| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include "grammar-parser.h"
- #ifndef NDEBUG
- // crash the server in debug mode, otherwise send an http 500 error
- #define CPPHTTPLIB_NO_EXCEPTIONS 1
- #endif
- #include "httplib.h"
- #include "json.hpp"
- // auto generated files (update with ./deps.sh)
- #include "index.html.hpp"
- #include "index.js.hpp"
- #include "completion.js.hpp"
- #include "json-schema-to-grammar.mjs.hpp"
- #ifndef SERVER_VERBOSE
- #define SERVER_VERBOSE 1
- #endif
- using namespace httplib;
- using json = nlohmann::json;
- struct server_params
- {
- std::string hostname = "127.0.0.1";
- std::string public_path = "examples/server/public";
- int32_t port = 8080;
- int32_t read_timeout = 600;
- int32_t write_timeout = 600;
- };
- // completion token output with probabilities
- struct completion_token_output
- {
- struct token_prob
- {
- llama_token tok;
- float prob;
- };
- std::vector<token_prob> probs;
- llama_token tok;
- };
- static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
- {
- size_t i;
- for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
- {
- }
- return i;
- }
- enum stop_type
- {
- STOP_FULL,
- STOP_PARTIAL,
- };
- static bool ends_with(const std::string &str, const std::string &suffix)
- {
- return str.size() >= suffix.size() &&
- 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
- }
- static size_t find_partial_stop_string(const std::string &stop,
- const std::string &text)
- {
- if (!text.empty() && !stop.empty())
- {
- const char text_last_char = text.back();
- for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
- {
- if (stop[char_index] == text_last_char)
- {
- const std::string current_partial = stop.substr(0, char_index + 1);
- if (ends_with(text, current_partial))
- {
- return text.size() - char_index - 1;
- }
- }
- }
- }
- return std::string::npos;
- }
- template <class Iter>
- static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
- {
- std::string ret;
- for (; begin != end; ++begin)
- {
- ret += llama_token_to_str(ctx, *begin);
- }
- return ret;
- }
- static void server_log(const char *level, const char *function, int line,
- const char *message, const nlohmann::ordered_json &extra)
- {
- nlohmann::ordered_json log{
- {"timestamp", time(nullptr)},
- {"level", level},
- {"function", function},
- {"line", line},
- {"message", message},
- };
- if (!extra.empty())
- {
- log.merge_patch(extra);
- }
- const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
- fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
- fflush(stdout);
- }
- // format incomplete utf-8 multibyte character for output
- static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
- {
- std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
- // if first bit is 1, meaning it's a partial character
- if (out.size() > 0 && (out[0] & 0x80) == 0x80)
- {
- std::stringstream ss;
- ss << std::hex << (out[0] & 0xff);
- std::string res(ss.str());
- out = "byte: \\x" + res;
- }
- return out;
- }
- // convert a vector of completion_token_output to json
- static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
- {
- json out = json::array();
- for (const auto &prob : probs)
- {
- json probs_for_token = json::array();
- for (const auto &p : prob.probs)
- {
- std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
- probs_for_token.push_back(json{
- {"tok_str", tok_str},
- {"prob", p.prob},
- });
- }
- std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
- out.push_back(json{
- {"content", tok_str},
- {"probs", probs_for_token},
- });
- }
- return out;
- }
- static bool server_verbose = false;
- #if SERVER_VERBOSE != 1
- #define LOG_VERBOSE(MSG, ...)
