);
  13191. }
  13192. } break;
  13193. case GGML_OP_GET_ROWS:
  13194. {
  13195. // necessary for llama (only for tokenizer)
  13196. if (src0->grad) {
  13197. src0->grad =
  13198. ggml_add_impl(ctx, src0->grad,
  13199. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13200. inplace);
  13201. }
  13202. if (src1->grad) {
  13203. // noop
  13204. }
  13205. } break;
  13206. case GGML_OP_GET_ROWS_BACK:
  13207. {
  13208. GGML_ASSERT(false); // TODO: not implemented
  13209. } break;
  13210. case GGML_OP_DIAG:
  13211. {
  13212. GGML_ASSERT(false); // TODO: not implemented
  13213. } break;
  13214. case GGML_OP_DIAG_MASK_INF:
  13215. {
  13216. // necessary for llama
  13217. if (src0->grad) {
  13218. assert(src1->type == GGML_TYPE_I32);
  13219. assert(ggml_nelements(src1) == 2);
  13220. const int n_past = ((int32_t *) src1->data)[0];
  13221. src0->grad =
  13222. ggml_add_impl(ctx, src0->grad,
  13223. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13224. inplace);
  13225. }
  13226. if (src1->grad) {
  13227. // noop
  13228. }
  13229. } break;
  13230. case GGML_OP_DIAG_MASK_ZERO:
  13231. {
  13232. // necessary for llama
  13233. if (src0->grad) {
  13234. assert(src1->type == GGML_TYPE_I32);
  13235. assert(ggml_nelements(src1) == 2);
  13236. const int n_past = ((int32_t *) src1->data)[0];
  13237. src0->grad =
  13238. ggml_add_impl(ctx, src0->grad,
  13239. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13240. inplace);
  13241. }
  13242. if (src1->grad) {
  13243. // noop
  13244. }
  13245. } break;
  13246. case GGML_OP_SOFT_MAX:
  13247. {
  13248. // necessary for llama
  13249. if (src0->grad) {
  13250. src0->grad =
  13251. ggml_add_impl(ctx, src0->grad,
  13252. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13253. inplace);
  13254. }
  13255. } break;
  13256. case GGML_OP_SOFT_MAX_BACK:
  13257. {
  13258. GGML_ASSERT(false); // TODO: not implemented
  13259. } break;
  13260. case GGML_OP_ROPE:
  13261. {
  13262. // necessary for llama
  13263. if (src0->grad) {
  13264. assert(src1->type == GGML_TYPE_I32);
  13265. assert(ggml_nelements(src1) == 3);
  13266. const int n_past = ((int32_t *) src1->data)[0];
  13267. const int n_dims = ((int32_t *) src1->data)[1];
  13268. const int mode = ((int32_t *) src1->data)[2];
  13269. src0->grad = ggml_add_impl(ctx,
  13270. src0->grad,
  13271. ggml_rope_back(ctx,
  13272. tensor->grad,
  13273. n_past,
  13274. n_dims,
  13275. mode),
  13276. inplace);
  13277. }
  13278. if (src1->grad) {
  13279. // noop
  13280. }
  13281. } break;
  13282. case GGML_OP_ROPE_BACK:
  13283. {
  13284. if (src0->grad) {
  13285. assert(src1->type == GGML_TYPE_I32);
  13286. assert(ggml_nelements(src1) == 3);
  13287. const int n_past = ((int32_t *) src1->data)[0];
  13288. const int n_dims = ((int32_t *) src1->data)[1];
  13289. const int mode = ((int32_t *) src1->data)[2];
  13290. src0->grad = ggml_add_impl(ctx,
  13291. src0->grad,
  13292. ggml_rope(ctx,
  13293. tensor->grad,
  13294. n_past,
  13295. n_dims,
  13296. mode),
  13297. inplace);
  13298. }
  13299. if (src1->grad) {
  13300. // noop
  13301. }
  13302. } break;
  13303. case GGML_OP_CONV_1D_S1_PH:
  13304. {
  13305. GGML_ASSERT(false); // TODO: not implemented
  13306. } break;
  13307. case GGML_OP_CONV_1D_S2_PH:
  13308. {
  13309. GGML_ASSERT(false); // TODO: not implemented
  13310. } break;
  13311. case GGML_OP_CONV_2D_SK_P0:
  13312. {
  13313. GGML_ASSERT(false); // TODO: not implemented
  13314. } break;
  13315. case GGML_OP_FLASH_ATTN:
  13316. {
  13317. struct ggml_tensor * flash_grad = NULL;
  13318. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  13319. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  13320. GGML_ASSERT(t == 0 || t == 1);
  13321. bool masked = t != 0;
  13322. flash_grad =
  13323. ggml_flash_attn_back(ctx,
  13324. src0,
  13325. src1,
  13326. tensor->opt[0],
  13327. tensor->grad,
  13328. masked);
  13329. }
  13330. if (src0->grad) {
  13331. struct ggml_tensor * grad_q = NULL;
  13332. const size_t nb0 = flash_grad->nb[0];
  13333. const size_t offset = 0;
  13334. switch(src0->n_dims) {
  13335. case 2:
  13336. {
  13337. grad_q = ggml_view_2d(ctx,
  13338. flash_grad,
  13339. src0->ne[0],
  13340. src0->ne[1],
  13341. nb0*src0->ne[0],
  13342. offset);
  13343. } break;
  13344. case 3:
  13345. {
  13346. grad_q = ggml_view_3d(ctx,
  13347. flash_grad,
  13348. src0->ne[0],
  13349. src0->ne[1],
  13350. src0->ne[2],
  13351. nb0*src0->ne[0],
  13352. nb0*src0->ne[0]*src0->ne[1],
  13353. offset);
  13354. } break;
  13355. case 4:
  13356. {
  13357. grad_q = ggml_view_4d(ctx,
  13358. flash_grad,
  13359. src0->ne[0],
  13360. src0->ne[1],
  13361. src0->ne[2],
  13362. src0->ne[3],
  13363. nb0*src0->ne[0],
  13364. nb0*src0->ne[0]*src0->ne[1],
  13365. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13366. offset);
  13367. } break;
  13368. }
  13369. src0->grad = ggml_add_impl(ctx,
  13370. src0->grad,
  13371. grad_q,
  13372. inplace);
  13373. }
  13374. if (src1->grad) {
  13375. struct ggml_tensor * grad_k = NULL;
  13376. const size_t nb0 = flash_grad->nb[0];
  13377. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13378. switch(src1->n_dims) {
  13379. case 2:
  13380. {
  13381. grad_k = ggml_view_2d(ctx,
  13382. flash_grad,
  13383. src1->ne[0],
  13384. src1->ne[1],
  13385. nb0*src1->ne[0],
  13386. offset);
  13387. } break;
  13388. case 3:
  13389. {
  13390. grad_k = ggml_view_3d(ctx,
  13391. flash_grad,
  13392. src1->ne[0],
  13393. src1->ne[1],
  13394. src1->ne[2],
  13395. nb0*src1->ne[0],
  13396. nb0*src1->ne[0]*src1->ne[1],
  13397. offset);
  13398. } break;
  13399. case 4:
  13400. {
  13401. grad_k = ggml_view_4d(ctx,
  13402. flash_grad,
  13403. src1->ne[0],
  13404. src1->ne[1],
  13405. src1->ne[2],
  13406. src1->ne[3],
  13407. nb0*src1->ne[0],
  13408. nb0*src1->ne[0]*src1->ne[1],
  13409. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13410. offset);
  13411. } break;
  13412. }
  13413. src1->grad = ggml_add_impl(ctx,
  13414. src1->grad,
  13415. grad_k,
  13416. inplace);
  13417. }
  13418. struct ggml_tensor * opt0 = tensor->opt[0];
  13419. if (opt0->grad) {
  13420. struct ggml_tensor * grad_v = NULL;
  13421. const size_t nb0 = flash_grad->nb[0];
  13422. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13423. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13424. switch(opt0->n_dims) {
  13425. case 2:
  13426. {
  13427. grad_v = ggml_view_2d(ctx,
  13428. flash_grad,
  13429. opt0->ne[0],
  13430. opt0->ne[1],
  13431. nb0*opt0->ne[0],
  13432. offset);
  13433. } break;
  13434. case 3:
  13435. {
  13436. grad_v = ggml_view_3d(ctx,
  13437. flash_grad,
  13438. opt0->ne[0],
  13439. opt0->ne[1],
  13440. opt0->ne[2],
  13441. nb0*opt0->ne[0],
  13442. nb0*opt0->ne[0]*opt0->ne[1],
  13443. offset);
  13444. } break;
  13445. case 4:
  13446. {
  13447. grad_v = ggml_view_4d(ctx,
  13448. flash_grad,
  13449. opt0->ne[0],
  13450. opt0->ne[1],
  13451. opt0->ne[2],
  13452. opt0->ne[3],
  13453. nb0*opt0->ne[0],
  13454. nb0*opt0->ne[0]*opt0->ne[1],
  13455. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13456. offset);
  13457. } break;
  13458. }
  13459. opt0->grad = ggml_add_impl(ctx,
  13460. opt0->grad,
  13461. grad_v,
  13462. inplace);
  13463. }
  13464. } break;
  13465. case GGML_OP_FLASH_FF:
  13466. {
  13467. GGML_ASSERT(false); // not supported
  13468. } break;
  13469. case GGML_OP_FLASH_ATTN_BACK:
  13470. {
  13471. GGML_ASSERT(false); // not supported
  13472. } break;
  13473. case GGML_OP_WIN_PART:
  13474. case GGML_OP_WIN_UNPART:
  13475. case GGML_OP_MAP_UNARY:
  13476. case GGML_OP_MAP_BINARY:
  13477. case GGML_OP_MAP_CUSTOM1:
  13478. case GGML_OP_MAP_CUSTOM2:
  13479. case GGML_OP_MAP_CUSTOM3:
  13480. {
  13481. GGML_ASSERT(false); // not supported
  13482. } break;
  13483. case GGML_OP_CROSS_ENTROPY_LOSS:
  13484. {
  13485. if (src0->grad) {
  13486. src0->grad = ggml_add_impl(ctx,
  13487. src0->grad,
  13488. ggml_cross_entropy_loss_back(ctx,
  13489. src0,
  13490. src1,
  13491. tensor->grad),
  13492. inplace);
  13493. }
  13494. } break;
  13495. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13496. {
  13497. GGML_ASSERT(false); // not supported
  13498. } break;
  13499. case GGML_OP_NONE:
  13500. {
  13501. // nop
  13502. } break;
  13503. case GGML_OP_COUNT:
  13504. {
  13505. GGML_ASSERT(false);
  13506. } break;
  13507. }
  13508. }
  13509. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13510. if (node->grad == NULL) {
  13511. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13512. // it can also happen during forward pass, if the user performs computations with constants
  13513. if (node->op != GGML_OP_NONE) {
  13514. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13515. }
  13516. }
  13517. // check if already visited
  13518. for (int i = 0; i < cgraph->n_nodes; i++) {
  13519. if (cgraph->nodes[i] == node) {
  13520. return;
  13521. }
  13522. }
  13523. for (int i = 0; i < cgraph->n_leafs; i++) {
  13524. if (cgraph->leafs[i] == node) {
  13525. return;
  13526. }
  13527. }
  13528. if (node->src0) {
  13529. ggml_visit_parents(cgraph, node->src0);
  13530. }
  13531. if (node->src1) {
  13532. ggml_visit_parents(cgraph, node->src1);
  13533. }
  13534. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  13535. if (node->opt[i]) {
  13536. ggml_visit_parents(cgraph, node->opt[i]);
  13537. }
  13538. }
  13539. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13540. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13541. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13542. if (strlen(node->name) == 0) {
  13543. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13544. }
  13545. cgraph->leafs[cgraph->n_leafs] = node;
  13546. cgraph->n_leafs++;
  13547. } else {
  13548. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13549. if (strlen(node->name) == 0) {
  13550. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13551. }
  13552. cgraph->nodes[cgraph->n_nodes] = node;
  13553. cgraph->grads[cgraph->n_nodes] = node->grad;
  13554. cgraph->n_nodes++;
  13555. }
  13556. }
  13557. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13558. if (!expand) {
  13559. cgraph->n_nodes = 0;
  13560. cgraph->n_leafs = 0;
  13561. }
  13562. const int n0 = cgraph->n_nodes;
  13563. UNUSED(n0);
  13564. ggml_visit_parents(cgraph, tensor);
  13565. const int n_new = cgraph->n_nodes - n0;
  13566. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13567. if (n_new > 0) {
  13568. // the last added node should always be starting point
  13569. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13570. }
  13571. }
  13572. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13573. ggml_build_forward_impl(cgraph, tensor, true);
  13574. }
  13575. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13576. struct ggml_cgraph result = {
  13577. /*.n_nodes =*/ 0,
  13578. /*.n_leafs =*/ 0,
  13579. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  13580. /*.work_size =*/ 0,
  13581. /*.work =*/ NULL,
  13582. /*.nodes =*/ { NULL },
  13583. /*.grads =*/ { NULL },
  13584. /*.leafs =*/ { NULL },
  13585. /*.perf_runs =*/ 0,
  13586. /*.perf_cycles =*/ 0,
  13587. /*.perf_time_us =*/ 0,
  13588. };
  13589. ggml_build_forward_impl(&result, tensor, false);
  13590. return result;
  13591. }
  13592. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13593. struct ggml_cgraph result = *gf;
  13594. GGML_ASSERT(gf->n_nodes > 0);
  13595. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13596. if (keep) {
  13597. for (int i = 0; i < gf->n_nodes; i++) {
  13598. struct ggml_tensor * node = gf->nodes[i];
  13599. if (node->grad) {
  13600. node->grad = ggml_dup_tensor(ctx, node);
  13601. gf->grads[i] = node->grad;
  13602. }
  13603. }
  13604. }
  13605. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13606. struct ggml_tensor * node = gf->nodes[i];
  13607. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13608. if (node->grad) {
  13609. ggml_compute_backward(ctx, node, keep);
  13610. }
  13611. }
  13612. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13613. struct ggml_tensor * node = gf->nodes[i];
  13614. if (node->is_param) {
  13615. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13616. ggml_build_forward_impl(&result, node->grad, true);
  13617. }
  13618. }
  13619. return result;
  13620. }
  13621. //
  13622. // thread data
  13623. //
  13624. // synchronization is done via busy loops
  13625. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13626. //
  13627. #ifdef __APPLE__
  13628. //#include <os/lock.h>
  13629. //
  13630. //typedef os_unfair_lock ggml_lock_t;
  13631. //
  13632. //#define ggml_lock_init(x) UNUSED(x)
  13633. //#define ggml_lock_destroy(x) UNUSED(x)
  13634. //#define ggml_lock_lock os_unfair_lock_lock
  13635. //#define ggml_lock_unlock os_unfair_lock_unlock
  13636. //
  13637. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13638. typedef int ggml_lock_t;
  13639. #define ggml_lock_init(x) UNUSED(x)
  13640. #define ggml_lock_destroy(x) UNUSED(x)
  13641. #define ggml_lock_lock(x) UNUSED(x)
  13642. #define ggml_lock_unlock(x) UNUSED(x)
  13643. #define GGML_LOCK_INITIALIZER 0
  13644. typedef pthread_t ggml_thread_t;
  13645. #define ggml_thread_create pthread_create
  13646. #define ggml_thread_join pthread_join
  13647. #else
  13648. //typedef pthread_spinlock_t ggml_lock_t;
  13649. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13650. //#define ggml_lock_destroy pthread_spin_destroy
  13651. //#define ggml_lock_lock pthread_spin_lock
  13652. //#define ggml_lock_unlock pthread_spin_unlock
  13653. typedef int ggml_lock_t;
  13654. #define ggml_lock_init(x) UNUSED(x)
  13655. #define ggml_lock_destroy(x) UNUSED(x)
  13656. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13657. #define ggml_lock_lock(x) _mm_pause()
  13658. #else
  13659. #define ggml_lock_lock(x) UNUSED(x)
  13660. #endif
  13661. #define ggml_lock_unlock(x) UNUSED(x)
  13662. #define GGML_LOCK_INITIALIZER 0
  13663. typedef pthread_t ggml_thread_t;
  13664. #define ggml_thread_create pthread_create
  13665. #define ggml_thread_join pthread_join
  13666. #endif
  13667. #ifdef __linux__
  13668. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13669. if (!ggml_is_numa()) {
  13670. return;
  13671. }
  13672. // run thread on node_num thread_n / (threads per node)
  13673. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13674. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13675. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13676. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13677. CPU_ZERO_S(setsize, cpus);
  13678. for (size_t i = 0; i < node->n_cpus; ++i) {
  13679. CPU_SET_S(node->cpus[i], setsize, cpus);
  13680. }
  13681. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13682. if (rv) {
  13683. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13684. strerror(rv));
  13685. }
  13686. CPU_FREE(cpus);
  13687. }
  13688. void clear_numa_thread_affinity(void) {
  13689. if (!ggml_is_numa()) {
  13690. return;
  13691. }
  13692. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13693. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13694. CPU_ZERO_S(setsize, cpus);
  13695. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13696. CPU_SET_S(i, setsize, cpus);
  13697. }
  13698. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13699. if (rv) {
  13700. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13701. strerror(rv));
  13702. }
  13703. CPU_FREE(cpus);
  13704. }
  13705. #else
  13706. // TODO: Windows etc.
  13707. // (the linux implementation may also work on BSD, someone should test)
  13708. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13709. void clear_numa_thread_affinity(void) {}
  13710. #endif
  13711. struct ggml_compute_state_shared {
  13712. struct ggml_cgraph * cgraph;
  13713. int64_t perf_node_start_cycles;
  13714. int64_t perf_node_start_time_us;
  13715. int n_threads;
  13716. // synchronization primitives
  13717. atomic_int n_active; // num active threads
  13718. atomic_int node_n; // active graph node
  13719. };
  13720. struct ggml_compute_state {
  13721. ggml_thread_t thrd;
  13722. int ith;
  13723. struct ggml_compute_state_shared * shared;
  13724. };
  13725. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13726. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13727. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13728. node->perf_runs++;
  13729. node->perf_cycles += cycles_cur;
  13730. node->perf_time_us += time_us_cur;
  13731. }
  13732. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13733. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13734. struct ggml_cgraph * cgraph = state->shared->cgraph;
  13735. const int n_threads = state->shared->n_threads;
  13736. set_numa_thread_affinity(state->ith, n_threads);
  13737. int node_n = -1;
  13738. while (true) {
  13739. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13740. // all other threads are finished and spinning
  13741. // do finalize and init here so we don't have synchronize again
  13742. struct ggml_compute_params params = {
  13743. /*.type =*/ GGML_TASK_FINALIZE,
  13744. /*.ith =*/ 0,
  13745. /*.nth =*/ 0,
  13746. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13747. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13748. };
  13749. if (node_n != -1) {
  13750. /* FINALIZE */
  13751. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13752. params.nth = node->n_tasks;
  13753. ggml_compute_forward(&params, node);
  13754. ggml_graph_compute_perf_stats_node(node, state->shared);
  13755. }
  13756. // distribute new work or execute it direct if 1T
  13757. while (++node_n < cgraph->n_nodes) {
  13758. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13759. struct ggml_tensor * node = cgraph->nodes[node_n];
  13760. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13761. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13762. /* INIT */
  13763. params.type = GGML_TASK_INIT;
  13764. params.nth = node->n_tasks;
  13765. ggml_compute_forward(&params, node);
  13766. if (node->n_tasks == 1) {
  13767. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13768. // they do something more efficient than spinning (?)