- #else
- #define LOG_VERBOSE(MSG, ...) \
- do \
- { \
- if (server_verbose) \
- { \
- server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
- } \
- } while (0)
- #endif
- #define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
- #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
- #define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
- struct llama_server_context
- {
- bool stream = false;
- bool has_next_token = false;
- std::string generated_text;
- std::vector<completion_token_output> generated_token_probs;
- size_t num_prompt_tokens = 0;
- size_t num_tokens_predicted = 0;
- size_t n_past = 0;
- size_t n_remain = 0;
- json prompt;
- std::vector<llama_token> embd;
- std::vector<llama_token> last_n_tokens;
- llama_model *model = nullptr;
- llama_context *ctx = nullptr;
- gpt_params params;
- grammar_parser::parse_state parsed_grammar;
- llama_grammar *grammar = nullptr;
- bool truncated = false;
- bool stopped_eos = false;
- bool stopped_word = false;
- bool stopped_limit = false;
- std::string stopping_word;
- int32_t multibyte_pending = 0;
- std::mutex mutex;
- std::unique_lock<std::mutex> lock()
- {
- return std::unique_lock<std::mutex>(mutex);
- }
- ~llama_server_context()
- {
- if (ctx)
- {
- llama_free(ctx);
- ctx = nullptr;
- }
- if (model)
- {
- llama_free_model(model);
- model = nullptr;
- }
- }
- void rewind()
- {
- params.antiprompt.clear();
- params.grammar.clear();
- num_prompt_tokens = 0;
- num_tokens_predicted = 0;
- generated_text = "";
- generated_text.reserve(params.n_ctx);
- generated_token_probs.clear();
- truncated = false;
- stopped_eos = false;
- stopped_word = false;
- stopped_limit = false;
- stopping_word = "";
- multibyte_pending = 0;
- n_remain = 0;
- n_past = 0;
- if (grammar != nullptr) {
- llama_grammar_free(grammar);
- grammar = nullptr;
- }
- }
- bool loadModel(const gpt_params ¶ms_)
- {
- params = params_;
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == nullptr)
- {
- LOG_ERROR("unable to load model", {{"model", params_.model}});
- return false;
- }
- last_n_tokens.resize(params.n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- return true;
- }
- std::vector<llama_token> tokenize(json json_prompt, bool add_bos)
- {
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- std::vector<llama_token> prompt_tokens;
- if (json_prompt.is_array())
- {
- bool first = true;
- for (const auto& p : json_prompt)
- {
- if (p.is_string())
- {
- auto s = p.template get<std::string>();
- std::vector<llama_token> p;
- if (first)
- {
- s.insert(0, 1, ' '); // add a space if it's the first
- p = ::llama_tokenize(ctx, s, add_bos);
- first = false;
- }
- else
- {
- p = ::llama_tokenize(ctx, s, false);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- }
- else
- {
- if (first)
- {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- }
- else
- {
- auto s = json_prompt.template get<std::string>();
- s.insert(0, 1, ' '); // always add a first space
- prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
- }
- return prompt_tokens;
- }
- bool loadGrammar()
- {
- if (!params.grammar.empty()) {
- parsed_grammar = grammar_parser::parse(params.grammar.c_str());
- // will be empty (default) if there are parse errors
- if (parsed_grammar.rules.empty()) {
- LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
- return false;
- }
- grammar_parser::print_grammar(stderr, parsed_grammar);
- {
- auto it = params.logit_bias.find(llama_token_eos(ctx));
- if (it != params.logit_bias.end() && it->second == -INFINITY) {
- LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
- }
- }
- std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
- grammar = llama_grammar_init(
- grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
- }
- return true;
- }
- void loadPrompt()
- {
- auto prompt_tokens = tokenize(prompt, true); // always add BOS
- num_prompt_tokens = prompt_tokens.size();
- if (params.n_keep < 0)
- {
- params.n_keep = (int)num_prompt_tokens;
- }
- params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
- // if input prompt is too big, truncate like normal
- if (num_prompt_tokens >= (size_t)params.n_ctx)
- {
- const int n_left = (params.n_ctx - params.n_keep) / 2;
- std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
- const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
- new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
- std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
- LOG_VERBOSE("input truncated", {
- {"n_ctx", params.n_ctx},
- {"n_keep", params.n_keep},
- {"n_left", n_left},
- {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
- });
- truncated = true;
- prompt_tokens = new_tokens;
- }
- else
- {
- const size_t ps = num_prompt_tokens;
- std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
- std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
- }
- // compare the evaluated prompt with the new prompt
- n_past = common_part(embd, prompt_tokens);
- embd = prompt_tokens;
- if (n_past == num_prompt_tokens)
- {
- // we have to evaluate at least 1 token to generate logits.
- n_past--;
- }
- LOG_VERBOSE("prompt ingested", {
- {"n_past", n_past},
- {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
- {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
- });
- has_next_token = true;
- }
- void beginCompletion()
- {
- // number of tokens to keep when resetting context
- n_remain = params.n_predict;
- llama_set_rng_seed(ctx, params.seed);
- }
- completion_token_output nextToken()
- {
- completion_token_output result;
- result.tok = -1;
- if (embd.size() >= (size_t)params.n_ctx)
- {
- // Reset context
- const int n_left = (params.n_ctx - params.n_keep) / 2;
- std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
- new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
- embd = new_tokens;
- n_past = params.n_keep;
- truncated = true;
- LOG_VERBOSE("input truncated", {
- {"n_ctx", params.n_ctx},
- {"n_keep", params.n_keep},
- {"n_left", n_left},
- {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
- });
- }
- while (n_past < embd.size())
- {
- int n_eval = (int)embd.size() - n_past;
- if (n_eval > params.n_batch)
- {
- n_eval = params.n_batch;
- }
- if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads))
- {
- LOG_ERROR("failed to eval", {
- {"n_eval", n_eval},
- {"n_past", n_past},
- {"n_threads", params.n_threads},
- {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
- });
- has_next_token = false;
- return result;
- }
- n_past += n_eval;
- }
- if (params.n_predict == 0)
- {
- has_next_token = false;
- result.tok = llama_token_eos(ctx);
- return result;
- }
- // out of user input, sample next token
- const float temp = params.temp;
- const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
- const int32_t n_probs = params.n_probs;
- {
- auto *logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- // Apply params.logit_bias map
- for (const auto &it : params.logit_bias)
- {
- logits[it.first] += it.second;
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++)
- {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
- // Apply penalties
- float nl_logit = logits[llama_token_nl(ctx)];
- auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
- llama_sample_repetition_penalty(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl)
- {
- logits[llama_token_nl(ctx)] = nl_logit;
- }
- if (grammar != nullptr) {
- llama_sample_grammar(ctx, &candidates_p, grammar);
- }
- if (temp <= 0)
- {
- // Greedy sampling
- result.tok = llama_sample_token_greedy(ctx, &candidates_p);
- if (n_probs > 0)
- {
- llama_sample_softmax(ctx, &candidates_p);
- }
- }
- else
- {
- if (mirostat == 1)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temperature(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- }
- else if (mirostat == 2)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- }
- else
- {
- // Temperature sampling
- size_t min_keep = std::max(1, n_probs);
- llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
- llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
- llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
- llama_sample_temperature(ctx, &candidates_p, temp);
- result.tok = llama_sample_token(ctx, &candidates_p);
- }
- }
- if (grammar != nullptr) {
- llama_grammar_accept_token(ctx, grammar, result.tok);
- }
- for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
- {
- result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
- }
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(result.tok);
- num_tokens_predicted++;
- }
- // add it to the context
- embd.push_back(result.tok);
- // decrement remaining sampling budget
- --n_remain;
- if (!embd.empty() && embd.back() == llama_token_eos(ctx))
- {
- // stopping_word = llama_token_to_str(ctx, embd.back());
- has_next_token = false;
- stopped_eos = true;
- LOG_VERBOSE("eos token found", {});
- return result;
- }
- has_next_token = params.n_predict == -1 || n_remain != 0;
- return result;
- }
- size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
- const stop_type type)
- {
- size_t stop_pos = std::string::npos;
- for (const std::string &word : params.antiprompt)
- {
- size_t pos;
- if (type == STOP_FULL)
- {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- }
- else
- {
- pos = find_partial_stop_string(word, text);
- }
- if (pos != std::string::npos &&
- (stop_pos == std::string::npos || pos < stop_pos))
- {
- if (type == STOP_FULL)
- {
- stopping_word = word;
- stopped_word = true;
- has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- completion_token_output doCompletion()
- {
- const completion_token_output token_with_probs = nextToken();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
- generated_text += token_text;
- if (params.n_probs > 0)
- {
- generated_token_probs.push_back(token_with_probs);
- }
- if (multibyte_pending > 0)
- {
- multibyte_pending -= token_text.size();
- }
- else if (token_text.size() == 1)
- {
- const char c = token_text[0];
- // 2-byte characters: 110xxxxx 10xxxxxx
- if ((c & 0xE0) == 0xC0)
- {
- multibyte_pending = 1;
- // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