  13769. params.type = GGML_TASK_COMPUTE;
  13770. ggml_compute_forward(&params, node);
  13771. params.type = GGML_TASK_FINALIZE;
  13772. ggml_compute_forward(&params, node);
  13773. ggml_graph_compute_perf_stats_node(node, state->shared);
  13774. } else {
  13775. break;
  13776. }
  13777. }
  13778. atomic_store(&state->shared->n_active, n_threads);
  13779. atomic_store(&state->shared->node_n, node_n);
  13780. } else {
  13781. // wait for other threads to finish
  13782. const int last = node_n;
  13783. do {
  13784. sched_yield();
  13785. node_n = atomic_load(&state->shared->node_n);
  13786. } while (node_n == last);
  13787. }
  13788. // check if we should stop
  13789. if (node_n >= cgraph->n_nodes) break;
  13790. /* COMPUTE */
  13791. struct ggml_tensor * node = cgraph->nodes[node_n];
  13792. struct ggml_compute_params params = {
  13793. /*.type =*/ GGML_TASK_COMPUTE,
  13794. /*.ith =*/ state->ith,
  13795. /*.nth =*/ node->n_tasks,
  13796. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13797. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13798. };
  13799. if (state->ith < node->n_tasks) {
  13800. ggml_compute_forward(&params, node);
  13801. }
  13802. }
  13803. return 0;
  13804. }
  13805. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13806. const int n_threads = cgraph->n_threads;
  13807. struct ggml_compute_state_shared state_shared = {
  13808. /*.cgraph =*/ cgraph,
  13809. /*.perf_node_start_cycles =*/ 0,
  13810. /*.perf_node_start_time_us =*/ 0,
  13811. /*.n_threads =*/ n_threads,
  13812. /*.n_active =*/ n_threads,
  13813. /*.node_n =*/ -1,
  13814. };
  13815. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13816. // initialize tasks + work buffer
  13817. {
  13818. size_t work_size = 0;
  13819. // thread scheduling for the different operations
  13820. for (int i = 0; i < cgraph->n_nodes; i++) {
  13821. struct ggml_tensor * node = cgraph->nodes[i];
  13822. switch (node->op) {
  13823. case GGML_OP_CPY:
  13824. case GGML_OP_DUP:
  13825. {
  13826. node->n_tasks = n_threads;
  13827. size_t cur = 0;
  13828. if (ggml_is_quantized(node->type)) {
  13829. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13830. }
  13831. work_size = MAX(work_size, cur);
  13832. } break;
  13833. case GGML_OP_ADD:
  13834. case GGML_OP_ADD1:
  13835. {
  13836. node->n_tasks = n_threads;
  13837. size_t cur = 0;
  13838. if (ggml_is_quantized(node->src0->type)) {
  13839. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13840. }
  13841. work_size = MAX(work_size, cur);
  13842. } break;
  13843. case GGML_OP_ACC:
  13844. {
  13845. node->n_tasks = n_threads;
  13846. size_t cur = 0;
  13847. if (ggml_is_quantized(node->src0->type)) {
  13848. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13849. }
  13850. work_size = MAX(work_size, cur);
  13851. } break;
  13852. case GGML_OP_SUB:
  13853. case GGML_OP_DIV:
  13854. case GGML_OP_SQR:
  13855. case GGML_OP_SQRT:
  13856. case GGML_OP_LOG:
  13857. case GGML_OP_SUM:
  13858. case GGML_OP_SUM_ROWS:
  13859. case GGML_OP_MEAN:
  13860. case GGML_OP_REPEAT:
  13861. case GGML_OP_REPEAT_BACK:
  13862. case GGML_OP_ABS:
  13863. case GGML_OP_SGN:
  13864. case GGML_OP_NEG:
  13865. case GGML_OP_STEP:
  13866. case GGML_OP_RELU:
  13867. {
  13868. node->n_tasks = 1;
  13869. } break;
  13870. case GGML_OP_MUL:
  13871. case GGML_OP_GELU:
  13872. case GGML_OP_GELU_QUICK:
  13873. case GGML_OP_SILU:
  13874. case GGML_OP_SILU_BACK:
  13875. case GGML_OP_NORM:
  13876. case GGML_OP_RMS_NORM:
  13877. case GGML_OP_RMS_NORM_BACK:
  13878. {
  13879. node->n_tasks = n_threads;
  13880. } break;
  13881. case GGML_OP_MUL_MAT:
  13882. case GGML_OP_OUT_PROD:
  13883. {
  13884. node->n_tasks = n_threads;
  13885. // TODO: use different scheduling for different matrix sizes
  13886. //const int nr0 = ggml_nrows(node->src0);
  13887. //const int nr1 = ggml_nrows(node->src1);
  13888. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13889. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13890. size_t cur = 0;
  13891. #if defined(GGML_USE_CUBLAS)
  13892. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13893. node->n_tasks = 1; // TODO: this actually is doing nothing
  13894. // the threads are still spinning
  13895. }
  13896. else
  13897. #elif defined(GGML_USE_CLBLAST)
  13898. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13899. node->n_tasks = 1; // TODO: this actually is doing nothing
  13900. // the threads are still spinning
  13901. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13902. }
  13903. else
  13904. #endif
  13905. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  13906. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13907. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13908. node->n_tasks = 1; // TODO: this actually is doing nothing
  13909. // the threads are still spinning
  13910. // here we need memory just for single 2D matrix from src0
  13911. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13912. } else {
  13913. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13914. }
  13915. #else
  13916. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13917. #endif
  13918. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  13919. cur = 0;
  13920. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13921. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13922. node->n_tasks = 1;
  13923. }
  13924. #endif
  13925. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13926. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13927. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13928. node->n_tasks = 1;
  13929. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13930. } else
  13931. #endif
  13932. {
  13933. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13934. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13935. }
  13936. } else {
  13937. GGML_ASSERT(false);
  13938. }
  13939. work_size = MAX(work_size, cur);
  13940. } break;
  13941. case GGML_OP_SCALE:
  13942. {
  13943. node->n_tasks = 1;
  13944. } break;
  13945. case GGML_OP_SET:
  13946. case GGML_OP_CONT:
  13947. case GGML_OP_RESHAPE:
  13948. case GGML_OP_VIEW:
  13949. case GGML_OP_PERMUTE:
  13950. case GGML_OP_TRANSPOSE:
  13951. case GGML_OP_GET_ROWS:
  13952. case GGML_OP_GET_ROWS_BACK:
  13953. case GGML_OP_DIAG:
  13954. case GGML_OP_DIAG_MASK_ZERO:
  13955. {
  13956. node->n_tasks = 1;
  13957. } break;
  13958. case GGML_OP_DIAG_MASK_INF:
  13959. case GGML_OP_SOFT_MAX:
  13960. case GGML_OP_SOFT_MAX_BACK:
  13961. case GGML_OP_ROPE:
  13962. case GGML_OP_ROPE_BACK:
  13963. {
  13964. node->n_tasks = n_threads;
  13965. } break;
  13966. case GGML_OP_ALIBI:
  13967. {
  13968. node->n_tasks = 1; //TODO
  13969. } break;
  13970. case GGML_OP_CLAMP:
  13971. {
  13972. node->n_tasks = 1; //TODO
  13973. } break;
  13974. case GGML_OP_CONV_1D_S1_PH:
  13975. case GGML_OP_CONV_1D_S2_PH:
  13976. {
  13977. node->n_tasks = n_threads;
  13978. GGML_ASSERT(node->src0->ne[3] == 1);
  13979. GGML_ASSERT(node->src1->ne[2] == 1);
  13980. GGML_ASSERT(node->src1->ne[3] == 1);
  13981. size_t cur = 0;
  13982. const int nk = node->src0->ne[0];
  13983. if (node->src0->type == GGML_TYPE_F16 &&
  13984. node->src1->type == GGML_TYPE_F32) {
  13985. cur = sizeof(ggml_fp16_t)*(
  13986. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13987. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13988. );
  13989. } else if (node->src0->type == GGML_TYPE_F32 &&
  13990. node->src1->type == GGML_TYPE_F32) {
  13991. cur = sizeof(float)*(
  13992. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13993. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13994. );
  13995. } else {
  13996. GGML_ASSERT(false);
  13997. }
  13998. work_size = MAX(work_size, cur);
  13999. } break;
  14000. case GGML_OP_CONV_2D_SK_P0:
  14001. {
  14002. node->n_tasks = n_threads;
  14003. GGML_ASSERT(node->src1->ne[3] == 1);
  14004. const int64_t ne00 = node->src0->ne[0]; // W
  14005. const int64_t ne01 = node->src0->ne[1]; // H
  14006. const int64_t ne02 = node->src0->ne[2]; // C
  14007. const int64_t ne03 = node->src0->ne[3]; // N
  14008. const int64_t ne10 = node->src1->ne[0]; // W
  14009. const int64_t ne11 = node->src1->ne[1]; // H
  14010. const int64_t ne12 = node->src1->ne[2]; // C
  14011. const int64_t nk = ne00*ne01;
  14012. UNUSED(ne02);
  14013. UNUSED(ne03);
  14014. UNUSED(nk);
  14015. size_t cur = 0;
  14016. if (node->src0->type == GGML_TYPE_F16 &&
  14017. node->src1->type == GGML_TYPE_F32) {
  14018. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  14019. } else if (node->src0->type == GGML_TYPE_F32 &&
  14020. node->src1->type == GGML_TYPE_F32) {
  14021. cur = sizeof(float)* (ne10*ne11*ne12);
  14022. } else {
  14023. GGML_ASSERT(false);
  14024. }
  14025. work_size = MAX(work_size, cur);
  14026. } break;
  14027. case GGML_OP_FLASH_ATTN:
  14028. {
  14029. node->n_tasks = n_threads;
  14030. size_t cur = 0;
  14031. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  14032. if (node->src1->type == GGML_TYPE_F32) {
  14033. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  14034. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  14035. }
  14036. if (node->src1->type == GGML_TYPE_F16) {
  14037. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  14038. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  14039. }
  14040. work_size = MAX(work_size, cur);
  14041. } break;
  14042. case GGML_OP_FLASH_FF:
  14043. {
  14044. node->n_tasks = n_threads;
  14045. size_t cur = 0;
  14046. if (node->src1->type == GGML_TYPE_F32) {
  14047. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  14048. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  14049. }
  14050. if (node->src1->type == GGML_TYPE_F16) {
  14051. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  14052. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  14053. }
  14054. work_size = MAX(work_size, cur);
  14055. } break;
  14056. case GGML_OP_FLASH_ATTN_BACK:
  14057. {
  14058. node->n_tasks = n_threads;
  14059. size_t cur = 0;
  14060. const int64_t D = node->src0->ne[0];
  14061. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  14062. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14063. if (node->src1->type == GGML_TYPE_F32) {
  14064. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  14065. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  14066. }
  14067. if (node->src1->type == GGML_TYPE_F16) {
  14068. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  14069. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  14070. }
  14071. work_size = MAX(work_size, cur);
  14072. } break;
  14073. case GGML_OP_WIN_PART:
  14074. case GGML_OP_WIN_UNPART:
  14075. case GGML_OP_MAP_UNARY:
  14076. case GGML_OP_MAP_BINARY:
  14077. case GGML_OP_MAP_CUSTOM1:
  14078. case GGML_OP_MAP_CUSTOM2:
  14079. case GGML_OP_MAP_CUSTOM3:
  14080. {
  14081. node->n_tasks = 1;
  14082. } break;
  14083. case GGML_OP_CROSS_ENTROPY_LOSS:
  14084. {
  14085. node->n_tasks = n_threads;
  14086. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  14087. work_size = MAX(work_size, cur);