- }
- else if ((c & 0xF0) == 0xE0)
- {
- multibyte_pending = 2;
- // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- }
- else if ((c & 0xF8) == 0xF0)
- {
- multibyte_pending = 3;
- }
- else
- {
- multibyte_pending = 0;
- }
- }
- if (multibyte_pending > 0 && !has_next_token)
- {
- has_next_token = true;
- n_remain++;
- }
- if (!has_next_token && n_remain == 0)
- {
- stopped_limit = true;
- }
- LOG_VERBOSE("next token", {
- {"token", token_with_probs.tok},
- {"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)},
- {"has_next_token", has_next_token},
- {"n_remain", n_remain},
- {"num_tokens_predicted", num_tokens_predicted},
- {"stopped_eos", stopped_eos},
- {"stopped_word", stopped_word},
- {"stopped_limit", stopped_limit},
- {"stopping_word", stopping_word},
- });
- return token_with_probs;
- }
- std::vector<float> getEmbedding()
- {
- static const int n_embd = llama_n_embd(ctx);
- if (!params.embedding)
- {
- LOG_WARNING("embedding disabled", {
- {"params.embedding", params.embedding},
- });
- return std::vector<float>(n_embd, 0.0f);
- }
- const float *data = llama_get_embeddings(ctx);
- std::vector<float> embedding(data, data + n_embd);
- return embedding;
- }
- };
- static void server_print_usage(const char *argv0, const gpt_params ¶ms,
- const server_params &sparams)
- {
- fprintf(stdout, "usage: %s [options]\n", argv0);
- fprintf(stdout, "\n");
- fprintf(stdout, "options:\n");
- fprintf(stdout, " -h, --help show this help message and exit\n");
- fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
- fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
- fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
- fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
- fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
- if (llama_mlock_supported())
- {
- fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_mmap_supported())
- {
- fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
- fprintf(stdout, " number of layers to store in VRAM\n");
- fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
- fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
- fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
- fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
- fprintf(stdout, " -nommq, --no-mul-mat-q\n");
- fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
- fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
- #endif
- fprintf(stdout, " -m FNAME, --model FNAME\n");
- fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
- fprintf(stdout, " -a ALIAS, --alias ALIAS\n");
- fprintf(stdout, " set an alias for the model, will be added as `model` field in completion response\n");
- fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
- fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
- fprintf(stdout, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
- fprintf(stdout, " --port PORT port to listen (default (default: %d)\n", sparams.port);
- fprintf(stdout, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
- fprintf(stdout, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
- fprintf(stdout, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
- fprintf(stdout, "\n");
- }
- static void server_params_parse(int argc, char **argv, server_params &sparams,
- gpt_params ¶ms)
- {
- gpt_params default_params;
- server_params default_sparams;
- std::string arg;
- bool invalid_param = false;
- for (int i = 1; i < argc; i++)
- {
- arg = argv[i];
- if (arg == "--port")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.port = std::stoi(argv[i]);
- }
- else if (arg == "--host")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.hostname = argv[i];
- }
- else if (arg == "--path")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.public_path = argv[i];
- }
- else if (arg == "--timeout" || arg == "-to")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.read_timeout = std::stoi(argv[i]);
- sparams.write_timeout = std::stoi(argv[i]);
- }
- else if (arg == "-m" || arg == "--model")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- }
- else if (arg == "-a" || arg == "--alias")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model_alias = argv[i];
- }
- else if (arg == "-h" || arg == "--help")
- {
- server_print_usage(argv[0], default_params, default_sparams);
- exit(0);
- }
- else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_ctx = std::stoi(argv[i]);
- }
- else if (arg == "--rope-freq-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_base = std::stof(argv[i]);
- }
- else if (arg == "--rope-freq-scale")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_scale = std::stof(argv[i]);
- }
- else if (arg == "--memory-f32" || arg == "--memory_f32")
- {
- params.memory_f16 = false;
- }
- else if (arg == "--threads" || arg == "-t")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_threads = std::stoi(argv[i]);
- }
- else if (arg == "-b" || arg == "--batch-size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_batch = std::stoi(argv[i]);
- params.n_batch = std::min(512, params.n_batch);