  14088. } break;
  14089. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14090. {
  14091. node->n_tasks = n_threads;
  14092. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  14093. work_size = MAX(work_size, cur);
  14094. } break;
  14095. case GGML_OP_NONE:
  14096. {
  14097. node->n_tasks = 1;
  14098. } break;
  14099. case GGML_OP_COUNT:
  14100. {
  14101. GGML_ASSERT(false);
  14102. } break;
  14103. }
  14104. }
  14105. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  14106. GGML_ASSERT(false); // TODO: better handling
  14107. }
  14108. if (work_size > 0 && cgraph->work == NULL) {
  14109. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  14110. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  14111. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  14112. }
  14113. }
  14114. // create thread pool
  14115. if (n_threads > 1) {
  14116. for (int j = 1; j < n_threads; ++j) {
  14117. workers[j] = (struct ggml_compute_state) {
  14118. .thrd = 0,
  14119. .ith = j,
  14120. .shared = &state_shared,
  14121. };
  14122. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14123. GGML_ASSERT(rc == 0);
  14124. }
  14125. }
  14126. workers[0].ith = 0;
  14127. workers[0].shared = &state_shared;
  14128. const int64_t perf_start_cycles = ggml_perf_cycles();
  14129. const int64_t perf_start_time_us = ggml_perf_time_us();
  14130. // this is a work thread too
  14131. ggml_graph_compute_thread(&workers[0]);
  14132. // don't leave affinity set on the main thread
  14133. clear_numa_thread_affinity();
  14134. // join thread pool
  14135. if (n_threads > 1) {
  14136. for (int j = 1; j < n_threads; j++) {
  14137. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14138. GGML_ASSERT(rc == 0);
  14139. }
  14140. }
  14141. // performance stats (graph)
  14142. {
  14143. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14144. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14145. cgraph->perf_runs++;
  14146. cgraph->perf_cycles += perf_cycles_cur;
  14147. cgraph->perf_time_us += perf_time_us_cur;
  14148. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14149. __func__, cgraph->perf_runs,
  14150. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14151. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14152. (double) perf_time_us_cur / 1000.0,
  14153. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14154. }
  14155. }
  14156. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14157. for (int i = 0; i < cgraph->n_nodes; i++) {
  14158. struct ggml_tensor * grad = cgraph->grads[i];
  14159. if (grad) {
  14160. ggml_set_zero(grad);
  14161. }
  14162. }
  14163. }
  14164. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14165. for (int i = 0; i < cgraph->n_leafs; i++) {
  14166. struct ggml_tensor * leaf = cgraph->leafs[i];
  14167. if (strcmp(leaf->name, name) == 0) {
  14168. return leaf;
  14169. }
  14170. }
  14171. for (int i = 0; i < cgraph->n_nodes; i++) {
  14172. struct ggml_tensor * node = cgraph->nodes[i];
  14173. if (strcmp(node->name, name) == 0) {
  14174. return node;
  14175. }
  14176. }
  14177. return NULL;
  14178. }
  14179. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14180. const int64_t * ne = tensor->ne;
  14181. const size_t * nb = tensor->nb;
  14182. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14183. ggml_type_name(tensor->type),
  14184. ggml_op_name (tensor->op),
  14185. tensor->n_dims,
  14186. ne[0], ne[1], ne[2], ne[3],
  14187. nb[0], nb[1], nb[2], nb[3],
  14188. tensor->data,
  14189. tensor->name);
  14190. }
  14191. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14192. const int64_t * ne = tensor->ne;
  14193. const size_t * nb = tensor->nb;
  14194. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  14195. arg,
  14196. ggml_type_name(tensor->type),
  14197. ggml_op_name (tensor->op),
  14198. tensor->n_dims,
  14199. ne[0], ne[1], ne[2], ne[3],
  14200. nb[0], nb[1], nb[2], nb[3],
  14201. tensor->n_tasks,
  14202. tensor->data,
  14203. tensor->name);
  14204. }
  14205. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14206. //assert(cgraph->work == NULL);
  14207. //assert(cgraph->work_size == 0);
  14208. uint64_t size_eval = 0;
  14209. // compute size of intermediate results
  14210. // TODO: does not take into account scratch buffers !!!!
  14211. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14212. size_eval += ggml_nbytes(cgraph->nodes[i]);
  14213. }
  14214. // print
  14215. {
  14216. FILE * fout = stdout;
  14217. fprintf(fout, "\n");
  14218. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14219. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14220. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14221. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14222. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14223. // header
  14224. fprintf(fout, "\n");
  14225. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14226. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14227. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14228. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14229. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14230. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  14231. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  14232. }
  14233. // header
  14234. fprintf(fout, "\n");
  14235. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14236. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14237. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14238. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14239. if (cgraph->nodes[i]->src0) {
  14240. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  14241. }
  14242. if (cgraph->nodes[i]->src1) {
  14243. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  14244. }
  14245. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14246. if (cgraph->nodes[i]->opt[j]) {
  14247. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  14248. }
  14249. }
  14250. fprintf(fout, "\n");
  14251. }
  14252. fprintf(fout, "\n");
  14253. }
  14254. // write binary data
  14255. {
  14256. FILE * fout = fopen(fname, "wb");
  14257. if (!fout) {
  14258. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14259. return;
  14260. }
  14261. // header
  14262. {
  14263. const uint32_t magic = GGML_FILE_MAGIC;
  14264. const uint32_t version = GGML_FILE_VERSION;
  14265. const uint32_t n_leafs = cgraph->n_leafs;
  14266. const uint32_t nodes = cgraph->n_nodes;
  14267. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14268. fwrite(&version, sizeof(uint32_t), 1, fout);
  14269. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14270. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14271. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14272. }
  14273. // leafs
  14274. {
  14275. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14276. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14277. const uint32_t type = tensor->type;
  14278. const uint32_t op = tensor->op;
  14279. const uint32_t n_dims = tensor->n_dims;
  14280. fwrite(&type, sizeof(uint32_t), 1, fout);
  14281. fwrite(&op, sizeof(uint32_t), 1, fout);
  14282. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14283. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14284. const uint64_t ne = tensor->ne[j];
  14285. const uint64_t nb = tensor->nb[j];
  14286. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14287. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14288. }
  14289. // store the pointer address
  14290. {
  14291. const uint64_t ptr = (uint64_t) tensor->data;
  14292. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14293. }
  14294. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14295. // dump the data
  14296. // TODO: pad this to 32 byte boundary
  14297. {
  14298. const size_t size = ggml_nbytes(tensor);
  14299. fwrite(tensor->data, sizeof(char), size, fout);
  14300. }
  14301. }
  14302. }
  14303. // nodes
  14304. {
  14305. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14306. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14307. const uint32_t type = tensor->type;
  14308. const uint32_t op = tensor->op;
  14309. const uint32_t n_dims = tensor->n_dims;
  14310. fwrite(&type, sizeof(uint32_t), 1, fout);
  14311. fwrite(&op, sizeof(uint32_t), 1, fout);
  14312. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14313. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14314. const uint64_t ne = tensor->ne[j];
  14315. const uint64_t nb = tensor->nb[j];
  14316. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14317. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14318. }
  14319. // store the pointer address
  14320. {
  14321. const uint64_t ptr = (uint64_t) tensor->data;
  14322. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14323. }
  14324. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14325. // output the op arguments
  14326. {
  14327. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14328. args[0] = tensor->src0;
  14329. args[1] = tensor->src1;
  14330. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14331. args[2 + j] = tensor->opt[j];
  14332. }
  14333. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14334. if (args[j]) {
  14335. int32_t idx = -1;
  14336. // check if leaf
  14337. {
  14338. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14339. if (args[j] == cgraph->leafs[k]) {
  14340. idx = k;
  14341. break;
  14342. }
  14343. }
  14344. }
  14345. // check if node
  14346. if (idx == -1) {
  14347. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14348. if (args[j] == cgraph->nodes[k]) {
  14349. idx = GGML_MAX_NODES + k;
  14350. break;
  14351. }
  14352. }
  14353. }
  14354. if (idx == -1) {
  14355. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14356. return;
  14357. }
  14358. fwrite(&idx, sizeof(int32_t), 1, fout);
  14359. } else {
  14360. const int32_t nul = -1;
  14361. fwrite(&nul, sizeof(int32_t), 1, fout);
  14362. }
  14363. }
  14364. }
  14365. }
  14366. }
  14367. fclose(fout);
  14368. }
  14369. }
  14370. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14371. assert(*ctx_data == NULL);
  14372. assert(*ctx_eval == NULL);
  14373. struct ggml_cgraph result = { 0 };
  14374. struct ggml_tensor * data = NULL;
  14375. // read file into data
  14376. {
  14377. FILE * fin = fopen(fname, "rb");
  14378. if (!fin) {
  14379. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14380. return result;
  14381. }
  14382. size_t fsize = 0;
  14383. fseek(fin, 0, SEEK_END);
  14384. fsize = ftell(fin);
  14385. fseek(fin, 0, SEEK_SET);
  14386. // create the data context
  14387. {
  14388. const size_t overhead = 1*ggml_tensor_overhead();
  14389. struct ggml_init_params params = {
  14390. .mem_size = fsize + overhead,
  14391. .mem_buffer = NULL,
  14392. .no_alloc = false,
  14393. };
  14394. *ctx_data = ggml_init(params);
  14395. if (!*ctx_data) {
  14396. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14397. fclose(fin);
  14398. return result;
  14399. }
  14400. }
  14401. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14402. {