- }
- else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- params.n_gpu_layers = std::stoi(argv[i]);
- #else
- LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
- "See main README.md for information on enabling GPU BLAS support",
- {{"n_gpu_layers", params.n_gpu_layers}});
- #endif
- }
- else if (arg == "--tensor-split" || arg == "-ts")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef GGML_USE_CUBLAS
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{R"([,/]+)"};
- std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
- for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
- {
- if (i_device < split_arg.size())
- {
- params.tensor_split[i_device] = std::stof(split_arg[i_device]);
- }
- else
- {
- params.tensor_split[i_device] = 0.0f;
- }
- }
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--low-vram" || arg == "-lv")
- {
- #ifdef GGML_USE_CUBLAS
- params.low_vram = true;
- #else
- LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--no-mul-mat-q" || arg == "-nommq")
- {
- #ifdef GGML_USE_CUBLAS
- params.mul_mat_q = false;
- #else
- LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--main-gpu" || arg == "-mg")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef GGML_USE_CUBLAS
- params.main_gpu = std::stoi(argv[i]);
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
- #endif
- }
- else if (arg == "--lora")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapter = argv[i];
- params.use_mmap = false;
- }
- else if (arg == "--lora-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_base = argv[i];
- }
- else if (arg == "-v" || arg == "--verbose")
- {
- #if SERVER_VERBOSE != 1
- LOG_WARNING("server.cpp is not built with verbose logging.", {});
- #else
- server_verbose = true;
- #endif
- }
- else if (arg == "--mlock")
- {
- params.use_mlock = true;
- }
- else if (arg == "--no-mmap")
- {
- params.use_mmap = false;
- }
- else if (arg == "--numa")
- {
- params.numa = true;
- }
- else if (arg == "--embedding")
- {
- params.embedding = true;
- }
- else
- {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- if (invalid_param)
- {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- static json format_generation_settings(llama_server_context &llama)
- {
- const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
- const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
- eos_bias->second < 0.0f && std::isinf(eos_bias->second);
- return json{
- {"n_ctx", llama.params.n_ctx},
- {"model", llama.params.model_alias},
- {"seed", llama.params.seed},
- {"temp", llama.params.temp},
- {"top_k", llama.params.top_k},
- {"top_p", llama.params.top_p},
- {"tfs_z", llama.params.tfs_z},
- {"typical_p", llama.params.typical_p},
- {"repeat_last_n", llama.params.repeat_last_n},
- {"repeat_penalty", llama.params.repeat_penalty},
- {"presence_penalty", llama.params.presence_penalty},
- {"frequency_penalty", llama.params.frequency_penalty},
- {"mirostat", llama.params.mirostat},
- {"mirostat_tau", llama.params.mirostat_tau},
- {"mirostat_eta", llama.params.mirostat_eta},
- {"penalize_nl", llama.params.penalize_nl},
- {"stop", llama.params.antiprompt},
- {"n_predict", llama.params.n_predict},
- {"n_keep", llama.params.n_keep},
- {"ignore_eos", ignore_eos},
- {"stream", llama.stream},
- {"logit_bias", llama.params.logit_bias},
- {"n_probs", llama.params.n_probs},
- {"grammar", llama.params.grammar},
- };
- }
- static json format_embedding_response(llama_server_context &llama)
- {
- return json{
- {"embedding", llama.getEmbedding()},
- };
- }
- static json format_timings(llama_server_context &llama)
- {
- const auto timings = llama_get_timings(llama.ctx);
- assert(timings.n_eval == llama.num_tokens_predicted);
- return json{
- {"prompt_n", timings.n_p_eval},
- {"prompt_ms", timings.t_p_eval_ms},
- {"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
- {"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
- {"predicted_n", timings.n_eval},
- {"predicted_ms", timings.t_eval_ms},
- {"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval},
- {"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval},
- };
- }
- static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
- {
- json res = json{
- {"content", content},
- {"stop", true},
- {"model", llama.params.model_alias},
- {"tokens_predicted", llama.num_tokens_predicted},
- {"tokens_evaluated", llama.num_prompt_tokens},
- {"generation_settings", format_generation_settings(llama)},
- {"prompt", llama.prompt},
- {"truncated", llama.truncated},
- {"stopped_eos", llama.stopped_eos},
- {"stopped_word", llama.stopped_word},
- {"stopped_limit", llama.stopped_limit},
- {"stopping_word", llama.stopping_word},
- {"tokens_cached", llama.n_past},
- {"timings", format_timings(llama)},
- };
- if (llama.params.n_probs > 0)
- {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
- {
- json res = json{
- {"content", content},
- {"stop", false},
- };
- if (llama.params.n_probs > 0)
- {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_tokenizer_response(const std::vector<llama_token> &tokens)