  14403. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14404. if (ret != fsize) {
  14405. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14406. fclose(fin);
  14407. return result;
  14408. }
  14409. }
  14410. fclose(fin);
  14411. }
  14412. // populate result
  14413. {
  14414. char * ptr = (char *) data->data;
  14415. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14416. if (magic != GGML_FILE_MAGIC) {
  14417. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14418. return result;
  14419. }
  14420. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14421. if (version != GGML_FILE_VERSION) {
  14422. fprintf(stderr, "%s: invalid version number\n", __func__);
  14423. return result;
  14424. }
  14425. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14426. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14427. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14428. result.n_leafs = n_leafs;
  14429. result.n_nodes = n_nodes;
  14430. // create the data context
  14431. {
  14432. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14433. struct ggml_init_params params = {
  14434. .mem_size = size_eval + overhead,
  14435. .mem_buffer = NULL,
  14436. .no_alloc = true,
  14437. };
  14438. *ctx_eval = ggml_init(params);
  14439. if (!*ctx_eval) {
  14440. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14441. return result;
  14442. }
  14443. }
  14444. // leafs
  14445. {
  14446. uint32_t type;
  14447. uint32_t op;
  14448. uint32_t n_dims;
  14449. for (uint32_t i = 0; i < n_leafs; ++i) {
  14450. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14451. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14452. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14453. int64_t ne[GGML_MAX_DIMS];
  14454. size_t nb[GGML_MAX_DIMS];
  14455. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14456. uint64_t ne_cur;
  14457. uint64_t nb_cur;
  14458. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14459. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14460. ne[j] = ne_cur;
  14461. nb[j] = nb_cur;
  14462. }
  14463. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14464. tensor->op = (enum ggml_op) op;
  14465. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  14466. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14467. tensor->data = (void *) ptr;
  14468. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14469. tensor->nb[j] = nb[j];
  14470. }
  14471. result.leafs[i] = tensor;
  14472. ptr += ggml_nbytes(tensor);
  14473. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14474. }
  14475. }
  14476. ggml_set_no_alloc(*ctx_eval, false);
  14477. // nodes
  14478. {
  14479. uint32_t type;
  14480. uint32_t op;
  14481. uint32_t n_dims;
  14482. for (uint32_t i = 0; i < n_nodes; ++i) {
  14483. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14484. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14485. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14486. enum ggml_op eop = (enum ggml_op) op;
  14487. int64_t ne[GGML_MAX_DIMS];
  14488. size_t nb[GGML_MAX_DIMS];
  14489. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14490. uint64_t ne_cur;
  14491. uint64_t nb_cur;
  14492. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14493. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14494. ne[j] = ne_cur;
  14495. nb[j] = nb_cur;
  14496. }
  14497. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  14498. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14499. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  14500. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14501. // parse args
  14502. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14503. const int32_t arg_idx = ptr_arg_idx[j];
  14504. if (arg_idx == -1) {
  14505. continue;
  14506. }
  14507. if (arg_idx < GGML_MAX_NODES) {
  14508. args[j] = result.leafs[arg_idx];
  14509. } else {
  14510. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14511. }
  14512. }
  14513. // create the tensor
  14514. // "view" operations are handled differently
  14515. // TODO: handle inplace ops - currently a copy is always made
  14516. struct ggml_tensor * tensor = NULL;
  14517. switch (eop) {
  14518. // TODO: implement other view ops
  14519. case GGML_OP_RESHAPE:
  14520. {
  14521. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14522. } break;
  14523. case GGML_OP_VIEW:
  14524. {
  14525. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14526. uint64_t offs;
  14527. memcpy(&offs, args[2]->data, sizeof(offs));
  14528. tensor->data = ((char *) tensor->data) + offs;
  14529. } break;
  14530. case GGML_OP_TRANSPOSE:
  14531. {
  14532. tensor = ggml_transpose(*ctx_eval, args[0]);
  14533. } break;
  14534. case GGML_OP_PERMUTE:
  14535. {
  14536. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14537. } break;
  14538. default:
  14539. {
  14540. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14541. tensor->op = eop;
  14542. } break;
  14543. }
  14544. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14545. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14546. tensor->nb[j] = nb[j];
  14547. }
  14548. tensor->src0 = args[0];
  14549. tensor->src1 = args[1];
  14550. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14551. tensor->opt[j] = args[2 + j];
  14552. }
  14553. result.nodes[i] = tensor;
  14554. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14555. }
  14556. }
  14557. }
  14558. return result;
  14559. }
  14560. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14561. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14562. GGML_PRINT("=== GRAPH ===\n");
  14563. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14564. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14565. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14566. for (int i = 0; i < cgraph->n_nodes; i++) {
  14567. struct ggml_tensor * node = cgraph->nodes[i];
  14568. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14569. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14570. i,
  14571. node->ne[0], node->ne[1], node->ne[2],
  14572. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14573. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14574. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14575. (double) node->perf_time_us / 1000.0,
  14576. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14577. }
  14578. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14579. for (int i = 0; i < cgraph->n_leafs; i++) {
  14580. struct ggml_tensor * node = cgraph->leafs[i];
  14581. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14582. i,
  14583. node->ne[0], node->ne[1],
  14584. GGML_OP_NAME[node->op]);
  14585. }
  14586. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14587. if (perf_total_per_op_us[i] == 0) {
  14588. continue;
  14589. }
  14590. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14591. }
  14592. GGML_PRINT("========================================\n");
  14593. }
  14594. // check if node is part of the graph
  14595. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14596. if (cgraph == NULL) {
  14597. return true;
  14598. }
  14599. for (int i = 0; i < cgraph->n_nodes; i++) {
  14600. if (cgraph->nodes[i] == node) {
  14601. return true;
  14602. }
  14603. }
  14604. return false;
  14605. }
  14606. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14607. for (int i = 0; i < cgraph->n_nodes; i++) {
  14608. struct ggml_tensor * parent = cgraph->nodes[i];
  14609. if (parent->grad == node) {
  14610. return parent;
  14611. }
  14612. }
  14613. return NULL;
  14614. }
  14615. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14616. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14617. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14618. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14619. gparent0 ? (void *) gparent0 : (void *) parent,
  14620. gparent0 ? "g" : "x",
  14621. gparent ? (void *) gparent : (void *) node,
  14622. gparent ? "g" : "x",
  14623. gparent ? "empty" : "vee",
  14624. gparent ? "dashed" : "solid",
  14625. label);
  14626. }
  14627. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14628. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14629. (void *) parent, "x",
  14630. (void *) node, "x",
  14631. label);
  14632. }
  14633. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14634. char color[16];
  14635. FILE * fp = fopen(filename, "w");
  14636. GGML_ASSERT(fp);
  14637. fprintf(fp, "digraph G {\n");
  14638. fprintf(fp, " newrank = true;\n");
  14639. fprintf(fp, " rankdir = LR;\n");
  14640. for (int i = 0; i < gb->n_nodes; i++) {
  14641. struct ggml_tensor * node = gb->nodes[i];
  14642. if (ggml_graph_get_parent(gb, node) != NULL) {
  14643. continue;
  14644. }
  14645. if (node->is_param) {
  14646. snprintf(color, sizeof(color), "yellow");
  14647. } else if (node->grad) {
  14648. if (ggml_graph_find(gf, node)) {
  14649. snprintf(color, sizeof(color), "green");
  14650. } else {
  14651. snprintf(color, sizeof(color), "lightblue");
  14652. }
  14653. } else {
  14654. snprintf(color, sizeof(color), "white");
  14655. }
  14656. fprintf(fp, " \"%p\" [ "
  14657. "style = filled; fillcolor = %s; shape = record; "
  14658. "label=\"",
  14659. (void *) node, color);
  14660. if (strlen(node->name) > 0) {
  14661. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14662. } else {
  14663. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14664. }
  14665. if (node->n_dims == 2) {
  14666. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14667. } else {
  14668. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14669. }
  14670. if (node->grad) {
  14671. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14672. } else {
  14673. fprintf(fp, "\"; ]\n");
  14674. }
  14675. }
  14676. for (int i = 0; i < gb->n_leafs; i++) {
  14677. struct ggml_tensor * node = gb->leafs[i];
  14678. snprintf(color, sizeof(color), "pink");
  14679. fprintf(fp, " \"%p\" [ "
  14680. "style = filled; fillcolor = %s; shape = record; "
  14681. "label=\"<x>",
  14682. (void *) node, color);
  14683. if (strlen(node->name) > 0) {
  14684. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14685. } else {
  14686. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14687. }
  14688. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14689. if (ggml_nelements(node) < 5) {
  14690. fprintf(fp, " | (");
  14691. for (int j = 0; j < ggml_nelements(node); j++) {
  14692. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14693. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14694. }
  14695. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14696. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14697. }
  14698. else {
  14699. fprintf(fp, "#");
  14700. }
  14701. if (j < ggml_nelements(node) - 1) {
  14702. fprintf(fp, ", ");
  14703. }
  14704. }
  14705. fprintf(fp, ")");
  14706. }
  14707. fprintf(fp, "\"; ]\n");
  14708. }
  14709. for (int i = 0; i < gb->n_nodes; i++) {
  14710. struct ggml_tensor * node = gb->nodes[i];
  14711. if (node->src0) {
  14712. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14713. }