- {
- return json{
- {"tokens", tokens}};
- }
- template <typename T>
- static T json_value(const json &body, const std::string &key, const T &default_value)
- {
- // Fallback null to default value
- return body.contains(key) && !body.at(key).is_null()
- ? body.value(key, default_value)
- : default_value;
- }
- static void parse_options_completion(const json &body, llama_server_context &llama)
- {
- gpt_params default_params;
- llama.stream = json_value(body, "stream", false);
- llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
- llama.params.top_k = json_value(body, "top_k", default_params.top_k);
- llama.params.top_p = json_value(body, "top_p", default_params.top_p);
- llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
- llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
- llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
- llama.params.temp = json_value(body, "temperature", default_params.temp);
- llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
- llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
- llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
- llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
- llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
- llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
- llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
- llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
- llama.params.seed = json_value(body, "seed", default_params.seed);
- llama.params.grammar = json_value(body, "grammar", default_params.grammar);
- llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
- if (body.count("prompt") != 0)
- {
- llama.prompt = body["prompt"];
- }
- else
- {
- llama.prompt = "";
- }
- llama.params.logit_bias.clear();
- if (json_value(body, "ignore_eos", false))
- {
- llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
- }
- const auto &logit_bias = body.find("logit_bias");
- if (logit_bias != body.end() && logit_bias->is_array())
- {
- const int n_vocab = llama_n_vocab(llama.ctx);
- for (const auto &el : *logit_bias)
- {
- if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
- {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab)
- {
- if (el[1].is_number())
- {
- llama.params.logit_bias[tok] = el[1].get<float>();
- }
- else if (el[1].is_boolean() && !el[1].get<bool>())
- {
- llama.params.logit_bias[tok] = -INFINITY;
- }
- }
- }
- }
- }
- llama.params.antiprompt.clear();
- const auto &stop = body.find("stop");
- if (stop != body.end() && stop->is_array())
- {
- for (const auto &word : *stop)
- {
- if (!word.empty())
- {
- llama.params.antiprompt.push_back(word);
- }
- }
- }
- LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
- }
- static void log_server_request(const Request &req, const Response &res)
- {
- LOG_INFO("request", {
- {"remote_addr", req.remote_addr},
- {"remote_port", req.remote_port},
- {"status", res.status},
- {"method", req.method},
- {"path", req.path},
- {"params", req.params},
- });
- LOG_VERBOSE("request", {
- {"request", req.body},
- {"response", res.body},
- });
- }
- int main(int argc, char **argv)
- {
- // own arguments required by this example
- gpt_params params;
- server_params sparams;
- // struct that contains llama context and inference
- llama_server_context llama;
- server_params_parse(argc, argv, sparams, params);
- if (params.model_alias == "unknown")
- {
- params.model_alias = params.model;
- }
- llama_backend_init(params.numa);
- LOG_INFO("build info", {{"build", BUILD_NUMBER},
- {"commit", BUILD_COMMIT}});
- LOG_INFO("system info", {
- {"n_threads", params.n_threads},
- {"total_threads", std::thread::hardware_concurrency()},
- {"system_info", llama_print_system_info()},
- });
- // load the model
- if (!llama.loadModel(params))
- {
- return 1;
- }
- Server svr;
- svr.set_default_headers({{"Server", "llama.cpp"},
- {"Access-Control-Allow-Origin", "*"},
- {"Access-Control-Allow-Headers", "content-type"}});
- // this is only called if no index.html is found in the public --path
- svr.Get("/", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
- return false; });
- // this is only called if no index.js is found in the public --path
- svr.Get("/index.js", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
- return false; });
- // this is only called if no index.html is found in the public --path
- svr.Get("/completion.js", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
- return false; });
- // this is only called if no index.html is found in the public --path
- svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
- return false; });
- svr.Post("/completion", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- llama.rewind();
- llama_reset_timings(llama.ctx);
- parse_options_completion(json::parse(req.body), llama);
- if (!llama.loadGrammar())
- {
- res.status = 400;
- return;
- }
- llama.loadPrompt();
- llama.beginCompletion();
- if (!llama.stream) {
- size_t stop_pos = std::string::npos;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