  14714. if (node->src1) {
  14715. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14716. }
  14717. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14718. if (node->opt[j]) {
  14719. char label[16];
  14720. snprintf(label, sizeof(label), "opt %d", j);
  14721. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14722. }
  14723. }
  14724. }
  14725. for (int i = 0; i < gb->n_leafs; i++) {
  14726. struct ggml_tensor * node = gb->leafs[i];
  14727. if (node->src0) {
  14728. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14729. }
  14730. if (node->src1) {
  14731. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14732. }
  14733. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14734. if (node->opt[j]) {
  14735. char label[16];
  14736. snprintf(label, sizeof(label), "opt %d", j);
  14737. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14738. }
  14739. }
  14740. }
  14741. fprintf(fp, "}\n");
  14742. fclose(fp);
  14743. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14744. }
  14745. ////////////////////////////////////////////////////////////////////////////////
  14746. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14747. int i = 0;
  14748. for (int p = 0; p < np; ++p) {
  14749. const int64_t ne = ggml_nelements(ps[p]) ;
  14750. // TODO: add function to set tensor from array
  14751. for (int64_t j = 0; j < ne; ++j) {
  14752. ggml_set_f32_1d(ps[p], j, x[i++]);
  14753. }
  14754. }
  14755. }
  14756. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14757. int i = 0;
  14758. for (int p = 0; p < np; ++p) {
  14759. const int64_t ne = ggml_nelements(ps[p]) ;
  14760. // TODO: add function to get all elements at once
  14761. for (int64_t j = 0; j < ne; ++j) {
  14762. x[i++] = ggml_get_f32_1d(ps[p], j);
  14763. }
  14764. }
  14765. }
  14766. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14767. int i = 0;
  14768. for (int p = 0; p < np; ++p) {
  14769. const int64_t ne = ggml_nelements(ps[p]) ;
  14770. // TODO: add function to get all elements at once
  14771. for (int64_t j = 0; j < ne; ++j) {
  14772. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14773. }
  14774. }
  14775. }
  14776. //
  14777. // ADAM
  14778. //
  14779. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14780. //
  14781. static enum ggml_opt_result ggml_opt_adam(
  14782. struct ggml_context * ctx,
  14783. struct ggml_opt_context * opt,
  14784. struct ggml_opt_params params,
  14785. struct ggml_tensor * f,
  14786. struct ggml_cgraph * gf,
  14787. struct ggml_cgraph * gb) {
  14788. GGML_ASSERT(ggml_is_scalar(f));
  14789. gf->n_threads = params.n_threads;
  14790. gb->n_threads = params.n_threads;
  14791. // these will store the parameters we want to optimize
  14792. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14793. int np = 0;
  14794. int nx = 0;
  14795. for (int i = 0; i < gf->n_nodes; ++i) {
  14796. if (gf->nodes[i]->is_param) {
  14797. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14798. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14799. ps[np++] = gf->nodes[i];
  14800. nx += ggml_nelements(gf->nodes[i]);
  14801. }
  14802. }
  14803. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14804. int iter = opt->iter;
  14805. ggml_opt_init(opt->ctx, opt, params, nx);
  14806. opt->iter = iter;
  14807. }
  14808. // constants
  14809. const float sched = params.adam.sched;
  14810. const float decay = params.adam.decay * sched;
  14811. const float alpha = params.adam.alpha * sched;
  14812. const float beta1 = params.adam.beta1;
  14813. const float beta2 = params.adam.beta2;
  14814. const float eps = params.adam.eps;
  14815. float * x = opt->adam.x->data; // view of the parameters
  14816. float * g1 = opt->adam.g1->data; // gradient
  14817. float * g2 = opt->adam.g2->data; // gradient squared
  14818. float * m = opt->adam.m->data; // first moment
  14819. float * v = opt->adam.v->data; // second moment
  14820. float * mh = opt->adam.mh->data; // first moment hat
  14821. float * vh = opt->adam.vh->data; // second moment hat
  14822. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14823. // update view
  14824. ggml_opt_get_params(np, ps, x);
  14825. // compute the function value
  14826. ggml_graph_reset (gf);
  14827. ggml_set_f32 (f->grad, 1.0f);
  14828. ggml_graph_compute(ctx, gb);
  14829. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14830. opt->adam.fx_best = opt->adam.fx_prev;
  14831. if (pf) {
  14832. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14833. }
  14834. // initialize
  14835. if (opt->just_initialized) {
  14836. opt->adam.n_no_improvement = 0;
  14837. opt->just_initialized = false;
  14838. }
  14839. float * fx_best = &opt->adam.fx_best;
  14840. float * fx_prev = &opt->adam.fx_prev;
  14841. int * n_no_improvement = &opt->adam.n_no_improvement;
  14842. int iter0 = opt->iter;
  14843. // run the optimizer
  14844. for (int t = 0; t < params.adam.n_iter; ++t) {
  14845. opt->iter = iter0 + t + 1;
  14846. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14847. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14848. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14849. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14850. for (int i = 0; i < np; ++i) {
  14851. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14852. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14853. }
  14854. const int64_t t_start_wall = ggml_time_us();
  14855. const int64_t t_start_cpu = ggml_cycles();
  14856. UNUSED(t_start_wall);
  14857. UNUSED(t_start_cpu);
  14858. {
  14859. // update the gradient
  14860. ggml_opt_get_grad(np, ps, g1);
  14861. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14862. ggml_vec_scale_f32(nx, m, beta1);
  14863. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14864. // g2 = g1^2
  14865. ggml_vec_sqr_f32 (nx, g2, g1);
  14866. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14867. ggml_vec_scale_f32(nx, v, beta2);
  14868. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14869. // m^hat = m_t / (1 - beta1^t)
  14870. // v^hat = v_t / (1 - beta2^t)
  14871. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14872. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14873. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14874. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14875. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14876. ggml_vec_cpy_f32 (nx, mh, m);
  14877. ggml_vec_cpy_f32 (nx, vh, v);
  14878. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14879. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14880. ggml_vec_sqrt_f32 (nx, vh, vh);
  14881. ggml_vec_acc1_f32 (nx, vh, eps);
  14882. ggml_vec_div_f32 (nx, mh, mh, vh);
  14883. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14884. ggml_vec_sub_f32 (nx, x, x, mh);
  14885. // update the parameters
  14886. ggml_opt_set_params(np, ps, x);
  14887. }
  14888. ggml_graph_reset (gf);
  14889. ggml_set_f32 (f->grad, 1.0f);
  14890. ggml_graph_compute(ctx, gb);
  14891. const float fx = ggml_get_f32_1d(f, 0);
  14892. // check convergence
  14893. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14894. GGML_PRINT_DEBUG("converged\n");
  14895. return GGML_OPT_OK;
  14896. }
  14897. // delta-based convergence test
  14898. if (pf != NULL) {
  14899. // need at least params.past iterations to start checking for convergence
  14900. if (params.past <= iter0 + t) {
  14901. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14902. if (fabsf(rate) < params.delta) {
  14903. return GGML_OPT_OK;
  14904. }
  14905. }
  14906. pf[(iter0 + t)%params.past] = fx;
  14907. }
  14908. // check for improvement
  14909. if (params.max_no_improvement > 0) {
  14910. if (fx_best[0] > fx) {
  14911. fx_best[0] = fx;
  14912. n_no_improvement[0] = 0;
  14913. } else {
  14914. ++n_no_improvement[0];
  14915. if (n_no_improvement[0] >= params.max_no_improvement) {
  14916. return GGML_OPT_OK;
  14917. }
  14918. }
  14919. }
  14920. fx_prev[0] = fx;
  14921. {
  14922. const int64_t t_end_cpu = ggml_cycles();
  14923. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14924. UNUSED(t_end_cpu);
  14925. const int64_t t_end_wall = ggml_time_us();
  14926. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14927. UNUSED(t_end_wall);
  14928. }
  14929. }
  14930. return GGML_OPT_DID_NOT_CONVERGE;
  14931. }
  14932. //
  14933. // L-BFGS
  14934. //
  14935. // the L-BFGS implementation below is based on the following implementation:
  14936. //
  14937. // https://github.com/chokkan/liblbfgs
  14938. //
  14939. struct ggml_lbfgs_iteration_data {
  14940. float alpha;
  14941. float ys;
  14942. float * s;
  14943. float * y;
  14944. };
  14945. static enum ggml_opt_result linesearch_backtracking(
  14946. struct ggml_context * ctx,
  14947. const struct ggml_opt_params * params,
  14948. int nx,
  14949. float * x,
  14950. float * fx,
  14951. float * g,
  14952. float * d,
  14953. float * step,
  14954. const float * xp,
  14955. struct ggml_tensor * f,
  14956. struct ggml_cgraph * gf,
  14957. struct ggml_cgraph * gb,
  14958. const int np,
  14959. struct ggml_tensor * ps[]) {
  14960. int count = 0;
  14961. float width = 0.0f;
  14962. float dg = 0.0f;
  14963. float finit = 0.0f;
  14964. float dginit = 0.0f;
  14965. float dgtest = 0.0f;
  14966. const float dec = 0.5f;
  14967. const float inc = 2.1f;
  14968. if (*step <= 0.f) {
  14969. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14970. }
  14971. // compute the initial gradient in the search direction
  14972. ggml_vec_dot_f32(nx, &dginit, g, d);
  14973. // make sure that d points to a descent direction
  14974. if (0 < dginit) {
  14975. return GGML_LINESEARCH_FAIL;
  14976. }
  14977. // initialize local variables
  14978. finit = *fx;
  14979. dgtest = params->lbfgs.ftol*dginit;
  14980. while (true) {
  14981. ggml_vec_cpy_f32(nx, x, xp);
  14982. ggml_vec_mad_f32(nx, x, d, *step);
  14983. // evaluate the function and gradient values
  14984. {
  14985. ggml_opt_set_params(np, ps, x);
  14986. ggml_graph_reset (gf);
  14987. ggml_set_f32 (f->grad, 1.0f);
  14988. ggml_graph_compute(ctx, gb);
  14989. ggml_opt_get_grad(np, ps, g);
  14990. *fx = ggml_get_f32_1d(f, 0);
  14991. }
  14992. ++count;
  14993. if (*fx > finit + (*step)*dgtest) {
  14994. width = dec;
  14995. } else {
  14996. // Armijo condition is satisfied
  14997. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14998. return count;
  14999. }
  15000. ggml_vec_dot_f32(nx, &dg, g, d);
  15001. // check the Wolfe condition
  15002. if (dg < params->lbfgs.wolfe * dginit) {
  15003. width = inc;
  15004. } else {
  15005. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15006. // regular Wolfe conditions
  15007. return count;
  15008. }
  15009. if(dg > -params->lbfgs.wolfe*dginit) {
  15010. width = dec;
  15011. } else {
  15012. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15013. return count;
  15014. }
  15015. return count;
  15016. }
  15017. }
  15018. if (*step < params->lbfgs.min_step) {
  15019. return GGML_LINESEARCH_MINIMUM_STEP;
  15020. }
  15021. if (*step > params->lbfgs.max_step) {
  15022. return GGML_LINESEARCH_MAXIMUM_STEP;
  15023. }
  15024. if (params->lbfgs.max_linesearch <= count) {
  15025. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15026. }
  15027. (*step) *= width;
  15028. }
  15029. return GGML_LINESEARCH_FAIL;
  15030. }
  15031. static enum ggml_opt_result ggml_opt_lbfgs(
  15032. struct ggml_context * ctx,
  15033. struct ggml_opt_context * opt,
  15034. struct ggml_opt_params params,
  15035. struct ggml_tensor * f,
  15036. struct ggml_cgraph * gf,
  15037. struct ggml_cgraph * gb) {
  15038. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15039. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15040. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15041. return GGML_OPT_INVALID_WOLFE;
  15042. }
  15043. }
  15044. gf->n_threads = params.n_threads;
  15045. gb->n_threads = params.n_threads;
  15046. const int m = params.lbfgs.m;
  15047. // these will store the parameters we want to optimize
  15048. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15049. int np = 0;
  15050. int nx = 0;
  15051. for (int i = 0; i < gf->n_nodes; ++i) {
  15052. if (gf->nodes[i]->is_param) {
  15053. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15054. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15055. ps[np++] = gf->nodes[i];
  15056. nx += ggml_nelements(gf->nodes[i]);
  15057. }
  15058. }
  15059. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15060. int iter = opt->iter;
  15061. ggml_opt_init(ctx, opt, params, nx);
  15062. opt->iter = iter;
  15063. }
  15064. float * x = opt->lbfgs.x->data; // current parameters
  15065. float * xp = opt->lbfgs.xp->data; // previous parameters
  15066. float * g = opt->lbfgs.g->data; // current gradient
  15067. float * gp = opt->lbfgs.gp->data; // previous gradient
  15068. float * d = opt->lbfgs.d->data; // search direction
  15069. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15070. float fx = 0.0f; // cost function value
  15071. float xnorm = 0.0f; // ||x||
  15072. float gnorm = 0.0f; // ||g||
  15073. // initialize x from the graph nodes
  15074. ggml_opt_get_params(np, ps, x);
  15075. // the L-BFGS memory
  15076. float * lm_alpha = opt->lbfgs.lmal->data;
  15077. float * lm_ys = opt->lbfgs.lmys->data;
  15078. float * lm_s = opt->lbfgs.lms->data;
  15079. float * lm_y = opt->lbfgs.lmy->data;
  15080. // evaluate the function value and its gradient
  15081. {
  15082. ggml_opt_set_params(np, ps, x);
  15083. ggml_graph_reset (gf);
  15084. ggml_set_f32 (f->grad, 1.0f);
  15085. ggml_graph_compute(ctx, gb);
  15086. ggml_opt_get_grad(np, ps, g);
  15087. fx = ggml_get_f32_1d(f, 0);
  15088. }
  15089. // search direction = -gradient
  15090. ggml_vec_neg_f32(nx, d, g);
  15091. // ||x||, ||g||
  15092. ggml_vec_norm_f32(nx, &xnorm, x);
  15093. ggml_vec_norm_f32(nx, &gnorm, g);
  15094. if (xnorm < 1.0f) {
  15095. xnorm = 1.0f;
  15096. }
  15097. // already optimized
  15098. if (gnorm/xnorm <= params.lbfgs.eps) {
  15099. return GGML_OPT_OK;
  15100. }
  15101. if (opt->just_initialized) {
  15102. if (pf) {
  15103. pf[0] = fx;
  15104. }
  15105. opt->lbfgs.fx_best = fx;
  15106. // initial step
  15107. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15108. opt->lbfgs.j = 0;
  15109. opt->lbfgs.k = 1;
  15110. opt->lbfgs.end = 0;
  15111. opt->lbfgs.n_no_improvement = 0;
  15112. opt->just_initialized = false;
  15113. }
  15114. float * fx_best = &opt->lbfgs.fx_best;
  15115. float * step = &opt->lbfgs.step;
  15116. int * j = &opt->lbfgs.j;
  15117. int * k = &opt->lbfgs.k;
  15118. int * end = &opt->lbfgs.end;
  15119. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15120. int ls = 0;
  15121. int bound = 0;
  15122. float ys = 0.0f;
  15123. float yy = 0.0f;
  15124. float beta = 0.0f;
  15125. int it = 0;
  15126. while (true) {
  15127. // store the current position and gradient vectors
  15128. ggml_vec_cpy_f32(nx, xp, x);
  15129. ggml_vec_cpy_f32(nx, gp, g);
  15130. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  15131. if (ls < 0) {
  15132. // linesearch failed - go back to the previous point and return
  15133. ggml_vec_cpy_f32(nx, x, xp);
  15134. ggml_vec_cpy_f32(nx, g, gp);
  15135. return ls;
  15136. }
  15137. ggml_vec_norm_f32(nx, &xnorm, x);
  15138. ggml_vec_norm_f32(nx, &gnorm, g);
  15139. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15140. if (xnorm < 1.0f) {
  15141. xnorm = 1.0f;
  15142. }
  15143. if (gnorm/xnorm <= params.lbfgs.eps) {
  15144. // converged
  15145. return GGML_OPT_OK;
  15146. }
  15147. // delta-based convergence test
  15148. if (pf != NULL) {
  15149. // need at least params.past iterations to start checking for convergence
  15150. if (params.past <= k[0]) {
  15151. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15152. if (fabsf(rate) < params.delta) {
  15153. return GGML_OPT_OK;
  15154. }
  15155. }
  15156. pf[k[0]%params.past] = fx;
  15157. }
  15158. // check for improvement
  15159. if (params.max_no_improvement > 0) {
  15160. if (fx < fx_best[0]) {
  15161. fx_best[0] = fx;
  15162. n_no_improvement[0] = 0;
  15163. } else {
  15164. n_no_improvement[0]++;
  15165. if (n_no_improvement[0] >= params.max_no_improvement) {
  15166. return GGML_OPT_OK;
  15167. }
  15168. }
  15169. }
  15170. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15171. // reached the maximum number of iterations
  15172. return GGML_OPT_DID_NOT_CONVERGE;
  15173. }
  15174. // update vectors s and y:
  15175. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15176. // y_{k+1} = g_{k+1} - g_{k}.
  15177. //
  15178. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15179. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15180. // compute scalars ys and yy:
  15181. // ys = y^t \cdot s -> 1 / \rho.
  15182. // yy = y^t \cdot y.
  15183. //
  15184. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  15185. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15186. lm_ys[end[0]] = ys;
  15187. // find new search direction
  15188. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15189. bound = (m <= k[0]) ? m : k[0];
  15190. k[0]++;
  15191. it++;
  15192. end[0] = (end[0] + 1)%m;
  15193. // initialize search direction with -g
  15194. ggml_vec_neg_f32(nx, d, g);
  15195. j[0] = end[0];
  15196. for (int i = 0; i < bound; ++i) {
  15197. j[0] = (j[0] + m - 1) % m;
  15198. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15199. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15200. lm_alpha[j[0]] /= lm_ys[j[0]];
  15201. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15202. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15203. }
  15204. ggml_vec_scale_f32(nx, d, ys/yy);
  15205. for (int i = 0; i < bound; ++i) {
  15206. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15207. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15208. beta /= lm_ys[j[0]];
  15209. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15210. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15211. j[0] = (j[0] + 1)%m;
  15212. }
  15213. step[0] = 1.0;
  15214. }
  15215. return GGML_OPT_DID_NOT_CONVERGE;
  15216. }
  15217. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15218. struct ggml_opt_params result;
  15219. switch (type) {
  15220. case GGML_OPT_ADAM:
  15221. {
  15222. result = (struct ggml_opt_params) {
  15223. .type = GGML_OPT_ADAM,
  15224. .n_threads = 1,
  15225. .past = 0,
  15226. .delta = 1e-5f,
  15227. .max_no_improvement = 100,
  15228. .print_forward_graph = true,
  15229. .print_backward_graph = true,
  15230. .adam = {
  15231. .n_iter = 10000,
  15232. .sched = 1.000f,
  15233. .decay = 0.001f,
  15234. .alpha = 0.001f,
  15235. .beta1 = 0.9f,
  15236. .beta2 = 0.999f,
  15237. .eps = 1e-8f,
  15238. .eps_f = 1e-5f,
  15239. .eps_g = 1e-3f,
  15240. },
  15241. };
  15242. } break;
  15243. case GGML_OPT_LBFGS:
  15244. {
  15245. result = (struct ggml_opt_params) {
  15246. .type = GGML_OPT_LBFGS,
  15247. .n_threads = 1,
  15248. .past = 0,
  15249. .delta = 1e-5f,
  15250. .max_no_improvement = 0,
  15251. .print_forward_graph = true,
  15252. .print_backward_graph = true,
  15253. .lbfgs = {
  15254. .m = 6,
  15255. .n_iter = 100,
  15256. .max_linesearch = 20,
  15257. .eps = 1e-5f,
  15258. .ftol = 1e-4f,
  15259. .wolfe = 0.9f,
  15260. .min_step = 1e-20f,
  15261. .max_step = 1e+20f,
  15262. .linesearch = GGML_LINESEARCH_DEFAULT,
  15263. },
  15264. };
  15265. } break;
  15266. }
  15267. return result;
  15268. }
  15269. GGML_API void ggml_opt_init(
  15270. struct ggml_context * ctx,
  15271. struct ggml_opt_context * opt,
  15272. struct ggml_opt_params params,
  15273. int64_t nx) {
  15274. opt->ctx = ctx;
  15275. opt->params = params;
  15276. opt->iter = 0;
  15277. opt->nx = nx;
  15278. opt->just_initialized = true;
  15279. switch (opt->params.type) {
  15280. case GGML_OPT_ADAM:
  15281. {
  15282. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15283. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15284. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15285. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15286. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15287. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15288. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15289. opt->adam.pf = params.past > 0
  15290. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15291. : NULL;
  15292. ggml_set_zero(opt->adam.x);
  15293. ggml_set_zero(opt->adam.g1);
  15294. ggml_set_zero(opt->adam.g2);
  15295. ggml_set_zero(opt->adam.m);
  15296. ggml_set_zero(opt->adam.v);
  15297. ggml_set_zero(opt->adam.mh);
  15298. ggml_set_zero(opt->adam.vh);
  15299. if (opt->adam.pf) {
  15300. ggml_set_zero(opt->adam.pf);
  15301. }
  15302. } break;
  15303. case GGML_OPT_LBFGS:
  15304. {
  15305. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15306. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15307. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15308. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15309. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15310. opt->lbfgs.pf = params.past > 0
  15311. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15312. : NULL;
  15313. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15314. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15315. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15316. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15317. ggml_set_zero(opt->lbfgs.x);
  15318. ggml_set_zero(opt->lbfgs.xp);
  15319. ggml_set_zero(opt->lbfgs.g);
  15320. ggml_set_zero(opt->lbfgs.gp);
  15321. ggml_set_zero(opt->lbfgs.d);
  15322. if (opt->lbfgs.pf) {
  15323. ggml_set_zero(opt->lbfgs.pf);
  15324. }
  15325. ggml_set_zero(opt->lbfgs.lmal);
  15326. ggml_set_zero(opt->lbfgs.lmys);
  15327. ggml_set_zero(opt->lbfgs.lms);
  15328. ggml_set_zero(opt->lbfgs.lmy);
  15329. } break;
  15330. }
  15331. }
  15332. enum ggml_opt_result ggml_opt(
  15333. struct ggml_context * ctx,
  15334. struct ggml_opt_params params,
  15335. struct ggml_tensor * f) {
  15336. bool free_ctx = false;
  15337. if (ctx == NULL) {
  15338. struct ggml_init_params params_ctx = {
  15339. .mem_size = 16*1024*1024,