- stop_pos = llama.findStoppingStrings(llama.generated_text,
- token_text.size(), STOP_FULL);
- }
- if (stop_pos == std::string::npos) {
- stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
- }
- if (stop_pos != std::string::npos) {
- llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
- llama.generated_text.end());
- }
- const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
- llama_print_timings(llama.ctx);
- res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
- "application/json");
- } else {
- const auto chunked_content_provider = [&](size_t, DataSink & sink) {
- size_t sent_count = 0;
- size_t sent_token_probs_index = 0;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
- if (llama.multibyte_pending > 0) {
- continue;
- }
- size_t pos = std::min(sent_count, llama.generated_text.size());
- const std::string str_test = llama.generated_text.substr(pos);
- size_t stop_pos =
- llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
- if (stop_pos != std::string::npos) {
- llama.generated_text.erase(
- llama.generated_text.begin() + pos + stop_pos,
- llama.generated_text.end());
- pos = std::min(sent_count, llama.generated_text.size());
- } else {
- stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
- STOP_PARTIAL);
- }
- const std::string to_send = llama.generated_text.substr(pos, stop_pos);
- sent_count += to_send.size();
- std::vector<completion_token_output> probs_output = {};
- if (llama.params.n_probs > 0) {
- const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
- size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
- size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
- if (probs_pos < probs_stop_pos) {
- probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
- }
- sent_token_probs_index = probs_stop_pos;
- }
- const json data = llama.has_next_token
- ? format_partial_response(llama, to_send, probs_output)
- // Generation is done, send extra information.
- : format_final_response(llama, to_send, llama.generated_token_probs);
- const std::string str =
- "data: " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.data(), str.size())) {
- LOG_VERBOSE("stream closed", {});
- llama_print_timings(llama.ctx);
- return false;
- }
- }
- llama_print_timings(llama.ctx);
- sink.done();
- return true;
- };
- const auto on_complete = [&](bool) {
- llama.mutex.unlock();
- };
- lock.release();
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- } });
- svr.Get("/model.json", [&llama](const Request &, Response &res)
- {
- const json data = format_generation_settings(llama);
- return res.set_content(data.dump(), "application/json"); });
- svr.Options(R"(/.*)", [](const Request &, Response &res)
- { return res.set_content("", "application/json"); });
- svr.Post("/tokenize", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- const json body = json::parse(req.body);
- std::vector<llama_token> tokens;
- if (body.count("content") != 0)
- {
- tokens = llama.tokenize(body["content"], false);
- }
- const json data = format_tokenizer_response(tokens);
- return res.set_content(data.dump(), "application/json"); });
- svr.Post("/embedding", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- const json body = json::parse(req.body);
- llama.rewind();
- llama_reset_timings(llama.ctx);
- if (body.count("content") != 0)
- {
- llama.prompt = body["content"];
- }
- else
- {
- llama.prompt = "";
- }
- llama.params.n_predict = 0;
- llama.loadPrompt();
- llama.beginCompletion();
- llama.doCompletion();
- const json data = format_embedding_response(llama);
- return res.set_content(data.dump(), "application/json"); });
- svr.set_logger(log_server_request);
- svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
- {
- const auto * fmt = "500 Internal Server Error\n%s";
- char buf[BUFSIZ];
- try {
- std::rethrow_exception(std::move(ep));
- } catch (std::exception & e) {
- snprintf(buf, sizeof(buf), fmt, e.what());
- } catch (...) {
- snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
- }
- res.set_content(buf, "text/plain");
- res.status = 500; });
- svr.set_error_handler([](const Request &, Response &res)
- {
- if (res.status == 400) {
- res.set_content("Invalid request", "text/plain");
- } else if (res.status != 500) {
- res.set_content("File Not Found", "text/plain");
- res.status = 404;
- } });
- // set timeouts and change hostname and port
- svr.set_read_timeout(sparams.read_timeout);
- svr.set_write_timeout(sparams.write_timeout);
- if (!svr.bind_to_port(sparams.hostname, sparams.port))
- {
- fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
- return 1;
- }
- // Set the base directory for serving static files
- svr.set_base_dir(sparams.public_path);
- // to make it ctrl+clickable:
- fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
- LOG_INFO("HTTP server listening", {
- {"hostname", sparams.hostname},
- {"port", sparams.port},
- });
- if (!svr.listen_after_bind())
- {
- return 1;
- }
- if (llama.grammar != nullptr) {
- llama_grammar_free(llama.grammar);
- }
- llama_backend_free();
- return 0;
- }
|