  15340. .mem_buffer = NULL,
  15341. .no_alloc = false,
  15342. };
  15343. ctx = ggml_init(params_ctx);
  15344. if (ctx == NULL) {
  15345. return GGML_OPT_NO_CONTEXT;
  15346. }
  15347. free_ctx = true;
  15348. }
  15349. enum ggml_opt_result result = GGML_OPT_OK;
  15350. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15351. ggml_opt_init(ctx, opt, params, 0);
  15352. result = ggml_opt_resume(ctx, opt, f);
  15353. if (free_ctx) {
  15354. ggml_free(ctx);
  15355. }
  15356. return result;
  15357. }
  15358. enum ggml_opt_result ggml_opt_resume(
  15359. struct ggml_context * ctx,
  15360. struct ggml_opt_context * opt,
  15361. struct ggml_tensor * f) {
  15362. // build forward + backward compute graphs
  15363. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15364. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15365. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15366. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15367. *gf = ggml_build_forward (f);
  15368. *gb = ggml_build_backward(ctx, gf, true);
  15369. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15370. }
  15371. enum ggml_opt_result ggml_opt_resume_g(
  15372. struct ggml_context * ctx,
  15373. struct ggml_opt_context * opt,
  15374. struct ggml_tensor * f,
  15375. struct ggml_cgraph * gf,
  15376. struct ggml_cgraph * gb) {
  15377. // build forward + backward compute graphs
  15378. enum ggml_opt_result result = GGML_OPT_OK;
  15379. switch (opt->params.type) {
  15380. case GGML_OPT_ADAM:
  15381. {
  15382. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15383. } break;
  15384. case GGML_OPT_LBFGS:
  15385. {
  15386. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15387. } break;
  15388. }
  15389. if (opt->params.print_forward_graph) {
  15390. ggml_graph_print (gf);
  15391. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15392. }
  15393. if (opt->params.print_backward_graph) {
  15394. ggml_graph_print (gb);
  15395. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15396. }
  15397. return result;
  15398. }
  15399. ////////////////////////////////////////////////////////////////////////////////
  15400. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15401. assert(k % QK4_0 == 0);
  15402. const int nb = k / QK4_0;
  15403. for (int b = 0; b < n; b += k) {
  15404. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15405. quantize_row_q4_0_reference(src + b, y, k);
  15406. for (int i = 0; i < nb; i++) {
  15407. for (int j = 0; j < QK4_0; j += 2) {
  15408. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15409. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15410. hist[vi0]++;
  15411. hist[vi1]++;
  15412. }
  15413. }
  15414. }
  15415. return (n/QK4_0*sizeof(block_q4_0));
  15416. }
  15417. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15418. assert(k % QK4_1 == 0);
  15419. const int nb = k / QK4_1;
  15420. for (int b = 0; b < n; b += k) {
  15421. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15422. quantize_row_q4_1_reference(src + b, y, k);
  15423. for (int i = 0; i < nb; i++) {
  15424. for (int j = 0; j < QK4_1; j += 2) {
  15425. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15426. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15427. hist[vi0]++;
  15428. hist[vi1]++;
  15429. }
  15430. }
  15431. }
  15432. return (n/QK4_1*sizeof(block_q4_1));
  15433. }
  15434. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15435. assert(k % QK5_0 == 0);
  15436. const int nb = k / QK5_0;
  15437. for (int b = 0; b < n; b += k) {
  15438. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15439. quantize_row_q5_0_reference(src + b, y, k);
  15440. for (int i = 0; i < nb; i++) {
  15441. uint32_t qh;
  15442. memcpy(&qh, &y[i].qh, sizeof(qh));
  15443. for (int j = 0; j < QK5_0; j += 2) {
  15444. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15445. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15446. // cast to 16 bins
  15447. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15448. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15449. hist[vi0]++;
  15450. hist[vi1]++;
  15451. }
  15452. }
  15453. }
  15454. return (n/QK5_0*sizeof(block_q5_0));
  15455. }
  15456. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15457. assert(k % QK5_1 == 0);
  15458. const int nb = k / QK5_1;
  15459. for (int b = 0; b < n; b += k) {
  15460. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15461. quantize_row_q5_1_reference(src + b, y, k);
  15462. for (int i = 0; i < nb; i++) {
  15463. uint32_t qh;
  15464. memcpy(&qh, &y[i].qh, sizeof(qh));
  15465. for (int j = 0; j < QK5_1; j += 2) {
  15466. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15467. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15468. // cast to 16 bins
  15469. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15470. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15471. hist[vi0]++;
  15472. hist[vi1]++;
  15473. }
  15474. }
  15475. }
  15476. return (n/QK5_1*sizeof(block_q5_1));
  15477. }
  15478. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15479. assert(k % QK8_0 == 0);
  15480. const int nb = k / QK8_0;
  15481. for (int b = 0; b < n; b += k) {
  15482. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15483. quantize_row_q8_0_reference(src + b, y, k);
  15484. for (int i = 0; i < nb; i++) {
  15485. for (int j = 0; j < QK8_0; ++j) {
  15486. const int8_t vi = y[i].qs[j];
  15487. hist[vi/16 + 8]++;
  15488. }
  15489. }
  15490. }
  15491. return (n/QK8_0*sizeof(block_q8_0));
  15492. }
  15493. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15494. size_t result = 0;
  15495. switch (type) {
  15496. case GGML_TYPE_Q4_0:
  15497. {
  15498. GGML_ASSERT(start % QK4_0 == 0);
  15499. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15500. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15501. } break;
  15502. case GGML_TYPE_Q4_1:
  15503. {
  15504. GGML_ASSERT(start % QK4_1 == 0);
  15505. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15506. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15507. } break;
  15508. case GGML_TYPE_Q5_0:
  15509. {
  15510. GGML_ASSERT(start % QK5_0 == 0);
  15511. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15512. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15513. } break;
  15514. case GGML_TYPE_Q5_1:
  15515. {
  15516. GGML_ASSERT(start % QK5_1 == 0);
  15517. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15518. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15519. } break;
  15520. case GGML_TYPE_Q8_0:
  15521. {
  15522. GGML_ASSERT(start % QK8_0 == 0);
  15523. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15524. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15525. } break;
  15526. #ifdef GGML_USE_K_QUANTS
  15527. case GGML_TYPE_Q2_K:
  15528. {
  15529. GGML_ASSERT(start % QK_K == 0);
  15530. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15531. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15532. } break;
  15533. case GGML_TYPE_Q3_K:
  15534. {
  15535. GGML_ASSERT(start % QK_K == 0);
  15536. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15537. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15538. } break;
  15539. case GGML_TYPE_Q4_K:
  15540. {
  15541. GGML_ASSERT(start % QK_K == 0);
  15542. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15543. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15544. } break;
  15545. case GGML_TYPE_Q5_K:
  15546. {
  15547. GGML_ASSERT(start % QK_K == 0);
  15548. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15549. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15550. } break;
  15551. case GGML_TYPE_Q6_K:
  15552. {
  15553. GGML_ASSERT(start % QK_K == 0);
  15554. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15555. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15556. } break;
  15557. #endif
  15558. case GGML_TYPE_F16:
  15559. {
  15560. int elemsize = sizeof(ggml_fp16_t);
  15561. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15562. result = n * elemsize;
  15563. } break;
  15564. case GGML_TYPE_F32:
  15565. {
  15566. int elemsize = sizeof(float);
  15567. result = n * elemsize;
  15568. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15569. } break;
  15570. default:
  15571. assert(false);
  15572. }
  15573. return result;
  15574. }
  15575. ////////////////////////////////////////////////////////////////////////////////
  15576. int ggml_cpu_has_avx(void) {
  15577. #if defined(__AVX__)
  15578. return 1;
  15579. #else
  15580. return 0;
  15581. #endif
  15582. }
  15583. int ggml_cpu_has_avx2(void) {
  15584. #if defined(__AVX2__)
  15585. return 1;
  15586. #else
  15587. return 0;
  15588. #endif
  15589. }
  15590. int ggml_cpu_has_avx512(void) {
  15591. #if defined(__AVX512F__)
  15592. return 1;
  15593. #else
  15594. return 0;
  15595. #endif
  15596. }
  15597. int ggml_cpu_has_avx512_vbmi(void) {
  15598. #if defined(__AVX512VBMI__)
  15599. return 1;
  15600. #else
  15601. return 0;
  15602. #endif
  15603. }
  15604. int ggml_cpu_has_avx512_vnni(void) {
  15605. #if defined(__AVX512VNNI__)
  15606. return 1;
  15607. #else
  15608. return 0;
  15609. #endif
  15610. }
  15611. int ggml_cpu_has_fma(void) {
  15612. #if defined(__FMA__)
  15613. return 1;
  15614. #else
  15615. return 0;
  15616. #endif
  15617. }
  15618. int ggml_cpu_has_neon(void) {
  15619. #if defined(__ARM_NEON)
  15620. return 1;
  15621. #else
  15622. return 0;
  15623. #endif
  15624. }
  15625. int ggml_cpu_has_arm_fma(void) {
  15626. #if defined(__ARM_FEATURE_FMA)
  15627. return 1;
  15628. #else
  15629. return 0;
  15630. #endif
  15631. }
  15632. int ggml_cpu_has_f16c(void) {
  15633. #if defined(__F16C__)
  15634. return 1;
  15635. #else
  15636. return 0;
  15637. #endif
  15638. }
  15639. int ggml_cpu_has_fp16_va(void) {
  15640. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15641. return 1;
  15642. #else
  15643. return 0;
  15644. #endif
  15645. }
  15646. int ggml_cpu_has_wasm_simd(void) {
  15647. #if defined(__wasm_simd128__)
  15648. return 1;
  15649. #else
  15650. return 0;
  15651. #endif
  15652. }
  15653. int ggml_cpu_has_blas(void) {
  15654. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15655. return 1;
  15656. #else
  15657. return 0;
  15658. #endif
  15659. }
  15660. int ggml_cpu_has_cublas(void) {
  15661. #if defined(GGML_USE_CUBLAS)
  15662. return 1;
  15663. #else
  15664. return 0;
  15665. #endif
  15666. }
  15667. int ggml_cpu_has_clblast(void) {
  15668. #if defined(GGML_USE_CLBLAST)
  15669. return 1;
  15670. #else
  15671. return 0;
  15672. #endif
  15673. }
  15674. int ggml_cpu_has_gpublas(void) {
  15675. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15676. }
  15677. int ggml_cpu_has_sse3(void) {
  15678. #if defined(__SSE3__)
  15679. return 1;
  15680. #else
  15681. return 0;
  15682. #endif
  15683. }
  15684. int ggml_cpu_has_vsx(void) {
  15685. #if defined(__POWER9_VECTOR__)
  15686. return 1;
  15687. #else
  15688. return 0;
  15689. #endif
  15690. }
  15691. ////////////////////////////////////////////////////////////////////////////////